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Image Segmentation using MRFs and Statistical Shape

Modeling

Abstract: In this thesis, we introduce a new statistical shape model and

use it for knowledge-based image segmentation. The model is represented by a

Markov Random Field (MRF). The vertices of the graph correspond to land-

marks lying on the shape boundary, whereas the edges of the graph encode

the dependencies between the landmarks. The MRF structure is determined

from a training set of shapes using manifold learning and unsupervised clus-

tering techniques. The inter-point constraints are enforced using the learned

probability distribution function of the normalized chord lengths.

This model is used as a basis for knowledge-based segmentation. We adopt

two approaches to incorporate the data support: one is based on landmark

correspondences and the other one uses image region information. In the �rst

case, correspondences between the model and the image are obtained through

detectors and the optimal con�guration is achieved through combination of

detector responses and prior knowledge. The second approach consists of min-

imizing an energy that discriminates the object from the background while

accounting for the shape prior. A Voronoi decomposition is used to express

this objective function in a distributed manner using the landmarks of the

model. Both algorithms are optimized using state-of-the art e�cient opti-

mization methods.

We validate our approach on various 2D and 3D datasets of images, for

computer vision applications as well as medical image analysis.

Keywords: Shape Modeling, Segmentation, Markov Random Fields,

Discrete Optimization





Segmentation d'Images avec des Champs de Markov et

Modélisation Statistique de Formes

Résumé : Nous présentons dans cette thèse un nouveau modèle statistique

de forme et l'utilisons pour la segmentation d'images avec a priori. Ce modèle

est représenté par un champ de Markov. Les n÷uds du graphe correspondent

aux points de contrôle situés sur le contour de la forme géométrique, et les

arêtes du graphe représentent les dépendances entre les points de contrôle.

La structure du champ de Markov est déterminée à partir d'un ensemble

de formes, en utilisant des techniques d'apprentissage de variétés et de

groupement non-supervisé. Les contraintes entre les points sont assurées par

l'estimation des fonctions de densité de probabilité des longueurs de cordes

normalisées.

Dans une deuxième étape, nous construisons un algorithme de segmentation

qui intègre le modèle statistique de forme, et qui le relie à l'image grâce à un

terme région, à travers l'utilisation de diagrammes de Voronoi. Dans cette

approche, un contour de forme déformable évolue vers l'objet à segmenter.

Nous formulons aussi un algorithme de segmentation basé sur des détecteurs

de points d'intérêt, où le terme de régularisation est lié à l'a priori de forme.

Dans ce cas, on cherche à faire correspondre le modèle aux meilleurs points

candidats extraits de l'image par le détecteur. L'optimisation pour les deux

algorithmes est faite en utilisant des méthodes récentes et e�caces.

Nous validons notre approche à travers plusieurs jeux de données en 2D et

en 3D, pour des applications de vision par ordinateur ainsi que l'analyse

d'images médicales.

Mots clés : Modélisation de formes, Segmentation, Champs de Markov,

Optimisation discrète
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Chapter 1

Context and Motivation

Image segmentation is a fundamental task in computer vision and medical

image analysis. It can be de�ned as the extraction of the boundaries of an

object of interest from the image. Alternatively, it can be viewed as a labeling

problem, where image pixels are assigned either to the object or to the back-

ground. Segmentation is of a great importance because it provides qualitative

and quantitative information about the image. For instance, semi-automatic

photo-editing is a popular application that bene�ts from segmentation tech-

niques. Behavior analysis is another domain where segmentation represents

a data pre-processing step. Note that the accuracy of the extracted bound-

aries would highly in�uence the quality of the resulting model. Image/video-

based automatic translation of hand signs is a concrete example of gesture

recognition that could bene�t from e�cient segmentation as well. Such an

application can hardly be achieved without precisely outlining the hand and

detecting the relative �nger poses. In medical image analysis, clinical routines

have integrated segmentation algorithms, to assist diagnosis. These tools al-

low physicians to gain precious time, alleviate the need for tedious manual

processing, while providing satisfactory accuracy. For instance, assessing the

left ventricular function of the heart is done through the estimation of the left

ventricle ejection fraction. The latter is a quantitative indicator that can be

computed from segmented magnetic resonance cardiac images.

A common methodology to address computer vision tasks de�nes a math-

ematical model that represents the problem, and then extracts the model

parameters from image observations using optimization methods. Low-level

segmentation approaches exclusively rely on neighboring image features and

grouping methods. These techniques have limited success when compared to

high-level methods that integrate shape priors in their modeling. In �elds

where a prior knowledge is available (like medical imaging), such methods

carry on great potentials since the domain knowledge can be used to intro-



2 Chapter 1. Context and Motivation

duce constraints and improve the reliability and accuracy of the segmentation

result. In this challenging task, one �rst has to determine a model represent-

ing these constraints and then an inference process which aims to combine the

visual support with the prior knowledge.

Di�erent classes of shape models have been used for segmentation pur-

poses. These models are linear or non-linear, global or local, represent the

shape in an explicit or implicit manner, and may bene�t from statistical

learning. Although global and linear statistical shape modeling approaches

are very popular in the computer vision community, and have been applied

to a wide variety of segmentation problems, we believe that non-linear local

shape priors can be very powerful. They can be further enhanced if they are

combined in a structured manner, which can be derived from shape popula-

tions using manifold learning techniques. Such local object parts interactions

are also very suitable for the use of Markov Random Fields (MRF) optimiza-

tion techniques.

In this work, we made the choice to use discrete optimization methods. De-

spite more modeling constraints with respect to the continuous optimization

setting, discrete methods have very appealing properties in general. Varia-

tional methods are known to converge to local minima in the general case,

without giving any quality evaluation of the obtained solution. They require

the computation of the gradient of the energy functional, which might not

be di�erentiable in some cases, and also depend on a careful choice of an ap-

proximate numerical scheme, which very often leads to slow algorithms. On

the contrary, the recent developments in the discrete optimization of MRFs

provide tools that guarantee convergence in certain cases, provide suboptimal-

ity bounds beforehand, and per-instance tighter bounds in practice. Although

they converge in general to a local solution as well, these methods could yield a

better result as they permit to "jump" over local minima. They do not require

the di�erentiation of the objective function, exhibit numerical robustness and

are computationally e�cient. If such a method gives an unsatisfactory result,

then it is probably due to an erroneous modeling rather than to numerical

instabilities.

We introduce in this thesis a new statistical shape model, in order to use

it for segmentation tasks. This goal adds to the natural requirement of proper
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shape variation representation the necessity of a tractable inference procedure.

Our statistical shape model (SSM) relies on three building blocks that encap-

sulate geometric, manifold learning and graph theoretic aspects. Essentially,

we adopt a landmark-based representation of shapes, that is embedded in a

MRF, with an appropriate structure, namely a k-fan structure. Probability

density distributions of the normalized inter-point distances are associated to

the MRF to form the SSM, leading to a representation that is invariant with

respect to translation, rotation and scale changes. In our development, we en-

sure the coherence of the chosen MRF structure with respect to the geometric

aspect, namely the normalized distance representation. We also propose a

framework that learns a particular instance of this structure for a particular

class of objects, given a representative population of shapes. Hence, the �nal

structure is directly related to the information encoded by the data. Fur-

thermore, we show that the k-fan has desirable graph properties that permit

exact inference only in some limited cases, due to the curse of dimensionality.

In practice, we resort to state-of-the art e�cient discrete MRF optimization

techniques.

The second step of our work attempts to prove the relevance of our model

for object segmentation. Our SSM enables the use of general image cues, and

is suitable for segmentation algorithms in 2D and in 3D. We propose a method

that relies on image region intensities to extract the object boundaries, and

we show its robustness with respect to noise and occlusions. We also suggest

another framework that bene�ts from multi-scale image features and trained

classi�ers in combination with our SSM. Experiments are performed in 2D

and 3D with medical and natural images.

The remainder of this thesis is organized as follows. In chapter 2, we �rst

review the shape modeling techniques related to segmentation applications.

Then, we develop our statistical shape model by emphasizing our threefold

contribution. We discuss the Euclidean distance geometry issues related to our

k-fan structure, by making the link with a more general class of graphs called

k-trees. We explain then how we use the shape maps technique to embed

the shape population in a Euclidean space, where we apply an unsupervised

linear programming-based clustering method to derive the particular graph

structure that represents the data. The obtained graph being chordal, exact
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inference is possible using dynamic programming, if the search space is small

enough. After demonstrating the adequacy of the shape modeling technique

on some practical examples, we proceed to the development of the segmenta-

tion algorithm in chapter 3. We �rst give an overview of the discrete MRF

optimization methods. Then, we describe the segmentation techniques in com-

puter vision, and especially the graph-based methods, discussing the relation

of our method to the previous work. We particularly notice that incorporat-

ing statistical shape priors in MRFs is a di�cult task. Then, we develop our

aforementioned segmentation algorithms. Furthermore, extensions of our seg-

mentation approach to other application settings are presented in appendix A.

More precisely, we propose a method to incorporate dynamic shape priors in

the MRF formulation in order to perform object tracking. In a di�erent appli-

cation, we use graph matching techniques to extract discriminatively-matched

pairs of landmarks towards image registration. We conclude this work by

discussing the limitations of our approach, and we propose several ways of

improvements and directions for future research.
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2.1 Introduction

Bottom-up computer vision methods rely on comparing and grouping pixel

features in local image neighborhoods with little prior knowledge. Top-down

approaches is an alternative that gained a signi�cant popularity in computer

vision. These techniques allow the combination low-level cues from the image

in a principled manner, based on a priori constraints. The learning of such

prior information is central to a number of computer vision applications, such

as recognition, segmentation and tracking of objects. In particular, shape

models proved to be very useful in the context where one can determine a

priori knowledge of the object of interest. Such models incorporate informa-

tion about the geometry of the object, and can also describe its visual image

features. This method applies to a wide range of applications in general com-

puter vision (for instance faces, eyes, hands, human bodies...) and medical

image processing as well (modeling of the heart, liver, corpus callosum...).

Building a shape model involves in general two components:

• A mathematical shape representation is de�ned.

• Constraints are added to this representation such that an admissible set

of shapes is constructed. These constrains can be for instance learned

as a statistical model that represents the variations of the shape.

The literature of shape modeling is very rich, and di�erent representations

were used in the context of computer vision. In particular, continuous e�orts

have been made to incorporate shape priors in segmentation algorithms, since

the early 1990's. In [Heimann & Meinzer 2009], a review of statistical shape

models (SSM) for three dimensional medical image segmentation is provided.

Another review of statistical shape priors for level set segmentation is available

in [Cremers et al. 2007]. We now review the major shape modeling techniques

previously proposed in the literature.

2.1.1 A Review of Shape Models

Point-Distribution Models - Linear Models

One of the most widely used algorithms in the area of shape modeling is

the active shape model (ASM), also called point distribution model (PDM).
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Point-based or landmark-based representations have been studied, developed

and successfully applied in vision applications as well as medical image analy-

sis following the pioneering work of [Cootes et al. 1995]. In this approach, the

shape is represented as a vector of concatenated point coordinates in a space of

dimension n×d, where n is the number of points, and d is the dimension of the

points space. These points are in general boundary points, and the shape is

easily recovered by connecting them, to form a meshed surface or a 2D curve.

Then, a (linear) statistical model is learned from a training set of t shape

instances, where correspondences between the landmarks are known. Very

often, the correspondences are obtained through the manual labeling of the

training shapes. However, such data are not always available (especially for

3D medical applications). Moreover, the manual precision of the correspon-

dences is questionable in general, and can vary from one person to another.

For these reasons, di�erent methods for automatic correspondence �nding

were developed. For instance, [Davies et al. 2002] propose a population-based

formulation to the problem by minimizing an objective function that features

the minimum description length (MDL) of the statistical model.

The learning phase of ASM is based on principal component analysis

(PCA). First, an alignment of the training shapes is performed, to �lter out

translation, rotation and scale change e�ects. This can be done using various

rigid alignment methods like Procrustes analysis. Next, a mean shape s and

a covariance matrix Cs are computed. An eigendecomposition of Cs gives the

modes of variations of the shape with respect to the mean shape. These modes

are represented by the eigenvectors ei of the covariance matrix. By projecting

the residual of an instance shape s from the mean on the obtained basis of

eigenvectors, it can be expressed as a linear combination of the eigenmodes.

More explicitly, we have s = s +
∑n×d

i=1 biei. In the last step, the dimensional-

ity of the problem is reduced and only the eigenvectors corresponding to the

largest m eigenvalues are kept, where in general m is chosen such that a large

part of the trace of Cs is retained. This yields the compressed expression of

a shape s = s +
∑m

i=1 biei with a small residual error. The admissible set

of shapes is generally de�ned by constraining the coe�cients bi in the range

[−3
√
λi, 3
√
λi], where λi is the eigenvalue corresponding to the eigenvector ei.

Point distribution models are hence linear models that make the Gaussianity
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assumption of the data, and rotate the coordinate axes to the directions of

maximum variance. They are global shape models of local variations (with

respect to the mean).

Because of their global e�ects, eigenmode variations of the PDM result

in a change of all the landmarks. Each single mode controls the variations

of the whole shape. In some applications, shape model sparsity is a de-

sired property. For instance, PDM can handle the variations of a healthy

organ, since the global shape assumption is reasonable in this case. How-

ever, for pathologies that a�ect the organ (and hence its shape) locally, the

success of a PDM might be limited. This observation motivated the work of

[Stegmann et al. 2006] who looked for variation modes that a�ect the shape

locally. This is achieved through the Orthomax method that rotates the eigen-

modes such that a sparsity criterion is optimized. This leads to a similar linear

orthogonal decomposition of the shape as in PDM, yet with local in�uence

properties. Independent component analysis (ICA) [Hyvärinen et al. 2001]

is a di�erent approach that tackles sparse modeling. It supposes that the

measured signal is a linear mix of non-Gaussian source signals that are sta-

tistically mutually independent (without orthogonality constraints). It was

for example used by [Üzümcü et al. 2003] to segment the left ventricle (LV)

from magnetic resonance (MR) images in an active appearance model (AAM)

[Cootes et al. 2001] framework. A variation on the PCA eigenmodes rotation

is also introduced by [Alcantara et al. 2009]. Following the ideas presented

in [Chennubhotla & Jepson 2001], they de�ne an energy function that is a

trade-o� between a variance term and a locality term. The optimization is

performed by a PCA-based initialization, followed by the rotation of pairs

of eigenmodes in their plane, such that orthonormality is preserved. These

methods however su�er from the lack of natural order in the variation modes,

in contrast with PCA, where the eigenmodes order is speci�ed by variance.

Hence, the authors used di�erent methods and criteria in order to cope with

this limitation.

Another problem arises in practice when dealing with PDM. The num-

ber of available shapes in the training set is often insu�cient, especially

in the 3D case, where a manual labeling of medical data can be very te-

dious while establishing correspondences can also be very challenging. The
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maximum number of degrees of freedom that can be described by the train-

ing set is t − 1, and so the number of possible eigenmodes. In this case,

the learned PDM model would result in incorrect �tting during the search

step. [Cootes & Taylor 1996] attempt to solve this problem by directly act-

ing on the covariance matrix, and adding (synthetic) variance and covari-

ance values for neighboring curve points, to correlate their displacements.

[Wang & Staib 1998] use the same idea to build a �exible deformable model.

They keep the mean shape, learned from the training data, and discard the

covariance matrix, replacing it by the so-called smoothness covariance matrix.

The latter contains only variance values, and covariance term for neighboring

landmarks on the curve. This model does not depend on statistical shape

variations, and allows the deformation of the shape under smooth boundary

constraints.

Linear shape models have also been used in the variational framework.

[Cremers et al. 2001] introduced shape priors into the Mumford Shah func-

tional. They used a spline parametrization of the contours and learned a

multivariate Gaussian distribution over the control point positions. They in-

troduced in [Cremers et al. 2002b] invariance to translation rotation and scale

changes in the variational framework. To overcome the non-invertibility of the

covariance matrix in the case of a small training set, the latter was regularized

by replacing the zero eigenvalues by the smallest eigenvalue. Hence, a shape

variation that is not represented by the training set has a smaller probability

than any shape variation encoded by the training set.

A common criticism that is formulated to PDM regards their limited abil-

ity to model shapes with relative rotations, or bending variations, which

makes the assumption of linearity (or locality on the Riemannian manifold

of shapes) not valid any more. This limitation was indeed described by

[Cootes et al. 1995], and motivated the development of non-linear models.

Non-Linear Models

Di�erent approaches were considered to model non-linearity of shape varia-

tions. Among others, [Heap & Hogg 1997] build a hierarchical shape model

by clustering the data into (overlapping) clusters, the number of clusters be-

ing speci�ed by the user. They de�ne afterwards a PDM for each cluster,
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with bounds on the shape parameters, such that the de�ned shape region

is valid. [Cootes & Taylor 1999] also use a supervised method to deal with

non-linearities. After projecting the training data on the PCA eigenmodes,

they estimate a probability density function (PDF) of the shape as a mixture

model of Gaussians, where the number of Gaussians is speci�ed beforehand.

The estimation is done using the expectation maximization (EM) algorithm.

In an alternative approach, a non-linear mapping of the data to a feature

space is introduced, and PCA is performed in the feature space, supposed

to be linear. This is the principle of kernel principal component analysis

(KPCA) [Schölkopf et al. 1998] that was applied by [Romdhani et al. 1999] to

the shape modeling problem in the case of multiple 2D views of a 3D object,

and by [Twining & Taylor 2001] for the modeling of large-amplitude bending

objects (nematode worms). The central idea of this approach lies in Mercer's

theorem, where the non-linear mapping does not have to be explicitly de�ned,

but can be speci�ed in terms of inner products, expressed using a Mercer ker-

nel. The feature space is called a Reproducing Kernel Hilbert Space (RKHS).

A related method is [Cremers et al. 2002a] where the authors extend their

previous Gaussian prior Mumford-Shah formulation [Cremers et al. 2001] to

the non-linear case. They estimate the distribution of the mapped training

data by a Gaussian PDF in the RKHS, and discuss the close relation of their

method to the Parzen windows estimator and KPCA. Gaussian kernels were

often chosen in the above methods.

[Charpiat et al. 2007] develop a method to compute statistics of a training

set of contours and to use them as a non-linear shape prior in a variational

framework. Considering a di�erentiable approximation of the Hausdor� dis-

tance between shapes, they de�ne the mean shape as the one that minimizes

the sum of distances to all the training samples up to rigid motions, and

propose a gradient descent framework to compute it. Then, statistics on the

deformation �elds that drive this mean shape to each sample are learned using

PCA. They are plugged into a variational framework for image segmentation,

and de�ne priors that are invariant to rigid motions.
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Implicit Representations

Implicit representation is another typical approach to model shapes, where the

contour of the shape is embedded in a high dimensional space and considered

as the zero level of a representing surface. The signed distance transform or

signed distance map (SDM) of the contour is commonly considered as the em-

bedding function in this case [Osher & Sethian 1988]. [Leventon et al. 2000]

augment this representation with a statistical model to capture shape vari-

ations. After a rigid alignment of the training contours, they also use

PCA, and apply it on the distance transform image collection obtained from

the training contours. After dimensionality reduction, eigen distance maps

represent the variations of the shapes. This same representation is also

used by [Tsai et al. 2001], in an e�cient level-set segmentation algorithm.

[Chan & Zhu 2005] de�ne a distance between two SDM using the Heaviside

distribution.

Similarly to the PDM case, criticism was addressed to the above ap-

proaches regarding the linearity assumption. Hence, the underlying approx-

imation of the manifold of signed distance maps as a linear vector space is

questionable. Linear combinations of signed distance maps do not necessar-

ily give a signed distance map, which can compromise the use of PCA in

this case. Moreover, as pointed out in [Cremers et al. 2007], the bene�ts of

PCA dimensionality reduction can have a downside. The principal eigen dis-

tance maps encode most of the variations of the training set on the space of

embedding functions, which does not necessarily correspond to most of the

variations of the embedded contours in the learning population. This may

result in selecting a large number of eigenmodes to build a satisfying shape

model. These considerations motivated the use of the following alternative

statistical models.

Implicit representations were also used in [Rousson & Paragios 2002] and

[Rousson & Paragios 2008]. The prior information was however learned pixel-

wise (grid-wise) as a Gaussian probability density function. [Taron et al. 2005]

adopt a similar approach and represent shapes as signed distance functions.

However, they deal with the correspondence problem by registering the train-

ing shape implicit representations using a topology-preserving free-from defor-

mation algorithm. Then, the registration uncertainty is estimated by comput-
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ing a covariance matrix at the surface zero-level. The following estimation of

the probability density function (PDF) of the shape, using variable bandwidth

kernels, takes into account the registration uncertainties. [Pohl et al. 2006]

and [Pohl et al. 2007] dealt di�erently with the problem as they tackled the

representation part. They introduced the logarithm of the odds ratio (Lo-

gOdds) representation to the area of computer vision. The LogOdds function

maps a probability p ∈ P (P being the probability space) to a real value

through the logarithm of the ratio between p and its complement 1 − p (the

inverse map is the logistic function). The LogOdds maps form a vector space

(Ln = Rn), and the authors deduce a vector space structure on Pn. This

allows probabilistic interpretation for addition and scalar multiplication in

the LogOdds space Ln. A shape silhouette (binary map) can be hence trans-

formed to a LogOdds map, where the zero-crossing corresponds to the object

boundary. This framework provides an embedding of the signed distance maps

manifold into the LogOdds vector space. Hence, SDMs can be considered as

LogOdds maps (while the reverse is in general not true) and interpreted in

terms of space conditioned probabilities. Determining the statistics of SDMs,

as LogOdds maps, using PCA is hence possible, and the authors incorporate

it in a Bayesian classi�cation algorithm.

[Etyngier et al. 2007] addressed the problem di�erently by using man-

ifold learning techniques. They �rst compute the distance between two

training shapes as the Sobolev W 1,2-norm of the di�erence between their

SDM. These pairwise distances are plugged in the di�usion maps algorithm

[Coifman & Lafon 2006] to build an approximation to the shape manifold

through an isometric mapping of the data. A Delaunay triangulation is then

computed in the reduced manifold space, and used to �nd the nearest neigh-

bors of a new shape instance, in order to estimate its projection on the man-

ifold. This projection is introduced in a shape prior term in the variational

framework, to attract the segmentation result to the de�ned manifold.

Parametric Geometric Representations

Parametric geometric representations like superquadrics were used

as deformable models for object segmentation and reconstruction.

[Metaxas & Terzopoulos 1993] combined superquadrics with splines to
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couple global and local shape parameters, and applied them to the tracking

of human limbs. The global parameters enable to �t approximately the target

shape in the image, and the local degrees of freedom allow the segmentation

to be re�ned. [Vemuri et al. 1993] represent the deformable superquadric

model in an orthonormal wavelet basis to inherit multi-resolution capability,

and apply it to the reconstruction of human brain structure from MRI

images. Then [Bardinet et al. 1995] and [Bardinet et al. 1998] also used a

deformable superquadric model to segment the left ventricle (LV). The model

was combined with free-from deformations (FFD), which allows one to re�ne

the initial guess of the object and to improve the reconstruction.

Medial Models

The medial axis model is a shape representation introduced by [Blum 1973].

It is de�ned as the set of centers of all internal bi-tangent spheres to the

object boundary that are not inscribed in any other such sphere. The me-

dial transform of an object describes it by its medial axis as well as the

corresponding radii of the bi-tangent spheres. This approach is used by

[Pizer et al. 1999], who represent the interior of an object by sheets of medial

atoms from which the boundary can be synthesized. This model is called m-

rep, and besides this discrete 2D version, a three-dimensional extension is pro-

posed in [Pizer et al. 2003]. A continuous formulation of m-reps is presented

in [Yushkevich et al. 2006]. M-reps are very suitable for representing shape

variations such as thickness change, bending, and widening. However, their

non-Euclidean parameters prohibit the use of linear statistical approaches.

[Fletcher et al. 2004] circumvent this problem by developing a generalization

of PCA to the Riemannian manifold setting. In particular, they de�ne the

intrinsic mean, compute the principal components by maximizing a variance

criterion, de�ne the geodesic sub-manifolds (counterparts of linear subspaces)

and devise a way to project on them. They apply the so-called principal

geodesic analysis (PGA) to a population of hippocampi in a schizophrenia

study.
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Frequency-Domain Representations

An alternative approach that considers the Fourier transformation of a contour

and uses a probability distribution on the Fourier coe�cient was adopted in

[Staib & Duncan 1992] (and extended by [Chakraborty et al. 1996]). A Gaus-

sian probability distribution was learned for each parameter. This representa-

tion was also used by [Székely et al. 1996] who however modeled the variations

of the shape using principal component analysis (PCA) in the Fourier coe�-

cient space. This work is extended in [Kelemen et al. 1999], where the para-

metric representation of shapes uses series of spherical harmonics (SPHARM)

and PCA is performed in the shape parameters space as well. The applica-

tions dealt with the segmentation in 2D and 3D of brain and cardiac struc-

tures. [Davatzikos et al. 2003] represent shape using a wavelet transform of

the landmark coordinates. This frequency analysis permits to obtain coarse-

level shape information, as well as �ne-level details, thanks to the wavelets

coe�cients in each band. A statistical hierarchical model is then built, by

applying PCA to the coe�cients in each band separately. An ASM-based

search strategy was applied to the segmentation of the corpus callosum in MR

images, as well as the segmentation of hand images. [Nain et al. 2007] and

[Yu et al. 2007] extended this approach to 3D via spherical wavelets. Their

method is however limited to 3D shapes that have a spherical topology (genus-

0 manifolds). [Essa� et al. 2009] overcome this limitation by utilizing di�usion

wavelets [Coifman & Maggioni 2006] as a hierarchical shape representation.

They apply the orthomax algorithm to the obtained coe�cients which leads

to a sparse shape parametrization.

Shape Descriptors-based Models

Other approaches associate to landmarks individual shape descriptors that

can have geometric-invariant properties. For instance, [Coughlan et al. 2000]

de�ne a deformable template of the hand that is invariant to translation and

rotation. The landmarks are associated with the normal vector to the contour

at their location. When matching the template to an image, two geometric

Gaussian constraints (with mean values from the template) are imposed to the

model, and combined with the extracted image features (corners, histograms
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of gradient orientations,etc...). The �rst one concerns the angle between the

normals associated to two successive points on the contour. The second one

is related to the angle between two successive points on the contour and the

local normal vector. The problem is de�ned as a maximum a posteriori (MAP)

optimization in a Bayesian framework. The structure of the prior is a Markov

chain which allows the use of dynamic programming to obtain the global

solution without a need for initialization. A similar approach is considered in

[Coughlan & Ferreira 2002], where the structure of the prior is not a tree, but

a complete graph. The minimization of the Markov Random Field (MRF)

de�ned energy is done using loopy belief propagation.

Attribute vectors were also used to describe shape geometry by

[Shen & Davatzikos 2000] (as a 2D version followed by a 3D version in

[Shen et al. 2001]). For each landmark, they used normalized areas of lo-

cal triangles (respectively normalized volumes of local tetrahedrons in 3D)

formed by connecting each control point to its local neighboring points. The

snake internal energy re�ects the di�erence between the model attributes and

those of the evolving contour.

[Belongie et al. 2002] design a di�erent descriptor for each landmark,

called "shape context", by attaching to each point a log-polar coordinates

histogram of all the relative positions with respect to the other shape land-

marks. A distance is de�ned based on this descriptor to estimate the similar-

ity between shapes. It is possible to obtain a similarity-invariant version of

the descriptor using a scale normalization, and rotation-invariance is ensured

through a local Frenet frame instead of the absolute frame for coordinates

calculations.

The work of [Manay et al. 2006] can be viewed as a continuous general-

ization of "shape context". The authors de�ne integral invariants as shape

descriptors and provide a distance for shape matching. [Hong et al. 2006] use

this descriptor for object segmentation.

From Single Templates to Statistical Pictorial Structures

Incorporating priors in the form of a (deformable) shape template is an idea

that retained the attention of many researchers. It goes back to the work of

[Fischler & Elschlager 1973] who used a mass-spring template as a represen-
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tation of faces (by modeling the inter-parts dependencies). [Yuille et al. 1989]

matched "hand-crafted" models of face parts (eye, mouth) to the image to ex-

tract objects. Two-dimensional templates were used as a shape representation

in [Tagare 1997]. These templates were closed contours, similar to the object

to be segmented. They were associated with orthogonal pre-computed curves

that constrained the deformations of the contour during the search. An aver-

age contour model have been used to represent shapes in [Chen et al. 2002],

after rigid alignment of the training examples. In the case of a class of shapes

that exhibits large variations, the training examples were classi�ed in di�erent

clusters and an average shape model was considered for every cluster. More

recently, [Schoenemann & Cremers 2007] developed a graph-theoretical algo-

rithm for segmentation and alignment of shapes that produces a global mini-

mum to the optimization problem. The algorithm uses an elastic shape prior

that is invariant to scale and translation changes, and is able to match a single

object template to the image based on edge information. The algorithm can

bene�t from parallelization. It is also possible to induce rotation-invariance by

matching successively the image to the template rotated by di�erent angles.

[Felzenszwalb & Huttenlocher 2000] develop an e�cient optimiza-

tion framework of the pictorial structures model (introduced in

[Fischler & Elschlager 1973]). The best match of the model to an im-

age is the one that gives good con�dence for each part while satisfying

inter-parts constraints. They require the object model to have a tree

structure, which allows the use of dynamic programming to minimize the

objective function in linear time (rather than quadratic time, thanks to a

restriction on the pairwise cost function) and obtain a global optimum. A

person model and a car model are designed and applied for detection. The

paper introduces also a Bayesian formulation of the problem as a maximum

a posteriori (MAP) estimation. This framework allows for learning the

model parameters statistically in [Felzenszwalb & Huttenlocher 2005] using a

maximum likelihood method. Hence, the algorithm chooses the parameters

that best represent the appearance of each part of the model in the training

set, as well as the optimal tree structure that best explains the data.
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2.1.2 Our Proposed Method

In this work, we endeavor to propose a shape model that overcomes the short-

comings of the existing approaches. First, global models often su�er from

their lack of �exibility. For instance, while aiming to prevent invalid shapes,

PDM will fail to capture new shape variations if the training set is too small,

and the object projection on the learned subspace can be too constraining.

Adding local degrees of freedom is subsequently a desired property. Moreover,

we would like to be able to model non-linear variations, such that the rep-

resentation is usable for a large class of shapes. A generic formulation that

widens the range of applications to an arbitrary object dimension (2D or 3D)

is advantageous, while the ability to properly represent the data is of equal

importance. Another relevant aspect to be addressed is the tractability of

the inference related to the shape model. Eventually, it is widely accepted

that shape is the remaining information of the data after �ltering location,

orientation and scale e�ect.

Subsequently, we propose a statistical shape model (SSM) that is

similarity-invariant. We adopt a landmark-based representation, where the

global shape information is expressed as a combination of local (sparse) in-

teractions. Our representation is associated with a particular model structure

that properly captures the geometry of the object and exhibits useful mathe-

matical properties. The model parameters are deduced from the data, through

manifold learning techniques. Our derivation permits to de�ne a shape prior

as an energy term that is decomposable into pairwise terms. When exact in-

ference is not possible (curse of dimensionality), the latter property opens up

new horizons for e�cient optimization using state-of-the art MRF methods.

More precisely, the chord lengths of the object, de�ned by pairs of land-

marks, and normalized by the object scale, are used as a description of the

shape. These normalized inter-point distances bequeath similarity-invariance

to our representation. A statistical model of the shape is then de�ned by esti-

mating a probability density function for each normalized chord length (NCL)

from a training set of images. Akin to the PDM setting, we require correspon-

dences between the control points. However, there is no need to register the

shape since the invariance property is intrinsic to our representation. Hence,

the model encodes the -possibly nonlinear - variations of the shape, regardless
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of its location, orientation and scale.

In the following step, we observe that considering the whole set of chords

is redundant. A smaller set of such edges, with the distance information, is

su�cient to capture the shape geometry. However, a particular structure of

the retained edges is needed to ensure the geometric modeling coherence. It is

hence interesting to see that the k-tree structure (and also the k-fan structure

- de�nitions are given later, see Fig. 2.3 for examples) is equivalent to the fully

connected structure in the case of perfect distance matching. Nonetheless, for

a given set of control points, di�erent instances of such a structure can be

de�ned. On top of these numerous possibilities there is also the variability

that a change in the parameter k generates. Since di�erent k-trees (whether

they have the same k or not) would lead to di�erent models, with various

degrees of data �delity, we aimed to learn the k-fan structure as well as the

number of fans k from the data, such that it is best represented by the model.

To this end, we use a manifold learning technique, called shape maps

[Langs & Paragios 2008], that combines the strengths of di�usion maps

[Coifman & Lafon 2006] and model description length. This technique embeds

the training shape population into a metric space, where the Euclidean dis-

tances between the embedded landmarks account for their interdependency in

the data. Then, we use an unsupervised clustering technique (based on linear

programming (LP)) [Komodakis et al. 2008a] to group the similarly-behaving

control points in an automatically-de�ned number k of clusters. Then, the

k-tree construction stems from the obtained clusters.

From a graph-theoretic point of view, k-tree graphs belong to the larger

class of chordal graphs, that inherit the property of the perfect elimination

scheme. This paves the way to the use of dynamic programming approaches

for exact inference, as well as for sampling from the posterior probability

distribution. Moreover, since our formulation is based on normalized inter-

points distances, it exhibits pairwise energy terms, that are adequate for the

use of e�cient MRF optimization techniques.

2.1.3 Related Work

Our approach relates to previous art through the use of inter-points-based

representations, k-trees and graph structure learning.
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Chord-based Representations

The use of chord-length representations of shapes has been to some extent

explored in the literature. Distributions of random chord lengths were used

for shape matching and recognition in the work of [Smith & Jain 1982] and

[You & Jain 1984]. They compute for each shape all inter-boundary points

distances and normalize them by the length of the longest chord. They esti-

mate then a probability distribution using all the computed normalized chord

lengths (NCL). Then they use a Kolmogorov-Smirnov statistical test to com-

pare two shapes. Despite their interesting results, [Mallows & Clark 1970]

had showed earlier that this shape descriptor is not information preserving,

as the global distributions of chord lengths can be equivalent for two di�er-

ent (non-identical) shapes. These early methods con�rm the richness of this

mathematical representation. Nevertheless, note that our statistical model

(individual statistics of NCL over a training population) is di�erent from

what they used as we will show later.

A representation based on the distances between pairs of land-

marks was also considered in the context of PDM [Cootes et al. 1992]

[Taylor & Cooper 1990][Cooper et al. 1991]. A shape is hence represented as

a vector of all chord lengths, and PCA is applied to obtain a shape model as a

mean shape and eigenmodes. The authors explain in [Cootes et al. 1995] the

ability of this rigid-motion-invariant representation to capture nonlinear shape

variations (as bending shapes), opposite to conventional PDM. Before further

commenting this approach, we need to introduce the following concepts.

De�nition 2.1. Euclidean Distance Matrices (EDM).

A matrix D = [d2
ij] ∈ RN×N is an EDM if there exist N points (x1, . . . , xN) ∈

Rn, for some n ≥ 1, such that ∀ 1 ≤ i, j ≤ N, dij = ‖xi − xj‖2. The set of

points (x1, . . . , xN) is called a realization of D in Rn.

EDM are invariant with respect to translation, rotation and re�exion

[Dattorro 2005]. Hence, two sets of points (x1, . . . , xN) and (p1, . . . , pN) have

the same EDM if and only if they are related by an isometry. This obser-

vation justi�es the use of EDM (as being a "strong constraint") to represent

shapes. According to [Dattorro 2005], the set of EDM is not a linear space,

but is a convex cone. Moreover, note the following classical result of Euclidean
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geometry.

Theorem 2.1 ([Schoenberg 1935][Young & Householder 1938]). A matrix

D = [d2
ij] ∈ RN×N admits a realization (x1, . . . , xN) in Rn but not in Rn−1 if

and only if the (N − 1)× (N − 1) symmetric matrix A = [aij]1≤i,j≤N−1 de�ned

by:

aij =
1

2
(d2

1(i+1) + d2
1(j+1) − d2

(i+1)(j+1))

is positive semide�nite and has rank n.

The proof of this theorem can be found in [So 2007], and is reported in

Appendix B. We can see that the set of EDMs that admit a realization in Rn

is a sub-manifold of a convex cone. For this reason, applying PCA on the set

of EDMs may be questionable. With this linearity assumption, the computed

chords may be non-Euclidean in n-D, as pointed out in [Cootes et al. 1992].

Furthermore, the produced matrices may violate the EDM assumption. The

authors try to cope with this problem by approximating the produced chord

lengths using a steepest gradient descent optimization. This local search may

generate plausible shapes for simple cases, but is doomed to fail for more

complex objects.

Our approach is also related to another line of work by

[Caetano et al. 2006] that deals with graph matching. Based on the

Euclidean geometry theory, they de�ne a matching criterion between two

graphs with respect to the induced distortion, using the inter-graph nodes

distances. While their approach does not deal with statistical shape modeling,

they show an interesting result that is inherent to the graph structure. Before

proceeding, let us give a few de�nitions. We denote a complete graph with n

vertices by Kn. A k-tree is de�ned recursively as follows:

De�nition 2.2. k-trees, base k-cliques.

Kk is a k-tree. A k-tree Tn+1 on n+1 vertices can be generated from a k-tree

Tn on n vertices, by adding a new vertex to Tn and connecting it with k edges

to some k-clique (a clique with k vertices) of Tn. This latter clique is called

then a base k-clique.

Fig. 2.1 illustrates the previous de�nition, and Fig. 2.3 shows, among

other chordal graphs, examples of k-trees. As it will be detailed later,
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(a)

(b)

Figure 2.1: The de�nition 2.2 gives a recursive procedure to build a k-tree.

(a) The steps of building a 3-tree are shown. In each step, the current base

3-clique is depicted in red. (b) The obtained graph has 2 base 3-cliques. A

simplicial elimination order is given.

[Caetano et al. 2006] prove the global rigidity of k-trees in Rk−1, and sub-

sequently show that the k-tree model is equivalent to the fully connected

(complete graph) model for the case of exact graph matching in Rk−1 (1).

Note that the use of a shape model based on this structure to segment an

image can be thought of as matching a "statistical graph" to some graph ex-

1Chordal graphs will be de�ned subsequently in de�nition 2.3 (section 2.1.3), and the

notion of rigidity will be clearly introduced in de�nition 2.5 (section 2.2.2)
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tracted from the image. Hence, the latter property is of great interest to our

approach. [Caetano et al. 2006] explain however that in case of position jitter

(inexact matching case), the k-tree model is only an approximation to the

complete model, while being extremely robust. They also discuss the prob-

lem of the k-tree selection as di�erent k-trees can result in di�erent matching

accuracies in the inexact matching case. In our method, we do not restrict

ourselves to k-trees in Rk−1, but consider the n-trees structure (n ≥ k). We

learn n as well as the structure of the tree from the data in a (statistical)

manifold learning framework. The work of [Caetano et al. 2006] discusses ge-

ometric aspects as well as graph-theoretic optimization aspects. The k-trees

being chordal graphs, they permit to solve general NP-hard problems in poly-

nomial time (precisely, they use the junction tree algorithm to solve a MAP

problem).

Chordal Graphs

Let us �rst give a few de�nitions:

De�nition 2.3. Chordal Graph

A graph is chordal if it does not contain any chordless cycle of length at least

4. A chord is an edge that connects two non successive vertices in a cycle.

De�nition 2.4. Simplicial Elimination Ordering (SEO)

A vertex of a graph is called simplicial if its neighbors form a clique (a clique

on n vertices is Kn, i.e. a complete subgraph with n vertices). A simplicial

elimination ordering of a graph (SEO), or a perfect elimination scheme, is an

ordering v1, . . . , vn of its vertices such that vi is simplicial in the subgraph

induced by {vi, . . . , vn}.

An important graph theory result is that a graph is chordal if and only if

it has a perfect elimination scheme. An example of a chordless graph and a

chordal graph, with a possible SEO, are given in Fig. 2.2. Other example of

chordal graphs are shown in Fig. 2.3.

[Felzenszwalb 2005] introduces a representation of 2D shapes (with

piecewise-smooth boundaries and no holes) using triangulated polygons (by

the means of constrained Delaunay triangulation on the vertices that form
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(a) (b)

Figure 2.2: (a) A chordless graph with 8 vertices. (b) A chordal graph with 8

vertices, and a simplicial elimination order (SEO).

the boundary of the shape). This representation has the following nice prop-

erty: the dual graph of the triangulated polygon (which is a 2-tree) is a tree

which bequeaths to the shape vertices the perfect elimination order prop-

erty (see Fig. 2.3(c)). This property permits the de�nition of segmentation

of objects in images as a minimization problem (using edge information as

data term and constraining the deformation of each triangle from the tem-

plate to the image to be as close to a similarity transform as possible -

as smoothness / prior term) that can be solved exactly and globally using

dynamic programming, by quantizing the possible locations of the vertices

(on a grid for instance). However, complexity is cubic to the number of

grid points and the model can not be extended in a straightforward man-

ner to 3D (for instance for medical imaging applications). In a second step,

the shape model is extended to a statistical representation, by learning for

each triangle a mean and a covariance using a local Procrustes analysis (for

each triangle). This work is similar in some aspects to the pictorial struc-

ture formulation [Felzenszwalb & Huttenlocher 2005] as both structures (in

both works) are chordal graphs, which permits to solve the MAP problem

in polynomial time where the complexity is related to the size of the maxi-

mum clique in the graph. Thanks to this structure, [Felzenszwalb 2005] de�ne

a Bayesian formulation and estimate the parameters and the tree structure
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from the data in a maximum likelihood (ML) fashion. They are also able

to sample shapes from the posterior probability distribution thanks to this

same property. The suggested model is similarity-invariant, deals naturally

with occlusions and noise and can handle multiple segmentations. In the

same line of development, [Crandall et al. 2005] extend the pictorial struc-

ture [Felzenszwalb & Huttenlocher 2005] by de�ning another class of chordal

graphs, namely k-fans. These graphs are exactly k-trees with a single base

(also called reference part), and we use in our approach the same graph struc-

tures (see Fig. 2.3(d), Fig. 2.3(f)). They also extend their Bayesian framework

to this case, and learn the statistical parameters (Gaussian distributions on

the relative landmarks positions) as well as the reference part (and hence

the k-fan structure) from the data. They apply their approach in 2D object

recognition. However, in practice, they did not consider similarity invariance

(while it can be de�ned for k ≥ 2 with respect to the reference part, as they

precisely explain), and restricted application to k ∈ {0, 1, 2}. This choice is

probably guided by the wish of controlling the polynomial complexity of the

MAP problem. In our case, the geometric aspects dictate to use k ≥ n + 1

in Rn (global graph rigidity issue as explained in the previous section), k is

learned from the training set of shapes and e�cient approximate optimization

techniques [Komodakis et al. 2008b] [Kolmogorov 2006] are used to cope with

the curse of dimensionality.

A related segmentation approach in medical image analysis is presented

by [Seghers et al. 2007a]. They de�ne a 2D shape prior using landmarks that

form a closed curve. This chain structure enables the use of dynamic pro-

gramming. Three di�erent prior statistics were tested. The �rst shape prior

estimates a Gaussian distribution of the relative positions of successive land-

marks on the curve, and is hence translation-invariant. The second model

estimates a Gaussian distribution of the relative positions of successive land-

marks on the curve in a local frame. The third model estimates a conditional

Gaussian distribution of the relative positions of successive landmarks on the

curve with respect to the previous pair of landmarks. The last two models are

also rotation-invariant. While the search using the �rst prior is quadratic in

the number of grid points, it is cubic for the other two priors. This framework

is extended to 3D in [Seghers et al. 2007b] using the �rst proposed prior with
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a mesh of the shape. A heuristic search method is used for the optimization,

and is called iterative dynamic programming. More details of this segmenta-

tion approach will be discussed in the next chapters. Here again, the authors

make an explicit assumption about the graph structure, and this issue is not

addressed.

Other Related Approaches

We now comment a few additional related papers. [Gu et al. 2007] assume a

Gaussian Markov Random Field (GMRF) prior over the landmarks. This prior

is fully represented by the mean landmark positions as well as the precision

matrix (the inverse of the covariance matrix) over the landmarks. The zero

entries in the precision matrix fully determine the graph structure, and ac-

count for the conditional independence between the corresponding landmarks.

Unfortunately, the precision matrix is often ill-de�ned in practice (where the

number of training examples can be smaller than the problem dimension).

They circumvent this structure learning problem by using a Lasso regres-

sion technique [Meinshausen & Bühlmann 2006]. This leads to an interesting

sparse representation. However, the Gaussian assumption is a shortcoming of

this model in case of non-linear shape variations.

[Donner et al. 2010] use a MRF shape representation, associated with

symmetry-based interest point local descriptors derived from Gradient Vector

Flow (GVF). The statistical prior is encoded using Gaussian distributions of

the graph edge lengths, and relative graph edge orientation with respect to

the landmarks descriptors orientations. However, this rigid-motion invariant

shape model does not rely on the training data to learn the graph structure.

Eventually, [Glocker et al. 2009] use a learning scheme that is similar to

what we present, to deduce from a training set smoothness constraints to be

included in a registration algorithm. They use a free form deformation (FFD)

approach, and learn the co-dependencies of pairs of control points of the de-

formation grid. These co-dependencies are de�ned using the Bhattacharyya

divergence between the deformation distribution of each control point. Then,

an unsupervised clustering technique [Komodakis et al. 2008a] is applied to

cluster the control points, according to their relative pairwise Bhattacharyya

divergence. The deformation constraints are de�ned in a part-based model
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Several chordal graph structures with 8 vertices, and a SEO for

each graph. (a) A tree. (b) The complete graph. (c) A triangulated polygon

and its dual graph. (d) A 2-fan graph - the reference vertices are shown. (e)

A 2-tree that is not a 2-fan - the reference cliques are emphasized. (f) A 4-fan.



28 Chapter 2. Shape Model

manner using an incomplete graph, where the cluster centers form a complete

graph, and where each cluster forms a complete graph as well. Our approach

di�ers from their in two aspects. We use shape maps [Langs & Paragios 2008]

to model the joint behavior of two control points, and this measure takes into

account the interactions between this pair of landmarks and the remaining

ones in the training set. Hence the shape maps technique is able to bring

more information about the co-dependencies than the Bhattacharyya diver-

gence. Then, a major di�erence lies in the rationale behind the �nal structure

of the graph. We obtain a k-fan graph, and this choice takes into considera-

tion geometric constraints that will be explained in section 2.2.2. The graph

proposed by [Glocker et al. 2009] is not guaranteed to have the same global

rigidity property, which is important for our shape modeling. On the contrary,

the FFD registration requirements are di�erent from these shape considera-

tions. Their model permits to deal with the ill-posedness of the registration

problem while allowing discontinuities for the deformations of neighboring

control points belonging to di�erent clusters.

2.2 A Normalized Chord-Length Statistical

Shape Model

We describe here our statistical shape model (SSM) and detail the inherent

geometric, manifold learning and graph-theoretic aspects.

2.2.1 Second-Order Approximation and Chord-Length

Knowledge-based segmentation methods are based on the de�nition of a model

which is then combined with image support towards object extraction. Tra-

ditional approaches consist of representing the shape using a number of land-

marks and learning their behavior using a training set.

In this work, we consider that a shape is de�ned by its boundary (a curve in

2D, or a surface in 3D) as well as a set of control points. Knowing the positions

of these controls points, the shape boundary can be (approximately) retrieved

by the use of an interpolation method. The control points can in general

belong to the boundary, or not. In practice however, it is natural that such
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landmarks are chosen to lie on the contour of the object, which exhibits very

often distinctive features. Therefore, we will assume in the following such a

hypothesis, meaning that the control points are boundary points.

We represent a shape as a Markov Random Field (MRF). Let G = (V , E)

be a graph where the nodes V = {x1, . . . ,xn} represent the control points

positions, and where the set of edges E represents the conditional dependencies
between the landmarks. We assume for the time-being that this graph is

complete, that is we take into account all the pairwise dependencies between

the landmarks. Hence, E = {(i, j) | 1 ≤ i < j ≤ n}. Pursuing the reasoning

in [Cremers & Grady 2006] and [Seghers et al. 2008], we express the shape

probability in terms of co-occurrence probabilities. Using the Bayes rule, we

can for example write:

p (x1, . . . ,xn) = p (x1) p (x2 . . . ,xn|x1)

= p (x1) p (x2|x1) p (x3 . . . ,xn|x1,x2)

= . . .

= p (x1) p (x2|x1) p (x3|x1,x2) · · · p (xn|x1, . . . ,xn−1) .

(2.1)

First, seeking a representation that does not depend on an absolute position,

the probability of co-occurrence of a pair of control points can be then written

as the probability of their di�erence vector, or:

p (xi,xj) = p (xi − xj) . (2.2)

This hypothesis also leads to a uniform probability distribution for the ab-

solute points positions or, a constant p (xi), for all 1 ≤ i ≤ n. It also

means that the conditional probabilities are equal for any pair of landmarks,

or p (xi|xj) = p (xj|xi), ∀ 1 ≤ i, j ≤ n. [Seghers et al. 2008] proceed similarly

to induce independence with respect to absolute location.

We will consider the second order approximation of the shape probability,

assuming that the positions of two landmarks is independent from any third

landmark, or:

p (xi,xj|xk) ≈ p (xi,xj) , ∀k 6= i, j . (2.3)

Then, applying this property to equation (2.1) by choosing particular point

pairs leads to:

p (x1, . . . ,xn) ∝ p (x2|x1) p (x3|x2) · · · p (xn|xn−1) . (2.4)
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Equation (2.4) is one particular choice of decomposing the joint probabil-

ity. This choice corresponds to specifying a spanning tree of the graph G.
Considering all such possibilities is equivalent to performing the previous sim-

pli�cation using all possible spanning trees of G. Let us multiply all these

resulting equations, we obtain thanks to the simpli�cation (2.3):

p (x1, . . . ,xn)τ(G) ∝
∏
i<j

p (xi,xj)
ν , (2.5)

where τ(G) is the number of all possible spanning trees of G, and ν is the

number of appearances of each pair in all these possible equations. This

number is obviously the same for each pair in a complete graph. Let us

simplify the above equation using double counting. A spanning tree is a

sequence of n − 1 elements (or edges). Then the total number of elements

used to form all the spanning trees is (n− 1)× τ(G). There are n(n−1)
2

edges

in a complete graph, and each edge appears ν times in all the spanning trees,

which makes a total of n(n−1)
2
× ν elements. Then, ν = τ(G) × 2

n
. This gives

a simple form to the product (2.5), or:

p (x1, . . . ,xn) ∝
∏
i<j

p (xi,xj)
2
n . (2.6)

We would like to enforce invariance properties to our shape model, with

respect to translations, rotations, and global scale changes. Such similarity-

invariance characteristics enable to dismiss object changes due to the pose

variations and permit to learn the intrinsic variability of the object. Discarding

the transformation parameters in the inference step from the unknowns is also

an advantage that makes an invariant shape model more tractable and easier

to use.

Invariance with respect to rotation is equivalent to ignoring any orientation

direction, that to consider the Euclidean norm of the di�erence vector, or:

p (xi,xj) = p (‖xi − xj‖) . (2.7)

Eventually, let us consider d̃ = 2
n(n−1)

∑
i<j ‖xi − xj‖ the mean Euclidean

distance between the control points. This mean chord length can be considered

as an estimate of the shape scale. Hence, dividing the chord lengths by d̃ gives

a representation that is invariant to scale changes as well, or:

p (xi,xj) = p

(
‖xi − xj‖

d̃

)
. (2.8)
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Strictly speaking, d̃ depends on all the control points. Therefore, the ambigu-

ity carried by equation (2.8) will be explained later in the algorithmic sections.

By combining equations (2.6) and (2.8) we de�ne the graph probability as:

p (x1, . . . ,xn) ∝
∏
i<j

p

(
‖xi − xj‖

d̃

) 2
n

, (2.9)

Upon taking the negative log of the above equation, the graph energy is de-

�ned, up to an additive constant ν ′, as:

Eshape (x1, . . . ,xn) ≈ − 2

n

∑
i<j

log

(
p

(
‖xi − xj‖

d̃

))
+ ν ′ . (2.10)

Let us consider now a set S = {s1, . . . , sm} of m instances of the ob-

ject, where each example is represented using n control points, i.e. su =

{xu1 , . . . , xun},∀u ∈ {1, . . . ,m}. Hence, ∀i ∈ {1, . . . , n}, the set Xi =

{x1
i , ..., x

m
i } represents instances of the ith control point of the shape. In prac-

tice, this training set is obtained by manually labeling the landmarks for each

instance of the shape, or by deducing the landmarks from the registration be-

tween a labeled shape and a set of non-labeled shapes. Note that an alignment

of the shape is not needed before the learning phase since our representation

is intrinsically invariant to similarity transforms.

Then, given a statistical model, we learn from the training set the prob-

ability density distributions of the relative positions of the control points

pij ≡ p (xi,xj). These n(n−1)
2

densities enable us to describe the informa-

tion contained in the training set. In practice, we used a Gaussian kernel

density estimation to compute the probability distributions.

One can question the use of the NCL representation for shape modeling.

Recall the observation made in section 2.1.3 with respect to the ability of EDM

to model shape in an isometric-invariant manner [Dattorro 2005]. The scaling

factor d̃ that we add simply extends the result to the similarity-invariant case.

However, this representation su�ers from redundancy and could be computa-

tionally expensive and hard to optimize during inference. We describe in the

following the learning technique we use to remove the redundancy from our

model, to obtain a sparser representation. But before proceeding, we discuss

some geometric aspects that will enlighten the redundancy encapsulated by

the complete graph.
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2.2.2 Graph Rigidity and the Exact Matching Problem

This section is built on the work of [Caetano et al. 2006]. We �rst recall the

result that they provide, and then extend it to a more general case that is of

particular interest in our modeling.

The Point Pattern Matching Problem

Let Ps = (p1, . . . , ps) a set of s "source" points in Rn, and Qt = (q1, . . . , qt)

a set of t "target" points in Rn where in general s ≤ t. The point pattern

matching problem consists in �nding a mapping m : Ps → Qt that mini-

mizes a distortion measure between Ps and m(Ps). This can be formulated

mathematically as minimizing:

DKs(m) =
s∑
i=1

s∑
j=1

ρ(dsij, d
t
m(i)m(j)) , (2.11)

where ρ is a dissimilarity measure, and dsij = ‖pi − pj‖, dtij = ‖qi − qj‖ are
Euclidean distances. In general, due to the noisy data, it is not possible to

achieve a perfect matching, i.e. an exact matching. An exact matching is a

mapping m such that dsij = dtm(i)m(j) for all 1 ≤ i, j ≤ s. Hence, in the per-

fect matching case problem, ρ is chosen to be a binary function that checks

the equality of its arguments. The pattern point matching can be written as

a weighted complete graph matching, where the edge weights correspond to

the Euclidean distance between the embedded vertices in Rn. In the general

case, if only a subset Es of the pairs of source points in Ps are used to evalu-

ate the matching distortion, this corresponds to the graph matching problem

formulated on the graph Gs = (Ps, Es), or minimizing:

DGs(m) =
∑

(i,j)∈Es

ρ(dsij, d
t
m(i)m(j)) . (2.12)

In the remainder of this section, we will use indi�erently the terms graph or

graph embedding.

Global Graph Rigidity

[Caetano et al. 2006] de�ne the global rigidity of a graph in an intuitive man-

ner.
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De�nition 2.5. A graph G = (V , E) in Rn is said to be globally rigid if the

lengths of the edges in E determine uniquely the lengths of the edges of the

complement graph (the "missing" edges).

Then, they show that a k-tree with all base k-cliques in general position in

Rk−1 (i.e. do not lie in a k − 2-dimensional vector subspace) is globally rigid

in Rk−1. They use this property to prove that in the perfect matching case in

Rk−1, the k-tree model is equivalent to the complete model.

Theorem 2.2. In the exact matching case in Rk−1, if Gs = (Ps, Es) is a k-tree,
then a mapping m which minimizes DGs(m) also minimizes DKs(m).

We now extend this property to a larger case of graphs that will appear

to be useful later in the manifold learning part. To this end, we invoke the

following result, the proof of which is reported in Appendix C:

Lemma 2.1 ([Cai & Ma�ray 1993]). Every k′-tree T ′ with k′ ≥ k ≥ 1 pos-

sesses a spanning k-tree T with the property (P) that every k′-clique of T ′

contains a k-clique of T .

Then, it follows that the property proven by [Caetano et al. 2006] for the

k-trees in Rk−1 is generalizable. We suppose that all base k-cliques are in

general position in Rk−1. Then:

Proposition 2.1. In the exact matching case in Rk−1, if Gs = (Ps, Es) is a k′-
tree, with k′ ≥ k, then a mapping m which minimizes DGs(m) also minimizes

DKs(m).

Proof. The mapping m minimizes DGs(m). Then for all (i, j) ∈ Es, dsij =

dtm(i)m(j). Gs being a k′-tree, with k′ ≥ k, then (lemma 2.1) there exists a

k-tree Gks =
(
Ps, Eks

)
, such that Eks ⊂ Es. Subsequently, for all (i, j) ∈ Eks ,

dsij = dtm(i)m(j), which is equivalent to saying that the mapping m minimizes

DGks (m). Gks being a k-tree in Rk−1, then (theorem 2.2) the mapping m also

minimizes DKs(m), which completes the proof.

To summarize, a k-tree with all subsets of size n+ 1 of the base k-cliques

in general position in Rn, with k > n, is equivalent to the complete graph

model in the exact matching case problem. This result shows that such struc-

tures encode su�cient information and dependencies to correctly model the
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shape. It also suggests that the complete graph model is redundant, and

hence can be made sparser. Moreover, as [Caetano et al. 2006] show in their

experiments, di�erent k-tree models lead to varying accuracy in the non exact

graph matching case. For this reason, a method of selecting a particular k-

tree with optimal properties is advantageous in their case. In the next step of

our modeling we tackle the redundancy problem, and we build a k-tree graph

structure where the parameter k is learned from the data, and where the

particular structure of the graph is related to the training shape population.

2.2.3 Removing Redundancy from the Model

The task of eliminating the redundancy in the model, while preserving its

ability to represent the data, is related to the minimum description length

principle on one hand, and can be thought as a spectral clustering problem

on the other hand. We aim to obtain as compact a model as possible as-

suming that the high dimensional data space can be approximated by a lower

dimensional embedded manifold, which reduces the dimension of the problem

signi�cantly. In other words, we would like to probe the population of training

shapes for statistical dependencies between the control points variations.

Shape maps [Langs & Paragios 2008] handle precisely these two aspects,

and are learned from the data in a way closely related to the di�usion maps

[Coifman & Lafon 2006], but using the compactness of models that describe

subsets of the entire data instead of the spatial distances or similarities be-

tween individual points. Therefore, we compute the shape map of the control

points, using the training set {X1, . . . ,Xn}, and then we cluster the control

points according to their mutual shape map distances. We start �rst by re-

viewing the theoretical foundations of di�usion maps.

Di�usion Maps

Di�usion maps is a technique based on di�usion processes that aims to de�ne a

metric, namely the di�usion distance, that measures meaningfully the connec-

tivity of data sets, with respect to their geometry. An e�cient representation

of the geometric structures complexity is given in [Coifman & Lafon 2006],

through the eigenfunction of Markov matrices. Formally, let X be the (dis-
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crete) data set, and let κ : X × X → R be a symmetric and positivity

preserving kernel. Then a reversible Markov chain on X is constructed, with

η(x, y) = κ(x,y)
δ(x)

being the anisotropic transition kernel, and δ(x) =
∑

y κ(x, y).

The associated Markov matrix P (with entries η(x, y)) encode geometric infor-

mation about the data and permits its analysis in a multi-scale fashion. The

kernel ηt(x, y) (which corresponds to the entries of the tth power of P ) repre-

sents the transition probability from the node x to the node y in t time steps.

The di�usion process re�ects random walks on the Markov chain according to

these transition probabilities. After the di�usion process, the posterior distri-

bution u 7→ ηt(x, u) characterizes the connectivity of the node x with respect

to the other nodes. A weighted L2 distance on these distributions de�nes the

di�usion distance between two nodes x and y at time t, or:

Dt(x, y)2 = ‖ηt(x, .)− ηt(y, .)‖2
L2

=
∑
u

(ηt(x, u)− ηt(y, u))2

π(u)
,

(2.13)

where π(u) = δ(u)∑
v δ(v)

is the probability of u in the unique stationary distri-

bution. The larger the number of high probability paths of length t con-

necting the nodes x and y, the lower will be Dt(x, y). Then, the authors

relate the di�usion distance to the eigendecomposition of the operator P . Let

λ1 ≥ · · · ≥ λi ≥ . . . be the eigenvalues of P , and let {Ψ1, . . . ,Ψi, . . . } be its
eigenfunctions. Then, a tractable expression of the di�usion distance is given

by:

Dt(x, y)2 =
∑
i

λ2t
i (Ψi(x)−Ψi(y))2

≈
N∑
i=1

λ2t
i (Ψi(x)−Ψi(y))2 ,

(2.14)

and a good approximation is obtained by considering the topN eigenfunctions.

Shape Maps

Shape maps [Langs & Paragios 2008] bridge the gap between behavior anal-

ysis and manifold learning. It uses the di�usion map technique with an

appropriate kernel κ. Let us �rst recall the notations of section 2.2.1.
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The data are represented by a graph, where the vertices/control points

are V = {x1, . . . ,xn}. The pool of training data is {X1, . . . ,Xn}, where

Xi = {x1
i , ..., x

m
i } represents instances of the ith landmark of the shape.

Shape maps use the description length (DL) principle to assess the mutual

coherence of the landmarks behavior. The authors compute the compact-

ness of small sub-models of landmarks subsets, that capture the non-rigid

local variations, in order to de�ne a measure of similarity between landmarks,

in terms of statistical dependence. The description length consists of the

cost L of transmitting a modelM and the data D encoded with the model:

L(D,M) = L(M) +L(D|M). For each pair of landmarks, (xi,xj), and for a

de�ned kernel size s,

µs(i, j) = min
M

(L(M)|(i, j) ⊂M & |M| = s) (2.15)

is the minimum description length of models encompassing the two landmarks

and s − 2 other landmarks. The considered sub-models were Gaussian, and

were determined using PCA on the corresponding s landmarks after alignment

of the data. If xi and xj belong to a cluster of coherently behaving landmarks,

then this will be detected by a low value of µs(i, j). In practice, we considered

s = 3 and evaluated the DL of all sub-models of this size.

Next, a Markov chain that re�ects the model structure is created, with

a node corresponding to every landmark xi, through the de�nition of the

kernel κ(i, j) = e−
µs(i,j)
ε . The di�usion maps technique provides an embedding

Ψt : V → RN of the landmarks in an N dimensional Euclidean space:

xi 7→ Ψt(xi) =


λt1Ψ1(i)

...

λtNΨN(i)

 . (2.16)

Thereby, the di�usion distance in equation (2.14) can be expressed as:

Dt(xi,xj) = ‖Ψt(xi)−Ψt(xj)‖ . (2.17)

An implementation of this method is available online2.

[Langs & Paragios 2008] use a synthetic example that illustrates clearly

the use of shape maps. We take this experiment up, and use it to illustrate
2http://people.csail.mit.edu/langs/Georg_Langs/ShapeMaps.html

http://people.csail.mit.edu/langs/Georg_Langs/ShapeMaps.html
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(a) (b) (c)

Figure 2.4: A synthetic example illustrating the use of shape maps and unsu-

pervised clustering. (a) The generated synthetic data: 4 boxes with varying

aspects rotate around each other independently. (b) The shape maps em-

bedding of the data is shown using the �rst 3 dimensions. We can see that

4 clusters appear, which corresponds to the generated data. (c) The unsu-

pervised LP-based clustering (section 2.2.4) is performed using the obtained

di�usion distance. It �nds automatically the number of clusters and correctly

identi�es them, which permits to separate the boxes in the data.

the following unsupervised clustering method as well (Fig. 2.4). A synthetic

data of 4 boxes with varying size attributes is generated. These objects rotate

independently around each others (Fig. 2.4(a)). The shape maps technique

is applied to analyze the points trajectories and provides an embedding of

the data in a Euclidean space. This mapping is shown in Fig. 2.4(b), where

N = 3 for visualization purposes.

In terms of the joint model, low distance values suggest high compactness

for a representation that encompasses landmarks xi and xj. We considered

in practice a time step t = 1. Having obtained these behavior-explaining

distances, we would like to cluster the control points accordingly. A recent

clustering algorithm [Komodakis et al. 2008a] was used for this �nal task, and

is described in the section 2.2.4. The obtained clusters re�ect the interdepen-

dencies between the control points, and refer to the parts of the object that

have highly-correlated relative displacements.
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2.2.4 Unsupervised Clustering Using Linear Program-

ming

Clustering refers to the process of organizing a set of objects into groups,

where the members of each group are as similar to each other as possible. More

formally, a common de�nition for clustering is the following one: suppose we

are given a set of objects V = {v1, . . . , vn} endowed with a distance function

d that can measure the dissimilarity between any two objects vi, vj ∈ V . In

such a case, the goal of clustering is to choose K objects, say, {c1, c2, . . . , cK}
from V (these will be referred to as the clusters centers), so that the obtained

sum of distances between each object and its closest center is minimized, or:

min
c1,c2,...,cK

∑
vi∈V

min
ck

d(vi, ck) . (2.18)

A common drawback of many popular clustering techniques (such as the K-

means algorithm) is that they need to be given the number K of clusters

beforehand. However, this is problematic as this number is very often not

known in advance. To address this issue, we will let this number vary as

well and change the objective function of clustering so as to assign a penalty

(denoted by d(vi, vi)) whenever an object vi is chosen as a cluster center, or:

min
K,c1,c2,...,cK

∑
vi∈V

min
ck

d(vi, ck) +
∑
ck

d(ck, ck) . (2.19)

Another very bad symptom of many clustering techniques is that they are

particularly sensitive to initialization. For instance, the K-means algorithm

(which is one of the most commonly used clustering techniques) is doomed

to fail if its initial cluster centers happen not to be near the actual cluster

centers. To address this very important issue, we have used a novel clustering

method. The main idea behind our method is to �rst formulate the clustering
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as a linear integer program as follows:

min
n∑
i=1

n∑
j=1

d(vi, vj)xij (2.20)

s.t.
n∑
j=1

xij = 1, ∀i (2.21)

xij ≤ xjj, ∀i 6= j (2.22)

xij ∈ {0, 1}, ∀i, j (2.23)

In the above formulation, the binary variable xij (with i 6= j) indicates whether

object vi has been assigned to cluster center vj or not, while the binary variable

xjj indicates whether object vj has been chosen as a cluster center or not. It

is then very easy to prove that the above linear integer program is actually

equivalent to minimizing the objective function (2.19) of clustering. To this

end, it su�ces to observe that (2.21) simply expresses the fact that each

object vi can be assigned to exactly one cluster center vj, while (2.22) simply

expresses the fact that if any object vi has been assigned to an object vj,

then vj must be chosen as cluster center. To obtain an approximately optimal

solution to the above integer program, we will then rely on �rst solving its

linear programming relaxation and then �rounding� the relaxed solution in

an appropriate manner. More details about the formulation of the problem

and its optimization are given in [Komodakis et al. 2008a]. In the validation

section of [Komodakis et al. 2008a], it is added that a constant penalty cost,

roughly set to the median of the distances d (vi, vj) is used in the experiments.

We also considered the same penalty value for our tests.

In our case, the set of objects correspond to the control points {x1, . . . ,xn},
and the distance d corresponds to the aforementioned di�usion distance Dt

in section 2.2.3. As an example of application, in the previously introduced

synthetic case (Fig. 2.4(c)), this method is able to �nd the actual number of

clusters used to generate the data, and clusters it correctly.

2.2.5 The Shape Model

The unsupervised clustering technique described in section 2.2.4 is applied

using the aforementioned shape maps distances (section 2.2.3). The process



40 Chapter 2. Shape Model

output is a number k of clusters (in practice, k ≥ 3 in 2D, and k ≥ 4 in 3D),

and a set of k cluster centers, chosen among the control points. Then, the

�nal step to build our shape model consists in de�ning the structure of the

graph, in a principled manner.

A cluster of landmarks is de�ned as a set of control points of highly cor-

related behavior. Thus, such a group of points carries a high amount of re-

dundant information in terms of shape variability. This observation drives us

to factor out the redundancy using the obtained clusters, through the center

landmarks. The cluster centers being the best representatives of their respec-

tive groups, we make the mild assumption that for a given control point, that

is not a cluster center, the joint landmark-cluster information can be encoded

as landmark-cluster center information. Hence, the landmarks will be consid-

ered to be conditionally independent, knowing the cluster centers. The global

coherence of the model is kept thanks to the reference part, that is the cluster

centers, that form a clique of size k. The obtained graph is a k-tree with

a single base k-clique. It is called a k-fan, following [Crandall et al. 2005].

The novelty here consists in the method that de�nes automatically from the

training data the number of clusters and their centers. To each one of these

pairs (xi,xj) we associate a probability density distribution pij learned from

the training set as previously stated in section 2.2.1. Our k-fan graph, being

chordal, bene�ts from the simplicial elimination ordering (SEO) property, and

permits theoretically the development of a Bayesian framework for segmenta-

tion for instance. Dynamic Programming-based approaches ensure �nding a

global optimum. However, the maximum clique size of a k-tree being k + 1,

these polynomial time algorithms are not usable in practice for huge memory

requirements and extreme slowness. For these reasons, we resort to approxi-

mate optimization techniques for inference on the k-fan graph.

We will denote the k-fan graph by Gk = (V , Ek). Without loss of generality,

we can assume that the base k-clique corresponds to the k �rst nodes in V .
Let Rk be the subset of edges in Ek that correspond to the base k-clique. The

k-fan model assumes that a node xi is conditionally independent from a node

xj (with k + 1 ≤ i < j ≤ n) knowing the base k-clique. To derive the joint

probability of our shape model, we use the same reasoning presented in sec-

tion 2.2.1, by taking into account this conditional independence assumption.
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Similarly to equation (2.1), using the Bayes rule, we have:

p (x1, . . . ,xn) =p (x1) p (x2|x1) · · · p (xk|x1, . . . ,xk−1)

p (xk+1|x1, . . . ,xk) · · · p (xn|x1, . . . ,xn−1) .
(2.24)

The aforementioned independence assumption allows the following simpli�ca-

tion of equation (2.24):

p (x1, . . . ,xn) =p (x1) p (x2|x1) · · · p (xk|x1, . . . ,xk−1)

p (xk+1|x1, . . . ,xk) p (xk+2|x1, . . . ,xk) · · · p (xn|x1, . . . ,xk) .

(2.25)

Then, by applying the second order assumption in (2.3), we can for example

write:

p (x1, . . . ,xn) ∝
subset of Rk︷ ︸︸ ︷

p (x2|x1) p (x3|x2) · · · p (xk|xk−1)

p (xk+1|x1) p (xk+2|x1) · · · p (xn|x1)︸ ︷︷ ︸
subset of EkrRk

.
(2.26)

Equation (2.26) corresponds to specifying a spanning tree of the base k-clique,

and choosing for each node that does not belong to the base k-clique a neighbor

xi, with 1 ≤ i ≤ k. Upon multiplying all the equations that result from this

construction, we obtain the following expression (which is a modi�ed version

of the equation (2.5)):

p (x1, . . . ,xn)ξ ∝
∏

(i,j)∈Rk

p (xi,xj)
ν

∏
(i,j)∈EkrRk

p (xi,xj)
ν′ . (2.27)

Note that the pairs (i, j) with k + 1 ≤ i < j ≤ n do not appear in this

expression due to their conditional independence assumption. A node in the

base k-clique has a degree n − 1 (i.e. n − 1 neighbors), whereas a node that

does not belong to the base k-clique has a degree k. Therefore, ν and ν ′ are

di�erent in general. Let ζ be the number of spanning trees of the base k-clique.

Then we clearly have that ξ = ζkn−k, since there are n−k non-reference nodes
having a degree equal to k. Let η be the number of appearances of an edge

in Rk in the total number of spanning trees of the base k-clique. Then, as

showed in section 2.2.1, η = 2
k
ζ. Now, it is easy to count the number of edge

appearances ν and ν ′ in the product (2.27). On one hand, we can see that
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Algorithm 1 Build the NCL Shape Model
1: Apply shape maps to the training data.

2: Cluster the control points xi using the LP-based unsupervised cluster-

ing algorithm, through their pairwise di�usion distances Dt(xi,xj). The

output of this step is k clusters, and k prototype centers.

3: Build the k-fan graph Gk = (V , Ek) that represents the data by linking

each landmark xi to all the k cluster centers xj.

4: For every pair of control points (xi,xj) such that (i, j) ∈ Ek, learn a

Gaussian kernel density estimation of the probability density function

p (xi,xj) = p
(
‖xi−xj‖

d̃

)
.

ν = ηkn−k, which leads to ν = 2
k
ξ. On the other hand, ν ′ = ζkn−k−1 which

gives ν ′ = 1
k
. Then we can write equation (2.27) more explicitly:

p (x1, . . . ,xn) ∝
∏

(i,j)∈Rk

p (xi,xj)
2
k

∏
(i,j)∈EkrRk

p (xi,xj)
1
k . (2.28)

To simplify the notations, we introduce the weighting γij de�ned by:

γij =

{
2
k

if (i, j) ∈ Rk

1
k

if (i, j) ∈ Ek rRk

(2.29)

The shape energy in equation (2.10) can now be approximated as:

Eshape (x1, . . . ,xn) ≈ −
∑

(i,j)∈Ek

γij log

(
p

(
‖xi − xj‖

d̃

))
. (2.30)

Algorithm 1 summarizes the construction of our shape model. Recall that

the thread leading to our shape model is threefold:

• Geometry: the k-fan MRF has an optimal geometric property in the

exact matching case, that is related to its global rigidity.

• Manifold learning: the k-fan MRF particular structure, and the number

k of fans are deduced from the population of training shapes.

• Graph theory - optimization: although with very limited usefulness,

due to the curse of dimensionality, the k-fan MRF bene�ts from the

advantages of the larger class of chordal graphs.



2.2. A Normalized Chord-Length Statistical Shape Model 43

(a) (b) (c)

Figure 2.5: Hand model construction. (a) The considered training set. (b)

The projection of the control points on the �rst 3 shape map dimensions. The

density of the landmarks is estimated by a Gaussian kernel and is color-coded.

(c) Control points clustered in 9 clusters: centers are represented by squares.

2.2.6 Experimental Validation

Drawing Samples from the Learned Distribution

A �rst application that is usually done after building a statistical shape

model consists in generating synthetic shapes. This can be done by esti-

mating the probability distribution over a grid, and then drawing sample

from this distribution. We formulate the probability estimation similarly to

[Felzenszwalb & Huttenlocher 2005]. The probability of our shape model is

given by equation (2.28). We will �rst compute the marginal probability of

the reference part (the base k-clique) p (x1, . . . ,xk). Then we will sample a lo-

cation for the landmarks belonging to the base k-clique. Next, we will sample

from p (xi|x1, . . . ,xk) a location for the non reference landmarks. We start by

marginalizing (2.28) over the non reference part:

p (x1, . . . ,xk) ∝
∑
k+1

· · ·
∑
n

p (x1, . . . ,xn) . (2.31)
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(a) (b) (c) (d)

Figure 2.6: Hand shape prior applied to random points.(a)�(d) Deformation

of a random point cloud according to the shape prior term.

The exponential number of operations described by the above equation can

be reduced to polynomial, by rearranging the terms following a SEO, or:

p (x1, . . . ,xk) ∝

(∑
k+1

k∏
i=1

p (xk+1,xi)
γi,k+1

)
· · ·

(∑
n

k∏
i=1

p (xn,xi)
γin

) ∏
(i,j)∈Rk

p (xi,xj)
γij

 .

(2.32)

The previous expression is fairly easy to obtain, as the depth of the dual tree

corresponding to the k-fan (or its junction tree) is equal to 2. The conditional

probability of a landmark knowing the reference points is:

p (xi|x1, . . . ,xk) ∝
k∏
j=1

p (xi,xj)
γij . (2.33)

Sampling on a grid of size m runs in O(nmk+1) polynomial time, and requires

O(nmk) memory space. This is why in practice it is unfeasible to perform such

a sampling. We resort to another method to assess the ability of our method to

capture the shape information, by applying a priori-constrained perturbations

to a randomly located set of random points. Let (p1, . . . ,pn) be a set of

random points in RN . We propose to verify the information encoded by our

shape prior through constrained displacements of this set of points. Formally,

let Di = {di1, . . . ,dim}, 1 ≤ i ≤ n be a �nite set of candidate displacements,

and let Li = {li1, . . . , lim} be a set of associated labels. Assigning a label lij to

a point pi is equivalent to displacing the latter by dij. The best perturbation
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(a) (b) (c)

Figure 2.7: Corpus callosum model construction. (a) The considered train-

ing set. (b) The projection of the control points on the �rst 3 shape map

dimensions. The density of the landmarks is estimated by a Gaussian kernel

and is color-coded. (c) Control points clustered in 13 clusters: centers are

represented by squares.

according to the shape model refers to the displacements that minimize:

−
∑

(i,j)∈Ek

γij log

(
p

(
‖xi + dii′ − xj − djj′‖

d̃

))
. (2.34)

This quadratic assignment problem min
i′,j′

∑
(i,j)∈Ek Vij(lii′ , ljj′) is NP-hard in the

general case, and can be solved approximately using [Komodakis et al. 2008b]

or [Kolmogorov 2006]. An implementation of these methods is available on-

line3,4.

The minimization problem (2.34) can be solved iteratively. The solution of

the iteration i initializes the iteration i+ 1. After a few iterations, the shape

does not evolve any more.

In practice, applying shape prior constraints to an initial set of random

control points leads to a "mean" instance of the learned object. The use of

such prior in the segmentation framework is explored in the following.

3http://www.csd.uoc.gr/~komod/FastPD/
4http://vision.middlebury.edu/MRF/code/

http://www.csd.uoc.gr/~komod/FastPD/
http://vision.middlebury.edu/MRF/code/
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(a) (b) (c) (d)

Figure 2.8: Corpus callosum shape prior applied to random points.(a)�(d)

Deformation of a random point cloud according to the shape prior term.

Applying the Shape Prior to a Set of Random Points

We applied our shape model in 2D and in 3D, in the medical and non-medical

settings. The obtained results are shown in the following.

Hands dataset Fig. 2.5(a) shows the hands annotated database provided

by [Stegmann & Gomez 2002]. It consists of 40 labeled hand contours with 56

control points. Correspondences of the landmarks are guaranteed by manual

labeling. Fig 2.5(b) displays the shape maps embedding of the data, and

the unsupervised clustering output is depicted in Fig. 2.5(c). The results are

intuitively satisfactory as the rigidly moving sub-components of the object (the

�ngers) are separated in coherent groups. A prior-constrained perturbation of

randomly located 56 landmarks leads to a hand shape as shown in Fig. 2.6.

Corpus Callosum dataset The corpus callosum dataset that we used con-

tains 90 2D MRI images manually annotated. Each corpus callosum contour

consists of 100 points. An illustration of the data is shown in Fig. 2.7(a).

We used all these landmarks to train our shape model, and we obtained the

shape maps embedding in Fig. 2.7(b). Next, we performed the unsupervised

LP-based clustering method that provided 13 clusters as shown in Fig 2.7(c).
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(a) (b) (c)

Figure 2.9: Joint lungs model. (a) The considered training set. (b) The

projection of the control points on the �rst 3 shape map dimensions. The

density of the landmarks is estimated by a Gaussian kernel and is color-coded.

(c) Lungs landmarks are clustered in 12 clusters: centers are represented by

squares.

The last step of the validation consisted of applying the shape prior to a set a

randomly located points. We used Gaussian distributions to models the pair-

wise probability functions. As expected, the shape prior guides the landmarks

towards a corpus callosum shape. Some iterations of this contour evolution

are presented in Fig. 2.8.

Right Lung and Left Lung dataset We applied our method

to the shape modeling of the right and left lungs from 2D ra-

diographic (X-ray) images. We used a publicly-available dataset

(a) (b) (c) (d)

Figure 2.10: Joint lungs shape prior applied to random points.(a)�(d) Defor-

mation of a random point cloud according to lungs the shape prior term.
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(a) (b)

Figure 2.11: A separate model of the right lung. (a) Shape maps embedding

(left) and unsupervised clustering (right). We obtain 7 clusters. (b) Applying

the learned shape model to random points.

[van Ginneken et al. 2006][Shiraishi et al. 2000]5 of 247 images of healthy and

non healthy subjects (presenting nodules). The database contains gold stan-

dard segmentations from radiologists, that provided a delineation of the organ.

Gold standard segmentation masks are hence available as well as correspond-

ing landmark positions lying on the contour. We used the 44 available land-

marks to learn the NCL shape model. Fig 2.9(b) shows the obtained shape

maps embedding. The clustering leads to the result presented in Fig. 2.9(c)

which shows the 13 automatically determined clusters for the right lung. The

clustering was used to de�ne the 13-fan structure of the graph, which con-

tained 481 edges (compared to the 946 edges of the corresponding complete

graph - almost one edge out of two was pruned). The corresponding prior-

constrained deformation validation is presented in Fig. 2.10. We also modeled

separately the right lung (Fig. 2.11) and the left lung (Fig. 2.12).

Left Ventricle dataset The Computed Tomography (CT) cardiac dataset

is courtesy of Siemens Corporate Research and was used by [Grady et al. 2005]

to illustrate their interactive graph-based segmentation methods. It consists

of 25 3D image volumes, with varying voxel size, approximately equal to

0.2 × 0.2 × 0.5 mm3. These data were segmented using an interactive tech-

5http://www.isi.uu.nl/Research/Databases/SCR/

http://www.isi.uu.nl/Research/Databases/SCR/
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(a) (b)

Figure 2.12: A separate model of the left lung. (a) Shape maps embedding

(left) and unsupervised clustering (right). We obtain 9 clusters. (b) Applying

the learned shape model to random points.

nique [Grady 2006]. One particular volume was identi�ed as a "mean" volume,

and all the remaining ones were registered to it using [Taron et al. 2009]. Pre-

cisely, the smoothed segmentations masks of the left ventricle (LV) were used

to generate signed distance maps (SDM) that were deformed using continuous

free form deformations (FFD). The mean volume LV segmentation mask was

(a) (b) (c)

Figure 2.13: Modeling the left ventricle. (a) The obtained shape maps em-

bedding. (b) The clusters centers are represented on the left ventricle surface.

(c) The clustering result.
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then manually labeled, and 90 control points were placed on the myocardium

surface as well as the atrium surface. Afterwards, the transformations pro-

vided by the registration step were applied to estimate the correspondences

of the control points, and generate the training dataset. The control points

are associated with a meshed surface, that is interpolated using thin plate

splines (TPS). The shape maps method gives an embedding of the landmarks

that is represented in Fig. 2.13(a). The clustering step ends to 13 clusters as

depicted in Fig. 2.13(c). The prior-constrained perturbation validation of the

LV model is shown in Fig. 2.14.

In terms of computational complexity, we executed the "perturbation

moves" algorithm 50 successive times using a 3 GHz dual-core processor. We

report the running time, using respectively the complete graph and the k-fan

graph, for the hand example and the left ventricle example in the Table 2.1.

Table 2.1: Running time comparison between the complete graph and the

k-fan graph.

Hand example LV example

Complete Graph runtime (s) 34(±4) 51(±5)

k-fan Graph runtime (s) 11(±1) 26(±2)

Number of Labels 361 105

# edges Complete Graph 1540 4005

# edges k-fan Graph 459 1079
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(a) (b)

(c) (d)

Figure 2.14: Left ventricle shape prior applied to random points.(a)�(d) The

mesh is updated through thin plate spline (TPS) interpolation of the control

point (in green) displacements. These displacements are guided by the shape

prior.
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3.1 Introduction

The use of prior models is very popular in image segmentation. The most

common approach consists of associating the model with the observations

and then seeking for the optimal model parameters, that is a compromise

between the observed image and the prior constraints. In this section, we

will exploit the normalized chord length shape model towards model-based

segmentation. The underlying graph structure is determined from the data,

and the shape model parameters are learned from the training shape popula-

tion as well. Given such a model, one has �rst to introduce data support and

then e�cient optimization techniques for the inference of the shape parame-

ters, given an unseen image (an image that does not belong to the training

dataset). Our motivation is to propose a �exible framework that allows the

use of di�erent image cues, and permits e�cient optimization thanks to the

recent developments in the �eld.

This chapter is structured as follows: we review in section 3.1.1 the op-

timization techniques related to pairwise Markov random �elds (MRFs). In

section 3.1.2, we detail di�erent segmentation techniques, and describe specif-

ically the graph-based methods. We will particularly discuss the approaches

that combine MRFs with shape priors, showing that it is is a tedious procedure

in general, due to the fact that graph-based methods assume weak connectiv-

ity while shape priors often require global knowledge of the shape parameters.

In an attempt to incorporate a statistical shape prior model within the MRF

framework, we propose in section 3.2 a segmentation method that combines

our learned prior knowledge with a region-based data term, through the use

of Voronoi diagrams. The resulting algorithm features an object contour (or

surface) that evolves towards the solution, in the spirit of deformable contours

and surfaces. Experiments of this method are shown in a 2D computer vision

application, and in a 3D medical image analysis setting. In order to illustrate

the �exibility of our framework, we detail in section 3.3 a slightly di�erent ap-

proach that shares ideas with graph matching and point pattern matching. In

this algorithm, the data term is related to the responses of classi�ers based on

distinctive image feature vectors. In both cases, we show that our statistical

shape model guarantees regular and robust segmentation.
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3.1.1 Discrete MRFs and Optimization

MRFs were introduced to the computer vision domain by

[Geman & Geman 1984]. Since their seminal work, MRFs have been

successfully applied to the modeling of a wide range of vision applications,

such as image restoration, image completion, segmentation, stereo vision,

tracking and motion estimation, registration, etc [Boykov & Funka-Lea 2006].

These applications often seek the estimation of the model variables with

respect to some observations. This is often formulated as a maximum a

posteriori (MAP) estimation problem, and under mild assumptions, it leads

to minimizing the following MRF energy:

E(l) =
∑
p∈V

Vp(lp) +
∑

(p,q)∈E

Vpq(lp, lq) , (3.1)

where G = (V , E) is the considered MRF, V is the set of graph variables, E is

a local neighborhood system associated with this graph that can be spatially

varying, and lp ∈ L is a possible state of the variable p ∈ V . This problem is

also interpreted as a labeling problem in the discrete case, where the unary

potentials Vp(lp) indicate/measure the quality of the labeling with respect to

the observations for a given node, and the pairwise potentials Vpq(lp, lq) aim to

establish coherence between the labeling of connected nodes. Minimizing such

function is a challenge in the general case, as this problem is proven to be NP-

hard. However, numerous optimization techniques were developed to tackle

this problem from di�erent points of view. For instance, some methods guar-

antee an exact optimal solution of the problem (3.1) for a very restricted set

of cases. Others provide nearly optimal solutions, with prede�ned con�dence,

if some constraints are satis�ed. We present in the following an overview of

these methods.

Early Methods

Iterated conditional modes (ICM), simulated annealing (SA), highest con�-

dence �rst (HCF) and mean �eld annealing (MFA) are among the �rst algo-

rithms considered to solve the aforementioned MRF minimization problem.

ICM [Besag 1986] is a greedy approach that iteratively updates the labels of

the MRF nodes. At each iteration, a node is allowed to change its label to the
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one that provides the local largest decrease of the objective function assum-

ing the remaining of the labels constant from the previous iteration. These

updates are repeated for all nodes until convergence to a local minimum, i.e.

until no label update gives any decrease of the energy. This method is sensi-

tive to initialization. HCF [Chou & Brown 1990] is a deterministic algorithm

that attempts to improve the ICM by updating the nodes in a certain order.

It introduces an additional label to describe an "uncommitted" state. At the

beginning of the algorithm, all nodes are "uncommitted". The algorithm de-

�nes the so-called stability for each node, and at each iteration, only the node

with the smallest stability is allowed to commit, or update its label. Once

a node is committed to a label, the potentials of the connected nodes are

also updated and decisions for them can be taken with more con�dence. SA

[Kirkpatrick et al. 1983][�erný 1985] is also an iterative algorithm, where a

temperature parameter T plays an important role (in analogy with the slow

cooling/annealing phenomenon in metallurgy). Iteratively, the SA heuristic

choses whether to stay in the current state or to move to a neighboring one

in a probabilistic manner. If moving to a new state reduces the energy, then

the move is accepted. Otherwise, the move is accepted with a certain prob-

ability that depends on the temperature T , and decreases over time, i.e. as

the temperature tends to zero. Intuitively, for large values of T , the system

is allowed to move with certain freedom, such that it is able to escape local

minima. This freedom decreases when T is close to zero, and the probabilis-

tic moves become almost deterministic. Asymptotically, SA �nds the global

optimum, which in practice would require an in�nite time. Note also that SA

implementations converge to a local minimum. Moreover, [Greig et al. 1989]

gave binary labeling examples where the solution provided by SA is far from

the optimum. MFA [Bilbro et al. 1989] is an algorithm that is similar in spirit

to SA. It proceeds however by estimating the mean �eld of each node at de-

creasing temperatures, rather than with a sampling scheme and probabilistic

moves. The mean �eld of the MRF converges to the MAP when T tends to

zero. This popular minimization algorithm resorts in practice to approxima-

tions as it needs to estimate the partition function, which is computationally

intractable. This is another instance of algorithms with asymptotic optimal

properties, which converge however to local minima when used in real-world
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applications. We turn now to present another class of methods that belongs

to combinatorial optimization techniques and exhibits e�ciency properties as

well as the ability to achieve a global optimum under certain conditions.

Graph-Cut - Binary Case

[Greig et al. 1989] were the �rst to use a s/t graph cut algorithm in the con-

text of MAP estimation of a MRF in computer vision. They successfully

applied it to the restoration of binary images and showed that it outperforms

SA. A decade later, the rediscovery of graph cut techniques in the computer

vision community started a new research trend. This was due to the seminal

work of [Boykov et al. 1999] where an e�cient implementation of the max-

�ow/min-cut problem was introduced in the context of vision. These ideas

were popularized in [Boykov & Jolly 2001] where the use of the graph cut

technique for interactive n-dimensional image segmentation was introduced.

In this subsection, we start �rst by describing the basics of graph cut algo-

rithms. In order to simplify the presentation, let us �rst consider a simple

case where the label set consists of two labels.

The binary labeling problem is represented by a directed graph where

each node represents a variable, and where edges connect neighboring nodes.

These nodes are called internal nodes, and the corresponding edges are called

internal links or n-links. In addition, the graph contains two terminal nodes

called the source s and the sink t. These two special nodes correspond to the

two classes of the binary labeling. The graph contains also terminal edges, or

t-links, that connect each internal node with both terminal nodes. Each edge

is associated with a cost, or a capacity. The cost of a n-link de�nes the penalty

of assigning the corresponding two nodes to di�erent classes, whereas the cost

of a t-link represents the penalty of assigning the node to the corresponding

terminal. For the case of the MAP estimate of a binary MRF, de�ned by

(3.1), the n-link costs correspond to Vpq(lp, lq) and the t-links to Vp(lp), where

L = {s, t}.
An s/t cut on such a graph partitions the nodes in two disjoint classes S

and T such that S contains the source terminal s and T contains the sink

terminal t. The cost of such a cut is equal to the sum of the costs of directed

edges (p, q) such that p ∈ S and q ∈ T . Hence, a MAP binary labeling
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is equivalent to a cut with a minimum cost, or a min-cut. The theorem of

[Ford & Fulkerson 1962] proves that the min-cut problem can be equivalently

solved by �nding the maximum �ow from the source s to the sink t, through

the capacitated edges. It also states that this max-�ow saturates a set of

edges that correspond to a min-cut. The max-�ow and min-cut values are

equal. Di�erent low (polynomial) complexity algorithms for solving the min-

cut/max-�ow problem exist, and can be classi�ed in two major classes: "push-

relabel" methods [Goldberg & Tarjan 1988] and "augmenting paths" methods

[Ford & Fulkerson 1962]. [Boykov & Kolmogorov 2004] give a description of

these methods, and compare their performance on a set of computer vision

applications. They also present a modi�ed "augmenting paths" algorithm

that produces the best results in their experiments. As far as the quality of

the obtained solution is concerned, [Kolmogorov & Zabih 2004] discuss the set

of energy functions that can be minimized using graph cuts. Hence, a global

optimum is only guaranteed when the energy function (3.1) is submodular,

meaning that Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0), ∀(p, q) ∈ E .

For non-submodular functions, the problem remains NP-hard in gen-

eral. However, [Kolmogorov & Rother 2007] review a method called quadratic

pseudo-Boolean optimization (QPBO) [Hammer et al. 1984] that provides

partial optimal solutions in the arbitrary case. Essentially, the algorithm

builds an appropriate s/t graph, where each variable p ∈ V is represented by

two nodes, z and z̄. Ideally, the label of z̄ should be the negation of the la-

beling of z, i.e. lz̄ = 1− lz. The new energy corresponding to the constructed

graph is submodular, and is hence minimized using min-cut/max-�ow. A con-

sistent labeling of z and z̄ (i.e. z ∈ S and z̄ ∈ T , or the converse) provides

a labeling for p. The variables corresponding to an inconsistent labeling of z

and z̄ remain unlabeled. This algorithm provides hence a partial solution, but

with the guarantee that the labeled variables belong to the optimal solution.

One can put the importance of graph cut methods into perspective as

they are limited to the binary case, and come with restrictions on the energy

function. However, as we shall see in the following, the binary case is closely

related to the multi-label setting.
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Graph-Cut - Multi-label Case

Several works in the late 90's showed the high relevance of s/t graph cut

with respect to the multi-label problem. [Roy & Cox 1998] were the �rst to

use an s/t graph cut for the general labeling case. Building on their work,

and using appropriate graph constructions, [Boykov et al. 1998] proposed a

method to exactly minimize the problem (3.1) when the pairwise potentials

are linear functions of the labels. [Ishikawa 2003] shows subsequently that con-

vex pairwise interactions can be handled as well. [Boykov et al. 2001] further

generalize the result to the case where Vpq is a metric, showing that a good ap-

proximation of the optimal solution can be found within guaranteed bounds.

The algorithms that they proposed, α-expansion and α− β-swap are e�cient

and perform well in practice, even in the non-metric case [Rother et al. 2005]

(yet losing optimality guarantees). We give now some details about these

algorithms.

The proposed expansion move and swap move algorithms in

[Boykov et al. 2001] try to iteratively improve the current labeling. In

an α-expansion move, any node is only allowed to change its label to α. In

an α − β swap, only nodes with labels α (respectively β) are allowed to

change their label to β (respectively α), and β (respectively α) only. Both

algorithms �nd in each iteration the move that minimizes (locally) the energy.

The number of these moves being exponential, the authors translate this

minimization problem into a min-cut / max-�ow problem in an appropriately

constructed graph. Hence, during each of these iterations, an s/t graph cut

is performed. A complete set of iterations over all the labels L is called a

cycle. The algorithms are guaranteed to converge in a �nite number of cycles

to a local minimum. For α-expansion, this local minimum is within a known

factor of the global optimum.

Loopy Belief Propagation

Belief propagation (BP) [Pearl 1988] is an iterative algorithm that propagates

local messages between the nodes of the MRF. We present here an intuitive

description of its mechanism. At each iteration, a node sends messages to its

neighbors, and receives messages from them. The algorithm keeps repeating
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these iterations until a �xed point is reached, i.e. all the messages stabilize.

In each iteration, a node p sends a message {mpq(lq)}lq∈L to the node q.

This message expresses how likely the node q should be assigned a label lq
according to the node p. This message considers two aspects. First, using the

interaction term Vpq(lp, lq), the node p examines the likelihood of a label lq for

the node q if it gets the label lp. Then, it assesses the likelihood of getting a

label lp, based on the evidence Vp(lp) and the messages mrp(lp)r 6=q it receives

from its neighbors (other than q) about the likelihood of lp.

After exchanging such messages su�ciently, the messages converge. Then

a belief bp(lp) of assigning a label lp to a node p can be computed, as a

combination of the evidence Vp(lp), and the messages mrp(lp) that p received

from its neighbors. One can distinguish between two kinds of BP algorithms:

the sum-product algorithm that is used to estimate marginals, and the max-

product algorithm that gives MAP estimates. In both cases, BP is exact

on acyclic graphs, or trees, and only needs to pass messages in a forward

way (from the leaves to the root) and then in a backward way to converge.

However, when the graph contains loops, there are no such guarantees, and the

algorithm may not converge [Yedidia et al. 2003] [Kschischang et al. 2001]. In

practice, loopy belief propagation (LBP) has successfully been applied even

with cyclic graphs.

Linear Programming Relaxation

The linear programming (LP) relaxation of the MAP-MRF problem (3.1) is

a prominent approach to �nd approximate solutions. The latter can be cast

to an equivalent integer program:

min
∑
p∈V

(∑
l∈L

Vp(l)xp(l)

)
+
∑

(p,q)∈E

(∑
l,l′∈L

Vpq(l, l
′)xpq(l, l

′)

)
, (3.2)
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such that: ∑
l

xp(l) = 1 ∀p ∈ V (3.3)∑
l

xpq(l, l
′) = xq(l

′) ∀l′ ∈ L, ∀(p, q) ∈ E (3.4)∑
l′

xpq(l, l
′) = xp(l) ∀l ∈ L, ∀(p, q) ∈ E (3.5)

xp(.), xpq(., .) ∈ {0, 1} . (3.6)

The binary variables xp(.) and xpq(., .) that are introduced in the above func-

tions act as indicator functions, and specify which label is assigned to a node

or a pair of nodes. Hence, xp(l) = 1 is equivalent to assigning label l to node p,

and xpq(l, l′) = 1 is equivalent to assigning label l to node p and label l′ to node

q. The constraint in equation (3.3) guarantees that each node is assigned one

and only one label, and constraints (3.4) and (3.5) ensure consistency between

the unary and pairwise binary variables.

The LP relaxation consists in relaxing the integer constraints (3.6) to the

constraints xp(.) ≥ 0 and xpq(., .) ≥ 0. This LP relaxation was �rst introduced

by [Schlesinger 1976], as pointed out in [Werner 2007]. The dual program that

corresponds to the (primal) linear program can be written as:

max
∑
p∈V

yp , (3.7)

such that:

yp ≤ min
l∈L

hp(l) ∀p ∈ V (3.8)

ypq(l) + yqp(l
′) ≤ Vpq(l, l

′) ∀(l, l′) ∈ L, (p, q) ∈ E , (3.9)

with hp(.) = Vp(.)+
∑

q
(p,q)∈E

ypq(.). The quantity hp(.) is called height variable.

Optimizing the obtained linear program using conventional techniques such as

the simplex algorithm or interior-point methods is often not practical in the

context of computer vision problems because of their very large scale. For this

reason, the above-mentioned methods would be very slow. This motivated the

development of approximate but e�cient LP optimization techniques. These

methods either use the primal-dual paradigm, or proceed in the dual domain to

maximize a lower bound of the energy. We give in the following a description

of the most prominent approaches.
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Primal-Dual approaches and Fast-PD [Komodakis & Tziritas 2007] ap-

ply the primal-dual principle to solve approximately the linear program (i.e.

the relaxed version of (3.6)), while providing suboptimality bounds. Their

algorithm requires that the pairwise costs are positive (which is less restric-

tive than the metricity requirement of α-expansion for instance). By weak

duality, the optimal cost of the primal-dual problem lies between the costs

of any pair of primal and dual feasible variables. Therefore, the primal-dual

principle states that controlling their cost gap by a factor f provides an f -

approximation to the optimal integral solution. Moreover, feasible primal dual

solutions that satisfy the relaxed complementary slackness condition provide

an f -approximation to the optimal integer solution. Subsequently, the primal-

dual schema can be applied to �nd a solution that is an f -approximation

to the optimum. This schema is devised to generate pairs of integral pri-

mal and dual solutions until the last pair forms a primal and a dual feasi-

ble solutions that satisfy the relaxed primal complementary slackness con-

ditions. [Komodakis & Tziritas 2007] propose an algorithm that follows the

primal-dual schema. They maintain during optimization an active primal

labeling xp(.), and dual variables ypq(., .), such that the complementary slack-

ness conditions are satis�ed. To this end, they iteratively update the primal

and dual variables to meet in particular the height complementary condition

hp(xp) = minl∈L hp(l). The update of the dual variables takes place in a se-

lective manner. In each c-iteration, only c-label variables ypq(c) are changed,

to satisfy the constraints as much as possible, which in turn would produce

new hp(c) height values. The optimal update of the c-variables is found by

solving a min-cut max-�ow problem in an appropriately constructed capac-

itated graph. At this point, there might still be nodes violating the height

complementary condition with respect to the label c. This is taken care of

by updating accordingly the primal variables corresponding to those nodes.

After each update, the dual cost is guaranteed to decrease. The algorithm

converges to a pair of primal-dual solutions that satisfy the complementary

slackness conditions (when no update is done after |L| c-iterations), and hence
provide an f -approximation to the solution. The value of f can be esti-

mated from the pairwise costs, which are (only) assumed to be positive, as

f = maxpq
maxl 6=l′ Vpq(l,l

′)

minl 6=l′ Vpq(l,l
′)
. Besides the theoretical guarantees on the approxima-
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tion quality, per-instance suboptimality bounds are provided for each applica-

tion. These bounds proved to be in practice much tighter than the theoretical

ones. It also turns out that this Primal-Dual method is a generalization of

α-expansion.

[Komodakis et al. 2008b] further extend their method to obtain more ef-

�ciency and provide a very fast primal dual algorithm, called FastPD. They

essentially build upon their work in [Komodakis & Tziritas 2007], by addi-

tionally making the link between the primal-dual gap and the number of path

augmentations during the min-cut/max-�ow optimization. Indeed, the speed

of the algorithm depends heavily on the e�ciency of solving these max-�ow

problems, which in turn is related to the number of augmenting paths per max

�ow. They show that the primal-dual gap is an approximate upper bound on

the number of such paths. A modi�cation of their previous algorithm ensures

that the primal-dual gap always decreases (and is never destroyed, even tem-

porarily). This �rst adjustment leads to a clear decrease in the number of

augmentation paths and hence to a substantial speed up of the algorithm,

while maintaining it optimality properties. Moreover, they design a max-�ow

algorithm that is adapted to their graph (that has few s-links) and provide

an incremental graph construction method which yields an additional accel-

eration. In practice, FastPD performed 3 to 9 times faster than α-expansion.

Message-Passing Approaches Tree-reweighted (TRW) methods are an-

other class of approaches that aim to approximately solve the MAP-MRF

problem. While relying on the passing of messages similarly to BP, these

methods are closely related to LP. Indeed, they attempt to solve the LP relax-

ation of the MRF, by maximizing the dual of the LP. [Wainwright et al. 2005]

introduced the tree-reweighted message passing algorithm (TRW-MP). They

show that by combining concave subproblems, they can provide a concave

lower bound on the MRF energy. These subproblems can be chosen as trees.

They show that the message passing algorithm leads to a tight bound if and

only if the collection of trees shares a common optimum. They also prove

that the maximization of this lower bound (that is independent from the

choice of the trees) is equivalent to optimizing the dual of the LP relax-

ation of the MAP MRF problem. However, TRW-MP does not have any
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guarantee of convergence, or increase of the lower bound. [Kolmogorov 2006]

proposes a sequential version of the tree-reweighted algorithm, TRW-S, that

has convergence guarantees. However, the author shows that the algo-

rithm may converge to a point that is not the optimum of the LP lower

bound. The optimal properties are only shown for the binary submodular

case [Kolmogorov & Wainwright 2005].

[Komodakis et al. 2007] introduced a new message-passing method based

on dual decomposition (DD) [Bertsekas 1999], in order to address the above-

mentioned limitations. More explicitly, they aimed to solve the dual LP prob-

lem, i.e. maximize the lower bound. The dual decomposition technique con-

sists of decomposing the Lagrangian dual of the intractable original MAP

MRF problem, into less complex subproblems, thanks to a Lagrangian re-

laxation. [Komodakis et al. 2007] consider tree subproblems that can be eas-

ily solved. Then, the optimization (using the projected subgradient method)

amounts to an iterative "message passing" between the "master" problem and

the "slave" problems. Iteratively, each easy subproblem is solved according to

the updated MRF potentials, and the result is sent to the master problem that

updates the potentials according to the new results. Moreover, the authors

show that the Lagrangian relaxation problem is equivalent to the LP relax-

ation of the MAP MRF problem. Thus, they establish the link between their

method, the TRW methods and LP. Unlike TRW approaches, this DD-based

algorithm is guaranteed to maximize the lower bound of the LP relaxation.

Tightness of the Relaxation The above-mentioned class of methods try

to optimize the dual of the LP relaxation. Interestingly, this dual energy

is a lower bound on the MAP MRF energy. Hence, one can hope that

by solving the LP, a good approximation to the original integer program

can be obtained. This observation raises the question of the tightness of

the relaxation. Indeed, a loose relaxation would lead to a poor approxi-

mation. Researchers have tried other types of relaxations, besides the LP

one. For instance, a quadratic programming (QP) relaxation is used by

[Ravikumar & La�erty 2006], and a second order cone programming (SOCP)

relaxation was proposed by [Muramatsu & Suzuki 2003] for the binary case

and extended to the general case by [Kumar et al. 2006]. [Kumar et al. 2009]



3.1. Introduction 65

show that the QP relaxation and the SOCP relaxation are equivalent in terms

of tightness. Furthermore, they show that they do not compete favorably with

the LP relaxation, meaning that the latter leads to better approximations of

the MAP-MRF problem.

[Komodakis & Paragios 2008] present a work that deals with the relax-

ation tightness. They act on the lower bound of the MRF energy by de�ning

tighter LP-relaxations, through the use of a new set of pairwise potentials that

satisfy certain constraints, called virtual potentials. They give a characteri-

zation of dual LP energies that are not tight, as the existence of the so-called

inconsistent node cycles with respect to the labeling. They propose an iter-

ative algorithm to repair these inconsistent cycles, by successively adjusting

the virtual potential to appropriate values, and applying the augmenting DAG

algorithm [Werner 2007] to impose necessary optimality conditions. When us-

ing this algorithm, the lower bound on the MRF energy does not decrease.

These iterations are repeated until there are no more inconsistent cycles. This

can be thought of as a series of relaxations of gradually increasing tightness.

In practice, this algorithm leads to better optima. It especially performed well

in di�cult MRF problems, with respect to state-of-the art techniques.

[Szeliski et al. 2008] provide a comparison between di�erent MRF energy

minimization methods, using benchmark problems. The algorithms that are

compared are ICM, max-product LBP, a LBP implementation derived from

TRW-S, α-β-swap, α-expansion and TRW-S.

3.1.2 Image Segmentation Techniques

We brie�y sketch the most prominent image segmentation techniques in the

literature. We note that in addition to the methods that we will detail in

the following, there is another class of segmentation techniques that is mainly

applied in medical image analysis, namely atlas-based segmentation. Often

described as segmentation by registration, their principle consists of register-

ing a reference image, which is called atlas, to a query image. A ground truth

segmentation is associated with the reference image, and a segmentation of

the query image is obtained by a warping operation, based on the resulting

deformation �eld. A more sophisticated approach that goes beyond the use

of simple single-image atlas considers the multi-atlas segmentation problem.
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Typically, every atlas is �tted to the query image, and a �nal segmentation is

obtained in a multi-classi�er labeling manner by voting for instance. To cap-

ture the shape changes due to anatomical and morphological variations, more

advanced atlas construction techniques were developed, and involved incor-

porating probabilistic information. Research about atlas-based segmentation

has mainly focused on registration algorithms and atlas construction. A re-

view of these di�erent methods is beyond the scope of this work. However,

the reader can be referred to a detailed description in [Rohl�ng et al. 2005].

We give now an overview of deformable models and level sets for segmenta-

tion, active shape and active appearance models, and eventually graph-based

segmentation approaches. We end this last part by discussing the endeavors

that researchers made to introduce shape priors in the MRF framework, and

commenting the approaches that are particularly related to our work.

Several detailed reviews on the topic of image segmentation tech-

niques exist. [McInerney & Terzopoulos 1996], [Jain et al. 1998] and

[Montagnat et al. 2001] describe the deformable contours methods.

[Cremers et al. 2007] survey level set approaches, and in particular the

statistical ones. A discussion about the developments of the active shape

model (ASM) and active appearance model (AAM) algorithms can be

found in [Heimann & Meinzer 2009]. [Boykov & Funka-Lea 2006] describe

the history and developments of the graph cut method, and as previously

indicated, [Szeliski et al. 2008] compare several discrete MRF optimization

methods on a benchmark of computer vision applications.

Deformable Models and Level Sets

[Kass et al. 1988] introduced the active contours concept, or snakes, in im-

age segmentation. These deformable models evolve towards the object to

be segmented, and are guided by an energy that combines an internal term

and and external one. The internal energy is based on the (parametrized)

curve regularity and imposes smoothness constraints to the evolving contour,

whereas the external energy stands for the image-driven forces that attract the

curve to the image location with high gradient values. This 2D edge-based

approach was then generalized to the 3D case in [Terzopoulos et al. 1988].

This method is sensitive to initialization, and can get trapped in local min-
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ima. [Cohen 1991] introduces an additional term in the energy that repre-

sents "balloon" forces. This in�ating (or de�ating) term aims to avoid the

local minima by helping the curve to pass them. Another criticism that is

commonly formulated to active contours is related to their inability to al-

low for topology changes. [Delingette 1999] attempt to overcome this limi-

tation by introducing the deformable simplex meshes. In such meshes, each

vertex has exactly the same number of neighbors. This non-parametric sur-

face representation is able to model objects of arbitrary topologies. The au-

thor proposes an algorithm that adapts the topology of an initial surface

to the object to be extracted from the image. [Montagnat et al. 1999] use

a 2-simplex mesh to segment 3D cylindrical echocardiographic images. This

work is extended in [Montagnat et al. 2003] to handle 3D ultrasound image se-

quences. By using reparametrization tricks, [McInerney & Terzopoulos 1999]

are also able to propose a topology-adaptable version of snakes. Alter-

natively, level sets [Osher & Sethian 1988] are an elegant framework that

naturally handles topology changes. The work of [Malladi et al. 1995],

[Kichenassamy et al. 1995] and [Caselles et al. 1997] bene�t from these as-

pects, as they introduce the geodesic active contours, which can be viewed

as geometric (parameter-free) counterparts of classical snakes.

Opposite to the previously-mentioned methods, other variational ap-

proaches rely on image region characteristics. [Mumford & Shah 1989] de�ne

a functional which allows to segment the image into homogeneous parts. They

approximate the image by a piece-wise smooth function. The discontinuities

of the approximating function are only allowed on a curve with its length

being minimized within the functional. [Chan & Vese 2001] incorporate this

approach in the level set framework, and design the so-called "active contours

without edges". [Zhu & Yuille 1996] use statistical techniques of region grow-

ing by considering an MDL criterion. Their approach has also links to the

snakes/balloon formulation. [Yezzi Jr. et al. 2002] implement this method in

the level sets framework.

[Paragios & Deriche 2000] introduce the geodesic active regions Bayesian

formulation that combines image region statistics with edge-based terms

within the level set framework. The use of both region and edge information

was considered earlier in [Chakraborty et al. 1996] without bene�ting however
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from the power of the level-set framework. They apply the Green's theorem to

the region term, such that is can be expressed on the boundary of the evolving

contour. Their approach features a shape model that uses the probability dis-

tributions of the Fourier coe�cients representing the contour. However, their

method depends on the initial conditions as it is optimized using a conjugate-

gradient algorithm. The same idea of applying the divergence theorem was

used by [Unal et al. 2004] where an active polygonal deformable model was

de�ned based on image region information.

Continuous e�orts have been made since then to improve these methods

by developing knowledge-based variational formulations. Representing shape

using a signed distance maps (SDMs) was a natural way of achieving this

goal within the level set framework (section 2.1.1). Linear shape models (sec-

tion 2.1.1) as well as their non-linear kernel-based counterparts (section 2.1.1)

were also used in a variational framework.

Active Shape and Active Appearance Models

Active shape models (ASM) have become increasingly popular since their in-

troduction by [Cootes & Taylor 1992]. This technique learns the shape of a

class of objects using PCA (section 2.1.1). A shape s is hence approximated

by its parameters vector b which is the orthogonal projection of the resid-

ual from the mean on the eigenbasis E, or b = ET (s − s). An appearance

model per landmark is associated to the shape model, and is used to enforce

image-driven prior knowledge during search. This appearance model is re-

lated to the boundary of the object: intensity pro�les, centered in the point

location, and orthogonal to the contour (and hence capturing internal and

external object features) are extracted from the training data. Mean pro�les

and covariance matrices are then computed, and the quality of a new pro�le

is assessed by the Mahalanobis distance. Pro�les of derivatives were also used

in practice, and these di�erent pro�les were often normalized. ASM is an

iterative algorithm that uses a local search method, due to the large size of

the search space in general. At an iteration t, the evolving shape st in the

image is expressed using its parameters bt and a similarity transformation T ,

or st = Tt(s + Ebt). Then, for each landmark, the locally optimal candidate

position along the normal to the contour is identi�ed using the local appear-
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ance model (intensity pro�le). The output of this step is a vector of optimal

displacements dst. The transformation Tt and then the shape parameters bt

are updated accordingly (while applying limit constraints on bt). Hence, a

new valid instance of the shape st+1 is obtained. These steps are repeated till

convergence. The convergence depends on the initial conditions. Since ASM

is a local search method, the initialization needs to be close enough to the so-

lution. The robustness and the speed of the algorithm are improved through

the use of coarse-to-�ne search. For each level of the image corresponding

pyramid, a di�erent appearance model is built in the training stage.

Alternative ASM appearance models The �exibility of the ASM frame-

work allows the use of di�erent features, which paves the way to substantial

improvements. For instance, Gabor wavelets were used in [Jiao et al. 2003],

and the resulting feature distributions were modeled using Gaussian mixture

models. [Langs et al. 2006] describe the object appearance using steerable

features [Freeman & Adelson 1991]. [van Ginneken et al. 2002] suggest to

use locally orderless image features [Koenderink & Van Doorn 1999]. In this

method, a given image is fed to a bank of multiscale Gaussian derivative �l-

ters. Then, �rst statistical moments are extracted from local histograms in the

�ltered images (the histograms extents are related to the corresponding scale).

These moments represent the considered features. [van Ginneken et al. 2002]

used in practice all derivatives up to the second-order, �ve scales for Gaussian

�ltering, and the two �rst moments, and applied ASM to the segmentation of

chest radiographs. An optimal set of features per landmark is then extracted

using a forward-backward feature selection scheme.

Moreover, other non-linear methods apart from Gaussian mixtures were

used to model the appearance features. [de Bruijne et al. 2003] propose a

method based on k-nearest neighbors (kNN) to evaluate the probability of a

given pro�le. During the training phase, pro�les are sampled inside and out-

side the object in the vicinity of the landmarks positions. Hence the pool of

pro�les contains "true" pro�les and "false" pro�les, corresponding respectively

to correct and wrong landmark positions. Then during the search phase, the

kNN of a candidate pro�le assesses its quality by voting, and a probability

value can be determined as the fraction of "true" votes. A similar approach
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was adopted by [van Ginneken et al. 2002] to evaluate the goodness of can-

didate positions during search. The di�erence from [de Bruijne et al. 2003]

lies in the use of a weighted kNN voting (the weights are inversely propor-

tional to the distance to the landmark position), which establishes for a given

point the probability of belonging to the inside or to the outside of the ob-

ject. Then, the optimal position is de�ned by minimizing a cost function that

combines such individual probabilities along pro�les orthogonal to the con-

tour and centered at the tested positions. The same rationale is applicable

with di�erent classi�ers. Successful methods are presented in [Li et al. 2004a]

and [Li & Ito 2005] and bene�t from the strengths of the Adaboost algorithm

[Freund & Schapire 1997].

Alternative ASM search schemes Other e�orts to develop the ASM al-

gorithm mainly considered the search part. [de Bruijne & Nielsen 2004] use

a point distribution model (PDM) in a stochastic inference framework. They

reformulate the segmentation task as a maximum likelihood (ML) problem,

that is optimized using particle �ltering [Isard & Blake 1998]. Iteratively,

shape samples are drawn from the PDM. Then, particle weights are com-

puted using a likelihood term (a kNN classi�er is used for pixel probability

estimation akin to [de Bruijne et al. 2003]). According to these weights, a

random sampling of new particles is performed, followed by a small random

perturbation of duplicated shapes. This process results in the multiplication

of likely particles, whereas the bad shapes disappear gradually. Asymptoti-

cally, the algorithm converges to the maximum likelihood estimate. However,

the optimal shape is approximated in practice by the strongest local mode

of the particle distribution (that can be identi�ed using the mean shift algo-

rithm [Comaniciu & Meer 2002]) after a su�cient number of iterations. The

use of a large number of initial samples bequeaths to the algorithm addi-

tional robustness against local minima and more independence with respect

to the initial conditions, with the downside of increasing the computational

cost. The authors extend their approach in [de Bruijne & Nielsen 2005] to

the segmentation of multiple shape instances in the same image, by de�ning

interaction constraints between neighboring shapes, and adjusting the data

term. [Tu et al. 2004] and [Qu et al. 2008] are other examples of successful
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combination of PDM with particle �ltering approaches.

An alternative research direction deals with handling outlier candidates

during the ASM search. In fact, the standard ASM search algorithm con-

siders a least-square criterion with respect to the residual between the model

and the data. The minimization of such criteria leads to optimal results

only when the Gaussian noise assumption holds, which is not always true in

practice. [Rogers & Graham 2002] tackle this problem by considering two op-

tions: M-estimators and random sampling techniques. M-estimators aim to

alleviate the e�ect of outliers. This leads to a weighting strategy of the land-

marks that depends on the size of their residual. The random sampling ap-

proach selects repeatedly small random subsets of landmarks, and uses them

to estimate the shape parameters. Random sample consensus (RANSAC)

[Fischler & Bolles 1981] is an algorithm that follows this rationale. It evalu-

ates the obtained parameter estimation by the amount of its consistency with

respect to the data, and returns as �nal estimation the parameters with the

largest consensus set. [Abi Nahed et al. 2006] handle the outliers issue in a

di�erent way. They extract from the image to be segmented a set of candidate

points for each landmark. Then, they use a robust point matching algorithm

[Chui & Rangarajan 2000] to �nd the best correspondences between a legal

shape instance and the pool of candidates, while allowing outlier rejection.

Incorporating MRF regularization in the search step is another method to

tackle the independent estimation of the landmarks optimal displacements in

the standard ASM. [Behiels et al. 1999] introduce a regularization term that

constrains the relative displacements of consecutive landmarks on the object

curve. The optimal landmarks are the one determined by minimizing a cost

function that combines the aforementioned pairwise regularization terms, and

individual landmark terms. A minimum cost path search algorithm (using

dynamic programming, thanks to the tree structure of the open 2D contour)

solves the problem. The method exhibits improvements compared to ASM,

as far as outliers handling is concerned. More recently, [Tresadern et al. 2009]

use a hybrid shape model that combines PDM and MRF. The unary MRF

potentials correspond to a data term that describes the goodness of the candi-

date features, and the pairwise potentials account for the relationship between

the relative displacements of pairs of landmarks. This regularization term is
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given by a Mahalanobis distance, where the mean and covariance parameters

are learned from the data. In both methods, the solutions are then regularized

using the global model. Alternative developments of ASM are related to the

shape modeling part and question the Gaussianity assumption (section 2.1.1)

or seek a sparser representation (section 2.1.1).

Active Appearance Models AAM [Cootes et al. 2001] can be thought of

as ASM with region-based image features. Besides modeling the shape varia-

tions, AAM encode the texture of the object and its variations. Hence, simi-

larly to PDM that can synthesize new shapes, AAM are able to generate new

images of the learned object. However, this generative model combines shape

and appearance description into one linear system, such that the parameter

vector controls both shape and appearance variations.

The �rst step consists in warping the training shape images to a common

mean frame, using a triangulation algorithm. The intensity values are then

stacked into texture vectors, which are used to perform PCA after intensity

normalization. This leads to expressing the shape appearance as g = g +

Egbg, where g is the mean normalized texture vector, Eg is the eigenbasis and

bg is the vector of texture parameters. The shape variations are expressed

akin to the ASM setting as s = s + Esbs. Then, the shape and texture

(independent) parameters are combined in a common parameter vector b =(
Wsbs

bg

)
, where Ws is a diagonal matrix that weights each shape parameter,

accounting for the units di�erences between the shape and texture models.

Such a vector is generated for each training example, and then PCA is applied

on the obtained pool of vectors. This yields the appearance model b = Ecc,

where the appearance parameter vector c controls both shape and texture

variations:

s = s + EsW
−1
s Ecsc

g = g + EgEcgc ,
(3.10)

where Ec =

(
Ecs

Ecg

)
.

The AAM search algorithm is fairly di�erent from its ASM counterpart.

The AAM search corresponds to an image interpretation problem. It aims to
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minimize the di�erence between the given image and a version synthesized by

the appearance model. An instance of the model in the image is de�ned by

a similarity transformation, an appearance parameter vector c and a texture

transformation parameter vector. All these parameters are described in a

unique parameter vector p. Let g be the model-generated texture, and let gimg

be the part of the image texture inside the shape region. Then, minimizing

the residual r(p) = g − gimg amounts after a �rst order Taylor expansion to

expressing the parameters update as a function of the residual, or:

δp = −R.r(p) . (3.11)

The key approximation of AAM is that the matrix R is assumed to be �xed.

This matrix is learned from the training set using numeric di�erentiation, and

hence provides a priori knowledge on the model parameters adjustment during

the search. This approximation leads to a tractable algorithm that solves an

initially-tough high-dimensional optimization problem.

Di�erent modi�cations to the standard AAM exist in the literature,

we brie�y report a few of them. [Matthews & Baker 2004] introduce a

new computationally-e�cient analytical gradient descent algorithm to opti-

mize the AAM search and demonstrate its applicability for face tracking.

[Andreopoulos & Tsotsos 2008] extend this latter approach, initially presented

in 2D, to the 3D case and apply it to the segmentation of cardiac MRI images.

[Donner et al. 2006] use the canonical correlation analysis algorithm (CCA) in

order to capture the correlation between the parameter update and the image

residual. This alternative method to compute the matrix R yields more pre-

cise parameter prediction than the standard numeric di�erentiation method

and allows speeding up the search by a factor of four. [Gross et al. 2006] build

on their previous work in [Matthews & Baker 2004] to develop a robust AAM

with respect to occlusions.

Graph-based Methods and Related Work

[Boykov & Jolly 2001] introduce an interactive method of n-dimensional im-

age segmentation based on graph cut. The user provides hard segmentation

constraints by specifying some pixels as belonging to the object or the back-

ground. Then, the segmentation problem is cast into a min-cut/max-�ow
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problem, where the internal nodes of the graph represent the image pixels,

and the source and sink node refer to the object and background classes.

The internal graph links represent the neighboring system in the image, and

their weights de�ne a discontinuity penalty that is related to the pixel inten-

sity di�erences (a boundary-related term). The terminal weights represent the

penalty of assigning a pixel to one class or the other. These penalties represent

the likelihood of the pixel intensity given the intensity distribution of the label-

ing class. The hard constraints are enforced by pairs of (0, K) weights, where

K is a large penalty. The segmentation of the image is given by the min-cut.

This work is further reviewed in [Boykov & Funka-Lea 2006]. The authors sur-

vey the developments and variations of their method and discuss the historical

steps that led to a ubiquity of the graph cut approach. Although the multi-

label case is NP-hard, an extension using multi-way graph cut can be done in

practice using α-expansion for instance. Di�erent improvements were added

to the standard graph cut formulation [Boykov & Jolly 2001]. For instance,

[Blake et al. 2004] propose to learn the regional parameters from color images

using a Gaussian Mixture Markov Random Field (GMMRF) generative model.

This idea is combined in the "Grabcut" algorithm [Rother et al. 2004] with

an iterative minimization, where from an initial loose initialization provided

by the user, the parameters of the model are updated and then the segmenta-

tion is estimated using graph cut, until convergence. This algorithm alleviates

the user interactions while providing good performance. [Li et al. 2004b] use

watershed pre-segmentation to increase the e�ciency of the algorithm. Such

pre-segmentation provides super-pixels that are used to build the graph.

In a di�erent line of work, [Li et al. 2006] propose a method to segment

multiple 3D "terrain-like" surfaces. Their algorithm can combine edge-based

costs and region based weights. They de�ne several geometric constraints

to enforce surface smoothness and inter-dependencies between the di�erent

objects. They use an image unfolding operation to handle tubular struc-

tures. The optimization is performed by an s/t min-cut in an appropriately

constructed graph to take into account both image costs and geometric con-

straints. They applied their method to 3D medical image segmentation of the

diaphragm as well as the inner and outer walls of vascular structures.

[Zabih & Kolmogorov 2004] propose a pixelwise segmentation method
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based on clustering. Their framework is general and applies clustering to im-

age pixels according to their feature vectors, while imposing spatial coherence.

Their algorithm is applicable to parametric as well as non-parametric cluster-

ing methods, as long as the cluster quality function meets a linearity criterion

with respect to the image pixels. The algorithm is twofold, similarly to the ex-

pectation maximization algorithm (EM). Iteratively, the clusters parameters

are �xed, and the best corresponding pixel labeling is found by solving a graph

cut using α-expansion. Then, given the pixel labels, new cluster parameters

are estimated.

[Shi & Malik 2000] point out that the graph cut segmentation method is

biased towards small region cuts that minimize the length of the partition

boundary. They tackle this problem using a graph spectral approach, by

de�ning a new grouping criterion. This introduced dissociation measure is

called normalized cut. They obtain an approximate solution to the prob-

lem by de�ning a relaxed formulation, expressed as a generalized eigenvalue

system. [Grady 2006] introduced a new graph-theoretical algorithm for multi-

label interactive image segmentation, known as the random walker algorithm.

The method requires regions seeds de�ned by the user. The algorithm can

be intuitively thought of as a random walker that starts from each pixel and

arrives to each seed with a given probability. Then the largest probability

values determine a labeling (a segmentation) of the image. The random walk

is biased by the image structure, which is encoded by the weights of the edges

connecting the pixels. [Grady 2006] provides a tractable means of solving the

random walker problem by formulating it as a Dirichlet problem. By the use

of combinatorial operators, the problem boils down to solving a system of

linear equations. However, the size of this system depends on the size of the

corresponding image, which can be very large in practice, in the 3D medical

imaging setting for instance. Such an observation prohibits the use of direct

linear system solvers, and motivates the use of iterative solvers. The ran-

dom walks algorithm provides a global solution to the problem, and unlike

graph cut, does not su�er from the metricity bias or the "shrinking bias".

However, for the seeded image segmentation problem, this algorithm is biased

towards the spatial locations of the seeds. [Grady 2005] extends the previous

work to alleviate the need for user initialization by using prior intensity prob-
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ability densities. This modi�cation allows the segmentation of disconnected

objects belonging to the same class. A further improvement is presented in

[Singaraju et al. 2008] where directed edges are used to construct the graph,

resulting in directional asymmetric weights. This new formulation allows the

improvement of the seeded segmentation results, by balancing the bias towards

seeds locations.

Although the random walker formulation seems to be di�erent from the

graph cut formalism, it turns out that these two approaches are closely related.

[Sinop & Grady 2007] present a unifying framework for seeded segmentation

algorithms, the p-norm of the spatial gradient of a potential function is mini-

mized, subject to Dirichlet boundary conditions, speci�ed by the seeds. They

show that using the `1 norm is equivalent to graph cut, whereas using the

`2 norm leads to the random walker algorithm. [Singaraju et al. 2009] build

on this work and interpret the potential function as an MRF with continuous

valued variables. The MAP estimate corresponds to the minimization of the

the de�ned general cost function in [Sinop & Grady 2007]. They tackle this

problem by using interactive least square techniques. Moreover, by choosing

an appropriate value of p (between 1 and 2), a trade-o� between the graph cut

behavior and the random walker behavior can be achieved. They show in the

experiments that with p = 1.5, drawbacks of both methods are minimized.

As we have already noted, one drawback of graph cut methods for im-

age segmentation is related to their bias towards shorter boundaries, which is

known as the "shrinking bias". In particular, common techniques miss thin

elongated structures during segmentation. This observation motivated the

work of [Vicente et al. 2008], who tackled this problem by adding constraints

to the energy minimization problem. These constraints are intuitively trans-

lated into an interactive segmentation framework. Starting from an imperfect

s/t segmentation, where these structures are missing, the user would click

on pixels that must be connected to the object (through thin components).

The ensuing minimization problem turns out to be NP-hard. However, the

authors develop a practical optimization algorithm called DijkstraGC, that

combines aspects from the Dijkstra algorithm and graph cuts. The proposed

approach performs well in practice, and the resulting interactive segmenta-

tion framework can handle thin image structures. An alternative (and slower)
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minimization strategy based on dual decomposition (DD) was considered as

it provides a lower bound on the optimal energy in general, and the optimal

solution in a special case. This property was used to verify that DijkstraGC

also achieved an optimal performance in these cases.

An alternative way to improve the graph cut technique involves incorpo-

rating shape priors. [Funka-Lea et al. 2006] apply the binary graph-cut tech-

nique to the segmentation of the entire heart in computed tomography (CT)

images. This entire heart segmentation serves visualization purposes as it al-

lows a 3D reconstruction that exhibits the coronary arteries. An automatic

seed detection sets the hard unary potential constraints. A Potts interaction

model is used, and an additional pairwise constraint is introduced. This so-

called "blob" energy term encourages graph cuts that produce a shape which

edges are orthogonal to the rays coming from the seed region. A dilation of

the graph-cut output image mask gives the �nal result.

[Veksler 2008] adds a new pairwise regularization term to the standard

s/t graph cut image segmentation formulation. This term corresponds to a

generic shape prior that is related to a large class of shapes, namely the star-

shaped objects. The prior term assumes knowing a point inside the object that

is a center of the star shape. This seed point is often provided by the user

in interactive image segmentation tasks. Subsequently, she shows that the

de�ned prior can be used as a "ballooning" force that biases the segmentation

towards longer partition boundaries. This can be achieved by an appropriate

parameter choice and allows the author to counter the "shrinking bias".

[Das et al. 2009] adopt a similar approach aiming to incorporate a shape

prior in the graph cut segmentation. They de�ne a class of shapes called

"compact" shapes. These shapes satisfy some regularity properties on a 4-

neighborhood grid with respect to an interior point, which is assumed in

practice to be close to the center of the object and speci�ed by the user. Then,

the standard boundary-related pairwise potential is modi�ed such that shapes

that violate the "compactness" condition are highly penalized. Moreover, a

"bias" parameter is introduced similarly to [Veksler 2008]. By varying its

values, one can encourage the cut towards longer object boundaries, and hence

compensate for the "shrinking bias".

The work of [Zeng et al. 2008] is in the line of continuous e�ort to incor-
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porate global priors into graph cut segmentation. Their approach modi�es

the max-�ow algorithm to enforce topological consistency between an initial-

ization and the �nal segmentation. Their work is based on the concepts of

topology of digital images and simple points [Bertrand 1994]. They prove

that the de�ned topology cut problem is NP-hard. However, they propose

an algorithm that converges to a local minimum of the energy function. In

the experiments, they successfully apply their method and show examples of

topology-preserving segmentations. Although the last three methods account

for shape characteristics, their prior remains generic, and they do not allow

specifying a particular class of shapes. This is exactly what other researchers

worked towards.

[Slabaugh & Unal 2005] use novel terminal weights as a formulation of

an elliptic shape prior. This geometric primitive adds regularity constraints

to the segmentation. They propose an iterative framework, where a binary

elliptic mask is repeatedly formed knowing the current ellipse position in the

image, mean image intensity inside and outside the ellipse are computed,

an s/t graph cut is performed such that the regional term is related to the

computed mean intensity values, and the shape prior term is enforced by the

binary elliptic mask, using the t-weights. Then, a new ellipse is �tted to the

result of the graph cut, until convergence. Similar ideas are also used in the

work of [Lin et al. 2005].

An alternative attempt to enforce prior knowledge in the graph cut inter-

active segmentation setting is presented in [Freedman & Zhang 2005]. The

authors use a �xed template shape prior, represented by an unsigned distance

map Φ. Then, for every neighboring pixels p and q in the image, an additional

n-link weight is de�ned as Φ(p+q
2

). This penalty encourages the cut to take

place on the zero level of the distance map Φ, i.e. the learned contour. To

deal with the pose estimation problem, [Freedman & Zhang 2005] rely on the

user input to compute a rigid transformation that maps the distance map to

the image, using Procrustes Analysis. However, the user input is very often

insu�cient, which impairs the quality of the rigid alignment. Then, scale vari-

ations are handled in a brute force manner. The use of this template prior

shows improvements in the result of the graph cut-based segmentation.

[Zhu-Jacquot & Zabih 2007] and [Zhu-Jacquot & Zabih 2008] introduce a
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method that combines statistical or parametric shape priors with graph

cut in an EM framework, and apply it to the segmentation of the LV

in 2D MR image. In [Zhu-Jacquot & Zabih 2007], they apply PCA to

the SDMs of training shapes to learn a statistical shape prior, whereas in

[Zhu-Jacquot & Zabih 2008], they use a geometric parametrized prior (con-

centric circles). In both cases, the shape prior is represented by a set of pa-

rameters, and the image intensity is modeled using a mixture of Gaussians. In

the expectation step, the shape parameters as well as the photometric model

are updated using a gradient descent, and in the maximization step, the pixels

of the image are labeled according to the shape prior and the intensity model

constraints using graph cut (or α-expansion if there are more than 2 classes).

The process is iterated until convergence.

Another approach that incorporates a statistical shape prior into an iter-

ative graph cut segmentation process is proposed in [Malcolm et al. 2007a].

They use KPCA to learn a statistical shape model from binary images rep-

resenting the training set. The algorithm repeats the following operations.

First, object and background histograms are computed from the current pixel

labeling. Then, a pre-image of the projection in the feature space of the

current segmentation is formed, using an approximate algebraic expression.

This pre-image is used to introduce a Bayesian shape prior in a unary re-

gional image term. Then, a graph cut is performed and a new pixel labeling

is produced. The algorithm iterates these operations, starting from an initial

segmentation provided by the user, until convergence.

[Ali et al. 2007] propose a method to segment 2D Dynamic Contrast En-

hanced Magnetic Resonance Imaging (DCE-MRI) slices. Their approach com-

bines graph cut and shape priors. They build from the aligned training slices

a "shape image" or a template that is composed of three regions: the kidney,

the background, and an area of variability, where the probability of belong-

ing to one class decays exponentially as the distance to the considered class

increases. Then, this probabilistic template is used during segmentation, by

incorporating a shape prior term for each pixel, as a terminal weight. To this

end, a preliminary alignment of the query image with respect to the training

images is necessary, and is performed using a rigid transformation.

[Vu & Manjunath 2008] propose a segmentation algorithm based on a 2D



80 Chapter 3. Knowledge-based Segmentation

shape prior within the binary graph cut framework. They use a template shape

prior (a binary mask) and enforce the corresponding constraint using a shape

distance derived from [Chan & Zhu 2005]. Essentially, in the discrete setting,

this distance evaluates the region of disagreement between two binary shape

images. This representation allows arbitrary topologies. Hence, the distance

to the template of some labeling can be decomposed over the image pixels.

Thus, [Vu & Manjunath 2008] de�ne the shape prior term as terminal weights.

They also resort to a normalization technique to obtain invariance properties

with respect to rigid motion in their model. Their framework allows the

segmentation of multiple overlapping instances of the object, through the so-

called multi-phase graph cut. This algorithm solves iteratively a graph cut for

each object instance, while accounting for the overlap between objects through

an appropriate choice of the data term (which is also encoded as terminal

weights). Each iteration is exactly solved by the min-cut/max-�ow algorithm,

due to the submodularity of the regularizing pairwise terms. However, the

multi-phase iterative graph cut algorithm is not guaranteed to converge to the

global optimum. An extension of the approach allows the use of multiple shape

templates to encode the prior knowledge. Successful segmentation results

under noise and occlusion are achieved.

Another template-based approach is introduced in

[Schoenemann & Cremers 2007]. This method bene�ts from global op-

timization based on graph theory. Their method seeks a 2D curve such

that it is close to strong gradient locations and similar to a template curve.

They also seek to enforce invariance with respect to similarity transforma-

tions. They de�ne an energy that is the sum of three terms. The �rst

one integrates a decreasing function of the norm of the gradient along the

curve. The second term is translation-invariant, and measures how well

the curve is aligned with the template. In the perfect case, the obtained

mapping should be a di�eomorphism. Then, a third term is introduced as a

penalization of the mapping. The problem is then cast as �nding the best

curve and the best mapping that minimize the de�ned energy functional.

All these terms are actually normalized by the length of the sought curve

to eliminate bias toward shorter boundaries. This ratio of integral along

the curve paves the way to the use of the minimum ratio cycles (MRC)
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minimization technique [Jermyn & Ishikawa 2001]. Then, inspired by the

work in [Ishikawa & Jermyn 2001], scale invariance is enforced through the

use of a product graph. In this appropriately built graph, the authors solve

for a MRC optimally and e�ciently, by parallelizing computations. Their

model is not however rotation-invariant. This is addressed by matching to

di�erent rotated instances of the template.

More recently, [Ben Ayed et al. 2009] introduce a novel graph-cut-based al-

gorithm to segment 2D left ventricle (LV) images in magnetic resonance (MR)

sequences. In their method, the user manually segments the �rst frame, by

drawing a single contour that partitions the image into two disjoint sets (the

object and the background), and the algorithm propagates the segmentation

to the remaining ones. They argue that this user intervention alleviates the

need for intensive shape training of the geometric and photometric features.

Using this s/t min-cut formulation, they show improvements over similar vari-

ational approaches. More speci�cally, they de�ne geometric and photometric

constraints using distribution matching, rather than pixelwise costs. They de-

�ne the optimal segmentation (or binary labeling) in an unseen image frame as

the one that maximizes the Bhattacharyya coe�cient of the color and shape

object distributions with respect to the one of the manually segmented frame.

The image intensity distribution is de�ned using a kernel density estimate.

The shape of the object is described by the collection of normalized distances

separating all its interior points and a centroid point. A distance distribution

is also de�ned using a kernel density estimation. In addition to these distri-

bution matching terms, a smoothness constraint that is related to the length

of the partition boundary is considered. The obtained minimization crite-

rion is then relaxed using a �rst-order approximation of the Bhattacharyya

coe�cient. The resulting energy is de�ned as the sum of unary and pairwise

potentials, that are suitable to s/t graph cut minimization. Moreover, a global

optimum is guaranteed as the pairwise penalties are submodular.

Discussion & Related Work The aforementioned graph-based segmen-

tation methods that made use of a (possibly statistical) shape prior es-

sentially model the image pixels using a MRF. Hence, the MRF vari-

ables account for pixel labels. This representation narrows the possibil-
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ities of incorporating a shape model while being computationally expen-

sive. With the exception of very few techniques ([Ben Ayed et al. 2009],

[Schoenemann & Cremers 2007]), the overwhelming majority of the ap-

proaches de�ne the shape prior at the pixel level, through the t-links

weights. To this end, an implicit shape representation through a dis-

tance map [Freedman & Zhang 2005], or the use of a binary shape image

[Vu & Manjunath 2008] is required. A single template representation is insuf-

�cient to capture large shape variations, and the use of numerous templates

to enforce variability might be limited compared to statistical approaches,

and comes with a large computational burden. This template representa-

tion applies also to the statistical approaches, where a probabilistic shape

image [Ali et al. 2007], or a pre-image of the projection of the segmentation

on learned subspace [Malcolm et al. 2007a] were used. We also notice that in

many cases, the coupling between the statistical shape parameters and the

MRF variable is complex, and is therefore accounted for through the use of

iterative optimization schemes, leading to suboptimal solutions. We note also

that the need of aligning the template to the image is an ill-posed problem

because the pose of the object to be segmented is a priori unknown. In addi-

tion, the feasibility of extending these methods to the 3D case is not always

guaranteed. Nevertheless, the �exibility of the graph cut framework allows

these di�erent methods to combine several image cues, from regional features

to boundary evidence. A di�erent modeling approach uses the MRF to rep-

resent parts of the object, or boundary landmarks. These methods are more

closely related to our work.

[Zhang et al. 2004] introduce a technique to segment human bodies using

a graphical model. They represent the articulated shape using a triangulated

silhouette, with a speci�ed vertex elimination order. They augment this rep-

resentation by a parametrization that speci�es articulation joint angles. The

graphical model encodes the dependencies among the nine considered angles,

whereas each silhouette landmark is considered to be dependent on its parent

triangle. The root triangle corresponds to the face part. After learning the

parameters from a large database of training data, the obtained translation-

invariant model is combined with several visual cues (edge gradient map,

background subtraction, skin color, etc.) to perform human body segmenta-



3.1. Introduction 83

tion. The inference is realized using particle �ltering. Although the presented

results are appealing, this method su�ers from its application-speci�c design.

Hence, it is not generalizable in a straightforward manner to other applica-

tions, or to higher dimensions.

[Felzenszwalb 2005] adopts a di�erent approach, that is related to the spirit

of the pictorial structures work [Felzenszwalb & Huttenlocher 2005]. A trian-

gulated polygons representation of 2D shapes is proposed, its dual structure is

a tree (the model is in fact a 2-tree, which is a chordal graph). Such a template

is used to segment an unseen image, using boundary information. Bene�ting

from the perfect elimination scheme property of their graph, they are able

to provide a global solution to the segmentation problem. The shape prior

is enforced in each triangle clique through a constraint on the local induced

transformation, which is required to be as close to a similarity as possible. The

resulting segmentation algorithm is similarity-invariant and handles naturally

occlusions.

[Seghers et al. 2007a] propose a segmentation method that shares ideas

with the approach in [Felzenszwalb 2005]. A 2D contour is represented by

a set of landmarks structured in a chain. For each landmark, a classi-

�er is trained based on a locally orderless image feature vector, following

[van Ginneken et al. 2002]. Segmentation is then cast into the problem of se-

lecting the best candidate points found by the classi�er, while satisfying the

statistical shape prior constraints. The latter are de�ned by the Gaussian dis-

tributions of the relative positions of two successive landmarks on the chain.

A higher order prior that conditions this relative position with respect to the

one of the previous landmark pair on the chain was also used. Inference was

done using a dynamic programming approach, namely the minimal cost path

(MCP) between the "root" and the "leaf" of the chain. Successful segmenta-

tion results of the lungs in standard posterior-anterior chest radiographs were

shown. A more complex model, like for instance a closed contour, or a con-

nected graph, makes the use of dynamic programming impossible. Moreover,

this exact inference is not extendable as it is to the 3D case (without making

approximations), to handle minimal cost surfaces ([Grady 2010] has recently

surveyed the work of [Sullivan 1990] and proposes a method that tackles the

problem). Therefore, [Seghers et al. 2007b] resort to approximate optimiza-
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tion techniques to extend their work to the 3D case, and showed results of liver

segmentation in CT images. A heuristic approach called iterative dynamic

programming is used, where the problem is solved on randomly extracted

paths from the meshed surface using DP, and the solutions are combined us-

ing a voting scheme. In [Seghers et al. 2008] mean �eld annealing (MFA) was

also considered for optimization.

Another classi�er-based discrete detection method is proposed in

[Donner et al. 2010]. Their approach is based on symmetry interest points

and descriptors, that are extracted from gradient vector �ow (GVF) �elds

[Xu & Prince 1998]. Given a binary edge map, the gradient vector �ow is

nearly equal to its gradient when the latter is large, and varies smoothly in

homogeneous regions. GVF minima locations are of a great interest as they

correspond to local symmetry points. [Donner et al. 2010] use this property

to de�ne their MRF model. The MRF nodes correspond to landmarks at local

symmetry locations, and the edges encode inter-landmark dependencies. Lo-

cal descriptors using local GVF around the interest points are used to de�ne

the unary potentials, as well as the pairwise shape prior. The latter uses rela-

tive edge / descriptor orientation as well as the length of the edges. Therefore,

the shape prior is invariant with respect to rigid motion. During inference,

candidate points are extracted from the unseen image using its GVF. The

model is matched to the image as a MAP-MRF problem that is solved us-

ing the MAX-SUM di�usion algorithm introduced by [Schlesinger 1976] and

reviewed in [Werner 2007]. They apply their method to the segmentation

of 2D hand X-rays and 2D spine MRIs [Donner et al. 2007b]. To make the

training phase easier and lessen the manual annotation needs, they propose

in [Donner et al. 2009] a technique to learn the model in a weakly-supervised

manner. Note however that their approach does not handle the object bound-

aries. Thus, it can be considered as techniques to be used more for detection

than for segmentation.

[Kumar et al. 2010] present a knowledge-based segmentation approach

that bridges the gap between graph-cut methods and pictorial structures. On

one hand, the image is modeled by a MRF, and a binary labeling l that spec-

i�es the object and the background is sought. On the other hand, they use a

layered pictorial structure (LPS) model to represent articulated objects, where
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the parts are connected in a complete graph (for a better spatial consistency).

The layer term refers to a depth number associated with each part, in order

to allow overlap between the di�erent components. A non-articulated object

was modeled as a single part. Each part was speci�ed by a set of exemplars,

forming the so-called set of exemplars model (SOE), as well as a pose parame-

ters vector. The authors provide a Bayesian formulation to the problem using

a graphical model representation, that adds essentially a shape variable S (re-

ferring to the LPS) on top of the MRF representing the image. In addition to

the standard s/t graph cut regional and boundary terms, the de�ned energy

features a shape prior term, that is computed using a SDM of the prior shape

instance. Inference in a new image I is performed by maximizing the posterior

p(l|I), instead of the joint probability p(l,S|I). This is done by marginaliz-

ing over the shape prior. This marginalization is performed approximately

and e�ciently through a sampling strategy. Indeed, the authors suggest to

use the generalized expectation maximization algorithm (EM). In the E-step,

BP is applied to estimate the probability of the shape knowing the current

image labeling, in order to perform sampling. During the M-step, maximizing

the posterior turns out to be e�ciently approximated by solving only one s/t

graph cut, where the shape prior cost corresponds to a linear combination of

the costs induced by the sampled shape instances in the E-step, weighted by

their respective likelihoods. The so-termed OBJCUT algorithm converges to

a local minimum.

The aforementioned line of research considers top-down modeling using

MRFs or graphical models. While [Felzenszwalb 2005] succeeds in exactly op-

timizing the energy functional he de�nes, the method does not generalize to

higher dimensions. More complex modeling that would overcome this limi-

tation as in [Kumar et al. 2010] makes the use of approximations inevitable.

Moreover, the complexity of the method would highly increase in the 3D case

since it is related to the number of image pixels, and the search space for

the pose estimation will be substantially bigger. The approaches proposed in

[Seghers et al. 2007a] and [Donner et al. 2010] rely exclusively on edge-based

cues or local features. In some applications, the use of regional cues can be of

a great interest.

In the following sections, we introduce a nearly fully-automatic segmenta-
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tion framework that permits to plug-in various image cues, as in the stan-

dard graph cut setting [Boykov & Jolly 2001]. The use of regional image

information is introduced in section 3.2, and classi�er-based segmentation

is explored in section 3.3, in a relatively similar manner to the work of

[Seghers et al. 2007a] and [Donner et al. 2010]. Our formulation does not

make any assumption about the dimensionality of the image. It is hence

extendable to the 3D case, at a relatively low cost. The complexity of our

method is related to the number of landmarks, and as we do not explicitly

model the pose parameters, the increase in the dimensionality of the search

space does not a�ect the tractability of the problem. Moreover, for the spe-

cial case of regional image features, we bene�t from the Green's theorem to

substantially speed up computations. As far as optimization is concerned, we

resort to approximate inference and our method leads to a local minimum in

general. However, the experiments show that in practice, satisfactory results

are obtained, and that the segmentation algorithm is robust to noise and oc-

clusions thanks to the shape prior. In a particular case where the dimension of

the problem is small, we show that exact inference is tractable using dynamic

programming.

We also mention that our work is related to the registration algorithm of

[Glocker et al. 2008] (initially introduced in [Glocker et al. 2007]) and to the

one of [Tang & Chung 2007]. Both methods are based on MRFs where the

labeling corresponds to quantized displacements of control points. This idea

will be used in the following.

3.2 Region-based Segmentation

The main challenges of knowledge-based segmentation are: (i) appropriate

modeling of shape variations, (ii) successful inference between the image and

the shape model. Let us consider the simplest possible scenario that aims

to detect an object of particular interest from the background in an image

I. Then, the prior-based segmentation task corresponds to the estimation of

the shape model parameters from the observation. Formally, ones seeks to

maximize the posterior probability p(Gk|I), where Gk = (V , Ek) is the k-fan

statistical shape model introduced in section 2.2. By a simple manipulation
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using the Bayes rule, the segmentation is expressed as the MAP estimation of

the MRF parameters, or:

max p (Gk) p (I|Gk) = max p (x1, . . . ,xn) p (I|x1, . . . ,xn) . (3.12)

By taking the negative log of the latter equation, we formulate the segmenta-

tion problem as an energy minimization problem. We seek optimal landmark

positions (x∗1, . . . ,x
∗
n) such that:

(x∗1, . . . ,x
∗
n) = argmin

(x1,...,xn)∈Ωn
E (x1, . . . ,xn, I)

= argmin
(x1,...,xn)∈Ωn

Eshape (x1, . . . ,xn) + Eimage (x1, . . . ,xn, I) .

(3.13)

The energy E (x1, . . . ,xn, I) corresponding to the landmark positions

(x1, . . . ,xn)1 in the image domain Ω is the sum of a data-related term

Eimage (x1, . . . ,xn, I) expressing the local image cost conditioned on the con-

trol points, and a prior term Eshape (x1, . . . ,xn) expressing the cost of deform-

ing the landmark pairs in Ek with respect to the prior learned distributions.

We explain in this section how we de�ne these two energy terms, and we detail

in particular the relationships between the control points and the image do-

main. We also develop an optimization procedure that enables to solve (3.13)

using an e�cient discrete optimization algorithm.

3.2.1 Regional Statistics and Image Segmentation

By applying the data-related cost, we seek the optimal separation of the ob-

ject from the background in terms of visual properties. Let pO and pB be the

prior densities for these two hypotheses. We suppose that the control points

form a closed boundary, or that there is a tractable way of inferring such a

boundary from the control points positions, using an interpolation scheme for

instance. Then, they partition the image domain Ω into an object domain

O and a background domain B. Note that we consider this simplifying hy-

pothesis for the sake of a simple presentation and lighter notations. In the

1This is a notation where no di�erence is made between the random variables and their

values.
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general case, the image domain Ω is partitioned into several Or objects and
a background domain B. The following derivation holds in this case too.

Upon considering the negative log of the posterior probabilities, we express

the cost Eimage (x1, . . . ,xn, I) using the regional statistics [Zhu & Yuille 1996]

as follows:

Eimage (x1, . . . ,xn, I) =

∫
O
− log (pO (Iy)) dy +

∫
B
− log (pB (Iy)) dy

=

∫
O
− log

(
pO (Iy)
pB (Iy)

)
dy +

∫
O
− log (pB (Iy)) dy

+

∫
B
− log (pB (Iy)) dy

=

∫
O
− log

(
pO (Iy)
pB (Iy)

)
dy +

∫
Ω

− log (pB (Iy)) dy︸ ︷︷ ︸
constant

.

(3.14)

In order to evaluate this component and associate it with the proposed shape

representation, we decompose the image domain Ω according to the control

points (x1, . . . ,xn) by considering their Voronoi diagram (a survey on Voronoi

diagrams is available in [Aurenhammer 1991]). The Voronoi tessellation par-

titions Ω into cells Ωi that are associated with the control points xi. Every cell

Ωi consists of all image pixels closer to xi than to any other landmark. Fig.

3.1 gives an example of a Voronoi diagram. Note that the Voronoi tessellation

is the dual of the Delaunay triangulation. Hence we can write Ω = ∪ni=1Ωi.

By intersecting these Voronoi cells with the "object" domain, we obtain the

partition O = ∪ni=1Oi that relates each pixel of the object part of the image to

one control point, with Oi = O ∩ Ωi. Note that thanks to the rearrangement

of equation (3.14), we only need to consider the "object" domain pixels, and

this is equivalent to using all the image information. Thanks to the Voronoi

tessellation, one can decompose the global image term (3.14) into sub-terms

which are de�ned at the partition cells as follows, up to an additive constant:

Eimage (x1, . . . ,xn, I) =
n∑
i=1

Vi(xi, I) (3.15)

with

Vi(xi, I) =

∫
Oi
− log

(
pO (Iy)
pB (Iy)

)
dy (3.16)
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being the image-related cost associated with the control point position xi.

Clearly, the notation in equation (3.16) is abusive, because the data term

Vi(xi, I) depends on the positions of all the control points, through the use of

the Voronoi cells. The independence hypothesis will be considered under some

mild assumptions that will be detailed later. The above de�ned terms can be

calculated very e�ciently in practice by combining rasterization techniques

and fast integral computing over polygons [Unal et al. 2004]. This observation

stems from Green's theorem, that permits to compute the integral in (3.16)

using the boundaries ∂Oi of Oi, or:

Vi(xi, I) =

∫
∂Oi
Ĩωdω , (3.17)

where Ĩ is an integral of the image − log
(
pO(I)
pB(I)

)
. Green's theorem had also

been applied in a similar context in earlier segmentation algorithms, as in

[Chakraborty et al. 1996] for example. We should note that this term is equiv-

alent to using the entire image domain to determine the image support and

can be replaced either using more complex descriptors (this will be explored

in section 3.3), or through edge-driven support. Note that equation (3.16)

generalizes to the case of multiple object domains Or in a straightforward

manner:

Vi(xi, I) =
∑
r

∫
Ori
− log

(
pOr (Iy)
pB (Iy)

)
dy , (3.18)

where Ori = Or ∩ Oi, and pOr is the prior distribution of the color values in

Or. In practice, we used simple Gaussian models in some applications and

mixture of Gaussians models in others to model the object and the background

intensity distributions. Such a component will perform well if the data support

is strong but will fail to deal with noise, clutter, missing parts, etc. The use

of prior knowledge on the expected geometry of the shape could address the

above mentioned limitations.

3.2.2 Prior Knowledge and Image Segmentation

In the context of our approach, we have de�ned the shape model as a k-fan

graph. Furthermore, we were able to determine an approximate density of

this model using a small number of joint probabilities. In order to impose the
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Figure 3.1: Voronoi decomposition of the model domain.

prior, we minimize the cost Eshape (x1, . . . ,xn) that we decompose over all the

pairs in Ek, as derived in equation (2.30):

Eshape (x1, . . . ,xn) =
∑

(i,j)∈Ek

Vij(xi,xj) , (3.19)

with

Vij(xi,xj) = −γij log

(
p

(
‖xi − xj‖

d̃

))
. (3.20)

Note that equation (3.20) carries a notation abuse as well. Indeed, the shape

scale d̃ = 2
n(n−1)

∑
i<j ‖xi − xj‖ depends on the positions of all the control

points. This issue will be accounted for in the following development. This

model allows for the encoding of global dependencies as local combinations of

individual pairwise densities.

One can now combine the data term with the prior term towards

knowledge-based segmentation, by combining (3.13), (3.15) and (3.19):

E (x1, . . . ,xn, I) = α

n∑
i=1

Vi(xi, I) +
∑

(i,j)∈Ek

Vij(xi,xj) . (3.21)
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The factor α that we introduced in the above equation weights the relative

importance of the data term with respect to the prior term. Note however

that the relative weightings of the base k-clique landmark pairs with respect

to the "non-reference" pairs are de�ned by γij (in equation (2.29)).

3.2.3 Energy Minimization

The optimization of the cost function (3.21) in the continuous domain is rather

problematic. One can expect that it is not convex and therefore a gradient-

based optimization is prone to failure. In order to optimize such an energy

functional, we consider recent results from discrete optimization, and adopt a

quantization approach similar to those presented in [Glocker et al. 2007] and

in [Tang & Chung 2007].

We make two assumptions that are most often veri�ed in practice. First,

the initial positions of the control points are within the image domain, and that

is why we can assume an upper bound on the maximum displacements that

would lead to the solution. Second, we consider that the precision required

about the solution is speci�ed, which enables to choose a quantization step.

Let us suppose that we are given an initialization of the shape (x0
1, . . . ,x

0
n).

Then, a segmentation of the image refers to an optimal displacement of the

control points, that minimizes the de�ned energy. Then, we can approximate

the continuous deformations of our shape model towards the solution by a

�nite set of displacements vectors D = {d1, . . . ,dz}. Let L = {1, . . . , z} be
the set of labels associated to the quantization D of the displacements. Then,

displacing the control point x0
i by the vector dli is equivalent to assigning the

label li ∈ L to x0
i . The minimization of the energy in (3.21) can be hence

written as a labeling problem, or:

(l∗1, . . . , l
∗
n) = argmin

li∈L
E
(
x0

1, . . . ,x
0
n, I, (l1, . . . , ln)

)
, (3.22)

where the data unary terms and the prior pairwise terms in (3.21) are adjusted

as follows:

Vi(xi, I, li) =

∫
Oi+dli

− log

(
pO (Iy)
pB (Iy)

)
dy (3.23)

Vij(xi,xj, li, lj) = −γij log

(
p

(
dij(li, lj)

d̃

))
, (3.24)
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where dij(li, lj) =
∥∥xi + dli − xj − dlj

∥∥. We illustrate in Fig 3.2 the way

we compute the unary potentials (Fig 3.2(a)) and the pairwise potentials

(Fig 3.2(b)). On one hand, equation (3.23) expresses the approximation that

we make with respect to the data term computations. The Voronoi cell asso-

ciated with the control point xi displaced by dli is estimated by translating

the cell Oi by the same displacement vector, which is noted as Oi + dli .

Intuitively, such an approximation of a higher order term generates small in-

accuracies if the displacement range is relatively small. On the other hand,

equation (3.24) uses an approximation of the higher order quantity d̃. Indeed,

when estimating the costs of pairs of labels, the shape scale is supposed to

be �xed at a value estimated from the initial attributes (x0
1, . . . ,x

0
n). This

assumption is also acceptable in the case of small displacements. As we shall

see next, starting from an initial shape position, we iteratively solve sequen-

tially several labeling problems based on the formulation in (3.22), where the

solution of one step initializes the next iteration. Although the shape scale is

�xed within each iteration, it is updated from one step to the other, and the

trade-o� between the regional image information and the shape prior allows

for scale changes. The resulting approach hence deals with translations, ro-

tations and scaling without explicitly modeling them. Let us now detail the

iterative search scheme that we propose.

The cardinality of the label set is quite important since on one hand it

de�nes the accuracy of the search, while on the other hand increases the

complexity of the algorithm. In order to address these issues, we �rst consider

an approach that is incremental in terms of displacements. To this end, we

cope with the accuracy issue, that is closely related to the quantization of

D, by using a pyramidal coarse-to-�ne approach. Each level of the pyramid

corresponds to a quantization step that is re�ned in the following level. To

speed up the convergence in each level of the pyramid, and be consistent with

the local displacements assumptions that we mentioned earlier, we also adopt

an incremental approach in terms of the label set, where in each iteration

t we look for the set of labels that will improve the current solution. This

label set refers to a local search neighborhood. More explicitly, we repeatedly
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(a) (b)

Figure 3.2: Computing the energy terms: grey squares refer to the image

grid, and numbered disks refer to the control points possible labels. The

label 1 refers to the current landmark position, i.e. a null displacement. (a)

Unary data term: the cost of the label 4 of the landmark xi is evaluated by

translating the corresponding Voronoi cell Oi (depicted in red) by d4 and then

computing the integral in (3.23). The translated cell Oi+d4 is shown in green.

(b) Pairwise shape term: computing the cost Vij(4, 2) is done by applying the

displacements d4 and d2 respectively to xi and xj and then estimating the

resulting distance dij(4, 2).

minimize:

Et (l1(t), . . . , ln(t)) = α
n∑
i=1

Vi(x
t−1
i , li(t)) +

∑
(i,j)∈Ek

Vij(x
t−1
i ,xt−1

j , li(t), lj(t)) ,

(3.25)

with

xti = x0
i +

t∑
τ=1

dli(τ) , (3.26)

until convergence, with li(τ) being the optimal label associated with the ith

control point at iteration τ .

Recovering the optimal solution of this objective function is known to be

an NP-hard problem and the complexity is dependent mostly on the pair-

wise potentials function, that is not submodular in our case. Hence, we con-

sider an approximate solution to the labeling problem. We presented in sec-

tion 3.1.1 several methods that permit to tackle the minimization problem,

such as α-expansion [Boykov et al. 2001], FastPD, TRW-S [Kolmogorov 2006]

and loopy belief propagation (LBP). We used in practice the computationally
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e�cient Fast-PD algorithm [Komodakis et al. 2008b] 2. The resulting method

is sketched in algorithm 2.

Algorithm 2 Region-based Segmentation
1: Initialize the shape at (x0

1, . . . ,x
0
n).

2: for π = 1 to πmax do

3: t = 0.

4: if π > 1 then

5: Update (x0
1, . . . ,x

0
n) to the result of the previous pyramid level.

6: end if

7: repeat

8: Update d̃.

9: Update the object boundary (if relevant), using interpolation.

10: Compute the Voronoi diagram of the landmarks xti. Deduce the

Voronoi object cells Oi.
11: Compute the energy terms: the unary potentials and the pairwise

potentials.

12: Run FastPD to solve (3.25).

13: Update the control points according the the optimal labeling, t ←
t+ 1.

14: until Convergence: the labeling stabilizes.

15: end for

Implementation details The algorithm we propose uses a local search

method. Hence in principle, the initialization is required to be quite close

to the solution. However, we derived a method to deal with an initialization

that is relatively far from the object of interest. We consider a subset of a few

control points, that will be used to roughly locate the object by estimating

similarity transformations (typically 3 points in 2D, 4 points in 3D).These

control points are connected in a complete clique. We apply the same pro-

cedure described in algorithm 2 using these landmarks, without restricting

the search to a small neighborhood. However, to prevent the distortion of

the shape, we project the transformation resulting from each inner loop on

2An implementation is available online: http://www.csd.uoc.gr/~komod/FastPD/

http://www.csd.uoc.gr/~komod/FastPD/
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the space of similarity transformations, in order to update the landmarks po-

sitions. Then, the shape boundary is interpolated using thin plate splines

(TPS). After this initialization step, the model is close to the solution, and

we apply algorithm 2 using our shape model. An example of this process is

shown in Fig .3.3.

(a) (b)

(c) (d)

Figure 3.3: Segmentation algorithm inner loop: pairs of images showing the

evolving contour (left image of the pair) and the Voronoi diagram (right image

of the pair). An "object" Voronoi cell is emphasized in yellow. Two cases:

a simple case (a) & (b) and a case with missing parts (c) & (d). (a) &

(c) Initialization: only 6 landmarks are used. The resulting transformation

is projected on the similarity transformations space. (b) &(d) Convergence

using 56 points.

We also note that our method does not impose any explicit constraints with

respect to the local transformations that the shape model undergoes during

the iterations. While this leads to a simple formulation without any need

to quantize rotations for instance, the resulting formulation does not prevent

control points displacements that would cause boundary self-intersection or

surface �ipping. However, thanks to the geometric properties of our shape

model, such an undesired behavior should be unlikely, which is veri�ed in

practice. Nevertheless, due to our construction, our algorithm is not suitable

to handle self-occlusions of an articulated object, as permitted in the layered
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pictorial structure [Kumar et al. 2010] for instance.

Another observation concerns the energy minimization with respect to the

iteration scheme. Due to the approximation made at the level of the data

term, the estimated energy within the FastPD algorithm will di�er from that

computed once an optimal labeling is found. Hence, we carefully controlled

these two quantities in order to ensure that the energy decreases monotoni-

cally. Any violation of this condition leads to the termination of the algorithm.

3.2.4 Experimental Validation

After preliminary testing on synthetic data, we validated our method by seg-

menting hands in 2D images, and segmenting the left ventricle in 3D computed

tomography (CT) images.

Synthetic data As a �rst step to assess the performance of the proposed

region-based segmentation method, we tested our algorithm on synthetic im-

ages that are corrupted by Gaussian and salt and pepper noise, and where the

object is occluded. In these preliminary experiments, we considered the sim-

ple case of a white rectangle on a black background. We modeled this object

using 8 landmarks, and considered a complete graph in this case. Gaussian

probability distributions were used to model the pairwise distances, as well as

the object and background intensities. Moreover, the scale of the object was

supposed to be known in these experiments. Fig. 3.4 shows the result of a

simple case. Although rotations are not modeled within our search algorithm,

the shape model is able to recover the rotated object through local landmark

displacements. A more di�cult example in shown in Fig. 3.5 where the object

is partially occluded. This is also handled by our method naturally, without

a dedicated modeling. Fig. 3.6 simulates the tracking of a moving object that

is occluded during its displacement. No dynamic prior has been used.

Hand segmentation In a subsequent experiment to validate the perfor-

mance of our method, we considered the application of modeling the hand

using a 2D 40-example dataset of annotated left hands, showing di�erent rel-

ative �nger positions, hand sizes, and textures [Stegmann & Gomez 2002]. On

each hand contour, 56 landmarks were used to describe the structure. We per-
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(a) (b) (c) (d)

Figure 3.4: Easy synthetic case. (a) Initialization. (b)�(c) Intermediate inner-

iterations. (d) Convergence.

(a) (b) (c) (d)

Figure 3.5: Synthetic case with occlusion. (a) Initialization. (b)�(c) Interme-

diate inner-iterations. (d) Convergence.

formed clustering in the di�usion maps space as described in section 2.2.4, us-

ing shape maps [Langs & Paragios 2008]. The clustering provided 11 clusters

shown in Fig. 2.5(c). The constructed model was used as a shape constraint

as shown in Fig. 2.6(a)-2.6(d), and we hereafter apply it in a segmentation

setting. We considered a multi-scale implementation of the approach using a

gradually increasing number of control points to accelerate convergence, and

handle non-local initialization, as explained in the previous section. Fig 3.3

shows the two di�erent stages of the algorithm: the initialization phase and

the search phase. It also emphasizes the object Voronoi cell of a control point

in each phase. The proposed technique allowed to segmented correctly 37 out

of the 40 examples of the database. Examples of the results we obtained are
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.6: Synthetic tracking with occlusion. (a) Initialization. (b)�(j) Re-

sults on subsequent frames.

shown in Fig. 3.8(a). We also compared quantitatively our method to AAM

segmentation Fig. 3.7 based on the dice overlap coe�cient with respect to

the ground truth data. We can see in these boxplots that our algorithm per-

forms better quantitatively with examples where the forearm is hidden by a

sleeve. In the case of bare forearms, the data term drives the model to "over-

segment" the hand in comparison with the ground truth, which explains our

results. These "oversegmentations" are visually correct (especially the �ngers

are correctly segmented) as we can see in Fig. 3.8(a). The three examples

where our method did not succeed are particularly di�cult to handle for our

algorithm because they exhibit occlusion between the �ngers, which can cause

folding in the evolving contour. The �rst two segmentation examples shown

in Fig. 3.8(b) demonstrate that our method can sometimes handle such dif-

�culties, but this is not guaranteed. Towards checking the robustness of the

method with respect to occlusions, we removed some hands parts for several

examples, and despite the important missing structure, the results were quite

satisfactory as shown in Fig. 3.8(b). The weight of the prior in these cases

was increased, and enforced the correct segmentation, as the data term was
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Figure 3.7: Boxplots of dice overlap coe�cients comparing our method to

AAM.

less reliable. To further assess the robustness of our method, we added severe

Gaussian noise to the database images. The segmentations obtained in Fig.

3.8(a) are completely or almost recovered, thanks to the prior knowledge, as

shown in Fig. 3.8(c). Eventually, we used our segmentation method in a real

setting, on hand video frames, with a cluttered background and partial occlu-

sion cases. Fig. 3.8(d) gives some examples of the obtained segmentations.

We could reproduce the result we obtained on the noisy images using AAM

segmentation [Cootes et al. 2001], but this algorithm could not reproduce our

results for the occlusion cases. [Gross et al. 2006] developed an AAM algo-

rithm that addresses the occlusion problem. Note that this is a dedicated

development of the standard AAM, whereas our method naturally performs

well for the segmentation of a partially occluded object.

Left Ventricle segmentation In this experiment, we did not use our k-fan

graph model. Instead, we considered the complete graph to enforce shape

prior. In order to evaluate the performance of our method in the three-

dimensional medical image analysis setting, we used a dataset of 28 com-

puted tomography (CT) cardiac volumes, having an approximate mean size

of 512×512×250 voxels, where the voxel size is about 0.35×0.35×0.35mm3.
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(a) Database Examples: Successful segmentations

(b) Finger Collusion - Missing Part Examples. Two �rst images: di�cult examples because

of �ngers collusions. Three last images: segmentation of hands with missing parts.

(c) Severe Noise Added: The prior knowledge highly contributes in correctly segmenting

very noisy images.

(d) Video Frames - Partial Occlusions. Real video frames: cluttered background and

occlusions.

(e) AAM results: succeeds with the learning examples but fails with occlusions.

Initialization on the left - result on the right.

Figure 3.8: Model-based segmentation of the hand. Initialization is shown in

white, segmentation in red, and the �nal control points positions in blue.
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Figure 3.9: Segmentation results: 3 �unseen� examples (do not belong to the

training set). Initialization in yellow, shape after a�ne transform in blue,

�nal segmentation after TPS deformation in red. Random Walker result in

green.

While no expert manual segmentation was available for this dataset, we could

compare to the results given by the Random Walker algorithm described in

[Grady 2006]3. First, to build the model, we selected randomly 11 CT images

as a training set. We placed manually on the surface of the left ventricle of

one example from the training set 90 control points, that we will call P90.

The remaining 10 examples of the training set were then registered to the

labeled example using the method described in [Taron et al. 2009] and corre-

spondences between the control points instances were consequently deduced.

After smoothing the segmentation mask obtained by [Grady 2006] on the la-

beled example, we generated a meshed surface S of the myocardium and the

blood pool. We learned next the probability density distributions pij of the

normalized chord lengths (section 2.2). The grey levels of the myocardium,

the blood pool and the background were also learned from the training set

to Gaussian probability distributions pOmyo , pObp and pB respectively (sec-

tion. 3.2.1). By intersecting S with the Voronoi diagram of the set of control

3This dataset is courtesy of Siemens Corporate Research
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points P90 we obtained the classes cells Omyoi and Obpi corresponding to the

myocardium and the blood pool respectively. In particular, 4 of the 90 control

points are interesting as one is located in the apical area, and the others in the

basal area (this set will be called P4). Figure 3.10 shows the obtained surface

S with the control points P90 and P4, and the voronoi cells Omyoi and Obpi of

the apical control point. The set P4 will be used in the initialization step, as

explained in the implementation details in paragraph 3.2.3.

(a) (b)

Figure 3.10: Our model: a deformable shape associated with control points.

(a) In red: control points P4(in the apical and basal parts) used to de�ne

a�ne transforms of the shape. In green: the set of control points P90 that

de�nes the TPS deformation. (b) The apical control point with the associated

Voronoi cell, intersected with the blood pool and the myocardium.

As a �rst application, we tested the consistency of the learned prior by

only minimizing the shape term of the designed energy, and canceling the data

term, starting from randomly perturbed positions of the control points. The

prior constraints made the initial shape converge in all cases to the "mean"

shape. Next, the segmentation was performed following algorithm 2 by follow-

ing two steps: (i) the surface S is deformed from its initial position by using

the control points P4, and by applying a similarity transformation to the mesh

after each iteration. This is repeated till convergence. (ii) The control points

P90 are introduced and the mesh is transformed using a Thin Plate Spline

(TPS) [Bookstein 1989] deformation. For the segmentation experiments, the
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Table 3.1: Comparison of our method with the Random Walker Algorithm

Correctly Segmented Voxels Incorrectly Segmented Voxels Segmentation Time

(True Positives) (False Positives) (3 GHz, 3 GB)

85.12%±7.3 15.3%±10.2 90s±10

axial data slices were downsized to 128× 128 pixels.

During implementation, we noticed that computing the Voronoi diagram in

3D, and performing the intersections of the resulting cells with the myocardial

and blood pool surfaces was time consuming. Hence, in order to increase

the computational e�ciency, we introduced an additional approximation. In

addition to the control points and the meshed surface, we computed for each

landmark xi the voronoi cells Omyoi and Obpi o�ine. Then after each inner-

iteration of the algorithm, these cells were updated similarly to the mesh using

TPS. Thereby, complex geometric computations were no longer required.

We compared our results quantitatively for the whole dataset to

[Grady 2006] and compiled them in Tab. 3.1.

3.3 Detector-based Segmentation

We presented in section 3.2 a region-based shape-driven segmentation algo-

rithm and demonstrated its performance in a variety of settings. However,

regional image cues are not always suitable in practice. An approach that

uses such image features makes the implicit assumption that image regions

are smooth or have homogeneous intensity distributions, at least locally. In

applications where objects have a particularly textured appearance, this hy-

pothesis does not hold, and region-based statistics would lead to a poor seg-

mentation performance. For instance, Fig 3.11 shows posterior-anterior chest

radiographs (PA X-Rays). This is an example of images that can be hardly

segmented using region-based costs. Moreover, in addition to shape variations,

object appearance can dramatically di�er from one case to another. This is

also the case in computer vision and in particular in video-based surveillance

where segmenting and tracking people can be very di�cult as human body

appearance is almost arbitrary, depending on the clothes that are worn. As an
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Figure 3.11: Example of posterior-anterior chest X-Rays with manual expert

segmentations.

alternative to image intensity distributions, one can consider feature vectors

extracted from the image. Such high dimensional descriptors bene�t from the

neighboring data around a particular image location, and can exhibit strong

discriminative power. In our approach, we seek optimal landmark positioning.

Therefore, a discriminative image support that isolates highly probable con-

trol point locations in the image is of a great interest. Indeed, combined with

a shape prior, feature-based detectors can yield very powerful segmentation

tools. [Seghers et al. 2007a] pursue this line of thought as they use a chain-

structured shape prior to �nd the best landmark positions among candidates

extracted from the image, based on locally orderless image (LOI) features.

In the same spirit, [Donner et al. 2010] focus on symmetry interest points de-

tected using GVF-based cues, and enforce a shape prior through a MRF for-

mulation. Similarly, we propose to build image classi�ers that discriminate the

control points from the background. These classi�ers provide landmark can-

didates, with associated con�dence values. The segmentation task boils down

to �nding the trade-o� between shape prior penalties, and candidate selection

costs, in an integrated manner. In practice, we adopt a similar approach to

the LOI for feature extraction. Then, we apply the Adaboost algorithm to

the computed local descriptors in order to train the landmark classi�ers. We

observed in our experiments that in some di�cult cases, the classi�ers may

fail to provide good candidates to the segmentation algorithm, which leads to

a suboptimal result. We propose to account for the missing correspondence

problem by incorporating an additional label in the segmentation formulation

to account for outliers. Although this idea has already been mentioned in

[Donner et al. 2007a] and [Seghers et al. 2008], the authors do not provide a

clear method to post-process the outlier landmarks, and the impact of the

procedure is not shown in the experiments. Our approach is detailed in the
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next section, and the results that we obtain suggest that accounting for the

outliers in the segmentation process can lead to improved results qualitatively

and quantitatively in the case of the complete graph.

The remainder of this section is organized as follows: �rst, we describe

the features that we use to build the control points descriptors and train the

corresponding classi�ers. Then, we explain how we embed this information in

our segmentation framework. In the next subsection, we propose a method

to account for outliers during segmentation, and "repair" their positions in a

post-processing step. The last part is dedicated to the segmentation results

we obtained on PA chest X-ray images. We show results for both cases: the

case without handling outliers, and the case where outliers are accounted for.

3.3.1 Landmark-based Image support

We will explain in the following how we learn a classi�er for each control

point of the object, using features that are computed from the image. These

trained classi�ers are then used as detectors in our algorithm, to segment

unseen images. Our method consists of extracting from the image a set of

candidates for each landmark, and then choosing the best ones in terms of

detection response on one hand, and global �delity to the learned shape prior

on the other hand.

Boosted Landmark Detectors

We present our method by describing the features and the classi�ers that we

use in practice. However, the framework is �exible, and di�erent types of de-

tectors can be plugged in, using for instance the gradient vector �ow (GVF)

descriptors that were considered in [Donner et al. 2007a], or the locally or-

derless image (LOI) features that were adopted in [Seghers et al. 2007a]. The

recent boundary detection framework introduced in [Kokkinos 2010] can also

represent an alternative choice to de�ne the image features. The author con-

sidered the distribution of image gradient orientation in the neighborhood of

the landmarks at multiple scales through Scale-Invariant Feature Transform

(SIFT) descriptors [Lowe 2004], and then performed discriminative dimen-

sionality reduction using the Sliced Average Variance Estimation algorithm
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(SAVE) [Cook & Lee 1999].

In our work, we �rst process the image I using a �lter bank of deriva-

tives for di�erent Gaussian smoothing values σ (σ ∈ {0.5, 1, 2, 4, 8}). The

output of this process is a feature image F as showed in Fig. 3.12. Such

a feature extraction was previously considered by [van Ginneken et al. 2002]

and [Seghers et al. 2007a]. Then, they obtained locally orderless image (LOI)

descriptors [Koenderink & Van Doorn 1999] by computing the �rst statisti-

cal moments of F in local neighborhoods. [Seghers et al. 2007a] modeled the

feature vector probability function using a multivariate Gaussian distribution

for each blurring level σ. Our derivation is slightly di�erent as we build for

each control point of the object a "boosted" classi�er f (i)
T , using Adaboost

[Freund & Schapire 1996]. To this end, at each control point location xi, we

extract a patch of size 17× 17 from the feature image F , amounting to a K-

dimensional descriptor ϕi ( with K =8959). Hence, given a set of Np training

images, where the positions of the landmarks are known, we obtain for each

control point xi a set of "positive" examples of size Np. We also extract Nn

feature vectors from the background to form a set of "negative" examples.

Then, using the training set of N = Np + Nn examples (ϕ
(i)
j , y

(i)
j )1≤i≤N , with

the class label y(i)
j ∈ {−1, 1} referring to the background/object, we train the

classi�ers f (i)
T in order to discriminate the control points from their neighbor-

hoods. Before explaining the relationship between these classi�ers and the

data-related energy term, we describe brie�y the Boosting framework.

Boosting is a classi�cation method that is based on machine learning. It

uses labeled data to learn a decision function. Let our training data be a set of

N pairs (ϕi, yi) ∈ Φ×{−1, 1}, 1 ≤ i ≤ N , where Φ is the feature vector space

and yi are the binary class labels. Boosting aims to �nd a highly accurate

decision rule fT as a linear combination of many "weak" or basic hypotheses

ht, or:

fT (ϕ) =
T∑
i=1

αtht (ϕ) . (3.27)

These simple decisions are usually easy to train, but have quite poor individual

performance. They are "boosted" by combining them, which yields a "strong"

classi�er fT . Boosting works iteratively by trying to improve the function fT
at each step. During each iteration, the best weak classi�er ht is added with



3.3. Detector-based Segmentation 107

Figure 3.12: Features computation using a �lter bank.

an appropriately chosen step size αt, such that a cost function that compares

the classi�er's responses to the data labels is minimized. The cost function

L(fT ) is typically a sum of loss functions or:

L (fT ) =
N∑
i=1

λ (fT (ϕi) , yi) . (3.28)

There is an extensive literature on Boosting, and several reviews on the subject

exist. Among others we refer to [Schapire 2002] and [Meir & Rätsch 2003].

Di�erent Boosting algorithms had been proposed. Their di�erences lie in the

de�nition of the cost function, the selection of the weak classi�ers and the

computation of the step size. We restrict our description to the algorithm

that we used in the experiments.

Adaboost A well-known Boosting algorithm is Adaboost which was intro-

duced by [Freund & Schapire 1996]. This machine learning algorithm was

then generalized by [Schapire & Singer 1998]. In this case an exponential loss

function is used, or λ (fT (ϕi) , yi) = exp (−yifT (ϕi)). Essentially, at each

Boosting step a weak classi�er that best discriminates "positives" and "nega-

tives" is learned from weighted training data, and a corresponding step size is
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determined. Then, poorly classi�ed training examples are identi�ed. Subse-

quently, their weights are increased in order to emphasize their importance in

the next step. A typical choice for the weak learner family is decision stumps.

Algorithm 3 summarizes these di�erent steps.

Algorithm 3 Adaboost
1: Input: N training examples {(ϕ1, y1) , . . . , (ϕN , yN)} where ϕi ∈ Φ and

yi ∈ {1,−1}.
2: Initialize: D1 (i) = 1

N
.

3: for t = 1 . . . T do

4: Training: Learn weak classi�er ht : X → R using distribution Dt.

5: Compute the weight: αt ∈ R.
6: Update:

Dt+1 (i) =
Dt (i) exp (−αtyiht (ϕi))

Zt
,

where Zt is a normalization factor.

7: end for

8: Output: The strong classi�er:

H (ϕ) = sign (fT (ϕ)) ,

fT (ϕ) =
T∑
t=1

αtht (ϕ) .

Let us now summarize the learning phase. For each landmark xi, "posi-

tive" examples and "negative" examples are extracted from the training im-

ages to form a learning set (ϕ
(i)
j , y

(i)
j )1≤j≤N . The latter is used to train an Ad-

aboost classi�er f (i)
T (ϕ) =

∑T
t=1 α

(i)
t h

(i)
t (ϕ). The obtained classi�er responses

are incorporated into a prior-based segmentation algorithm as explained in

the following.

Data Energy Term

We adopt the same Bayesian approach presented in section 3.2 to formulate

the segmentation task. The equivalent MAP estimation problem is de�ned in

equation (3.13) as minimizing:

E (x1, . . . ,xn, I) = Eshape (x1, . . . ,xn) + Eimage (x1, . . . ,xn, I) , (3.29)
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with respect to (x1, . . . ,xn) ∈ Ωn, Ω being the image domain. Recall that the

prior term Eshape refers to our k-fan shape model and is expressed in terms of

pairwise landmark interactions, similarly to equation(2.30):

Eshape (x1, . . . ,xn) = −
∑

(i,j)∈Ek

γij log

(
p

(
‖xi − xj‖

d̃

))
. (3.30)

The energy term Eimage is based on the image cues, and is de�ned thanks to

the learned classi�ers. Using a logistic function, we turn the strong classi�er

response into a probability measure as pi
(
f

(i)
T (ϕ)

)
= 1

1+exp
(
−f (i)T (ϕ)

) . Then,

by assuming independence of the feature vectors at di�erent image locations,

we can write:

Eimage (x1, . . . ,xn, I) =
n∑
i=1

− log
(
pi

(
f

(i)
T (ϕ (xi))

))

=
n∑
i=1

− log

 1

1 + exp
(
−f (i)

T (ϕ (xi))
)
 ,

(3.31)

where ϕ (xi) is the feature vector at the landmark xi location. Let us consider

now that each position in the image domain Ω corresponds to a label l ∈ L,
L being the labeling set. We will note xi(l) placing the landmark xi at the

location labeled by l. Then, minimizing the energy (3.29) is equivalent to

solving the labeling problem:

min
li∈L

1≤i≤n

E (l1 . . . , ln) = α

n∑
i=1

Vi(li) +
∑

(i,j)∈Ek

Vij(li, lj) , (3.32)

where the unary and pairwise potentials are de�ned as:

Vi(li) = − log

(
pi

(
f

(i)
T

(
ϕ
(
xi(li)

))))

Vij(li, lj) = −γij log

(
p

(
‖xi (li)− xj(lj)‖

d̃

))
.

(3.33)

However, searching in the whole image domain Ω increases the complexity

of the problem. Therefore, we restrict the search in practice to the image

locations where the classi�ers provide their highest m responses (for each

landmark), m being a parameter that is �xed by the user. Hence, the problem
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boils down to �nding the best con�guration among the top m control points

candidates. For e�ciency, we used an approximate optimization methods to

solve (3.29), namely the sequential tree-reweighted message passing algorithm

(TRW-S) [Kolmogorov 2006]. In TRW-S, a lower bound on the optimal energy

is maximized. We observed in our experiments the lower bound value was very

often equal to the graph energy at the end of the optimization, meaning that

a global optimum was found. The results we obtained are presented in the

next section. Considering a relatively small number of candidate points allows

solving the problem e�ciently. The results can be however let down if there

are no good landmarks in the candidate pool. We address this limitation in

the following.

Segmentation Outliers

The above formulation can be in some di�cult cases insu�cient to obtain sat-

isfactory segmentations because of the limitation of the detected candidates.

The proposed algorithm relies heavily on the quality of the detectors and the

provided costs, and hence a poor generalization performance of the classi�er

may a�ect the whole segmentation process. To account for the missing corre-

spondences problem, we consider the idea of an additional arti�cial candidate

per landmark, as suggested in [Donner et al. 2007a]. The m + 1th candidate

will refer to �nding an outlier. The critical aspect is then to de�ne the corre-

sponding unary and pairwise costs. [Donner et al. 2007a] de�ne these costs as

being proportional to the mean of the one computed for the real candidates.

On one hand, this cost choice introduces an additional parameter (of propor-

tionality) that needs to be adjusted. On the other hand, using the current test

image to compute these costs may be unsuitable as these computations will

be dependent on the number of candidates. A di�erent number of candidates

may result in di�erent costs, and hence di�erent outliers detection. Moreover,

the generalization performance of the classi�er will have a direct impact on

the outlier cost in this case. An alternative way to de�ne these costs relies

on their statistical estimation from the training set, where the energy terms

of the available solutions (segmentations) can be easily evaluated. Hence, we

compute from the training set the mean and standard deviation of each unary

and pairwise cost, and set the outliers penalties to the mean plus two standard
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deviations.

The post-processing of the detected outlier landmarks is another important

aspect when handling such di�cult cases. Hence, one has to de�ne a strategy

to "repair" the outlier landmark positions, and obtain an allowable segmen-

tation. It is not clear in [Donner et al. 2007a] how this step is accounted for.

[Seghers et al. 2008] proposed to relax the positions of landmarks that have

high shape energy terms to lower shape energy locations. However, the used

method is not clearly explained. We provide now a way to solve for the missing

outlier positions.

Augmenting the candidate set by an outlier label provides a partial seg-

mentation of the object. In practice, after minimizing (3.32), most of the

landmarks positions are determined, and only a few of them are set to be

outliers. Then, the next step consists to locate these outliers according to the

shape prior, and to the set of �xed (already solved) landmarks. Let O be the

set of outliers, and let I be the set of �xed landmarks. Then iteratively, we

search the optimal set of displacements d∗i , i ∈ O of the outlier landmarks

such that a shape energy is minimized. More formally, we consider the ap-

proach presented in section 2.2.6, and more precisely the equation (2.34). Let

Di = {di1, . . . ,dir}, i ∈ O be a quantization of the possible displacements

dii′ . Hence, we iteratively look for:

{d∗kk′}i∈O = argmin
dkk′∈Dk

Eoutliers(dij) , (3.34)

where:

Eoutliers(dkk′) =
∑

(i,j)∈O×O
(i,j)∈E

− log
(
pij (xi + dii′ ,xj + djj′)

)

+
∑

(i,j)∈O×I
(i,j)∈E

− log
(
pij (xi + dii′ ,xj)

)
.

(3.35)

This �nal step is hence also expressed as a labeling problem. As in sec-

tion 2.2.6, we used the FastPD algorithm [Komodakis et al. 2008b] to solve

the energy (3.34).
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3.3.2 Experimental Validation

We applied our method to the segmentation of the right lung

in 2D radiographs. We used an available public dataset

[van Ginneken et al. 2006][Shiraishi et al. 2000] of 247 images of healthy

and non healthy subjects (presenting nodules). The database contains gold

standard segmentations from radiologists (Fig. 3.11), that provided a delin-

eation of the organ. Gold standard segmentation masks are hence available

as well as corresponding landmark positions lying on the contour. We tested

our algorithm on rescaled images of size 256 × 256. The database was split in

two subsets (containing both healthy and non healthy cases). The �rst subset

(corresponding to the odd indexed images) was used for training, and the

second subset was used for testing. As explained previously in section 2.2, we

used the annotated data in the training set to learn the structure of the graph

and the prior model. We used the 44 available landmarks, and the clustering

lead to the result presented in Fig. 3.13(b) which shows the 7 automatically

determined clusters. The clustering was used to de�ne the k-fan structure of

(a) (b) (c)

Figure 3.13: Modeling the right lung using the training set. (a) The obtained

shape maps embedding. (b) The unsupervised linear programming-based clus-

tering lead to 7 clusters. (c) A region of interest is used for each landmark to

speed up the segmentation algorithm.
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Table 3.2: Overlap coe�cient and Mean Distance Error between the manual

gold standard and the obtained right lung segmentation. Mean value over the

testing set of 123 images and standard deviation are reported.

Γ (%) MDE (pixels)

Complete Graph 94.77(±2.37) 1.39(±0.64)

k-fan Graph 94.74(±2.31) 1.40(±0.62)

Complete Graph + Outliers 94.95(±2.48) 1.34(±0.65)

k-fan Graph + Outliers 93.87(±3.74) 1.62(±0.87)

MISCP algorithm [Seghers et al. 2007a] 93.9(±3.1) 1.49(±0.63)

Figure 3.14: Segmentation results of the right lung, using the complete graph

(top row) and the k-fan graph (bottom row).

the graph, and the pairwise normalized distance distributions were learned

using Gaussian kernel density estimation. The boosted classi�ers f (i)
T were

also learned using the 124 images of the training set according to the

described scheme in section 3.3.1. The Fig. 3.13(c) shows also that we used

for each node regions of interests (ROIs) to speed up the candidate search

step. The limits of these ROIs were learned from the training data, as done in

[Seghers et al. 2007a]. In order to evaluate the performance of our method,

we compared the segmentation results that we obtained using a complete

graph against using the k-fan learned graph. In both cases, the maximum

number of candidates m was set to 20. As in [van Ginneken et al. 2006]

and [Seghers et al. 2007a], we used the overlap coe�cient Γ = TP
TP+FP+FN

(where TP stands for true positive, FP for false positive, and FN for false

negative) and the mean curve distance error (MDE) to assess the results
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quantitatively. They are summarized in Table 3.2. We also report the

results in [Seghers et al. 2007a], where 40 control points were used. The

distributions of these quantities in the testing set are also represented by the

boxplots in Fig. 3.17. Examples of the obtained segmentations are shown in

(a)

(b)

(c)

(d)

Figure 3.15: E�ect of the outlier label on the segmentation results. Outlier

landmarks are in red. The crosses correspond to the top candidate position

that is used as initialization for the perturbation algorithm. (a) Complete

Graph (b) Complete Graph + Outliers (c) k-fan Graph (d) k-fan Graph +

Outliers.
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Fig. 3.14. The quantitative and qualitative results back our claims regarding

the learned graph structure: we obtain a sparse model, and we maintain a

performance that is equivalent to the complete graph. Moreover, as described

earlier, we learned from the training set unary and pairwise costs for the

(a)

(b)

(c)

(d)

Figure 3.16: E�ect of the outlier label on the segmentation results. Outlier

landmarks are in red. The crosses correspond to the top candidate position

that is used as initialization for the perturbation algorithm. (a) Complete

Graph (b) Complete Graph + Outliers (c) k-fan Graph (d) k-fan Graph +

Outliers.
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outlier label, and evaluated its impact on the segmentation results. Table

3.2 and the boxplots in Fig. 3.17 show that the quantitative performance

of the segmentation algorithm is improved when using the complete graph

and handling outliers. We show in Fig. 3.15 and Fig. 3.16 examples of

images where outliers were detected, and where the segmentation using the

complete graph was improved. The examples in Fig. 3.15 also suggest that

the performance of the k-fan graph can be improved by accounting for the

outliers. However, as we can see in Fig. 3.16, the method performs better

in the case of the complete graph. This observation is con�rmed by the

quantitative results in Table 3.2 and the boxplots in Fig. 3.17. They show

that the computed performance indicators are slightly impaired when using

outliers with the k-fan graph. This di�erence in the performance of the

k-fan graph and the compete graph may be explained as follows: selecting a

landmark as being an outlier can be thought as eliminating it from the graph,

and destroying all its connections. Suppressing these geometric constraints

is clearly more critical for the k-fan graph than for the complete graph,

especially if landmarks of the base k-cliques are labeled as outliers.
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(a)

(b)

Figure 3.17: Quantitative evaluation of the segmentation of the right lung:

boxplot representation of the distributions of (a) the overlap coe�cient Γ and

(b) the mean curve distance error (MDE). The box lines represent the lower

quartile, the median, and upper the quartile values. The whiskers extend to

a range of 1.5 times the interquartile range. The values beyond this range are

drawn with a "+" sign.





Chapter 4

Discussion

Introduction Statistical shape modeling is a critical task towards incorpo-

rating prior knowledge in segmentation algorithms. Not only the shape model

has to represent faithfully the data, but it is also required to have a suitable

representation that allows e�cient inference during segmentation.

Two major trends can be distinguished from the literature on segmentation

and shape priors. On the one hand, global linear models represent a very pop-

ular approach that was widely used to model implicit and explicit shapes. On

the other hand, Markov random �elds (MRFs) are now established as a solid

framework for image segmentation, where the image is generally accounted

for in a pixel-wise manner. The increasing attractiveness of this framework

is also due to the big research e�orts that have been made to design fast and

e�cient discrete optimization algorithms that provide optimality or subopti-

mality guarantees.

For these reasons, several research directions pointed towards combining

the power of global shape models, and the �exibility and the e�ciency of

MRFs. However, this problem is not straightforward and it leads in practice to

limiting approximations. The di�culty of integrating statistical shape priors

in the MRF formulation is generally due to the incompatibility between the

local graph connectivity and the global shape parameters.

Our Contributions Motivated by this challenging and di�cult problem,

we introduced in this thesis a novel statistical shape model and used it to

enforce prior knowledge in segmentation algorithms, that were formulated in

a Markov random �elds (MRF) framework. In our model, the shape is rep-

resented by a graph where the vertices refer to control points lying on the

shape boundary, and inter-landmark constraints are encoded by the graph

edges. Inspired by the Euclidean Distance Matrix (EDM) theory, we de-

�ned these constraints as the probability distribution function of the nor-
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malized chord lengths in the graph, leading to a similarity-invariant repre-

sentation. Although the proposed shape model encodes local properties be-

tween pairs of control points, it is able to enforce the global shape constraints

thanks to the graph structure and connectivity. Because our model uses inter-

point normalized distances as shape representation, we only need to estimate

one-dimensional probability density functions for the statistical shape model.

Thereby, we alleviate the need of an extensive pool of training data, which is

needed in higher dimension estimation.

Then, observing the computational burden induced by a complete graph

structure, and the redundant information that is carried by the complete

set of edges, we tackled the problem of graph structure learning. Seeking

e�ciency and model compactness, we approximated the complete graph by

a k-fan graph which structure is determined from a training set of shapes

using manifold learning and unsupervised clustering techniques. We showed

that this approximation is tight in the case of the exact matching problem, by

using concept of graph rigidity. We qualitatively veri�ed this strong geometric

property in experiments, where we recovered 2D and 3D shapes from random

points thanks to the shape prior constraints.

The obtained k-fan graph belongs to the more general class of chordal

graphs, and hence inherits the perfect elimination order property. Theoreti-

cally, this property allows the use of dynamic programming to exactly solve

optimization problem de�ned on the graph in polynomial time. Unfortunately,

the dimensionality of the applications that we considered made this approach

intractable in practice.

In the next step, we proposed di�erent methods to combine the shape

prior with various image cues in a maximum a posteriori MRF optimization

framework towards image segmentation. The obtained energy minimizations

are cast into labeling problems that are e�ciently solved using recent approx-

imate optimization techniques. In the experiments, we noticed that we were

able to recover the global optima in some cases.

More speci�cally, we integrated statistical regional image information in

the objective energy as unary potentials using a Voronoi decomposition of

the image domain. We proposed an iterative coarse-to-�ne procedure to solve

the problem, in a deformable model fashion. We also considered the use of
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landmark-based cues through boosted classi�ers in a Bayesian framework. To

account for poor generalization performance of the classi�ers, we proposed

a method that detects outliers during inference, and repairs their positions

according to the shape prior. We also proposed a tracking algorithm that

uses edge-based image information and combines the static shape model with

dynamic priors. In addition, we applied graph matching techniques in the

image registration setting to select optimal mutually-salient corresponding

landmarks. Although we used these di�erent image cues seperately in the

applications that we presented, our framework is �exible and allows the inte-

gration of cues of di�erent nature at the same time.

Despite the encouraging results that we obtained, we think that our ap-

proach has some limitations. Our shape model handles naturally partial object

occlusions. However, it does not explicitly account for self-occlusions. Hence,

our region-based segmentation algorithm may be unsuitable to process ob-

jects with overlapping parts. Moreover, the scale-invariance of our model

is enforced through normalization, which supposes knowing the object scale.

We resort in practice to approximations in order to estimate the unknown

scale values. Computing the regional image information as unary potential is

another approximation that we made.

Future Research Directions In our future research work, we will endeavor

to address the above mentioned downsides. The use of pairwise terms to model

the regional support will reduce the shortcomings introduced from the Voronoi

approximation. In particular using the Stokes' theorem, regional integrals

could be expressed as inner products on the local 2D segments forming the

2D contour. Then, an explicit and direct estimation of the regional properties

would be feasible. Furthermore, the combination of image-based (edges or

regional support) and landmark based segmentation will be also feasible. The

idea will be to have a two layer graph with interconnected variables, one acting

on the landmarks and the second acting on the image. The interconnections

will guarantee that the solution to both problems will be unique.

The case of 3D will be more complex since it will require higher order

MRFs. The Green's theorem will decompose the regional image term on the

boundary elements (triangles in 3D) in an exact manner. However, such a
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formalism will inherit higher order MRFs. This is also a natural extension of

our approach since it will introduce the notion of complete shape invariance

to the process. The use of third order potentials inherits invariance with

respect to scale changes, translation and rotation, while being able to cope

with arbitrary image support. The main challenge in this context will be

to minimize the energy but either the use of methods that convert higher

order MRFs into pairwise MRFs or the ones based on dual decomposition and

master-slave approaches will be considered.

As far as optimization is concerned, we have already mentioned that ben-

e�ting from the structure of our model through the use of dynamic program-

ming is cursed by the dimensionality of the considered problems. Developing

optimization algorithms that take into account the particular structure of the

k-fan graph would represent an interesting research direction.

The case of spatio-temporal shape modeling is also of great interest in par-

ticular for medical image analysis when studying organs with periodic motion.

Inferring the temporal connectivity of the graph can be extremely challeng-

ing and bene�cial as well since the notion of k-fan model is not applicable.

Re-formulating the inference process as an unsupervised clustering problem

with terms accounting for spatial and others for temporal connectivity might

be the right direction to go.

Last but not least in all above approaches the selection of the model was

based on purely geometric properties and characteristics. Then, during infer-

ence, the model was associated with image cues. A promising research direc-

tion would bridge the gap between these two aspects. An interesting modeling

scheme would not only learn the structure of the graph from the data, but

it would also bene�t from training image information to de�ne the control

points as salient image points. Combining shape and appearance learning is

a possible extension of our work.
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A.1 Graph Matching for Registration

A.1.1 Introduction

Deformable image registration is one of the most challenging problems in

medical imaging. We distinguish two classes of prior work: iconic methods

and geometric methods. Iconic (or voxel-based) methods optimize a similarity

criterion (for instance mutual information) that is de�ned on the images in

order to �nd an optimal transformation with respect to this criterion. These

methods generally perform well for intra-modal registration. However, when

images belong to di�erent modalities, such approaches can lead to failure.

In the geometric methods, landmarks are extracted from the images and the

transformation that maps the source landmarks to the target landmarks is

estimated.

Establishing landmark correspondences is of a great importance in

many landmark-based non-rigid registration algorithm. This task is of-

ten performed in two successive steps, namely, landmark detection (e.g.,

[Kadir & Brady 2001]) and landmark matching (e.g., [Joshi & Miller 2000]).

One can formulate two criticisms to these separate two-step methods.

First, landmarks are often separately detected in two images. Although

having individual saliency property, they might be not discriminative for

matching. As pointed out in [Ou & Davatzikos 2009], salient points in one

image are not necessarily present, or uniquely present in the other image.

Therefore, an alternative approach that detects pairs of landmarks with a

preferably unique matching score across images would yield better registra-

tion performance.

Second, individually optimal correspondence for each landmark is not nec-

essarily globally optimal for the deformation �eld. For instance, such an

approach might result in displacement vectors at two nearby landmarks that

point to completely opposite directions, leading to a dense deformation �eld

with self-intersections. This undesired behavior can be avoided by seeking a

trade-o� between the global smoothness of the resulting transformation and

the landmarks similarities when establishing correspondences.

In this section, we tackle the above-mentioned drawbacks. First, instead

of extracting individual interest points, we simultaneously detect and match
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a number of mutually-salient candidate landmark pairs, i.e., pairs that are

uniquely corresponding to each other across images. This pairs �nding step

relies on the mutual-saliency measure introduced in [Ou & Davatzikos 2009],

which assesses the matching uniqueness of a pair of voxels. In order to alleviate

the second limitation and seeking global optimality of the correspondences,

we formulate the problem in the Markov-random-�eld (MRF) framework. We

combine similarity measures with geometric constraints in an energy func-

tional. Its minimization leads to consistent landmark displacements, thereby

avoiding potential self-intersections in the resultant deformation �eld. Radi-

ologists evaluated the results that we obtained, suggesting the advantage of

the two components in our framework.

The remainder of this section is organized as follows: we present our frame-

work in section A.1.2 and provide our results in section A.1.3.

A.1.2 Detecting Landmark Pairs

In this section, we �rst give a brief de�nition of mutual-saliency measure

[Ou & Davatzikos 2009]. Then, we describe the two components of our frame-

work: the detection of mutually-salient landmark pairs, and the MRF formu-

lation to �nd globally optimal correspondences.

De�nition of Mutual-Saliency Measure

Given two images I1 : Ω1 7→ R and I2 : Ω2 7→ R in the 3D image domains

Ωi(i = 1, 2) ⊂ R3, a pair of voxels u ∈ Ω1 and v ∈ Ω2 is mutually-salient if

they are similar to each other and only to each others in their neighborhoods.

In the perfect case that is shown in Fig. A.1, the similarity map between u

and all voxels in the neighborhood of v should exhibit a delta-shaped function

centered at v. We denote the mutual-saliency between u and v as µ(u,v).

We de�ne this quantity as the ratio of the mean similarity in the central part

of the neighborhood of v (denoted as CN(v)), by the mean similarity in the

peripheral neighborhood of v (denoted as PN(v)), or:

µ(u,v)
def
=

1
|CN(v)|

∑
w∈CN(v) ρ(u,w)

1
|PN(v)|

∑
w∈PN(v) ρ(u,w)

, (A.1)
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Figure A.1: The idea of mutual-saliency measure.

where ρ(u,w) is a similarity measure between the voxels u and w. It is de�ned

on the d-dimensional attribute vectors Ai(·) characterizing each voxel (i = 1, 2

for image Ii), or:

ρ (u,w)
def
=

1

1 + 1
d
‖A1(u)− A2(w)‖2

. (A.2)

Hence, the smaller their attribute vector Euclidean distance, the higher their

similarity will be. The central neighborhood CN(·) and peripheral neigh-

borhood PN(·) are de�ned as concentric rings around the voxel of inter-

est, and their radii are determined according to the scales of the descrip-

tors Ai [Ou & Davatzikos 2009]. More speci�cally, we construct the at-

tribute vector Ai(·) by incorporating the multi-scale and multi-orientation

Gabor attributes. We opted for Gabor attributes to characterize each voxel

because di�erent application, including registration (e.g., [Liu et al. 2002]

[Ou & Davatzikos 2009]), proved their success in practice. Moreover, their

ability to capture multi-scale and multi-orientation cues provides them with

a great potential to describe each voxel more distinctively than the intensity

attribute or other texture features [Kadir & Brady 2001]. Fig. A.2 shows ex-

amples of di�erent voxel pairs having di�erent mutual-saliency values. Here,

similarity maps (c-e) are generated by calculating the attribute-based simi-

larity between a speci�c voxel (denoted as red +, blue × and orange ?) in

the subject image (a) and all voxels in the template image (b). It is observed

that, the red point and its correspondence has the highest mutual-saliency

(indicating most unique correspondence), followed by the blue point and its

correspondence, and lastly the orange point and its correspondence. Note

that the mutual-saliency is de�ned on a pair of voxels. Therefore, it can be
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Figure A.2: Examples of di�erent voxel pairs having di�erent mutual-saliency

values.

used to detect pairs of landmarks, as those having high similarity unique-

ness across images. Thereby, one can naturally unify landmark detection and

landmark matching in the same procedure. Then, detecting a landmark also

determines automatically a corresponding interest point which is guaranteed

to be relatively unique.

Based on this property, we describe now how we extract mutually-salient

landmark pairs between two images.

Detecting Mutually-Salient Landmark Pairs

Based on the aforementioned advantage of mutual-saliency measure, this sub-

section describes the extraction of mutually-salient landmark pairs. In order

to favor uniform registration accuracy in the image, it is preferable that the de-

tected mutually-salient landmark pairs are scattered within the image space.

Therefore, as sketched in Fig. A.3, the source image space Ω1 is regularly

partitioned into J regions. In each region, the K most mutually-salient land-

mark pairs across images are selected. Formally, from the jth (j = 1, 2, . . . , J)

region, we select K pairs (pkj ∈ Ω1,q
k
j ∈ Ω2)Kk=1 that are ranked by their simi-

larity measure weighted by the mutual-saliency value,or: ρ(·, ·)× µ(·, ·). This
criterion encourages the detected pair to be similar through ρ(·, ·), while favor-
ing uniquely matched landmarks thanks to the term µ(·, ·). Note in Fig. A.3

that, the template image space Ω2 is not partitioned, because at this stage,

no transformation is conducted, therefore no corresponding regions can be

assumed.

As we observed earlier, the top ranked pair is a locally optimal pair, that

might be not globally optimal with respect to a smooth deformation �eld be-
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Figure A.3: Sketch of the detection of landmark pairs.

tween the images. Therefore, we keep the K top-ranked pairs and seek the

globally optimal ones using a Markov-random-�eld (MRF)-based optimiza-

tion. This step is explained in the next sub-section.

Finding Globally Optimal Landmark Pairs by MRF Formulation

Let us denote all the J ×K landmark pairs detected in the previous step as

a set P = {(pkj ,qkj )|j = 1, 2, . . . , J ; k = 1, 2, . . . , K}. One should note that K

is not necessarily the same number for di�erent regions. In practice, we keep

K = 10 top-ranked candidate pairs in each region.

We aim in this section to select one pair (out of K pairs) from each region,

i.e., P? = {(pljj ,q
lj
j )|j = 1, 2, . . . ; lj ∈ {1, 2, . . . , K}}, such that the obtained

set of pairs is globally optimal, in that they altogether maintain high mutual-

saliency as well as the smoothness of the resultant deformation �eld.

We can formulate this task as a Markov-random-�eld (MRF)-based la-

beling problem. We seek a set of optimal labels l? = (l1, . . . , lJ), where

lj ∈ {1, 2, . . . , K} is the label (or index) of the globally optimal pair out of K

candidate pairs in the jth region. Therefore, we construct a graph G = (V , E),

where each node in V represents a region and each edge in E expresses the

constraint of a local geometric compatibility between the landmark pairs.

In this formulation, our goal can be achieved by minimizing the following
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labeling energy on the graph,

l? = arg min
l
E(l1, . . . , lJ), (A.3)

where the energy E(l1, . . . , lJ) consists of two terms,

E(l1, . . . , lJ) = Edata(l1, . . . , lJ) + α Ereg(l1, . . . , lJ). (A.4)

Those two terms express the two criteria for selecting the globally optimal

landmark pairs. The �rst term, Edata, is related to the quality of the landmark

pair, as de�ned in the pair extraction step, or:

Edata(l) =
J∑
j=1

exp

(
−
µ(p

lj
j ,q

lj
j ) · ρ(p

lj
j ,q

lj
j )

2σ2

)
, (A.5)

where σ is a scaling factor, estimated as the standard deviation of µ(., .)×ρ(., .)

values of all the candidate pairs.

The second term, Ereg is a regularization term that favors the smoothness

of the resultant deformation �eld. The regularization imposes constraints on

both the spatial positions and the displacement directions on the selected land-

mark pairs. Speci�cally, spatial position constraint encourages those selected

pairs to scatter in the image space other than being close to each other. Dis-

placement direction constraint encourages displacement vectors on adjacent

pairs to be consistently oriented, therefore avoiding self-intersection of the re-

sultant deformation �eld. Those two constraints are similar to the distortion

terms in [Leordeanu & Hebert 2005] and [Torresani et al. 2008]. Mathemati-

cally, the regularization term is expressed as:

Ereg(l) =
∑

(m,n)∈E

∥∥(plmm − plnn )− (qlmm − qlnn )
∥∥ . (A.6)

One should note that such a framework is not invariant to scale changes.

However, since we have assumed that a rigid registration step was performed

beforehand, this is not a main concern.

The de�ned labeling problem is NP-hard in general. However, recent ap-

proximate solvers perform well in practice. The total energy in Eqn. (A.3)

is minimized using the sequential tree-reweighted message passing (TRW-S)

algorithm [Kolmogorov 2006].
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A.1.3 Experimental Validation

Our framework is applied to �nding mutually-salient landmark pairs in brain

and cardiac images. Results in the following sub-sections aim to demonstrate

the advantage of unifying landmark extraction and landmark matching in our

framework.

Results for Detecting Mutually-Salient Landmark Pairs Fig. A.5

shows a landmark pair detected across subjects based on the mutual-saliency

measure. Alternative methods that consider only image intensity to describe

voxels and that use edge/corner detectors to extract landmarks separately in

the images would probably fail to detect this pair of voxels: these voxels are

simply not edges or corners or surface boundaries. We succeed in detecting

this pair for two reasons. On the one hand, Gabor attributes are powerful

descriptors that provide a distinctive characterization of voxels, as shown in

similarity maps (c,d). On the other hand, the mutual-saliency measure e�ec-

tively quanti�es the matching uniqueness, as shown in similarity maps (e,f).

Overall, this example shows the advantage of detecting landmarks in pairs

other than one-by-one and separately from the two images.

Figure A.4: Dense deformation �elds generated by (a) M1 � no MRF regular-

ization and (b) M2 � with MRF regularization.
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Figure A.5: An example landmark pair (denoted by red and blue crosses)

detected based on mutual-saliency measure. (a) Source image I1 (b) Target

image I2. Similarity maps are generated (c) between the red cross point and

all voxels in Ω1 (d) between the blue cross point and all voxels in Ω2 (e)

between the red point and all voxels in Ω2 and (f) between the blue cross

point and all voxels in Ω1.

Results for Finding Globally Optimal Landmark Pairs To demon-

strate the advantage of MRF-based regularization, landmark pair detections

without and with the MRF regularization are compared. They are respectively

denoted as Method 1 (M1) and Method 2 (M2) in the following comparisons.

The �rst comparison is in terms of the smoothness of the resultant dense de-

formation �eld (based on thin-plate-spline interpolation). The avoidance of

self-intersection of the deformation �eld in Fig. A.4(b) illustrate the bene�t

of a global MRF-based optimization as we described in Section A.1.2. The

second comparison involves the radiologist's evaluation on the landmark cor-

respondences �nally determined without and with MRF regularization (M1
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Table A.1: Radiologist's evaluation on results generated by two methods (M1 and

M2 for without and with MRF optimization). � (or �) means "obviously better

(or worse)", > (or <) means "slightly better (or worse)", and ≈ means "almost

equivalent".

M1 �
M2

M1 >

M2

M1 ≈
M2

M1 <

M2

M1 �
M2

Dataset1 68% 12% 20%

Dataset2 4% 80% 16%

Dataset3 4% 4% 68% 20% 4%

Dataset4 4% 60% 24% 12%

v.s. M2). Four datasets are used: Dataset1 (size 256 × 256 × 171) and

Dataset2 (size 192 × 236 × 171) for two di�erent sets of intra-modality brain

MR images across-subjects; Dataset3 (size 192 × 236 × 171) for a pair of

multi-modality brain MR images across-subjects; and Dataset4 (size 150 ×
150 × 49) for a pair of intra-modality cardiac MR images across-subjects. For

each dataset, 25 random pairs out of all the �nally selected pairs (typically

hundreds) are evaluated in terms of uniqueness and accuracy of correspon-

dences. Evaluation results in Table A.1 show the advantage of incorporating

MRF regularization (M2) in all datasets.
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A.2 Dynamic Shape Prior and Tracking

A.2.1 Introduction

Object tracking is one of the fundamental problems of motion analysis in com-

puter vision. Despite enormous work in the �eld, the case of highly deformable

objects is still an open problem. Prior work on tracking involves blob-based

appearance methods, dynamical systems and part-based models. We brie�y

mention some examples of these lines of work.

In the �rst case, one can cite for instance methods like the Kanade-

Lucas-Tomasi tracker [Tomasi & Kanade 1991], correlation-based methods

[Shi & Tomasi 1994], the mean-shift algorithm [Comaniciu & Meer 2002] and

its numerous variants [Collins 2003]. These methods use a similarity criterion

to compare the previous appearance of the object with possible candidates in

the new images towards recovering the most probable position. These meth-

ods are a good compromise in terms of computational complexity but may

fail with severe deformations.

Dynamical systems are a promising alternative to encode motion dynam-

ics. One can cite numerous examples using such model: Kalman �ltering

[Kalman 1960], condensation [Isard & Blake 1998], or multiple hypotheses

testing and particle �lter tracking [Arulampalam et al. 2002]. These meth-

ods bene�t from an explicit model that represents the motion of the object,

and can thereby perform better than blob-based methods.

One should also mention methods that aim to track articulate

models. In such a context, objects are represented with parts,

and then constraints between the relative positions of these parts

are introduced [Felzenszwalb & Huttenlocher 2005] [Black & Jepson 1998]

[Urtasun et al. 2006] [Wang et al. 2008]. These methods can be very e�cient

but assume an explicit hierarchical representation of the model, and impose

constraints on their dynamics. Therefore, their use in the context of tracking

arbitrary highly deformable objects is not straightforward.

The tracking task has been formulated in di�erent optimization frame-

works. For instance, [Paragios & Deriche 1999] proposed a solution to the

problem in the level set framework. [Cremers 2008] adopted a variational

approach as well incorporating dynamical shape priors. Other approaches
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are based on Markov Random Fields (MRFs). [Kohli et al. 2008] intro-

duced an algorithm that performs human pose estimation and segmenta-

tion. Their method estimates in each frame the pose parameters of the

stickman shape model, which is subsequently used in a binary graph cut seg-

mentation as a distance map prior. An alternative approach is presented in

[Malcolm et al. 2007b], where the solutions in the previous frames are used

to predict the poses of the tracked objects. Then, binary shape maps that

are centered at the predicted positions are used to enforce shape prior in a

multi-label graph cut. Another method of multiple object tracking was re-

cently proposed in [Wang et al. 2009]. The authors de�ne a generative image

model that naturally handles occlusions in the MRF framework. Minimizing

the objective energy allows them to simultaneously segment and track objects,

and determine their depths. In another recent work, [Bugeau & Pérez 2009]

address the problem of tracking in dynamic scenes with moving camera. The

authors proposed an algorithm that is threefold. They determine �rst a set

of points which motion is di�erent from the camera's (the camera motion is

assumed to be the predominant one in the scene). A descriptor vector that

combines multiple cues such as motion and photometric features is then asso-

ciated with each extracted point. In the second step, these points are clustered

based on their descriptors using a variable-bandwidth mean-shift algorithm.

Then, the joint segmentation and tracking are achieved by performing a graph

cut on the pixel level, where the cluster information is used as a constraint.

In this section, we present an extension of our segmentation framework

to the temporal domain. We describe a tracking algorithm that is based

on image boundary information, and that bene�ts from static and dynamic

shape priors. The static shape prior refers to the normalized chord length

shape model introduced in section 2.2. Hence, the spatial consistency is en-

coded through probability densities on the relative positions of pairs of control

points. Similarly, we encode temporal priors through relative deformations of

di�erent control points in time once motion has been implicitly accounted for.

Tracking is then reformulated as an energy minimization problem, where the

positions of the control points are deformed in the current frame in order to

solve a MAP-MRF problem.

The remainder of this section is organized as follows: �rst, we de�ne the
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dynamic shape prior, and then, we formulate the edge-based energy term. In

the last subsection, we show the tracking results that we obtained.

A.2.2 Weak Edges - Static and Dynamic Shape Priors

Let
(
I1, . . . , IN

)
be a sequence of image frames where an object is sought. Let

xi(t) be the position of the ith control point in the image frame It. We extend

the MAP estimation problem de�ned in section 3.2 to the temporal domain

by considering an energy term that accounts for the interactions between the

control points in the current frame, and those in the previous ones. Then, we

rewrite the equation (3.13) as minimizing:

E (x1(t), . . . ,xn(t), I(t)) = βEdyn (τ,x1(t), . . . ,xn(t))

+ Eshape (x1(t), . . . ,xn(t))

+ αEimage (x1(t), . . . ,xn(t), I(t)) ,

(A.7)

where Edyn (τ,x1(t), . . . ,xn(t)) is a dynamic shape prior of order τ , as ex-

plained in the following, and α and β are weighting parameters that modulate

the contribution of each energy term. Recall that the static shape prior energy

Eshape is related to our k-fan shape model and expressed as pairwise interac-

tion between the landmarks (2.30). We consider such pairwise interactions in

the temporal domain as well.

Dynamic Prior

Let us also consider the inter-point normalized distance between two land-

marks in di�erent frames separated by an index τ . We suppose that the

global motion is accounted for through translation of the gravity center of the

object:

dij(t, τ) =

∥∥∥(xi(t)− x̄(t)
)
−
(
xj(t− τ)− x̄(t− τ)

)∥∥∥
d̃(t, τ)

, (A.8)

where d̃(t, τ) = 1
n2

∑n
k=1

∑n
l=1

∥∥∥(xk(t)− x̄(t)
)
−
(
xl(t− τ)− x̄(t− τ)

)∥∥∥,
and x̄(t) (resp. x̄(t− τ)) being the gravity center of the object at the frame

t (resp. at the frame t − τ). Given a training set of image frames where

the object of interest is segmented, and correspondences between the control
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points are guaranteed, one can learn a probability distribution p
(
dij(t, τ)

)
for

each of the "temporal" distances dij(t, τ), and for di�erent dynamic orders

τ . We consider such interactions not only for the the same landmark (sim-

ple case dii(t, τ)), but for the relative dynamics of the di�erent landmarks.

Then, given the position of the object at the previous frames (t−τ, . . . , t−1),

one can de�ne dynamic constraints that account for the correlation between

the landmark positions at the current frame and their motion history. More

formally, the dynamic shape energy term can be written as:

Edyn
(
τ,x1(t), . . . ,xn(t)

)
=

τ∑
θ=1

n∑
i=1

n∑
j=1

− log
(
p
(
dij(t, θ)

))
=

n∑
i=1

Vi(xi(t), τ) ,

(A.9)

where Vi(xi(t), τ) =
∑τ

θ=1

∑n
j=1− log

(
p
(
dij(t, θ)

))
. Hence the dynamic

shape prior is expressed as a sum of unary potentials. Now that we have

de�ned the static and dynamic prior model, the next task consists in de�ning

relationships between the graph and the image sequence (I1, . . . , IN), which

enables us to infer the optimal positions of the control points.

Weak Edge Support

We de�ne the data-term in an image It of the sequence using its edges. In-

dependently from the previous frames, the optimal positions of the control

points should superimpose the boundary of the object to its edges in the

image. We suppose that the boundary of the object can be simply approxi-

mated by connecting the successive control points in 2D (the 3D counterpart

is a mesh of the control points, which would lead to high order MRF terms).

Let Mt be the distance map to the edges of the considered image (we com-

puted in practice the chamfer distance to the canny edges). Then, since the

object contour can be approximated by the landmark segments, its distance

to the edges can be computed using the same approximation. Supposing that

the control points are indexed according to their order on the boundary, this
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(a) frame 0 (b) frame 66 (c) frame 94

Figure A.6: Frames extracted from a tracking sequence using our method

with the static prior. Note that the tracking quality is better when using the

dynamic prior for the frame 66 for example (see Fig. A.7(b)): here one leg is

missed.

yields the following data energy term:

Eimage (x1(t), . . . ,xn(t), I(t)) =
n∑
i=1

∫
[xi(t),xi+1(t)]

Mt(u)du

=
n∑
i=1

Vi,i+1(xi(t),xi+1(t), I) ,

(A.10)

where we use the notation xn+1(t) = x1(t). Although this low-level feature

is sensitive to noise, and would often fail, its association with the static and

dynamic prior overcomes its usual limitations. To summarize, the objective

energy (A.7) is the sum of unary terms that account for the dynamic prior,

and two types of pairwise terms: an edge-based one and a static prior-related

one.

To minimize the objective energy, we consider the same approach described

in section 3.2.3. At each image frame It, we initialize the shape model using

the result of the previous frame. We consider a quantization of the search

space, and we solve iteratively several labeling problems, where each label

refers to a possible control point displacement. The obtained MRF minimiza-

tion is an NP-hard problem. We consider approximate and computationally-

e�cient solutions given by the FastPD algorithm [Komodakis et al. 2008b].

We also use a coarse-to-�ne search to speed up computations.
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A.2.3 Experimental Validation

To test the applicability of our model and algorithm, we considered a

commonly-used example in tracking: walking people. The problem of track-

ing walking people provides a deformable object with interesting dynam-

ics. We used in our experiments video sequences from the Georgia Insti-

tute of Technology database (http://www.cc.gatech.edu/cpl/projects/

hid/Description.html).

We �rst selected a total of 455 frames of walking persons from the database

with di�erent gaits. We labeled manually these frames placing the landmarks

at the corresponding positions. Then we used these labeled images to learn a

static prior and a dynamic prior. Next, for the testing, we applied our trained

priors to three video sequences. The model points were initialized close to the

walking target. For the qualitative evaluation, we compare the results that

we obtain using the static prior, and then by using the static and the dynamic

prior. From our experiment we observe that the results with dynamic priors

are more robust with respect to the noisy edges, and have a better quality

than those from the static prior tests. Figures A.6 and A.7 show examples of

the obtained results. Although the features we use are weak, our algorithm

is able to track the object thanks to the learned prior. Additional tracking

results on other sequences and using the dynamic shape prior are presented

in Fig. A.8 A.9 A.10.

http://www.cc.gatech.edu/cpl/projects/hid/Description.html
http://www.cc.gatech.edu/cpl/projects/hid/Description.html
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(a) frame 1 (b) frame 66

(c) frame 94 (d) frame 120

(e) frame 163 (f) frame 183

(g) frame 207 (h) frame 237

Figure A.7: Frames extracted from a tracking sequence using our method with

the dynamic prior. Note that the tracking quality is better than in the static

prior case for the frame 66 for example (see Fig. A.6(b)).
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Figure A.8: Frames extracted from a tracking sequence using our method with

the dynamic prior.
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Figure A.9: Frames extracted from a tracking sequence using our method with

the dynamic prior.
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Figure A.10: Frames extracted from a tracking sequence using our method

with the dynamic prior.



Appendix B

EDM Realization in Rn

Proof of Theorem 2.1. Suppose that there exists N points (x1, . . . , xN) in Rn

such that dij = ‖xi − xj‖2 for 1 ≤ i, j ≤ N , and that span(x1, . . . , xN) =

Rn. Without loss of generality, we may assume that x1 = 0. Upon writing

xi − xj = (xi − x1) + (x1 − xj), we see that:

‖xi − xj‖2 = ‖xi − x1‖2 + ‖xj − x1‖2 − 2xTi xj

or equivalently,

xTi xj =
1

2
(‖xi − x1‖2+‖xj − x1‖2−‖xi − xj‖2) =

1

2
(d2

1i+d
2
1j−d2

ij) = a(i−1)(j−1) .

Subsequently, for any y ∈ RN−1, we have:

yTAy =
N−1∑
i,j=1

aijyiyj =

∥∥∥∥∥
N−1∑
i=1

xi+1yi

∥∥∥∥∥
2

≥ 0

meaning that A is positive semide�nite. Moreover, if we let V to be the

n × (N − 1) matrix whose ith column is the vector xi+1 (where 1 ≤ i ≤
N − 1), then we see that A is the Gram matrix of V , or A = V TV . Since

span(x1, . . . , xN) = Rn, we have rank(A) = n.

Conversely, suppose that A is positive semide�nite and has rank n ≤ N − 1.

Then we can write A = UΛUT , where U is a (N − 1) × (N − 1) orthogonal

matrix and Λ = diag(λ1, . . . , λn), where λ1 ≥ · · · ≥ λn > λn+1 = . . . λN−1 = 0

are the eigenvalues of A. Now, let (e1, . . . , eN − 1) be the standard basis

vectors of RN−1, and set xi+1 = PnΛ1/2UT ei ∈ Rn for 1 ≤ i ≤ N − 1, where

Pn is the orthogonal projection of RN onto the �rst n coordinates. Then for

1 ≤ i, j ≤ N − 1 we have:

d2
1(i+1) = aii = eTi Aei = eTi UΛUT ei =

∥∥Λ1/2UT ei
∥∥2

= ‖xi+1‖2

d2
(i+1)(j+1) = aii + ajj − 2aij = (ei − ej)TA(ei − ej) = ‖xi+1 − xj+1‖2 .

Thus, (0, x2, . . . , xN) de�nes the desired realization, which completes the

proof.
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Spanning k-tree of a k′-tree

Proof of Lemma 2.1. Without loss of generality, we may assume that k′ > k.

Let T ′ be a k-tree with t vertices v1, . . . , vt, and let v be the last vertex in a

given SEO of T ′. The proof of the lemma is given by induction on t.

If t = k′, then T ′ is a clique. Let T be the k-tree that is built as follows

(according to de�nition 2.2): start from the clique {v1, . . . , vk}, and for k+1 ≤
i ≤ t, connect vi to {vi−k, . . . , vi−1}. Then T solves the problem and (P) holds

clearly.

If t > k′, we apply the induction hypothesis to T ′ − v. Then there exists

a spanning k-tree T ′′ of T ′ − v, such that every k′-clique of T ′ − v contains

a k-clique of T ′′. In particular, the neighborhood of v in T ′ − v is a k′-clique

Q′, and so it contains a k-clique Q of T ′′. Let T be the graph obtained by

adding to T ′′ the vertex v and all the edges between v and Q. Clearly T is

a spanning k-tree of T ′. Moreover, T ′ satis�es (P). Indeed, we already know

that every k′-clique of T ′ that does not contain v contains a k-clique of T ′′,
and thus of T . Furthermore, every k′-clique C ′ of T ′ that contains v excludes
exactly one vertex u in the neighborhood of v in T ′ (because v is simplicial

and hence has exactly k′ neighbors in T ′). Thus C ′ = Q′ + v − u.If u is not a

vertex of Q then Q ⊂ (Q′ − u) ⊂ C ′, and (P) is proved. Else, the remaining

k − 1 vertices of Q together with v form a k-clique of T contained in C ′.





Publications of the Author

• Peer-reviewed Conference Publications:

� Ahmed Besbes, Nikos Komodakis, Ben Glocker, Georgios Tziritas

and Nikos Paragios.4D Ventricular Segmentation and Wall Motion

Estimation Using E�cient Discrete Optimization.In ISVC '07: Ad-

vances in Visual Computing, pp. 189�198, 2007.

� Ahmed Besbes, Nikos Komodakis, Georg Langs and Nikos Para-

gios.Shape priors and discrete MRFs for knowledge-based segmen-

tation. In CVPR '09: Proceedings of the 2009 Conference on Com-

puter Vision and Pattern Recognition, pp. 1295�1302, 2009.

� Ahmed Besbes, Nikos Komodakis and Nikos Paragios.Graph-Based

Knowledge-Driven Discrete Segmentation of the Left Ventricle. In

ISBI '09: Proceedings of the 6th IEEE International Symposium

on Biomedical Imaging: From Nano to Macro, pp. 49�52, 2009.

� Ahmed Besbes and Nikos Paragios.Landmark-based Segmentation

of Lungs while Handling Partial Correspondences using Sparse

Graph-based Priors. In ISBI '11: Proceedings of the 8th IEEE

International Symposium on Biomedical Imaging: From Nano to

Macro, 2011.

� Radhouène Neji, Ahmed Besbes, Nikos Komodakis, Jean-François

Deux, Mezri Maatouk, Alain Rahmouni, Guillaume Bassez, Gilles

Fleury and Nikos Paragios.Clustering of the Human Skeletal Muscle

Fibers Using Linear Programming and Angular Hilbertian Metrics.

In IPMI '09: Proceedings of the 21th International Conference on

Information Processing in Medical Imaging, pp. 14�25, 2009.

� Yangming Ou, Ahmed Besbes, Michel Bilello, Mohamed Mansour,

Christos Davatzikos and Nikos Paragios. Detecting Landmark

Pairs by Mutual-Saliency and MRF Regularization. In ISBI '10:

Proceedings of the 7th IEEE International Symposium on Biomed-

ical Imaging: From Nano to Macro, 2010.



• Invited Publication:

� Nikos Komodakis, Ahmed Besbes, Ben Glocker and Nikos Para-

gios. Biomedical Image Analysis Using Markov Random Fields &

E�cient Linear Programming. In EMBC'09: International Confer-

ence of the IEEE Engineering in Medicine and Biology Society,

2009. invited publication.

• Technical Report:

� Ahmed Besbes, Nikos Paragios and Nikos Komodakis. Cue Inte-

gration and Discrete MRFs towards Knowledge-based Segmentation

and Tracking.Research report 6831, Equipe GALEN, INRIA Saclay

- Ile-de-France, 2009.



Bibliography

[Abi Nahed et al. 2006] Julien Abi Nahed, Marie-Pierre Jolly and Guang-

Zhong Yang. Robust Active Shape Models: A Robust, Generic and

Simple Automatic Segmentation Tool. In MICCAI '06: Proceedings

of the 9th International Conference on Medical Image Computing and

Computer Assisted Intervention, 2006. 71

[Alcantara et al. 2009] Dan A. Alcantara, Owen Carmichael, Will Harcourt-

Smith, Kirstin Sterner, Stephen R. Frost, Rebecca Dutton, Paul

Thompson, Eric Delson and Nina Amenta. Exploration of Shape Vari-

ation Using Localized Components Analysis. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 31, no. 8, pp. 1510�

1516, 2009. 9

[Ali et al. 2007] Asem M. Ali, Aly A. Farag and Ayman S. El-Baz. Graph Cuts

Framework for Kidney Segmentation with Prior Shape Constraints. In

MICCAI '07: Proceedings of the 10th International Conference on

Medical Image Computing and Computer Assisted Intervention, pp.

384�392, 2007. 79, 82

[Andreopoulos & Tsotsos 2008] Alexander Andreopoulos and John K. Tsot-

sos. E�cient and Generalizable Statistical Models of Shape and Ap-

pearance for Analysis of Cardiac MRI. Medical Image Analysis, vol. 12,

no. 3, pp. 335�357, 2008. 73

[Arulampalam et al. 2002] M. Sanjeev Arulampalam, Simon Maskell, Neil

Gordon and Tim Clapp. A tutorial on particle �lters for online

nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Sig-

nal Processing, vol. 50, no. 2, pp. 174�188, 2002. 133

[Aurenhammer 1991] Franz Aurenhammer. Voronoi Diagrams - A Survey of

a Fundamental Geometric Data Structure. ACM Computing Surveys,

vol. 23, no. 3, pp. 345�405, 1991. 88

[Bardinet et al. 1995] Eric Bardinet, Laurent D. Cohen and Nicholas Ayache.

Superquadrics and Free-Form Deformations: A Global Model to Fit



and Track 3D Medical Data. In CVRMed '95: Proceedings of the

First International Conference on Computer Vision, Virtual Reality

and Robotics in Medicine, pp. 319�326, 1995. 14

[Bardinet et al. 1998] Eric Bardinet, Laurent D. Cohen and Nicholas Ayache.

A Parametric Deformable Model to Fit Unstructured 3D Data. Com-

puter Vision and Image Understanding, vol. 71, no. 1, pp. 39�54, 1998.

14

[Behiels et al. 1999] Gert Behiels, Dirk Vandermeulen, Frederik Maes, Paul

Suetens and Piet Dewaele. Active Shape Model-Based Segmentation

of Digital X-ray Images. In MICCAI '99: Proceedings of the 2nd

International Conference on Medical Image Computing and Computer

Assisted Intervention, pp. 128�137, 1999. 71

[Belongie et al. 2002] Serge Belongie, Jitendra Malik and Jan Puzicha. Shape

Matching and Object Recognition Using Shape Contexts. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 24, no. 24,

pp. 509�522, 2002. 16

[Ben Ayed et al. 2009] Ismail Ben Ayed, Kumaradevan Punithakumar, Shuo

Li, Ali Islam and Jaron Chong. Left Ventricle Segmentation via Graph

Cut Distribution Matching. In MICCAI '09: Proceedings of the 12th

International Conference on Medical Image Computing and Computer

Assisted Intervention, 2009. 81, 82

[Bertrand 1994] Gilles Bertrand. Simple Points, Topological Numbers and

Geodesic Neighborhoods in Cubic Grids. Pattern Recognition Letters,

vol. 15, no. 10, pp. 1003�1011, 1994. 78

[Bertsekas 1999] Dimitri P. Bertsekas. Nonlinear Programming. Athena Sci-

enti�c, 1999. 64

[Besag 1986] Julian Besag. On the Statistical Analysis of Dirty Pictures. Jour-

nal of the Royal Statistical Society, vol. 48, no. 3, pp. 259�302, 1986.

55



[Bilbro et al. 1989] Gri� Bilbro, Reinhold Mann, Thomas K. Miller, Wesley E.

Snyder, David E. Van den Bout and Mark White. Optimization by

Mean Field Annealing. In NIPS '89: Advances in Neural Information

Processing Systems 2, pp. 91�98, 1989. 56

[Black & Jepson 1998] Michael J. Black and Allan D. Jepson. EigenTrack-

ing: Robust Matching and Tracking of Articulated Objects Using a

View-Based Representation. International Journal of Computer Vi-

sion, vol. 26, no. 1, pp. 63�84, 1998. 133

[Blake et al. 2004] Andrew Blake, Carsten Rother, Matthew Brown, Patrick

Pérez and Philip Torr. Interactive Image Segmentation Using an Adap-

tive GMMRF Model. In ECCV '04: Proceedings of the 8th European

Conference on Computer Vision, pp. 428�441, 2004. 74

[Blum 1973] Harry Blum. Biological Shape and Visual Science. Theoretical

Biology, vol. 38, no. 2, pp. 205�287, 1973. 14

[Bookstein 1989] Fred L. Bookstein. Principal Warps: Thin-Plate Splines and

the Decomposition of Deformations. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 11, no. 6, pp. 567�585, 1989.

102

[Boykov & Funka-Lea 2006] Yuri Boykov and Gareth Funka-Lea. Graph Cuts

and E�cient N-D Image Segmentation. International Journal of Com-

puter Vision, vol. 70, no. 2, pp. 109�131, 2006. 55, 66, 74

[Boykov & Jolly 2001] Yuri Boykov and Marie-Pierre Jolly. Interactive Graph

Cuts for Optimal Boundary and Region Segmentation of Objects in N-

D Images. In ICCV '01: Proceedings of the 8th IEEE International

Conference on Computer Vision, pp. 105�112, 2001. 57, 73, 74, 86

[Boykov & Kolmogorov 2004] Yuri Boykov and Vladimir Kolmogorov. An Ex-

perimental Comparison of Min-Cut/Max-Flow Algorithms for Energy

Minimization in Vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 26, no. 9, pp. 1124�1137, 2004. 58



[Boykov et al. 1998] Yuri Boykov, Olga Veksler and Ramin Zabih. Markov

Random Fields with E�cient Approximations. In CVPR '98: Proceed-

ings of the 1998 Conference on Computer Vision and Pattern Recog-

nition, pp. 648�655, 1998. 59

[Boykov et al. 1999] Yuri Boykov, Olga Veksler and Ramin Zabih. Fast Ap-

proximate Energy Minimization via Graph Cuts. In ICCV '99: Pro-

ceedings of the 7th IEEE International Conference on Computer Vi-

sion, pp. 377�384, 1999. 57

[Boykov et al. 2001] Yuri Boykov, Olga Veksler and Ramin Zabih. Fast Ap-

proximate Energy Minimization via Graph Cuts. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp.

1222�1239, 2001. 59, 93

[Bugeau & Pérez 2009] Aurélie Bugeau and Patrick Pérez. Detection and seg-

mentation of moving objects in complex scenes. Computer Vision and

Image Understanding, vol. 113, no. 4, pp. 459�476, 2009. 134

[Caetano et al. 2006] Tibério S. Caetano, Terry Caelli, Dale Schuurmans and

Dante A.C. Barone. Graphical Models and Point Pattern Match-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 28, no. 10, pp. 1646�1663, 2006. 21, 22, 23, 32, 33, 34

[Cai & Ma�ray 1993] Leizhen Cai and Frédéric Ma�ray. On the SPANNING

k-TREE problem. Discrete Applied Mathematics, vol. 44, no. 1�3, pp.

139�156, 1993. 33

[Caselles et al. 1997] Vicent Caselles, Ron Kimmel and Guillermo Sapiro.

Geodesic Active Contours. International Journal of Computer Vision,

vol. 22, no. 1, pp. 61�79, 1997. 67

[Chakraborty et al. 1996] Amit Chakraborty, Lawrence H. Staib and James S.

Duncan. Deformable Boundary Finding in Medical Images by Integrat-

ing Gradient and Region Information. IEEE Transactions on Medical

Imaging, vol. 15, no. 6, pp. 859�870, 1996. 15, 67, 89



[Chan & Vese 2001] Tony F. Chan and Luminita A. Vese. Active Contours

without Edges. IEEE Transactions on Image Processing, vol. 10, no. 2,

pp. 266�277, 2001. 67

[Chan & Zhu 2005] Tony Chan and Wei Zhu. Level Set Based Shape Prior

Segmentation. In CVPR '05: Proceedings of the 2005 Conference on

Computer Vision and Pattern Recognition, pp. 1164�1170, 2005. 12,

80

[Charpiat et al. 2007] Guillaume Charpiat, Olivier Faugeras and Renaud

Keriven. Shape Statistics for Image Segmentation with Prior. In

CVPR '07: Proceedings of the 2007 Conference on Computer Vision

and Pattern Recognition, pp. 1�6, 2007. 11

[Chen et al. 2002] Yunmei Chen, Hemant Tagare, Sheshadri Thiruvenkadam,

Feng Huang, David Cli�ord Wilson, Kaundinya S. Gopinath,

Richard W. Briggs and Edward A. Geiser. Using Prior Shapes in

Geometric Active Contours in a Variational Framework. International

Journal of Computer Vision, vol. 50, no. 3, pp. 315�328, 2002. 17

[Chennubhotla & Jepson 2001] Chakra Chennubhotla and Allan Jepson.

Sparse PCA Extracting Multi-scale Structure from Data. In ICCV '01:

Proceedings of the 8th IEEE International Conference on Computer

Vision, pp. 641�647, 2001. 9

[Chou & Brown 1990] Paul B. Chou and Christopher M. Brown. The Theory

and Practice of Bayesian Image Labeling. International Journal of

Computer Vision, vol. 4, no. 3, pp. 185�210, 1990. 56

[Chui & Rangarajan 2000] Haili Chui and Anand Rangarajan. A New Algo-

rithm for Non-Rigid Point Matching. In CVPR '00: Proceedings of

the 2000 Conference on Computer Vision and Pattern Recognition,

pp. 44�51, 2000. 71

[Cohen 1991] Laurent D. Cohen. On Active Contour Models and Balloons.

CVGIP: Image Understanding, vol. 53, no. 2, pp. 211�218, 1991. 67



[Coifman & Lafon 2006] Ronald R. Coifman and Stéphane Lafon. Di�usion

Maps. Applied and Computational Harmonic Analysis, vol. 21, no. 1,

pp. 5�30, 2006. 13, 19, 34

[Coifman & Maggioni 2006] Ronald R. Coifman and Mauro Maggioni. Di�u-

sion Wavelets. Applied and Computational Harmonic Analysis, vol. 21,

pp. 53�94, 2006. 15

[Collins 2003] Robert T. Collins. Mean-shift Blob Tracking through Scale

Space. In CVPR '03: Proceedings of the 2003 Conference on Com-

puter Vision and Pattern Recognition, volume 2, pp. 234�240, 2003.

133

[Comaniciu & Meer 2002] Dorin Comaniciu and Peter Meer. Mean Shift: A

Robust Approach Toward Feature Space Analysis. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603�

619, 2002. 70, 133

[Cook & Lee 1999] R. Dennis Cook and Hakbae Lee. Dimension-Reduction

in Binary Response Regression. Journal of the American Statistical

Association, vol. 94, no. 448, pp. 1187�1200, 1999. 106

[Cooper et al. 1991] David H. Cooper, Christopher J. Taylor, Jim Graham

and Tim F. Cootes. Locating Overlapping Flexible Shapes Using Ge-

ometrical Constraints. In BMVC '91: Proceedings of the British Ma-

chine Vision Conference, pp. 185�194, 1991. 20

[Cootes & Taylor 1992] Tim F. Cootes and Christopher J. Taylor. Active

Shape Models: Smart Snakes. In BMVC '92: Proceedings of the British

Machine Vision Conference, 1992. 68

[Cootes & Taylor 1996] Tim F. Cootes and Christopher J. Taylor. Data

Driven Re�nement of Active Shape Model Search. In BMVC '96: Pro-

ceedings of the British Machine Vision Conference, 1996. 10

[Cootes & Taylor 1999] Tim F. Cootes and Christopher J. Taylor. A Mixture

Model for Representing Shape Variation. Image and Vision Computing,

vol. 17, no. 8, pp. 567�574, 1999. 11



[Cootes et al. 1992] Tim F. Cootes, David H. Cooper, Christopher J. Taylor

and Jim Graham. Trainable Method of Parametric Shape Description.

Image and Vision Computing, vol. 10, no. 5, pp. 289�294, 1992. 20, 21

[Cootes et al. 1995] Tim F. Cootes, Christopher J. Taylor, David H. Cooper

and Jim Graham. Active Shape Models - Their Training and Applica-

tion. Computer Vision and Image Understanding, vol. 61, no. 1, pp.

38�59, 1995. 8, 10, 20

[Cootes et al. 2001] Tim F. Cootes, Gareth J. Edwards and Christopher J.

Taylor. Active Appearance Models. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681�685, 2001.

9, 72, 99

[Coughlan & Ferreira 2002] James M. Coughlan and Sabino J. Ferreira. Find-

ing Deformable Shapes Using Loopy Belief Propagation. In ECCV '02:

Proceedings of the 7th European Conference on Computer Vision,

2002. 16

[Coughlan et al. 2000] James Coughlan, Alan Yuille, Camper English and

Dan Snow. E�cient Deformable Template Detection and Localization

without User Initialization. Computer Vision and Image Understand-

ing, vol. 78, no. 3, pp. 303�319, 2000. 15

[Crandall et al. 2005] David Crandall, Pedro Felzenszwalb and Daniel Hut-

tenlocher. Spatial Priors for Part-Based Recognition Using Statistical

Models. In CVPR '05: Proceedings of the 2005 Conference on Com-

puter Vision and Pattern Recognition, pp. 10�17, 2005. 25, 40

[Cremers & Grady 2006] Daniel Cremers and Leo Grady. Statistical Pri-

ors for E�cient Combinatorial Optimization Via Graph Cuts. In

ECCV '06: Proceedings of the 9th European Conference on Computer

Vision, volume 3, pp. 263�274, 2006. 29

[Cremers et al. 2001] Daniel Cremers, Christoph Schnorr and Joachim We-

ickert. Di�usion-Snakes: Combining Statistical Shape Knowledge and

Image Information in a Variational Framework. In Proceedings of the



1st International Workshop on Variational, Geometric, and Level Set

Methods in Computer Vision, pp. 137�144, 2001. 10, 11

[Cremers et al. 2002a] Daniel Cremers, Timo Kohlberger and Christoph

Schnörr. Nonlinear Shape Statistics in Mumford�Shah Based Segmen-

tation. In ECCV '02: Proceedings of the 7th European Conference on

Computer Vision, pp. 93�108, 2002. 11

[Cremers et al. 2002b] Daniel Cremers, Florian Tischhäuser, Joachim Weick-

ert and Christoph Schnörr. Di�usion Snakes: Introducing Statistical

Shape Knowledge into the Mumford-Shah Functional. International

Journal of Computer Vision, vol. 50, no. 3, pp. 295�313, 2002. 10

[Cremers et al. 2007] Daniel Cremers, Mikaël Rousson and Rachid Deriche. A

Review of Statistical Approaches to Level Set Segmentation: Integrating

Color, Texture, Motion and Shape. International Journal of Computer

Vision, vol. 72, no. 2, pp. 195�215, 2007. 7, 12, 66

[Cremers 2008] Daniel Cremers. Nonlinear Dynamical Shape Priors for Level

Set Segmentation. Journal of Scienti�c Computing, vol. 35, no. 2-3,

pp. 132�143, 2008. 133

[Das et al. 2009] Piali Das, Olga Veksler, Vyacheslav Zavadsky and Yuri

Boykov. Semiautomatic Segmentation with Compact Shape Prior. Im-

age and Vision Computing, vol. 27, no. 1-2, pp. 206�219, 2009. 77

[Dattorro 2005] Jon Dattorro. Convex Optimization & Euclidean Distance

Geometry. Meboo Publishing USA, 2005. 20, 31

[Davatzikos et al. 2003] Christos Davatzikos, Xiaodong Tao and Dinggang

Shen. Hierarchical Active Shape Models, Using the Wavelet Transform.

IEEE Transactions on Medical Imaging, vol. 22, no. 3, pp. 414�423,

March 2003. 15

[Davies et al. 2002] Rhodri H. Davies, Carole J. Twining, Tim F. Cootes,

John C. Waterton and Christopher J. Taylor. A Minimum Description

Length Approach to Statistical Shape Modeling. IEEE Transactions on

Medical Imaging, vol. 21, no. 5, pp. 525�537, 2002. 8



[de Bruijne & Nielsen 2004] Marleen de Bruijne and Mads Nielsen. Shape

Particle Filtering for Image Segmentation. In MICCAI '04: Proceed-

ings of the 7th International Conference on Medical Image Computing

and Computer Assisted Intervention, pp. 168�175, 2004. 70

[de Bruijne & Nielsen 2005] Marleen de Bruijne and Mads Nielsen. Multi-

object Segmentation Using Shape Particles. In IPMI '05: Proceed-

ings of the 19th International Conference on Information Processing

in Medical Imaging, pp. 762�773, 2005. 70

[de Bruijne et al. 2003] Marleen de Bruijne, Bram van Ginneken, Wiro J.

Niessen, Marco Loog and Max A. Viergever. Model-based Segmenta-

tion of Abdominal Aortic Aneurysms in CTA Images. In CTA images.

Proceedings of SPIE Medical Imaging, Image Processing, 2003. 69, 70

[Delingette 1999] Hervé Delingette. General Object Reconstruction Based on

Simplex Meshes. International Journal of Computer Vision, vol. 32,

no. 2, pp. 111�146, September 1999. 67

[Donner et al. 2006] René Donner, Michael Reiter, Georg Langs, Philipp

Peloschek and Horst Bischof. Fast Active Appearance Model Search

Using Canonical Correlation Analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1690�1694, 2006.

73

[Donner et al. 2007a] René Donner, Branislav Micu²ík, Georg Langs and

Horst Bischof. Sparse MRF Appearance Models for Fast Anatomi-

cal Structure Localisation. In BMVC '07: Proceedings of the British

Machine Vision Conference, 2007. 104, 105, 110, 111

[Donner et al. 2007b] René Donner, Branislav Micu²ík, Georg Langs, Lech

Szumilas, Philipp Peloschek, Klaus Friedrich and Horst Bischof. Ob-

ject Localization Based on Markov Random Fields and Symmetry In-

terest Points. In MICCAI '07: Proceedings of the 10th International

Conference on Medical Image Computing and Computer Assisted In-

tervention, pp. 460�468, 2007. 84



[Donner et al. 2009] René Donner, Horst Wildenauer, Horst Bischof and

Georg Langs. Weakly Supervised Group-Wise Model Learning Based on

Discrete Optimization. In International Conference on Medical Image

Computing and Computer Assisted Intervention, 2009. 84

[Donner et al. 2010] René Donner, Georg Langs, Branislav Micu²ík and Horst

Bischof. Generalized Sparse MRF Appearance Models. Image and Vi-

sion Computing, vol. 28, no. 6, pp. 1031�1038, 2010. 26, 84, 85, 86,

104

[Essa� et al. 2009] Salma Essa�, Georg Langs and Nikos Paragios. Hierar-

chical 3D Di�usion Wavelet Shape Priors. In ICCV '09: Proceedings

of the 12th IEEE International Conference on Computer Vision, pp.

1717�1724, 2009. 15

[Etyngier et al. 2007] Patrick Etyngier, Florent Ségonne and Renaud Keriven.

Shape Priors using Manifold Learning Techniques. In ICCV '07: Pro-

ceedings of the 11th IEEE International Conference on Computer Vi-

sion, pp. 1�8, 2007. 13

[Felzenszwalb & Huttenlocher 2000] Pedro F. Felzenszwalb and Daniel P.

Huttenlocher. E�cient Matching of Pictorial Structures. In CVPR '00:

Proceedings of the 2000 Conference on Computer Vision and Pattern

Recognition, pp. 66�73, 2000. 17

[Felzenszwalb & Huttenlocher 2005] Pedro F. Felzenszwalb and Daniel P.

Huttenlocher. Pictorial Structures for Object Recognition. Interna-

tional Journal of Computer Vision, vol. 61, no. 1, pp. 55�79, 2005. 17,

24, 25, 43, 83, 133

[Felzenszwalb 2005] Pedro F. Felzenszwalb. Representation and Detection of

Deformable Shapes. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 27, no. 2, pp. 208�220, 2005. 23, 24, 83, 85

[Fischler & Bolles 1981] Martin A. Fischler and Robert C. Bolles. Random

Sample Consensus: a Paradigm for Model Fitting with Applications to

Image Analysis and Automated Cartography. Commumications of the

ACM, vol. 24, no. 6, pp. 381�395, 1981. 71



[Fischler & Elschlager 1973] Martin A. Fischler and Robert A. Elschlager.

The Representation and Matching of Pictorial Structures. IEEE Trans-

actions on Computers, vol. 22, no. 1, pp. 67�92, 1973. 16, 17

[Fletcher et al. 2004] P. Thomas Fletcher, Conglin Lu, Stephen M. Pizer and

Sarang Joshi. Principal Geodesic Analysis for the Study of Nonlinear

Statistics of Shape. IEEE Transactions on Medical Imaging, vol. 23,

no. 8, pp. 995�1005, 2004. 14

[Ford & Fulkerson 1962] Lester R. Ford and Delbert R. Fulkerson. Flows in

Networks. Princeton University Press, 1962. 58

[Freedman & Zhang 2005] Daniel Freedman and Tao Zhang. Interactive

Graph Cut Based Segmentation with Shape Priors. In CVPR '05:

Proceedings of the 2005 Conference on Computer Vision and Pattern

Recognition, pp. 755�762, 2005. 78, 82

[Freeman & Adelson 1991] William T. Freeman and Edward H. Adelson. The

Design and Use of Steerable Filters. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891�906, 1991.

69

[Freund & Schapire 1996] Yoav Freund and Robert E. Schapire. Experiments

with a New Boosting Algorithm. In Proceedings of the 13th Interna-

tional Conference on Machine Learning, 1996. 106, 107

[Freund & Schapire 1997] Yoav Freund and Robert E. Schapire. A Decision-

Theoretic Generalization of On-Line Learning and an Application to

Boosting. Journal of Computer and System Sciences, vol. 55, no. 1,

pp. 119�139, 1997. 70

[Funka-Lea et al. 2006] Gareth Funka-Lea, Yuri Boykov, Charles Florin,

Marie-Pierre Jolly, Romain Moreau-Gobard, Rana Ramaraj and

Daniel Rinck. Automatic Heart Isolation for CT Coronary Visualiza-

tion Using Graph-Cuts. In ISBI '06: Proceedings of the 2006 IEEE In-

ternational Symposium on Biomedical Imaging: From Nano to Macro,

pp. 614�617, 2006. 77



[Geman & Geman 1984] Stuart Geman and Donald Geman. Stochastic Re-

laxation, Gibbs Distributions, and the Bayesian Restoration of Im-

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 6, no. 6, pp. 721�741, 1984. 55

[Glocker et al. 2007] Ben Glocker, Nikos Komodakis, Nikos Paragios, Geor-

gios Tziritas and Nassir Navab. Inter and Intra-Modal Deformable

Registration: Continuous Deformations Meet E�cient Optimal Lin-

ear Programming. In IPMI '07: Proceedings of the 20th International

Conference on Information Processing in Medical Imaging, 2007. 86,

91

[Glocker et al. 2008] Ben Glocker, Nikos Komodakis, Georgios Tziritas, Nas-

sir Navab and Nikos Paragios. Dense Image Registration through MRFs

and E�cient Linear Programming. Medical Image Analysis, vol. 12,

no. 6, pp. 731�741, 2008. 86

[Glocker et al. 2009] Ben Glocker, Nikos Komodakis, Nassir Navab, Georgios

Tziritas and Nikos Paragios. Dense Registration with Deformation Pri-

ors. In IPMI '09: Proceedings of the 21th International Conference on

Information Processing in Medical Imaging, 2009. 26, 28

[Goldberg & Tarjan 1988] Andrew V. Goldberg and Robert E. Tarjan. A New

Approach to the Maximum-Flow Problem. Journal of the ACM, vol. 35,

no. 4, pp. 921�940, 1988. 58

[Grady et al. 2005] Leo Grady, Yiyong Sun and James Williams. Handbook of

Mathematical Models of Computer Vision, chapter: Interactive Graph-

Based Segmentation Methods in Cardiovascular Imaging, pp. 453�469.

Springer Verlag, 2005. 48

[Grady 2005] Leo Grady. Multilabel Random Walker Image Segmentation Us-

ing Prior Models. In CVPR '05: Proceedings of the 2005 Conference

on Computer Vision and Pattern Recognition, pp. 763�770, 2005. 75

[Grady 2006] Leo Grady. Random Walks for Image Segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28,

no. 11, pp. 1768�1783, 2006. 49, 75, 101, 103



[Grady 2010] Leo Grady. Minimal Surfaces Extend Shortest Path Segmen-

tation Methods to 3D. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 32, no. 2, pp. 321�334, 2010. 83

[Greig et al. 1989] D. Greig, B. Porteous and A. Seheult. Exact Maximum a

Posterori Estimation for Binary Images. Journal of the Royal Statis-

tical Society, vol. 51, no. 2, pp. 271�279, 1989. 56, 57

[Gross et al. 2006] Ralph Gross, Iain Matthews and Simon Baker. Active Ap-

pearance Models with Occlusion. Image and Vision Computing, vol. 24,

no. 1, pp. 593�604, 2006. 73, 99

[Gu et al. 2007] Lie Gu, Eric P. Xing and Takeo Kanade. Learning GMRF

Structures for Spatial Priors. In CVPR '07: Proceedings of the 2007

Conference on Computer Vision and Pattern Recognition, pp. 1�6,

2007. 26

[Hammer et al. 1984] P. L. Hammer, P. Hansen and B. Simeone. Roof Dual-

ity, Complementation and Persistency in Quadratic 0-1 Optimization.

Mathematical Programming, vol. 28, pp. 121�155, 1984. 58

[Heap & Hogg 1997] Tony Heap and David Hogg. Improving Speci�city in

PDMs using a Hierarchical Approach. In BMVC '97: Proceedings of

the British Machine Vision Conference, 1997. 10

[Heimann & Meinzer 2009] Tobias Heimann and Hans-Peter Meinzer. Sta-

tistical Shape Models for 3D Medical Image Segmentation: A Review.

Medical Image Analysis, vol. 13, no. 4, pp. 543�563, 2009. 7, 66

[Hong et al. 2006] Byung-Woo Hong, Emmanuel Prados, Stefano Soatto and

Luminita Vese. Shape Representation based on Integral Kernels: Appli-

cation to Image Matching and Segmentation. In CVPR '06: Proceed-

ings of the 2006 Conference on Computer Vision and Pattern Recog-

nition, pp. I: 833�840, 2006. 16

[Hyvärinen et al. 2001] Aapo Hyvärinen, Juha Karhunen and Erkki Oja. In-

dependent component analysis. John Wiley & Sons, Inc., 2001. 9



[Isard & Blake 1998] Michael Isard and Andrew Blake. Condensation � Con-

ditional Density Propagation for Visual Tracking. International Jour-

nal of Computer Vision, vol. 29, no. 1, pp. 5�28, 1998. 70, 133

[Ishikawa & Jermyn 2001] Hiroshi Ishikawa and Ian H. Jermyn. Region Ex-

traction from Multiple Images. In CVPR '01: Proceedings of the 2001

Conference on Computer Vision and Pattern Recognition, 2001. 81

[Ishikawa 2003] Hiroshi Ishikawa. Exact Optimization for Markov Random

Fields with Convex Priors. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 25, no. 10, pp. 1333�1336, 2003. 59

[Jain et al. 1998] Anil K. Jain, Yu Zhong and Marie-Pierre Dubuisson-Jolly.

Deformable Template Models: A Review. Signal Processing, vol. 71,

no. 2, pp. 109�129, 1998. 66

[Jermyn & Ishikawa 2001] Ian H. Jermyn and Hiroshi Ishikawa. Globally Op-

timal Regions and Boundaries as Minimum Ratio Weight Cycles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 23,

no. 10, pp. 1075�1088, 2001. 81

[Jiao et al. 2003] Feng Jiao, Stan Li, Heung-Yeung Shum and Dale Schuur-

mans. Face Alignment Using Statistical Models and Wavelet Features.

In CVPR '03: Proceedings of the 2003 Conference on Computer Vision

and Pattern Recognition, pp. 321�327, 2003. 69

[Joshi & Miller 2000] Sarang C. Joshi and Michael I. Miller. Landmark

Matching via Large Deformation Di�eomorphisms. IEEE Transactions

on Image Processing, vol. 9, no. 8, pp. 1357�1370, 2000. 124

[Kadir & Brady 2001] Timor Kadir and Michael Brady. Saliency, Scale and

Image Description. International Journal of Computer Vision, vol. 45,

no. 2, pp. 83�105, 2001. 124, 126

[Kalman 1960] Rudolph E. Kalman. A New Approach to Linear Filtering and

Prediction Problems. Transactions of the ASME � Journal of Basic

Engineering, vol. 82, no. Series D, pp. 35�45, 1960. 133



[Kass et al. 1988] Michael Kass, Andrew Witkin and Demetri Terzopoulos.

Snakes: Active contour models. International Journal of Computer

Vision, vol. 1, no. 4, pp. 321�331, 1988. 66

[Kelemen et al. 1999] András Kelemen, Gábor Székely and Guido Gerig.

Elastic Model-Based Segmentation of 3-D Neuroradiological Data Sets.

IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 828�839,

1999. 15

[Kichenassamy et al. 1995] Satyanad Kichenassamy, Arun Kumar, Peter

Olver, Allen Tannenbaum and Anthony Yezzi. Gradient Flows and

Geometric Active Contour Models. In ICCV '95: Proceedings of the

5th IEEE International Conference on Computer Vision, 1995. 67

[Kirkpatrick et al. 1983] Scott Kirkpatrick, C. Daniel Gelatt Jr. and Mario P.

Vecchi. Optimization by Simulated Annealing. Science, vol. 220,

no. 4598, pp. 671�680, 1983. 56

[Koenderink & Van Doorn 1999] Jan J. Koenderink and Andrea J.

Van Doorn. The Structure of Locally Orderless Images. Inter-

national Journal of Computer Vision, vol. 31, no. 2-3, pp. 159�168,

1999. 69, 106

[Kohli et al. 2008] Pushmeet Kohli, Jonathan Rihan, Matthieu Bray and

Philip H.S. Torr. Simultaneous Segmentation and Pose Estimation of

Humans Using Dynamic Graph Cuts. International Journal of Com-

puter Vision, vol. 79, pp. 285�298, 2008. 134

[Kokkinos 2010] Iasonas Kokkinos. Highly Accurate Boundary Detection and

Grouping. In CVPR '10: Proceedings of the 2010 Conference on Com-

puter Vision and Pattern Recognition, 2010. 105

[Kolmogorov & Rother 2007] Vladimir Kolmogorov and Carsten Rother.

Minimizing Nonsubmodular Functions with Graph Cuts�A Review.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 7, pp. 1274�1279, 2007. 58



[Kolmogorov & Wainwright 2005] Vladimir Kolmogorov and Martin J. Wain-

wright. On the Optimality of Tree-reweighted Max-product Message-

passing. In UAI '05: Proceedings of the 21st Conference on Uncertainty

in Arti�cial Intelligence, pp. 316�323, 2005. 64

[Kolmogorov & Zabih 2004] Vladimir Kolmogorov and Ramin Zabih. What

Energy Functions Can Be Minimized via Graph Cuts? IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp.

147�159, 2004. 58

[Kolmogorov 2006] Vladimir Kolmogorov. Convergent Tree-Reweighted Mes-

sage Passing for Energy Minimization. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1568�1583, 2006.

25, 45, 64, 93, 110, 129

[Komodakis & Paragios 2008] Nikos Komodakis and Nikos Paragios. Beyond

Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles. In

ECCV '08: Proceedings of the 10th European Conference on Com-

puter Vision, volume 3, pp. 806�820, 2008. 65

[Komodakis & Tziritas 2007] Nikos Komodakis and Georgios Tziritas. Ap-

proximate Labeling via Graph Cuts Based on Linear Programming.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 8, pp. 1436�1435, 2007. 62, 63

[Komodakis et al. 2007] Nikos Komodakis, Nikos Paragios and Georgios Tzir-

itas. MRF Optimization via Dual Decomposition: Message-Passing

Revisited. In ICCV '07: Proceedings of the 11th IEEE International

Conference on Computer Vision, pp. 1�8, 2007. 64

[Komodakis et al. 2008a] Nikos Komodakis, Nikos Paragios and Georgios

Tziritas. Clustering via LP-based Stabilities. In NIPS '08: Advances

in Neural Information Processing Systems 21, 2008. 19, 26, 37, 39

[Komodakis et al. 2008b] Nikos Komodakis, Georgios Tziritas and Nikos

Paragios. Performance vs Computational E�ciency for Optimizing

Single and Dynamic MRFs: Setting the State of the Art with Primal



Dual Strategies. Computer Vision and Image Understanding, vol. 112,

no. 1, pp. 14�29, 2008. 25, 45, 63, 94, 111, 137

[Kschischang et al. 2001] Frank R. Kschischang, Brendan J. Frey and Hans-

Andrea Loeliger. Factor Graphs and the Sum-Product Algorithm. IEEE

Transactions on Information Theory, vol. 47, no. 2, pp. 498�519, 2001.

60

[Kumar et al. 2006] M. Pawan Kumar, Philip H. S. Torr and Andrew Zisser-

man. Solving Markov Random Fields using Second Order Cone Pro-

gramming Relaxations. In CVPR '06: Proceedings of the 2006 Con-

ference on Computer Vision and Pattern Recognition, pp. 1045�1052,

2006. 64

[Kumar et al. 2009] M. Pawan Kumar, Vladimir Kolmogorov and Philip H. S.

Torr. An Analysis of Convex Relaxations for MAP Estimation of Dis-

crete MRFs. Journal of Machine Learning Research, vol. 10, pp. 71�

106, 2009. 64

[Kumar et al. 2010] M. Pawan Kumar, Philip H.S. Torr and Andrew Zisser-

man. OBJCUT: E�cient Segmentation Using Top-Down and Bottom-

Up Cues. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 32, no. 3, pp. 530�545, 2010. 84, 85, 96

[Langs & Paragios 2008] Georg Langs and Nikos Paragios. Modeling the

Structure of Multivariate Manifolds: Shape Maps. In CVPR '08: Pro-

ceedings of the 2008 Conference on Computer Vision and Pattern

Recognition, 2008. 19, 28, 34, 35, 36, 97

[Langs et al. 2006] Georg Langs, René Donner, Michael Reiter and Horst

Bischof. Active Feature Models. In 18th International Conference on

Pattern Recognition, pp. 417�420, 2006. 69

[Leordeanu & Hebert 2005] Marius Leordeanu and Martial Hebert. A Spectral

Technique for Correspondence Problems Using Pairwise Constraints.

In ICCV '05: Proceedings of the 10th IEEE International Conference

on Computer Vision, pp. 1482�1489, 2005. 129



[Leventon et al. 2000] Michael E. Leventon, W. Eric L. Grimson and Olivier

Faugeras. Statistical Shape In�uence in Geodesic Active Contours. In

CVPR '00: Proceedings of the 2000 Conference on Computer Vision

and Pattern Recognition, pp. I: 316�323, 2000. 12

[Li & Ito 2005] Yuanzhong Li and Wataru Ito. Shape Parameter Optimization

for AdaBoosted Active Shape Model. In ICCV '05: Proceedings of the

10th IEEE International Conference on Computer Vision, pp. 251�258,

2005. 70

[Li et al. 2004a] Shuyu Li, Litao Zhu and Tianzi Jiang. Active Shape Model

Segmentation Using Local Edge Structures and AdaBoost. In Medical

Imaging and Augmented Reality, 2004. 70

[Li et al. 2004b] Yin Li, Jian Sun, Chi-Keung Tang and Heung-Yeung Shum.

Lazy Snapping. ACM Transactions on Graphics, vol. 23, no. 3, pp.

303�308, 2004. 74

[Li et al. 2006] Kang Li, Xiaodong Wu, D. Z. Chen and M. Sonka. Opti-

mal Surface Segmentation in Volumetric Images - A Graph-Theoretic

Approach. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 28, no. 1, pp. 119�134, 2006. 74

[Lin et al. 2005] Xiang Lin, Brett Cowan and Alistair Young. Model-

based Graph Cut Method for Segmentation of the Left Ventricle. In

EMBS '05: Proceedings of the 27th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, pp. 3059�

3062, 2005. 78

[Liu et al. 2002] Jundong Liu, Baba C. Vemuri and José L. Marroquín. Lo-

cal frequency representations for robust multimodal image registration.

IEEE Transactions on Medical Imaging, vol. 21, no. 5, pp. 462�469,

2002. 126

[Lowe 2004] David G. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. International Journal of Computer Vision, vol. 60, no. 2,

pp. 91�110, 2004. 105



[Malcolm et al. 2007a] James Malcolm, Yogesh Rathi Allen and Tannen-

baum. Graph Cut Segmentation with Nonlinear Shape Priors. In

ICIP '07: Proceedings of the 14th IEEE International Conference on

Image Processing, pp. IV: 365�368, 2007. 79, 82

[Malcolm et al. 2007b] James Malcolm, Yogesh Rathi and Allen Tannen-

baum. Multi-object tracking through clutter using graph cuts. In

ICCV'07 Workshop on Non-rigid Registration and Tracking Through

Learning, 2007. 134

[Malladi et al. 1995] Ravikanth Malladi, James A. Sethian and Baba C. Ve-

muri. Shape Modeling with Front Propagation: A Level Set Approach.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 17, no. 2, pp. 158�175, 1995. 67

[Mallows & Clark 1970] C. L. Mallows and J. M. C. Clark. Linear Intercept

Distributions Do Not Characterize Plane Sets. Journal of Applied

Probability, vol. 7, pp. 240�244, 1970. 20

[Manay et al. 2006] Siddharth Manay, Daniel Cremers, Byung-Woo Hong,

Anthony J. Yezzi and Stefano Soatto. Integral Invariants for Shape

Matching. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 28, no. 10, pp. 1602�1618, 2006. 16

[Matthews & Baker 2004] Iain Matthews and Simon Baker. Active Appear-

ance Models Revisited. International Journal of Computer Vision,

vol. 60, no. 2, pp. 135�164, 2004. 73

[McInerney & Terzopoulos 1996] Tim McInerney and Demetri Terzopoulos.

Deformable Models in Medical Images Analysis: a Survey. Medical

Image Analysis, vol. 1, no. 2, pp. 91�108, 1996. 66

[McInerney & Terzopoulos 1999] Tim McInerney and Demetri Terzopoulos.

Topology Adaptive Deformable Surfaces for Medical Image Volume Seg-

mentation. IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp.

840�850, 1999. 67



[Meinshausen & Bühlmann 2006] Nicolai Meinshausen and Peter Bühlmann.

High dimensional graphs and variable selection with the Lasso. Annals

of Statistics, vol. 34, pp. 1436�1462, 2006. 26

[Meir & Rätsch 2003] Ron Meir and Gunnar Rätsch. An Introduction to

Boosting and Leveraging. In Advanced lectures on machine learning,

pp. 118�183, 2003. 107

[Metaxas & Terzopoulos 1993] Dimitri Metaxas and Demetri Terzopoulos.

Shape and Nonrigid Motion Estimation Through Physics-Based Syn-

thesis. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 15, no. 6, pp. 580�591, 1993. 13

[Montagnat et al. 1999] Johan Montagnat, Hervé Delingette and Grégoire

Malandain. Cylindrical Echocardiographic Image Segmentation Based

on 3D Deformable Models. In MICCAI '99: Proceedings of the 2nd

International Conference on Medical Image Computing and Computer

Assisted Intervention, pp. 168�175, 1999. 67

[Montagnat et al. 2001] Johan Montagnat, Hervé Delingette and Nicholas Ay-

ache. A Review of Deformable Surfaces: Topology. Geometry and De-

formation. Image and Vision Computing, vol. 19, no. 14, pp. 1023�

1040, 2001. 66

[Montagnat et al. 2003] Johan Montagnat, Maxime Sermesant, Hervé

Delingette, Grégoire Malandain and Nicholas Ayache. Anisotropic �l-

tering for model based segmentation of 4D cylindrical echocardiographic

images. Pattern Recognition Letters, vol. 24, pp. 815�828, 2003. 67

[Mumford & Shah 1989] David Mumford and Jayant Shah. Optimal Approx-

imations by Piecewise Smooth Functions and Associated Variational

Problems. Communications on Pure and Applied Mathematics, vol. 42,

no. 5, pp. 577�685, 1989. 67

[Muramatsu & Suzuki 2003] Masakazu Muramatsu and Tsunehiro Suzuki. A

New Second-order Cone Programming Relaxation for MAX-CUT Prob-

lems. Journal of Operations Research of Japan, vol. 46, no. 2, pp.

164�177, 2003. 64



[Nain et al. 2007] Delphine Nain, Steven Haker, Aaron Bobick and Allen Tan-

nenbaum. Multiscale 3-D Shape Representation and Segmentation

Using Spherical Wavelets. IEEE Transactions on Medical Imaging,

vol. 26, no. 4, pp. 598�618, 2007. 15

[Osher & Sethian 1988] Stanley Osher and James A. Sethian. Fronts

Propagating with Curvature-Dependent Speed: Algorithms Based on

Hamilton-Jacobi Formulations. Journal of Computational Physics,

vol. 79, pp. 12�49, 1988. 12, 67

[Ou & Davatzikos 2009] Yangming Ou and Christos Davatzikos. DRAMMS:

Deformable Registration via Attribute Matching and Mutual-Saliency

Weighting. In IPMI '09: Proceedings of the 21th International Confer-

ence on Information Processing in Medical Imaging, pp. 50�62, 2009.

124, 125, 126

[Paragios & Deriche 1999] Nikos Paragios and Rachid Deriche. Unifying

Boundary and Region-Based Information for Geodesic Active Track-

ing. In CVPR '99: Proceedings of the 1999 Conference on Computer

Vision and Pattern Recognition, pp. 2300�2305, 1999. 133

[Paragios & Deriche 2000] Nikos Paragios and Rachid Deriche. Coupled

Geodesic Active Regions for Image Segmentation: A Level Set Ap-

proach. In ECCV '00: Proceedings of the 6th European Conference on

Computer Vision, pp. 224�240, 2000. 67

[Pearl 1988] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference. Morgan Kaufmann, 1988. 59

[Pizer et al. 1999] Stephen M. Pizer, Daniel S. Fritsch, Paul A. Yushkevich,

Valen E. Johnson and Edward L. Chaney. Segmentation, Registration,

and Measurement of Shape Variation via Image Object Shape. IEEE

Transactions on Medical Imaging, vol. 18, no. 10, pp. 851�865, 1999.

14

[Pizer et al. 2003] Stephen M. Pizer, Guido Gerig, Sarang Joshi and

Stephen R. Aylward. Multiscale Medial Shape-Based Analysis of Image



Objects. Proceedings of the IEEE, vol. 91, no. 10, pp. 1670�1679, 2003.

14

[Pohl et al. 2006] Kilian M. Pohl, John Fisher, Martha Shenton, Robert W.

McCarley, W. Eric L. Grimson, Ron Kikinis and William M. Wells.

Logarithm Odds Maps for Shape Representation. In MICCAI '06: Pro-

ceedings of the 9th International Conference on Medical Image Com-

puting and Computer Assisted Intervention, pp. 955�963, 2006. 13

[Pohl et al. 2007] Kilian M. Pohl, John Fisher, Sylvain Bouix, Martha Shen-

ton, Robert W. McCarley, W. Eric L. Grimson, Ron Kikinis and

William M. Wells. Using the Logarithm of Odds to De�ne a Vector

Space on Probabilistic Atlases. Medical Image Analysis, vol. 11, no. 6,

pp. 465�477, 2007. 13

[Qu et al. 2008] Wei Qu, Xiaolei Huang and Yuanyuan Jia. Segmentation in

Noisy Medical Images Using PCA Model Based Particle Filtering. In

SPIE Conference on Medical Imaging, 2008. 70

[Ravikumar & La�erty 2006] Pradeep Ravikumar and John La�erty.

Quadratic programming relaxations for metric labeling and Markov

random �eld MAP estimation. In ICML '06: Proceedings of the 23rd

International Conference on Machine Learning, pp. 737�744, 2006. 64

[Rogers & Graham 2002] Mike Rogers and Jim Graham. Robust Active Shape

Model Search. In ECCV '02: Proceedings of the 7th European Con-

ference on Computer Vision, pp. 517�530, 2002. 71

[Rohl�ng et al. 2005] Torsten Rohl�ng, Robert Brandt, Randolf Menzel,

Daniel B. Russako� and Calvin R. Maurer Jr. The Handbook of Med-

ical Image Analysis: Segmentation and Registration Models, chapter:

Quo Vadis, Atlas-Based Segmentation?, pp. 435�486. Kluwer Aca-

demic / Plenum Publishers, 2005. 66

[Romdhani et al. 1999] Sami Romdhani, Shaogang Gong and Alexandra

Psarrou. Multi-View Nonlinear Active Shape Model Using Kernel

PCA. In BMVC '99: Proceedings of the British Machine Vision Con-

ference, 1999. 11



[Rother et al. 2004] Carsten Rother, Vladimir Kolmogorov and Andrew

Blake. "GrabCut": Interactive Foreground Extraction using Iterated

Graph Cuts. ACM Transactions on Graphics, vol. 23, pp. 309�314,

2004. 74

[Rother et al. 2005] Carsten Rother, Sanjiv Kumar, Vladimir Kolmogorov

and Andrew Blake. Digital Tapestry. In CVPR '05: Proceedings of

the 2005 Conference on Computer Vision and Pattern Recognition, pp.

589�596, 2005. 59

[Rousson & Paragios 2002] Mikaël Rousson and Nikos Paragios. Shape Priors

for Level Set Representations. In ECCV '02: Proceedings of the 7th

European Conference on Computer Vision, pp. 78�92, 2002. 12

[Rousson & Paragios 2008] Mikaël Rousson and Nikos Paragios. Prior

Knowledge, Level Set Representations & Visual Grouping. Interna-

tional Journal of Computer Vision, vol. 76, no. 3, pp. 231�243, 2008.

12

[Roy & Cox 1998] Sébastien Roy and Ingemar J. Cox. A Maximum-Flow

Formulation of the N-Camera Stereo Correspondence Problem. In

ICCV '98: Proceedings of the 6th IEEE International Conference on

Computer Vision, p. 492, 1998. 59

[Schapire & Singer 1998] Robert E. Schapire and Yoram Singer. Improved

Boosting Algorithms Using Con�dence-Rated Predictions. In COLT'98:

Proceedings of the 11th Annual Conference on Computational Learn-

ing Theory, pp. 80�91, 1998. 107

[Schapire 2002] Robert E. Schapire. The Boosting Approach to Machine

Learning: an Overview. In Workshop on Nonlinear Estimation and

Classi�cation, 2002. 107

[Schlesinger 1976] Mikhail I. Schlesinger. Sintaksicheskiy analiz dvumernykh

zritelnikh signalov v usloviyakh pomekh (Syntactic Analysis of Two-

Dimensional Visual Signals in Noisy Conditions). Kibernetika, vol. 4,

pp. 113�130, 1976. in Russian. 61, 84



[Schoenberg 1935] Isaac J. Schoenberg. Remarks to Maurice Fréchet's Arti-

cle "Sur la Dé�nition Axiomatique d'une Classe d'Espace Distanciés

Vectoriellement Applicable sur l'Espace de Hilbert". Annals of Mathe-

matics, vol. 36, no. 3, pp. 724�732, 1935. 21

[Schoenemann & Cremers 2007] Thomas Schoenemann and Daniel Cremers.

Globally Optimal Image Segmentation with an Elastic Shape Prior. In

ICCV '07: Proceedings of the 11th IEEE International Conference on

Computer Vision, pp. 1�6, 2007. 17, 80, 82

[Schölkopf et al. 1998] Bernhard Schölkopf, Alexander Smola and Klaus-

Robert Müller. Nonlinear Component Analysis as a Kernel Eigenvalue

Problem. Neural Computation, vol. 10, no. 5, pp. 1299�1319, 1998. 11

[Seghers et al. 2007a] Dieter Seghers, Dirk Loeckx, Frederik Maes, Dirk Van-

dermeulen and Paul Suetens. Minimal Shape and Intensity Cost Path

Segmentation. IEEE Transactions on Medical Imaging, vol. 26, no. 8,

pp. 1115�1129, 2007. 25, 83, 85, 86, 104, 105, 106, 113, 114

[Seghers et al. 2007b] Dieter Seghers, Pieter Slagmolen, Yves Lambelin,

Jeroen Hermans, Dirk Loeckx, Frederik Maes and Paul Suetens. Land-

mark Based Liver Segmentation Using Local Shape and Local Intensity

Models. In 3D Segmentation in The Clinic: A Grand Challenge, 2007.

25, 83

[Seghers et al. 2008] Dieter Seghers, Jeroen Hermans, Dirk Loeckx, Frederik

Maes, Dirk Vandermeulen and Paul Suetens. Model-Based Segmen-

tation Using Graph Representations. In MICCAI '08: Proceedings of

the 11th International Conference on Medical Image Computing and

Computer Assisted Intervention, pp. 393�400, 2008. 29, 84, 104, 111

[Shen & Davatzikos 2000] Dinggang Shen and Christos Davatzikos. An

Adaptive-Focus Deformable Model Using Statistical and Geometric In-

formation. IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 22, no. 8, pp. 906�913, 2000. 16

[Shen et al. 2001] Dinggang Shen, Edward H. Herskovits and Christos Da-

vatzikos. An Adaptive-Focus Statistical Shape Model for Segmentation



and Shape Modeling of 3-D Brain Structures. IEEE Transactions on

Medical Imaging, vol. 20, no. 4, pp. 257�270, 2001. 16

[Shi & Malik 2000] Jianbo Shi and Jitendra Malik. Normalized Cuts and Im-

age Segmentation. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 22, no. 8, pp. 888�905, 2000. 75

[Shi & Tomasi 1994] Jianbo Shi and Carlo Tomasi. Good features to track. In

CVPR '94: Proceedings of the 1994 Conference on Computer Vision

and Pattern Recognition, 1994. 133

[Shiraishi et al. 2000] Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe,

Tsuneo Matsumoto, Takeshi Kobayashi, Ken-ichi Komatsu, Mitate

Matsui, Hiroshi Fujita, Yoshie Kodera and Kunio Doi. Development

of a Digital Image Database for Chest Radiographs With and With-

out a Lung Nodule: Receiver Operating Characteristic Analysis of

Radiologists' Detection of Pulmonary Nodules. American Journal of

Roentgenology, vol. 174, pp. 71�74, 2000. 48, 112

[Singaraju et al. 2008] Dheeraj Singaraju, Leo Grady and René Vidal. Inter-

active Image Segmentation of Quadratic Energies on Directed Graphs.

In CVPR '08: Proceedings of the 2008 Conference on Computer Vision

and Pattern Recognition, 2008. 76

[Singaraju et al. 2009] Dheeraj Singaraju, Leo Grady and René Vidal. P-

Brush: Continuous Valued MRFs with Normed Pairwise Distributions

for Image Segmentation. In CVPR '09: Proceedings of the 2009 Con-

ference on Computer Vision and Pattern Recognition, 2009. 76

[Sinop & Grady 2007] Ali Kemal Sinop and Leo Grady. A Seeded Image

Segmentation Framework Unifying Graph Cuts and Random Walker

Which Yields a New Algorithm. In ICCV '07: Proceedings of the 11th

IEEE International Conference on Computer Vision. IEEE Computer

Society, IEEE, Oct. 2007. 76

[Slabaugh & Unal 2005] Greg Slabaugh and Gozde Unal. Graph Cuts Seg-

mentation Using an Elliptical Shape Prior. In ICIP '05: Proceedings



of the 12th IEEE International Conference on Image Processing, pp.

1222�1225, 2005. 78

[Smith & Jain 1982] Stephen P. Smith and Anil K. Jain. Chord Distributions

for Shape Matching. Computer Graphics and Image Processing, vol. 20,

no. 3, pp. 259 � 271, 1982. 20

[So 2007] Anthony Man-Cho So. A Semide�nite Programming Approach To

The Graph Realization Problem: Theory, Applications And Extensions.

PhD thesis, Stanford University, 2007. 21

[Staib & Duncan 1992] Lawrence H. Staib and James S. Duncan. Boundary

Finding with Parametrically Deformable Models. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 14, no. 11, pp.

1061�1075, 1992. 15

[Stegmann & Gomez 2002] Mikkel B. Stegmann and David Delgado Gomez.

A Brief Introduction to Statistical Shape Analysis, 2002. 46, 96

[Stegmann et al. 2006] Mikkel B. Stegmann, Karl Sjöstrand and Rasmus

Larsen. Sparse Modeling of Landmark and Texture Variability using

the Orthomax Criterion. In SPIE International Symposium on Medical

Imaging 2006, volume 6144, 2006. 9

[Sullivan 1990] John M. Sullivan. A Crystalline Approximation Theorem for

Hypersurfaces. PhD thesis, Princeton University, 1990. 83

[Szeliski et al. 2008] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga

Veksler, Member Vladimir Kolmogorov, Aseem Agarwala, Marshall

Tappen and Carsten Rother. A Comparative Study of Energy Mini-

mization Methods for Markov Random Fields with Smoothness-Based

Priors. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 30, no. 6, pp. 1068�1079, 2008. 65, 66

[Székely et al. 1996] Gábor Székely, András Kelemen, Christian Brechbühler

and Guido Gerig. Segmentation of 2-D and 3-D Objects from MRI Vol-

ume Data Using Constrained Elastic Deformations of Flexible Fourier

Contour And Surface Models. Medical Image Analysis, vol. 1, no. 1,

pp. 19�34, 1996. 15



[Tagare 1997] Hemant D. Tagare. Deformable 2-D Template Matching Using

Orthogonal Curves. IEEE Transactions on Medical Imaging, vol. 16,

no. 1, pp. 108�117, 1997. 17

[Tang & Chung 2007] Tommy W. H. Tang and Albert C. S. Chung. Non-rigid

Image Registration Using Graph-cuts. In MICCAI '07: Proceedings of

the 10th International Conference on Medical Image Computing and

Computer Assisted Intervention, 2007. 86, 91

[Taron et al. 2005] Maxime Taron, Nikos Paragios and Marie-Pierre Jolly.

Uncertainty-Driven Non-parametric Knowledge-Based Segmentation:

The Corpus Callosum Case. In Proceedings of the 3rd International

Workshop on Variational, Geometric, and Level Set Methods in Com-

puter Vision, pp. 198�207, 2005. 12

[Taron et al. 2009] Maxime Taron, Nikos Paragios and Marie-Pierre Jolly.

Registration with Uncertainties and Statistical Modeling of Shapes with

Variable Metric Kernels. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 31, no. 1, pp. 99�113, 2009. 49, 101

[Taylor & Cooper 1990] Christopher J. Taylor and David H. Cooper. Shape

Veri�cation Using Belief Updating. In BMVC '90: Proceedings of the

British Machine Vision Conference, 1990. 20

[Terzopoulos et al. 1988] Demetri Terzopoulos, Andrew Witkin and Michael

Kass. Constraints on deformable models: recovering 3D shape and

nongrid motion. Arti�cial Intelligence, vol. 36, no. 1, pp. 91�123, 1988.

66

[Tomasi & Kanade 1991] Carlo Tomasi and Takeo Kanade. Detection and

Tracking of Point Features. Technical Report CMU-CS-91-132,

Carnegie Mellon University, 1991. 133

[Torresani et al. 2008] Lorenzo Torresani, Vladimir Kolmogorov and Carsten

Rother. Feature Correspondence Via Graph Matching: Models and

Global Optimization. In ECCV '08: Proceedings of the 10th European

Conference on Computer Vision, pp. 596�609, 2008. 129



[Tresadern et al. 2009] Philip A. Tresadern, Harish Bhaskar, Steve A.

Adeshina, Christopher J. Taylor and Tim F. Cootes. Combining Lo-

cal and Global Shape Models for Deformable Object Matching. In

BMVC '09: Proceedings of the British Machine Vision Conference,

2009. 71

[Tsai et al. 2001] Andy Tsai, Anthony Yezzi Jr., WilliamWells III, Clare Tem-

pany, Dewey Tucker, Ayres Fan, W. Eric Grimson and Alan Willsky.

Model-Based Curve Evolution Technique for Image Segmentation. In

CVPR '01: Proceedings of the 2001 Conference on Computer Vision

and Pattern Recognition, pp. 463�468, 2001. 12

[Tu et al. 2004] Jilin Tu, Zhenqiu Zhang, Zhihong Zeng and Thomas Huang.

Face Localization via Hierarchical CONDENSATION with Fisher

Boosting Feature Selection. In CVPR '04: Proceedings of the 2004

Conference on Computer Vision and Pattern Recognition, volume 2,

pp. 719�724, 2004. 70

[Twining & Taylor 2001] Carole Twining and Christopher Taylor. Kernel

Principal Component Analysis and the Construction of Non-Linear

Active Shape Models. In BMVC '01: Proceedings of the British Ma-

chine Vision Conference, 2001. 11

[Unal et al. 2004] Gozde B. Unal, Anthony J. Yezzi and Hamid Krim.

Information-Theoretic Active Polygons for Unsupervised Texture Seg-

mentation. International Journal of Computer Vision, vol. 62, no. 3,

pp. 199�220, 2004. 68, 89

[Urtasun et al. 2006] Raquel Urtasun, David J. Fleet and Pascal Fua. Tempo-

ral motion models for monocular and multiview 3D human body track-

ing. Computer Vision and Image Understanding, vol. 2-3, no. 104, pp.

157�177, 2006. 133

[Üzümcü et al. 2003] Mehmet Üzümcü, Alejandro Frangi, Milan Sonka, Jo-

han H.C. Reiber and Boudewijn P.F. Lelieveldt. ICA vs. PCA Ac-

tive Appearance Models: Application to Cardiac MR Segmentation.

In MICCAI '03: Proceedings of the 6th International Conference on



Medical Image Computing and Computer Assisted Intervention, pp.

451�458, 2003. 9

[van Ginneken et al. 2002] Bram van Ginneken, Alejandro F. Frangi, Joes J.

Staal, Bart M. ter Haar Romeny and Max A. Viergever. Active Shape

Model Segmentation with Optimal Features. IEEE Transactions on

Medical Imaging, vol. 21, no. 8, pp. 924�933, 2002. 69, 70, 83, 106

[van Ginneken et al. 2006] Bram van Ginneken, Mikkel B. Stegmann and

Marco Loog. Segmentation of Anatomical Structures in Chest Radio-

graphs using Supervised Methods: A Comparative Study on a Public

Database. Medical Image Analysis, vol. 10, no. 1, pp. 19�40, 2006. 48,

112, 113

[�erný 1985] Vlado �erný. A Thermodynamical Approach to the Travelling

Salesman Problem: an E�cient Simulation Algorithm. Journal of Op-

timization Theory and Applications, vol. 45, pp. 41�51, 1985. 56

[Veksler 2008] Olga Veksler. Star Shape Prior for Graph-Cut Image Segmen-

tation. In ECCV '08: Proceedings of the 10th European Conference

on Computer Vision, 2008. 77

[Vemuri et al. 1993] Baba C. Vemuri, A. Radisavljevic and Christiana M.

Leonard. Multi-Resolution Stochastic 3D Shape Models for Image Seg-

mentation. In IPMI '93: Proceedings of the 13th International Confer-

ence on Information Processing in Medical Imaging, pp. 62�76, 1993.

14

[Vicente et al. 2008] Sara Vicente, Vladimir Kolmogorov and Carsten Rother.

Graph Cut Based Image Segmentation with Connectivity Priors. In

CVPR '08: Proceedings of the 2008 Conference on Computer Vision

and Pattern Recognition, 2008. 76

[Vu & Manjunath 2008] Nhat Vu and B.S. Manjunath. Shape Prior Segmen-

tation of Multiple Objects with Graph Cuts. In CVPR '08: Proceedings

of the 2008 Conference on Computer Vision and Pattern Recognition,

2008. 79, 80, 82



[Wainwright et al. 2005] Martin J. Wainwright, Tommi S. Jaakkola and

Alan S. Willsky. MAP Estimation Via Agreement on Trees: Message-

Passing and Linear Programming. IEEE Transactions on Information

Theory, vol. 51, no. 11, pp. 3697�3717, 2005. 63

[Wang & Staib 1998] Yongmei Wang and Lawrence H. Staib. Boundary Find-

ing with Correspondence Using Statistical Shape Models. In CVPR '98:

Proceedings of the 1998 Conference on Computer Vision and Pattern

Recognition, pp. 338�345, 1998. 10

[Wang et al. 2008] Jack M. Wang, David J. Fleet and Aaron Hertzmann.

Gaussian process dynamical models for Human Motion. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 2, no. 30,

pp. 283�298, 2008. 133

[Wang et al. 2009] Chaohui Wang, Martin de La Gorce and Nikos Paragios.

Segmentation, Ordering and Multi-object Tracking Using Graphical

Models. In ICCV '09: Proceedings of the 12th IEEE International

Conference on Computer Vision, pp. 747�754, 2009. 134

[Werner 2007] Tomá² Werner. A Linear Programming Approach to Max-Sum

Problem: A Review. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 29, no. 7, pp. 1165�1179, 2007. 61, 65, 84

[Xu & Prince 1998] Chenyang Xu and Jerry L. Prince. Snakes, Shapes, and

Gradient Vector Flow. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 7, no. 3, pp. 359�369, 1998. 84

[Yedidia et al. 2003] Jonathan S. Yedidia, William T. Freeman and Yair

Weiss. Exploring Arti�cial Intelligence in The New Millennium, chap-

ter: Understanding Belief Propagation And Its Generalizations, pp.

239�269. Morgan Kaufmann Publishers Inc., 2003. 60

[Yezzi Jr. et al. 2002] Anthony Yezzi Jr., Andy Tsai and Alan Willsky. A

Fully Global Approach to Image Segmentation via Coupled Curve Evo-

lution Equations. Journal of Visual Communication and Image Rep-

resentation, vol. 13, no. 1/2, pp. 195�216, March 2002. 67



[You & Jain 1984] Zhisheng You and Anil K. Jain. Performance Evaluation

of Shape Matching via Chord Length Distribution. Computer Vision,

Graphics, and Image Processing, vol. 28, no. 3, pp. 185�198, 1984. 20

[Young & Householder 1938] Gale Young and A. S Householder. Discussion

of a Set of Points in terms of Their Mutual Distances. Psychometrika,

vol. 3, no. 1, pp. 19�22, 1938. 21

[Yu et al. 2007] Peng Yu, P. Ellen Grant, Yuan Qi, Xiao Han, Florent Sé-

gonne, Rudolph Pienaar, Evelina Busa, Jenni Pacheco, Nikos Makris,

Randy L. Buckner, Polina Golland and Bruce Fischl. Cortical Surface

Shape Analysis Based on Spherical Wavelets. IEEE Transactions on

Medical Imaging, vol. 26, no. 4, pp. 582�597, 2007. 15

[Yuille et al. 1989] Alan L. Yuille, David S. Cohen and Peter W. Halli-

nan. Feature Extraction from Faces Using Deformable Templates. In

CVPR '89: Proceedings of the 1989 Conference on Computer Vision

and Pattern Recognition, 1989. 17

[Yushkevich et al. 2006] Paul A. Yushkevich, Hui Zhang and James C. Gee.

Continuous Medial Representation for Anatomical Structures. IEEE

Transactions on Medical Imaging, vol. 25, no. 12, pp. 1547�1564, 2006.

14

[Zabih & Kolmogorov 2004] Ramin Zabih and Vladimir Kolmogorov. Spa-

tially Coherent Clustering Using Graph Cuts. In CVPR '04: Proceed-

ings of the 2004 Conference on Computer Vision and Pattern Recog-

nition, pp. II: 437�444, 2004. 74

[Zeng et al. 2008] Yun Zeng, Dimitris Samaras, Wei Chen and Qunsheng

Peng. Topology Cuts: a Novel Min-Cut/Max-Flow Algorithm for Topol-

ogy Preserving Segmentation in N-D Images. Computer Vision and

Image Understanding, vol. 112, no. 1, pp. 81�90, 2008. 77

[Zhang et al. 2004] Jiayong Zhang, Robert Collins and Yanxi Liu. Represen-

tation and Matching of Articulated Shapes. In CVPR '04: Proceedings

of the 2004 Conference on Computer Vision and Pattern Recognition,

pp. 342�349, 2004. 82



[Zhu & Yuille 1996] Song Chun Zhu and Alan L. Yuille. Region Competition:

Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Im-

age Segmentation. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 18, no. 9, pp. 884�900, 1996. 67, 88

[Zhu-Jacquot & Zabih 2007] Jie Zhu-Jacquot and Ramin Zabih. Graph Cuts

Segmentation with Statistical Shape Priors For Medical Images. In

3rd International IEEE Conference on Signal-Image Technologies and

Internet-Based System, 2007. 78, 79

[Zhu-Jacquot & Zabih 2008] Jie Zhu-Jacquot and Ramin Zabih. Segmenta-

tion Of The Left Ventricle In Cardiac Mr Images Using Graph Cuts

With Parametric Shape Priors. In IEEE International Conference on

Acoustics, Speech and Signal Processing, 2008. 78, 79


	Context and Motivation
	Shape Model
	Introduction
	A Review of Shape Models
	Our Proposed Method
	Related Work

	A Normalized Chord-Length Statistical Shape Model
	Second-Order Approximation and Chord-Length
	Graph Rigidity and the Exact Matching Problem
	Removing Redundancy from the Model
	Unsupervised Clustering Using Linear Programming
	The Shape Model
	Experimental Validation


	Knowledge-based Segmentation
	Introduction
	Discrete MRFs and Optimization
	Image Segmentation Techniques

	Region-based Segmentation
	Regional Statistics and Image Segmentation
	Prior Knowledge and Image Segmentation
	Energy Minimization
	Experimental Validation

	Detector-based Segmentation
	Landmark-based Image support
	Experimental Validation


	Discussion
	Extensions and Other Applications
	Graph Matching for Registration
	Introduction
	Detecting Landmark Pairs
	Experimental Validation

	Dynamic Shape Prior and Tracking
	Introduction
	Weak Edges - Static and Dynamic Shape Priors
	Experimental Validation


	EDM Realization in Rn
	Spanning k-tree of a k-tree
	Bibliography

