S. Liao, J. Retrouvey, G. Agnus, W. Zhao, C. Maneux et al., Design and modeling of a neuro-inspired learning circuit using nanotube-based memory devices, IEEE Transactions on Circuits and Systems I, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00584909

J. R. Chelikowsky, Introduction, 2004.
DOI : 10.1007/978-3-642-84359-4_1

W. Heywang and K. H. Zaininger, Silicon: The Semiconductor Material", Silicon: evolution and future of a technology, 2004.

G. E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics ff, IEEE Solid-State Circuits Newsletter, vol.38, issue.20 3, pp.114-147, 1965.

T. Ghani, Challenges and Innovations in Nano-CMOS Transistor Scaling, 2010 IEEE Workshop on Microelectronics and Electron Devices, pp.ix-ix, 2010.

M. L. Lee and E. A. Fitzgerald, Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1???xGex, Journal of Applied Physics, vol.94, issue.4, p.2590, 2003.
DOI : 10.1063/1.1590052

M. Lapedus, Analyst offers peak into Intel 22nm litho roadmap Available: http://www.eetasia.com/ART_8800601312_480200_NT_7880fb29, HTM, 2010.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

X. Wang, Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, Nano Letters, vol.9, issue.9, pp.3137-3141, 2009.
DOI : 10.1021/nl901260b

Y. L. Kim, Highly Aligned Scalable Platinum-Decorated Single-Wall Carbon Nanotube Arrays for Nanoscale Electrical Interconnects, ACS Nano, vol.3, issue.9, pp.2818-2826, 2009.
DOI : 10.1021/nn9007753

W. Fu, L. Liu, K. Jiang, Q. Li, and S. Fan, Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays, Carbon, vol.48, issue.7, pp.1876-1879, 2010.
DOI : 10.1016/j.carbon.2010.01.026

R. Landauer, Electrical resistance of disordered one-dimensional lattices, Philosophical Magazine, vol.1, issue.172, p.863, 1970.
DOI : 10.1080/00018736100101271

T. Ando, Excitons in Carbon Nanotubes, Journal of the Physics Society Japan, vol.66, issue.4, pp.1066-1073, 1997.
DOI : 10.1143/JPSJ.66.1066

S. Reich, C. Thomsen, and P. Ordejñn, Electronic band structure of isolated and bundled carbon nanotubes, Physical Review B, vol.65, issue.15, p.155411, 2002.
DOI : 10.1103/PhysRevB.65.155411

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, 1998.
DOI : 10.1142/p080

H. Kajiura, A. Nandyala, U. C. Coskun, A. Bezryadin, M. Shiraishi et al., Electronic mean free path in as-produced and purified single-wall carbon nanotubes, Applied Physics Letters, vol.86, issue.12, p.122106, 2005.
DOI : 10.1063/1.1885189

C. Maneux, J. Goguet, S. Fregonese, T. Zimmer, H. Honincthun et al., Analysis of CNTFET physical compact model, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., pp.40-45, 2006.
DOI : 10.1109/DTIS.2006.1708733

URL : https://hal.archives-ouvertes.fr/hal-00181481

S. Heinze, J. Tersoff, and P. Avouris, Carbon Nanotube Electronics and Optoelectronics, Introducing Molecular Electronics, pp.381-409, 2005.
DOI : 10.1007/3-540-31514-4_15

J. Guo and M. A. Alam, Carrier transport and light-spot movement in carbon-nanotube infrared emitters, Applied Physics Letters, vol.86, issue.2, p.23105, 2005.
DOI : 10.1063/1.1848186

M. Freitag, Hot Carrier Electroluminescence from a Single Carbon Nanotube, Nano Letters, vol.4, issue.6, pp.1063-1066, 2004.
DOI : 10.1021/nl049607u

P. Avouris, M. Radosavljevi, and S. Wind, Carbon Nanotube Electronics and Optoelectronics, Applied Physics of Carbon Nanotubes, pp.227-251, 2005.
DOI : 10.1109/iedm.2004.1419208

P. Avouris and J. Chen, Nanotube electronics and optoelectronics, Materials Today, vol.9, issue.10, pp.46-54, 2006.
DOI : 10.1016/S1369-7021(06)71653-4

URL : http://doi.org/10.1016/s1369-7021(06)71653-4

X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, Photoconductivity Spectra of Single-Carbon Nanotubes:?? Implications on the Nature of Their Excited States, Nano Letters, vol.5, issue.4, pp.749-752, 2005.
DOI : 10.1021/nl050227y

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, Carbon nanotube optoelectronics, physica status solidi (b), vol.5, issue.13, pp.3197-3203, 2006.
DOI : 10.1002/pssb.200669137

R. B. Weisman, Simplifying carbon nanotube identification, The Industrial Physicist, vol.10, issue.1, pp.24-27, 2004.

Y. Oyama, Photoluminescence intensity of single-wall carbon nanotubes, Carbon, vol.44, issue.5, pp.873-879, 2006.
DOI : 10.1016/j.carbon.2005.10.024

Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chemical Physics Letters, vol.387, issue.1-3, pp.198-203, 2004.
DOI : 10.1016/j.cplett.2004.01.116

R. Saito, Chirality and energy dependence of first and second order resonance Raman intensity, presented at the NT06: 7th International Conference on the Science and Application of Nanotubes, 2006.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley et al., Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Science, vol.298, issue.5602, pp.2361-2366, 2002.
DOI : 10.1126/science.1078727

T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-222, 1992.
DOI : 10.1038/358220a0

T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert et al., Self-Assembly of Tubular Fullerenes, The Journal of Physical Chemistry, vol.99, issue.27, pp.10694-10697, 1995.
DOI : 10.1021/j100027a002

T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-O

P. G. Collins and P. Avouris, Nanotubes for Electronics, Scientific American, vol.283, issue.6, pp.62-69, 2000.
DOI : 10.1038/scientificamerican1200-62

N. Inami, M. A. Mohamed, E. Shikoh, and A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method, Science and Technology of Advanced Materials, vol.8, issue.4, pp.292-295, 2007.
DOI : 10.1016/j.cplett.2006.07.039

N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii et al., Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire, Journal of the American Chemical Society, vol.130, issue.30, pp.9918-9924, 2008.
DOI : 10.1021/ja8024752

W. Song, Synthesis of Bandgap-Controlled Semiconducting Single-Walled Carbon Nanotubes, ACS Nano, vol.4, issue.2, pp.1012-1018, 2010.
DOI : 10.1021/nn901135b

R. E. Smalley, Single Wall Carbon Nanotube Amplification:?? En Route to a Type-Specific Growth Mechanism, Journal of the American Chemical Society, vol.128, issue.49, pp.15824-15829, 2006.
DOI : 10.1021/ja065767r

J. H. Hafner, Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters, vol.296, issue.1-2, pp.195-202, 1998.
DOI : 10.1016/S0009-2614(98)01024-0

M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley, Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.19, issue.4, p.1800, 2001.
DOI : 10.1116/1.1380721

P. Nikolaev, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

P. Nikolaev, Gas-Phase Production of Single-Walled Carbon Nanotubes from Carbon Monoxide: A Review of the HiPco Process, Journal of Nanoscience and Nanotechnology, vol.4, issue.4, pp.307-316, 2004.
DOI : 10.1166/jnn.2004.066

T. Hiraoka, Surface Area, Advanced Functional Materials, vol.313, issue.3, pp.422-428, 2010.
DOI : 10.1002/adfm.200901927

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, vol.82, issue.1, pp.60-65, 2006.
DOI : 10.1038/nnano.2006.52

S. Ghosh, S. M. Bachilo, and R. B. Weisman, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nature Nanotechnology, vol.2, issue.6, pp.443-450, 2010.
DOI : 10.1038/nnano.2010.68

T. Tanaka, Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes, Nano Letters, vol.9, issue.4, pp.1497-1500, 2009.
DOI : 10.1021/nl8034866

H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, Diameter-Selective Metal/Semiconductor Separation of Single-wall Carbon Nanotubes by Agarose Gel, The Journal of Physical Chemistry C, vol.114, issue.20, pp.9270-9276, 2010.
DOI : 10.1021/jp1017136

X. Tu, S. Manohar, A. Jagota, and M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes, Nature, vol.126, issue.7252, pp.250-253, 2009.
DOI : 10.1038/nature08116

L. Zhang, S. Zaric, X. Tu, X. Wang, W. Zhao et al., Assessment of Chemically Separated Carbon Nanotubes for Nanoelectronics, Journal of the American Chemical Society, vol.130, issue.8, pp.2686-2691, 2008.
DOI : 10.1021/ja7106492

L. Zhang, X. Tu, K. Welsher, X. Wang, M. Zheng et al., Optical Characterizations and Electronic Devices of Nearly Pure (10,5) Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, vol.131, issue.7, pp.2454-2455, 2009.
DOI : 10.1021/ja8096674

M. A. Mohamed, N. Inami, E. Shikoh, Y. Yamamoto, H. Hori et al., Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes, Science and Technology of Advanced Materials, vol.9, issue.2, p.25019, 2008.
DOI : 10.1016/S0009-2614(03)00488-3

I. Kim, G. Kim, S. D. Kim, and H. H. Choi, Gas detection using carbon nanotubes and metal ligand carbon nanotubes gas sensor, IEEE 3rd International Nanoelectronics Conference (INEC), pp.533-534, 2010.

M. Guo, K. Wu, Y. Xu, R. Wang, and M. Pan, Multi-Walled Carbon Nanotube-Based Gas Sensor for NH3 Detection at Room Temperature, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, pp.1-3, 2010.
DOI : 10.1109/ICBBE.2010.5516726

A. A. Kuznetzov, S. B. Lee, M. Zhang, R. H. Baughman, and A. A. Zakhidov, Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays, Carbon, vol.48, issue.1, pp.41-46, 2010.
DOI : 10.1016/j.carbon.2009.08.009

Y. Yang, In situ fabrication of HfC-decorated carbon nanotube yarns and their field-emission properties, Carbon, vol.48, issue.2, pp.531-537, 2010.
DOI : 10.1016/j.carbon.2009.09.074

C. Woo, Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly(dimethyl siloxane) mold transfer, Microelectronic Engineering, vol.84, issue.5-8, pp.1610-1613
DOI : 10.1016/j.mee.2007.01.162

H. Nong, A direct comparison of single-walled carbon nanotubes and quantum-wells based subpicosecond saturable absorbers for all optical signal regeneration at 1.55?????m, Applied Physics Letters, vol.96, issue.6, p.61109, 2010.
DOI : 10.1063/1.3309712

URL : https://hal.archives-ouvertes.fr/hal-00491100

T. Hasan, Nanotube??????Polymer Composites for Ultrafast Photonics, Advanced Materials, vol.6, issue.465, pp.3874-3899, 2009.
DOI : 10.1002/adma.200901122

F. Xia, M. Steiner, Y. Lin, and P. Avouris, A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths, Nature Nanotechnology, vol.314, issue.10, pp.609-613, 2008.
DOI : 10.1038/nnano.2008.241

Z. Sun, A compact, high power, ultrafast laser mode-locked by carbon nanotubes, Applied Physics Letters, vol.95, issue.25, p.253102, 2009.
DOI : 10.1063/1.3275866

Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White et al., Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes, Nano Research, vol.39, issue.6, pp.404-411, 2010.
DOI : 10.1007/s12274-010-1045-x

URL : http://dx.doi.org/10.1007/s12274-010-1045-x

C. Feng, Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes, Advanced Functional Materials, vol.77, issue.6, pp.885-891, 2010.
DOI : 10.1002/adfm.200901960

E. Choi, M. Jeong, . Kang-won, C. Choi, S. Lim et al., Flexible and transparent touch sensor using single-wall carbon nanotube thin-films, IEEE 3rd International Nanoelectronics Conference (INEC), 2010.

H. Cazin-d-'honincthun, S. Galdin-retailleau, A. Bournel, P. Dollfus, and J. Bourgoin, Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance, Comptes Rendus Physique, vol.9, issue.1, pp.67-77, 2008.
DOI : 10.1016/j.crhy.2007.11.009

H. Cazin-d-'honincthun, H. Nguyen, S. Galdin-retailleau, A. Bournel, P. Dollfus et al., Influence of capacitive effects on the dynamic of a CNTFET by Monte Carlo method, Physica E: Low-dimensional Systems and Nanostructures, pp.2294-2298, 2008.
DOI : 10.1016/j.physe.2007.12.004

Z. Zhang, Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage, Nano Letters, vol.8, issue.11, pp.3696-3701, 2008.
DOI : 10.1021/nl8018802

C. Chen, D. Xu, E. Siu-wai, Y. Kong, and . Zhang, Multichannel Carbon-Nanotube FETs and Complementary Logic Gates With Nanowelded Contacts, IEEE Electron Device Letters, vol.27, issue.10, pp.852-855, 2006.
DOI : 10.1109/LED.2006.882530

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, pp.453-456, 2001.
DOI : 10.1021/nl015606f

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5929

P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, vol.4, issue.10, pp.605-615, 2007.
DOI : 10.1038/nature06037

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Controlling doping and carrier injection in carbon nanotube transistors, Applied Physics Letters, vol.80, issue.15, p.2773, 2002.
DOI : 10.1063/1.1467702

P. Avouris, J. Appenzeller, R. Martel, and S. Wind, Carbon nanotube electronics, Proceedings of the IEEE, pp.1772-1784, 2003.

B. Chen, A carbon nanotube field effect transistor with tunable conduction-type by electrostatic effects, Solid-State Electronics, vol.50, issue.7-8, pp.1341-1348
DOI : 10.1016/j.sse.2006.05.026

J. Chen, C. Klinke, A. Afzali, and P. Avouris, Self-aligned carbon nanotube transistors with charge transfer doping, Applied Physics Letters, vol.86, issue.12, p.123108, 2005.
DOI : 10.1063/1.1888054

URL : http://arxiv.org/abs/cond-mat/0511039

Z. Chen, An Integrated Logic Circuit Assembled on a Single Carbon Nanotube, Science, vol.311, issue.5768, p.1735, 2006.
DOI : 10.1126/science.1122797

L. Nougaret, 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes, Applied Physics Letters, vol.94, issue.24, p.243505, 2009.
DOI : 10.1063/1.3155212

URL : https://hal.archives-ouvertes.fr/hal-00469685

J. Deng and H. P. Wong, A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking, IEEE Transactions on Electron Devices, vol.54, issue.12, pp.3195-3205, 2007.
DOI : 10.1109/TED.2007.909043

J. Deng and H. P. Wong, A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region, IEEE Transactions on Electron Devices, vol.54, issue.12, pp.3186-3194, 2007.
DOI : 10.1109/TED.2007.909030

S. Fregonese, Computationally Efficient Physics-Based Compact CNTFET Model for Circuit Design, IEEE Transactions on Electron Devices, vol.55, issue.6, pp.1317-1327, 2008.
DOI : 10.1109/TED.2008.922494

URL : https://hal.archives-ouvertes.fr/hal-00287142

S. Fregonese, J. Goguet, C. Maneux, and T. Zimmer, Implementation of Electron–Phonon Scattering in a CNTFET Compact Model, IEEE Transactions on Electron Devices, vol.56, issue.6, pp.1184-1190, 2009.
DOI : 10.1109/TED.2009.2017647

S. Sinha, A. Balijepalli, and Y. Cao, Compact Model of Carbon Nanotube Transistor and Interconnect, IEEE Transactions on Electron Devices, vol.56, issue.10, pp.2232-2242, 2009.
DOI : 10.1109/TED.2009.2028625

T. J. Kazmierski, D. Zhou, B. M. Hashimi, and P. Ashburn, Numerically Efficient Modeling of CNT Transistors With Ballistic and Nonballistic Effects for Circuit Simulation, IEEE Transactions on Nanotechnology, vol.9, issue.1, pp.99-107, 2010.
DOI : 10.1109/TNANO.2009.2017019

J. Goguet, S. Fregonese, C. Maneux, and T. Zimmer, A charge approach for a compact model of Dual Gate CNTFET, 2008 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, pp.1-5, 2008.
DOI : 10.1109/DTIS.2008.4540246

URL : https://hal.archives-ouvertes.fr/hal-00288046

J. Goguet, S. Fregonese, C. Maneux, and T. Zimmer, Compact Model of a Dual Gate CNTFET: Description and Circuit Application, 2008 8th IEEE Conference on Nanotechnology, pp.388-389, 2008.
DOI : 10.1109/NANO.2008.120

URL : https://hal.archives-ouvertes.fr/hal-00319955

S. Fregonese, C. Maneux, and T. Zimmer, A Compact Model for Dual-Gate One-Dimensional FET: Application to Carbon-Nanotube FETs, IEEE Transactions on Electron Devices, vol.58, issue.1, pp.206-215, 2011.
DOI : 10.1109/TED.2010.2082548

URL : https://hal.archives-ouvertes.fr/hal-00584879

Y. Lin, J. Appenzeller, J. Knoch, and P. Avouris, High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities, IEEE Transactions On Nanotechnology, vol.4, issue.5, pp.481-489, 2005.
DOI : 10.1109/TNANO.2005.851427

URL : http://arxiv.org/abs/cond-mat/0501690

J. Liu, I. O. Connor, D. Navarro, and F. Gaffiot, Design of a Novel CNTFET-based Reconfigurable Logic Gate, VLSI, pp.285-290, 2007.

I. O. Connor, CNTFET Modeling and Reconfigurable Logic-Circuit Design, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.11, pp.2365-2379, 2007.
DOI : 10.1109/TCSI.2007.907835

URL : https://hal.archives-ouvertes.fr/hal-00187137

A. Javey, Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-?? Gate Dielectrics, Nano Letters, vol.4, issue.3, pp.447-450, 2004.
DOI : 10.1021/nl035185x

M. P. Anantram and F. Léonard, Physics of carbon nanotube electronic devices, Reports on Progress in Physics, vol.69, issue.3, pp.507-561, 2006.
DOI : 10.1088/0034-4885/69/3/R01

J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind et al., Field-Modulated Carrier Transport in Carbon Nanotube Transistors, Physical Review Letters, vol.89, issue.12, p.126801, 2002.
DOI : 10.1103/PhysRevLett.89.126801

M. Najari, S. Fregonese, C. Maneux, H. Mnif, N. Masmoudi et al., Schottky Barrier Carbon Nanotube Transistor: Compact Modeling, Scaling Study, and Circuit Design Applications, IEEE Transactions on Electron Devices, vol.58, issue.1, pp.195-205, 2011.
DOI : 10.1109/TED.2010.2084351

URL : https://hal.archives-ouvertes.fr/hal-00584876

S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller et al., Carbon Nanotubes as Schottky Barrier Transistors, Physical Review Letters, vol.89, issue.10, p.106801, 2002.
DOI : 10.1103/PhysRevLett.89.106801

URL : http://arxiv.org/abs/cond-mat/0207397

M. Radosavljevi, M. Freitag, K. V. Thadani, and A. T. Johnson, Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors, Nano Letters, vol.2, issue.7, pp.761-764, 2002.
DOI : 10.1021/nl025584c

A. Kureshi and M. Hasan, Performance comparison of CNFET- and CMOS-based 6T SRAM cell in deep submicron, Microelectronics Journal, vol.40, issue.6, pp.979-982, 2009.
DOI : 10.1016/j.mejo.2008.11.062

A. Hazeghi, T. Krishnamohan, and H. P. Wong, Schottky-Barrier Carbon Nanotube Field-Effect Transistor Modeling, IEEE Transactions on Electron Devices, vol.54, issue.3, pp.439-445, 2007.
DOI : 10.1109/TED.2006.890384

M. Najari, S. Fré-gonèse, C. Maneux, H. Mnif, T. Zimmer et al., Efficient physics-based compact model for the Schottky barrier carbon nanotube FET, physica status solidi (c), vol.7, issue.11-12, 2010.
DOI : 10.1002/pssc.200983825

URL : https://hal.archives-ouvertes.fr/hal-00584855

A. Raychowdhury, J. Guo, K. Roy, and M. Lundstrom, Design of a novel threevalued static memory using schottky barrier carbon nanotube FETs, 5th IEEE Conference on Nanotechnology, 2005, pp.661-664

J. Borghetti, Optoelectronic Switch and Memory Devices Based on Polymer-Functionalized Carbon Nanotube Transistors, Advanced Materials, vol.292, issue.19, pp.2535-2540, 2006.
DOI : 10.1002/adma.200601138

URL : https://hal.archives-ouvertes.fr/hal-00127137

J. Bourgoin, Directed assembly for carbon nanotube device fabrication, 2006 International Electron Devices Meeting, pp.1-4, 2006.
DOI : 10.1109/IEDM.2006.346805

URL : https://hal.archives-ouvertes.fr/hal-00128199

G. Agnus, Two-Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures, Advanced Materials, vol.5, issue.6, pp.702-706, 2010.
DOI : 10.1002/adma.200902170

URL : https://hal.archives-ouvertes.fr/hal-00548986

A. L. Antaris, J. T. Seo, A. A. Green, and M. C. Hersam, Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers, ACS Nano, vol.4, issue.8, pp.4725-4732, 2010.
DOI : 10.1021/nn101363m

F. Essely, Optimizing Pulsed OBIC Technique for ESD Defect Localization, IEEE Transactions on Device and Materials Reliability, vol.7, issue.4, pp.617-624, 2007.
DOI : 10.1109/TDMR.2007.911381

URL : https://hal.archives-ouvertes.fr/hal-00382949

P. Jaulent, V. Pouget, D. Lewis, and P. Fouillat, Study of Single-Event Transients in High-Speed Operational Amplifiers, IEEE Transactions on Nuclear Science, vol.55, issue.4, pp.1974-1981, 2008.
DOI : 10.1109/TNS.2008.920265

URL : https://hal.archives-ouvertes.fr/hal-00397836

S. Datta, Electronic transport in mesoscopic systems, 1997.

B. Majkusiak, Gate tunnel current in an MOS transistors, IEEE Transactions on Electron Devices, vol.37, issue.4, pp.1087-1092, 1990.
DOI : 10.1109/16.52446

S. Gasiorowicz, Quantum physics, 1996.

A. Messiah, Quantum mechanics, 1999.

M. Najari, Modélisation compacte des transistors à nanotube de carbone à contacts Schottky et application aux circuits numériques, 2010.

J. Knoch and J. Appenzeller, Tunneling phenomena in carbon nanotube field-effect transistors, physica status solidi (a), vol.51, issue.4, pp.679-694, 2008.
DOI : 10.1002/pssa.200723528

R. Yan, A. Ourmazd, and K. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk, IEEE Transactions on Electron Devices, vol.39, issue.7, pp.1704-1710, 1992.
DOI : 10.1109/16.141237

R. Langlet, M. Arab, F. Picaud, M. Devel, and C. Girardet, Influence of molecular adsorption on the dielectric properties of a single wall nanotube: A model sensor, The Journal of Chemical Physics, vol.121, issue.19, p.9655, 2004.
DOI : 10.1063/1.1808120

Y. Li, S. V. Rotkin, and U. Ravaioli, Electronic Response and Bandstructure Modulation of Carbon Nanotubes in a Transverse Electrical Field, Nano Letters, vol.3, issue.2, pp.183-187, 2003.
DOI : 10.1021/nl0259030

D. Lu, Y. Li, U. Ravaioli, and K. Schulten, Empirical Nanotube Model for Biological Applications, The Journal of Physical Chemistry B, vol.109, issue.23, pp.11461-11467, 2005.
DOI : 10.1021/jp050420g

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441848

H. N. Nguyen, S. Retailleau, D. Querlioz, A. Bournel, and P. Dollfus, Monte Carlo Study of Ambipolar Transport and Quantum Effects in Carbon Nanotube Transistors, 2009 International Conference on Simulation of Semiconductor Processes and Devices, pp.1-4, 2009.
DOI : 10.1109/SISPAD.2009.5290195

D. Jiménez, X. Cartoixà, E. Miranda, J. Suðé, F. A. Chaves et al., A simple drain current model for Schottky-barrier carbon nanotube field effect transistors, Nanotechnology, vol.18, issue.2, p.25201, 2007.
DOI : 10.1088/0957-4484/18/2/025201

A. A. Odintsov, Schottky Barriers in Carbon Nanotube Heterojunctions, Physical Review Letters, vol.85, issue.1, p.150, 2000.
DOI : 10.1103/PhysRevLett.85.150

D. Jiménez, X. Cartoixà, E. Miranda, J. Suðé, F. A. Chaves et al., A drain current model for Schottky-barrier CNT-FETs, Journal of Computational Electronics, vol.51, issue.12, pp.361-364, 2006.
DOI : 10.1007/s10825-006-0022-9

R. H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.119, issue.781, pp.173-181, 1928.
DOI : 10.1098/rspa.1928.0091

J. Guo, J. Wang, E. Polizzi, S. Datta, and M. Lundstrom, Electrostatics of nanowire transistors, IEEE Transactions On Nanotechnology, vol.2, issue.4, pp.329-334, 2003.

G. Pennington and N. Goldsman, Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Physical Review B, vol.68, issue.4, p.45426, 2003.
DOI : 10.1103/PhysRevB.68.045426

G. Pennington and N. Goldsman, Low-field semiclassical carrier transport in semiconducting carbon nanotubes, Physical Review B, vol.71, issue.20, p.205318, 2005.
DOI : 10.1103/PhysRevB.71.205318

W. Zhao, G. Agnus, V. Derycke, A. Filoramo, C. Gamrat et al., Functional Model of Carbon Nanotube Programmable Resistors for Hybrid Nano/CMOS Circuit Design, p.105, 2009.
DOI : 10.1038/nature06932

W. S. Zhao, G. Agnus, V. Derycke, A. Filoramo, J. Bourgoin et al., Nanotube devices based crossbar architecture: toward neuromorphic computing, Nanotechnology, vol.21, issue.17, p.175202, 2010.
DOI : 10.1088/0957-4484/21/17/175202

J. Retrouvey, J. Klein, S. Liao, and C. Maneux, Electrical simulation of learning stage in OG-CNTFET based neural crossbar, 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era, pp.1-5, 2010.
DOI : 10.1109/DTIS.2010.5487555

URL : https://hal.archives-ouvertes.fr/hal-00671681

T. Erb, Structural and optical properties of both pure poly(3-octylthiophene) (P3OT) and P3OT/fullerene films, Thin Solid Films, vol.450, issue.1, pp.97-100, 2004.
DOI : 10.1016/j.tsf.2003.10.045

H. Hu, S. Kung, L. Yang, M. Nicho, and R. M. Penner, Photovoltaic devices based on electrochemical???chemical deposited CdS and poly3-octylthiophene thin films, Solar Energy Materials and Solar Cells, vol.93, issue.1, pp.51-54, 2009.
DOI : 10.1016/j.solmat.2008.03.011

H. B. Peng, M. E. Hughes, and J. A. Golovchenko, Room-temperature single charge sensitivity in carbon nanotube field-effect transistors, Applied Physics Letters, vol.89, issue.24, p.243502, 2006.
DOI : 10.1063/1.2399942

M. S. Fuhrer, B. M. Kim, T. Dürkop, and T. Brintlinger, High-Mobility Nanotube Transistor Memory, Nano Letters, vol.2, issue.7, pp.755-759, 2002.
DOI : 10.1021/nl025577o

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.7813

J. B. Cui, R. Sordan, M. Burghard, and K. Kern, Carbon nanotube memory devices of high charge storage stability, Applied Physics Letters, vol.81, issue.17, p.3260, 2002.
DOI : 10.1063/1.1516633

C. Dimitrakopoulos and P. Malenfant, Organic Thin Film Transistors for Large Area Electronics, Advanced Materials, vol.10, issue.211, pp.99-117, 2002.
DOI : 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9

L. Chua, General observation of n-type field-effect behaviour in organic semiconductors, Nature, vol.5, issue.7030, pp.194-199, 2005.
DOI : 10.1038/44359

S. Yang, C. Wu, C. Lee, and M. Liu, Synthesis and luminescence of red MEH-PPV:P3OT polymer, Displays, vol.29, issue.3, pp.214-218, 2008.
DOI : 10.1016/j.displa.2007.08.002

M. Shim, A. Javey, N. W. Shi-kam, and H. Dai, Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors, Journal of the American Chemical Society, vol.123, issue.46, pp.11512-11513, 2001.
DOI : 10.1021/ja0169670

Y. Zhou, p-Channel, n-Channel Thin Film Transistors and p???n Diodes Based on Single Wall Carbon Nanotube Networks, Nano Letters, vol.4, issue.10, pp.2031-2035, 2004.
DOI : 10.1021/nl048905o

S. Hur, C. Kocabas, A. Gaur, O. O. Park, M. Shim et al., Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks, Journal of Applied Physics, vol.98, issue.11, p.114302, 2005.
DOI : 10.1063/1.2135415

M. Engel, Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays, ACS Nano, vol.2, issue.12, pp.2445-2452, 2008.
DOI : 10.1021/nn800708w

S. Liao, C. Maneux, V. Pouget, S. Frégonèse, and T. Zimmer, Compact modeling of optically gated carbon nanotube field effect transistor, physica status solidi (b), vol.18, issue.10, pp.1858-1861, 2010.
DOI : 10.1002/pssb.200983818

URL : https://hal.archives-ouvertes.fr/hal-00399897

C. Adessi, Multiscale simulation of carbon nanotube devices, Comptes Rendus Physique, vol.10, issue.4, pp.305-319, 2009.
DOI : 10.1016/j.crhy.2009.05.004

URL : https://hal.archives-ouvertes.fr/hal-00400169

G. Agnus, A. Filoramo, S. Lenfant, D. Vuillaume, J. Bourgoin et al., High-Speed Programming of Nanowire-Gated Carbon-Nanotube Memory Devices, Small, vol.10, issue.23, pp.2659-2663, 2010.
DOI : 10.1002/smll.201001293

URL : https://hal.archives-ouvertes.fr/hal-00548969

W. Shockley and W. T. Read, Statistics of the Recombinations of Holes and Electrons, Physical Review, vol.87, issue.5, p.835, 1952.
DOI : 10.1103/PhysRev.87.835

V. Kazukauskas, M. Pranaitis, V. Cyras, L. Sicot, and F. Kajzar, Negative mobility dependence on electric field in poly(3-alkylthiophenes) evidenced by the charge extraction by linearly increasing voltage method, Thin Solid Films, vol.516, issue.24, pp.8988-8992, 2008.
DOI : 10.1016/j.tsf.2007.11.076

W. D. Gill, ???vinylcarbazole, Journal of Applied Physics, vol.43, issue.12, p.5033, 1972.
DOI : 10.1063/1.1661065

P. M. Borsenberger and D. S. Weiss, Organic photoreceptors for imaging systems, M. Dekker, 1993.

A. J. Mozer and N. S. Sariciftci, Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers, Chemical Physics Letters, vol.389, issue.4-6, pp.438-442, 2004.
DOI : 10.1016/j.cplett.2004.04.001

C. Im, H. Ssler, H. Rost, and H. H. Hörhold, Hole transport in polyphenylenevinylene-ether under bulk photoexcitation and sensitized injection, The Journal of Chemical Physics, vol.113, issue.9, p.3802, 2000.
DOI : 10.1063/1.1287657

S. Liao, Optically-Gated CNTFET compact model including source and drain Schottky barrier, 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era, pp.1-4, 2010.
DOI : 10.1109/DTIS.2010.5487554

URL : https://hal.archives-ouvertes.fr/hal-00584845

M. He, J. Klein, and E. Belhaire, Design and electrical simulation of on-chip neural learning based on nanocomponents, Electronics Letters, vol.44, issue.9, p.575, 2008.
DOI : 10.1049/el:20080442

M. Najari, S. Y. Liao, H. N. Nguyen, S. Fregonese, C. Maneux1 et al., Self-Consistent Compact Model Of One-Dimensional Carbon-Based Schottky Barrier Transistors, Nanoscale Research Letters

A. Chabi, V. Filoramo, C. Derycke, J. O. Gamrat, and . Klein, Design and modeling of a neuro-inspired learning circuit using nanotube-based memory devices, IEEE Transaction on Circuits And Systems I, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00584909

S. Y. Liao, C. Maneux, V. Pouget, S. Fregonese, and T. Zimmer, Compact modeling of optically gated carbon nanotube field effect transistor, physica status solidi (b), vol.18, issue.10, pp.1858-1861, 2010.
DOI : 10.1002/pssb.200983818

URL : https://hal.archives-ouvertes.fr/hal-00399897

J. Retrouvey, J. Klein, S. Liao, and C. Maneux, Electrical simulation of learning stage in OG-CNTFET based neural crossbar, 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era, p.2010
DOI : 10.1109/DTIS.2010.5487555

URL : https://hal.archives-ouvertes.fr/hal-00671681

S. Liao, M. Najari, C. Maneux, S. Fregonese, T. Zimmer et al., Optically-Gated CNTFET compact model including source and drain Schottky barrier, 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era, 2010.
DOI : 10.1109/DTIS.2010.5487554

URL : https://hal.archives-ouvertes.fr/hal-00584845

S. Liao, M. Najari, C. Maneux, S. Fregonese, and T. Zimmer, Non-volatile memory using Optically-Gated Carbon Nanotube FET: Description of carrier mobility model in P3OT and source-drain Schottky barrier, Trend in Nanotechnology (TNT), 2010.

S. Liao, C. Maneux, V. Pouget, S. Fregonese, and T. Zimmer, Compact modeling of optically gated carbon nanotube field effect transistor, Trend in Nanotechnology (TNT), 2009.
DOI : 10.1002/pssb.200983818

URL : https://hal.archives-ouvertes.fr/hal-00399897

S. Liao, M. Najari, C. Maneux, S. Fregonese, and T. Zimmer, Source and drain Schottky barrier implementation in Optically-Gated CNTFET compact modeling, GNR SIPSOC, 2010.

S. Liao, C. Maneux, V. Pouget, S. Fregonese, and T. Zimmer, Modélisation compacte des piégeage et dépiégeage sur des CNTFETs commandées optiquement fonctionné comme une mé moire non-volatile, JNRDM Journées Nationales du Ré seau Doctoral en Microé lectronique, 2010.

S. Liao, C. Maneux, V. Pouget, S. Fregonese, and T. Zimmer, Modélisation compacte basée sur la dynamique de charges commandée optiquement des CNTFETs photosensibles, GDR NANO SIPSOC, 2009.

S. Liao, C. Maneux, S. Fregonese, and T. Zimmer, Toward compact model of Optical-Gated Carbon Nanotube Field Effect Transistor (OG-CNTFET), French Symposium on Emerging Technologies for micro-nanofabrication, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337487

S. Liao, C. Maneux, S. Fregonese, and T. Zimmer, Modélisation analytique du photo-courant dans le transistor à effet de champ à base de Nanotube de Carbone (CNTFET), JNRDM Journées Nationales du Ré seau Doctoral en Microé lectronique, 2008.