CELLULES SOLAIRES PHOTOVOLTAÏQUES PLASTIQUES NANOSTRUCTUREES
Hassina Derbal-Habak

To cite this version:
Hassina Derbal-Habak. CELLULES SOLAIRES PHOTOVOLTAÏQUES PLASTIQUES NANOSTRUCTUREES. Matière Condensée [cond-mat]. Université d'Angers, 2009. Français. tel-00592272

HAL Id: tel-00592272
https://tel.archives-ouvertes.fr/tel-00592272
Submitted on 11 May 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CELLULES SOLAIRES PHOTOVOLTAÏQUES PLASTIQUES NANOSTRUCTUREES

Thèse de Doctorat
Spécialité : Physique

Ecole Doctorale d’Angers

Soutenance prévue pour :
le 3 juillet 2009 à Angers

par Hassina DERBAL

Devant le jury ci-dessous :

Rapporteurs
M. Denis MENCARAGLIA, Directeur de recherche, SUPELEC,
M. Bernard RATIER, Professeur, Université de Limoges

Examineurs
M. Jack COUSSEAU, Professeur, Université d’Angers
Mme. Mihaela GIRTAN, Maître de conférences, Université d’Angers
M. Jean-Jacques SIMON, Maître de conférences, Université Paul Cézanne, Ex Marseille III.
M. Thien-Phap NGUYEN, Professeur, IMN, Université de Nantes
M. Jean-Michel NUNZI, Professeur, Université d’Angers
M. Alek TAMEEV, Directeur de recherche, Russian academy of sciences

Directeur de thèse : M. Jean-Michel NUNZI
Co-directeur de thèse : M. Thien-Phap NGUYEN

Cellules Solaires Photovoltaïques Plastiques, ERT 15
Laboratoire POMA, FRE CNRS 2988
Université d’Angers
Boulevard Lavoisier, 49045 Angers
Dédicaces
Remerciements
TABLE DES MATIERES

INTRODUCTION GENERALE ... 1

I. POURQUOI DE L'ENERGIE RENOUVELABLE A PARTIR DE L'ORGANIQUE ? 3
 I.1. MOTIVATIONS ... 3
 I.2. INTRODUCTION AUX CELLULES SOLAIRES PHOTOVOLTAIQUES ORGANIQUES 4
 I.2.1. Spectre Solaire .. 4
 I.2.2. Jonction (contact) électrode/semi-conducteur ... 6
 a) Contact ohmique .. 7
 b) Contact rectifiant ... 8
 c) Jonction P/N .. 9
 I.2.3. Caracteristiques photovoltaiques des cellules solaires organiques 10
 a) Caracteristiques courant-tension (I-V) .. 10
 b) Circuits electrique equivalent .. 15
 I.3. ETAT DE L'ART .. 17
 I.3.1. Différents systemes solaires photovoltaiques Organiques .. 17
 a) Les systemes Metal-Isolant-Metal .. 17
 b) Les systemes heterojonction bicoque ... 20
 c) Les systemes heterojonction en volume (HIV) ... 25
 I.3.2. Amelioration des parametres PV des cellules solaires OPV ... 30
 a) Amelioration de l'absorption .. 30
 b) Amelioration du transport de charges libres (mobilité) ... 33
 c) Effet de la morphologie .. 35
 d) Augmentation de la tension a circuit ouvert V_oc ... 54

II. CELLULES SOLAIRES PHOTOVOLTAIQUES A BASE DE NOUVEAUX DERIVES DE FULLERENES ... 59

II.1. ÉLABORATION DES CELLULES SOLAIRES A PARTIR DU COMPOSITE P3HT :PCBM 61
II.1.1. Proprietes physico-chemiques du PCBM, du polymere conjugué P3HT -RR et du composite P3HT :PCBM ... 61
II.1.2. Cellules solaires de structure MIM a base de polymere pur P3HT -RR 69
II.1.3. Cellules solaires a reunion interpenetrée a base de composite P3HT :PCBM 70

II.2. ÉLABORATION DES CELLULES SOLAIRES A PARTIR DES COMPOSITES P3HT :dyades C_60 –
PERYLEDENIDIHEME (R = OPhtBu, Cl) .. 75
II.2.1. Proprietes physico-chemiques des dyades C_60-Peryledeniime (R = OPhtBu, Cl) 75
II.2.2. Cellules solaires a reunion interpenetrée a base de composite P3HT: C_60-PDI(R = OPhtBu,Cl)_2... 80
II.2.3. Optimisation des cellules Photovoltaïques Organiques a reunion interpenetrée : ITO/PEDOT :
PSS/P3HT –RR : (100-x)% PCBM :x%dyades/LiF/Al ... 83
 a) Elaboration des cellules Organiques a reunion interpenetrée : ITO/PEDOT :PSS/P3HT -RR : (100-x)% PCBM :x% dyade 1/LiF/Al ... 85
 b) Elaboration des cellules Organiques a reunion interpenetrée : ITO/PEDOT :PSS/P3HT -RR : (100-x)% PCBM :x% dyade 2/LiF/Al ... 89

II.3. NOUVEAUX DERIVES CYCLOPROPANO[60]FULLERENES DE TYPE BINGEL 96
II.3.1. Etudes des proprietes spectroscopiques et electrochimiques des derivees cyclopropano[60]fullerenes 5a-c et 6a-c ... 98
II.3.2. Cellules Photovoltaïques Organiques ITO/PEDOT :PSS/Cyclopropano[60]fullerenes/LiF/Al .. 104
II.3.3. Cellules Photovoltaïques Organiques a reunion interpenetrée : ITO / PEDOT :PSS/P3HT -RR :
cyclopropano[60]fullerenes/LiF/Al .. 110
II.3.4. Optimisation des cellules Photovoltaïques Organiques a reunion interpenetrée : ITO/PEDOT :
PSS/P3HT -RR :cyclopropano[60]fullerenes (1 : x)/LiF/Al .. 113

II.4. NOUVEAUX DERIVES CYCLOPROPANO[70]FULLERENES DE TYPE BINGEL 121
II.4.1. Études des propriétés spectroscopiques et électrochimiques des dérives cyclopropano[70]fullèrènes 8a et 9a-b .. 124
II.4.2. Cellules Photovoltaïques Organiques ITO/PEDOT: PSS/Cyclopropano[70]fullèrènes/LiF/Al... .. 127
II.4.3. Optimisation des cellules Photovoltaïques Organiques à réseau interpénétré : ITO/PEDOT: PSS/P3HT -RR : cyclopropano[70]fullèrènes (1 : x)/LiF/Al .. 128
II.5. DERIVES DE FULLERÈNES[60] OBTENUS VIA LE DIANION C_{60}^{-2} ... 133

III. ÉLABORATION DE CELLULES SOLAIRES ORGANIQUES PV A PARTIR DE COMPOSITES P3HT:PCBM:SWCNT FONCTIONNALISÉS PAR DES GROUPEMENTS ESTERS 140

III.1. INTRODUCTION .. 140
III.2. CARACTERISATIONS SPECTROSCOPIQUES, PHYSICO-CHIMIQUES ET ELECTRONIQUES DES NANOTUBES DE CARBONE .. 143
III.3. CELLULES SOLAIRES PHOTOVOLTAÏQUES À RESEAU INTERPENETRE À BASE DE NANOTUBES ESTERIFIES .. 149
 III.3.1. Cas des mélanges à base de nanotubes de carbone CarboLex fonctionnalisés esters (SCWNT-C-e) .. 150
 III.3.2. Cas des mélanges à base de nanotubes de carbone HiPco fonctionnalisés esters (SCWNT-H-e) .. 162
III.4. CELLULES SOLAIRES PHOTOVOLTAÏQUES À RESEAU INTERPENETRE À BASE DE SWCNT-CS-E 168
III.5. CONCLUSIONS.. 169

CONCLUSION GENERALE .. 172

ANNEXES .. 175

REFERENCES BIBLIOGRAPHIQUES.. 257
Figure I.31 : Courbe théorique présentant l’efficacité des cellules solaires en fonction des niveaux énergétiques HOMO (donneur) et LUMO (accepteur) [Sch06a].

Figure I.32 : Structure chimique des différents dérivés de C60 [Ser05, Rie05].

Figure I.33 : Structures chimiques de différents polymères possédant des faibles niveaux HOMO : bTiV-PbTs (P1, P2, et P3) [Hou06b], PPD [Müh06] et PCDTBT [Müh06].

Figure I.31 : Structures chimiques : (a) P3HT -RR, (b) PCBM.

Figure I.11 : Caractéristiques I-V de la cellule solaire ITO/PEDOT :PSS/P3HT :PCBM :x% dyade avant recuit, sous illumination 107 mW/cm².

Figure II.7 : Spectres de fluorescence des couches minces de P3HT et du mélange P3HT :PCBM respectivement étalées sur du verre.

Figure II.8 : Spectres FTIR à partir de couches minces de P3HT et de composite P3HT :PCBM mélangés avec du KBr.

Figure II.9 : Caractéristiques I-V sous illumination côté ITO de la diode Schottky ITO/PEDOT :PSS/P3HT :PCBM/LiF/Al, avant recuit.

Figure II.10 : Diagrammes des niveaux énergétiques de la cellule ITO/P3HT :PCBM/Al.

Figure II.11 : Caractéristiques I-V de la cellule solaire ITO/P3HT :PCBM/Al avant recuit, sous illumination 107 mW/cm².

Figure II.12 : Caractéristiques I-V de la structure : ITO/PEDOT :PSS/P3HT :PCBM/LiF/Al, avant et après traitement thermique (100°C - 10 min) sous illumination 96 mW/cm².

Figure II.13 : Images AFM de la surface de composite P3HT :PCBM : (a) avant recuit (R = 1 nm), (b) après recuit (10 min) (R = 17 nm).

Figure II.14 : Spectres d’IPCE (Incident Photon to Collected Electron Efficiency) d’une cellule solaire HJV à base du système P3HT :PCBM après recuit à 100°C.

Figure II.15 : Structures moléculaires des dyades : (a) C60(CH2)2-Péry(CI), ; (b) C60(CH2)2-Péry(OPhtBu), mélangés avec du KBr.

Figure II.16 : Comparaison des Spectres d’absorption des couches minces des dyades C60(CH2)2-Péry(CI) et C60(CH2)2-Péry(OPhtBu) et du PCBM.

Figure II.17 : (a) Voltaampéromètres cycliques des dyades I (gauze, ligne solide) et (b) 2 (droite, ligne solide) réalisés dans la solution CH2Cl2 utilisant Bu4NPF6 (C = 0.1 M) comme électrolyte support, le fil d’Ag est la semi-électrode de référence, les flits de platine pour l’électrode de travail et la contre-electrode. Vitesse de balayage : 100 mVs⁻¹. La 2° dérivée du diethylhydrocalotene C60 est utilisée comme référence (lignes discontinues) [Bat06a, Bat06a].

Figure II.18 : Spectres de photoluminescence des couches organiques de P3HT, P3HT :dyade I et P3HT :dyade 2 avant recuit.

Figure II.19 : Spectres FTIR-Infrarouge obtenus à partir des couches minces de dyade I, P3HT :dyade I (b) P3HT :dyade 2, mélangés avec du KBr.

Figure II.20 : Principe des cellules solaires étudiées à base de dyade 1 et 2.

Figure II.21 : Les caractéristiques photovoltaïques des cellules solaires ITO/PEDOT :PSS/P3HT :RR :dyade I (1, 1, 2) LiF/Al : (a) dyade I, dyade 2.

Figure II.22 : Images AFM de la surface des composites (a) P3HT :dyade I (à droite), dyade I, (b) P3HT :dyade 2 (à droite), dyade 2 (à gauche).

Figure II.23 : Comparaison des spectres d’absorption des différents composites P3HT :RR :100-x% PCBM :x% dyade I, avant recuit.

Figure II.24 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT :RR :100-x% PCBM :x% dyade I/LiF/Al, sous un éclairement 107 mW/cm².

Figure II.25 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT :RR :100-x% PCBM :x% dyade I/LiF/Al, sous un éclairement 107 mW/cm², après recuit à 100 C pendant 10 minutes.

Figure II.26 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT :RR :100-x% PCBM :x% dyade I/LiF/Al, sous un éclairement 107 mW/cm², après recuit à 130 C pendant 10 minutes.

Figure II.27 : Comparaison des spectres d’absorption des différentes composites P3HT :RR :100-x% PCBM :x% dyade 2, avant recuit.

Figure II.28 : Comparaison des spectres d’absorption des différentes composites P3HT :RR :100-x% PCBM :x% dyade 2, après recuit.

Figure II.29 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT :RR :100-x% PCBM :x% dyade 2/LiF/Al, sous un éclairement 107 mW/cm².

Figure II.30 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT :RR :100-x% PCBM :x% dyade 2/LiF/Al, sous un éclairement 107 mW/cm², après recuit.

Figure II.31 : Comparaison des spectres d’absorption des composites P3HT :RR :100% dyade 2 (1 : 2,12 en masse) avant et après recuit à 100°C pendant 10 minutes.

Figure II.32 : Spectres d’action de différentes structures, après recuit à 100°C pendant 10 minutes.

Figure II.33 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT :RR dyade 1 (1 : 0,5 en masse) :LiF/Al, dans l’obscurité et sous un éclairement 107 mW/cm².

Figure II.34 : Synthèse des dérivés de cyclopropano[70]fulléranes : 5a-c, 6a-c selon la réaction Bingel modifiée.

Figure II.35 : Structure Moléculaire des dérivés de cyclopropano[60]fulléranes 5a-c et 6a-c.

Figure II.36 : Spectres d’absorption des dérivés 5b, 6b et PCBM en solution, (l’ambiance, C=2.5 10⁻³ M).

Figure II.37 : Spectres d’émission de fluorescence normalisés des composés 5b, 6b et PCBM dans le chloroforme (à T° ambiante, λem=530nm).

Figure II.38 : Voltampéromètres cycliques de dérivé 6b et de PCBM, (10⁻³ mol.L⁻¹) dichlorométhane (CH2Cl2) - n-Bu4NPF6 électrolyte support.

Figure II.39 : Les niveaux énergétiques HUMO et LUMO et le gap énergétiques ΔEc correspondant des différents molécules 5a-c et 6a-c.

Figure II.40 : Spectre d’action des couches minces de : (a) dérivés dérivés 5b, 6b et PCBM, (b) C60.

Figure II.41 : Formation de la barrière Schottky dans une structure MIM.

Figure II.42 : Caractéristiques I-V sous illumination côté ITO de la diode Schottky ITO/PEDOT :PSS/cyclopropano[60]fulléranes/LiF/Al, avant recuit.

Figure II.43 : Images AFM de la surface des films cyclopropano[60]fulléranes 5a et 6a utilisant le chloroforme. B est la rugosité du film.

Figure II.44 : Diagrammes de diffraction de Rayon-X aux grands angles réalisés sur le composé 5a sous forme de poudre, à différentes températures, sous atmosphère d’azote.
Table des Figures

Figure II.45 : Diagrammes de diffraction de Rayon-X aux grands angles réalisés sur le composé 6b sous forme de poudre, à différentes températures, sous atmosphère d’azote. ... 109

Figure II.46 : Images AFM de la surface des films cyclopropano[60]fullérenes 5 utilisant le ... 110

Figure II.47 : Comparaison des spectres d’absorption des différents composites P3HT-RR : 6b :1 :1 et P3HT-RR : 5b :1 :1 sans recuit. .. 111

Figure II.48 : Comparaison des spectres d’absorption des différents composites P3HT-RR : 6b :1 :1 après recuit à 100°C-10 min. .. 113

Figure II.49 : Caractéristiques I-V des différentes structures ITO/PEDOT :PSS/P3HT-RR :6b (1 : x) et ... 114

Figure II.50 : Caractéristiques I-V des différents composites P3HT-RR :6b (1 : x) et ... 114

Figure II.51 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interprénétré : .. 115

Figure II.52 : Spectres d’action des différentes structures: ITO/PEDOT :PSS/P3HT-RR : 6b/Lif/Al. .. 117

Figure II.53 : Caractéristiques I-V des cellules solaires ITO/PEDOT :PSS/P3HT-RR : 6b/Lif/Al. .. 118

Figure II.54 : Comparaison des spectres d’action des différentes structures : ITO/PEDOT :PSS/P3HT-RR ... 118

Figure II.55 : Images AFM de la surface des composites P3HT-cyclopropano[60]fullérenes après ét.. 120

Figure II.56 : Diagrammes de diffraction de Rayon-X aux grands angles sous forme de couches mince (détoup à la tournette) P3HT : 6a et 6b, avant et après traitement thermique (100°C, 10 min). ... 121

Figure II.57 : Structures moléculaires des différents dérivés de cyclopropano[70]fullérenes : 8a, 9a et 9b. .. 123

Figure II.58 : Synthèse des cyclopropano[70]fullérenes : 8a, 9a et 9b. .. 123

Figure II.59 : Spectres d’absorption des différents dérivés 8a et 9a et de C60 solubilisés dans le solvant de chloroforme à température ambiante……………… 124

Figure II.60 : Voltamogrammes cycliques de dérivé 8a et de C60 (7 10–4M) dichlorométhane-TBAPF6 (5 10–4M)- électrode de Pt et de C–V vs. Fe3+/Fe2+ = 100 mV/s. .. 126

Figure II.61 : Spectre d’absorption pour les différentes couches mince de dérivés 8a et 9a, avant et après recuit. ... 127

Figure II.62 : Caractéristiques I-V dans l’obscurité et sous illumination côté ITO de la diode Schottky avant et après recuit a) ITO/PEDOT: PSS/8a/Lif/Al, b) ITO/PEDOT: PSS/9a/Lif/Al. ... 128

Figure II.63 : Spectre d’absorption des différents composites P3HT-RR : 8a et P3HT-RR : 9a avant et après recuit…………………………………………………… 129

Figure II.64 : Cellule ITO/PEDOT :PSS/P3HT : 9a/Lif/Al- (a) avant recuit, (b) après recuit à 100°C-10min. Cellule ITO/PEDOT :PSS/P3HT : 8a/Lif/Al- (c) Avant recuit, (d) après recuit à 100°C-10 min, (e) Cellule ITO/PEDOT :PSS/P3HT : 9b/Lif/Al- (f) Avant recuit, (g) après recuit à 100°C-10 min. .. 131

Figure II.65 : Spectre d’action de la structure ITO/PEDOT :PSS/P3HT-RR : 9a/Lif/Al après recuit (100°C, 10 min). ... 132

Figure II.66 : Comparaison des spectres d’action des cellules solaires organiques : ITO/PEDOT: PSS/P3HT-RR : 9a/Lif/Al et ITO/PEDOT :PSS/P3HT-RR : 6b/Lif/Al... 133

Figure II.67 : Spectres de mesure de la conductivité des couches minces de dérivés a) CaCO3CH3CO2Mg, b) CaCO3CH3CO2Et, c) CaCO3CH3CO2JHa, d) CaCO3CH3CO2JCa, e) CaCO3CH3CO2Jzn, f) CaCO3CH3CO2Jzn. .. 134

Figure II.68 : Spectres d’absorption d’UV-Visible de composé 10a en solution d’o-dichlorobenzène. .. 135

Figure II.69 : Voltamogrammes cycliques de : a) Ce6, (b) dérivé fullerène 10a (7 10–4M), o-dichlorobenzène - TBAPF6 (5 10–4M) - électrode de Pt - V vs. Fe3+/Fe2+ = 100 mV/s. .. 135

Figure II.70 : Spectre d’absorption des couches minces basées sur le système P3HT : 10a avant et après traitement thermique. .. 136

Figure II.71 : Caractéristiques I-V de la structure ITO/P3HT :10a/Lif/Al sous éclairement 107 mW/cm2 : (a) avant traitement thermique, (b) après traitement thermique 100°C- 10 minutes. ... 136

Figure II.72 : Spectres d’action des spectromètres ouverts pour les composites : P3HT : a) P3HT-c6b et 9b et P3HT : 10a. .. 138

Figure II.73 : Les étapes de fonctionnalisation des différents nanotubes carbone (HiPco, Carbolex, Carbon Solutions) ... 142

Figure II.74 : Courbes obtenues par spectroscopie FTIR-Infrarouge à partir des différents SWCNT-1) SWCNT-H : (a) SWCNT-H-ap, b) SWCNT-H-p, c) SWCNT-H-o, d) SWCNT-H-o (n = 3, 2) Comparaison SWCNT-H-e (n = 3) : d) SWCNT-H-e, e) SWCNT-Ce, f) SWCNT-Ce, g) SWCNT-Ce et SWCNT-CS-e. .. 144

Figure II.75 : Mesures D’ATG obtenues : a) SWCNT-H, b) Comparaison entre les différents types des SWCNT-e (n = 3) : SWCNT-H-e, SWCNT-Ce et SWCNT-CS-e. .. 145

Figure II.76 : Courbes obtenues par caractérisation XPS à partir des SWCNT de type HiPco : a) SWCNT-H-ap, et b) SWCNT-H-e …………………………… 146

Figure II.77 : Spectres Raman enregistrés à partir de : (a) SWCNT-H-ap, (b) SWCNT-H-p, (c) SWCNT-H-o, (d) SWCNT-H-e n = 3, 4, 4, 3………………………… 146

Figure II.78 : Spectres d’absorption des couches minces de SWCNT. ... 151

Figure II.79 : Caractéristiques I-V des cellules solaires organiques : ITO/PEDOT : PSS/ P3HT : PCBM x% SWCNT-Ce/Lif/Al sous éclairement 107 mW/cm2 et dans l’obscurité : a) Avant traitement thermique des cellules, b) Après traitement thermique des cellules. ... 153

Figure II.80 : Comparaison des spectres d’absorption des couches minces de SWCNT avec le SWCNT-Ce et SWCNT-e, dans l’obscurité et sous éclairement 107 mW/cm2 : a) Avant traitement thermique des cellules, b) Après traitement thermique des cellules à 100°C-10 min. ... 153

Figure II.81 : Absorbance des différentes couches actives en fonction de la concentration des SWCNT-Ce, après recuit. 158

Figure II.82 : Absorbance des différentes couches actives en fonction de la concentration des SWCNT-Ce, après recuit. 160

Figure II.83 : Diffractionogrammes obtenus pour des couches P3HT-0.4% SWCNT-Ce et P3HT :PCBM : 0.4% SWCNT-Ce, après traitement thermique à 100°C pendant 10 minutes. ... 161

Figure II.84 : Comparaison des spectres d’absorption des différentes couches organiques à base de composites P3HT-RR : 6b/Lif/Al. .. 164

Figure II.85 : Evolution de l’absorbance des couches actives P3HT-PCBM en fonction de la concentration des SWCNT-H-e : a) avant traitement thermique, b) après traitement thermique. 164

Figure II.86 : Diffractionogrammes obtenus pour des couches P3HT-0.4% SWCNT-H-e et P3HT :PCBM : 0.4% SWCNT-H-e, après traitement thermique à 100°C- 10 minutes. ... 166

Figure II.87 : Comparaison des spectres d’action des différentes structures : ITO/PEDOT :PSS/P3HT-RR : 6b/Lif/Al et ITO/PEDOT :PSS/P3HT-RR : 7b/Lif/Al. ... 168

Figure II.88 : Caractéristiques I-V des cellules solaires organiques à base de composites P3HT-RR : 6b/Lif/Al, avant et après traitement thermique (100°C, 10 min). ... 169
LISTE DES TABLEAUX

Tableau II-1 : Caractéristiques physico-chimiques du polymère P3HT-RR [Che95] (Eg : Gap énergétique, PD : Polydispersité, \(T_g \) : Température de transition vitreuse, M : Masse molaire). ... 61
Tableau II-2 : Paramètres photovoltaïques extrait des caractéristiques I-V obtenues pour une cellule MIM : ITO/P3HT-RR/ALF/Al, présentées sur la Figure II.9. ... 70
Tableau II-4 : Paramètres photovoltaïques extrait des caractéristiques I-V obtenues pour une cellule ... 72
Tableau II-5 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT-RR : dyade 1, P3HT-RR : dyade 2 après recuit [Baf07a], sous différents éclairlements .. 81
Tableau II-6 : Quantités en masse relatives utilisées lors de l’optimisation des cellules solaires : (a) dyade 1, (b) dyade 2 85
Tableau II-7 : Paramètres photovoltaïques des cellules à base de composites P3HT-RR : (100-x)% PCBM :x% dyade 1, avant recuit 86
Tableau II-8 : Paramètres Photovoltaïques des cellules à base de composites P3HT-RR : (100-x)% PCBM :x% dyade 1, après traitement thermique 100°C pendant 10 minutes. .. 87
Tableau II-9 : Paramètres Photovoltaïques des cellules à base de composites P3HT-RR : (100-%x)% PCBM :x% dyade 1, après traitement thermique 130°C pendant 10 minutes. .. 88
Tableau II-10 : Paramètres Photovoltaïques des cellules à base de composites P3HT-RR : (100-%x)% PCBM :x% dyade 2, avant recuit 91
Tableau II-11 : Paramètres Photovoltaïques des cellules à base de composites P3HT-RR : (100-%x)% PCBM :x% dyade 2, après recuit 92
Tableau II-12 : Paramètres Photovoltaïques des cellules à base de composites P3HT-RR : dyade 2 (1 : x en masse) .. 94
Tableau II-13 : Données d’absorption UV-Vis et fluorescence des séries 5a-c et 6a-c et le PCBM en solution de chloroforme. 100
Tableau II-14 : Valeurs des potentiels d’oxydoréduction demi-vague des cyclopropano[60]fullèrènes 5a-c et 6a-c, et de PCBM et de C60 (vs. Fc+/Fc), sur une électrode de Pt ou carbone, avec une vitesse de balayage de 100 mV.s\(^{-1}\). ... 102
Tableau II-15 : Paramètres photovoltaïques extrait des caractéristiques I-V présentées sur la Figure II.42 .. 105
Tableau II-16 : Paramètres photovoltaïques des cellules solaires organiques à base de composites de P3HT-RR : 5a, P3HT-RR : 6b et P3HT-RR : 5c, sous différents éclairlements 92 et 72 mW/cm\(^2\) .. 112
Tableau II-17 : Quantités en masse relatives utilisées lors de l’optimisation des cellules solaires à base de cyclopropano[60]fullèrènes 114
Tableau II-19 : Paramètres Photovoltaïques des cellules à base de composites P3HT-RR : cyclopropano[60]fullèrènes (1 : x) après recuit à température 100°C pendant 10 minutes. ... 118
Tableau II-20 : Valeurs des potentiels d’oxydoréduction de demi-vague des composés 8a, 9a, 9b et C\(_60\), en milieu électrolytique de 107 mW/cm\(^2\) .. 126
Tableau II-21 : Paramètres photovoltaïques des cellules solaires organiques MIM à base de cyclopropano[70]fullèrènes 8a et 9a avant et après recuit, sous éclairement de 107 mW/cm\(^2\) .. 128
Tableau II-22 : Quantités en masse relatives utilisées lors de l’élaboration des cellules solaires à base de dérivés 8a, 9a et 9b 129
Tableau II-23 : Paramètres photovoltaïques des cellules solaires organiques à base de composites de P3HT-RR : 8a, P3HT-RR : 9a et P3HT-RR : 9b avant et après recuit .. 130
Tableau II-24 : Valeurs des potentiels d’oxydoréduction demi-vague des composés 10a et C\(_60\) (vs. Fc+/Fc), .. 135
Tableau II-25 : Quantités en masse relatives utilisées lors de l’élaboration des cellules solaires à base de dérivé 10a, après recuit ... 136
Tableau II-26 : Paramètres Photovoltaïques des cellules solaires organiques à base de composites P3HT-RR : 10a, avant et après recuit. 137
Tableau III-1 : Propriétés des différents nanotubes de carbone mono paroi utilisées .. 142
Tableau III-2 : Pourcentages relatifs des groupements fonctionnels issus des spectres XPS C1s ... 146
Tableau III-3 : Concentrations des composants présents dans les différents SWCNT-H-e ... 146
Tableau III-4 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT : PCBM (1 : 0.8) x% SWCNT-C-e, sous un éclairement 107 mW/cm\(^2\), avant et après traitement thermique .. 152
Tableau III-5 : Paramètres photovoltaïques des différents cellules solaires organiques à base de composites P3HT : PCBM : 0.1% SWNT CarboLex estérifiés et P3HT : PCBM, avant et après recuit, sous éclairement 107 mW/cm\(^2\). .. 155
Tableau III-6 : Quantités relatives de SWCNT-C-e utilisées lors de l’optimisation des cellules solaires à base de P3HT-RR : PCBM : x% SWCNT-C-e. 156
Tableau III-7 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT-RR : PCBM : x% SWCNT-C-e, avant et après recuit à 100°C -10 min, sous éclairement de 107 mW/cm\(^2\) .. 156
Tableau III-8 : Quantités relatives de SWCNT-H-e utilisées lors de l’optimisation des cellules solaires à base de P3HT-RR : PCBM : x% SWCNT-H-e .. 163
Tableau III-9 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT : PCBM : x% SWCNT-H-e avant et après recuit à 100°C pendant 10 minutes, sous éclairement 107 mW/cm\(^2\) .. 165
Tableau III-10 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT : PCBM : 0.2% SWCNT-CS-e avant et après recuit à 100°C pendant 10 minutes, sous éclairement 107 mW/cm\(^2\) .. 169
INTRODUCTION GENERALE

Avec le développement mondial de la demande énergétique, les réserves d’énergies fossiles seront un jour épuisées si des alternatives ne sont pas développées. Depuis quelques années est mis en avant le développement d’énergies propres et renouvelables, telles que l’éolien, la biomasse, le géothermique, le solaire thermique, l’hydraulique et le photovoltaïque car ils contribuent peu à l’effet de serre.

Le photovoltaïque est une des voies qui s’est significativement développée au cours de ces dernières années, avec un taux de croissance de 40%. Depuis l’obtention d’un rendement voisin de 5% avec des cellules photovoltaïques à base de silicium en 1950, des travaux très concluants ont été effectués afin d’améliorer le rendement de conversion et d’élargir le champ du photovoltaïque à l’échelle industrielle. Le solaire photovoltaïque connaît aujourd’hui un très fort développement et rencontre un succès sans cesse croissant tant en zone urbaine qu’en zone rurale, tant auprès des particuliers que des entreprises. Selon la dernière étude de l’association professionnelle de l’énergie solaire (Enerplan), la production mondiale d’électricité photovoltaïque à l’horizon 2030 pourrait couvrir 60% des besoins en électricité des pays européens, et d’ici 2040, le photovoltaïque pourrait représenter 20 à 28% de la production mondiale d’électricité.

Afin de diminuer le coût de fabrication des dispositifs photovoltaïques, une alternative consiste à substituer le silicium par des matériaux organiques. Les cellules solaires organiques sont une technologie en pleine émergence qui ambitionne la fourniture de cellules solaires plus flexibles, dans tous les sens du terme (mécanique, fabrication, propriétés électro-optiques). Un défi auquel la recherche est confrontée aujourd’hui est l’obtention de matériaux organiques stables et solubles qui absorbent aux grandes longueurs d’ondes (proche infrarouge). Ce travail de thèse réalisé dans l’Equipe de Recherche Technologique CSPVP de l’Université d’Angers a pour objectif de relever le défi.
Une cellule solaire photovoltaïque organique est élaborée à partir de polymères ou de petites molécules organiques. Nous avons choisi la filière dite des réseaux interpénétrés en vertu de son succès avéré : deux matériaux de natures différentes et non miscibles, l’un donneur et l’autre accepteur d’électrons sont mélangés intimement afin augmenter la surface de la jonction.

Ce manuscrit comporte trois parties :

Le premier chapitre décrit l’état de l’art sur l’optimisation des cellules solaires photovoltaïques plastiques. Nous abordons les différents matériaux (de la molécule au polymère), les différentes architectures de dispositifs organiques et en particulier notre choix des cellules à hétérojonction en volume, également nommées cellules à réseau interpenétré. Nous passons enfin en revue les paramètres critiques contribuant aux performances d’une cellule à réseau interpenétré : les caractéristiques intrinsèque des matériaux (structure moléculaire, absorption, niveaux énergétiques, solubilité, etc.) et extrinsèques (morphologie via les solvants utilisés, traitement thermique, etc.).

Dans le but de chercher de possibles alternatives au PCBM, de nouvelles familles de dérivés de fullerènes ont été synthétisées par l’équipe du Pr. J. Cousseau, dans le cadre de la thèse de C. Bergeret. Ces nouveaux dérivés peuvent être répartis en trois catégories: des cyclopropano[60]fullerènes et des cyclopropano[70]fullerènes de type Bingel porteurs de deux groupes esters C₆₀(ou 70)>(CO₂R¹)(CO₂R²), et l’adduit-1,4 C₆₀(CH₂CO₂C₄H₉)₂. Tous ont été utilisés en cellules solaires pour lesquelles nous avons cherché à préciser la relation entre structure moléculaire et performances photovoltaïques via la morphologie de la couche active.
Des études de fluorescence résolue en temps ont aussi été réalisées en collaboration avec l’équipe du Pr. I. Samuel à St Andrews (cf. Annexe 7).

Des travaux complémentaires ont été effectués en collaboration avec le Pr. T. P. Nguyen de l’IMN sur des dérivés de poly(phényle vinyle) (PPV), le MEHS :PPV, et avec le Dr. L. Lutsen de l’IMEC sur des dérivés de PPV et dérivés de polythiophène. Ils sont présentés en Annexe 9.

En conclusion, nous passerons en revue les paramètres qui contribuent directement aux performances photovoltaïques des cellules étudiées.
CHAPITRE I

I. POURQUOI DE L’ENERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

I.1. Motivations

L’énergie solaire est l’énergie renouvelable par excellence. En raison de l’épuisement prévisible des ressources d’énergies fossiles et des problèmes croissants liés à la dégradation de l’environnement, une alternative possible réside dans la réalisation de cellules solaires photovoltaïques. La démarche consistant à les concevoir à partir de composés organiques est prometteuse, en raison des avantages liés à cette technologie tels que : facilité de conception, diversité des composants, et coût moindre comparé aux dispositifs à base de silicium. Ces recherches restent encore au stade du laboratoire du fait des rendements de conversion encore modestes (de l’ordre de 6.5 % obtenu par [Kim07b]) et d’une stabilité de la cellule limitée dans le temps. Pour un développement à l’échelle industrielle, un rendement de 14 % tel qu’il a été obtenu par l’équipe de M. Grätzel (Laboratoire de photoniques et interfaces de l’École Polytechnique Fédérale de Lausanne (EPFL)) serait plus satisfaisant. Afin d’améliorer les performances photovoltaïques des cellules solaires, plusieurs travaux ont été entrepris. Ainsi, une grande variété de matériaux organiques (petites molécules, polymères conjugués, colorants) ou de mélanges organiques/inorganiques favorisant la création des charges, le transport et la collecte, ont été testés comme composants de telles cellules. D’autres investigations ont été faites qui consistent en développement de nouvelles architectures de cellules.

Dans le cadre de cette thèse, nous nous sommes intéressés à l’élaboration et à la mise en œuvre de nouveaux matériaux susceptibles d’améliorer les caractéristiques des cellules photovoltaïques organiques à réseaux interpénétré, par l’effet de leur structure moléculaire, leur degré élevé de solubilité dans différents solvants, leur meilleures propriétés physico-chimiques.
I.2. INTRODUCTION AUX CELLULES SOLAIRES PHOTOVOLTAÏQUES ORGANIQUES

I.2.1. Spectre Solaire

Le soleil libère continuellement une énorme quantité d'énergie rayonnante dans le système solaire ; en moyenne, 1367 watts atteignent chaque mètre carré de la couche atmosphérique externe. Il faut noter que la Terre reçoit une fraction minuscule de cette énergie. En effet, en traversant les différentes couches de l’atmosphère, une partie de l’énergie solaire s’atténue : certaines longueurs d’onde du spectre solaire sont absorbées par des composants comme la couche d’ozone (absorption des rayons de l’UV jusqu’au visible) ou comme la vapeur d’eau qui possède plusieurs raies dans le visible et dans l’infrarouge. Pourtant, la quantité d'énergie solaire qui atteint la surface de la terre en une heure est plus importante que la quantité totale d'énergie consommée par la population mondiale en une année.

Pour tenir compte de la longueur effective parcourue à travers l’atmosphère terrestre traversée par le rayonnement solaire direct, on introduit la notion de masse d’air (AM x) (cf. Figure I.1). Elle correspond à la perte de l’énergie solaire par l’absorption atmosphérique. La masse d’air est exprimée comme un multiple du parcours traversé en un point au niveau de la mer, le soleil étant directement à l’aplomb [Met00].

Figure I.1 : Schéma descriptif de l’incidence solaire sur la terre
En chaque point, la valeur de la masse d’air est donnée par l’Équation I-1 :

\[AM \approx \frac{1}{\sin \theta} \]

Équation I-1

où l’angle \(\theta \) est l’élévation solaire, c’est-à-dire l’angle en radian entre le rayonnement solaire et le plan horizontal. Le spectre solaire AM 0, correspond à une masse d’aire nulle pour un éclairement solaire au delà de l’atmosphère à incidence normale. Pour un ciel clair avec le soleil à l’aplomb, on a le rayonnement de la masse d’air "1" (ou AM 1). L’éclairement solaire arrivant sur la terre avec un angle de 48° est de 1000 W/m² (soit 100 mW/cm²) avec une masse d’air AM 1.5 [Ame92].

Le spectre solaire AM 1.5 est composé de 3~4 % de lumière ultraviolette (< 390 nm), de 45 % de lumière visible (390-750 nm) et de 52 % de lumière infrarouge [Proche IR (750-1400 nm) = 38 % et IR Lointain (> 1400 nm) = 14%] [Kom81].

La Figure I.2 montre que l’éclairement est maximal entre 450 et 700 nm. Parmi les facteurs majeurs qui sont impliqués dans une conversion photovoltaïque efficace, il y a l’absorption de la lumière blanche reçue sur terre. En effet, pour optimiser les performances des dispositifs photovoltaïques, le choix s’impose d’un matériau possédant un spectre d’absorption qui correspond au mieux au spectre d’émission du soleil. Il faut également considérer sa capacité à absorber une grande quantité de lumière sur une faible épaisseur afin d’éviter la recombinaison des charges libres (cf. Annexe I). Les caractéristiques photovoltaïques (PV) délivrées pour les cellules sont obtenues à partir de leur illumination sous AM 1.5.

Figure I.2 : (a) Représentation du spectre solaire, hors atmosphère AM 0, au niveau de la mer avec le soleil au zénith AM 1, avec le soleil à 37° par rapport à l’équateur AM 1.5, (b) Tableau représentant l’intégration du nombre de photons pour une cellule absorbant de 250 nm aux différentes longueurs d’onde mentionnées [Bun07a].
I.2.2. Jonction (contact) électrode/semi-conducteur

Quelle que soit la nature de la structure du dispositif photovoltaïque solaire organique étudié, les matériaux organiques sont toujours intercalés en couche mince entre deux électrodes métalliques. La polarisation du dispositif photovoltaïque nécessite ces contacts matériau/électrodes pour l’extraction finale du photocourant. Cela entraîne différents phénomènes apparaissent aux interfaces métal/semi-conducteur. De ce fait, on distingue deux types de contacts : ohmique et rectifiant.

La nature du contact dépend du type de semi-conducteur utilisé et la position relative des niveaux de Fermi entre ce dernier et l’électrode, autrement dit des valeurs de ψ_{sc} et ψ_{m} définies comme suit :

- ψ_{sc} est l’énergie nécessaire pour arracher un électron du semi-conducteur. Elle correspond à (cf. Équation I-2):

$$\psi_{sc} = E_{vide} - E_{f,sc} = E_{f,sc}$$ \hspace{1cm} Équation I-2

avec $E_{f,sc}$ est le niveau de Fermi d’un matériau semi-conducteur.

- ψ_{m} représente le travail de sortie de l’électrode (métal). Il correspond à l’énergie nécessaire pour arracher un électron au métal et s’écrit (cf. Équation I-3):

$$\psi_{m} = E_{vide} - E_{m} = E_{m}$$ \hspace{1cm} Équation I-3

Les métaux sont représentés par leurs niveaux de Fermi, alors que le semi-conducteur l’est par ses bandes de valence et de conduction, correspondant aux niveaux des orbitales moléculaires occupées les plus hautes « HOMO » (highest occupied molecular orbital) et des orbitales moléculaires inoccupées les plus basses « LUMO » (lowest unoccupied molecular orbital).
CHAPITRE 1 : POURQUOI DE L’ÉNERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

a) Contact ohmique

Un contact ohmique peut être formé entre un semi-conducteur de type -p et un métal lorsque le travail de sortie de celui ci \(\psi_{sc-p} \) est inférieur à celui du métal \(\psi_m \). Lorsque le contact est réalisé, les électrons de la bande de valence du semi-conducteur diffusent dans le métal jusqu’à l’égalisation des niveaux de Fermi. Alors, une zone enrichie en porteurs majoritaires (trous) se forme dans le semi-conducteur près de l’interface avec le métal. Elle joue le rôle de réservoir de trous pour la conduction dans le matériau. De ce fait, le semi-conducteur se charge positivement et le métal quand à lui se charge négativement. En raison de la mobilité des charges, cette zone reste de faible épaisseur et aucune barrière de potentiel entre le semi-conducteur et le métal ne peut se former. Il en résulte le passage du courant dans les deux sens sans aucune préférence de direction (cf. Figure I.3).

Figure I.3 : Schéma énergétique d’un contact ohmique entre un métal et un semi-conducteur de type -p : a) avant contact. b) après contact.

Dans le cas d’un semi-conducteur de type -n, le contact avec un métal peut créer un contact ohmique lorsque son travail de sortie \(\psi_{sc-n} \) est supérieur au travail de sortie du métal \(\psi_m \). De ce fait, les électrons diffusent plutôt du métal vers le semi-conducteur afin d’aligner les niveaux de Fermi des deux matériaux. Le courant à travers ce contact obéit ainsi à la loi d’Ohm pour une large gamme de tensions appliquées (cf. Équation I-4):

\[
J_{ohm} = qn_0 \mu E_a
\]

Équation I-4

où :
\(q \) charge
\(n_0 \) densité de porteurs générés thermiquement.
\(\mu \) mobilité
\(E_a \) champ appliqué

En l’absence de tension, les porteurs libres peuvent franchir les barrières de potentiels établies avec les interfaces des électrodes par l’effet d’agitation thermique. La densité de
courant est donnée par la loi de Dushman–Richardson (cf. Équation I-5).

\[J = A'T^2 \exp\left(-\frac{\Phi}{kT}\right) \]

Équation I-5

où:
A constante de Richardson modifiée
T température absolue
K constante de Boltzmann
Φ différence entre le travail de sortie du métal et l’affinité électronique du semi-conducteur

Lorsqu’on applique un champ important aux bornes, les barrières aux interfaces s’abaissent et l’émission thermoélectronique augmente. Le courant est alors donné par l’Équation I-6.

\[J = A'T^2 \exp\left(-\frac{\Phi - \Delta W}{kT}\right) \]

Équation I-6

avec : \(\Delta W = \left[\frac{q^3 E_a}{4\pi\varepsilon}\right] \)

Dans le cas d’un champ appliqué encore plus élevé, la barrière vue par les porteurs devient très étroite et elle peut être franchie par les porteurs par effet tunnel. L’équation de la densité de courant d’émission suit la loi de Fowler-Nordheim (cf. Équation I-7):

\[J = \left(\frac{q^3 E^3}{8\pi\hbar\Phi}\right) \exp\left[-\frac{4}{3}\left(\frac{2m}{\hbar^2}\right)^{\frac{1}{2}} \left(\frac{\Phi^{\frac{3}{2}}}{qE}\right)\right] \]

Équation I-7

b) Contact rectifiant

Appelé aussi contact Schottky, le contact rectifiant apparaît dans le cas de semi-conducteur de type -p lorsque le travail de sortie de ce dernier \(\psi_{sc-p} \) est supérieur au travail de sortie du métal \(\psi_m \) (cf. Figure I.4). Dès la mise en contact du métal et du semi-conducteur, les électrons du métal commencent à diffuser dans la bande de valence du semi-conducteur jusqu’à ce que les niveaux de Fermi des deux matériaux soient équilibrés. La migration des porteurs de charge du métal vers le semi-conducteur engendre l’appauvrissement des trous d’où la courbure des bandes HOMO et LUMO de ce dernier. De ce fait, une zone de charge d’espace (ZCE) se crée à l’interface métal/semi-conducteur suivie par l’apparition d’un champ électrique interne opposé au mouvement des porteurs.
A l’équilibre, le courant de trous qui s’écoule des deux côtés de la jonction, qu’il soit vers le métal ou vers le semi-conducteur est le même (cf. Figure 1.4).

Figure 1.4 : Schéma énergétique d’un contact rectifiant entre un métal et un semi-conducteur de type -p : a) avant contact. b) après contact.

On parle d’un contact rectifiant dans le cas d’un semi-conducteur de type -n, si le travail de sortie du semi-conducteur ψ_{sc-n} est inférieur à celui du métal ψ_m. Cette fois les électrons s’écoulent des bandes du semi-conducteur vers le métal, jusqu’à l’alignement des niveaux de Fermi, d’où la création d’une zone de déplétion à l’interface semi-conducteur/métal. Ce régime peut ne plus subsister dès que les systèmes photovoltaïques sont soumis à une polarisation.

c) Jonction P/N

Dans le cas d’une cellule de type p-n, la mise en contact de deux semi-conducteurs de dopages différents, p et n permet de créer un champ électrique dans la structure. Il en résulte l’égalisation des potentiels chimiques des deux matériaux.

En effet, la mise en contact des ces semi-conducteurs entraine la diffusion des porteurs majoritaires des deux matériaux à travers la région d’interface jusqu’à égalisation des niveaux de Fermi. La diffusion des porteurs engendre la création d’une zone de charge d’espace des porteurs majoritaires de chaque côté de l’interface, appelée zone de déplétion de largeur W, suivie par une courbure effective des bandes de conduction (ΔE_c) et de valence (ΔE_v). A l’équilibre les contributions des potentiels des deux côtés de la jonction sont égales. Le potentiel de diffusion eV_{hi} est alors égal à la différence des travaux de sortie des deux semi-conducteurs. Ce contact entre un semi-conducteur de type -p et un semi-conducteur de type -n de structure chimique différente est appelé hétérojonction P/N car un contact redresseur est réalisé à l’interface entre les deux semi-conducteurs, du fait de la différence des niveaux de
Fermi entre les deux semi-conducteurs (cf. Figure I.5). Il se produit alors une discontinuité des bandes de conduction et de valence à l’interface.

Figure I.5 : Schéma énergétique d’une jonction P/N à l’équilibre.

I.2.3. Caractéristiques photovoltaïques des cellules solaires organiques

Les performances d’une cellule solaire photovoltaïque consistent en différents paramètres physiques extraits des mesures de caractérisation de cette dernière par différentes méthodes, telles que les caractéristiques courant-tension ou bien le rendement quantique externe (cf. Annexe 2). On essayera de développer et de corrélérer ces paramètres aux propriétés physiques et chimiques des matériaux utilisés pour la conception de la cellule PV.

a) Caractéristiques courant-tension (I-V)

La cellule est caractérisée par des courbes courant-tension dans l’obscurité et sous éclairement (AM 1.5) (cf. Figure I.6).

Figure I.6 : Courbe caractéristique Courant – Tension (I-V) d’une cellule solaire dans l’obscurité et sous éclairrement standard AM 1.5.
Dans l’obscurité aucun courant ne peut être généré par le dispositif photovoltaïque. A partir de la courbe obtenue, on peut déterminer les propriétés intrinsèques du matériau. En revanche, sous illumination, une cellule délivre du courant ; on peut alors déduire de la courbe courant-tension obtenue les paramètres suivants :

- **Densité de courant de court-circuit** (J_{sc}):

 La densité de courant J_{sc} représente le courant I_{sc} délivré par la cellule divisé par sa surface. Elle est exprimée en mA/cm². Cette densité de courant est fournie par le dispositif sans application de tension aux bornes de ce dernier. Ce paramètre dépend principalement de la densité de charges photogénérées et de leur mobilité dans le matériau [Gun07]. La densité de courant est donnée par l’Équation I-8.

 \[
 J_{sc} = n q \mu E / S \tag{Équation I-8}
 \]

 Où :
 - n la densité de porteurs de charges (positives et négatives)
 - q la charge élémentaire
 - μ la mobilité
 - E le champ électrique interne
 - S la surface de la cellule

 Il faut noter que la densité de courant J_{sc} dépend aussi de la mobilité des porteurs de charges libres dans la couche photo-active. Il en résulte que la densité de courant prend en compte l’ensemble des matériaux (donneur/accepteur) constituant la cellule solaire (ce qui limite l’épaisseur de la couche). Le faible gap énergétique et la mobilité élevée des matériaux représentent généralement les facteurs essentiels pour améliorer la densité de courant. Des études ont montrées que la morphologie de la couche photo-active a un impact direct sur la densité de courant J_{sc} et sur le rendement de conversion $\eta\%$ [Nun02, Gun07, Hop06].

- **Tension en circuit ouvert** (V_{oc}):

 La tension de circuit ouvert V_{oc} exprimée en Volts, est la tension mesurée lorsque aucun courant ne circule dans la cellule.

 Ce paramètre dépend principalement de la différence des travaux de sortie des deux métaux utilisés comme électrodes pour les systèmes photovoltaïques organiques (PVO) étudiés dans une structure MIM. Dans ce cas, la tension V_{oc} peut être déterminée facilement [Hop04a, Par94].
Dans le cas des jonctions P/N, la tension V_{oc} dépend non seulement de la différence des travaux de sortie des électrodes [Yu95a, Liu01] mais aussi elle dépend linéairement de la différence entre le niveau LUMO (orbitales moléculaires inoccupées les plus basses) du donneur et le niveau HOMO (orbitales moléculaires occupées les plus hautes) de l’accepteur (cf. Figure I.7). Des études ont démontré qu’il existe réellement cette dépendance en niveaux énergétiques de l’ensemble des matériaux (donneur et accepteur) constituant la couche photovoltaïque [Bra01, Bra02a, Hop04a, Kos06, Sch06a].

Il faut noter que chaque matériau utilisé pour la réalisation d’une cellule photovoltaïque ainsi que les traitements qu’elle peut subir, influent directement sur la tension de circuit ouvert via :

- les interfaces que les matériaux utilisés en couche photo-active peuvent former avec les électrodes [Gun07] ;
- les traitements de surface (dans le cas d’ITO avec de l’UV-Ozone, plasma) [Sug00, Hu09, Kim07a, Wu97].

Il est notable que l’addition de couches intermédiaires est nécessaire pour augmenter la tension V_{oc}. Ces couches créent des dipôles électriques aux interfaces avec les électrodes, dont ils modifient les travaux de sortie [Yan02, Vee02, Mel03]. Elles permettent également d’éviter que les constituants des électrodes diffusent dans la couche active. Le choix du matériau qui constitue ces couches dépend des matériaux (donneur/accepteur) de couche active, et plus précisément de leurs niveaux énergétiques. Dans le cas de la cathode, des couches à base de LiF (fluorure de lithium), BCP (bathocuproïne), etc. sont évaporées avant
le dépôt de la cathode. Le LiF [Bra02b] collecte les électrons et évite ainsi que les excitons générés dans la couche transporteurs d'électrons subissent un effet de « quenching » à la cathode [Sun05a]. Le rôle de BCP consiste également à confiner les excitons pour éviter qu'ils ne se dissoient à l'interface accepteur-métal [Des]. L'équipe de Sariciftci [Bra02b] a étudié l'effet de l'intercalation de LiF sur les performances PV. Le niveau énergétique du LiF joue le rôle d'un niveau intermédiaire entre le niveau d'énergie de l'accepteur et celui de la cathode. La même chose peut être dite du côté de l'anode transparente (ITO). L'ajout d'une sous-couche à base du polymère conjugué poly(éthylénedioxythiophène) dopé avec poly(styrènesulfonate) (PEDOT: PSS) [Bro99] améliore les contacts entre l'anode et le donneur. Cette couche assure la collecte de trous tout en lissant la surface de l'ITO (cf. Annexe 2) et conduit à l'amélioration de l'injection des trous. L.S. Roman et al. [Rom98] et A.C. Arias et al. [Ari99] sont les premiers chercheurs qui ont utilisé une couche à base de PEDOT: PSS lors de l'élaboration des cellules PV organiques.

Enfin, les couches de BCP, LiF ou PEDOT :PSS utilisées comme tampons, favorisent les contacts des électrodes avec les semi-conducteurs et diminuent les pertes aux interfaces. Il en résulte l'amélioration de la tension V_{oc}.

En conclusion, la V_{oc} dépend de la différence des travaux de sortie des électrodes, des niveaux énergétique de l'ensemble D/A, l'ingénierie des interfaces, les contacts avec la couche actives, les matériaux constituant les électrodes [Hell96, Fro02] et la morphologie [Rey05a, Yan05a].

Facteur de forme (ff)

De son nom anglo-saxon le plus utilisé Fill Factor, le facteur de forme est le rapport entre la puissance maximale P_{max} qui peut être délivrée par la cellule au produit de la tension en circuit ouvert (V_{oc}) et du courant de court-circuit (J_{sc}) (cf. Figure I.6). Il est exprimé par l'Équation I-9.

$$ff = \frac{P_{max}}{J_{sc} \times V_{oc}} = \frac{J_{max} \times V_{max}}{J_{sc} \times V_{oc}}$$

Équation I-9

J_{max} et V_{max} correspondent aux valeurs du point de fonctionnement maximal de la cellule (cf. Figure I.6). Dans le cas d'une cellule photovoltaïque idéale, sans pertes de
CHAPITRE 1 : POURQUOI DE L’ENERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

charges, la puissance maximale tend vers le produit \(J_{sc} \times V_{oc} \), en résulte un facteur de forme qui tend vers un.

Le facteur de forme est lié au nombre de porteurs de charges collectés aux électrodes. En effet, subsiste dans la couche organique la compétition entre le transport des porteurs des charges et leur recombinaison en excitons (voie radiative). Cette compétition est équivalente à la compétition entre le temps de transit des charges dans la couche active ‘\(\tau_r \)’ et leur durée de vie ‘\(\tau \)’. Le produit de la mobilité de porteurs de charges et de leur durée de vie détermine la distance de migration des charges \(d \) sous l’effet du champ électrique \(E \). La distance \(d \) est donnée par l’Équation I-10 [Gun07].

\[
d = \mu \times \tau_r \times E \quad \text{Équation I-10}
\]

où :
- \(\mu \) mobilité des charges
- \(E \) champ interne de la cellule.

Pour limiter cette perte et collecter au mieux les charges libres aux électrodes, la mobilité des charges doit être maximale (\(\tau_r<<\tau \)) et il faut optimiser l’épaisseur des couches photo-actives sans pour autant diminuer leur absorption.

Il faut noter que la perte des charges libres n’est pas seulement due aux recombinaisons mais aussi à des pièges qu’elles peuvent rencontrer lors de leur transport.

Enfin, le rendement de conversion photovoltaïque \(\eta \% \) de la cellule est le rapport entre la puissance pouvant être délivrée par la cellule \(P_{max} = (J_{max} \times V_{max}) \) à la puissance lumineuse incidente. Il dépend principalement du facteur de forme, de la puissance correspondante à l’aire du produit \((J_{sc} \times V_{oc}) \). Le rendement de conversion photovoltaïque \(\eta \% \) est donné par l’Équation I-11 [Nun02, Gun07]:

\[
\eta \% = \frac{P_{max}}{P_{inc}} = ff \times V_{oc} \times \frac{J_{sc}}{P_{inc}} \quad \text{Équation I-11}
\]

Il faut savoir que les excitons photogénérés dans la couche photo-active n’interviennent pas tous dans la création du courant externe. Effectivement, toutes les charges photogénérées ne sont pas toutes collectées aux électrodes, et la cellule n’atteint pas son maximum d’efficacité. Le rendement quantique externe est le paramètre qui nous permet d’évaluer l’efficacité de la cellule.
Rendement quantique externe

Le rendement quantique externe (EQE) appelé aussi par son nom anglo-saxon IPCE (Incident-Photon Conversion Efficiency) représente le rapport entre le nombre des électrons collectés dans les conditions de court circuit et le nombre des photons incidents. Il est donné par l’Équation I-12 :

\[
EQE = \frac{hc}{e} \times \frac{J_s}{P \times \lambda} = 1.24 \times \frac{J}{P \times \lambda}
\]

Équation I-12

Où :
- \(P \) éclairement reçu par unité de surface de la cellule (W/ cm²).
- \(c \) vitesse de la lumière (μm/s).
- \(h \) constante de Planck.
- \(\lambda \) longueur d’onde monochromatique.

La densité de courant \(J_{sc} \) est donnée pour chaque longueur d’onde. Pour obtenir la densité de courant \(J_{sc} \) totale de la cellule, il faut intégrer sur toutes les longueurs d’ondes d’où l’Équation I-13 :

\[
\int P_{inc}(\text{photon/cm}^2) \lambda(nm) \left(\frac{EQE}{1240} \left(\frac{I}{\text{watt} \times \text{nm}} \right) \right) d\lambda(nm) = J_{sc}
\]

Équation I-13

I.2.4. Circuit électrique équivalent :

Afin de comprendre le comportement électrique d’une cellule classique, l’utilisation du tracé de circuit électrique équivalent est nécessaire [Mol06].

Dans l’obscurité, la diode suit le comportement d’une diode passive. Selon la tension appliquée (supérieure ou inférieure à une tension seuil), la diode peut être passante ou bloquante. Le courant qui circule dans la cellule est exprimé par l’Équation I-14 de type Schockley :

\[
I_d = I_s \left(\exp \left(\frac{eV}{nKT} \right) - 1 \right)
\]

Équation I-14

où :
- \(I_s \) courant de saturation sous polarisation inverse,
- \(V = V_{appliquée} - V_{bi} \) (\(V_{bi} \) barrière de potentiel interne).
- \(n \) facteur d’idéalité compris entre 0 et 1

Sous éclairement la cellule solaire photovoltaïque organique classique est représentée par le circuit électrique équivalent schématisé dans la Figure I.8.
La cellule peut être considérée comme une source de courant dans les deux cas (idéal (cf. Figure I.8-a) ou réel (cf. Figure I.8-b)) sous illumination incidente. En prenant en compte les pertes dues aux résistances série R_s (résistivité des électrodes et interfaces électrode/semi-conducteur) et shunt R_{sh} et aux pertes ohmiques (résistivité des matériaux en volume) de la cellule (cf. Figure I.8-b), les caractéristiques PV des cellules s’affaiblissent.

La résistance série R_s est déterminée au point V_{oc}. Elle correspond, au voisinage de ce point ($V > V_{oc}$, 0), à l’inverse de la pente de la courbe $I-V$ (cf. Figure I.6). Elle dépend principalement des résistances de contact et de la résistance de la couche active. Elle affecte donc J_{sc} et ff. Quand R_s augmente, la pente de la courbe du premier quadrant décroit ; de ce fait elle redresse la courbe de telle manière que la densité de courant J_{sc} diminue.

La résistance shunt R_{sh} est déterminée au point J_{sc}. Elle correspond à l’inverse de la pente de la courbe $I-V$ au point (0, J_{sc}) (cf. Figure I.6). Physiquement, elle représente le courant de fuite. Quand la valeur de R_{sh} diminue, la pente de la courbe du quatrième quadrant augmente, alors la courbe est redressée de nouveau, de telle manière que la tension V_{oc} de la cellule diminue (cf. Équation I-15).

\[V = V_j - R_s I' \]
\[V = V_j - R_{sh} \frac{V_j}{R_s} \]
\[V = V_j - R_{sh} \]

Où V_j est la tension à travers la jonction.

En utilisant la loi des nœuds, le circuit équivalent d’une telle cellule est donné par l’Équation I-16.

\[I' = I_{ph} - i - i_{sh} = I_{ph} - I_s \left[\exp \left(\frac{q V_j}{n k T} \right) - 1 \right] = \frac{V_j}{R_{sh}} \]

En déduisant V_j de l’Équation I-15 et en la remplaçant dans l’Équation I-16, on trouve l’Équation I-17.
Dans un cas idéal, nous avons $R_s \approx 0$ et $R_{sh} \rightarrow \infty$ et, en supposant que $R_s << R_{sh}$, l’Équation I-17 est simplifiée (cf. Équation I-18) et devient celle du circuit équivalent d’une cellule idéale sans pertes (cf. Figure I.8-a) :

$$I' = I_{ph} - I_s \left[\exp \left(\frac{q(V - R_s I')}{nkT} \right) - 1 \right] - \frac{V - R_s I'}{R_{sh}}$$ \hspace{1cm} \text{Équation I-17}$$

Équat. I.3. ÉTAT DE L’ART

1.3.1. Différents systèmes solaires photovoltaïques Organiques

Depuis la découverte d’un transfert de charges entre un polymère conjugué et un dérivé de fullerène [Sar90], plusieurs architectures de cellules solaires ont vu le jour dans le but d’améliorer les paramètres photovoltaïques car la géométrie a un impact direct sur les propriétés physico-électriques.

a) Les systèmes Métal-Isolant-Métal

Appelée aussi structure Schottky, l’architecture monocouche repose, comme son nom l’indique, sur le principe d’intercalation d’une couche organique (à base de polymère conjugué ou de molécule) entre deux électrodes métalliques possédant différents travaux de sortie (cf. Figure I.9). Elle représente la première génération de dispositifs photovoltaïques organiques [Hop04a, Wöh91, Par94, Gos74, Kar93]. En général, pour la description des cellules solaires organiques, les métaux sont représentés par leurs niveaux de Fermi, alors que les semi-conducteurs le sont par leurs bandes de valence et de conduction, correspondant aux orbitales moléculaires occupées les plus hautes « HOMO » et les orbitales moléculaires inoccupées les plus basses « LUMO ».

Pour comprendre le comportement rectifiant du dispositif à base de semi-conducteur de type -p ou -n dans l’obscurité, le modèle Métal-Isolant-Métal (MIM) est utile [Sze81, Sun05a]. Dans ce type de configuration, la différence entre les travaux de sortie des deux électrodes correspond à une différence de potentiel appelée barrière de Schottky. Par conséquence, les propriétés photovoltaïques dépendent fortement de la nature des électrodes.
CHAPITRE 1 : POURQUOI DE L’ENERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

Cependant, le choix des métaux est déterminant pour réaliser un contact ohmique d’un côté et rectifiant de l’autre. Lors de l’illumination de la cellule, les barrières de Schottky avec la région de déplétion W peuvent être formées près des contacts ; il en résulte une courbure de bandes. Ceci correspond à un champ électrique grâce auquel les excitons peuvent être dissociés (interface bloquante). Cependant, l’illumination du dispositif, via ces deux différentes électrodes, peut avoir comme conséquence différents spectres de photo-courants, reflétant l’emplacement de l’électrode où le photo-courant est produit [Wöh91, Tan75]. Il faut noter que seulement les excitons générés dans une petite région (moins de 20 nm) proche des contacts actifs peuvent contribuer à la production du photo-courant.

![Figure I.9 : Représentation des niveaux d’énergies d’un contact ITO/Composé organiques (donneur ou accepteur/ITO d’une cellule de type Schottky)](image)

La Figure I.9 illustre les conditions de court-circuit dans une structure MIM, lorsqu’il n’y a aucune tension appliquée aux bornes. Sous éclairement, dû au champ électrique résultant de la différence entre les deux électrodes, les charges libres peuvent être transportées vers leurs électrodes respectives : le mouvement d’électrons vers l’électrode possédant un faible travail de sortie (cathode), et les trous vers l’électrode possédant le travail de sortie le plus élevé (anode). Le dispositif fonctionne donc comme une cellule solaire. Les couches actives à base de petites molécules ou polymères conjugués, des dispositifs MIM, peuvent être déposées avec différentes méthodes : tournette, évaporation entre les deux électrodes.

Les premiers travaux de recherches concernant le photovoltaïque organique, ont été réalisés avec des petites molécules (colorant) [Wöh91], et plus tard avec des polymères semi-conducteurs [Nal97, Sko98, Had00]. Les propriétés photovoltaïques obtenues avec une telle configuration sont très faibles. L’anthracène fut aussi la première molécule organique étudiée en photovoltaïque. Cette molécule a été largement étudiée en raison de la possibilité de synthétiser des monocristaux très purs [Slo67, Slo75]. A partir de premiers résultats révolutionnaires en PV organiques, d’autres molécules organiques ont été utilisées pour
l’élaboration des cellules photovoltaïques et plus particulièrement les dérivés de porphyrine [Yam87, Has07] et de phthalocyanine. En effet, la phthalocyanine et ses dérivés ont été l’objet de plusieurs recherches : une structure MIM à base de phthalocyanine de magnésium (MgPc) a été élaborée en 1958 par D. Kearns et al. [Ker58], ils ont mesuré une tension de 200 mV. Lorsque G.L. Delacote et al. [Ker58, Del64] ont intercalé une couche à base de phthalocyanine de cuivre (CuPc) entre deux différentes électrodes métalliques, un contact rectifiant a été établi. En effet, ces matériaux très colorés possédant de bonnes propriétés semi-conductrices sont faciles à synthétiser. Ils forment des films cristallins par évaporation sous vide. La phthalocyanine possède un fort coefficient d’absorption qui correspond à 10^5 cm$^{-1}$ dans une large région du visible. Des films de quelques dizaines de nanomètre d’épaisseur peuvent absorber entre 50 et 70 % de la lumière incidente.

A partir des premiers travaux de recherche réalisés sur les systèmes MIM, les facteurs importants influant les caractéristiques PV des cellules solaires organiques ont été déterminés, tels que : l’effet de l’oxygène sur les performances photovoltaïques [Cha66, Fed71], la durée de vie et la longueur de diffusion des excitons ainsi que la mobilité des charges dans les dispositifs à base de dérivés phthalocyanines (ZnPc, AlPc, Mg, Pc) [Fan78, Gos74, Sha95]. Pour la mobilité très élevée et la stabilité à l’air qui sont les facteurs majeurs pour l’obtention de meilleures caractéristiques PV, le pentacène et la triphénylamine ainsi que leurs dérivés ont fait aussi l’objet de recherche [Ant02, Crav06, Roq06].

Comme pour les petites molécules, les polymères sont aussi utilisés en photovoltaïque organique. Ainsi que nous l’avons décrit précédemment, la mise en œuvre des dispositifs photovoltaïques à base de polymères conjugués nécessite des techniques assez simples et moins coûteuses. Les deux plus grandes familles de polymères étudiés sont les dérivés du poly(paraphénylènevinylène) (PPV) et du poly(thiophène) (PT).

La première application de PPV en photovoltaïque « ITO/PPV/Al » a été rapportée par S. Karg et al. [Kar93]. A partir de ces travaux, d’autres dérivés de PPV substitués par des groupements alkoxy (poly(2-méthoxy-5-(2-éthylhexyloxy)-1,4-phénylènevinylène) (MEH-PPV) ou le poly(2-méthoxy-5-(3’,7’-diméthyl octyloxy)-1,4-phénylènevinylène) (MDMO-PPV)) ont été élaborés afin d’améliorer leurs propriétés physico-chimiques telles que la solubilité et ainsi sa mise en œuvre. Comme pour les dérivés de PPV, des travaux de recherches impliquant le thiophène et ces dérivés en photovoltaïque ont été évoqués [Bab05, Ch93, Mac92, McC98]. Le dépôt des couches photo-actives à base de polymères conjugués peut être réalisé avec différentes méthodes, les propriétés PV en final en dépendent.
Nous pouvons citer les travaux de recherches rapportés par le groupe de S. Glenis [Gle84, Gle86] pour des cellules monocouches à base de poly (alky-thiophène) (PAT) déposé par voie électrochimique sur une électrode d’or. Ces cellules ont fourni un rendement de conversion de l’ordre de 4% sous un éclairement monochromatique à 0.8 mW/cm² (470 nm). L’utilisation du composite à base de poly (3-butylthiophène) et de colorant, étalé entre les électrodes d’Au et d’ITO, a produit un rendement de 0.01 % sous éclairement 100 mW/cm² [Sic01].

Pour une telle configuration, nous avons constaté que le choix des matériaux organiques et/ou des électrodes représente le point fort pour pouvoir extraire le photocourant du dispositif. Des études ont été menées par plusieurs groupes de recherches [Mar94, Ant94] sur l’influence des électrodes avec différents travaux de sortie sur les performances des cellules solaires à base de polymères. Ils ont démontré que la tension V_{oc} obtenue pour une cellule ITO/PPV/Mg est de l’ordre de 1.2 V. Du fait du remplacement de Mg par Ca au niveau de la cathode, la tension de circuit ouvert a été améliorée et a atteint 1.7 V.

Malgré la variété du choix des matériaux organiques et la nature des électrodes, les cellules solaires de type Schottky (MIM) délivrent de faibles rendements de conversion. Ces faibles performances sont principalement dues à la faible mobilité des porteurs de charges ainsi qu’à la forte interaction électron-trou dans les matériaux organiques, ce qui vient limiter la séparation des charges. Cette structure reste en revanche une voie prometteuse pour déterminer les caractéristiques intrinsèques des matériaux telles que la mobilité. Ces valeurs peuvent être comparées avec celles qui peuvent être obtenues en utilisant des transistors. Pour améliorer les performances des cellules organiques, l’utilisation de structures hétérojonctions bicouches ou hétérojonction en volume constituent des solutions possibles [Mol06].

b) Les systèmes hétérojonction bicouche

Nommé encore Jonction P/N (cf. Figure I.10), le système bicouche se compose de deux couches organiques de natures différentes donneur et accepteur. L’ensemble est déposé entre deux électrodes. L’idée de remplacer la structure Schottky par une structure bicouche est venue afin d’extraire efficacement les charges libres car, dans la plupart des semi-conducteurs organiques, les excitons photo-générés sont fortement liés (énergie de liaisons 0.2-1.0 eV) et donc se dissipent difficilement. L’ajout de la seconde couche engendre un investissement de l’ensemble de matériaux, l’un avec son potentiel d’ionisation HOMO (donneur) et l’autre avec
son affinité électronique LUMO (accepteur) favorisant ainsi la dissociation des excitons à leur interface. La structure du dispositif bicouche est schématiquement illustrée sur la Figure I.10-a.

![Figure I.10-a](image)

Figure I.10: (a) Architecture d’une cellule solaire organique plastique bicouche, (b) Représentation des niveaux d’énergie d’un contact ITO/Donneur/accepteur/Al.

Comme il est indiqué sur la Figure I.10-b, dans le cas d’une hétérojonction bicouche, les électrodes doivent être choisies de façon à obtenir des contacts ohmiques avec les films organiques : l’anode semi transparente, dont le travail de sortie est élevé, peut former un contact ohmique avec certains matériaux de type -p (transporteurs de trous) ; la cathode métallique (aluminium ou argent,…), qui possède un faible travail de sortie, peut aussi créer un contact ohmique avec certains matériaux de type -n (transporteurs d’électrons) [Ham84, Yam84]. D’autres cellules photovoltaïques ont été conçues avec une cathode d’or non oxydable à l’air, afin d’améliorer la stabilité des cellules organiques dans le temps [Sah05, Nak04a].

L’hétérojonction bicouche formée entre les matériaux donneur et accepteur (cf. Figure I.11), est donc due aux différences entre le potentiel d’ionisation du donneur et l’affinité électronique de l’accepteur. Les excitons photogénérés dans des dispositifs bicouches peuvent seulement être quantitativement dissociés à l’interface donneur/accepteur ; ainsi, la diffusion des excitons est limitée dans le dispositif. Les excitons, créés dans l’une des phases, doivent diffuser selon leur durée de vie afin d’atteindre l’interface D/A et se dissocier.
Seuls les excitons photogénérés à proximité de l'interface D/A (distance plus faible que la longueur de diffusion des excitons) peuvent être dissociés. Ainsi, seulement une partie des photons absorbés contribue à la génération du courant, les autres charges pouvant être recombinées de nouveau d'une manière radiative [Peu03, Hau99]. Il est conseillé de concevoir des cellules solaires organiques avec 50 nm d’épaisseur maximale pour chaque couche photo-active afin d’éviter la perte des excitons.

Figure I.11 : Structure chimique de quelques petites molécules les plus utilisées dans les cellules solaires PV [Hop04a, Gun07].

La cellule solaire PV hétérojonction bicouche à base d’une couche organique présentant une meilleure correspondance spectrale avec le spectre solaire a été élaborée à base de petites molécules suivant la structure : Au/ZnPc (phthalocyanine de zinc)/TPyP (tétrapyridylporphirine)/Al [Ham84]. Elle a fourni un rendement de conversion de 2 % sous illumination de 10 µW/cm² (lumière monochromatique 430 nm). Les dérivés de phthalocyanine ont été largement étudiés. En effet, des molécules de phthalocyanine de cuivre (CuPc) ont été utilisées avec le peryléne (PTCBI) en cellule bicouche [Tan86] suivant la structure ITO/CuPc/PTCBI/Ag. Un rendement de conversion de 0.95 % a été obtenu. Par la suite, des groupes de recherches ont modifié quelques paramètres de la structure de cette cellule. Le groupe de recherche de T. Tsutsui [Tsu95] a remplacé la cathode Ag par Au et P. Peumans et al. [Peu00] ont intercalé des sous couches de PEDOT: PSS et de BCP entre cette couche active (CuPc/PTCBI) et les électrodes d’ITO et d’Al. Ils ont constaté que les rendements de
conversion fournis par ces cellules sont alors améliorés : de 1.87 % [Tsu95] à 2.4 % [Peu00]. Ces rendements sont nettement augmentés après la substitution de la molécule de PTCBI par le fullerène C\textsubscript{60}, les cellules de type ITO/PEDOT :S/C\textsubscript{60}/BeP/Al, ont délivré un rendement de conversion de 3.6 % sous illumination 150 mW/cm2 [Peu01].

En effet, la molécule de fullerène, troisième forme allotropique du carbone, découverte en 1985 par H.W. Kroto, R.F. Curl et R.E. Smalley [Kro85] (cette découverte leur a valu le prix Nobel de chimie en 1996), possède une affinité électronique très élevée, de bonnes mobilités de charges, une grande stabilité, un caractère tridimensionnel et une bonne longueur de diffusion excitonique (7.7 ± 1 nm) [Pet99]. En raison des meilleures propriétés électroniques de cette molécule et de ses dérivés, le groupe de A. Moliton [Bro04] a utilisé le C\textsubscript{60} avec du CuPc en jonction \textit{p-n}. En l’utilisant avec des dérivés de triphénylamine en forme d’étoile substitués par des groupements de thiophène contenant deux unités nitrile [Roq06], un rendement de 1.17 % sous illumination de 100 mW/cm2 a été obtenu. Des cellules de type bicouche ont été élaborées par le groupe de recherche de J.-M. Nunzi [Pan07] selon la structure suivante ITO/PEDOT :PSS/Rubrène (Ru)(35nm) :C\textsubscript{60}(25nm)/Al (Au ou Ag). Les dispositifs PV ont délivré des rendements de conversion 2.9%. Il a constaté lors de cette étude que les paramètres PV dépendent fortement de l’épaisseur des couches organiques de Ru (20-35 nm) et C\textsubscript{60} (5-50 nm) [Pan07]. Le même rendement a été obtenu par un autre groupe de recherche en utilisant des dérivés d’oligothiophène (5T-CHO) et de pérylène (PTCDA) [Liu07].

Comme pour les petites molécules (cf. \textit{Figure I.11}), des cellules solaires PV bicouches ont été élaborées à base de polymères conjugués (cf. \textit{Figure I.12}). Les premiers dispositifs bicouches ont été élaborés à partir d’un dérivé de poly (phénylène-vinylène (MEH-PP) et de C\textsubscript{60} par N.S. Sariciftci \textit{et al.} en 1992 [Sar92, Sar93]. Une amélioration nette des propriétés photovoltaïques a été observée en raison d’un transfert ultrarapide intramoléculaire des électrons photo-induits entre les deux matériaux, ce qui peut être traduit par l’augmentation du photocourant d’un facteur de 20. Ils ont constaté que la cellule PV sous illumination monochromatique 514 nm (1 mW/cm2) a délivré un rendement de conversion de 0,04 % avec une tension V_{oc} de 0.44 V. Ils ont supposé que la V_{oc} dépend de la jonction MEH-PPV/C\textsubscript{60} car la cellule délivre la même tension en inversant les électrodes : Al/MEH-PPV/C\textsubscript{60}/ITO. Vu le gap énergétique des dérivés de polythiophène, certains groupes de recherche [Mor93a] ont remplacé le polymère MEH-PPV par le poly(alkylthiophène) en utilisant la même configuration ITO/PAT/C\textsubscript{60}/Al. Des études portées sur d’autres dérivés de poly(thiophène) :
CHAPITRE 1 : POURQUOI DE L’ÉNERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

(poly(3-(4’(1”,4”,7”-trioxaoctyl)phényl)thiophène) (PEOPT), dans la configuration ITO/PEDOT :PSS/PEOPT/C_{60}/Al ont été évoquées par L.S. Roman et al. [Rom98]. Ils ont étudié l’effet de l’épaisseur de la couche à base du polymère conjugué PEOPT sur la densité du courant. Ils ont constaté que les performances des cellules sont meilleures quand l’épaisseur des couches diminue. Les paramètres PV obtenus à partir de ces systèmes ITO/PEDOT :PSS/PEOPT(30nm)/C_{60}/Al sont : \(IPCE\% = 23\% \) et \(\eta\% = 1.7\% \) sous un éclairement de lumière monochromatique de 15 µW/cm².

Il a été démontré qu’en associant un polymère conjugué poly(benzimidazobenzophénanthroline) à différents polymères donneurs tels que le MEH-PPV, P3HT... les rendements de conversion peuvent atteindre 1.5~2 % sous illumination standard [Jen06]. Les chercheurs ont évoqué que le fait d’associer deux polymères en couche active (un système bicouche) permet à la plupart des excitons photogénérés d’atteindre les interfaces de la jonction \(P/N \). D’autres travaux ont été effectués sur les cellules d’hétérojonction \(p-n \) tels les dispositifs PV à base de poly(p-pyridylvinylène) (PpyV) et de poly(3-hexylthiophène) (P3HT), dont les couches organiques de PpyV et de P3HT sont déposées à la tournette à partir de différents solvants acide formique et chloroforme respectivement [Tad97a, Tad99].

Selon la nature des composés organiques et comme nous l’avons décrit précédemment les dépôts des couches peuvent être réalisés à partir de différentes méthodes, évaporation, dépôt à la tournette... Les couches peuvent être aussi auto-assemblées par interactions électrostatiques. Cette technique de dépôt couche par couche permet d’avoir des structures ultrafines par immersions successives du substrat dans des solutions contenant un matériau chargé positivement (un dérivé cationique du PPV par exemple) et négativement (un dérivé anionique du C_{60}) [Dur03]. Une autre méthode de dépôt de consistant à faire pénétrer un film de dérivé de PPV déposé à la tournette à partir de chloroforme dans un film de dérivé de pérylène déposé par évaporation sur une electrode d’ITO, a été mise en œuvre [Nak04b]. La solution de PPV est déposée sur le film de pérylène et laissée dix secondes sous atmosphère saturée en chloroforme, avant de déclencher progressivement la tournette. Ce traitement laisse le temps aux molécules de PPV de pénétrer dans la couche de pérylène. Le rendement obtenu correspond à 1.9 % sous illumination 100 mW/cm².
Nous constatons que ce type de cellules solaires est prometteur mais les résultats restent faibles en raison de sa structure qui limite ses performances PV. Plusieurs travaux de recherches ont été rapportés sur les systèmes bicouches à base de petites molécules ou de polymères conjugués tout en étudiant les différents paramètres ayant un impact sur les performances de ces derniers. Malgré l’abondance de ces travaux, les rendements de conversion restent faibles. Cela est lié à plusieurs facteurs tels que la faible longueur de diffusion des excitons qui conduit à leur recombinaison avant d’être dissociés [Ker98, Ker00], à la faible mobilité des charges dans les matériaux, etc.

Pour pallier ces inconvénients, une autre génération de cellules solaires organiques a vu le jour, appelée structure hétérojonction en volume : c’est la cellule photovoltaïque qui consiste en un mélange de donneur et d’accepteur en une seule couche de composite. De ce fait, les distances à parcourir par les charges libres pour atteindre les électrodes deviennent courtes, et l’augmentation des interfaces D/A engendre l’amélioration de la dissociation des excitons.

c) **Les systèmes hétérojonction en volume (HJV)**

Appelés aussi systèmes à réseau interpenetré (cf. *Figure I.13*), les hétérojonctions en volume sont semblables aux dispositifs bicouches en ce qui concerne le concept donneur (D)/accepteur (A), mais le mélange des deux matériaux D/A permet de multiplier les zones...
interfaciales entre eux et de réduire ainsi les pertes par recombinaison des excitons photogénérés dans tout le volume. En effet, dans cette configuration, la dissociation des excitons s’effectue dans l’ensemble du volume de la couche photo-active alors que, dans le cas des structures bicouches, elle procède au niveau d’une seule interface plane intervenant entre le donneur et l’accepteur. Il a été démontré que le mélange des deux matériaux (D et A) permet la séparation de phase (une microségrégation) avec la formation de domaines dont la taille est proche de 20 nm [Hal95]. Donc, contrairement aux structures bicouches, la plupart des excitons peut atteindre l’interface D/A indépendamment de l’épaisseur du composite. L’utilisation d’une seule couche composée d’un mélange D et A en volume permet une amélioration significative des performances des cellules photovoltaïques organiques.

La couche photo-active organique dans le cas des structures à réseau interpénétré, peut être obtenue différemment selon notre choix, à partir de mélange de matériaux aux propriétés donneur/accepteur intrinsèques (molécules, double-câble et copolymères à blocs) ou de matériaux formant une architecture supramoléculaire.

Les premiers travaux sur les HJV ont été rapportés par M. Hiramoto et al. [Hir91, Hir92a] sur des molécules de colorants dispersées dans une matrice de polymère, puis étudiées avec des mélanges de polymères conjugués et de dérivés C60 par S. E. Shaheen et al. [Sha01]. Ces travaux portent souvent sur les dérivés C60 en raison de leurs propriétés plus adéquates, plus précisément de leur meilleure affinité électronique, comme mentionné ci dessus. Il a été démontré que le mélange d’un polymère conjugué avec le fullerène permet le transfert ultrarapide des électrons photo-induits du polymère conjugué vers C60 à l’état solide, de l’ordre de 10^{-12} s (cf. Annexe 1) [Smi93]. Il faut noter que le taux de séparation de charges photogénérées à l’interface donneur/accepteur est très élevé et que le temps de transfert de charges libres dans ces cellules est mille fois plus rapide que celui d’une recombinaison radiative ou non radiative [Tad97a, Pac03].
Figure I.13 : (a) Architecture d’une cellule solaire organique plastique à réseau interpénétré, (b) Représentation du concept photovoltaïque pour une structure HJV : ITO/Donneur (polymère) : accepteur (dérivé de fullerène)/Al.

Cette structure a été largement étudiée pour sa meilleure configuration. En effet, une cellule hétérojonction en volume a été élaborée à partir de ITO/MEH-PPV : C_{60} (10:1 en masse)/Ca par G. Yu et al. [Yu94]. Plus tard, ces cellules solaires ont été élaborées dans la même configuration en remplaçant C_{60} par son dérivé nommé PCBM, synthétisé par J.C. Hummelen [Hum95] pour sa meilleure solubilité. Les cellules ont délivré des rendements de l’ordre de 3% sous une illumination 20 mW/cm² [Yu95b]. S. Alem et al. [Ale04a] ont élaboré un dispositif PV de structure ITO/PEDOT :PSS/MEH-PPV :PCBM (1:5)/LiF/Al. Les cellules ont délivré des rendements de 2.9 % sous illumination AM 1.5. Ils ont évoqué que l’insertion des sous couches de PEDOT :PSS, le rapport massique D/A et le solvant ont un impact direct sur les paramètres photovoltaïques des cellules. Afin d’améliorer les
performances PV, d’autres dérivés de PPV ont été étudiés en cellule solaire de type HJV. Le polymère conjugué MDMO-PPV a été utilisé avec différents dérivés de fullerène (C_{60}, PCBM ou C_{71}) dans un rapport massique 1:4 en cellules à réseau interpénétré. Les rendements de conversion obtenus sont entre 2.5 et 3.3 % [Wie03, Sha01, Gao97, Bra02b]. Par la suite, les dérivés de PPV ont été remplacés par du P3HT par le groupe de N.S. Sariciftci [Pan03]. Le rendement de conversion obtenu pour la cellule OPV à réseau interpénétré à base de composite P3HT :PCBM dans un rapport massique 1:2, correspond à 3.5 % [Pan03]. Une même cellule a été élaborée par C. Waldauf et al. [Wal04]. Ils ont obtenu un rendement de 3.8 % sous illumination standard. En diminuant la concentration du PCBM dans la matrice du polymère (P3HT : PCBM dans un rapport massique 1 :0.8), les cellules ont délivré des rendements de l’ordre de 5 % [Ma05, Rey05a]. Comme pour le composé PCBM, le pèrylène a été utilisé en mélange avec des polymères conjugués en couche active dans une configuration HJV [Dit00, Fen01].

Pour ce système, il est également possible d’utiliser un mélange de deux polymères en couche photo-active dans le but d’améliorer l’absorption en baissant les niveaux énergétiques des matériaux (meilleure correspondance avec le spectre solaire). En effet, il est judicieux d’associer sous forme de copolymère conjugué deux unités D et A alternées. Plusieurs travaux de recherche ont été menés dans cet objectif [Adm06, Blou07, Bun07b, Bun07c, Yoh04, Gad07, Müh06, Tan07a, Shi06].

Comme pour les polymères, d’autres systèmes à base d’un mélange de petites molécules de type donneur et accepteur ont vu le jour grâce à la co-évaporation, on peut obtenir des couches photo-actives à base de ces molécules intimement mélangées [Yan05a, Kop06, Sun06]. En effet, des structures hétérojonction en volume ont été conçues à partir des mélanges de petites molécules (donneur/ accepteur) par différents groupes de recherche [Bro04, Yan06]. Ils ont obtenu des rendements de conversion de l’ordre de 2.5% pour des cellules HJV à base d’une mixture de CuPc et de C_{60}.

Afin d’améliorer la mobilité des porteurs de charges libres, d’autres générations de cellules hétérojonction en volume ont été élaborées à partir des cristaux liquides discotiques [Sch01, Sch02]. Certains groupes de recherche [deB01, Neu03, Liu05, Cre05, Liu04a] ont réalisé des cellules solaires de type HJV à l’échelle de la molécule (ou de la macromolécule) en synthétisant des des nouveaux matériaux organiques. D’un point de vue fondamental, l’étude de ces matériaux permet de mieux analyser les phénomènes de transfert de charge dans les matériaux à propriétés D/A. Le concept de molécule double-câble est basé sur une
couche active contenant un polymère conjugué ou oligomère de type -p lié à une molécule semi-conductrice de type -n par l’intermédiaire d’un bras espaceur [Sta00, Pee00].

Ce type de cellules solaires, comme nous le constatons, est très avantageux au vu de l’amélioration nette des performances PV dues à son architecture. Les paragraphes qui vont suivre, sont consacrés aux travaux de recherche qui ont été effectués jusqu’à maintenant, en prenant en compte non seulement les résultats PV obtenus ainsi que les structures PVO probables étudiées mais aussi tous les facteurs qui ont une influence plus ou moins directe sur les caractéristiques photovoltaïques, tels que la morphologie, l’absorption, les niveaux énergétiques ou la concentration.

Il faut aussi noter que des travaux ont été effectués sur l’influence de la taille des cellules solaires [Pan08] ou bien sur le type et la taille des substrats utilisés sur les performances PV. Des cellules PVO flexibles ont été élaborées, en remplaçant le substrat ITO/verre par ITO/PET (polyéthylène tétréphtalate). M. Al-Ibrahim et al. [AlI05a] ont étudié quant à eux une structure HJV flexible à base du film composite de MDMO-PPV:PCBM (1:3). Un rendement de 3 % a été mesuré pour une surface active sous air. Pour la même configuration et dans les mêmes conditions, d’autres études ont été effectuées, pour des dérivés de PAT (P3HT, P3OT et P3DDT) et de PCBM, les rendements de conversion obtenus sont faibles entre 0.59 et 1.54 % [AlI05b, AlI05c]. C. J. Brabec et al. [Bra99a, Bra99b] ont élaboré des cellules à base de mélange MDMO-PPV:PCBM avec de grandes dimensions (6 x 6 cm, étendues ensuite à 10 x 15 cm), le rendement obtenu est de l’ordre de 1.2 % sous illumination monochromatique 488 nm (10 mW/cm²).

Nous constatons que les études réalisées ont démontré que nous pouvons maîtriser les paramètres PV à partir des propriétés physico-chimiques des matériaux organiques : leur structure moléculaire à l’aide de l’ingénierie moléculaire d’une part, et la géométrie des cellules ou bien la morphologie des couches photo-actives d’autre part.
I.3.2. Amélioration des paramètres PV des cellules solaires OPV

a) Amélioration de l’absorption

Un des paramètres influant sur les performances photovoltaïques et plus précisément sur le photocourant, est l’absorption des photons. Des études antérieures concernant l’effet de l’épaisseur des couches photo-actives sur l’absorption, ont été réalisées. La loi de Beer-Lambert (cf. Annexe 2- Équation 1) démontre que plus l’épaisseur est élevée, plus l’absorption est forte (cf. Annexe 2). L’augmentation de l’épaisseur est recommandée mais elle reste limitée par la mobilité des porteurs de charges et leur temps de vie qui est court. Une autre solution envisageable est liée à la diminution de la bande interdite HOMO-LUMO des matériaux afin d’étendre l’absorption sur toute la gamme du visible et aussi dans le proche infrarouge (entre 800 et 1000 nm).

Figure I.14 : Diagramme de structure de bandes illustrant les niveaux énergétiques HOMO et LUMO de MDMO-PPV, P3HT, et un donneur “idéal” relatifs à ceux du PCBM [Tho08].

Depuis l’utilisation des dérivés de PPV tels que poly(2-méthoxy-5-(2-éthylhexyloxy)-1,4-phénylènevinylène) (MEH-PPV) ou poly(2-méthoxy-5-(3’,7’-diméthyloctyloxy)-1,4-phénylènevinylène) (MDMO-PPV) avec des bandes interdites de l’ordre de 2.2 eV en cellules solaires photovoltaïques, qui ont fourni des rendements de conversion de l’ordre de 2.9 %
CHAPITRE 1 : POURQUOI DE L’ENERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

[Alle04a] et 2.5 [Moz04, Sha01] voire 3% [Wie03], d’autres polymères conjugués ont vu le jour comme les dérivés de polythiophène avec des gaps énergétiques plus faibles de l’ordre de 1.8–2 eV (cf. Figure I.14). En effet, des cellules à base de ces dérivés ont délivré des rendements de 0.65% dans le cas de P3AT [Ngu07] et 4–5 % dans le cas de P3HT-RR [Ma05, Rey05a] comme mentionné ci dessus.

Afin d’élargir le domaine d’absorption des matériaux organiques et le décaler vers les plus grandes longueurs d’ondes (basses énergies), une solution alternative concerne la synthèse des copolymères alternés (cf. Figure I.15). En effet, plusieurs groupes de recherches se sont focalisés sur cette voie afin de l’exploiter au mieux. Parmi ces études, celles qui correspondent à la synthèse des copolymères poly(2,7-carbazole) et oligothiophène, séparés par un groupement vinylène, par l’équipe de recherche de M. Leclerc [Lec06]. L’utilisation de l’un des copolymères en mélange avec PCBM en couche photo-active en cellule solaire PV, a conduit à un rendement de conversion de 0.8 % sous éclairement AM 1.5. D. Mühlbacher et al. [Müh06] ont essayé d’obtenir une absorbance du système PV correspondant au mieux au spectre solaire par la synthèse des copolymères alternés à base de dérivés de thiophène et de benzothiadiazole (le poly[2,6-(4,4-bis-(2-éthylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT). Ce nouveau polymère de type -p possède une bandes interdite qui avoisine 1.4 eV. Les cellules PV à réseau interpénétré à base de composite PCPDTBT :PCBM ont fourni un rendement de 3.2% sous illumination AM 1.5. L’utilisation de PCPDTBT avec du PC70BM en cellule de type HJV ou encore en cellule tandem a conduit à des rendements de l’ordre de 5.63 et 6.5% respectivement [Hwa08, Kim07b]. Suivant le diagramme de M.C. Scharber et al. [Sch06a], l’utilisation des polymères à faible gap énergétique de l’ordre de 1.3 à 1.7 eV en mélange avec du PCBM, permet de porter les performances des cellules solaires jusqu’à des rendements de conversion de 10 %.

D’autres copolymères de thiophène-co-benzothiadiazole dont l’énergie de gap de 1.65 et 0.67 eV ont été étudiés par E. Bundgaard et al. [Bun07b, Bun07c], un rendement de 1% a été obtenu en optimisant l’épaisseur de la couche active de la cellule solaire. Plusieurs travaux ont été menés dans la même voie, comme ceux entrepris par S. Admassie et al. [Adm06]. Ils ont élaboré des copolymères alternés à base de fluorène associés à un monomère accepteur d’électrons. Ils ont étudié leurs propriétés électroniques et optiques. L’incorporation des ces copolymères polyfluorene Poly((2,7-(9-(29-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(49,79-di-2-thienyl-29,19,39-benzothiadiazole))-co-(2,7-(9-(29-ethylhexyl)-9-hexyl-fluorene)-alt-2,5-
CHAPITRE 1 : POURQUOI DE L’ÉNERGIE RENOUVELABLE A PARTIR DE L’ORGANIQUE ?

thiophene)) (LBPF3) en mélange avec PCBM (dans un rapport massique 1:4) dans des cellules solaires a conduit à des rendements de l’ordre de 1.7 et 9.2 % sous un éclairement monochromatique 565 nm [Yoh04]. Des recherches ont été réalisées par la suite sur les copolymères alternés de fluorène et benzothiadiazole par A. Gadisa et al. [Gad07]. Ils ont fabriqué des couches photo-actives à base de mélange de ces copolymères et du PCBM. Les dispositifs organiques ont délivré des rendements de conversion de 2.24 à 2.62 %. Z. Tan et al. [Tan07a] ont rapporté des études menées sur des cellules solaires PVO à base de copolymères de polythiophènes possédant différentes natures de chaînes à double ou triple liaison C-C. De leur utilisation en mélange avec PCBM dans un rapport de masse 1:1 en couche photo-active résulte un rendement de conversion de l’ordre de 1.45% sous éclairement 80 mW/cm². Des rendements de conversion de l’ordre de 1% sous illumination AM 1.5 ont été obtenus pour des dispositifs à base de copolymères alternés fluorène-thiophène-cyanovinylène (PFR3-S ou PFR-4S) en mélange avec le C₆₀ par S. K. Lee et al. [Lee06]. C. Shi et al. [Shi06] ont synthétisé un copolymère alterné polyfluorène-alt-benzothiadiazole régiorégulier (poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-decyloxythien-2-yl)-2,1,3-enzothiadiazole]-5’,5’’-diyl)). Son utilisation avec PCBM dans un rapport massique 1:4 en couche photo-active a donné un rendement de 1.6 % sous un éclairement standard. Des copolymères alternés de poly(2,7-carbazole) et de benzothiadiazole (le poly[N-9'-heptadecanyI-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)), dont l’énergie de la transition optique est 1.88 eV ont été élaborés par le groupe de recherche de M. Leclerc et al. [Blou07].

Les dispositifs fabriqués à partir de ces copolymères en couche active (PCDTBT: PCBM dans un rapport de masse 1:4) ont délivré un rendement de conversion de 3.6% sous illumination 90 mW/cm². L’équipe de recherche de R. Demadrille [Dem05], ont synthétisé des copolymères de PDOBTF(poly[(5,5’-(3,3’-di-n-octyl-2,2’-bithiophène)]alt-(2,7-fluoren-9-one)]) et de PTVF (poly[(5,5’-(bis-(E)-1,2-bis(3-octythlien2-yl)éthylène]-alt-(2,7-fluoren-9-one)]) avec une forte absorption jusqu’à 700 nm du à la présence des groupements fonctionnels vinyle et carbonyle dans les composés organiques PTVF. Leur utilisation en cellules solaires délivre des rendements de l’ordre de 1.1% sous illumination AM 1.5. Par ailleurs, d’autres études ont été réalisées sur la famille des alkoxythiophènes, plus précisément sur le poly(3-décyloxythiophène) et le copolymère poly(3-octythliphéne-co-3-décyloxythiophène) [Shi06, Ron05, Zot95]. Les chercheurs ont montré l’intérêt de l’apport de groupements alkoxyles, fortement donneurs, sur l’absorption des composés synthétisés :
décalage du maximum d’absorption de 110 nm par rapport au P3HT en couche mince. Ceci correspond à un gap plus faible de 0.32 eV. Autres chercheurs ont montré l’utilité de groupements diphenylthiophèneopyrazines pour l’absorption des couches photo-actives. Les composés organiques obtenus poly(5,7-bis[3,4-di(2-éthylhexyloxy)-2-thienyl]-2,3-diphenyl-thieno[3,4-b]pyrazine) (PBEHTT) et poly(5,7-di-2-thienyl-2,3-bis(3,5-di(2-éthylhexyloxy) phenyl]thieno[3,4-b]pyrazine) (PTBEHT) possèdent des bandes interdites respectives de 1.28 et 1.20 eV. Cela induit une absorption des couches jusqu’à 1000 nm [Wie06].

Figure 1.15 : Structure chimique de quelques copolymères à faible gap utilisés dans les cellules solaires organiques.

b) **Amélioration du transport de charges libres (mobilité)**

Afin que le transport des porteurs de charges libres soit meilleur et que les charges atteignent leurs électrodes respectives, les deux matériaux constituant la jonction P/N doivent posséder de meilleures mobilités. Pour cela, les matériaux doivent contenir le moins de pièges possibles. Dans le cas des polymères transporteurs de charges positives (trous), ceci se traduit par l’élaboration de polymères régioréguliers avec une conjugaison assez élevée d’où la délocalisation forte des charges tout au long de la chaîne polymère. Ceci entraîne une distribution spatiale homogène des orbitales frontières pour les transports des trous et une diminution de la création de puits potentiels qui représentent des pièges pour ces charges.
Dans le cas des dérivés de thiophène, le P3HT -RR est très utilisé pour l’élaboration des cellules solaires [Li05a, Rey05b] et transistors [Kli06, Ver06, Zha06]. Il possède la mobilité la plus élevée de l’ordre de 0.1 cm²/V.s. Il a été démontré lors de ces études très pointues que la régiorégularité est l’un des paramètres les plus importants pour amplifier la mobilité des charges positives (trous). La mobilité pouvait augmenter d’un facteur 1000 lorsque la régiorégularité du polymère s’élève de 70 à 98 % [Kli06]. En effet, la régiorégularité du polymère permet une bonne organisation des chaînes polymères entre elles qui se traduit par un π-stacking et l’obtention d’une structuration lamellaire du P3HT -RR favorisant un meilleur transport de charges [Erb05, Kli06, Ngu07]. Des chercheurs ont élaboré des polymères dérivés de polythiophène possédant différentes régiorégularités. Ils ont constaté que le degré de la régiorégularité a un impact sur les performances PV [Kim06, Hop04a, Hop06, Den09].

Dans la même voie, d’autres matériaux possédant des groupements de thiophène [McC06, Ong04] ou fluorène [Mühl06, Sir00] ont été élaborés avec de mobilités élevées. B.S. Ong et al. [Ong04] ont démontré en synthétisant le polymère PQT-12 (poly(3,3’’’- didodécyquaterthiophène) que la diminution de certaines chaînes alkyles latérales sur le squelette du polymère P3HT et l’augmentation de sa régiorégularité permet d’améliorer la cristallisation du matériau avec une mobilité de l’ordre de 0.14 cm²/V.s (dans le cas des transistors). L’équipe de recherche de I. McCulloch [McC06] a élaboré des poly(2,5-bis(3-alkylthiophèn-2-yl)thieno[3,2-b]thiophène possédant des chaînes alkyles. Les transistors fabriqués à partir de ces polymères ont fourni des mobilités entre 0.2 et 0.6 cm²/V.s. Des dérivés d’oligothiophène en forme étoile avec des longueurs de bras différentes, synthétisés par X. Sun et al. [Sun06], ont été utilisés en mélange avec PCBM en structure HJV. Une amélioration nette du rendement de conversion a été observée pour la cellule à base de dérivé oligothiophène possédant le plus grand nombre d’unités de thiophène (11 unités). Ces valeurs sont dues aux meilleures propriétés de ces polymères qui sont comparables à celles de cristal liquide et qui permettent la formation de domaines organisés favorisant une bonne mobilité de charges libres. Par conséquent, la perte de charges libres par recombinaison dans la couche active diminue et la densité des porteurs de charges libres augmente. Ceci entraîne également l’amélioration du facteur de forme des cellules solaires (cf. Chapitre I - Morphologie).

Tout récemment il a été montré par l’équipe de S. Guillerez [Ber07b, Ber07c] que l’ajout de nanotubes de carbone (CNT) dans une matrice de P3HT :PCBM augmente l’ordre du polymère conjugué P3HT -RR et les performances des cellules PV deviennent meilleures.
Des rendements de conversion de l’ordre de 2% ont été obtenus. Cette ordre a été confirmée par d’autres chercheurs qui ont étudié l’effet de l’ajout des différents types nanotubes de carbone avec différentes concentrations sur la morphologie des composites (polymère : fullerène) [Kym08]. Ils ont supputé qu’un tel ajout améliore la mobilité des charges libres (trous). Ceci est lié à l’interaction entre les chaînes polymères qui ont tendance à s’enrouler autour des parois des CNT d’où l’ordre qui augmente.

c) **Effet de la morphologie**

Pour améliorer les performances des cellules solaires organiques, la maîtrise des paramètres influençant la morphologie des couches photo-actives est primordiale [Hop06, Pan03, Chi04, Yan05b, Yan07]. En effet, il y a différents paramètres qui influent sur la morphologie : les conditions du dépôt, la structure moléculaire du composé organique, le solvant organique utilisé, les concentrations des solutions, le rapport D/A, et les traitements subis par la cellule tels que le traitement thermique, le traitement électrochimique, etc. Ces paramètres doivent être contrôlés afin d’obtenir une morphologie optimale des couches photo-actives avec une séparation de phase inférieure ou égale à 20 nm (longueur de diffusion des excitons) et des matrices très ordonnées afin de faciliter le transport de charges dans les deux matériaux organiques.

Structure moléculaire

Des travaux entrepris par différents chercheurs ont montré que la structure moléculaire des matériaux organiques influe sur l’état de la morphologie des couches actives qui en dépendent. Parmi ces travaux, nous pouvons citer ceux effectués par N. Kopidakis *et al.* [Kop06] sur des cellules à base de dendrimères de thiophène avec un cœur phényle, en mélange avec PCBM. Ils ont pu démontrer par une étude de morphologie (AFM) que la séparation de phase entraîne des tailles de domaines inférieures à 10 nm, ce qui augmenterait le taux de recombinaison (la valeur du *ff* diminue). Ces cellules ont délivré des rendements de conversion de 1.3 % dans des conditions standard, qui est la plus grande valeur obtenue à ce jour pour une cellule à base de petites molécules solubles.

Comme nous le constatons, la maîtrise de la morphologie des couches actives est un paramètre clé pour l’amélioration des performances PV des cellules solaires organiques.
Plusieurs publications ont fait la synthèse de tous les travaux concernant la morphologie des couches actives et ses conséquences sur les caractéristiques PV [Hop04a, Hop06, Gun07, Li07b, Tho08, Den09]. Certains groupes de recherches [deB01, Neu03, Liu05, Cre05, Liu04a] se sont focalisés sur la réalisation des HJV à l’échelle de la molécule ou de la macromolécule, en synthétisant des copolymères diblocs D/A, ou des molécules ou polymères double-câble. La Figure I.16 schématise les copolymères à bloc et double-câble. D’un point de vue fondamental, l’étude de ces matériaux permet de mieux analyser les phénomènes de transfert de charges dans les matériaux à propriétés D/A. L’organisation de la structure dans une telle configuration est basée sur l’association des molécules, de façon à créer une micro-séparation de phase d’une dizaine de nanomètres, perpendiculaire aux électrodes (collecte de charges). En effet, l’utilisation de ces copolymères alternés élaborés à partir de PPV tels que : PPV-co-PSC₆₀ (poly(p-phénylène-vinylène)-co-polystyrène), Pery-co-PPV (pérylène(Pery)-co-PPV), Pery-co-PPV-co-TPA (Pery-co-PPV-co-triphénylamine (TPA)) a mis en évidence une amélioration significative des performances PV des cellules. Elles sont plus élevées que celles obtenues à partir des cellules élaborées à base de mélanges directs de ces composés Pery :PPV ou PPV :PSC₆₀. La cellule à base de copolymères Pery-co-PPV-co-TPA a délivré un rendement de conversion 0,07 % sous éclairement de 75 mW/cm², supérieur à celui obtenu dans le cas de Pery-co-PPV-co-triphénylamine. Les auteurs précédemment cités ont expliqué ce résultat par la concentration en pérylène qui est plus importante dans le Pery-co-PPV que dans le Pery-co-PPV-co-TPA.

La morphologie des films peut être également influencée par la structure chimique des copolymères dérivés de fluorène [Bjö05]. Les mêmes auteurs ont montré que les copolymères à base de fluorène-benzothiadiazole présentent moins de séparation de phase en mélange avec PCBM à partir du chloroforme. Le benzothiadiazole pourrait être impliqué dans des interactions favorables avec le composé PCBM.

Les polymères double-câble donneur/accepteur (D/A), comme montre la Figure I.16, consistant à greffer d’une manière covalente un motif accepteur d’électron (câble n)
(généralement C₆₀ et ses dérivés) tout le long d’un squelette polymère donneur d’électron (câble p) [Cra02, Tan07b]. Dans cette configuration, la morphologie est contrôlée à l’échelle moléculaire par un mélange intime des deux entités accompagné d’une séparation de phase maîtrisée. L’excitation de ce composé engendre la création des excitons au niveau du squelette de polymère, les électrons sont transférés et puis transportés par les motifs accepteurs d’électron via un transport par saut et les trous sont transportés par le squelette du polymère via un transport intrachaine.

M. Ramos et al. [Ram01a, Ram01b] ont rapporté des travaux sur la réalisation d’un dispositif photovoltaïque à base de polymères double-câble en 2001. Pour une couche photovoltaïque qui consiste en chaîne principale greffée de C₆₀, prise en sandwich entre les deux électrodes ITO et Al, les cellules ont fourni une tension V_{oc} de 0.830 V. En revanche, la densité de courant J_{sc} (420 µA/cm²), le facteur de forme ff (0,29) et le rendement de conversion (6 % sous illumination monochromatique 480 nm) obtenus sont faibles. Dans le même cadre, des études aussi rigoureuses ont été menées par d’autres groupes de chercheurs afin de valider et de comprendre les phénomènes physico-chimiques mis en jeu [Zha01, Cra03], tels que la structure moléculaire ou encore la teneur en accepteur.

A. Cravino et al. [Cra03] ont étudié des dérivés double-câble fullerène-thiophène. Ils ont observé lors de cette étude une augmentation de la densité de courant en comparaison de celle délivré par les cellules de références (à base de dérivé de PT modele). Ils ont expliqué ces résultats par une génération plus efficace des charges et une amélioration des propriétés de transport électronique. Mais ces améliorations restent limitées par la faible contenance d’unités comportant C₆₀ (7%). D’autres copolymères double-câbles à base de PAT et d’anthraquinone (très solubles à fortes teneurs en d’anthraquinone) ont été synthétisés par S. Luzzati et al. [Luz04]. Leur utilisation en cellules PV a conduit à des faibles valeurs de photocourant malgré la mise en évidence de transferts de charges photoinduites.

Par la suite, l’équipe de J-F. Nierengarten [Nie00, Nie04] a accroché différents donneurs : porphyrine, benzaldéhyde, oligomères p-phénylénevinylène, oligothiophène, oligophényléthénylène au C₆₀. Les cellules solaires à base de C₆₀-oligomères p-phénylénevinylène ont délivré des rendements très faibles de l’ordre de 1 % sous illumination 5 mW/cm². Elle a expliqué ces résultats par une forte relation entre la structure moléculaire des composés organiques et les performances PV des cellules qui en dépendent.
E.E. Neuteboom et al. [Neu03] ont synthétisé par polycondensation de type Suzuki, un copolymère oligo(p-phénylène-vinylène)-pérylène avec des bras espaceurs de longueur variable. Les performances des cellules PV élaborées sont limitées par la recombinaison rapide et le faible transport des charges libres dû aux orientations face à face des segments du oligo(p-phénylène-vinylène) et pérylène dans les copolymères alternés.

Z. Tan et al. [Tan07b] ont élaboré un polymère double-câble polythiophène (PT) avec une grande teneur de fullérène pendante 56wt% (cf. Figure I.17,a). Ils ont obtenu de meilleures propriétés PV dans le cas des cellules à base de ces polymères double-câble D/A (0.52 %) que dans le cas des cellules à base de mélange classique des deux précurseurs PT : C_{60} (η% = 0.1 %). Les études de morphologie ont montré que les couches actives à base de ces polymères double-câble D/A possèdent une morphologie adaptée pour les cellules solaires PV. Sans traitement thermique, la morphologie des couches s’avère homogène avec une séparation de phase plus au moins importante pour avoir des réseaux interpénétrés (cf. Figure I.16- b). Les densités de courants mesurées pour ces dispositifs sont de l’ordre de 2.4 mA/cm². Par ailleurs, des travaux ont été rapportés par l’équipe de P. Bäuerle [Cre05]. Ils ont attaché un dérivé de pérylène à l’oligo-3-hexylthiophène (1 à 8 unités). L’utilisation de cette dyade C_{60}-8T en mélange avec PCBM dans une couche active, a donné 0,5% de rendement de conversion dans des conditions standards.
Quant aux molécules double-câble, elles peuvent être représentées par des unités fullerènes greffées sur une chaîne de polymère donneur. Le principal avantage de cette structure est le contrôle de la distance entre le donneur et l’accepteur fixée par la longueur du bras espaceur. On obtient un matériau unique dont la jonction \(p-n \) est intrinsèque au matériau [Sta00, Pee00]. Plusieurs études ont été réalisées dans ce sens, prenant l’exemple de la synthèse d’un copolymère PPV-C\(_{60}\) par polymérisation contrôlée en 2000 par U. Stalmach \textit{et al.} [Sta00], ou bien le greffage des oligomères de p-phénylènevinylène aux unités C\(_{60}\) par E. Peeters \textit{et al.} [Pee00]. Il a été démontré grâce à ces études que le temps de vie des charges séparées dépend du nombre d’unités répétitives d’oligomères de p-phénylènevinylène : ce temps de vie est plus long pour les molécules possédant 3 à 4 unités d’oligomères de p-phénylènevinylène que pour celles possédant 1 à 2 unités. Ces études entreprises sur les molécules double-câble, ont montré une amélioration nette du transport de charges libres grâce à sa structure chimique [Pee00]. Une même conclusion a été tirée par P.A. Van Hal \textit{et al.} [Van00] de l’étude de triades fullerène-oligothiophène-fullerène. Un nombre élevé d’entités accepteurs d’électron doit donc être greffé sur le squelette polymère pour limiter la recombinaison des charges. Ces auteurs ont également constaté qu’une certaine longueur de la molécule est nécessaire pour observer une séparation de charge après excitation.

Selon les études réalisées, mentionnées ci-dessus, nous constatons que les résultats photovoltaïques obtenus à partir de ces composés à ce jour, restent faibles. Le passage à des structures, ordonnées à l’échelle moléculaire et possédant une structuration idéale de matériaux en couches actives, n’est pas évident mais ouvre des perspectives, telles que celle d’une structure formée à partir de deux réseaux bicontinus sous forme de cylindre de C\(_{60}\) dans une matrice de polymère donneur d’électron.

D’autres types de polymères, appelés copolymères diblocs (cf. \textit{Figure I.18-a}), ont vu aussi le jour. Comme leur nom l’indique, ils sont constitués de deux polymères thermodynamiquement incompatibles qui sont liés d’une manière covalente. Leur utilisation en couches actives (à l’état solide) conduit à une séparation de phase très ordonnée à l’échelle submicronique de l’ordre de 10–50 nm [Bat99, deB01, Grat04]. Selon leurs masses molaires (cf. \textit{Figure I.18-b}), les composés s’organisent de différentes manières. En effet, les masses molaires des composés organiques gèrent la morphologie des couches et conduisent alors à des sphères, des cylindres ou des lamelles. Les dimensions de séparation de phase correspondent aux dimensions adéquates pour que les cellules délivrent de meilleures
performances PV. L’utilisation des copolymères à blocs élaborés à partir d’un bloc de polymère donneur d’électrons et un bloc accepteur d’électrons, en couche active, conduit à des morphologies thermodynamiquement stables, adaptées pour les cellules solaires : morphologie gyroïde (deux réseaux interpénétrés bicontinus) ou morphologie cylindrique (morphologie idéale).

Les premiers copolymères diblocs poly(p- phénylène-vinylène)-co-polystyrène (PPV-co-PS) ont été synthétisés par le groupe de G. Hadziioannou [deB01]. La chaîne principale de ces copolymères à blocs a été obtenue par polymérisation contrôlée puis la fonctionnalisation de l’entité C₆₀ pendant sur le squelette polystyrène. Les chercheurs ont estimé qu’ils ont fonctionnalisé quinze unités C₆₀ en moyenne par chaîne de copolymère. Ils ont mis en évidence une structure gyroïde du film. Les cellules solaires élaborées à base de copolymères à bloc PPV-co-PSC₆₀ ont fourni de meilleures performances PV en comparaison des systèmes élaborés à base d’un mélange direct des deux composés organiques PPV :PSC₆₀.

Comme nous le constatons, ces travaux réalisés par différents groupes de recherches ont montré le grand intérêt de l’utilisation de tels composés en cellules solaires photovoltaïques. Une amélioration nette du photocourant J_{sc} a été constatée par rapport à celui délivré par les cellules à base de mélanges directes des deux composés D/ A au sein de la matrice. Ceci permet d’envisager l’élaboration de nouveaux blocs souples avec des groupements accepteurs d’électrons pour des morphologies de couches photo-actives plus...
adaptées aux cellules solaires PV. Néanmoins, les performances PV fournies par telles cellules organiques sont faibles comparées à celles délivrées par les cellules de type HJV, car même si un certain contrôle existe par les liaisons covalentes entre donneur et accepteur, les propriétés de transport de charges sont limitées.

Avec les mêmes objectifs et afin d’améliorer les caractéristiques PV des cellules solaires organiques, une nouvelle génération de cellules solaires à réseau interpénétré a été conçue et fait appel aux matériaux cristaux liquides discotiques. Il faut noter que, pour ce type de cellules solaires, la morphologie des couches actives peut être maîtrisée. En effet, ces molécules se présentent comme des disques qui peuvent s’arranger de façon à former des colonnes, favorisant ainsi le recouvrement des orbitales π. Les mobilités tout au long des colonnes sont alors fortement augmentées et peuvent atteindre les valeurs mesurées dans le silicium amorphe.

La Figure I.19 représente l’organisation des molécules discotiques en structure colonnaire et l’architecture idéale de la couche active d’une cellule solaire organique. Ces systèmes ont été largement étudiés comme pour tout autre système photovoltaïque (PVO) [Att02, Ouk05, Sch06a, Hir07].

Figure I.19 : (a) Organisation des molécules discotiques en structure colonnaire, (b) Architecture de la couche active d’un dispositif PV : 1) Vue à 3 dimensions [Des07], 2) Vue à 2 dimensions.

En 2001, L. Schmidt-Mende et al. [Sch01, Sch02] ont fabriqué des cellules PV à base de cristaux liquides discotiques hexaphényl-hexabenzocoronène et de pérylène (60:40) (cf. Figure I.20). Les systèmes π des deux matériaux forment une ségrégation en bâtons verticaux, idéals pour un transport de charges efficace. Ces cellules ont fourni un rendement de conversion de 2 % à 490 nm et un rendement quantique externe (IPCE%) de 34 %. J. Jung et al. [Jun05] ont par la suite dopé ce système avec 1 % de poly[3-(N-carbazolylpropyl)
méthylsilane-co-méthylphénylsilane). Ils ont pu améliorer le rendement de 0.38 à 0.57% sous éclairement monochromatique à 565 nm (0.5 à 1 mW/cm²).

Figure 1.20 : Structures chimiques de HBC et du dérivé de pérylène étudiés par Schmidt-Mende [Sch01, Sch02] et représentation de l’organisation en cristaux liquides colonnaires

Dans la même voie, une autre molécule mésogène sous forme de disque 2,4,6-tristyrylpyridine de type \(-n\) à été synthétisée par A.-J. Attias et al. [Att02]. Cette molécule possède des propriétés d’auto-assemblage en colonne hexagonale sur une large gamme de température (80-135°C), son affinité électronique très élevée en fait un bon accepteur. Pour améliorer la conductivité des porteurs de charges, d’autres travaux ont été réalisés sur l’orientation des dyades C₆₀-oligomères p-phénylénevinyène à l’intérieur du composite en synthétisant des systèmes D/A cristaux liquides fonctionnalisés par un dendrimère mésogène [Cam02].

A partir de ces travaux, nous constatons que la maîtrise de la morphologie des couches photo-actives à base de composites D/A, est un paramètre clé pour améliorer les performances des cellules solaires photovoltaïques organiques. Comme pour la structure moléculaire du donneur et de l’accepteur, le dépôt des couches actives a un impact direct aussi sur la morphologie. En effet, le solvant utilisé pour la solubilisation des matériaux organiques ou encore la concentration de ces derniers ainsi que la vitesse de dépôt influent sur l’état final de la morphologie des composites actifs.
CHAPITRE 1 : POURQUOI DE L’ÉNERGIE RENOUVELABLE À PARTIR DE L’ORGANIQUE ?

☐ **Effet du solvant organique**

Des études entreprises ont montré que le choix du solvant est primordial pour l’obtention des couches actives de haute qualité dont les performances photovoltaïques dépendent. En effet, la morphologie des films actifs est très différente d’un solvant à l’autre. Il a été démontré par S.E. Shaheen *et al.* [Sha01] que la taille des domaines pour des cellules solaires PV à base de composite MDMO-PPV :PCBM change en fonction du solvant utilisé. Ils ont rapporté que la taille des domaines limite les performances des cellules solaires.

En utilisant le chlorobenzène comme solvant, l’imagerie AFM a montré que les couches déposées sont plus uniformes et les cellules qui en dépendent ont fourni des rendements de 2.5% comparés à ceux délivrés par les cellules à base de composites déposés à partir du toluène et qui présentent des rendements de 0.9% (cf. *Figure I.21*). Ceci a été traduit par l’augmentation du photocourant dans le cas des composites étalés à partir du chlorobenzène.

![Figure I.21](image_url) : Morphologie des couches actives à base de composites MDMO-PPV :PCBM (1:4), obtenue par imagerie AFM en mode tapping : couche étalée à partir de solution de (a) chlorobenzène et (b) toluène [Hop04b].

Contrairement au toluène, il a été démontré que l’utilisation du chlorobenzène est appropriée pour obtenir des tailles de domaines inférieures ou égales à la longueur de diffusion (qui est estimée à 20 nm) et diminuer la rugosité. En effet, la taille des domaines de PCBM obtenue est de l’ordre de 600 nm en utilisant le toluène alors qu’avec le chlorobenzène elle diminue à 80 nm [Ris03, Yan07].

Par ailleurs, H. Hoppe et al. [Hop04b] ont montré que l’efficacité des cellules solaires dépend principalement de l’état de la morphologie des couches actives. Ils ont obtenu un rendement quantique externe (IPCE%) de l’ordre de 40 % à 450 nm pour un composite à base de MDMO-PPV : PCBM déposé à partir du chlorobenzène. Ils ont mis en évidence la dépendance du photocourant avec la morphologie des couches actives. Cette valeur diminue d’un facteur 2 dans le cas de la solubilisation des composés dans du toluène. Par la suite, d’autres recherches ont été établies par C.R. McNeill et al. [McN04]. Ils ont mesuré le photocourant local sur des couches photo-actives étalées à partir de toluène et de chlorobenzène. Ils ont constaté que ce courant est considérablement réduit au sommet des agrégats formés par PCBM dans le cas du toluène contrairement à celui obtenu avec le chlorobenzène (cf. Figure I.23).
CHAPITRE 1 : POURQUOI DE L’ÉNERGIE RENOUVELABLE À PARTIR DE L’ORGANIQUE ?

De nombreuses revues ont été faites sur les travaux concernant les cellules solaires à base de composites plastiques [Hop06, Hop04a, Gun07]. Les chercheurs ont montré que les mécanismes responsables de la diminution du photocourant sont le solvant utilisé et la répartition des domaines (cf. Figure I.24). En effet, des techniques d’analyse complémentaires telles que la microscopie électronique à balayage et la sonde de Kelvin ont pu mettre en évidence ces mécanismes.

A partir des études entreprises, Il a été démontré que le temps d’évaporation des solvants influe aussi sur la morphologie des couches photo-actives à base de dérivés de polythiophènes et plus précisément lors de la formation des films et de la cristallisation du matériau : il faut un temps d’évaporation adéquat, court pour limiter la séparation de phase mais assez long pour faciliter la cristallisation des matériaux ainsi que leur organisation au sein de la matrice du composite. Il est notable que ces matériaux peuvent s’organiser sous
forme de fibrilles. Effectivement, lors des études sur le dépôt de P3HT solubilisé dans du chloroforme dont l’évaporation est trop rapide (température d’ébullition 63°C), il a été constaté qu’il est difficile d’obtenir des fibrilles par la méthode de la tournette puisqu’elle permet un temps d’évaporation très court. Ceci affecte l’organisation des chaînes polymères de forte régiorégularité et ainsi la couche obtenue est quasiment amorphe. Pour cela on doit choisir une autre technique telle que le trempage ou dépôt goutte à goutte, ou bien un solvant adéquat qui permettent un temps d’évaporation plus long. Ce qui conduit à obtenir des couches assez structurées (cf. Figure I.25)

![Figure I.25: Morphologies des différentes couches actives (P3HT -RR suivant la masse molaire du polymère et de la technique de dépôt : trempage, évaporation de goutte ou à la tournette à partir de solutions élaborées dans le chloroforme) obtenues par imagerie AFM [Ver06].](image)

Dans le cas des cellules solaires réalisées à base de composite P3HT -RR :PCBM, il a été constaté que le temps de formation des couches actives influe sur les performances PV [Li05a, Li07a]. En effet, pour différents temps de formation des couches actives P3HT -RR: PCBM, leur absorption et les paramètres PV qui en dépendent ne sont pas identiques (cf. Figure I.26). Les figures montrent que plus le temps d’évaporation est long meilleurs sont le facteur de forme et la résistance série. Ceci s’explique probablement par la diminution des pièges due à l’ordre établi dans le système. En corrélant ces améliorations avec l’évolution des spectres d’absorption, nous observons sur la Figure I.26-b une augmentation des
intensités des bandes vibroniques du P3HT avec l’augmentation du temps de formation du film. La formation de telle structure (meilleure organisation des chaînes polymères dans la couche) augmente l’intensité de l’absorption en favorisant le transport de charges et par suite l’augmentation du photocourant de la cellule PV.

Figure I.26 : (a) Courbes caractéristiques I-V de cellules photovoltaïques à base de couches actives P3HT -RR: PCBM (1 :1) dont les vitesses de formation sont 20 mn (1), 3 mn (5), 40 s (6) et 20s (7). (b) Spectres d’absorption des films de P3HT -RR :PCBM pour un temps d’évaporation de 20 mn (1 as cast) et 20 s (7 as cast) (sans traitement thermique des couches actives).

Tout récemment, l’équipe de S. Guiller ez [Ber07a] a développé un nouveau procédé pour obtenir du P3HT fibrillaire sans traitement thermique. A partir de solutions concentrées dans le p-xylène chauffé à 80°C puis refroidi de façon contrôlée jusqu’à la température ambiante, les nanofibrilles sont isolées par centrifugation et précipitation. Ces nanofibrilles caractérisés par AFM mesurent entre 0,5 et 5 µm de longueur pour une épaisseur de 5-15 nm (cf. Figure I.27-1). La couche active à base de P3HT fibrillaire :PCBM dans un rapport massique 1:1, permet d’atteindre 3.6 % de rendement sous illumination dans les conditions standards (cf. Figure I.27-3).

Nous constatons sur la Figure I.27-4 que la l’ajout du PCBM dans la matrice du polymère P3HT fibrillaire, ne perturbe pas l’organisation de ces chaînes polymériques lorsqu’il est déjà structuré sous forme de fibrille. L’obtention de telles caractéristiques PV (3.6 % de rendement) est due essentiellement à la meilleure structuration des matériaux au sein de la matrice. La Figure I.27-2 représente les images AFM de couches actives obtenues à partir de composite P3HT :PCBM dans le cas d’un dépôt classique ou d’un film fibrillaire. Cette figure montre nettement la morphologie différente de la couche photo-active, même en
présence de PCBM. En effet, en utilisant le P3HT fibrillaire, la structuration de la couche active est contrôlée avant le dépôt et conduit à de bonnes performances sans nécessité de traitement thermique. Ce procédé pourrait s’appliquer à des dispositifs PV de grandes tailles et flexibles qui ne peuvent pas subir de traitement thermique. Des rendements de 3.3 % sur des modules de 12.4 cm² ont déjà été obtenus [ANR05, Ber07c].

Figure I.27 :
1) Images MEB (a, c) et AFM (b, d) (mode non contact tapping, hauteur) obtenues avec une solution native de P3HT à 0,05 wt% dans le cyclohexanone (a, b) et à 0,5 wt% dans le p-xylène (c, d), déposées à la tournette (a, b) ou par trempage (b, d) pendant 2 min.
2) Images AFM (mode non contact) des films obtenus à partir de solutions de (a) P3HT:PCBM (1:1) dans le chlorobenzène et (b) fibrilles de P3HT:PCBM (1:1) dans le p-xylène à 0,5 wt%.
3) Caractéristiques I-V des cellules solaires PVO.
4) Spectres d’absorption, obtenus à partir de différentes couches actives déposées à la tournette : (c) P3HT: PCBM, avant recuit, (b) P3HT: PCBM, après recuit à 150°C - 60 min, (a) d’une couche de P3HT fibrillaire (solution native): PCBM, (un ratio P3HT: PCBM de 1:1 dans chacun des cas) [Ber07a, Ber07c].

Par ailleurs, des cellules solaires ont été élaborées à base de couches photo-actives P3HT: PCBM étalées à partir de chlorobenzène ou de mélanges de solvants chlorobenzène - chloroforme par K. Kawano et al. [Kaw09].
Les meilleurs rendements ont été obtenus pour les couches déposées à partir des composés de P3HT:PCBM solubilisés dans un mélange de solvants (3.73 % contre 3.34 %) (cf. Figure I.28). Ceci est traduit par la différence de morphologie obtenue pour les différentes couches actives. Les chercheurs ont expliqué qu’une mixture de solvants favorise mieux la diffusion de PCBM dans la matrice du polymère ainsi une meilleure séparation de phase d’où l’augmentation du photocourant de 10 à 11 mA/cm².

Comme pour les composés à base de polymères conjugués : petites molécules, d’autres travaux de recherches ont été réalisés sur les polymères conjugué de type p dopés copolymères. Parmi ces travaux, nous pouvons citer ceux de C.L. Chochos et al. [Cho05] qui ont préparé des cellules PV à partir de mélanges de polymère P3HT et de copolymère (à base d’oxadiazole) dispersés dans différents solvants chloroforme ou ortho-dichlorobenzène. Ils ont constaté que la taille des domaines dépend de la nature du solvant. Elle est entre 200 et 400 nm dans le cas du chloroforme et entre 1700 et 1800 nm dans le cas de l’ortho-dichlorobenzène. Ils ont expliqué cette différence de taille par l’évaporation très rapide du solvant chloroforme, due à sa température d’ébullition, ce qui limite la réorganisation des chaînes de polymères. D’autres copolymères fluorène-benzothiadiazole ont fait l’objet d’études. Les chercheurs les ont utilisés dans un mélange à base de P3HT solubilisé dans du chloroforme, toluène, chlorobenzène et xylène [Kim04]. Les meilleures performances PV ont été fournies par les cellules élaborées à partir de composites solubilisés dans une solution d’xylène. Ces études montrent que le choix du solvant organique et de son temps
d’évaporation influent sur la morphologie des couches actives et la structuration des matériaux qui les composent, et ainsi que sur les performances PV des cellules.

Traitement thermique

A l’instar du choix des solvants et de leur temps d’évaporation, le recuit a un effet direct sur la morphologie. Il a été démontré que les performances PV des cellules dépendent du traitement thermique subi par les cellules solaires. Les caractéristiques $I-V$ varient selon la température et le temps de recuit. Des travaux ont été rapportés sur des cellules solaires bicouches à base de dérivé de PPV : pérlyène [Dit00, Fen01]. J.J. Dittmer et al. [Dit00] ont constaté qu’en remplaçant le PPV pur par son dérivé MEH-PPV, le facteur de forme des cellules croît. Ils ont observé que cette amélioration est devenue plus significative quand le dispositif a été traité thermiquement (ff a encore augmenté de 5 %).

D’autres travaux sur des systèmes photovoltaïques organiques de configuration bicouches à base de pérlyène et de dérivés d’oligothiophène (4T-CHO, 5T-CHO) ont été effectués par P. Liu et al. [Liu07]. Ils ont obtenu un rendement de 2.9 % pour le système bicouche à base du composé 5T-CHO/PTCDA sous illumination 78 mW/cm². Ceci est dû à l’amélioration très nette de la tension V_{oc} qui pourrait être expliquée par l’effet de morphologie, du fait de la forte cristallinité des oligothiophènes. Un système bicouche à base de poly(3-octylthiophène) régiorégulier/C₆₀ a été aussi réalisé. Son traitement thermique à 130°C pendant 5 min a entraîné une amélioration du photocourant et du facteur de forme ff ; ainsi, le rendement de conversion a atteint 1.5 % sous illumination monochromatique à 470 nm à 3.8 mW/cm². Les auteurs ont interprété ces résultats par l’inter-diffusion d’une des deux couches qui induit une multiplication des surfaces de contact entre donneur et accepteur [Dree05]. Par ailleurs, des études similaires ont été faites sur la famille d’oligothiophène par N. Noma et al. [Nom95] ou encore par R.N. Marks et al. [Mar95] où ils ont démontré l’influence de la morphologie du film à base de 6T sur les propriétés PV. Ils ont mis en évidence que la taille des cristallites et l’ordre établi dans le film augmentent avec la température du recuit.

Comme pour les cellules solaires de type bicouche, des études ont été réalisées sur la même famille de thiophènes et plus précisément sur le poly(3, 5-hexylthiophène) en mélange avec PCBM en cellules solaires de type HJV. Il a été démontré qu’en raison du traitement thermique des cellules solaires à réseau interpénétré à base de ces composites entre 100 et 150°C ($T^°$ dépend de la masse molaire de P3HT-RR utilisé), les rendements de conversion
peuvent atteindre les 5 % [Li05a, Ma05, Rey05a, Rey05b]. L’augmentation de la tension V_{oc} est due à l’amélioration des contacts avec les électrodes et de la morphologie de la couche active. L’augmentation du photocourant J_{sc} est liée quand à elle à la réorganisation des matériaux au sein de la couche active. En effet, des études de morphologie par imagerie AFM ont montré une importante cristallisation des deux constituants avec la formation des domaines après recuit (cf. Figure I.29) [Yan05b].

Cette modification de la structuration du P3HT -RR favorise une augmentation de la conjugaison du polymère P3HT -RR, d’où un bon transport de trous avec une mobilité de 0.1 cm²/V.s. Cette modification de structuration a été observée également en diffraction de rayons X (cf. Figure I.30) avec une nette augmentation de l’intensité des pics de réflexion, ce qui peut être traduit par la cristallinité de P3HT -RR après recuit [Erb05, Ngu07].

Par ailleurs, T.J. Savenije et al. [Sav06] ont démontré par microscopie électronique à transmission, l’aspect des couches actives P3HT :PCBM (1:1) obtenues à partir de solutions de 1,2-chlorobenzène. Ces couches ont clairement fait apparaître des fibrilles attribuées au P3HT dans une matrice de P3HT :PCBM. Après traitement thermique des couches à 120 °C pendant 1h, la longueur des fibrilles a augmenté de 50 %. Ces études confirment les résultats obtenus antérieurement. S. Rait et al. [Rai07] ont étudié l’évolution des performances en fonction de la température et le temps du traitement thermique. Le meilleur rendement de l’ordre de 2.1 % sous illumination AM 1.5 a été obtenu pour des cellules traitées
thermiquement à 140°C pendant 4 minutes. L’amélioration des performances des dispositifs PVO après traitement thermique a été attribuée à une modification de la morphologie du polyalkylthiophène qui évolue vers des domaines de structure fibrillaire et plus ordonnée, permettant ainsi une augmentation de la mobilité des trous [Sav06].

Figure I.30 : Spectre de diffraction des rayons X de la couche active P3HT :PCBM (1:2) d’une cellule PV avant et après recuit 150°C - 3 min [Erb05].

Les études de l’effet du traitement thermique sur la morphologie des couches et les performances des cellules PV à base de P3AT :PCBM (dans un rapport de masse 1:2) ont été entreprises [Ngu07]. Les chaînes alkyles des P3AT -RR étudiées sont différentes (plus au moins longues). Avant traitement thermique, les cellules ont délivré des rendements de 0.1 à 0.65 % sous illumination 100 mW/cm². Il a été constaté que l’efficacité des cellules dépend du nombre de carbones de la chaîne alkyle (elle augmente avec l’augmentation des unités de carbone). Après traitement thermique à 130°C pendant 5 minutes, le meilleur rendement de 1.89 % est obtenu pour les dispositifs à base de P3HT. Les longues chaînes latérales permettent un taux de diffusion plus important du composé PCBM dans la matrice de polymère P3HT, conduisant ainsi à une séparation de phase à grande échelle. Il a été aussi observé qu’un traitement électrique supplémentaire est également possible pour améliorer les performances des dispositifs [Pan03, Yan05b, Lu07, Hop06]. En effet, des études ont été faites sur des cellules élaborées à base de composites P3HT: PCBM dans un rapport massique 1:2 déposés à partir du chlorobenzène [Pan03, Yan05b, Hop06]. F. Padinger et al. [Pan03] ont amélioré le rendement de conversion des cellules de 0.4 à 2.5 % (obtenu sous éclairement 80 mW/cm²), après recuit à 75°C pendant 4 minutes. Ils ont constaté que le rendement de
conversion augmente à 3.5 % en appliquant une tension de 2.7 V simultanément au traitement thermique. Ils ont supposé que l’application de la tension a pour effet d’orienter les molécules ; les deux procédés combinés améliorent la cristallisation des polymères.

Par ailleurs, des travaux ont été effectués sur des cellules à base de dérivés PPV. Nous pouvons citer ceux réalisés par S. Lu et al. [Lu07]. Ils ont étudié l’effet du traitement thermique sur la morphologie des couches actives à base de mélange MEH-PPV :Pérylène dans différents rapports massiques 1:1 et 1:4. Les résultats sont sensiblement meilleurs après traitement thermique (180°C) des cellules à base de MEH-PPV :Pérylène (1:4). Un rendement de conversion de 1.5 % contre 1.3 % a été obtenu après la formation d’un réseau par l’effet thermique permettant une forte mobilité des charges libres.

Comme nous l’avons décrit précédemment, l’amélioration du photocourant est due à la forte mobilité après traitement thermique des cellules solaires organiques. Il faut noter qu’une optimisation de la température et les durées de recuits est nécessaire car suivant les polymères et leurs provenances, leurs masses molaires sont différentes. Les morphologies des couches actives dépendent aussi de leur épaisseur.

Il faut relever que les concentrations donneur : accepteur dans les composites jouent un rôle important dans les performances des cellules solaires PVO. A. Alem [Ale04b] a utilisé des différentes concentrations de dérivé de fullerène PCBM dans une matrice de polymère MEH-PPV, le meilleur rendement de conversion a été obtenu pour rapport massique 1:5. Elle a expliqué que la concentration peut influencer les chemins de percolation. D’autres travaux sur les thiophènes ont fait l’objet de telles études. Il a été aussi démontré que la morphologie des couches actives dépend de la quantité du PCBM incorporée dans la matrice de P3HT. Un taux élevé de l’accepteur limite le mouvement des chaînes polymériques ainsi que la diffusion du PCBM dans P3HT en favorisant une très large séparation de phase. Ceci affecte les performances des cellules. Par ailleurs, il a été démontré que cette concentration élevée de PCBM peut aussi affecter les contacts avec les électrodes.

Augmentation de la température de transitions vitreuses

L’étude de morphologie, comme nous l’avons mentionné ci-dessus, a montré une évolution de la structuration des couches actives à base de P3HT :PCBM ou MDMO-PPV :PCBM au cours du temps [Yan04]. Ce changement est lié aux basses températures de
transitions vitreuses des polymères tels que le P3HT qui est inférieure à 50°C [Cau05] et celle du MDMO-PPV qui avoisine les 45°C [Ber07e]. Afin de garantir une meilleure stabilité des cellules solaires PV dans le temps, il est intéressant d’élaborer des couches actives possédant des morphologies optimales en figeant d’avantage la morphologie [Sch06b, Ouk05, Hir07]. Ceci conduit à utiliser des polymères avec des températures vitreuses élevées. Il a été démontré tout récemment l’effet de haute température vitreuse (au voisinage de 150°C) d’un dérivé de PPV sur la stabilité de la couche photo-active en température et en temps [Ber07e]. Une solution envisageable est d’élaborer des polymères thermodivulvables adoptant une morphologie optimale aux couches actives [Kre05, Liu04b]. Le groupe de K. Hirota [Hir07] a étudié un dérivé décacyclène, présentant des propriétés de cristaux liquides discotiques en mélange avec le MEH-PPV. Il a souligné que l’amélioration des valeurs de l’IPCE% et de η% a été observée après recuit à la température de transition vitreuse du décacyclène, mais ces valeurs restent relativement faibles.

d) Augmentation de la tension à circuit ouvert V_{oc}

Comme décrit dans le paragraphe I.2.3-a, l’un des paramètres influant directement les performances photovoltaïques est la tension V_{oc} délivrée par la cellule solaire. Cette valeur correspond à la différence entre les niveaux énergétiques des deux matériaux constituant la jonction : des niveaux HOMO du donneur et LUMO de l’accepteur et elle dépend aussi de la nature des matériaux constituant les deux électrodes.

☐ L’ajout des sous couches

Les interfaces aux électrodes peuvent également affecter la valeur de la tension V_{oc} (les pertes de charges aux électrodes). Ceci peut être maîtrisé par le traitement des substrats (électrodes transparentes) par UV-Ozone ou plasma ou encore par l’ajout des sous couches intermédiaires pour améliorer la concordance entre le travail de sortie de l’électrode et la HOMO du matériau donneur ou la LUMO du matériau accepteur. Pour cela, nous devons couvrir l’anode ITO d’une couche qui transporte les trous avec un travail de sortie plus élevé. Il a été démontré que l’ajout des couches tampons entre la couche active CuPc/C$_{60}$/Al [Tsu95] par l’insertion des sous couches PEDOT :PSS et BcP entre la couche active CuPc/C$_{60}$ et les deux électrodes.
ITO et Al respectivement. Les dispositifs ont délivré de meilleurs rendements de conversion 2.4 % contre 1.87 %. Cette amélioration est dû au travail de sortie de l’électrode remplacée (Au par Al) et aussi à l’ajout de ces sous couches qui améliorent les contacts entre les couches actives et les électrodes ainsi la tension V_{oc} a augmenté d’une façon significative.

Comme dans le cas des structures bicouches, cette voie a été exploitée aussi dans le cas des cellules de type HJV, D. Gebeyehu et al. [Geb04] ont fabriqué une cellule solaire organique à base de ZnPc :C$_{60}$. Ils ont intercalé entre la couche photo-active et les électrodes, un film de dérivé de benzidine transporteur de trous (CTT) et un second film transporteur d’électrons (CTE). Le rendement de conversion obtenu pour ce système avec une couche CTE composée d’un film de dérivé de pèrylène « methylperylene pigment » non dopé et d’un autre film de « methylperylene pigment » dopé, est de l’ordre de 1.75 %. Quant à la structure HJV plus complexe élaborée à partir d’un film CTE à base de dérivé de pèrylène (PTCBI) non dopé et d’un film C$_{60}$ dopé, son rendement de conversion obtenu est sensiblement meilleur, 1.9 % sous illumination 100 mW/cm2. Tout récemment, J. Xue et al. [Xu05] ont obtenu un rendement de 5.0±0.3 % sous illumination 100 ~ 400 mW/cm2 à partir d’une cellule HJV à base d’une couche organique CuPc :C$_{60}$ (1:1) prise en sandwich entre ITO couvert d’une couche CuPc et C$_{60}$/BeP/Al. Par ailleurs, il a été démontré que l’insertion de la couche LiF entre la couche active et la cathode augmente la valeur de la tension V_{oc} [Bra02b]. D’autres travaux ont été réalisés sur l’insertion des couches sol gel à base de nanotubes de carbone [Cha07], ou encore sur des films à base de nanoparticules Au ou Ag (déposés à partir des solutions colloïdales ou par évaporation) [Mor08, Ber07d]. Ces études ont démontré que ces couches intermédiaires améliorent la qualité de l’interface avec la couche active et limites pertes de charges aux interfaces : couche active/électrodes.

Augmentation du potentiel d’oxydation

M.C. Scharber [Sch06] et C.J. Brabec [Bra01] ont mis en évidence la dépendance de la tension en circuit ouvert de la HOMO du donneur et la LUMO de l’accepteur. Plus la différence entre les niveaux énergétiques donneur - accepteur est élevée [Bra01] plus la tension V_{oc} devient importante. Ceci est réalisable en synthétisant des composés organiques adéquats : des matériaux accepteurs à bas potentiel de réduction correspondant à un niveau énergétique LUMO plus élevé et des matériaux donneurs à haut potentiel d’oxydation correspondant à un niveau HOMO très bas [Gün07] (cf. Figure 1.7).
Afin d’améliorer la tension en circuit ouvert V_{oc}, dans le cas des matériaux accepteurs d’électron, différentes études ont été effectuées. Il a été démontré que ceci est réalisable par l’augmentation de leur niveau énergétique LUMO (cf. Figure I.31).

![Figure I.31](image)

Figure I.31 : Courbe théorique présentant l’efficacité des cellules solaires en fonction des niveaux énergétiques HOMO (donneur) et LUMO (accepteur)[extit{Sch06a}].

En effet, à l’aide de l’ingénierie moléculaire (modification des structures chimiques), nous pouvons maîtriser les potentiels de réductions des différents accepteurs. Parmi ces travaux, nous pouvons citer quelques exemples : la fonctionnalisation des dérivés de C$_{60}$, PCBM ou de pérylène [seg05, Rie05, Van08] (cf. Figure I.32).

![Figure I.32](image)

Figure I.32 : Structure chimique des différents dérivés de C$_{60}$[extit{Ser05, Rie05}].

Dans le but d’abaisser le niveau HOMO des composés donneurs (les polymères dans notre cas), plusieurs matériaux organiques ont vu le jour. En effet, depuis l’utilisation de MEH-PPV [Sar92, Ale04], MDMO-PPV [Sha01, Hop04b], ou encore des dérivés de polythiophène [Pan03], d’autres dérivés et de nouveaux types de polymères ont été élaborés. Du point de vue physico-chimique, Il faut conserver une faible bande interdite afin de garder l’efficacité de génération de porteurs de charges et de transfert de charges libres tout en
diminuant le niveau HOMO du polymère. Comme nous l’avons décrit dans les paragraphes précédents, le P3HT -RR est le polymère le plus utilisé et étudié jusqu’à ce jour pour ses meilleures propriétés physico-chimiques. Il possède un niveau HOMO de l’ordre de 5.2 eV correspondant à un potentiel d’oxydation de 0.6 V. L’augmentation du potentiel de ce polymère est envisageable en incorporant une légère torsion au sein de la chaîne polymère. Ceci en revanche diminue sa conjugaison (mobilité des charges diminue) et l’oxydation de ce dernier devient difficile. Effectivement, des dérivés de thiophène (les polymères poly(2,2’ :5’,2’’-(3,3’-dihexyl-terthiophene) (biTV-PTs, P1, P2, et P3) et le polymère P3HT portant des ramifications de groupements de bithiénylènevinylène) sont élaborés avec des potentiels d’oxydation plus élevés que celui du P3HT (cf. Figure I.33) [Hou06]. Les cellules solaires réalisées à partir de ces composés ont délivré des rendements de conversion de l’ordre de 1 % et 3.1 % sous illuminations 100 mW/cm².

Dans la même voie, d’autres études ont été effectuées sur des dérivés de PPV ou de polyfluorène possédant des groupements carbonitrilles [Cor95, Gal06, Zou06]. M. Svensson et al. [Sve03] ont élaboré le polymère PFDTBT (poly(2,7-(9-(2’-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4,7’-di-2-thienyl-1’,2’,3’-benzothiadiazole) avec des groupements chimiques plus attracteurs afin d’augmenter le potentiel d’oxydation à 1.04 V. L’utilisation de ce polymère en mélange avec PCBM, en couche active des cellules PV, a conduit à des rendements de conversion de l’ordre de 2.2 % sous éclairage standard AM 1.5.

En remplaçant le fluorène par des thiophènes [Bun06] ou cyclopentadithiophène [Müh06, Pee07], les potentiels d’oxydation deviennent plus élevés (niveau HOMO 5.3 eV avec un gap électrochimique 1.73 eV) (cf. Figure I.33).

![Figure I.33 : Structures chimiques de différents polymères possédant des faibles niveaux HOMO : biTV-PTs (P1, P2, et P3) [Hou06], PFDTBT [Sve03] et PCDTBT [Müh06]](image)

Le rendement de conversion obtenu pour des cellules élaborées à partir de mélanges de polymère PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]) et PCBM, atteint jusqu’à 2.67% sous
illumination 100 mW/cm². Un autre polymère bis(1-cyano-2-thienylvinylène)phenylène a été synthétisé par K. Colladet et al. [Col07] avec un potentiel d’oxydation de l’ordre de 0.85 V. La diminution du niveau HOMO du polymère est due aux groupements cyanovinylène.

En raison des performances des cellules solaires organiques, nous avons opté pour l’architecture HJV pour étudier nos différents systèmes PVO. En effet, comme on vient de le voir, c’est la seule configuration qui prend en compte tous les paramètres influençant les caractéristiques photovoltaïques. Le Chapitre II est consacré à une étude approfondie de ce type de système solaire organique.
II. CELLULES SOLAIRES PHOTOVOLTAÏQUES À BASE DE NOUVEAUX DERIVES DE FULLERENES

Depuis la mise en évidence d’un transfert d’électrons photo-induit entre un polymère conjugué et un fullerène en 1992 par N.S. Sariciftci et al. [Sar92] (cf. Chapitre I et Annexe I), nombreuses études ont été réalisées dans le but de comprendre les phénomènes physico-chimiques mis en jeu et d’améliorer les performances photovoltaïques des systèmes élaborés (cf. Chapitre I-état de l’art). De ce fait, le rendement de conversion a pu atteindre ~ 5 % pour des cellules solaires organiques à réseau interpenétré ITO/PEDOT :PSS/P3HT:PCBM/LiF/Al [Rey05a, Ma05, Li05b], et 6 % pour une cellule tandem ITO /PEDOT :PSS/PCPDTBT :PCBM/TiOx/P3HT :PC70BM/TiOx/Al [Kim07b].

Malgré leur faible solubilité dans différents solvants organiques et leur faible absorption dans le visible, les dérivés de fullerènes sont favorables en raison de leurs propriétés électroniques : affinité électronique très élevée, mobilité, etc. (cf. Chapitre I et Annexe I). En effet, leur utilisation dans les cellules solaires organiques conduit à des rendements très élevés. Ces molécules peuvent intervenir dans les couches photo-actives à base de mélanges de polymères : dérivés de C₆₀, polymères double câble où les unités de C₆₀ sont greffées sur des polymères alternés, etc. (cf. Chapitre I). De nouvelles approches basées sur l’utilisation de ces nouveaux matériaux organiques dans les cellules solaires photovoltaïques sont en voie de développement dans le but de trouver des solutions aux problèmes majeurs de PVO, tels que la solubilité ou la dissociation des excitons, et ainsi améliorer ces systèmes.

Si différents chercheurs [Lec06, Ber07a, Zhu07] se sont intéressés à la synthèse de nouveaux polymères conjugués avec de bonnes propriétés électroniques, notre choix s’est porté sur les matériaux organiques utilisés en tant qu’accepteur dans les dispositifs, et nous avons opté précisément pour les dérivés de fullerènes.
Le choix d’utiliser le polymère conjugué poly(3-hexylthiophène)-régiorégulier (P3HT -RR) en tant que donneur dans nos travaux, se justifie par sa grande solubilité, son faible gap énergétique, ses propriétés optiques, sa stabilité thermique et la grande mobilité de ses porteurs libres [Ma02, Pan03, Rey05a, Ma05, Li05b, Li07b] (cf. Chapitre I- état de l’art).

Nous présentons d’abord une étude sur les polymères conjugués P3HT -RR ainsi que leur utilisation en cellules solaires, suivie de mesures de caractérisation afin de corrélérer les paramètres physico-chimiques, tels que la morphologie et les propriétés spectroscopiques, avec les caractéristiques PV des dispositifs à base de composite P3HT:PCBM.

En effet, des cellules solaires organiques à base de P3HT :PCBM (1:0.8 en masse) ont été réalisées selon deux objectifs : le premier objectif est de comprendre au mieux les paramètres physico-chimiques intervenant dans ce type de cellules le plus connu et le plus étudié, et le second objectif est d’utiliser ces cellules comme références pour d’autres cellules solaires organiques élaborées lors de ces travaux de recherches.

La seconde partie de ce chapitre sera consacrée aux travaux effectués sur de nouveaux dérivés de fullerènes, nommés dyades : C$_{60}$-(CH$_2$)$_2$-PDI-(R=OPh$_2$Bu, Cl)$_4$ [Baf05, Baf07a]. Ces études sont toujours entreprises dans l’idée d’optimiser des systèmes PVO. Dans un premier temps, une antenne pérylène diimide (PDI) est greffée sur le C$_{60}$ dans le but d’améliorer l’absorption de C$_{60}$ dans la région du visible. Par ailleurs, le caractère accepteur des PDI nous a conduit à l’élaboration de nouvelles cellules basées sur des proportions bien définies entre les constituants de la couche active de la cellule.

Enfin, dans le but de rendre C$_{60}$ plus soluble dans différents solvants organiques, des dérivés de C$_{50}$ et C$_{70}$ ont été fonctionnalisés. Les études ont montré que, au-delà de la solubilité, d’autres phénomènes peuvent intervenir dans les performances des cellules PV : la structure moléculaire, le comportement des molécules avec le donneur en couche active, les propriétés électroniques… Ces travaux seront détaillés dans la troisième partie de ce chapitre.

Il faut noter que tous les résultats expérimentaux décrits dans ce chapitre, sont uniquement ceux obtenus après optimisation : épaisseur, concentration, solvant, etc.
II.1. ÉLABORATION DES CELLULES SOLAIRES A PARTIR DU COMPOSITE P3HT :PCBM

II.1.1. Propriétés physico-chimiques du PCBM, du polymère conjugué P3HT -RR et du composite P3HT :PCBM

Le polymère conjugué poly-(3 hexylthiophène)-régiorégulier connu sous le nom de P3HT -RR, utilisé tout au long de nos études provient de Rieke [Che95]. Les caractéristiques physico-chimiques du P3HT -RR sont données par le Tableau II-1 et sa structure moléculaire par la Figure II.1-a.

Les études d’absorption dans le domaine UV-Visible du P3HT -RR et du PCBM (cf. Figure II.1-b) sont réalisées sur des films minces. A l’aide d’une tournette, les couches organiques ont été déposées à partir de solutions dans le chlorobenzène sur des substrats en verre (cf. Annexe 2). La Figure II.2 illustre une forte absorbance de la couche mince de P3HT -RR, entre 380 et 650 nm. Nous constatons qu’un traitement thermique à 100°C pendant dix minutes améliore l’absorption et favorise la cristallisation du polymère conjugué. Cela est corroboré par l’apparition d’épaulements à 610 nm qui correspondent à l’absorption des agrégats. Les deux premiers pics à 520 et 550 nm correspondent à la transition π-π* et l’épaulement vers 610 nm correspond aux interactions interchaînes [Li07b, Ma02]. En effet, le traitement thermique augmente les interactions interchaînes dans le polymère d’où une forte délocalisation des électrons et une diminution de la bande π-π* (augmentation des transitions optiques π-π* correspondant à un gap optique de l’ordre de 1.4 eV). Ceci engendre un déplacement de l’absorption du polymère P3HT -RR vers les longueurs d’onde élevées.
[Li05, Shr05]. Nos résultats corroborent ceux publiés par D. Rieke et al. [Che95]. En effet, le recuit engendre une auto-organisation à l’intérieur de la matrice du polymère où un certain ordre peut être atteint [Zho95, Dit00, Hop04c, Hop06]. Le déplacement du spectre d’absorption vers les longueurs d’ondes les plus élevées, peut se traduire par l’augmentation de la conjugaison du polymère avec une forte délocalisation des électrons.

Le recuit des couches effectué à des températures supérieures à 100°C entraîne une diminution nette de l’absorption. Cela est lié à la dégradation du matériau. En effet, les études menées par V. D. Mihailetchi et al. [Mih06], D. Chirvase et al. [Chi04], ont montré qu’au-delà de 100°C, l’effet de la température sur l’absorption du P3HT-RR pur n’est plus évident.

![Figure II.2](image)

Figure II.2 : Comparaison des spectres d’absorption des couches minces de P3HT-RR avant et après recuit à différentes températures.

Le dérivé de fullerène Phényl-C₆₁-Butyric acid Méthyl ester utilisé dans cette étude (appelé couramment PCBM) a été acheté chez SES Research. Il est d’une pureté de l’ordre de 99%. Sa masse moléculaire est de l’ordre de 910 g.mol⁻¹ et sa structure moléculaire est présentée sur la *Figure II.1-b*. Les spectres d’absorption en UV-Visible établis pour le PCBM en couche mince sont présentés sur la *Figure II.3*.
Nous constatons sur la Figure II.3 un pic intense à 336 nm caractéristique du noyau C\textsubscript{60}, suivie d’une large et faible absorption au voisinage de 432 nm [Gul95] correspondant à la formation du cycle cyclopropano en position [6,6] de C\textsubscript{60}, et une absorption faible à 712 nm qui est attribuée à la faible transition singulet du C\textsubscript{60} [Jan95, Sar97].

L’absorption de la couche de PCBM à l’issue de différents traitements thermiques reste quasiment identique. L’amélioration entre 400 nm et 600 nm (cf. Insert Figure II.3) peut être due à l’évaporation totale du solvant chlorobenzène et au début de la formation de petites cristallites de C\textsubscript{60}.

Afin d’approfondir nos études, nous avons réalisé des analyses par diffraction de Rayons-X sur poudre des molécules de PCBM, à différentes températures sous atmosphère d’azote. Les diagrammes ont montré que le PCBM cristallise partiellement tout en conservant sa structure initiale (cf. Figure II.4). Ceci se traduit par l’augmentation de l’intensité des réflexions après chaque traitement thermique sans changement de phase. Des études antérieures ont montré que le PCBM utilisé change de phase lorsqu’il est recuit à des températures supérieures ou égales à 175°C [Chi04].
Figure II.4 : Diffractogrammes aux grands angles réalisés sur PCBM à l’état solide (sous forme de poudre), sous atmosphère d’azote, à différentes températures.
L’absorption en UV-Visible de mélange P3HT:PCBM (1:0.8 en masse) en couche active (cf. Figure II.5), nous montre que l’ajout de PCBM diminue l’absorption de P3HT entre 400 et 600 nm et décale celle-ci vers le rouge. Cela est dû à l’interaction entre les chaînes de P3HT et les molécules de PCBM. La présence de PCBM dans le composite P3HT:PCBM diminue l’interaction entre les chaînes du polymère et provoque un certain désordre dans le composite [Chi04]. Le traitement thermique a un effet sur le mélange P3HT:PCBM ; une amélioration nette de l’absorption a été observée. L’apparition plus claire des épaulements à 610, 555 et 520 nm et un déplacement vers le rouge (les faibles énergies) sont principalement dus à la cristallisation de P3HT et à la diffusion de PCBM à l’extérieur de la matrice du polymère [Ihn93, Dit00, Bro03, Chi04, Hop04c, Erb05, Yan05b, Erb06] ; cela entraîne la formation de domaines (auto-organisation des matériaux au sein de la matrice). La taille des fibrilles de P3HT augmente sous l’effet du recuit [Yan05b]. La chaîne principale devient parallèle à la surface tandis que la direction de l’orbitale P_z devient perpendiculaire [Ihn93, Erb05, Erb06]. Il a été démontré que la taille des cristaux de PCBM dépend de sa concentration dans le mélange P3HT :PCBM [Chi04]. En effet, quand le PCBM est utilisé en forte concentration en couche organique, il peut former des cristaux de tailles importantes lors d’un traitement thermique [Chi04, Kim05, Hop06]. Le fait d’utiliser des rapports en masse 1:0.8 va limiter la formation des cristaux de PCBM. Nous n’avons pas réalisé des recuits au-delà de 100°C, car les résultats précédents ont montré que cela avait un effet néfaste sur P3HT -RR.

Figure II.5 : Comparaison des spectres d’absorption des couches minces à base de P3HT et P3HT :PCBM avant et après recuit à 100°C pendant 10 minutes.

![Figure II.5](image-url)
Par ailleurs, des analyses par diffraction-RX ont été réalisées sur des couches minces à base de P3HT-RR pur et de mélange P3HT:PCBM (cf. *Figure II.6*). Les diagrammes de RX obtenus peuvent être corrélés avec les résultats obtenus en absorption : après traitement thermique des systèmes P3HT-RR pur ou du mélange P3HT:PCBM, l’intensité des pics augmente. Cela est lié à la cristallisation de P3HT. Le spectre de diffraction RX obtenu pour le mélange P3HT:PCBM ne montre pas l’apparition d’autres pics supplémentaires en comparaison de ceux qui ont été obtenus pour un film de P3HT pur. Les diffractogrammes sont quasiment identiques. Les pics à 6.5° et à 13° correspondent aux plans (100) et à (200) respectivement. Tous deux correspondent à l’orientation de l’axe a (cf. *Figure II-6*). La distance interchaîne est de l’ordre de 16.1 Å. Ceci indique que la chaîne principale du polymère est parallèle au substrat et que les chaînes latérales sont perpendiculaires. D’autres groupes de chercheurs viennent confirmer ces résultats [Kim05, Erb05, Gun07, Ngu07].
Des études complémentaires telles que la spectroscopie de fluorescence ont été réalisées sur des couches minces organiques de P3HT et de mélange P3HT:PCBM afin de mieux comprendre le comportement du polymère P3HT-RR en présence de PCBM. Les spectres de fluorescence obtenus pour des couches minces de P3HT-RR et pour le mélange...
P3HT:PCBM (1:0.8 en masse) sont présentés sur la Figure II.7. La fluorescence obtenue pour le P3HT-RR non dopé est très élevée. Lorsque le matériau P3HT-RR pur a été dopé par le dérivé de fullerène PCBM, nous avons constaté que la fluorescence décroît d’un facteur 4. Cette extinction de la fluorescence pour un composite donneur-accepteur résulte d’un transfert de charges entre le donneur P3HT-RR et l’accepteur PCBM [Rey05b, Erb05, Kim06].

Figure II.7 : Spectres de fluorescence des couches minces de P3HT et du mélange P3HT:PCBM respectivement étalées sur du verre.

La Figure II.8 illustre une étude de spectroscopie infrarouge en mode transmission, et plus précisément l’étude de transfert de charge spontané entre le P3HT et le PCBM. La figure montre dans le cas de mélange de P3HT:PCBM, les vibrations symétrique et asymétrique de C=C [Bro01, Shr05] de P3HT (1378-1510 cm⁻¹) sont décalées de –3 cm⁻¹ vers le visible (par rapport au spectre de P3HT pur) et l’intensité des pics diminue. Ceci est probablement dû aux proportions des deux matériaux [Bro01, Shr05].
II.1.2. Cellules solaires de structure MIM à base de polymère pur P3HT -RR

Les matériaux conjugués manifestent des effets photovoltaïques, qu’ils soient en structures MIM ou en réseau interpenetré. Un rendement de conversion de l’ordre de 0.03% avec les caractéristiques photovoltaïques suivantes ff: 0.29 %, V_{oc} : 0.48 V et J_{sc} : 223,9 μA/cm2 a été rapporté par S. Alem [Ale04b] dans le cas d’une structure ITO/PCBM (50 nm)/Al. Comme le PCBM est un matériau accepteur d’électrons (type $-n$), l’effet photovoltaïque obtenu pour cette structure est dû au contact rectifiant créé à l’interface ITO/PCBM, qui permet la dissociation des excitons.

Des cellules solaires, en configuration MIM, ont été conçues à base de polymère conjugué P3HT -RR. La couche active d’épaisseur 50 nm est prise en sandwich entre les électrodes. Des sous-couches de LiF et de PEDOT :PSS sont intercalées entre la couche organique et les électrodes selon le schéma suivant : ITO/PEDOT :PSS (50 nm)/P3HT -RR (50 nm)/LiF (0.7 nm)/Al (100 nm) (cf. Annexe 2). Les caractéristiques $I-V$ obtenues dans l’obscurité et sous éclairement 107 mW/cm2 à travers l’anode transparente d’ITO, sont présentées sur la Figure II.9. Les paramètres PV sont indiqués dans le Tableau II-2. Ces résultats sont obtenus avant traitement thermique de la cellule. La courbe obtenue dans le noir présente une allure symétrique, le rapport entre la densité du photocourant à 0.5 V et
–0.5 V est légèrement supérieur à 1. Le caractère passant ne se distingue pas du caractère bloquant ; ceci est dû aux faibles résistances shunt (R_{sh}), ce qui engendre des courts-circuits.

Tableau II-2 : Paramètres photovoltaïques extraits des caractéristiques I-V obtenues pour une cellule MIM : ITO/P3HT -RR/LiF/Al, présentées sur la Figure II.9.

<table>
<thead>
<tr>
<th>I. (107 mW/cm²)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>ff</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avant traitement thermique</td>
<td>0.387</td>
<td>0.049</td>
<td>0.341</td>
<td>0.006 %</td>
</tr>
</tbody>
</table>

Figure II.9 : Caractéristiques I-V sous illumination côté ITO de la diode Schottky ITO/PEDOT :PSS/P3HT/LiF/Al, avant recuit.

II.1.3. Cellules solaires à réseau interpénétré à base de composite P3HT :PCBM

Des cellules solaires photovoltaïques à réseau interpénétré ont été réalisées à partir de composites P3HT :PCBM. Les couches photo-actives ont été déposées sur des plaques d’ITO (cf. Annexe 2) à la tournette à partir de solutions de P3HT :PCBM dans un rapport 1:0.8 en masse, dans le chlorobenzène. Les couches sont ainsi intercalées entre les deux électrodes après le dépôt de la cathode Al.

Les dispositifs en configuration ITO/P3HT :PCBM/Al ont fourni des effets photovoltaïques très faibles, cela est dû aux contacts rectifiants que les matériaux organiques créent au niveau des interfaces des électrodes (cf. Figure II.10) (les valeurs des niveaux HOMO et LUMO de chaque matériau sont indiquées selon M.C. Scharber et al. [Sch06a]).
CHAPITRE II : CELLULES SOLAIRES PHOTOVOLTAÏQUES A BASE DE NOUVEAUX DERIVES DE FULLERENES

Figure II.10 : Diagrammes des niveaux énergétiques de la cellule ITO/P3HT :PCBM/Al

Les paramètres PV fournis par la cellule ITO/P3HT :PCBM/Al, extraits des caractéristiques I-V (cf. Figure II.11), sont regroupés dans le Tableau II-3:

<table>
<thead>
<tr>
<th>I (107 mW/cm2)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>ff</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avant traitement thermique</td>
<td>0.571</td>
<td>4.25</td>
<td>0.324</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Tableau II-3 : Paramètres photovoltaïques extraits des caractéristiques I-V obtenues pour une cellule à base de composite P3HT :PCBM, présentées sur la Figure II.11.

Comme cela a été décrit au Annexe I, les contacts doivent être ohmiques pour que les trous et les électrons soient collectés par leurs électrodes respectives Al et ITO.

L’ajout des sous couches de PEDOT :PSS et du LiF entre les électrodes et la couche organique permettent d’obtenir la structure ITO/PEDOT :PSS/P3HT :PCBM/LiF/Al, et d’améliorer les caractéristiques photovoltaïques. Les caractéristiques $I-V$ obtenues dans le noir
et sous éclairement de 96 mW/cm², avant et après recuit à 100°C pendant 10 minutes, sont illustrées sur la Figure II.12.

![Figure II.12 : Caractéristiques I-V de la structure : ITO/PEDOT :PSS/P3HT :PCBM/LiF/Al, avant et après traitement thermique (100°C-10 min) sous illumination 96 mW/cm².]

Les paramètres PV extraits des caractéristiques I-V (cf. Figure II.12) sont indiqués sur le Tableau II-4.

<table>
<thead>
<tr>
<th></th>
<th>I (96 mW/cm²)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>ff</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avant traitement thermique</td>
<td>0.533</td>
<td>6.8</td>
<td>0.500</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>Après traitement thermique 100°C-10min</td>
<td>0.583</td>
<td>12.10</td>
<td>0.542</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Tableau II-4 : Paramètres photovoltaïques extraits des caractéristiques I-V obtenus pour une cellule à base de composite P3HT :PCBM, présentées sur la Figure II.12.

Après traitement thermique, on observe une amélioration des performances des systèmes PV :

- La densité du photocourant croît d’un facteur 2 (elle passe de 6.8 à 12.1 mA/cm²),
- Le facteur de forme ff et la tension V_{oc} ont tendance à augmenter.

Ces observations coïncident avec les résultats de la littérature [Sch02, Bro03, Pan03, Hop04a, Hop04c, Kim05, Rey05, Yan05b].

Le changement de morphologie joue un rôle important dans la photogénération et le transport de charges. Le recuit des cellules solaires HJV à base de composite P3HT :PCBM, engendre la cristallisation de P3HT d’une part et la diffusion du PCBM à l’extérieur de la matrice du polymère d’autre part, entraînant ainsi la formation de domaines
CHAPITRE II : CELLULES SOLAIRES PHOTOVOLTAÏQUES A BASE DE NOUVEAUX DERIVES DE FULLERENES

(cf. Figure II-13). La croissance des petits domaines de PCBM résulte des chemins de percolation. Ainsi, le photocourant augmente [Bro03]. En effet, la présence d’une ségrégation verticale entre P3HT et PCBM rend très efficace le transport des trous via le polymère vers l’anode ainsi que celui d’électrons vers la cathode [Kim05]. En outre de l’ordre établi, les propriétés des interfaces sont améliorées et les défauts sont réduits [Ahn02]. Nous avons aussi observé que le traitement thermique donne de la stabilité aux systèmes PV (après une semaine de stockage dans la boîte à gants, les caractéristiques $I-V$ restent les mêmes).

Il en résulte que la mobilité des trous dans le polymère est améliorée indépendamment de l’absorption grâce à la cristallisation de ce dernier. Cette mobilité élevée joue un rôle significatif sur les performances du dispositif. L’amélioration de ff liée au recuit, est due à l’ordre qui est engendré par la température. Les chaînes se déplacent ou se réorientent facilement, ainsi, ce mouvement diminue les défauts tout en favorisant une meilleure mobilité des porteurs libres (diminution de perte de charges libres) [Li07b]. De plus, une redistribution des petites cristallites de PCBM peut avoir lieu. Les résultats montrent que la densité du photocourant et le facteur de forme s’améliorent lors d’un recuit de la cellule ; le rendement de conversion atteint les 4%. La variation de ff est liée au comportement donneur/accepteur à l’intérieur de la matrice. Ceci résulte de la modification de la morphologie.

Les images obtenues par AFM sont représentées par la Figure II.13. Cette étude a été réalisée sur différents échantillons avant et après traitement thermique. Après recuit à 100°C, nous avons constaté que la rugosité des couches augmente de 1 nm (avant recuit) à 17 nm. Cela peut être expliqué par la cristallisation du polymère P3HT -RR et par la formation de domaines [Ahn06, Chi04, Hop06, Gün07, Den09]. Ceci permet une meilleure diffusion des excitons [Li07b].

Par ailleurs, la cristallisation du P3HT -RR en fibrilles dans le composé P3HT :PCBM s’établit tout au long du recuit [Yan05b]. Ceci est confirmé par les résultats obtenus en absorption et en diffraction-RX. Contrairement au composé MDMO-PPV [Yan04], la diffraction de rayons X a montré qu’il n’y a pas formation de cristaux de PCBM de grande taille dans le composite P3HT :PCBM (ce qui est lié à la faible concentration de PCBM utilisée dans le composite P3HT :PCBM). Ceci est corroboré par les études effectuées en spectroscopie et en PV. Des chercheurs ont rapporté que la cristallisation de P3HT en fibrilles forme des frontières avec les fullerènes au détriment de la diffusion et de la croissance étendue des cristaux de PCBM [Yan05b]. Cependant, l’effet de la température permet d’établir la stabilité de la morphologie et du système plus généralement.
CHAPITRE II : CELLULES SOLAIRES PHOTOVOLTAÏQUES À BASE DE NOUVEAUX DERIVES DE FULLERENES

Figure II.13 : Images AFM de la surface de composite P3HT :PCBM : (a) avant recuit (R = 1 nm), (b) après recuit (10 min) (R = 17 nm)

Le rendement quantique externe $IPCE\%$ (Incident Photon to Current conversion Efficiency) obtenu par une mesure à travers l’ITO de la cellule ITO/PEDOT :PSS/ P3HT :PCBM/LiF/Al est illustré sur la Figure II.14. Il faut noter que la mesure a été effectuée pour une cellule après recuit à 100°C pendant 10 minutes. La valeur maximale de l’$IPCE\%$ peut atteindre les 60% aux environs de 500 nm. Le spectre réalisé met clairement en évidence que la photogénération du photocourant est obtenue dans la région d’absorption (400 – 700 nm) du polymère conjugué P3HT -RR.

Figure II.14 : Spectre d’IPCE (Incident Photon to Collected Electron Efficiency) d’une cellule solaire HJV à base du système P3HT :PCBM (après recuit 100°C-10 min).

En conclusion, nous avons démontré que, pour le système P3HT :PCBM, les performances de la cellule dépendent non seulement des processus classiques de la photo-conversion (absorption du photon, diffusion des excitons, dissociation des excitons, transport
et collection des charges libres), mais aussi de la morphologie de la couche active (en masse et aux interfaces) pour laquelle le traitement thermique peut jouer un rôle très important.

Il faut également noter que les performances des cellules organiques dépendent aussi de la masse molaire du polymère P3HT -RR. En effet, plus la masse molaire est élevée, plus le polymère possède une forte régiorégularité qui induit un décalage de l’absorption vers le rouge. Ceci résulte d’une plus grande délocalisation des électrons qui est liée à l’augmentation de la conjugaison du polymère [Bab05, Ma07].

Il faut enfin relever que le système HJV à base de P3HT :PCBM a été élaboré lors de chaque étude de différents systèmes PV, car cette structure est prise comme référence.

II.2. ÉLABORATION DES CELLULES SOLAIRES A PARTIR DES COMPOSITES P3HT :dyades C_{60} – PERYLENEDIIMIDE (R= OPh/But, CL)_{4}

II.2.1. Propriétés physico-chimiques des dyades C_{60}-Pérylenediimide (R= OPh/But, Cl)_{4}

Le PCBM est un semi-conducteur de type -n, possédant une mobilité d’électrons entre 2·10^{-3} et 4,5·10^{-3} cm²·V^{-1}·s^{-1} [Mih03, Wal03, Pac03]. Cette mobilité augmente d’un facteur 2 quand il est mélangé avec des polymères. L’inconvénient des dérivés de fullerènes est leur faible absorption dans le visible, ce qui limite leur participation à la génération des excitons. Pour pallier ce défaut, de nombreux travaux de recherche ont été menés sur la fonctionnalisation du C_{60} [Seg05, Loi03, Neu04]. J.L. Segura et al. [Seg05] ont greffé sur le noyau de C_{60} un donneur (oligomère : dihexyloxynaphthalène, dihexyloxybenzène/thiophène et dihexyloxynaphthalène/thiophène) qui sert d’antenne collectrice de lumière. Sous éclairement du dispositif, ils obtiennent à la fois un transfert d’électrons et d’énergie vers le C_{60}. Ces résultats prometteurs nous ont conduit à élaborer des systèmes identiques par incorporation d’une antenne collectrice d’énergie à un système D/A dans une cellule photovoltaïque. En l’occurrence, nous avons utilisé comme antenne des dérivés de pérylène.

Ces molécules de type -n sont des colorants fortement absorbants dans le visible mais également des bons accepteurs d’électrons [Lan98, Str00]. Ils sont stables chimiquement [Fei95] et peuvent être facilement fonctionnalisés à l’air. Ces molécules ont par ailleurs été
utilisées dans de nombreux travaux : OLED électroluminescentes [Ang99] et cellules solaires PV [Hua04, Góm04, Wan06, Zhu05].

En collaboration avec le groupe du Prof. P. Hudhomme du Laboratoire CIMA de l’Université d’Angers, nous avons mis en évidence une nouvelle approche qui consiste à greffer au C_{60}, de manière covalente, une entité de dérivé de pérlyène-diimide (cf. *Figure II.15*) afin d’assurer un transfert de l’énergie absorbée par la molécule vers le C_{60} [Baf05, Baf06a, Baf07a, San05]. Cette entité joue le rôle de collectrice de lumière [Baf07a]. Les caractéristiques chimiques de ces molécules sont rapportées.

Figure II.15 : structures moléculaires des dyades : (a) C_{60}-(CH_{2})_{2}-Péry(Cl)_{4} =dyade 1, (b) C_{60}-(CH_{2})_{2}-Péry(OPh_{t}Bu)_{4} =dyade 2 [Baf05].

Une étude de spectrophotométrie en UV-Visible a été menée sur différentes couches organiques à base de différents dérivés de fullerènes purs. Les couches ont été préparées à partir de solutions de chlorobenzène en concentration de 10 mg⋅mL^{-1}. Les spectres d’absorption obtenus pour les différents films sont illustrés sur la *Figure II.16*.

L’absorption correspondant aux couches (50 nm) des différents dérivés de fullerènes montre que l’absorbance du C_{60} est améliorée par sa fonctionnalisation. Cela se manifeste par la forte absorption dans la région du visible, précisément entre 400 et 680 nm. Nous constatons sur la *Figure II.16* que le film de la dyade C_{60}-(CH_{2})_{2}-Péry(OPh_{t}Bu)_{4} est plus absorbant que celui de la dyade C_{60}-(CH_{2})_{2}-Péry(Cl)_{4}. Par la suite, afin de simplifier les notations, nous nommerons dyade 1 et dyade 2 les dyades C_{60}-(CH_{2})_{2}-Péry (Cl)_{4} et C_{60}-(CH_{2})_{2}-Péry (OPh_{t}Bu)_{4}, respectivement.
Les caractérisations électrochimiques des deux dyades sont réalisées à l’aide de la voltampérométrie cyclique [Baf07a]. La dyade 1 (cf. Figure II.17-a) présente trois vagues de réduction réversible. La première vague correspond à la formation de l’anion radical (PDI\(^{-}\)-C\(_{60}\)) de la partie PDI (E\(_{1/2\text{red1}}\) = – 0.84 V). La deuxième vague est attribuée à un processus réversible de réduction à deux électrons (E\(_{1/2\text{red2}}\) = – 1.08 V) correspondant à la génération de l’espèce de PDI\(^{-}\)-C\(_{60}\)\(^{-}\). Enfin, la troisième vague de réduction, qui apparaît à E\(_{1/2\text{red3}}\) = –1.47 V, résulte de la formation du tétra-anion PDI\(^{2-}\)-C\(_{60}\)\(^{-}\). Quant à la vague d’oxydation qui se manifeste à 1.24 V, elle correspond au processus d’oxydation irréversible du C\(_{60}\). Nous constatons que la première réduction se produit clairement sur la partie PDI dans le cas de la dyade 1. La formation de l’espèce PDI\(^{-}\)-C\(_{60}\), signifie que le pérylène de cette dyade joue clairement un rôle d’accepteur d’électron autant que le C\(_{60}\). Or notre objectif est plutôt que la PDI serve comme antenne collectrice de lumière pour le C\(_{60}\) dans ces dyades.

D’autre part, la dyade 2 (cf. Figure II.17-b) présente quatre vagues de réduction réversible mono-électronique. La première vague correspond à la formation de l’anion radical PDI-C\(_{60}\)\(^{-}\) à E\(_{1/2\text{red1}}\) = – 1.10 V. Elle est suivie par le processus réversible à un électron attribué à la formation de l’espèce PDI\(^{-}\)-C\(_{60}\)\(^{-}\) (E\(_{1/2\text{red2}}\) = – 1.24 V). La troisième vague de réduction correspond à la formation de PDI\(^{2-}\)-C\(_{60}\)\(^{-}\) (E\(_{1/2\text{red3}}\) = – 1.35 V) et la dernière vague de réduction de fullerène correspond à la génération de tétra-anion PDI\(^{2-}\)-C\(_{60}\)\(^{2-}\) (E\(_{1/2\text{red4}}\) = – 1.46 V). La voltampérométrie cyclique de cette dyade représente aussi une vague où deux processus
d’oxydation se superposent. Ces derniers correspondent à une oxydation réversible mono-électronique liée à la formation de l’espèce PDI\(^{\cdot}\)-C\(_{60}\) et à une oxydation irréversible de C\(_{60}\).

En revanche, la voltampérométrie cyclique ne le révèle pas dans le cas de la dyade 1.

Figure II.17 : (a) Voltampérogrammes cycliques des dyades 1 (gauche, ligne solide) et (b) 2 (droite, ligne solide) réalisés dans la solution CH\(_2\)Cl\(_2\) utilisant Bu\(_4\)NPF\(_6\) (C = 0.1 M) comme électrolyte support, le fil d’Ag est la semi-électrode de référence, les fils de platine pour l’électrode de travail et la contre-électrode. Vitesse du balayage: 100 mV/s. La 3\(^{\text{ème}}\) dérivée du diethylmalonyl C\(_{60}\) est utilisée comme référence (lignes discontinues) [Baf06a, Baf07a].

La première vague de réduction dans le cas de la dyade 2, démontre bien que le C\(_{60}\) est un meilleur accepteur d’électrons que le pérylène diimide substitué par des groupements phénoxy. Les potentiels de réduction de la partie PDI se décalent vers des valeurs plus négatives en substituant les atomes de chlore par des groupes de tertbutylphénoxy. Ces différences entre les dyades 1 et 2 ont pu être justifiées par les effets électroniques des substituants et leur influence : augmentation de la densité électronique sur le noyau pérylène et diminution de caractère accepteur du PDI [Baf07a].

La réponse spectrale en fluorescence du P3HT -RR en couche mince avec une excitation à 457 nm présente un maximum à 652 nm et un épaulement à 712 nm (cf. **Figure II.18**). Cette luminescence est fortement inhibée quand le P3HT -RR est mélangé avec les dyades 1 ou 2. Ceci peut être expliqué par un transfert effectif de charge ou/et d’énergie entre le P3HT et dyades 1 et 2.
CHAPITRE II : CELLULES SOLAIRES PHOTOVOLTAÏQUES À BASE DE NOUVEAUX DERIVES DE FULLERENES

Figure II.18 : Spectres de photoluminescence des couches organiques de P3HT, P3HT :dyade 1 et P3HT :dyade 2.

L’extinction de l’intensité de la fluorescence du P3HT est plus forte dans le cas du composite P3HT :dyade 2. Cependant, le transfert de charge entre les deux matériaux P3HT et dyade 2 est plus efficace qu’entre P3HT et dyade 1. Ceci corrobore les résultats obtenus en voltampérométrie cyclique [Baf07a].

Figure II.19 : Spectres FTIR-Infrarouge obtenus à partir des couches minces à base de (a) dyade 1, P3HT :dyade 1, (b) dyade 2, P3HT :dyade 2, mélangés avec du KBr.

La Figure II.19 représente les spectres obtenus en spectroscopie infrarouge en mode transmission des dyades 1 et 2 et des mélanges P3HT :dyade 1 et P3HT :dyade 2. La vibration liée aux cycles aromatiques ([bande carboxylique C=O: 1708-1748], C-C [1235-1163], C-O [900-1200]) est située entre 2000 et 1000 cm⁻¹. Les pics entre 1671-1582 cm⁻¹ correspondent à la déformation N-H. La liaison C-N est située entre 1400-1250 cm⁻¹. La présence du pic
entre 2960-2850 cm\(^{-1}\) est attribuée à la vibration C-H des dyades 1 et 2 et de P3HT. L’intensité des pics croît quand les dyades sont mélangées individuellement avec le P3HT - RR, et les pics se décalent de 4 cm\(^{-1}\) vers l’infrarouge. Enfin, à 1175 cm\(^{-1}\) et à 750 nm, la vibration chimique du groupe C-Cl est manifeste dans le cas de la dyade 1.

II.2.2. Cellules solaires à réseau interpénétré à base de composite P3HT: \(C_{60}-\text{PDI}(R=\text{OPh/But,Cl})_4\)

Des cellules solaires photovoltaïques organiques à réseau interpénétré ont été réalisées à base de dyades \(C_{60}-\text{PDI}(R=\text{OPh/But,Cl})_4\). Ces dyades ont été utilisées en tant qu’accepteur mélangé au poly(3-hexylthiophène)-régiorégulier (Aldrich-M87) dans les dispositifs PV [Baf07a]. La couche photo-active est prise en sandwich entre une anode transparente ITO et une cathode Al (50 nm). Une couche de LiF 0.7 nm est intercalée entre la cathode en aluminium et le composite (cf. *Figure II.20*). Le mélange P3HT :dyade \(C_{60}-\text{PDI}(R=\text{OPh/But,Cl})_4\) dans un rapport 1 :1 en masse est solubilisé dans une solution de chlorobenzène et a été déposé au moyen de la tournette sur la couche de PEDOT :PSS (40 nm). Les cathodes quant à elles sont déposées par évaporation (cf. *Annexe 2*). Les cellules ont été recuites à 150°C pendant 20 minutes.

Figure II.20 : Principe des cellules solaires étudiées à base de dyades 1 et 2.

Les résultats photovoltaïques obtenus lors des caractérisations des cellules solaires à base de deux dyades à différentes illuminations sont illustrés dans le *Tableau II-5*.

Nous constatons que ces cellules manifestent bien des effets photovoltaïques. Le rendement de conversion obtenu pour le système PV à base de la couche active P3HT :dyade 2 est plus élevé que celui de la cellule basée sur le composite P3HT :dyade 1. Les
Figures II.21-a et II.21-b représentent les caractéristiques I-V obtenues pour les dispositifs photovoltaïques HJV à base de différentes dyades :

<table>
<thead>
<tr>
<th>Systèmes</th>
<th>I (mW/cm²)</th>
<th>J_sc (mA/cm²)</th>
<th>V_oc (V)</th>
<th>FF</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :dyade 2</td>
<td>a) 54</td>
<td>1.13</td>
<td>0.6</td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>b) 99</td>
<td>1.14</td>
<td>0.6</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>P3HT :dyade 1</td>
<td>a) 48</td>
<td>0.49</td>
<td>0.2</td>
<td>0.12</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>b) 93</td>
<td>0.34</td>
<td>0.2</td>
<td>0.22</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Tableau II-5 : Paramètres photovoltaïques des cellules solaires organiques à base de composite P3HT -RR :dyade 1, P3HT -RR :dyade 2 après recuit [Baf07a], sous différents éclairages.

Dans le cas de la dyade 1, le potentiel de réduction qui correspond à la formation de l’espèce PDI²⁻-C₆₀⁻ est situé aux voisinages de – 1.08 V, une valeur proche à celle du PCBM. Toutefois, le fait que le premier potentiel soit attribué à la réduction de la partie PDI(Cl)₄ de la dyade 1 (E₁/₂ = – 0.84 V), conduit à la diminution de la valeur du Voc des cellules PV (cf. Figure II.21-a). Même si l’absorption de la couche P3HT :dyade 1 est améliorée, la densité de courant Jsc reste faible car les électrons provenant du polymère sont piégés par le PDI (Cl)₄.

Figure II.21 : Les caractéristiques photovoltaïques des cellules solaires ITO/PEDOT :PSS/P3HT -RR :dyade i (i=1, 2) /LiF/Al : a) dyade 1, b) dyade 2.

Les cellules photovoltaïques à base de la dyade 2 ont fourni de meilleures caractéristiques photovoltaïques, en accord avec leurs propriétés électrochimiques et d’absorption. Ces résultats corroborent les résultats obtenus en voltampérométrie cyclique et en spectroscopie de fluorescence. En effet, la tension Voc est liée aux niveaux énergétiques HOMO du donneur, d’une part, et LUMO de l’accepteur, d’autre part. La LUMO dépend du potentiel de réduction des matériaux [Baf07a]. Dans le cas de la dyade 2, la tension Voc est plus élevée (cf. Figure II.21-b). Ceci est lié au premier potentiel de réduction E₁/₂red1.
CHAPITRE II : CELLULES SOLAIRES PHOTOVOLTAÏQUES À BASE DE NOUVEAUX DERIVES DE FULLERENES

(−1.10 V) qui est proche de celui du PCBM (−1.11 V) et qui permet d’avoir la même valeur \(V_{oc} = 0.6 \) V quand il est mélangé avec le P3HT -RR en couche mince (cellule PV à réseau interpénétré).

Une étude en microscopie à force atomique en mode contact a été réalisée sur différents systèmes : des couches à base de dyades 1 et 2 pures ainsi que de leurs mélanges avec P3HT -RR (cf. Figure II.22). L’analyse de ces images AFM montre que la rugosité des films est plus élevée dans le cas du composite P3HT :dyade 2 et correspond à 6.6 nm (cf. Figure II.22-b). Une rugosité faible de l’ordre de 0.83 nm a été mesurée sur le film P3HT :dyade 1. Cette rugosité est quasiment la même que celle obtenue lorsque P3HT -RR est mélangé avec la molécule du PCBM (R=1 nm) (cf. Figure II.22-a). Ceci peut être dû à la structure moléculaire des dyades.

\[\text{Figure II.22 : Images AFM de la surface des composites (a) P3HT :dyade 1 (à droite), dyade 1, (b) P3HT :dyade 2 (à gauche).} \]

D’autres cellules solaires de type MIM, ont été conçues à partir des dyades 1 et 2 dissoutes dans du chlorobenzène à des concentrations de 10 mg.mL\(^{-1}\). Après les avoir caractérisées, les résultats obtenus démontrent que les cellules PV ne présentent aucun effet photovoltaïque. Ceci peut être interprété par la recombinaison rapide des charges photogénérées dans les matériaux organiques (dyade 1, 2) avant leur migration vers les électrodes.

Des études théoriques ont été réalisées sur les deux types de dyades. Les calculs de modélisation moléculaire ont fourni des valeurs d’orbitales de bandes de valence (BV)
Chapitre II : Cellules solaires photovoltaïques a base de nouveaux dérivés de fullerènes

Encourageantes. La valeur d’orbitale de la dyade 2 est estimée à –3.05 eV. Cette valeur est proche de celle du PCBM qui est de l’ordre de –3.04 eV. En revanche, celle qui correspond à la dyade 1 est –3.53 eV [Baf07b]. En effet la tension \(V_{oc} \) délivrée par la cellule dépend directement de la différence de \(HOMO_{donneur} - LUMO_{accepteur} \) (\(BV_{accepteur} \)). Si la valeur de l’orbitale LUMO est très basse, la tension \(V_{oc} \) et le rendement de conversion diminuent, comme dans le cas de la dyade 1 par exemple. Les études théoriques confirment les résultats expérimentaux.

En conclusion, la nouvelle approche de fonctionnaliser des dyades à base de \(C_{60} \) améliorant l'absorption de celui-ci dans le visible ont été validées. Il a été démontré par voltampérométrie cyclique que le premier potentiel de réduction dans le cas de la dyade \(C_{60}-(CH_2)_2-Péry(OPh_Bu)_4 \) correspond à la réduction du \(C_{60} \). Cela confirme le rôle accepteur du \(C_{60} \) dans ce type de dyades. Le rôle d'une antenne collectrice greffée sur le \(C_{60} \) a été démontré grâce à la présence d'un transfert d'énergie efficace à partir du PDI vers le fullerène \(C_{60} \). Nous avons démontré que les caractéristiques photovoltaïques des cellules solaires HJV à base de mélange P3HT et dyade 1 ou 2 sont en accord avec celles obtenues par les mesures de photoluminescence, absorption, voltampérométrie cyclique et analyse de morphologie. La rugosité élevée obtenue dans le cas d’une couche organique à base de P3HT –RR : dyade 2 est liée à la structure moléculaire de cette dernière. Ces résultats sont parfaitement en accord avec les performances PV obtenues pour une cellule de type HJV à base de ce composite. Effectivement, la morphologie est un des paramètres importants permettant d'améliorer les dispositifs solaires.

II.2.3. Optimisation des cellules Photovoltaïques Organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT –RR :(100-x)% PCBM :x%dyades/LiF/Al

En raison des faibles rendements de conversion obtenus pour les différents systèmes de type HJV à base de la dyade 1 ou 2 (dû à la faible quantité de \(C_{60} \) contenue dans les couches photo-actives), nous avons mis en œuvre une nouvelle approche d’élaboration des couches actives.

Des cellules photovoltaïques organiques de type HJV à base de P3HT :PCBM ont été dopées avec différentes concentrations en dyade 1 ou 2, tout en conservant la même concentration molaire de \(C_{60} \) dans tous les systèmes. Par conséquent, les couches photo-
actives des cellules sont dopées avec la même concentration en C\textsubscript{60}. La masse molaire de chaque dyade C\textsubscript{60-PDI(Cl)}\textsubscript{4} et C\textsubscript{60-PDI(OPhBu)}\textsubscript{4} représente respectivement 1.4 et 2.1 fois la masse du PCBM. Comme les premières cellules ont été conçues avec un rapport 1 : 1 en masse, nous avons utilisé une plus faible concentration en C\textsubscript{60} dans les cellules. Par ailleurs, l’un des paramètres jouant un rôle très important pour obtenir des caractéristiques photovoltaïques très efficaces est la concentration des matériaux utilisés. La concentration en C\textsubscript{60} est très importante pour la dissociation des charges libres et aussi pour la mobilité des électrons. En revanche, une trop forte concentration en C\textsubscript{60} affecte la morphologie des couches actives ou engendre une couverture partielle de la cathode par les molécules de PCBM et ainsi leur détérioration [Gao97, Liu01, Sch03, Hop04b]. Nous avons adopté une nouvelle approche qui consiste à utiliser des rapports molaires au lieu des rapports massiques. Les concentrations molaires et leur correspondance en masse utilisées dans ces nouveaux dispositifs sont listées sur les Tableaux II-6-a et II-6-b. Elles sont calculées selon les Équations II-1 à II-6.

\[
\begin{align*}
 m_A + m_B &= 20 \\
 n_A / n_B &= \%_A / \%_B \\
 m_A M_B / M_B m_A &= \%_A / \%_B \\
 m_B &= 10 M_B \%_B / \%_A M_A + \%_B M_B \\
 m_{PCBM} &= (9100 \%_{PCBM}) / (1474 \%_{C60-PDI} + 910 \%_{PCBM}) \\
 m_{PCBM} &= (9100 \%_{PCBM}) / (1928 \%_{C60-PDI} + 910 \%_{PCBM})
\end{align*}
\]

<table>
<thead>
<tr>
<th>a</th>
<th>P3HT :100%PCBM</th>
<th>P3HT :95%PCBM :15%dyade 1</th>
<th>P3HT :90%PCBM :10%dyade 1%</th>
<th>P3HT :85%PCBM :15%dyade 1</th>
<th>P3HT :80%PCBM :20%dyade 1</th>
<th>P3HT :100%dyade 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P3HT</td>
<td>PCBM</td>
<td>dyade 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 10^{-5} mol</td>
<td>9,21 mg</td>
<td>8,47 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,88 mg</td>
<td>7,78 mg</td>
<td>7,12 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,22 mg</td>
<td>7,82 10^{-6} mol</td>
<td>7,82 10^{-6} mol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,95 10^{-6} mol</td>
<td>16,2 mg</td>
<td>16,2 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 10^{5} mol</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dans le paragraphe qui suit, nous aborderons les études réalisées sur les dyades 1 et 2, et ainsi les performances des cellules qui en dépendent.

a) **Elaboration des cellules Organiques à réseau interpénétré :**

ITO/PEDOT:PSS/P3HT -RR :(100-x)% PCBM :x% dyade 1/LiF/Al

L’allure des spectres d’absorption obtenus pour les différents systèmes P3HT :(100-x)% PCBM :x% dyade 1 en couches minces, est la même (cf. Figure II.23). Les couches dopées en dyade 1 ont une absorption identique, à l’exception de la couche à base de P3HT :PCBM (composite non dopé en dyade 1) où l’absorption est très élevée. Peut être est-ce dû au transfert de charges spontané entre les matériaux puisque les spectres des couches se décalent vers le rouge. L’absorption de la PDI(Cl)4 est confondue avec celle du P3HT puisque ce dernier absorbe fortement dans la même région.

![Figure II.23 : Comparaison des spectres d’absorption des différents composites P3HT -RR :(100-x)% PCBM :x% dyade 1, avant recuit.](image)
Les résultats photovoltaïques obtenus pour les différents systèmes ITO/PEDOT :PSS/P3HT :\((100-x)\)% PCBM :x% dyade 1/LiF/Al, extraits des courbes caractéristiques \(I-V\) (cf. Figure II.24) sont regroupés dans le Tableau II-7.

<table>
<thead>
<tr>
<th>Système</th>
<th>(V_{oc}) (V)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>(ff)</th>
<th>(\eta)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :100% PCBM</td>
<td>0.544</td>
<td>6.42</td>
<td>0.348</td>
<td>1.25</td>
</tr>
<tr>
<td>P3HT :90% PCBM :10% dyade 1</td>
<td>0.442</td>
<td>3.27</td>
<td>0.269</td>
<td>0.4</td>
</tr>
<tr>
<td>P3HT :80% PCBM :20% dyade 1</td>
<td>0.386</td>
<td>3.08</td>
<td>0.235</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Tableau II-7 : Paramètres Photovoltaïques des cellules à base de composites P3HT -RR :\((100-x)\)% PCBM :x% dyade 1, avant recuit.

Dans le cas des cellules dopées à différentes concentrations, nous constatons sur le Tableau II-7 que la tension \(V_{oc}\) est améliorée avec un facteur 2.5 et la densité de courant \(J_{sc}\) avec un facteur 3 par rapport aux systèmes à base de composite P3HT :dyade 1 dans un rapport 1 :1 en masse (cf. Tableau II-6,a). Ceci est dû à la présence du PCBM dans la matrice qui améliore la mobilité des charges, la dissociation des excitons (cf. Figure II.24). En revanche en augmentant la concentration, la tension \(V_{oc}\) diminue, ainsi que le facteur de forme \(ff\), ce qui est probablement dû aux électrons provenant du polymère qui sont piégés par le PDI(Cl)\(_4\) sans être collectés par l’électrode Al.

![Figure II.24](image-url) : Caractéristiques \(I-V\) des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT -RR :\((100-x)\)% PCBM :x% dyade 1/LiF/Al, sous un éclairement 107 mW/cm\(^2\), avant recuit.

Le traitement thermique à 100°C pendant 10 minutes des cellules solaires photovoltaïques améliore leurs performances. Les résultats PV obtenus après recuit extraits des courbes \(I-V\) (cf. Figure II.25) sont donnés dans le Tableau II-8.
Tableau II-8 : Paramètres Photovoltaïques des cellules à base de composites P3HT -RR :{(100−x)% PCBM :x% dyade 1, après traitement thermique 100 C pendant 10 minutes.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc}(V)</th>
<th>J_{sc}(mA/cm2)</th>
<th>ff</th>
<th>η%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :90% PCBM: 10% dyade 1</td>
<td>0.396</td>
<td>3.60</td>
<td>0.414</td>
<td>0.61</td>
</tr>
<tr>
<td>P3HT :80% PCBM: 20% dyade 1</td>
<td>0.370</td>
<td>2.52</td>
<td>0.248</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Le traitement thermique améliore les cellules solaires PV dopées avec une faible concentration en dyade 1: la densité de courant J_{sc} et le facteur de forme ff augmentent avec une petite perte au niveau de la tension V_{oc} (cf. Tableau II-8). En revanche, dans le cas des cellules PV dopées à forte concentration en dyade 1, la densité de courant J_{sc} et la tension V_{oc} diminuent (cf. Figure II.25). Comme la tension de circuit ouvert dépend principalement de la morphologie de la couche active en masse et aux interfaces avec les électrodes, ces résultats montrent qu’il y a eu un changement de morphologie après traitement thermique ce qui a détérioré les performances PV des cellules dopées à fortes concentrations en dyades 1. Ceci peut être traduit par la formation des domaines de grandes tailles pour la forte présence des dérivés de C$_{60}$ en couche active en détriment la formation des fibrilles de polymère P3HT-RR.

Figure II.25 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT -RR :{(100−x)% PCBM :x% dyade 1/LiF/Al, sous un éclairement 107 mW/cm2, après recuit à 100 C pendant 10 minutes.

Un second traitement thermique à 130°C pendant 10 minutes a été effectué sur les différents dispositifs organiques PV. Il a été constaté que le recuit détériorait les performances des cellules photovoltaïques organiques de type HJV à base de P3HT :{(100−x)% PCBM :x%
dyade 1 (cf. Figure II.26), ceci est lié à la morphologie et à l’effet de température sur les contacts (d’où les diminutions de la densité de courant J_{sc} et de la tension de circuit ouvert V_{oc}).

![Figure II.26 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT -RR :((100−x)% PCBM :x % dyade I/LiF/Al, sous un éclairement 107 mW/cm2, après recuit à 130 C pendant 10 minutes.]

Les paramètres photovoltaïques extraits des caractéristiques des courbes I-V (cf. Figure II.26) sont indiqués dans le Tableau II-9.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>ff</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :90% PCBM :10% dyade 1</td>
<td>0.278</td>
<td>2.43</td>
<td>0.354</td>
<td>0.246</td>
</tr>
<tr>
<td>P3HT :80% PCBM :20% dyade 1</td>
<td>0.269</td>
<td>2.69</td>
<td>0.297</td>
<td>0.22</td>
</tr>
<tr>
<td>P3HT :85% PCBM :15% dyade 1</td>
<td>0.226</td>
<td>1.99</td>
<td>0.297</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Tableau II-9 : Paramètres Photovoltaïques des cellules à base de composites P3HT -RR :((100−x)% PCBM :x % dyade 1, après traitement thermique 130°C pendant 10 minutes.

En conclusion, l'effet de la température montre que l'optimisation est toujours difficile et liée au réseau interpénétré. Nous avons constaté, comme nous l’avons décrit précédemment, que les rendements des cellules après recuit présentent des caractéristiques photovoltaïques très différentes. Les performances PV les plus élevées sont obtenus dans le cas des systèmes dopés à faibles concentrations en dyade 1.
b) **Elaboration des cellules Organiques à réseau interpénétré : ITO/PEDOT:PSS/P3HT -RR :(100-x)% PCBM :x% dyade 2/LiF/Al**

Comme pour les cellules organiques dopées dyade 1, des études similaires ont été réalisées sur des systèmes de type HJV dopés en dyade 2. Les spectres d’absorption obtenus pour les systèmes dopés à différentes concentrations en dyade : P3HT :(100-x)% PCBM :x% dyade 2, sont représentés sur les *Figure II.27* et *Figure II.28*, avant et après recuit.

![Figure II.27 : Comparaison des spectres d’absorption des différents composites P3HT -RR :(100–x)% PCBM :x % dyade 2, avant recuit.](image)

Les spectres montrent l’évolution de l’absorption en UV-Visible des systèmes en fonction du dopage en dyade 2. Plus les systèmes sont dopés en dyade 2, plus la signature de l’antenne se manifeste. En effet l’allure du spectre d’absorption en UV-Visible du système P3HT :PCBM dopé avec une faible concentration en dyade est 2 correspond à celui du système P3HT :PCBM (cf. *Figure II.27*). Nous constatons que le comportement du système P3HT :100% dyade 2 est singulier : le maximum se déplace vers les petites longueurs d’onde (460 nm) ; ainsi, le spectre d’absorption correspond davantage à celui de la dyade 2. En revanche, dans le cas des couches faiblement dopées en dyade 2, l’absorption correspond plus à celle du P3HT -RR. Comme les deux matériaux absorbent dans la même région, leur absorbance est confondue.

La *Figure II.28* montre l’évolution de l’absorption des systèmes P3HT :PCBM dopés en dyade 2, après traitement thermique à 100°C pendant 10 minutes. On constate que les spectres se décalent vers le rouge et que les épaulements apparaissent plus clairement. Ceci est lié à la cristallisation du P3HT -RR, à la formation des domaines et à la restructuration des
systèmes dopés. La signature du pérylène diimide (PDI) apparaît de plus en plus au fur et à mesure que la concentration en dyade devient élevée. Le spectre obtenu pour le système P3HT: 100% dyade 2 prend l’allure du spectre d’absorption de la dyade 2 en raison de la forte concentration de cette dernière, même si la concentration en C₆₀ est identique pour tous les systèmes.

![Figure II.28 : Comparaison des spectres d’absorption des différents composites P3HT -RR :(100−x)% PCBM :x% dyade 2, après recuit.](image)

L’application de ces systèmes dopés en couche photo-active dans le cas des cellules PV de type HJV nous a permis d’avoir une nouvelle approche sur la conception des dispositifs photovoltaïques. En effet, différentes études (cf. Chapitre I- état de l’art) ont été réalisées afin de trouver un moyen d’améliorer les performances des cellules organiques, en greffant des unités de C₆₀ sur des polymères (double câble), polymère à blocs ou autres….

Dans nos travaux, nous avons opté pour l’utilisation des systèmes à réseau interpénétré à base de trois matériaux : P3HT, PCBM et dyade 2, ainsi étudier l’effet du dopage sur les performances des cellules PV classiques à base de P3HT :PCBM. La couche active à base de P3HT :{(100-x)% PCBM :x% dyade 2 est intercalée entre une anode transparente ITO couvert de 40 nm de PEDOT :PSS et une cathode d’aluminium. Nous avons déposé la couche du LiF (0.7 nm) entre la couche organique et cette cathode afin d’améliorer les performances de cellules solaires (cf. Chapitre I-état de l’art). Les caractéristiques I-V obtenues lors de la caractérisation des dispositifs sont présentées sur la Figure II.29.
Les paramètres photovoltaïques des différentes cellules PV extraits des caractéristiques I-V de la Figure II.29, sont donnés dans le Tableau II-10.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>ff</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :100% PCBM</td>
<td>0.544</td>
<td>6.42</td>
<td>0.348</td>
<td>1.25</td>
</tr>
<tr>
<td>P3HT :95% PCBM :5% dyade 2</td>
<td>0.625</td>
<td>5.3</td>
<td>0.409</td>
<td>1.40</td>
</tr>
<tr>
<td>P3HT :85% PCBM :15% dyade 2</td>
<td>0.598</td>
<td>5.51</td>
<td>0.369</td>
<td>1.13</td>
</tr>
<tr>
<td>P3HT :80% PCBM :20% dyade 2</td>
<td>0.664</td>
<td>2.13</td>
<td>0.321</td>
<td>0.42</td>
</tr>
<tr>
<td>P3HT :100% dyade 2</td>
<td>0.779</td>
<td>0.292</td>
<td>0.229</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Tableau II-10 : Paramètres Photovoltaïques des cellules à base de composites P3HT -RR :{(100-\(x\))% PCBM :x% dyade 2}/LiF/Al, avant recuit.

Le meilleur rendement de ces systèmes est de l’ordre de 1.4%. Il a été obtenu pour une cellule solaire dopée 5% en dyade 2 et avant traitement thermique. Ceci est lié à une absorption du système améliorée par l’utilisation d’une dyade possédant une absorption assez étendue dans le visible. Nous constatons que la densité de courant diminue pour les cellules fortement dopées en PDI. Ceci corrobore les résultats obtenus en absorption UV-Visible. L’absorbance des couches actives diminue pour les fortes concentrations en dyade 2. Par conséquent les caractéristiques PV sont améliorées à faible dopage en dyade. En effet, en augmentant la concentration du dopant dyade 2 dans la couche P3HT :PCBM, la structure moléculaire de la dyade 2 modifie fortement la morphologie. Ceci affecte les interactions entre les différents matériaux qui coexistent dans la couche active. Contrairement à la densité de courant J_{sc} qui diminue pour les concentrations élevées en dyade 2, la tension V_{oc} augmente.
Par comparaison avec les cellules PV à base de composite P3HT :dyade 2 dans un rapport en masse 1 :1, (c’est à dire dans un rapport molaire 1 :0.5), la densité du courant est améliorée (cf. Tableaux II-10). Ceci est lié à l’absorption du système qui est plus élevée et décalée vers le rouge. Par ailleurs, le ff a augmenté d’un facteur 2. Cela indique qu’il y a moins de recombinations de charges libres en raison de la présence du PCBM dans la matrice. La tension V_{oc} de ces systèmes est comparable à celle à base de P3HT:PCBM, ce qui nous conduit peut être aux mêmes ordres de dissociation des excitons. Ceci peut être expliqué par la réorganisation des trois matériaux dans la matrice. En augmentant la concentration en dyade 2, les cellules photovoltaïques perdent de plus en plus de leurs performances jusqu’à des valeurs qui tendent vers celles obtenues précédemment pour des dispositifs à base de P3HT -RR :dyade 2 dans un rapport massique 1 :1. Nous constatons que cette perte est davantage liée à la diminution de la densité de courant J_{sc}, ce qui permet de conclure qu’elle est liée à la diminution de l’absorption dans le visible des dispositifs. Le dopage à fortes concentrations en dyade 2 (fortes concentrations en accepteur), entraîne une diminution de photogénération d’excitons et une faible mobilité des charges dans la couche active.

Par la suite, les cellules solaires PV ont subi un traitement thermique à 100°C pendant 10 minutes. Nous avons constaté que les paramètres photovoltaïques extraits des caractéristiques $I-V$ des différents systèmes sont quasiment identiques (cf. Figure II.30), sauf dans le cas de la diode dopée à 100 % dyade 2. Les rendements de conversion obtenus pour les différentes cellules solaires à réseau interpénétré à partir de composite : P3HT :($100-x$)% PCBM :x% dyade 2, sont de l’ordre de 1.30 %. Autant le traitement thermique améliore certains systèmes dopés fortement en dyade 2, autant les performances se détériorent dans le cas du système dopé à 100% en dyade 2. Les caractéristiques photovoltaïques extraites des courbes $I-V$ sont illustrées dans le Tableau II-11.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc}(V)</th>
<th>J_{sc}(mA/cm²)</th>
<th>ff</th>
<th>η%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :95% PCBM :5% dyade 2</td>
<td>0.610</td>
<td>5.30</td>
<td>0.379</td>
<td>1.14</td>
</tr>
<tr>
<td>P3HT :85% PCBM :15% dyade 2</td>
<td>0.610</td>
<td>5.46</td>
<td>0.437</td>
<td>1.35</td>
</tr>
<tr>
<td>P3HT :80% PCBM :20% dyade 2</td>
<td>0.686</td>
<td>5.41</td>
<td>0.356</td>
<td>1.23</td>
</tr>
<tr>
<td>P3HT :100% dyade 2</td>
<td>0.633</td>
<td>0.018</td>
<td>0.269</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Tableau II-11 : Paramètres Photovoltaïques des cellules à base de composites P3HT -RR :($100-x$)% PCBM :x% dyade 2, après recuit.

Sur la Figure II.30 ainsi que le Tableau II-11; nous constatons que, pour les systèmes P3HT :PCBM fortement dopés, la densité de courant J_{sc} est améliorée grâce à l’absorption (très élevée et décalée vers le rouge) et à l’évolution de la structuration de la couche par effet thermique (formation des fibrilles du P3HT).
Figure II.30 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT -RR :((100−x)% PCBM :x% dyade 2/LiF/Al, sous un éclairement 107 mW/cm2, après recuit.

La Figure II.31 représente l’absorption de la couche à base de P3HT : 100% dyade 2 avant et après recuit. L’absorption est améliorée après recuit sans restructuration des matériaux au sein de la couche. En effet, aucune signature apparente de la cristallisation du polymère P3HT n’est constatée sur ces courbes. Ceci est peut être lié à la grande taille de la molécule qui affecte le mouvement des chaînes ainsi que la cristallisation du polymère (la croissance des fibrilles du P3HT). La taille de la molécule augmente par effet thermique en raison de sa forte concentration dans la couche (21.2 mg). Ainsi, un transfert de charge est moins favorisé et il en résulte de plus faibles performances.

Figure II.31 : Comparaison des spectres d’absorption de composites P3HT-RR :100% dyade 2 (1 : 2.12 en masse) avant et après recuit à 100°C pendant 10 minutes.
Les réponses spectrales d’\textit{IPCE\%} des deux systèmes sont corrélées avec les résultats PV décrits précédemment (cf. \textit{Figure II.32}). La quantité de charges photogénérées augmente significativement en dopant la cellule à 5\% en dyade 2, ce qui se traduit par un meilleur rendement quantique externe, de l’ordre de 50\% à 550 nm. Quand le système est fortement dopé, le rendement correspond à 41\% à 510 nm. Par contre dans les deux cas, nous constatons que les systèmes produisent plus de courant grâce à la dyade. Ceci est lié à l’absorption du PDI aux voisinages de 600 nm. Le rendement quantique externe à cette longueur d’onde correspond à 41\% et 28\% dans le cas des dispositifs dopés respectivement à 5\% et 15\%. Cela permet l’augmentation du J_{sc} par l’absorption des systèmes à cette longueur d’onde, ce qui prouve l’effet de l’antenne collectrice de lumière dans ces systèmes.

\textit{Figure II.32} : Spectres d’action de différentes structures, après recuit à 100°C pendant 10 minutes.

Des cellules solaires photovoltaïques à réseau interpénétré à base de composite P3HT :dyade 2 dans un rapport 1 :0.5 en masse, ont été réalisées afin de connaître l’effet de la concentration de la dyade 2 sur ces systèmes. Les paramètres photovoltaïques extraits des courbes \textit{I-V} (cf. \textit{Figure II.33}) sont reportés sur le \textit{Tableau II-12}. Afin de comparer les performances des cellules, les résultats obtenus auparavant ont été regroupés dans ce tableau.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>ff</th>
<th>$\eta%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :dyade 2 (1 :0.5)</td>
<td>0.593</td>
<td>1.49</td>
<td>0.229</td>
<td>0.19</td>
</tr>
<tr>
<td>P3HT :dyade 2(1 :1)</td>
<td>0.6</td>
<td>1.14</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>P3HT :dyade 2 (1 :2.12)</td>
<td>0.779</td>
<td>0.292</td>
<td>0.229</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\textit{Tableau II-12} : Paramètres Photovoltaïques des cellules à base de composites P3HT RR : dyade 2 (1 :X en masse).

94
Les caractéristiques photovoltaïques obtenues pour ces cellules solaires (cf. Figure II.33, cf. Tableau II-12), démontrent qu’à faible concentration, les mêmes ordres de grandeur sont obtenus pour la tension V_{oc} et la densité de courant J_{sc}.

Aux faibles concentrations, la tension V_{oc} diminue mais la densité de courant J_{sc} augmente. Ceci est lié à l’absorption qui est plus élevée dans le cas des systèmes dopés à faibles concentrations en dyade 2, car l’absorption de la dyade 2 est confondue avec celle du P3HT. Il faut noter que les performances de la cellule à base de P3HT:dyade 2 (1 :0.5 en masse) à réseau interpenéré, sont détériorées après recuit à 100°C pendant 10 minutes.

Figure II.33 : Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpenéré : ITO/PEDOT :PSS/ P3HT -RR dyade 2 (1 :0.5 en masse)/LiF/Al, dans l’obscurité et sous un éclairement 107mW/cm², avant recuit.

En conclusion, nous constatons que les meilleures performances PV sont délivrées par des cellules solaires PVO élaborées à partir de la dyade 2. Ceci est en accord avec ses caractéristiques physico-chimiques. L'effet de la température montre que l'optimisation est toujours difficile. Ceci semble être associé au réseau interpenéré. Nous avons constaté, comme nous l’avons décrit précédemment, que les rendements des cellules avec recuit présentent des caractéristiques photovoltaïques similaires, ce qui prouve la stabilité établie de ces systèmes par le traitement thermique. Ces résultats montrent que les travaux menés sur la réticulation (cf. Annexe 3) des couches organiques sont fiables pour stabiliser la nanostructure de ces dernières afin de maîtriser la morphologie des systèmes.
II.3. **NOUVEAUX DERIVES CYCLOPROPANO[60]FULLERENES DE TYPE BINGEL**

Depuis la découverte d’un transfert de charge efficace entre un polymère conjugué (donneur) et des dérivés de fullérènes (accepteurs), de nombreuses études ont été réalisées afin de chercher à augmenter le rendement photovoltaïque organique tout en restant dans le cadre d’une optimisation des caractéristiques physico-chimiques des deux composés (Donneur & Accepteur) en couche photo-active : interactions électroniques et physiques, sans omettre la morphologie. En raison de la grande affinité électronique des fullérènes, ainsi que du transport efficace de charges dans ces composés, nous avons étudié de nouveaux cyclopropano[60]fullérènes (5a-c, 6a-c), synthétisés par C. Bergeret et J. Cousseau du Laboratoire CIMA de l’Université d’Angers (cf. Figures II.34 et II.35). Dans le but de comparer leurs propriétés physico-chimiques à celles de PCBM (accepteur le plus utilisé en cellules solaires organiques), ces composés ont été utilisés en couche photo-active dans le cas de cellules à réseau interpenetré.

Les performances photovoltaïques obtenues en utilisant PCBM comme composé accepteur ont été progressivement améliorées par différents systèmes et restent les meilleures jusqu’à l’heure actuelle. En effet, les rendements de conversion obtenus jusqu’ici sont très élevés pour les couches photo-actives à base de l’accepteur PCBM. Son utilisation en cellule HJV à base d’un polymère conjugué de faible gap énergétique (donneur) tel que le MEH:PPV a permis d’obtenir un rendement de 2.9 % [Ale04a]. Le remplacement du MEH:PPV par le MDMO:PPV a conduit à un rendement de 3 % [Wie03, Moz04]. Enfin, l’utilisation d’un polymère conjugué d’une autre famille de dérivés de polythiophène, P3HT -RR a permis d’augmenter encore le rendement de conversion à 5 % [Rey05a, Ma05, Li05b].

D’autre part, des travaux de recherches ont été réalisés dans le but de synthétiser des dérivés de PCBM possédant de meilleures propriétés physico-chimiques. En 2001, C.-J. Brabec *et al.* [Bra01] ont étudié l’influence de différents dérivés de fullérènes (N-3-(2-ethylhexyloxy)benzyl azafulleoid 5 et N-3-(2-ethylhexyloxy)benzyl Keloctam 6) possédant différentes propriétés optoélectroniques sur l’origine de la tension V_{oc}. Par ailleurs, des chercheurs ont rapporté que la synthèse des dérivés : TDC$_{60}$ et TC$_{60}$ [Li02, Wan04], et PCBM analogues (possédant des chaînes alkyl C$_{4}$-C$_{16}$) [Zhe03, Zhe04] autres que PCBM est prometteuse. L. Zheng *et al.* [Zhe04] ont démontré que la longueur des chaînes du groupe Alkyl greffées sur le noyau C$_{60}$ joue un rôle important dans les caractéristiques PV, au niveau
de la mobilité, et de la miscibilité des matériaux. Ils ont obtenu un rendement de 2.84% en utilisant un dérivé de C₆₀ PCBB ([6,6]-phenyl C₆₁-butyric acid butyl ester) avec MEH: PPV (rapport massique 32:1) en couche active. En 2005, I. Riedel et al. ont utilisé la molécule 1,1-bis (4,4'-dodecyloxyphenyl)-(5,6) C₆₁, diphényl-méthanofullérènes (DPM-12) dans un dispositif photovoltaïque. Ils ont étudié d’une part l’influence de DPM-12 sur la tension V_{oc} et d’autre part l’effet de concentration de DPM-12 sur les performances PV [Seg05, Rie05]. L. M. Popescu et al. [Pop06] ont étudié l’effet des propriétés optoélectroniques du dérivé de fullerène ThCBM (1-(3-methoxycarbonyl)propyl-1-thienyl-[6,6]-methanofullerene) sur les performances des cellules solaires à base de polythiophène (P3HT). Tout récemment, le groupe de J.-C. Hummelen a synthétisé des dérivés R[60]fuulerène (R= 4-N,N-dialkylyamino, diphenylmethano, bis-4-N,N-dialkylyamino-diphenylmethano, bisPCBM…) en jouant sur les niveaux LUMO afin d’augmenter la V_{oc} [Len08].

Dans ce travail de recherche, deux nouvelles séries de cycloproano[60]fullérènes ont été étudiées. Ces composés notés 5a-c et 6a-c, obtenus par une réaction de type Bingel (cf. Figure II.34), se différencient par leur structure chimique, symétrique 5a-c ou dissymétrique 6a-c (cf. Figure II.35).

Les propriétés spectroscopiques et électrochimiques de ces différentes molécules ont été systématiquement étudiées. La solubilité de ces dérivés de fullerènes 5a-c et 6a-c dans des milieux organiques, due aux groupes ester R¹ et R², offre une possibilité de les employer en tant que composants accepteurs d’électron en cellules photovoltaïques organiques de type HJV. Il devient ainsi possible d’étudier en particulier l’influence de la symétrie ou de la dissymétrie moléculaire des composés 5a-c et 6a-c sur l’efficacité des dispositifs organiques basés sur des mélanges de polymère conjugué donneur d’électron (poly(3-hexylthiophène) - régiorégulier (P3HT -RR)) et des composés 5a-c ou 6a-c [Der07].

L’objectif de ce travail ne vise pas donc à chercher à augmenter l’absorption de la lumière dans le visible (cf. Chapitre II.2), mais à améliorer la miscibilité des matériaux, la mobilité des porteurs de charge et d’autres aspects tels que les propriétés physico-chimiques qui influencent la structure de la couche photo-active à base de ces dérivés de fullerène.

Six molécules ont été synthétisées dans ce cadre de travail de recherche à partir de la réaction Bingel modifiée (cf. Figure II.35).
II.3.1. Études des propriétés spectrophotométriques et électrochimiques des dérivés cyclopropano[60]fullerènes 5a-c et 6a-c

Des études de spectroscopie en UV-Visible ont été réalisées sur les cyclopropano[60]fullerènes 5a-c et 6a-c. Les spectres obtenus à partir de ces composés, en solution dans le chloroforme ou le toluène à température ambiante, sont très comparables. Afin d’éviter d’avoir des superpositions des spectres UV-Visible, nous nous sommes limités à présenter trois courbes qui correspondent aux composés 5b, 6b et au PCBM solubilisés dans le chloroforme (Figure II.36). Les paramètres extrait des courbes sont indiqués dans le Tableau II-13. Les spectres des dérivés 5b et 6b montrent une forte absorption à 326 nm, ainsi qu’une absorption à 426 nm caractéristiques de la formation du cycle cyclopropano en position [6,6] de C₆₀ [Gul95]. La large absorption qui se manifeste à 488 nm, ainsi qu’un petit pic au voisinage de 688 nm, sont attribués à la faible transition singulet de C₆₀ [Jan95].

Aucun effet de solvant sur l’absorption des molécules n’est observé. En comparant les spectres d’absorption obtenus pour les deux molécules 5b et 6b avec celui de PCBM, nous constatons que les bandes caractéristiques de PCBM se décalent positivement de 8 nm. Ce
déplacement peut être expliqué par le fait que les groupes esters greffés sur C\textsubscript{60} dans les composés 5\textit{b} et 6\textit{b} ont une capacité d’accepteur d’électron différente de celle des deux substituants phényl et (CH\textsubscript{2})\textsubscript{3}CO\textsubscript{2}Me présents dans PCBM [Gul95]. Par ailleurs, le profil d’absorption est quasiment identique pour tous les cyclopropano[60]fullerènes, légèrement plus intense dans le cas des structures symétriques (5\textit{a}, 5\textit{b}) (cf. Tableau II-13). En particulier, une forte absorption à 488 nm est obtenue dans le cas de la série 5\textit{a-c}, comparée à l’absorption de la série 6\textit{a-c} et à celle de PCBM (cf. Figure II.36).

![Figure II.36 : Spectres d’absorption des dérivés 5\textit{b}, 6\textit{b} et PCBM en solution, (T\textdegree ambianle, C=2.5 \times 10-5 M)](image)

La photoluminescence des différents cyclopropano[60]fullerènes a été caractérisée en solution dans le chloroforme à température ambiante. Les rendements quantiques (\(\phi\)) des différents dérivés ont été déterminés par rapport au rendement quantique du perchlorate de crésyl violet (\(\phi_0 = 0.54\) à 20\textdegree C dans le méthanol) [Mad79]. Ils ont été obtenus selon l’Équation II-7.

\[
\phi_f = \frac{n^2}{n_0^2} \times \frac{S}{S_0} \times \frac{DO}{DO_0} \times \phi_0
\]

Équation II-7

avec :
- \(n\) : indice de réfraction du solvant du composé étudié ;
- \(n_0\) : indice de réfraction du solvant du composé de référence ;
- \(\phi_0\) : rendement quantique de fluorescence du composé de référence ;
- \(S\) : intégrale du spectre de fluorescence du composé étudié ;
- \(S_0\) : intégrale du spectre de fluorescence du composé de référence ;
- \(DO\) : absorption du composé étudié à la longueur d’onde \(\lambda\) ;
- \(DO_0\) : absorption du composé de référence à la longueur d’onde \(\lambda\) ;
Les spectres de fluorescence des différents cyclopropano[60]fullerènes 5a-c et 6a-c se superposent. La Figure II.37 montre les spectres des composés 6b et PCBM dans le chloroforme. Le spectre d’émission de fluorescence obtenu pour le dérivé 6b montre un maximum à 698 nm suivie d’un épaulement à 790 nm qui sont caractéristiques de C₆₀ [Mad79]. Nous constatons que les caractéristiques de fluorescence de PCBM se déplacent vers le rouge de 7 nm par comparaison avec celles obtenues pour les cyclopropano[60]fullerènes. Ceci est cohérent avec l’absorption et peut être expliqué par le déplacement de Stokes. Le rendement quantique obtenu pour les différents dérivés (cf. Tableau II-13) est comparable à celui de PCBM et plus élevé que celui de C₆₀. La structure moléculaire des séries 5a-c et 6a-c n’a aucune influence nette sur les propriétés de fluorescence.

Tableau II-13: Données d’absorption UV-vis et fluorescence des séries 5a-c et 6a-c et le PCBM en solution de chloroforme.
Des études électrochimiques par voltamétrie cyclique à température ambiante en solution dans le dichlorométhane (CH₂Cl₂), utilisant le tétrabutylammonium hexafluorophosphate (n-Bu₄NPF₆) comme électrolyte support, ont été réalisées sur les différents cyclopropano[60]fullerènes 5a-c, 6a-c, C₆₀ et sur PCBM. Les potentiels d’oxydo-réduction déterminés pour les différents composés sont regroupés dans le Tableau II-14. Les voltammogrammes obtenus à partir des cyclopropano[60]fullerènes 5a-c et 6a-c sont similaires. Les courbes qui correspondent au composé 6b et au PCBM sont représentées sur la Figure II.38. Le voltammogramme de 6b présente clairement trois vagues de réduction monoélectroniques réversibles qui correspondent à la réduction du noyau fullerène et qui sont associées au potentiels de réduction E₁/₂ = -1.07 V, E₂/₂ = -1.46 V et E₃/₂ = -1.90 V (potentiel de demi-vague (E₁/₂ = ½ (Ep a + Ep c)), vs. Fc⁺/Fc), attribuables à la génération de l’anion radical C₆₀•⁻, du dianion C₆₀²⁻ et du trianion C₆₀³⁻ respectivement. Ces résultats sont caractéristiques du comportement électrochimique des cyclopropano[60]fullerènes issus d’un processus de type Bingel [Oça03, Eck00, Li02, Zhe04]. Les voltammogrammes démontrent que tous les cyclopropano[60]fullerènes 5a-c et 6a-c sont associés à des valeurs de potentiels de réduction similaires. Ceci implique que la différence des structures moléculaires, c’est à dire la symétrie ou la dissymétrie globale de la molécule, n’a pas d’influence sur les potentiels de réduction. De plus, ces potentiels de réduction sont très proches de ceux de PCBM et de C₆₀.

Par ailleurs, les résultats obtenus montrent que dans le cas des dérivés de 5a-c et 6a-c, le premier potentiel de réduction du noyau C₆₀ est décalé négativement de 60 mV par rapport à celui de C₆₀. Ce déplacement peut être attribué à la saturation de la double liaison [6,6] sur la structure C₆₀. Ceci engendre une perte partielle de conjugaison et donc une modification de la capacité d’accepteur d’électron du noyau C₆₀, ce qui aura un impact sur le niveau LUMO [Jan95].

Nous constatons aussi que le potentiel de réduction de PCBM est décalé d’une valeur supplémentaire de 40 mV. Ces résultats peuvent être expliqués par la présence de deux groupes esters -CO₂R liés au pont cyclopropano des composés 5a-c et 6a-c. En effet, le groupe ester possède une capacité élevée d’accepteur d’électron, ce qui implique l’augmentation du potentiel de réduction du noyau C₆₀ dans ces deux séries par comparaison avec PCBM.
Figure II.38: Voltampérogrammes cycliques de dérivé 6b et de PCBM, (10⁻⁴ mol.L⁻¹.) dichlorométhane (CH₂Cl₂) - n-Bu₄NPF₆ électrolyte support (10⁻⁴ mol.L⁻¹), à T° ambiante- électrode de Pt et de C -V vs. Fc⁺/Fc –v=100 mV. s⁻¹.

Tableau II-14 : Valeurs des potentiels d’oxydo réduction demi-vague des cyclopropano[60]fullerènes 5a-c et 6a-c, et de PCBM et de C₆₀, (vs. Fc⁺/Fc), sur une électrode de Pt ou carbone, avec une vitesse de balayage de 100 mV.s⁻¹.

Afin d’approfondir nos travaux et de situer les molécules cyclopropano[60]fullerènes 5a-c et 6a-c, parmi les molécules acceptrices d’électron, nous avons réalisé des études théoriques en collaboration avec Dr. N. Gallego du Laboratoire CIMA de l’Université d’Angers. Les résultats obtenus ont montré que l’orbitale LUMO se situe sur le noyau C₆₀ et que les niveaux HOMO-LUMO correspondants sont quasiment similaires pour ces différentes molécules (cf. Figure II.39). Ces résultats préliminaires démontrent que ces molécules ont des propriétés physico-chimiques très proches de celle de PCBM, ce qui nous permet de considérer que l’utilisation de ces cyclopropano[60]fullerènes sont en mesure de fournir des résultats sans doute assez comparables à ceux obtenus avec PCBM, dans le cas de cellules solaires photovoltaïques à réseau interpénétré.
<table>
<thead>
<tr>
<th>Molécules</th>
<th>HOMO</th>
<th>LUMO</th>
<th>Gap énergétique théorique</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td></td>
<td></td>
<td>$\Delta E = 2.662 \text{ eV}$</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = -5.760 \text{ eV}$</td>
<td>$\varepsilon = -3.099 \text{ eV}$</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td></td>
<td>$\Delta E = 2.663 \text{ eV}$</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = -5.754 \text{ eV}$</td>
<td>$\varepsilon = -3.091 \text{ eV}$</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td></td>
<td>$\Delta E = 2.668 \text{ eV}$</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = -5.842 \text{ eV}$</td>
<td>$\varepsilon = -3.174 \text{ eV}$</td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td></td>
<td>$\Delta E = 2.726 \text{ eV}$</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = -5.877 \text{ eV}$</td>
<td>$\varepsilon = -3.151 \text{ eV}$</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td></td>
<td></td>
<td>$\Delta E = 2.668 \text{ eV}$</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = -5.886 \text{ eV}$</td>
<td>$\varepsilon = -3.217 \text{ eV}$</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td></td>
<td></td>
<td>$\Delta E = 2.668 \text{ eV}$</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = -5.874 \text{ eV}$</td>
<td>$\varepsilon = -3.206$</td>
<td></td>
</tr>
</tbody>
</table>

Figure II.39: Les niveaux énergétiques HUMO et LUMO et le gap énergétique ΔE correspondant des différents molécules $5a$-c et $6a$-c.

Une étude de spectroscopie d’absorption UV-Visible a été réalisée sur des couches minces de 50 nm étalées sur du verre, à base de différents cyclopropano[60]fullerènes $5a$-c et $6a$-c. Les spectres d’absorption obtenus pour ces dérivés sont similaires à celui de PCBM. Un pic apparaît à 340 nm, suivi d’un épaulement à 426 nm, qui correspondent à l’absorption du
fullerène C_{60} (cf. Figure II.40). Ces pics se déplacent de 15 nm vers le rouge dans le cas du PCBM ; ceci peut être expliqué par le fait que les groupes greffés sur C_{60} ont une capacité d’accepteur d’électron différente que celle de PCBM [Gul95]. L’intensité des pics varie légèrement selon la molécule étudiée. Cela est probablement lié à la nature des chaînes qui ne sont pas identiques (plus ou moins longues, symétriques ou dissymétriques). Il faut noter que les propriétés optiques correspondant à la molécule C_{60}, sont réalisées sur une couche mince déposée par évaporation.

![Figure II.40: Spectre d’absorption des couches minces de : (a) différentes dérivés 5b, 6b et PCBM, (b) C_{60}.](image)

Avant de réaliser des cellules à réseau interpenetré à base de ces dérivés de fullerènes, nous avons voulu les étudier en les utilisant dans des cellules solaires organiques de structure Métal/Isolant/Métal (MIM) afin d’avoir un aperçu sur leur comportement optoélectronique.

II.3.2. Cellules Photovoltaïques Organiques ITO/PEDOT :PSS/Cyclopropano[60]fullerènes/LiF/Al

Des cellules dans une configuration MIM, ont été réalisées à base de cyclopropano[60]fullerènes 5a-c et 6a-c (semi-conducteur de type -n) seuls. La concentration de chaque solution est 30 mg.mL$^{-1}$ dans le chlorobenzène. Les couches organiques de 50 nm d’épaisseur ont été étalées entre une anode transparente d’ITO couverte de polymère PEDOT :PSS (Baytron, HP) et une cathode d’aluminium. Une couche de LiF de 0.7 nm d’épaisseur a été intercalée entre la couche active et la cathode Al.

Certaines cellules ainsi réalisées ont manifesté un comportement photovoltaïque. Pour ces matériaux qui sont des semi-conducteurs de type- n, la dissociation des excitons s’effectue à l’interface ITO/PEDOT :PSS où la barrière Schottky est créée (cf. Figure II.41). Les
caractéristiques $I-V$ dans l’obscurité et sous éclairement 107 mW/cm2 de chaque cellule sont présentées sur la Figure II.42.

![Figure II.41](image1)

Figure II.41 : Formation de la barrière Schottky dans une structure MIM.

![Figure II.42](image2)

Figure II.42 : Caractéristiques $I-V$ sous illumination côté ITO de la diode Schottky ITO/PEDOT :PSS/cyclopropano[60]fullerènes/LiF/Al, avant recuit.

Les paramètres photovoltaïques extraits des courbes (cf. Figure II.42), sont résumés dans le Tableau II-15.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc}(V)</th>
<th>J_{sc} (mA)</th>
<th>ff</th>
<th>η%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>0.507</td>
<td>0.134</td>
<td>0.293</td>
<td>0.02</td>
</tr>
<tr>
<td>6a</td>
<td>0.027</td>
<td>0.015</td>
<td>0.252</td>
<td>0.0001</td>
</tr>
<tr>
<td>5b</td>
<td>0.399</td>
<td>0.064</td>
<td>0.378</td>
<td>0.01</td>
</tr>
<tr>
<td>6b</td>
<td>0.130</td>
<td>0.146</td>
<td>0.348</td>
<td>0.006</td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBM [Ale04b]</td>
<td>0.48</td>
<td>0.2239</td>
<td>0.29</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Tableau II-15 : Paramètres photovoltaïques extraits des caractéristiques $I-V$ présentées sur la Figure II.42.

Les résultats montrent que les molécules (5a-b, 6a-b) dont les chaînes sont les plus courtes ont un effet photovoltaïque. Pour les molécules 5c et 6c à plus longues chaînes, aucun effet n’est observé. Ceci peut être interprété par l’influence de la longueur de la chaîne sur la
mobilité des porteurs de charges. En fait, lorsque nous augmentons la longueur de chaînes, les charges peuvent se recombiner avant d’être collectées par les électrodes. Nous remarquons que le recuit à 100°C pendant 10 minutes détériore les performances de ces cellules, en particulier la tension V_{oc} qui est liée à la morphologie de la couche et à ses contacts avec les électrodes.

Il faut noter que l’effet du solvant (chlorobenzène et ortho-dichlorobenzène) sur la qualité de la couche a été étudié par imagerie AFM (cf. Annexe 4). Nous avons constaté que les couches les plus performantes ont été obtenues pour des molécules solubilisées dans le chlorobenzène. Ceci peut être expliqué par la meilleure solubilité des molécules dans ce solvant.

Une étude de morphologie en AFM a été menée sur des couches minces déposées sur des substrats d’ITO (cf. Figure II.43). En raison de la longueur des chaînes, les molécules 5c et 6c se comportent comme un polymère. En revanche, dans les autres cas la petite longueur des chaînes les aide à bouger facilement dans la couche active lors de dépôt. L’ensemble des résultats obtenus en imagerie AFM est donné en Annexe 4.

![Figure II.43: Images AFM de la surface des films cyclopropano[60]fullerènes 5a et 6a utilisant le chlorobenzène. R est la rugosité du film.](image-url)
Nous constatons que le facteur de forme ff obtenu pour les différentes cellules est du même ordre que celui obtenu par S. Alem [Ale04b] dans le cas de structure MIM à base de PCBM. En revanche la tension V_{oc} est plus élevée, ceci est probablement lié à la modification des contacts aux interfaces par l’intercalation par les couches de LiF et PEDOT :PSS. La densité de courant J_{sc} quant à elle est plus faible comme le montre le Tableau II-15. Nous pouvons expliquer cette baisse, par la faible mobilité des porteurs de charges, dans le cas de ces dérivés, comparée au cas du PCBM.

Des études de diffraction-RX ont été menées sur les composés de cyclopropano[60]fullerènes $5a-c$ et $6a-c$ à l’état solide et à différentes températures sous atmosphère d’azote. Les résultats ont montré que l’effet de la température sur les petites molécules n’est pas lisible (cf. *Figure II.44*). Nous constatons une augmentation de l’intensité des pics de réflexion sans changement de phase. En effet la largeur des pics est quasiment identique à différentes températures. Ceci implique une réorientation préférentielle des molécules. En revanche dans le cas des molécules à longues chaînes, nous constatons que la largeur des pics évolue : soit plus fines soit plus larges. Ceci peut être expliqué par l’augmentation ou la diminution de la taille des molécules. Nous remarquons aussi l’apparition d’autres réflexions qui peuvent être liées à des nouvelles orientations(cf. *Figure II.45*). Les résultats correspondant aux autres dérivés sont illustrés en *Annexe 5*.

Figure II.44 : Diagrammes de diffraction de Rayon-X aux grands angles réalisés sur le composé 5a sous forme de poudre, à différentes températures, sous atmosphère d’azote.
Figure II.45 : Diagrammes de diffraction de Rayon-X aux grands angles réalisés sur le composé 6b sous forme de poudre, à différentes températures, sous atmosphère d’azote.
Comme nous le remarquons, les résultats obtenus avec différentes méthodes sont convergents. Les études de morphologie par imagerie AFM des couches minces à base de dérivés seules confirment les résultats obtenus précédemment. Dans le cas du composé 5a, le traitement thermique à 100°C pendant 10 minutes n’a eu aucun effet lisible sur la rugosité des couches. La rugosité diminue légèrement (9.7 nm) mais reste très proche de celle obtenue pour la couche sans recuit (cf. Figure II.46).

Figure II.46 : Images AFM de la surface des films cyclopropano[60]fullères 5 utilisant le chlorobenzène (r est la rugosité du film), après traitement thermiques 100°C pendant 10 minutes.

II.3.3. Cellules Photovoltaïques Organiques à réseau interpénétré : ITO/ PEDOT :PSS/P3HT -RR :cyclopropano[60]fullères/LiF/Al

Les premières études photovoltaïques ont été réalisées sur ces différentes séries symétrique 5a-c et dissymétrique 6a-c mélangées avec le polymère conjugué P3HT -RR en couche photoactive dans un rapport 1 :1 en masse. Les cellules ainsi conçues sont de type hétérojonction en volume. Les couches de 80 nm d’épaisseur sont insérées entre deux électrodes ITO et Al suivant la structure ITO/ PEDOT :PSS/P3HT -RR :cyclopropano[60]fullères/LiF/Al.

L’absorption globale en UV-Visible des couches photo-actives des différents échantillons est très comparable. Le tracé des spectres d’absorption des couches à base de mélanges P3HT :5b et P3HT :6b est montré sur la Figure II.47. Les courbes obtenues pour des couches non traitées thermiquement montrent que l’absorption est meilleure dans le cas du composite P3HT :6b que pour le mélange P3HT :5b. Nous constatons aussi qu’on obtient une meilleure structuration pour le mélange à base de dérivé 6b. Cette indication est fournie par les épaulements qui apparaissent plus marqués sur le spectre d’absorption de 6b et qui correspondent à une cristallisation partielle du polymère P3HT -RR (restructuration du P3HT -RR), sans la nécessité d’un traitement thermique de la couche.
Après traitement thermique des couches, une perte d’absorbance est constatée pour le composite P3HT :6b (cf. Figure II.48). En revanche, cette absorbance est améliorée dans le cas de P3HT :5b (cf. Figure II.48). Ce changement de propriétés optiques peut être lié à l’influence de la structure moléculaire de ces dérivés sur la morphologie des composites. Ceci peut être interprété par le comportement du polymère conjugué et des dérivés cyclopropano[60]fullèrenes 5a-c et 6a-c à l’intérieur de la couche photo-active. En effet, les composés 5b et 6b possèdent différentes structures moléculaires, ce qui permet le déplacement des chaînes polymères différemment. Dans le cas du composé 5b, les chaines se déplacent facilement, ce qui favorise la cristallisation partielle du polymère P3HT -RR, d’où l’augmentation de l’intensité de l’absorption du composite P3HT :5b.

Figure II.48 : Comparaison des spectres d’absorption des différents composites P3HT -RR :6b (1 :1) et P3HT -RR :5b (1 :1), après recuit à température 100°C pendant 10 minutes.
L'utilisation des dérivés 5a-c et 6a-c de fullerènes comme composants accepteurs en cellules photovoltaïques à réseau interpénétré nous a permis d'obtenir les résultats PV regroupés dans le Tableau II-16. Ces résultats sont extraits des caractéristiques des courbes $I-V$ obtenues sous les différents éclairements 92 et 72 mW/cm2 (cf. Figure II.49).

Tableau II-16 : Paramètres photovoltaïques des cellules solaire organiques à base de composite de P3HT -RR :5a, P3HT -RR : 6b et P3HT -RR : 5c, sous différents éclairements 92 et 72 mW/cm2.

Les meilleures performances photovoltaïques sont attribuées aux dispositifs à base de P3HT: 6b. En effet, ces cellules délivrent une densité de courant J_{sc}, un facteur de forme ff et une tension V_{oc} nettement supérieurs aux paramètres obtenus pour les autres systèmes. Nous
en déduisons que la longueur des chaînes et le caractère symétrique ou dissymétrique des structures ont une influence sur les caractéristiques PV.

Puisque les propriétés électrochimiques démontrent que les bandes de valence de ces cyclopropano[60]fullerènes 5a-c et 6a-c sont pratiquement de même niveau énergétique, nous en déduisons que les paramètres des cellules dépendent de leur structure moléculaire ainsi que de leur comportement avec le donneur P3HT-RR dans les couches photo-actives (la morphologie du mélange). Ceci corrobore les propriétés optiques des mélanges de P3HT :6b et P3HT :5b où nous constatons la création d’un réseau interpénétré dans le cas de la molécule 6b sans que le mélange correspondant n’ait subi un traitement thermique. Cela est dû à la longueur des chaînes de ce dérivé de fullerène qui limite le mouvement des deux composés polymère/molécule à l’intérieur de la couche active lors du dépôt (cf. Figure II.47 et Figure II-48). Les performances de ces cellules solaires se détériorent avec un recuit.

II.3.4. Optimisation des cellules Photovoltaïques Organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT-RR :cyclopropano[60]fullerènes (1 : x)/LiF/Al

Afin d’améliorer les paramètres photovoltaïques, plusieurs facteurs peuvent être pris en considération. Le meilleur rendement de conversion obtenu jusqu’ici est attribué aux systèmes PV basés sur le mélange P3HT : PCBM avec un rapport 1 :1 en masse mentionnés ci dessus (cf. Tableau II-4).

L’efficacité des cellules solaires HJV utilisant tout autre dérivé de fullerène comparé à PCBM en mélange avec le polymère P3HT -RR dans la couche photoactive peut être mieux mise en évidence si l’on tient compte des masses moléculaires de ces dérivés. C’est pourquoi nous avons normalisé la quantité des cyclopropano[60]fullerènes dans les couches photo-actives.

Dans ce but, nous avons constitué des mélanges à base de P3HT -RR et des dérivés 5a-c et 6a-c, dans lesquels la quantité de chacun de ces dérivés correspond toujours à la même fraction molaire (rapportée à P3HT -RR) que celle de PCBM dans le mélange P3HT :PCBM de rapport 1 :1 en masse.

Les calculs correspondants sont rapportés dans le Tableau II-17, où le mélange de référence P3HT :PCBM correspond à 10 mg de chaque composant.
Nous avons ensuite réalisé des mesures optiques en UV-Visible afin d’examiner l’effet possible de la masse molaire des dérivés de fullerènes utilisés sur l’absorption des couches photo-actives (cf. Tableau II-17). Les spectres obtenus pour les dérivés 5a-c et 6a-c présentent des profils très comparables (cf. Figure II.50). Toutefois nous remarquons que les propriétés optiques des couches actives sont différentes de celles observées lorsque nous utilisons des mélanges où le rapport de masse reste constant, et égal à 1 : 1.

En effet, la plus forte absorption est toujours fournie par le film dû au mélange P3HT :6b. L’ensemble des spectres fait ici apparaître une diminution générale de l’absorption de tous les mélanges étudiés. Cette variation de l’intensité d’absorption peut être liée à un fort transfert spontané de charges entre les deux matériaux, compte tenu de la quantité molaire de ces dérivés de fullerènes utilisée (accepteur) dans les nouveaux mélanges.

![Figure II.50: Comparaison des spectres d’absorption des différents composites P3HT-RR:6b (1 : x) et P3HT-RR :5b (1 : x) sans recuit, en utilisant des concentrations molaires.](image-url)
Les cellules solaires photovoltaïques dans la configuration ITO/PEDOT :PSS/P3HT -RR :cyclopropano[60]fullerènes (1 : x)/LiF/Al ont été élaborées en utilisant des rapports molaires entre les deux composants actifs (cf. Tableau II-17). Ces cellules ont fourni les paramètres PV donnés par le Tableau II-18 et qui sont extraits des caractéristiques I-V de la Figure II.51.

Figure II.51: Caractéristiques I-V des cellules photovoltaïques organiques à réseau interpénétré : ITO/PEDOT :PSS/P3HT -RR :cyclopropano[60]fullerènes (1 : x) LiF/Al, sans recuit, en utilisant des rapport molaires, sous un éclairement 107mW/cm².

Nous constatons sur la Figure II.51 représentant les courbes I-V obtenues sous un éclairement 107mW/cm², que les caractéristiques photovoltaïques des cellules solaires organiques sont améliorées en comparaison des résultats obtenus pour des cellules à base de mélanges P3HT -RR :cyclopropano[60]fullerènes 5a-c et 6a-c dans un rapport 1 :1 en masse.

Puisque la concentration molaire des dérivés de C_{60} (5a-c et 6a-c), est maintenue identique à celle de PCBM dans le cas le plus favorable (mélange P3HT -RR :PCBM dans un rapport 1 :1 en masse), ceci indique que la structure moléculaire de ces accepteurs exerce un effet important sur l’efficacité des cellules.

Des recherches ont été déjà rapportées sur l’influence de la concentration massique de PCBM sur les performances PV [Hop04a, Ale04a, Wie03, Moz04]. Dans le cas des dérivés de PPV (MEH-PPV ou le MDMO-PPV), l’utilisation de très fortes concentrations en PCBM a permis d’atteindre des rendements de 2.9 voir 3.3%. En revanche, dans le cas des dérivés de polythiophène [Pan03, Rey05a, Ma05, Li05b, Shr05], l’utilisation des faibles concentrations en PCBM a conduit à des rendements de l’ordre de 5 %.
Notre approche est différente, nous avons utilisé des concentrations molaires identiques afin de conserver le même taux de PCBM dans les couches photo-actives qui est utilisé dans le cas le plus favorables des cellules solaires à base de P3HT :PCBM. Les meilleurs rendements de conversion sont encore attribués aux cellules à base de dérivé 6b, mais avec une amélioration des propriétés photovoltaïques plus nette (cf. Tableau II-18). Ceci semble confirmer que la structure moléculaire de l’accepteur à base de C_{60} [5a-c et 6a-c] exerce un effet important sur les performances des cellules étudiées.

<table>
<thead>
<tr>
<th>Système P3HT : C (1 : x)</th>
<th>(V_{oc} (V))</th>
<th>(J_{sc} (mA))</th>
<th>(ff)</th>
<th>(\eta %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT : 5a</td>
<td>0.425</td>
<td>4.31</td>
<td>0.357</td>
<td>0.61</td>
</tr>
<tr>
<td>P3HT : 6a</td>
<td>0.483</td>
<td>0.747</td>
<td>0.417</td>
<td>0.145</td>
</tr>
<tr>
<td>P3HT : 5b</td>
<td>0.461</td>
<td>3.06</td>
<td>0.335</td>
<td>0.441</td>
</tr>
<tr>
<td>P3HT : 6b</td>
<td>0.568</td>
<td>7.21</td>
<td>0.323</td>
<td>1.23</td>
</tr>
<tr>
<td>P3HT : 5c</td>
<td>0.479</td>
<td>2.05</td>
<td>0.239</td>
<td>0.227</td>
</tr>
<tr>
<td>P3HT : 6c</td>
<td>0.555</td>
<td>2.32</td>
<td>0.293</td>
<td>0.351</td>
</tr>
</tbody>
</table>

Cette influence est particulièrement nette en ce qui concerne le facteur de forme \(ff \): plus la longueur de chaînes augmente, plus la valeur de \(ff \) diminue. La variation de la longueur de chaînes peut en effet affecter la morphologie de la couche photo-active ainsi que la mobilité des charges. D’autre part, les valeurs de densité de courant \(J_{sc} \) ainsi que la tension \(V_{oc} \) sont les plus élevées dans le cas de la cellule à base de dérivé 6b, ce qui entraîne le meilleur rendement observé (\(\eta \%= 1.23 \% \)). Ces résultats peuvent être expliqués par l’existence d’une cristallisation plus au moins développée de P3HT-RR dans le réseau interpénétré, sans recuit (cf. Figure II.50). Nous savons en effet que la cristallisation du P3HT-RR favorise une meilleure mobilité.

La molécule 5b a été déjà utilisée par d’autres chercheurs en couche active en tant que molécule acceptrice mélangée avec de MEH-PPV [Li02, Zhe04]. Ils ont obtenu des performances plus faibles. Ceci est lié au polymère utilisé car le P3HT-RR a un gap énergétique plus faible (1.8 eV) et une meilleure mobilité de charge comparés au MEH-PPV (2.2 eV). Cela se manifeste par une densité de courant \(J_{sc} \), une tension \(V_{oc} \) et un facteur de forme \(ff \) délivrés par les cellules qui sont plus élevés dans le cas P3HT-RR.
Par ailleurs, les résultats PV fournis par les caractéristiques \(I-V \) sont compatibles avec les réponses spectrales d’\(IPCE\% \) (cf. Figure II.52). Nous remarquons que la quantité de charges photogénérées est plus élevée dans le cas du dispositif photovoltaïque à base de molécule \(6b \) (50 % entre 450 - 540 nm). L’effet de la structure moléculaire des dérivés de fullerène \(5a-c \) et \(6a-c \) sur les propriétés photovoltaïques est bien démontré. Ces résultats nous ont permis de confirmer que les performances photovoltaïques des cellules organiques obtenues sont fortement dépendantes de la structure moléculaire de ces dérivés.

![Figure II.52 : Spectres d’action des différentes structures: ITO/PEDOT :PSS/ P3HT -RR :6b/LiF/ Al, ITO/PEDOT :PSS/ P3HT -RR :5a /LiF/Al, ITO/PEDOT :PSS/ P3HT -RR :5b/LiF/Al, sans recuit.](image)

Lorsque les cellules solaires PV organiques de type HJV à base de P3HT -RR :cyclopropano[60]fullérènes \(5a-c \) et \(6a-c \) sont traitées thermiquement, leurs caractéristiques photovoltaïques changent (cf. Tableau II-19 et Figure II.53). Après traitement thermique des cellules à base de dérivés à courtes chaînes \(5a \) et \(6a \), les propriétés photovoltaïques sont améliorées. Les rendements quantiques peuvent atteindre 0.96 et 0.8 % dans le cas des molécules \(6a \) et \(5a \) respectivement. Ceci peut être interprété par l’amélioration de l’absorption de la couche photo-active. Ainsi la mobilité des charges libres devient importante, après recuit, d’où l’augmentation du rendement quantique externe \(IPCE\% \) (cf. Figure II.54).

En revanche, dans le cas des molécules à plus longues chaînes \(5b-c \) et \(6b-c \), les propriétés électroniques des cellules solaires se détériorent (cf. Tableau II-19). La densité de courant \(J_{sc} \), la tension \(V_{oc} \) et le facteur de forme \(ff \) diminuent. Par exemple dans le cas des cellules à base de la molécule \(6b \), l’absorption du composite P3HT -RR : \(6b \) diminue après traitement thermique. Ceci affecte la photogénération des charges de ces cellules et entraîne la diminution du rendement quantique externe (\(IPCE\% \)) (cf. Figure II.54).
Les résultats obtenus peuvent être interprétés par l’effet de morphologie des couches actives sur les caractéristiques PV des cellules, et plus précisément du rôle de la longueur de la chaîne sur ces dernières.

<table>
<thead>
<tr>
<th>Système</th>
<th>$V_{oc}(V)$</th>
<th>$J_{sc}(mA/cm^2)$</th>
<th>ff</th>
<th>η%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :5a</td>
<td>0.426</td>
<td>6.34</td>
<td>0.381</td>
<td>0.96</td>
</tr>
<tr>
<td>P3HT :6a</td>
<td>0.5</td>
<td>5.45</td>
<td>0.314</td>
<td>0.8</td>
</tr>
<tr>
<td>P3HT :6b</td>
<td>0.312</td>
<td>4.45</td>
<td>0.25</td>
<td>0.322</td>
</tr>
<tr>
<td>P3HT :6c</td>
<td>0.238</td>
<td>0.189</td>
<td>0.301</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Tableau II-19 : Paramètres Photovoltaïques des cellules à base de composites P3HT -RR :cyclopropano[60]fullerènes (1 : x) après recuit à température 100°C pendant 10 minutes.

Figure II.53 : Caractéristiques I-V des cellules solaires ITO/PEDOT :PSS/P3HT -RR :6b/LiF/Al, ITO/PEDOT :PSS/P3HT -RR :5a/LiF/Al, après traitement thermiques (100°C,10 min).

Figure II.54 : Comparaison des spectres d’action des différents structures : ITO/PEDOT :PSS/P3HT -RR :6b/LiF/Al, ITO/PEDOT :PSS/P3HT -RR :5a /LiF/Al, ITO/PEDOT: PSS/P3HT -RR :5b/LiF/Al, avant et après recuit.
Dans ce but, des images AFM ont été réalisées sur les couches photo-actives, avant et après traitement thermique pendant 10 minutes à 100°C (cf. Figure II.55). En effet l’efficacité des dispositifs réside dans l’interaction physique des deux composés actifs, qui se manifeste par la morphologie du mélange. Nous avons observé que la rugosité des films change avec les traitements thermiques, ce qui peut s’expliquer par la modification de l’état de la cristallisation des deux composés indépendamment l’un de l’autre. Le polymère P3HT -RR cristallise plus facilement que les dérivés de C$_{60}$. Compte tenue de la concentration en dérivés de C$_{60}$ ainsi que de la structure des molécules 5a et 6a, les chaînes du polymère peuvent se déplacer plus au moins facilement d’où la cristallisation de P3HT -RR et la formation de fibrilles lors du traitement thermique. Ainsi une séparation de phase des deux matériaux se produit. Cette auto-organisation des deux composés dans la couche active est notamment provoquée par la petite taille des molécules 5a et 6a, de laquelle découle l’augmentation de la rugosité des couches. En effet, la séparation de phases (D/A) engendrée par la formation des cristallites P3HT -RR et les dérivés 5a et 6a améliore le transfert de charges avec une mobilité des charges plus efficace. Le traitement thermique entraîne aussi le changement d’orientation des chaînes polymériques. Une conjugaison élevée des cristallites améliore l’absorption des couches photo-actives. Ainsi, la densité de courant est améliorée quand les dispositifs PV à base de 5a et 6a sont traités thermiquement. Les caractéristiques photovoltaïques de ces dispositifs apparaissent en accord avec ces résultats [Chi04, Shr05, Yan05b, Guo08].

Dans le cas des dérivés 5b-c et 6b-c, la rugosité des films diminue après traitement thermique à 100°C pendant 10 minutes. En effet, la grande taille de ces dérivés limite le mouvement des chaînes polymériques, ainsi ces molécules se solubilisent complètement dans la matrice du polymère conjugué P3HT -RR. Ce qui limite le déplacement des chaînes polymériques, ainsi le polymère P3HT -RR ne cristallise pas, et cela influe sur la photogénération des charges ainsi que l’absorption des couches photo-actives. Les performances PV des cellules solaires obtenues s’accordent avec les modifications de la morphologie dues au recuit des cellules à base de P3HT -RR : cyclopropano[60]fullèrènes (5a-c et 6a-c), selon qu’elles ont subi ou non un traitement thermique (cf. Figures II.51 et II-53).
Afin d’approfondir nos études, des diagrammes de diffraction de Rayons X ont été enregistrés à partir des couches organiques à base de mélanges P3HT-RR: cyclopropano[60]fullérènes (5a-c et 6a-c) dans les mêmes concentrations que celles utilisées lors de la fabrication des cellules solaires PV de type HJV (cf. Tableau II-17). Les diagrammes obtenus à partir des différentes couches photo-actives font apparaître des réflexions qui varient en nombre et en intensité selon la composition des couches actives, avant et après recuit. A titre d’exemple, nous montrons les diffractogrammes RX obtenus pour les mélanges à base de dérivés 6a et 6b. Nous constatons sur la Figure II.56 que quelques réflexions disparaissent lorsque les couches à base de dérivé 6b (cf. Figure II.56-a) subissent un traitement thermique. En revanche, dans le cas de la molécule 6a (cf. Figure II.56-b) les intensités des réflexions augmentent alors que des réflexions supplémentaires apparaissent. Ces résultats sont en accord avec ceux obtenus par des études AFM et avec les performances PV des cellules organiques solaires. D’autres diagrammes sont illustrés en Annexe 6.

Ces études ont montré l’intérêt de la synthèse d’autres dérivés de C₆₀ que PCBM. Les cellules solaires élaborées à partir de cyclopropano[60]fullérènes ont fourni des performances plus élevées que celles rapportées par la littérature [Li02, Zhe04]. Nous constaté aussi que les cellules à base de cyclopropano[60]fullérènes ont délivré des caractéristiques PV différentes, même si le taux de PCBM utilisé est identique. Ceci peut être traduit par l’effet de la structure...
moléculaire sur la morphologie et plus précisément l’interaction entre ces dérivés 5a-c et 6a-c et le polymère P3HT -RR. Nos résultats montrent que ces molécules restent d’excellents candidats pour les systèmes photovoltaïques de type SPP. Afin d’élargir leur potentiel, d’autres dérivés de cyclopropano[70]fullerènes ont été fonctionnalisés dans le but d’étudier leur impact sur les caractéristiques PV. Comme pour les cyclopropano[60]fullerènes, ces composés sont obtenus par la réaction de Bingel modifié

![Diagrammes de diffraction de Rayon-X aux grands angles sous forme de couches mince (dépôt à la tournette) P3HT :6a et 6b, avant et après traitement thermique (100°C, 10 min).](image)

II.4. NOUVEAUX DERIVES CYCLOPROPANO[70]FULLERENES DE TYPE BINGEL

Comme nous l’avons décrit dans le paragraphe précédent concernant les dérivés cyclopropano[60]fullerènes 5a-c et 6a-c de type Bingel, généralement l’optimisation de la morphologie des couches dans une configuration hétérojonction en volume (HJV) est primordiale pour améliorer l’efficacité de la dissociation des excitons, le transport des charges photo-induites, ainsi que leur extraction dans la couche photo-active [Yu95b, Yan96].

Afin de chercher à préparer un composite possédant une bonne morphologie, différents facteurs doivent être pris en compte : le solvant organique utilisé pour la formation du film [Liu01, Sha01, Ris03, Wie03, Li07a], le traitement thermique [Dit00, Sch01, Pan03], les matériaux constituants la couches active [Hop04b, Sna03, Mar03] et la proportion des matériaux utilisés en couches actives (D & A) [Aer03].

A ce jour, il n’y a pas eu beaucoup de travaux de recherches menés sur les dérivés de C\textsubscript{70} en vue de leur mise en œuvre en photovoltaïque à part ceux déjà publiés sur PC\textsubscript{70}BM [Wie03, Wan05, Koo06] et PC\textsubscript{84}BM [Koo06]. L’utilisation de PC\textsubscript{70}BM en photovoltaïque a permis d’augmenter les rendements de conversion des cellules de type HJV et tandems où le
rendement a pu atteindre 6.5 % [Kim07b]. Par ailleurs, des travaux sur les cellules solaires organiques dans une configuration multicouches (ITO/PEDOT :SS/SnPc/C70/Ag/SnPc/C70/Ag) ont été rapportés par le groupe de recherche de M. Yamashita [Ino07], qui a obtenu un rendement de conversion de 1.33 % en utilisant du C70 et phtalocyanine d’étain « SnPc ». Il a montré que le rendement des cellules a atteint 1.90 % à partir d’une structure plus complexe : ITO/PEDOT:PSS/SnPc/SnPc :C70/C70/Ag/SnPc/SnPc :C70/C70/Ag [Hij08].

D’autre part, des cellules solaires HJV à base de MDMO-PPV :PC70BM conçues par M.M. Wienk [Wie03] ont fourni un rendement de conversion de 3%. En utilisant des polymères conjugués à faible gap énergétique PF-co-DTB et P3HT, d’autres auteurs ont obtenu des rendements de 2.4 % [And06, Yao06] et de 3 % [Kim07c] respectivement. En optimisant quelques paramètres tels que le solvant organique, les proportions D/A, les cellules de type HJV à base de P3HT :PC70BM ont délivré des performances de 3.8 % [Yam08] voir 4.5 % [Shi08]. Enfin, en 2008, le groupe d’A. J. Heeger a observé un rendement de 5.63% en utilisant une couche photo-active à base de PC70BM et de polymère à faible gap PCPDTBT [Hwa08].

Les cellules solaires PV organiques élaborées à partir des cyclopropano[60]fullerènes 5a-c et 6a-c (cf. chapitre II, II-3), ont fourni de bonnes performances photovoltaïques, avec un rendement de conversion de l’ordre de 1.23% et une densité de courant de l’ordre de 7.21 mA/cm² dans le cas de cellule PV à base de molécule 6b. Des effets de structure moléculaire sur la morphologie des composites P3HT :cyclopropano[60]fullerènes (5a-c et 6a-c) ainsi que sur les caractéristiques photovoltaïques ont été constatés. Ces résultats ont montré l’intérêt dans le domaine du photovoltaïque, de la fonctionnalisation des molécules C60 à partir de la réaction Bingel modifiée suivant des voies de synthèse non couteuse et faciles. C’est pourquoi, les cyclopropano[70]fullerènes 8a, 9a et 9b ont été synthétisés afin d’étendre nos études précédentes sur les dérivés de C60 et d’étudier les caractéristiques PV des cellules qui en dépendent [Der09].

Les structures chimiques des trois dérivés de cyclopropano[C70]fullerènes 8a, 9a et 9b de type Bingel sont schématisées sur la Figure II.57.
CHAPITRE II : CELLULES SOLAIRES PHOTOVOLTAÏQUES À BASE DE NOUVEAUX DÉRIVES DE FULLERENES

Figure II.57 : Structures moléculaires des différents dérivés de cyclopropano[70]fullerenes: 8a, 9a et 9b.

Les trois molécules utilisées ont été synthétisées à partir de la réaction Bingel modifiée selon les processus suivants (cf. Figure II.58):

Figure II.58 : Synthèse des cyclopropano[70]fullerenes : 8a, 9a et 9b.
II.4.1. Études des propriétés spectroscopiques et électrochimiques des dérives cyclopropano[70]fullerènes 8a et 9a-b

Les spectres d’absorption UV-Visible obtenus à partir des différents composés 8a, 9a, 9b et de C_{70} solubilisés dans le chloroforme à température ambiante, montrent une forte absorption, et plus étendue dans le visible que dans le cas des cyclopropano[C_{60}]fullerènes 5a-c et 6a-c. Ceci est lié à la structure moléculaire de C_{70} qui est non symétrique [Wie03, Koo06]. Par conséquent, plusieurs transitions sont permises [Müh06, Soc07]. En effet, la symétrie élevée de C_{60} rend les transitions à faible énergie formellement interdites, d’où une absorption très faible dans la région du visible (cf. Figure II.59). L’absorption obtenue pour les différents composés 8a, 9a et C_{70} est comparable. En revanche, l’intensité de l’absorption est plus forte dans le cas des cyclopropano[C_{70}]fullerènes que dans le cas du composé C_{70}. Nous constatons sur la Figure II.59 trois bandes caractéristiques à 351, 367 et 405 nm et une large bande d’absorption qui commence à 426 nm avec un maximum à 460 nm suivie d’épauplements à 645, 615 et 670 nm. Les bandes caractéristiques des différents cyclopropano[C_{70}]fullerènes 8a, 9a et 9b se décalent légèrement vers le bleu relativement au spectre de C_{70} pur. L’absorption maximale qui se manifeste à 460 nm, se décale de 7 nm et le même déplacement est constaté pour celle à 545 nm. Ceci peut être lié à l’effet des chaînes sur le noyau C_{70}. Les dérivés fonctionalisés 8a, 9a et 9b absorbent jusqu’à 670 nm, ce qui n’est pas le cas du composé C_{70} pur. Aucun effet de structure chimique sur l’absorption des composés 8a et 9a n’est observé.

Figure II.59 : Spectres d’absorption des différents dérivés 8a, 9a et de C_{70} solubilisés dans le solvant de chloroforme à température ambiante.
Des études électrochimiques par voltamétrie cyclique à température ambiante, utilisant le hexafluorophosphate tétrabutylammonium (n-Bu$_4$NPF$_6$) comme électrolyte support, ont été réalisées sur les cyclopropano[70]fullerènes 8a, 9a-b et sur C$_{70}$, dissous dans le dichlorométhane. Les voltammogrammes obtenus (cf. Figure II.60) à partir des composés 8a et 9a-b présentent des caractéristiques électrochimiques très comparables. Afin d’éviter de superposer les voltammogrammes très similaires, nous présentons ceux qui correspondent aux composés 8a et C$_{70}$. Les potentiels de réduction associés aux quatre composés 8a, 9a-b et C$_{70}$ sont présentés dans le Tableau II-20. Trois vagues de réduction mono-électrométriques réversibles ont été mises clairement en évidence dans le cas de la molécule 8a. Elles correspondent à la réduction du fullerène et elles sont associées aux potentiels de réduction $E^1_{1/2}$ = −1.08 V, $E^2_{1/2}$ = −1.45 V et $E^3_{1/2}$ = −1.82 V (vs., Fc$^+/Fc$) attribuables à la formation des espèces anion radical C$_{70}$$^\cdot$, dianion C$_{70}$$^{2-}$ et trianion C$_{70}$$^{3-}$ de la partie cyclopropanoC$_{70}$, respectivement. Ces résultats sont caractéristiques du comportement électrochimique des cyclopropano[70]fullerènes issus d’un processus de type Bingel [Oça03, Eck00, Li02]. Les résultats présentés dans le Tableau II-20 démontrent que tous les cyclopropano[70]fullerènes 8a et 9a-b présentent des valeurs de potentiels de réduction très proches. Ceci peut être expliqué par la grande similitude des structures moléculaires, la symétrie ou la dissymétrie globale de la molécule ne provoquant aucune influence sur la réponse électrochimique des dérivés. Les potentiels d’oxydo-réduction obtenus pour les différents composés 8a et 9a-b sont très proches de ceux de C$_{70}$. En outre, les résultats montrent que le premier potentiel de réduction de C$_{70}$ est décalé négativement de 60 mV des dérivés 8a et 9a-b par comparaison avec C$_{70}$. Ce déplacement est en relation avec les niveaux LUMO de ces dérivés. Comme pour les dérivés de cyclopropano[60]fullerènes précédents 5a-c et 6a-c, ces résultats sont en accord avec la présence de deux groupes esters situés très proches du noyau C$_{70}$ et possédant une capacité élevée en tant qu’accepteur d’électron, ce qui entraîne une augmentation (en valeur absolue) des deux premiers potentiels de réduction du noyau C$_{70}$ dans les différents composés 8a et 9a-b. Ces résultats montrent également que ces molécules ont des propriétés électrochimiques très proches de celles des cyclopropano[60]fullerènes 5a-c et 6a-c. Par ailleurs des études électrochimiques ont été réalisées précédemment sur C$_{60}$ et C$_{70}$, il a été ainsi démontré que les potentiels de réduction obtenus sont comparables [Xie92].
Figure II.60 : Voltampéromètres cycliques de dérivé 8a et de C_{70} (7 \times 10^{-4} M) dichlorométhane-TBAPF6 (5 \times 10^{-2} M)- électrode de Pt et de C-V vs. Fc^+/Fc – v=100 mV. s^{-1}.

Les résultats illustrés sur le Tableau II-20, démontrent que les valeurs des potentiels de réduction obtenus avec différentes électrodes platine ou carbone sont quasiment identiques.

<table>
<thead>
<tr>
<th>Molécule</th>
<th>E_{1/2red}^1 (V)</th>
<th>E_{1/2red}^2 (V)</th>
<th>E_{1/2red}^3 (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{70}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-1.01</td>
<td>-1.40</td>
<td>-1.81</td>
</tr>
<tr>
<td>b</td>
<td>-1.00</td>
<td>-1.39</td>
<td>-1.80</td>
</tr>
<tr>
<td>8a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-1.08</td>
<td>-1.45</td>
<td>-1.82</td>
</tr>
<tr>
<td>b</td>
<td>-1.07</td>
<td>-1.44</td>
<td>-1.82</td>
</tr>
<tr>
<td>9a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-1.07</td>
<td>-1.45</td>
<td>-1.83</td>
</tr>
<tr>
<td>b</td>
<td>-1.07</td>
<td>-1.44</td>
<td>-1.82</td>
</tr>
<tr>
<td>9b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-1.07</td>
<td>-1.45</td>
<td>-1.83</td>
</tr>
<tr>
<td>b</td>
<td>-1.07</td>
<td>-1.44</td>
<td>-1.82</td>
</tr>
</tbody>
</table>

Tableau II-20 : Valeurs des potentiels d’oxydoréduction de demi-vague des composé 8a, 9a, 9b et C_{70}, en milieu :

a) dichlorométhane + n-But_4NPF_6 [hexafluorophosphate tétrabutylammonium] (0.1M) sur une électrode de C, avec une vitesse de balayage de 100 mV.s^{-1}, (vs. Fc^+/Fc).
b) dichlorométhane + n-But_4NPF_6 [hexafluorophosphate tétrabutylammonium] (0.1M) sur une électrode de Pt, avec une vitesse de balayage de 100 mV.s^{-1}, (vs. Fc^+/Fc).

L’absorption en UV-Visible des dérivés 8a et 9a-b utilisés seuls en couche minces a été également étudiée (cf. Figure II.61). Les dépôts des couches sur des substrats en verre sont effectués à partir d’une solution de chlorobenzène de concentration 10 mg.mL^{-1}. Les épaisseurs des couches sont identiques et de l’ordre de 50 nm. Nous constatons que l’absorption de ces molécules est assez étendue et forte dans le visible avec apparition de bandes caractéristiques de l’absorption de C_{70}. Les spectres obtenus ont des profils très comparables. La plus forte absorption est associée au composé 8a, ce qui peut être interprété par l’effet de la chaîne d’ester sur l’absorption. Le traitement thermique a un effet sur la
couche à base de composé 8a, entraînant une augmentation de l’absorption qui se décale en outre vers le rouge.

![Figure II.61 : Spectre d’absorption pour les différentes couches minces de dérivés 8a et 9a, avant et après recuit.](image)

II.4.2. Cellules Photovoltaïques Organiques ITO/PEDOT: PSS/Cyclopropano[70]fullerènes/LiF/Al

Des cellules monocouches (MIM) ont été réalisées à base de ces dérivés 8a, 9a et 9b de type Bingel, selon la structure suivante: ITO/PEDOT: PSS/cyclopropano[70]fullerènes/LiF/Al. Les caractéristiques I-V des cellules photovoltaïques dans l’obscurité et sous éclairement avant et après recuit sont illustrées sur la Figure II.62.

Les paramètres photovoltaïques délivrés avant et après recuit par ces dispositifs, extraits des courbes I-V, sont regroupés sur le Tableau II-21. Nous constatons que les deux dispositifs élaborés à partir de 8a et de 9a manifestent des effets photovoltaïques, et en particulier le dispositif ITO/PEDOT :PSS/8a/LiF/Al qui présente de meilleures caractéristiques. Avant le traitement thermique des cellules à base de dérivé 8a, la tension V_{oc} obtenue est de l’ordre de 500 mV ; ceci peut être lié aux interfaces créées entre la couche active et les électrodes. En revanche, ces cellules délivrent une faible densité de courant J_{sc}.

Dans le cas de la molécule 9a, après recuit de la cellule, la densité de courant J_{sc} augmente mais la tension V_{oc} baisse d’un facteur 2.5. En effet, le traitement thermique intervient au niveau des interfaces (amélioration des contacts avec les électrodes) et de la
morphologie de la couche active, par conséquent la tension V_{oc} augmente. Dans le cas de dérivé $8a$, aucun effet notable de traitement thermique n’apparaît sur les propriétés PV des cellules. Ces résultats mettent en évidence un effet de la structure moléculaire des composés $8a$ et $9a$ sur les caractéristiques photovoltaïques des cellules.

Figure II.62 : Caractéristiques I-V dans l’obscurité et sous illumination côté ITO de la diode Schottky avant et après recuit a) ITO/PEDOT: PSS/$8a$/LiF/Al, b) ITO/PEDOT: PSS/$9a$/LiF/Al.

II.4.3. Optimisation des cellules Photovoltaïques Organiques à réseau interpénétré : ITO/PEDOT: PSS/P3HT -RR : cycloproano[70]fullerènes $8a$ et $9a$ avant et après recuit, sous éclairement de 107 mW/cm2.

| Système | V_{oc} (V) | J_{sc} (mA) | ff | $\eta\%$ | V_{oc} (V) | J_{sc} (mA) | ff | $\eta\%$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$8a$</td>
<td>0.507</td>
<td>0.120</td>
<td>0.284</td>
<td>0.016</td>
<td>0.522</td>
<td>0.110</td>
<td>0.270</td>
<td>0.015</td>
</tr>
<tr>
<td>$9a$</td>
<td>0.03</td>
<td>0.492</td>
<td>0.251</td>
<td>0.004</td>
<td>0.199</td>
<td>0.323</td>
<td>0.311</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Tableau II-21 : Paramètres photovoltaïques des cellules solaires organiques MIM à base de cycloproano[70]fullerènes $8a$ et $9a$ avant et après recuit, sous éclairement de 107 mW/cm2.

Nous avons ensuite réalisé des cellules solaires à réseau interpénétré à base de P3HT - RR: cycloproano[70]fullerènes $8a$ et $9a$-b, dans le but de comparer les performances photovoltaïques obtenues précédemment par la même famille de dérivés de C$_{60}$ ($5a$-c et $6a$-c).
Les quantités relatives de donneur et d’accepteur mises en œuvre pour constituer les cellules solaires photovoltaïques ont été déterminées de la même façon que lors de l’étude des cellules solaires photovoltaïques à base de cyclopropano[60]fullerènes 5a-c et 6a-c. Cette procédure permet de comparer d’autant mieux les performances des cellules à base de dérivés de C\textsubscript{60} à celle à base de dérivés de C\textsubscript{70}. Les quantités utilisées dans les cellules à base de cyclopropano[70]fullerènes 8a et 9a-b, sont rapportées dans le Tableau II-22.

<table>
<thead>
<tr>
<th>Dérivé de Fullerène C</th>
<th>Masse Moléculaire M\textsubscript{c} (g.mol-1)</th>
<th>M\textsubscript{c}/M\textsubscript{PCBM}</th>
<th>masse X de C utilisée dans le mélange (P3HT:C) (10 mg: X mg)</th>
<th>P3HT:C Rapport (1 : X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>1058</td>
<td>1.16</td>
<td>11.6</td>
<td>1.16</td>
</tr>
<tr>
<td>9a</td>
<td>1028</td>
<td>1.13</td>
<td>11.3</td>
<td>1.13</td>
</tr>
<tr>
<td>9b</td>
<td>1072</td>
<td>1.18</td>
<td>11.8</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Tableau II-22 : Quantités en masse relatives utilisées lors de l’élaboration des cellules solaires à base de dérivés 8a, 9a et 9b.

Les spectres d’absorption UV-Visible de ces mélanges en couches minces sont présentés sur la Figure II.63. Nous remarquons que les spectres d’absorption ont le même profil. Les bandes caractéristiques de P3HT et de dérivés de C\textsubscript{70} apparaissent sur les spectres d’absorption des différentes couches actives, avant et après recuit. On constate que le traitement thermique améliore l’absorption. Il entraîne à la fois un déplacement des profils vers les longueurs d’ondes plus élevées de 30 nm, et une augmentation en intensité de l’absorption avec l’apparition des épaulements à 565, 610 et 620 nm vraisemblablement associés à la cristallisation de P3HT -RR. Ceci entraîne une forte délocalisation des électrons tout au long de la chaîne polymère.

Figure II.63 : Spectres d’absorption des différents composites P3HT -RR :8a et P3HT -RR :9a avant et après recuit.
Alors que les concentrations molaires des dérivés de fullères 8a et 9a-b utilisées dans ces mélanges sont identiques à celle de PCBM, les caractéristiques PV délivrées par les différents dispositifs organiques ne sont pas les mêmes. Ces résultats confirment la dépendance des performances PV à la structure moléculaire des dérivés 8a et 9a-b, et plus précisément en fonction de la différence ou de la similitude entre les chaînes latérales.

Les caractéristiques électrochimiques ont montré que ces molécules 8a et 9a-b possèdent des propriétés électroniques très comparables. Comme nous le savons, les caractéristiques photovoltaïques dépendent fortement de l’interaction entre le donneur et l’accepteur, et de leur comportement à l’intérieur de la couche active. Cependant, la morphologie influe sur les paramètres photovoltaïques ainsi que sur les rendements de conversion. En effet, les meilleurs résultats sont obtenus à partir de la cellule à base de composite P3HT :9a, qui a fourni une densité de courant J_{sc}, une tension à circuit ouvert V_{oc}, et un facteur de forme ff qui correspondent respectivement à 3.6 mA/cm2, 0.6 V et 0.33. Ces paramètres sont améliorés par l’effet d’un recuit à 100°C pendant 10 minutes.

L’effet thermique provoque la cristallisation du polymère P3HT-RR qui permet l’amélioration de l’absorption des couches organiques et la séparation de phase. Parallèlement cette cristallisation du P3HT -RR, augmente la mobilité des porteurs libres et donc la densité de courant J_{sc} à 9.3 mA/cm2 et le facteur de forme ff à 0.34. Par contre la tension de circuit-ouvert V_{oc} diminue légèrement, peut-être en raison de la modification des interfaces créées avec les électrodes par effet thermique. Enfin, le rendement de conversion atteint 1.5% dans ce type de cellules solaires. Les caractéristiques photovoltaïques extraites des courbes I-V (cf. Figure II.64) sont indiquées dans le Tableau II-23.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc}</th>
<th>J_{sc}</th>
<th>ff</th>
<th>$\eta%$</th>
<th>V_{oc}</th>
<th>J_{sc}</th>
<th>ff</th>
<th>$\eta%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :9a</td>
<td>0.607</td>
<td>3.56</td>
<td>0.332</td>
<td>0.67</td>
<td>0.507</td>
<td>9.29</td>
<td>0.342</td>
<td>1.50</td>
</tr>
<tr>
<td>P3HT :8a</td>
<td>0.389</td>
<td>1.12</td>
<td>0.248</td>
<td>0.10</td>
<td>0.324</td>
<td>1.48</td>
<td>0.402</td>
<td>0.18</td>
</tr>
<tr>
<td>P3HT :9b</td>
<td>0.450</td>
<td>3.49</td>
<td>0.285</td>
<td>0.42</td>
<td>0.204</td>
<td>3.12</td>
<td>0.299</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Tableau II-23 : Paramètres photovoltaïques des cellules solaires organiques à base de composite de P3HT –RR :8a, P3HT -RR :9a et P3HT -RR :9b avant et après recuit.
Figure II.64 : Cellule ITO/PEDOT :PSS/P3HT : 9a/LiF-Al: (a) avant recuit, (b) après recuit à 100°C-10 min, Cellule ITO/PEDOT :PSS/P3HT : 8a/LiF-Al : (c) avant recuit, d) après recuit à 100°C-10 min, (e) Cellule ITO/PEDOT :PSS/P3HT : 9b/LiF-Al: f) avant recuit, g) après recuit à 100°C-10 min.

La cellule organique à base de dérivé 9a possède de meilleures propriétés que celles obtenues à base de cyclopropano[C_{60}]fullerènes 5a-c et 6a-c. Comme nous l’avons décrit précédemment, l’absorption en UV-Visible des dérivés de C_{70} (8a et 9a-b) est meilleure que celle des cyclopropano[C_{60}]fullerènes 5a-c et 6a-c. Cependant, le rendement quantique
externe des systèmes PV à base de cyclopropano[C\textsubscript{70}]fullerène 8a et 9a-b, montre clairement la contribution du dérivé 9a dans les performances des cellules solaires (cf. Figure II.65). Non seulement, nous constatons une amélioration de l’absorption de la couche photo-active, mais aussi de la photogénération de charges additionnelle, ce qui se traduit par l’apparition d’un pic à 430 nm correspondant à un rendement quantique externe de 71%, en plus de celui de 51% entre 450 et 530 nm. La réponse spectrale d’IPCE% mesurée pour ce système à partir du composé 9a après recuit est représentée par la Figure II.66.

Figure II.65 : Spectre d’action de la structure ITO/PEDOT :PSS/P3HT -RR :9a/LiF/Al, après recuit (100°C, 10 min).

Afin de comparer les réponses spectrales des différents systèmes à partir des composés 9a et 6b, les courbes d’IPCE% ont été superposées (cf. Figure II.66).

Nous constatons que les propriétés électrochimiques des différents cyclopropano-fullerènes 5a-c, 6a-c, 8a et 9a-b sont comparables à partir des études effectuées. En particulier, les potentiels de réduction qui sont obtenus pour les différentes molécules 5a-c, 6a-c, 8a, 9a-b. La différence entre les deux familles de dérivés cyclopropano-fullerènes 5a-c, 6a-c, 8a et 9a-b réside dans l’absorption optique UV-Visible. L’utilisation des dérivés de C\textsubscript{70} (8a, 9a-b) permet d’élargir l’absorption des composites qui en dépendent. Par conséquent, la densité de courant peut atteindre 9.3 mA/cm2 dans le cas des cellules à base de composé 9a. Le facteur de forme ff et la tension V\textsubscript{oc} fournis par les différents dispositifs PV sont proches. Ces résultats démontrent que le seul facteur pouvant influencer les performances PV est la morphologie, et plus précisément l’interaction entre le polymère et ces dérivés 5a-c, 6a-c, 8a.
et 9a-b au sein de la matrice qui est différente d’un composé à un autre. Ceci est dû à la différence entre la structure moléculaire de ces composés 5a-c, 6a-c, 8a et 9a-b.

Figure II.66 : Comparaison des spectres d’action des cellules solaires organiques : ITO/PEDOT: PSS/P3H -RR :9a/LiF/Al et ITO/PEDOT :PSS/P3HT -RR :6b/LiF/Al.

II.5. DERIVES DE FULLERENES[60] OBTENUS VIA LE DIANION C₆₀⁻²

L’ingénierie moléculaire de l’ensemble des composés (donneur et accepteur) des couches photoactives joue un rôle très important dans l’optimisation des cellules solaires organiques. Les travaux de recherches sur la réalisation des cellules solaires organiques comportant des dérivés de fullerènes obtenus à partir de C₆₀⁻² sont peu nombreux. Les seuls résultats obtenus à notre connaissance sont rapportés en 2004 par S. Alem et al. [Ale04c, Ale04b], sur des systèmes photovoltaïques à réseau interpénétré élaborés à partir de nouveaux adduits-1,4 en série [60]fullerène : C₆₀(CH₂CO₂Et)₂ et C₆₀(CH₂CO₂Me)₂ (cf. Figure II.67) [Ale04c]. Ces molécules ont été utilisées avec le polymère conjugué MEH : PPV en couches
photoactives dans un rapport 1:2 en masse. En raison de leurs propriétés électrochimiques comparables à celle du PCBM, les résultats obtenus en PV sont apparus très prometteurs. Les performances PV délivrées par les cellules à base de composite MEH-PPV : C₆₀(CH₂CO₂Et)₂ sont 1.7 mA/cm² en densité de courant, 0.6 V en tension de circuit ouvert et 0.4 en facteur de forme. Les études antérieures [Ale04c] ont montré qu’en travaillant avec des concentrations élevées (28 mg.mL⁻¹) de ces différents dérivés, on obtient des couches non homogènes qui conduisent à une faible mobilité de charges. Cette non homogénéité est due à la faible solubilité de ces molécules.

Dans l’objectif d’augmenter la solubilité de ces dérivés de fullerènes en vue d’améliorer les rendements photovoltaïques des cellules solaires, l’équipe de Prof. J. Cousseau a synthétisé un nouveau dérivé de la même famille : l’adduit-1,4 C₆₀(CH₂CO₂tC₄H₉)₂ que nous avons étudié. Sa structure moléculaire est schématisée sur la Figure II.67.

![Figure II.67 : Structures chimiques de dérivé adduit-1,4 : (a) C₆₀(CH₂CO₂Me)₂, (b) C₆₀(CH₂CO₂Et)₂, (c) C₆₀(CH₂CO₂tC₄H₉)₂.](image)

On nommera le dérivé adduit-1,4 C₆₀(CH₂CO₂tC₄H₉)₂ le dérivé 10a dans tout ce qui va suivre. L’absorption en UV-Visible de ce composé solubilisé dans de l’oxydichlorobenzène est présentée ci dessous (cf. Figure II.68). Nous constatons que le spectre correspond à celui de C₆₀ (cf. Figure II.40-b) comme si les chaînes latérales n’existaient pas.

![Figure II.68 : Spectres d’absorption d’UV-Visible de composé 10a en solution d’oxydichlorobenzène.](image)
Nous avons utilisé la voltampérométrie cyclique afin d’étudier les propriétés électrochimiques de composé 10a et de C_{60} comme référence. Les mesures ont été réalisées dans l’o-dichlorobenzène en utilisant l’hexafluorophosphate de tétrabutylammonium comme sel de fond. La Figure II.69 montre les voltampérogrammes obtenus pour les composés 10a et C_{60}. L’étude du comportement électrochimique de ces composés a été réalisée sous atmosphère d’argon, en boîte à gants, afin de s’affranchir du phénomène de réduction de l’oxygène. L’électrode de travail, ainsi que la contre électrode, sont en platine. L’électrode de référence et pseudo-référence (fil d’argent dans une solution d’électrolyte confiné dans une jonction) calibré par rapport au couple ferrocène/ferrocènium (Fc+/Fc). La vitesse de balayage est de 100 mV.s^{-1}.

![Figure II.69 : Voltampérogrammes cycliques de : (a) C_{60} , (b) dérivé fullerène 10a (7 \times 10^{-4} M). o-dichlorobenzène - TBAPF_{6} (5 \times 10^{-2} M) - électrode de Pt - V vs. Fc+/Fc – v = 100 mV.s^{-1}.](image)

Les courbes montrent que le comportement électrochimique du dérivé 10a est typique de la réduction du cœur C_{60} selon deux étapes monoélectroniques réversibles, d’abord en radical anion puis en dianion aux voisinsages de −1.20 V et −1.65 V respectivement par rapport au ferrocène. Les valeurs de potentiels d’oxydoréduction obtenues pour le composé 10a et celle du C_{60} sont récapitulées dans le Tableau II-24.

<table>
<thead>
<tr>
<th>Composé</th>
<th>E_1/2^{red} (V)</th>
<th>E_2/2^{red} (V)</th>
<th>E_3/2^{red} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{60}</td>
<td>−1.17</td>
<td>−1.62</td>
<td>−2.10</td>
</tr>
<tr>
<td>10a</td>
<td>−1.18</td>
<td>−1.62</td>
<td>−</td>
</tr>
</tbody>
</table>

Tableau II-24 : Valeurs des potentiels d’oxydoréduction de demi-vague des composés 10a et C_{60} (vs. Fc+/Fc).

Avant d’élaborer les cellules solaires organiques à partir du dérivé 10a, nous avons étudié l’absorption en UV-Visible des couches à base de mélange de polymère conjugué P3HT -RR et de composé 10a. Comme nous l’avons décrit précédemment (cf. Chapitre II.1),
le polymère P3HT -RR est un donneur possédant un large spectre d’absorption et de bonnes propriétés électrochimiques. Les cellules solaires organiques élaborées à partir du composite P3HT :PCBM requièrent des rapports massiques identiques 1:1, ce qui conduit à des performances photovoltaïques élevées d’un rendement de l’ordre de 5%. Comme nous l’avons mentionné précédemment (cf. Chapitre II.3), l’efficacité comparée des cellules HJV réalisées avec ce dérivé de fullerène mélangé au P3HT -RR dans la couche photo-active est plus pertinente lorsque sa masse moléculaire est prise en compte. Nous avons fabriqué des couches actives à base de mélanges de P3HT -RR et de dérivé 10a, pour lesquels la quantité de chacun de ces dérivés correspond toujours à la même fraction molaire (rapportée à P3HT -RR) que celle de PCBM dans le mélange P3HT :PCBM de rapport 1 :1 en masse. Les quantités relatives correspondantes sont données dans le Tableau II-25.

<table>
<thead>
<tr>
<th>Dérivé de Fullerène</th>
<th>Masse Moléculaire M_{10a} (g.mol$^{-1}$)</th>
<th>M_{10a}/M_{PCBM}</th>
<th>masse X utilisée dans le mélange (P3HT :10a) (10 mg : X mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10a</td>
<td>950</td>
<td>1.04</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Tableau II-25 : Quantités en masse relatives utilisées lors de l’élaboration des cellules solaires à base de dérivé 10a.

Les études en spectroscopie UV-Visible sont réalisées sur des couches minces de 80 nm d’épaisseur à base de mélanges P3HT :10a, déposées sur du verre. Les spectres d’absorption correspondants, obtenus avant ou après traitement thermique pendant 10 minutes à 100°C sous vide, sont représentés sur la Figure II.70.

Figure II.70 : Spectre d’absorption des couches minces basées sur le système P3HT: 10a avant et après traitement thermique.
Nous constatons que la couche organique possède une absorption assez étendue de 300 à 650 nm. Deux pics intenses apparaissent à 344 nm et à 470 nm. Le premier correspond à l’absorption de C_{60}, en revanche le second pic ainsi que l’épaulement à 610 nm correspondent aux bandes caractéristiques de P3HT-RR. Après traitement thermique des composites, l’absorption est améliorée et se déplace vers les longueurs d’ondes élevées. On constate aussi que des épaulements apparaissent plus nettement à 550 et à 600 nm. Cela est du à la cristallisation de P3HT-RR, et à la formation de fibrilles ainsi qu’à l’organisation de la structure.

Les cellules solaires photovoltaïques HJV que nous avons élaborées à partir de composites P3HT: 10a dans un rapport 1 :1.04 en masse, sont construites suivant la configuration : ITO/PEDOT :PSS/P3HT :10a/LiF-Al. Les caractéristiques I-V obtenues avant et après recuit des cellules sont représentées respectivement sur les Figures II.71-a et II.71-b, dans l’obscurité et sous illumination 107 mW/cm².

![Caractéristique I-V de la structure ITO/P3HT :10a/LiF-Al sous éclairement 107mW/cm² : (a) avant traitement thermique, (b) après traitement thermique 100°C - 10 minutes.](image)

Les paramètres photovoltaïques extraits des caractéristiques I-V de la Figure II.71, obtenues pour les cellules sont présentés dans le Tableau II-26.

<table>
<thead>
<tr>
<th>Système</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>ff</th>
<th>η%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT :10a (avant recuit)</td>
<td>0.511</td>
<td>0.763</td>
<td>0.267</td>
<td>0.1</td>
</tr>
<tr>
<td>P3HT :10a (après recuit)</td>
<td>0.328</td>
<td>0.136</td>
<td>0.434</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Tableau II-26 : Paramètres photovoltaïques des cellules solaires organiques à base de composite de P3HT –RR :10a, avant et après recuit.

Nous constatons sur le Tableau II-26 que la tension V_{oc} délivrée par la cellule est de l’ordre de celle obtenue pour des dérivés de Bingel (0.600 V). Ceci est en accord avec les études électrochimiques, où les potentiels sont comparables (cf. Tableaux II-14 et II-11-20).
En revanche, la densité de courant J_{sc} obtenue, avant et après recuit des cellules, est très faible. Ceci est attribué à la différence de morphologie des composites qui favorise plus au moins le transport de charges, et aussi à la faible interaction entre le polymère P3HT -RR et ce dérivé de fullerène 10a.

Les échantillons ont été traités thermiquement à 100°C pendant 10 minutes sous vide. Les paramètres photovoltaïques obtenus pour ces systèmes montrent que le recuit améliore le facteur de forme. En revanche, il diminue les valeurs de V_{oc} et J_{sc}, même si l’absorption de ce système P3HT -RR :10a devient meilleure par l’effet thermique. Ceci est lié à nouveau à la morphologie, qui influence la mobilité des charges libres. Comme la Figure II.72 le montre, l’absorption de ce système est plus forte que celle observée dans le cas des cycloropropano[C$_{60}$]fullerènes 5a et 6b, pourtant de meilleures performances sont obtenues pour les cellules de ces derniers. On en déduit que c’est une meilleure percolation de dérivés 5a et 6b, dont la structure est proche de celle du PCBM, avec le polymère P3HT -RR qui est probablement à l’origine d’une meilleure J_{sc}.

Pour mieux comprendre et interpréter ces résultats obtenus, il faut envisager de réaliser des études complémentaires comme la mesure de la densité du courant local à l’aide de la sonde de Kelvin ou l’étude de la morphologie via l’AFM.

Figure II.72 : Comparaison des spectres d’absorption obtenus pour les composites : P3HT :5a, P3HT :6b et P3HT :10a.

En conclusion, il est clair que les stratégies visant à optimiser les propriétés du couple donneur/accepteur (polymère et dérivés de fullerènes) peuvent permettre aussi une amélioration significative de l’absorption de la lumière dans un large domaine spectral, des...
propriétés électrochimiques des composés (l’augmentation du niveau HOMO dans le cas de composés donneur, et la diminution du niveau LUMO de l’accepteur suivant le diagramme de M.C. Sharbar et al. [Sch06a]) et de la morphologie des couches actives. Dans ce but les propriétés physico-chimiques (solubilité, miscibilité, HOMO, LUMO,...) des composés organiques sont à prendre en considération.

L’apport majeur des polymères conjugués à faible gap énergétique est non seulement d’élargir les spectres d'absorption, mais également d’augmenter les coefficients d'absorption de la couche mince, la mobilité des charges et les interactions physico-chimiques avec les composants de fullerènes.

Dans ces études, nous avons synthétisé et utilisé en PV des dérivés de C₆₀ ou C₇₀ pour lesquels nous avons fait varier les longueurs de chaînes d’ester, et les caractères symétriques ou dissymétriques de ces chaînes. Dans notre cas, la motivation de synthétiser de nouveaux dérivés de C₆₀ solubles est basée sur la recherche de relation structure propriétés d’une part et de l’amélioration des performances des cellules solaires en optimisant les propriétés acceptrices de dérivés de fullerènes. Il faut noté que le remplacement du fullerène C₆₀ par des dérivés porteurs de groupes solubilisants conduit à de petits changements des propriétés électroniques de ces derniers.

L’idée de disposer de dérivés de fullerène susceptibles de bien interagir avec des polymères à faible gap énergétique est judicieuse si on désire optimiser la morphologie afin d’augmenter les performances des cellules solaires. Alors que la solubilité des dérivés de fullerènes croît avec l'augmentation de la longueur des chaînes d’ester, les performances des dispositifs organiques à base de P3HT -RR atteignent un maximum d’efficacité avec les dérivés à courtes chaînes 6b & 9a. La diminution observée des performances des cellules avec l'augmentation de la chaîne ester est attribuée à la miscibilité plus élevée du cyclopropano-fullerènes avec P3HT -RR. Il est probable que la longueur de la chaîne affecte la mobilité des porteurs de charge dans le fullerène.

Afin d’optimiser les performances photovoltaïques, des études en fluorescence résolue en temps et en spectroscopie XPS ont été réalisées dans le but de corréler entre les caractéristiques photovoltaïques, les propriétés physico-chimiques des matériaux, la morphologie des composite et l’interaction entre donneur/accepteur sur les dyades 1 et 2 le dérivé cyclopropano[60]fullerène 6a (cf. Annexe 7).
CHAPITRE III

III. ELABORATION DE CELLULES SOLAIRES ORGANIQUES PV À PARTIR DE COMPOSITES P3HT:PCBM:SWCNT FONCTIONNALISÉS PAR DES GROUPEMENTS ESTERS

III.1. INTRODUCTION

Les nanotubes de carbone mono-parois ont été découverts en 1991 [Iij91]. Leurs propriétés mécaniques et électroniques ainsi que leur structure chimique en font des candidats très attractifs en tant que constituants de différents dispositifs électroniques tels que les transistors, les capteurs chimiques et dans le domaine du photovoltaïque organique.

En ce qui concerne l’utilisation des nanotubes de carbone dans des cellules solaires organiques, différents travaux ont été rapportés. Ainsi on peut noter que des nanotubes de carbone ont été utilisés comme anodes transparentes afin de remplacer l’ITO, et ainsi d’améliorer l’efficacité des cellules [DuP05, Lee05, Row06, Kym08]. Les performances photovoltaïques obtenues pour une cellule de structure Verre/SWCNT/PEDOT :PSS/P3HT :PCBM/Ga-In sont très encourageantes : la densité de courant J_{sc} est 6.6 mA/cm², la tension V_{oc} est 0.5 V, et le facteur de forme ff correspond à 0.3 avec un rendement de conversion de 0.99 % [DuP05]. D’autres chercheurs ont exploité une autre voie qui consiste à utiliser des nanotubes de carbone comme composés accepteurs d’électrons dans les couches photo-actives des cellules solaires organiques [Kym02, Lan05, Kym06, Sgo08]. Les caractéristiques photovoltaïques obtenues à partir de ces dispositifs ont montré que leur efficacité est limitée, comparée à celle des systèmes élaborés à base de dérivés de fullerène : ceci est attribué à la présence des nanotubes de carbone de nature métallique qui court-circuite les cellules, provoquant ainsi la recombinaison des charges libres.
La dispersion de nanotubes de carbone (CNT) à forte concentration dans une matrice polymère est impossible si nous considérons la taille des tubes qui est comparable à l’épaisseur de la couche photo-active, car ceci entraîne des courts-circuits. C’est pourquoi le dopage de composites polymère : fullerène à faible concentration en nanotubes de carbone a été testé en vue de chercher à améliorer la dissociation des excitons aux jonctions polymère : fullerène, aussi bien que le transport de charges libres. Dans ce contexte plusieurs groupes de recherche ont incorporé des CNT dans des cellules solaires de type bicouches ou hétérojonction en volume [Liu98, Ber07b, Li07c, Kym08]. Ainsi le groupe de K.-I. Nakayama [Nak04a] a dopé une couche de MEH-PPV avec différentes concentrations de 0,5 et 20 % de nanotubes de carbone mono-parois de type HiPco (SWCNT-H), puis a déposé une couche de pérylène sur ce mélange initial. Ce composite bicouche a ensuite été intercalé entre deux électrodes. Les cellules ainsi obtenues ont délivré une densité de courant \(J_{sc} \) de l’ordre de 11 \(\mu \)A/cm\(^2\) et une tension \(V_{oc} \) de 0.7 V. Ces travaux ont montré notamment que le dopage du polymère par les nanotubes de carbone augmente la densité de courant avec un facteur 3.

Les meilleurs rendements de conversion ont été rapportés par le groupe de recherche de S. Guillerez dans le cas de systèmes à réseau interpénétré dont le composite P3HT :PCBM est dopé par des nanotubes de carbone en faibles concentrations (0 – 1 %) [Ber07b]. Ce groupe a étudié l’effet de la nature des nanotubes de carbone de type HiPco [multi-parois (MWCNT-H), mono-parois purifiés (P-SWCNT-H), et mono-parois super-purifiés (SP-SWCNT-H)], et de leur concentration sur les caractéristiques PV des cellules organiques. Les rendements de conversion de l’ordre 2 % après un traitement thermique ont été atteints avec des dispositifs à base de composite P3HT :PCBM dopé à 0.1 % en masse de MWNT-H. Les paramètres photovoltaïques correspondants sont 9.3 mA/cm\(^2\) pour la densité de courant, 0.57 V pour la tension de circuit ouvert et 0.38 pour le facteur de forme. Par ailleurs, des travaux similaires ont été publiés tout récemment par E. Kymakis et al. [Kym08], dans lesquels des composites P3HT :PCBM sont dopés avec différentes concentrations (0 – 1 %) en nanotubes de carbone mono-parois de type HiPco (SWCNT-H) fonctionnalisés par des groupements acides « COOH ». Cette fonctionnalisation a été réalisée afin de réduire les impuretés et diminuer la longueur des nanotubes de carbone, et les rendre plus solubles dans des solvants tels que C\(_6\)H\(_5\)Cl et CHCl\(_3\). Les meilleures performances photovoltaïques ont été obtenues pour les cellules à base de composite P3HT :PCBM dopé à 0.5% en SWCNT-H fonctionnalisés par des groupements acides carboxyliques. Ils correspondent à 4.9 mA/cm\(^2\) en densité de courant,
0.55 V en tension à circuit ouvert et 0.48 pour le facteur de forme, avec un rendement de 1.4 %.

On sait en effet que les nanotubes de carbone mono-parois (SWCNT) possèdent une structure fibreuse unidimensionnelle constituée d’un mélange de tubes de caractère métallique ou semi-conducteur. La conductivité électrique, la morphologie, et la bonne stabilité chimique des SWCNT leurs permettent d’être de bons candidats pour la fabrication des cellules solaires [Cam08]. L’inconvénient majeur de leur utilisation à l’état brut, purifiés ou fonctionnalisés par des groupements acides carboxylliques CO₂H consiste en très grande difficulté, sinon l’impossibilité à obtenir un milieu homogène satisfaisant (dispersion solution) dans les différents solvants couramment utilisés pour la réalisation des dispositifs PV.

Afin de pallier cet inconvénient et obtenir une morphologie des couches actives adéquate pour l’élaboration des cellules PV, une approche originale a été mise en œuvre en collaboration avec l’équipe du Prof. J. Cousseau du laboratoire CIMA de l’Université d’Angers. Dans ce cadre nous avons d’abord cherché à utiliser des nanotubes de carbone fonctionnalisés par des groupements esters, afin de faciliter leur dispersion en solution organique. Nous avons comparé différentes types de nanotubes de carbone mono-parois : CarboLex, HiPco, Carbon Solutions (cf. Tableau III-1).

<table>
<thead>
<tr>
<th>Type de SWNT</th>
<th>Pureté</th>
<th>Impureté</th>
<th>Diamètre moyen</th>
<th>Longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>CarboLex (Arc électrique)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWCNT-C</td>
<td>50-70%</td>
<td>catalyseurs résiduels (Ni et Y)</td>
<td>1.4 nm</td>
<td>2-5 µm</td>
</tr>
<tr>
<td>Carbon Solutions (Arc électrique)</td>
<td>60%</td>
<td>(35%) et carbone amorphe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWCNT-CS</td>
<td></td>
<td>catalyseurs résiduels (Ni 2% et</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HiPco (Décomposition de CO sous haute pression)</td>
<td>~ 50%</td>
<td>Y 1%) et carbone amorphe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWCNT-H</td>
<td></td>
<td>catalyseur résiduel (Fe 22%)</td>
<td>0.8-1.2 nm</td>
<td>0.1-1 µm</td>
</tr>
</tbody>
</table>

Tableau III.1: Propriétés des différents nanotubes de carbone mono paroi utilisées.

La fonctionnalisation des SWCNT a été réalisée selon les étapes suivantes (cf. Figure III.1) :

![Figure III.1: Les étapes de fonctionnalisation des différents nanotubes carbone (HiPco, CarboLex, Carbon Solutions)]
Dans un premier temps, les nanotubes de carbone mono parois (SWCNTs) sont purifiés par traitement avec une solution aqueuse d’acide nitrique HNO₃ 2.2 M à 100°C, pendant 48 heures dans le cas d’échantillons Carbon Solutions (SWCNT-CS) ou 72 heures dans le cas d’échantillon CarboLex (SWCNT-C). Ensuite, les SWCNTs sont chauffés au four à 350°C pendant une heure. Dans le cas des nanotubes de carbone HiPco (SWCNT-H), le processus d’oxydation est effectué par l’utilisation d’une solution aqueuse de HNO₃ (2.6 M) pendant 48 heures à 125°C.

Cette première phase a notamment pour but d’éliminer à la fois les catalyseurs métalliques et les particules de carbone amorphe encore présentes dans les nanotubes de carbone formés à l’état brut SWCNT-ap. La solution piranha (H₂SO₄+H₂O₂) est ensuite mise en jeu dans une deuxième phase en raison de sa capacité à couper les SWCNT, et à renforcer la quantité relative de groupements CO₂H greffés sur le réseau nanotube dans les échantillons SWCNT-o. Les nanotubes de carbone esters SWCNT-e sont formés dans la troisième étape après réaction des différents alcools utilisés.

III.2. CARACTERISATIONS SPECTROSCOPIQUES, PHYSICO-CHIMIQUES ET ELECTRONIQUES DES NANOTUBES DE CARBONE

Des mesures de spectroscopie Infrarouge - FTIR en mode ATR ont été réalisées à l’état solide sur les différents nanotubes de carbone au fur et à mesure de leur transformation afin de caractériser les différents stades SWCNT-ap, SWCNT-p, SWCNT-o, et SWCNT-e. La Figure III.2-1 présente les spectres obtenus dans la série HiPco, de leur état initial jusqu’à l’estérisation. La Figure III.2-2 fait apparaître les spectres des échantillons SWCNT-e selon les nanotubes de carbone de départ HiPco [Ber08], CarboLex, Carbon Solutions.

Les spectres présentés sur la Figure III.2-1 mettent en évidence la fonctionnalisation des SWCNT-H, grâce à l’apparition des bandes correspondantes aux groupements fonctionnels :

1) après purification et oxydation : liaison C=C à 1576 cm⁻¹ et 1583 cm⁻¹ (cf. courbe c),
2) liaison C-O-C à 1223 et 1100 cm⁻¹ ,
3) liaison C=O à 1733 cm⁻¹ correspondant au groupement ester (cf. courbe d),
4) liaison C-H à 2870 et 2918 cm⁻¹ (cf. courbe d).
Ces bandes confirment la fonctionnalisation des nanotubes de carbone par des groupements esters.

Figure III.2 : Courbes obtenues par spectroscopie FTIR-Infrarouge à partir des différents SWCNT: 1) SWCNT-H : (a) SWCNT-H-ap; b) SWCNT-H-p; c) SWCNT-H-o; d) SWCNT-H-e (n = 3), 2) Comparaison SWCNT-e (n = 3): d) SWCNT-H-e; e) SWCNT-CS-e; f) SWCNT-C-e.

La comparaison, en Figure III.2-2, des spectres d’échantillons fonctionnalisés par des groupements esters SWCNT-e fait apparaître des différences nettes d’intensité des bandes d’absorption selon la nature des nanotubes de carbone de départ. On observe que les plus fortes intensités (1733 (C=O), 1583 (C=C) et 1233-1100 cm$^{-1}$(C-O)) sont associées à l’échantillon HiPco (SWCNT-H-e), ce qui peut être aussi relié à un taux plus élevé de fonctionnalisation. Cette observation apparaît en accord avec la nature des nanotubes de carbone, puisque les échantillons HiPco (SWCNT-H) sont connus pour avoir un diamètre moyen plus petit que ceux de type Carbon Solution (SWCNT-CS) ou CarboLex (SWCNT-C), et sont donc pour cette raison sans doute chimiquement plus réactifs.

Des études d’analyse thermogravimétrique (ATG) des différents composés ont été réalisées. Elles ont été effectuées sous atmosphère d’argon ($\Delta T=10^\circ\text{C/min}$). La Figure III.3-a fourni les profils ATG des échantillons SWCNT-H correspondant aux trois cas suivants : SWCNT-H-p (après purification), SWCNT-H-o (après oxydation globale) et SWCNT-H-e (après estérification) Dans le cas des composés SWCNT-H-p et SWCNT-H-o, nous constatons une perte de masse très nette dans un intervalle de 180-350°C : 12 et 14% respectivement. Ceci est probablement attribuable à la perte de CO$_2$, dû aux sites d’acide carboxylique [Fig99]. En outre, nous constatons une forte perte de masse de l’ordre de 25%
entre 200 et 450°C dans le cas du composé SWCNT-H-e, attribuable à la perte du fragment organique dû au groupe ester [Bou06].

Figure III.3: Mesures D’ATG obtenues : a) SWCNT-H, b) Comparaison entre les différents types des SWCNT-e (n = 3) : SWCNT-H-e, SWCNT-C-e et SWCNT-CS-e.

Le taux des groupements esters greffés sur le réseau nanotube des composés : SWCNT-H-e, SWCNT-CS-e ou SWCNT-C-e a été déterminé a partir des différentes courbes obtenues en ATG (cf. Figure III.3-b). Dans le cas des SWCNT-H-e, un groupe ester est fonctionnalisé pour 50 atomes de carbone du réseau nanotube. En revanche, un groupe ester est greffé pour 110 atomes de carbone du réseau nanotube de SWCNT-CS-e et SWCNT-C-e.

La spectroscopie d’émission de photoélectron induit par absorption de rayon X (XPS) est une technique particulièrement adaptée à l’analyse des surfaces. Elle permet notamment d’obtenir une quantification des groupes fonctionnels ainsi que des éléments présents sur les surfaces.

Dans le cas des nanotubes de carbone et de leurs dérivés, la quantification des groupes fonctionnels peut être obtenue à partir des spectres d’émission C1s haute résolution, comme le montrent les spectres de la Figure III.4 fournis par des échantillons de nanotubes de carbone de type HiPco respectivement bruts (SWCNT-H-ap) et estérifiés (SWCNT-H-e). Dans chacun des spectres, le pic à 284.5 eV est attribué au motif C=C dû aux carbones sp² du réseau nanotube. La déconvolution des spectres permet d’attribuer les différents pics C₁s qui en découlent aux groupements suivants :

1) sp³ C-H (ou C-C) à 285.3 eV,
2) C-O à 286.2 eV,
3) C=O à 287.5 eV et
4) O=C-O (H ou R) à 288.7 eV.
CHAPITRE III : CELLULES SOLAIRES ORGANIQUES À BASE DE DIFFÉRENTS NANOTUBES ESTÉRIFIES

Figure III.4: Courbes obtenues par caractérisation XPS à partir des SWCNT de type HiPco : a) SWCNT-H-ap, et b) SWCNT-H-e.

Le Tableau III-2 rassemble les résultats obtenus globalement en série HiPco.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Csp², SWCNT</td>
<td>87.5</td>
<td>84.1</td>
<td>82.7</td>
<td>66.4</td>
</tr>
<tr>
<td>Csp², (C-H, C-C)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.2</td>
</tr>
<tr>
<td>C=O</td>
<td>8.6</td>
<td>5.5</td>
<td>6.7</td>
<td>20.6</td>
</tr>
<tr>
<td>C=O</td>
<td>3.2</td>
<td>3</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>O=C-O (H, R)</td>
<td>1</td>
<td>7.4</td>
<td>9.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Tableau III-2 : Pourcentages relatifs des groupements fonctionnels issus des spectres XPS C1s.

La quantification des éléments présents est tirée de l’analyse des pics C 1s, O 1s et Fe 2p3/2 fournis par ces mêmes échantillons, et est présentée dans le Tableau III-3.

<table>
<thead>
<tr>
<th>Echantillons</th>
<th>C [%]</th>
<th>O [%]</th>
<th>Fe [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNT-H-ap</td>
<td>94.2</td>
<td>3.9</td>
<td>1.9</td>
</tr>
<tr>
<td>SWCNT-H-p</td>
<td>81.7</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>SWCNT-H-o</td>
<td>81.3</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>SWCNT-H-e</td>
<td>83.0</td>
<td>17.0</td>
<td></td>
</tr>
</tbody>
</table>

Tableau III-3 : Concentrations des composants présents dans les différents SWCNT-H.

A partir de ces deux ensembles de résultats, on peut tirer les commentaires suivants :

- le traitement oxydant en milieu acide conduit clairement à une augmentation forte des sites CO₂H, 7.4% après purification avec HNO₃ et 9.8% après oxydation complémentaire par solution piranha.
- élimination du catalyseur Fe par ces mêmes traitements oxydants.
- forte contribution des groupes C-O, accompagné de l’apparition des groupes C-H, à l’issue de l’estérification, ce qui est également en accord avec l’augmentation du taux de C après estérification, en comparaison de ce taux après oxydation.
La spectroscopie Raman est largement utilisée pour la caractérisation des propriétés électroniques et vibrationnelles des SWCNTs. Cette méthode de caractérisation est adaptée pour étudier les changements induits par les traitements chimiques, tels que par exemple, le processus de leur estérification dans notre cas. Cette étude a été faite par le groupe de Prof. S. Lefrant de l’IMN–Nantes. Les résultats obtenus sont présentés sur la Figure III.5.

Les spectres Raman des nanotubes de carbone présentent principalement trois zones d’absorption (en fréquences) :

- les fréquences inférieures à 300 cm$^{-1}$ correspondent aux modes de vibrations radiales (RBM) où les fréquences sont inversement proportionnelles aux diamètres des tubes SWCNTs.
- les fréquences entre 1450 et 1700 cm$^{-1}$ représentent les modes tangentiels (MT) qui sont répartis en deux modes G^+ et G^-. Le mode G^- est large et asymétrique avec un profil Breit-Wigner-Fano, et est spécifique au caractère métallique. Des études récentes ont démontré que le mode G^- dépend fortement du diamètre des SWCNTs d’où un profil asymétrique [Rao97].
- les fréquences entre 1200 et 1450 cm$^{-1}$ correspondent à la bande D attribuée aux défauts de la structure du réseau nanotube en général. La Bande D est employée le plus souvent comme sonde de concentration des défauts de structure.

Nous constatons sur la Figure III.5-A, la réponse spectrale des SWCNT-H à l’excitation $\lambda_{exc}=561$ nm, dans leurs différents stades de fonctionnalisations. Le spectre (a) attribué au composé SWCNT-H-ap met en évidence le caractère métallique des nanotubes par l’apparition de la bande G^- au voisinage de 1533 cm$^{-1}$. Le profil de la bande G^- est modifié tout au long des réactions chimiques utilisées pour la fonctionnalisation des SWCNT-H. Nous observons que l’analyse de la bande correspondante au mode tangentiel (MT) devient étroite sur les courbes (b, c, d). Ceci semble fournir une indication de perte du caractère métallique des nanotubes de carbone successivement purifiés, oxydés et estérifiés.
L’intensité de la bande D à 1330 cm$^{-1}$ augmente après le traitement des SWCNT-H par la solution «piranha», puis diminue après estérisation des SWNT. Par ailleurs, l’intensité de la bande RBM décroît et se déplace de 238 cm$^{-1}$ dans le cas des à 241 cm$^{-1}$ après l’oxydation des SWCNT-H. Après estérisation, cette bande se déplace encore de 3 cm$^{-1}$ vers les nombres d’ondes les plus élevées, avec une augmentation de son intensité. Ceci est dû au changement des propriétés électroniques des nanotubes métalliques.

Dans le cas des tubes semi-conducteurs ($\lambda_{\text{exc}}= 752 \text{ nm}$), le processus de fonctionnalisation entraîne peu de changements dans le spectre Raman (cf. Figure III.5-B). Nous pouvons noter que les bandes RBM se situent au voisinage de 258 cm$^{-1}$ pour des composés purifiés et oxydés. Ces bandes se déplacent légèrement de 2 cm$^{-1}$.

des nanotubes de carbone (cf. Tableau III-2). La formation de liaisons hydrogène, à l’état solide, entre les groupes CO₂H, mentionnée ci-dessus, peut donc être plus importante dans le cas des SWCNT-H-o. Par conséquent, ces liaisons hydrogène renforcent l’interaction entre les fagots de nanotubes de carbone et contribue à l’augmentation de l’intensité de la bande D dans ces composés. Dans la dernière étape de fonctionnalisation, la conversion des groupes CO₂H en groupes esters supprime l’interaction entre les groupes CO₂H. Ceci peut expliquer les plus faibles intensités des bandes D dans le cas du composé SWCNT-H-e.

Ces études ont démontré un changement évident des propriétés électroniques après un traitement des SWCNT à l’acide nitrique. Comme il est présenté sur la Figure III.5-A, le profil des bandes correspondant au mode tangentiel à une excitation 561 nm est très étroit (au lieu des bandes larges G⁻ obtenues dans le cas des SWCNT-H-ap). La formation des groupes CO₂H en première étape de fonctionnalisation semble être le point clé, car le changement des modes MT des nanotubes de carbone métalliques, sur le spectre Raman, suggère fortement que la formation de ces groupes CO₂H change les propriétés électroniques des SWCNT-H. Par ailleurs, le spectre Raman obtenu après excitation des nanotubes de carbone à λ_{exc}=561 nm a montré un décalage des bandes RBM dès l’étape de la purification. Un accroissement léger de l’intensité des bandes a été constaté après l’estérification des SWCNT-H. Le spectre Raman réalisé après excitation des SWCNT-H à λ_{exc}= nm a montré une faible réactivité chimique des nanotubes semi-conducteurs après leur traitement à l’acide nitrique. La fonctionnalisation globale utilisée s’avère avoir nettement un effet sur les propriétés électroniques des SWCNT-H-e.

III.3. CELLULES SOLAIRES PHOTOVOLTAÏQUES A RESEAU INTERPENETRE À BASE DE NANOTUBES ESTÉRIFIES

L’amélioration des caractéristiques PV et l’interaction entre les matériaux dans les cellules dépendent du taux de la dispersion des SWCNT au sein de la matrice. La dispersion des nanotubes de carbone dans un solvant nécessite généralement une étape de sonication intense, qui est néfaste à l’utilisation des polymères puisqu’elle peut entraîner la cassure des chaînes polymériques. Ceci modifie les propriétés physico-chimiques des polymères.

Nous avons mis au point un protocole pour la préparation des mélanges constitués de P3HT, de nanotubes de carbone estérifiés SWCNT-C-e, SWCNT-H-e et SWCNT-CS-e, et de
PCBM. Ce protocole a été établi à partir des choix suivants :
1) une constante : dans chaque mélange, les quantités relatives de P3HT et de PCBM sont identiques, respectivement 10 mg et 8 mg.
2) une variable : la quantité de nanotubes de carbone fonctionnalisés esters est au contraire différente dans chaque mélange, et varie de 0.1 à 0.8% selon le cas, ce pourcentage étant exprimé en masse par rapport à P3HT et correspondant donc aux quantités respectivement de 0.01 mg à 0.08 mg de nanotubes de carbone.

III.3.1. Cas des mélanges à base de nanotubes de carbone CarboLex fonctionnalisés esters (SCWNT-C-e)

Ces nanotubes fonctionnalisés esters sont aisément dispersés en solution de méthanol ou de chlorobenzène, à une concentration de 0.1 mg.mL⁻¹ après sonication. Cette concentration a été vérifiée, après l’obtention de la dispersion, selon le processus présenté par C.A. Dyke et J.M. Tour [Dyk04] : prélèvement d’un certain volume de solution, filtration sur une membrane, et pesée du solide filtré.

Dans le cas des solutions-dispersions dans le méthanol, les mélanges P3HT : SWCNT-C-e ont été obtenus en ajoutant un volume compris entre 0.1 et 0.5 mL de solution méthanolique de SWCNT-C-e à 1mL de solution de P3HT (10 mg) de chlorobenzène, d’où les proportions en masse de nanotubes de carbone différents mélanges : 0.1, 0.2, 0.22, 0.3, 0.4 et 0.5 %.

Nous avons observé que les mélanges contenant de 0.22, 0.3, 0.4 et 0.5 % de SWCNT-C-e ne sont pas stables, et qu’ils se dégradent rapidement en faisant apparaître deux phases. Ces mélanges n’ont donc pas pu être utilisés dans la réalisation des cellules solaires.

La démixtion en deux phases est sans doute attribuable à une trop faible compatibilité des deux milieux lorsque la proportion de nanotubes dépasse 0.2%. C’est pour cette raison que nous avons préparé les deux autres mélanges contenant respectivement 0.1% et 0.2% de nanotubes de carbone. Il a été constaté que ces mélanges restent stables.

Ces mélanges ont été utilisés en couches actives lors de l’élaboration des cellules solaires de configuration ITO/PEDOT :PSS/P3HT :PCBM (1 :0.8) :x % SWCNT-C-e/LiF-Al (cf. Figure III.6). Les cellules ont fourni avant et après traitement thermique (100°C, 10 min), les caractéristiques photovoltaïques présentées sur la Figure III.7:
CHAPITRE III : CELLULES SOLAIRES ORGANIQUES À BASE DE DIFFÉRENTS NANOTUBES ESTERIFIES

Figure III.6: Architecture des cellules solaires PV à réseau interpénétré à base de composite P3HT : PCBM dopé SWCNT-e.

<table>
<thead>
<tr>
<th>x%</th>
<th>Avant traitement thermique</th>
<th>Après traitement thermique</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure III.7: Caractéristiques I-V des cellules solaires organiques : ITO/PEDOT : PSS/P3HT :PCBM :x % SWCNT-C-e/LiF-Al sous éclairement 107 mW/cm² et dans l’obscurité: a) Avant traitement thermique des cellules, b) Après traitement thermique des cellules.
Les paramètres photovoltaïques extraits des caractéristiques $I-V$ (cf. Figure III.7) des cellules solaires de structure : ITO/PEDOT : PSS/P3HT : PCBM (1 :0.8) :x% SWCNT-C-e/LiF-Al, sont donnés par le Tableau III-4 :

<table>
<thead>
<tr>
<th>SWCNT-C-e</th>
<th>Avant traitement Thermique</th>
<th>Après traitement Thermique 100°C- 10min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>V_{oc}: 0.533 V, J_{sc}: 6.8 mA/cm2, ff: 0.500, η: 1.89</td>
<td>V_{oc}: 0.583 V, J_{sc}: 12.10 mA/cm2, ff: 0.542, η: 4</td>
</tr>
<tr>
<td>0.1%</td>
<td>V_{oc}: 0.560 V, J_{sc}: 6.73 mA/cm2, ff: 0.379, η: 1.34</td>
<td>V_{oc}: 0.584 V, J_{sc}: 10.47 mA/cm2, ff: 0.447, η: 2.57</td>
</tr>
<tr>
<td>0.2%</td>
<td>V_{oc}: 0.530 V, J_{sc}: 3.61 mA/cm2, ff: 0.289, η: 0.521</td>
<td>V_{oc}: 0.676 V, J_{sc}: 11.88 mA/cm2, ff: 0.455, η: 3.44</td>
</tr>
</tbody>
</table>

(\textit{Tableau III-4 : Paramètres photovoltaïques des cellules solaires organiques à base de composite P3HT : PCBM (1 :0.8) :x% SWCNT-C-e, sous un éclairement 107 mW/cm2, avant et après traitement thermique.})

Les résultats (cf. Tableau III.4) montrent que les caractéristiques photovoltaïques (J_{sc} et V_{oc}) obtenues pour les cellules dopées à 0.1% SWCNT-C-e avant traitement thermique correspondent à celles délivrées par des dispositifs à base de P3HT :PCBM. En revanche, une baisse de facteur de forme de 0.50 à 0.38 a été constatée. Cette diminution peut être associée à la présence des nanotubes de carbone dans la matrice de P3HT : PCBM.

Après traitement thermique à 100°C pendant 10 minutes, les caractéristiques PV des cellules sont améliorées, ainsi le rendement de conversion atteint 2.6 %. En effet, le recuit a entrainé l’augmentation de la densité de courant à 10.47 mA/cm2, la tension à 0.58 V et le facteur de forme à 0.45. L’accroissement de la densité de courant J_{sc} peut être expliqué à la fois par l’amélioration de l’absorbance du composite P3HT :PCBM (1 :0.8) :0.1% SWCNT-C-e (cf. Figure III.8) et la modification de la morphologie. La Figure III.8 montre un déplacement du spectre de l’absorption de la couche active vers le rouge (basses énergies), après recuit. Ceci est associé à la cristallisation du P3HT -RR, d’où l’augmentation de la mobilité des charges dans le polymère. Ce qui entraîne une forte délocalisation des électrons, ainsi la mobilité des charges libres est améliorée. La modification de la morphologie due au recuit favorise une séparation de phase. Ce qui engendre une amélioration des contacts entre les matériaux et ainsi un très bon transfert de charge.
Figure III.8 : Comparaison des spectres d’absorption des couches minces de P3HT –RR :PCBM :0.1% SWCNT-C-e avant et après recuit à différentes températures.

L’absorbance de la couche photoactive dopée à 0.1% SWCNT-C-e est plus élevée en comparaison de celle du composite P3HT :PCBM. Ceci peut être traduit par la cristallisation forte du polymère conjugué P3HT -RR qui est entraînée à la fois par l’ajout du méthanol, l’incorporation des nanotubes et l’effet du recuit. Cette forte absorbance des couches n’améliore pas pour autant les caractéristiques PV. La morphologie des couches actives joue un rôle important. L’utilisation de deux différents solvants pour solubiliser les matériaux organiques peut influencer la percolation entre les matériaux à l’intérieur du composite, compte tenu de la différence de la température d’ébullition.

L’augmentation de la tension à circuit ouvert \(V_{oc} \) et du facteur de forme \(ff \), après traitement thermique des cellules, (cf. Tableau III-4) est attribuable à l’efficacité de l’extraction des charges libres dans la couche photoactive. Ceci est dû à l’amélioration de la morphologie du composite et des contacts (aux interfaces) créés avec les électrodes.

L’accroissement de la concentration des SWCNT-C-e de 0.1% à 0.2% dans les couches actives de P3HT :PCBM améliore les performances photovoltaïques seulement après recuit des cellules : ITO/PEDOT :PSS/P3HT :PCBM (1 :0.8) :0.2% SWCNT-C-e/LiF-Al (cf. Figure III.7, Tableau III-4). Il faut noter que les caractéristiques PV fournies par ces cellules avant recuit semblent moins bonnes que celles obtenues à partir des systèmes dopés à 0.1% SWCNT-C-e. Ceci peut être expliqué par l’effet du solvant sur la morphologie car l’augmentation de la concentration du méthanol dans la solution initiale à base de chlorobenzène (utilisée pour la solubilisation du P3HT -RR) peut être néfaste vis à vis de l’homogénéité de la solution globale (taux de miscibilité des deux solvants en baisse).
Après recuit à 100°C pendant 10 minutes, les caractéristiques PV des cellules organiques ont été améliorées et leur rendement de conversion a atteint 3.44% (cf. Figure III.7). Ceci peut être interprété par l’augmentation de la cristallinité du polymère P3HT -RR, (due au recuit), ce qui engendre une réorganisation des matériaux organiques au sein de la matrice. Nous constatons que le dopage à forte concentration en SWCNT-C-e entraîne l’amélioration de la densité de courant et la tension de circuit ouvert à 11.8 mA/cm² et 0.68 V respectivement. Ceci met en évidence la dépendance des caractéristiques PV en relation avec la concentration des SWCNT-C-e incorporés dans la couche active. Ceci peut être interprété par les bons contacts entre les matériaux au sein de la couche active. Ces résultats sont en accord avec ce qui a été rapporté dans la littérature, dans le cas de cellules réalisées à base de composites de P3OT :SWNT [Lan05], et confirmé par les travaux effectués sur les composites P3HT: PCBM dopés à différentes concentrations et types de nanotubes de carbone [Ber07b, Kym08].

Au bilan, l’utilisation du méthanol comme solvant des nanotubes de carbone ne permet pas de faire une étude suffisante de l’effet des SWCNT-C-e comme composants complémentaires d’une cellule à base de P3HT :PCBM, en raison du trop faible domaine de concentration de nanotubes utilisable (0.1% et 0.2%). C’est pourquoi, nous avons changé le solvant des solutions de nanotubes de carbone. Afin d’éviter les problèmes de démixtion rencontrés précédemment, le choix s’est porté sur le chlorobenzène, qui devient le seul solvant des mélanges ultérieurs P3HT/SWCNT-C-e.

A partir de la solution de SWCNT-C-e dans le chlorobenzène, à 0.1 mg.ml⁻¹, on a d’abord réalisé un mélange P3HT : SWCNT-C-e contenant 0.1% de nanotubes, en ajoutant 0.1 ml de solution de nanotubes à 1ml de P3HT (10 mg).

Les premières cellules solaires organiques élaborées à partir de ce mélange P3HT :PCBM (1 :0.8) :0.1% SWCNT-C-e, ont fourni de faibles performances PV (cf. Figure III.9):
Les paramètres PV extraits des caractéristiques I-V (cf. Figure III.9) sont regroupés dans le Tableau III-5 :

<table>
<thead>
<tr>
<th>P3HT:PCBM (1:0.8) :x% SWCNT-C-e</th>
<th>Avant traitement Thermique</th>
<th>Après traitement Thermique 100°C-10min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{oc} (V)</td>
<td>J_{sc} (mA/cm²)</td>
</tr>
<tr>
<td>0.1%</td>
<td>0.423</td>
<td>0.379</td>
</tr>
<tr>
<td>0%</td>
<td>0.533</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Tableau III-5 : Paramètres photovoltaïques des différents cellules solaires organiques à base de composite P3HT : PCBM : 0.1% SWNT CarboLex estérifiés et P3HT :PCBM, avant et après recuit, sous éclairement 107 mW/cm².

Les performances PV délivrées par les cellules dopées à 0.1% en SWCNT-C-e (cf. Tableau III-5) peuvent être expliquées par la faible épaisseur de la couche active, qui peut affecter le taux de photogénération des excitons et provoquer des courts-circuits. Nous observons par ailleurs que les caractéristiques PV des cellules sont légèrement améliorées après recuit à 100°C pendant 10 minutes (cf. Tableau III-5).

A partir de cette solution de SWCNT-C-e dans le chlorobenzène, de concentration 0.1 mg.mL⁻¹, on a réalisé les mélanges P3HT :SWCNT-C-e contenant respectivement 0.1, 0.2, 0.4, 0.6 % en masse de nanotubes.

D’autre part, ces mélanges ont été ici réalisés de façon à maintenir un volume global de solution de chlorobenzène constant et égal à 1 mL. Ceci a entraîné la préparation de différentes solutions initiales de P3HT, contenant 10 mg chacune, dans un volume de chlorobenzène variant de 0.4 à 1 ml (Tableau III.6) pour éviter un effet de dilution lors de l’ajout de la solution de SWCNT-C-e.
Les couches active des cellules solaires organiques à base de P3HT-RR :PCBM (1 :0.8 en dans un rapport massique) incorporant x % SWCNT-C-e ont été élaborées selon les quantités données par le Tableau III-6. Les performances PV délivrées par les différents dispositifs : ITO/PEDOT :PSS/P3HT :PCBM :x % SWCNT-C-e/LiF-Al, avant et après traitement thermique, sont présentées sur la Figure III.10.

Les paramètres photovoltaïques extraits des caractéristiques I-V (cf. Figure III.10) des différentes cellules solaires organiques avant et après recuit, sont présentés dans le Tableau III-7.

<table>
<thead>
<tr>
<th>P3HT :PCBM (1 :0.8) :x% SWCNT-C-e</th>
<th>Avant traitement Thermique</th>
<th>Après traitement Thermique 100°C-10min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{oc} (V)</td>
<td>J_{sc} (mA/cm²)</td>
</tr>
<tr>
<td>0%</td>
<td>0.533</td>
<td>6.8</td>
</tr>
<tr>
<td>0.1%</td>
<td>0.751</td>
<td>9.28</td>
</tr>
<tr>
<td>0.2%</td>
<td>0.670</td>
<td>9.56</td>
</tr>
<tr>
<td>0.3%</td>
<td>0.711</td>
<td>8.21</td>
</tr>
<tr>
<td>0.4%</td>
<td>0.667</td>
<td>6.85</td>
</tr>
<tr>
<td>0.6%</td>
<td>0.658</td>
<td>9.42</td>
</tr>
</tbody>
</table>

Tableau III-7 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT -RR: PCBM : x% SWCNT-C-e, avant et après recuit à 100°C -10 min, sous éclairement de 107 mW/cm².
Figure III.10 : Caractéristiques I-V des cellules solaires organiques à base de composites P3HT : PCBM : x% SWCNT-C-e, dans l’obscurité et sous éclairement 107 mW/cm² : a) Avant traitement thermique des cellules, b) après traitement thermique des cellules à 100°C -10 min.
Nous constatons sur le Tableau III-7 que la densité de courant délivrée par les différents systèmes est supérieure à celle fournie par la cellule de référence (composite : P3HT : PCBM) d’un facteur de 1.4, avant le traitement thermique. Ceci nous a conduit à réaliser des spectres d’absorption en UV-Visible pour les différentes couches actives qui constituent les cellules solaires (avant recuit) (cf. Figure III.11).

Comme indiqué sur la Figure III.11, l’absorbance d’une couche de P3HT -RR seule présente des bandes vibroniques, qui peuvent traduire la structuration et l’ordre élevé d’ organisation du matériau au sein de la matrice. L’ajout du PCBM dans la matrice du polymère conjugué P3HT -RR engendre un certain désordre (cela dépend aussi de la concentration du PCBM incorporé) et limite le mouvement des chaînes polymériques ainsi la structuration du polymère : le spectre d’absorption ne présente pas de structure fine.

L’absorbance des différents composites P3HT :PCBM en fonction de la concentration des SWCNT-C-e incorporée montre que l’ajout de nanotubes de carbone améliore l’absorption de ces composites avant leur traitement thermique. D’une part, les SWCNT-C-e et le polymère conjugué possèdent une absorption en proche infra rouge et le visible respectivement (cf. Insert-Figure III.11), de ce fait le composite possède une large absorption. D’autre part, dans le cas du composite P3HT :PCBM :x % SWCNT-C-e, les courbes d’absorption montrent que le polymère conserve une certaine structuration avec la présence de structures fines. Ceci est en accord avec les résultats rapportés dans des études réalisées par plusieurs chercheurs [Gen06, Arr08, Ber07b, Ber07c, Ike06]. Le maximum de l’absorption du

L’épaule observé à 610 nm dans le cas du composite P3HT : PCBM s’amplifie et augmente en intensité dès l’ajout des SWCNT-C-e. Ceci est associé à une cristallisation partielle du polymère conjugué P3HT -RR [Arr08]. En effet, les chaînes du polymère conjugué enrobent les nanotubes de carbone ainsi un ordre de périodicité peut s’établir. Ceci peut être interprété par une interaction non covalente entre les nanotubes de carbone SWCNT-C-e et le polymère conjugué P3HT -RR. Ainsi les chaînes polymériques de P3HT -RR peuvent se déplacer facilement et entourer les nanotubes de carbone pour former des fibrilles d’une manière régulière et structurée [Dal01, Sin08]. En conséquence, un tel ordre augmente la mobilité des trous [Cha07, Kym08, Sgo08] et aussi le rendement de conversion du dispositif à base de ces composites de manière significative d’où une densité de courant très élevée de l’ordre de 10 mA/cm² (sans traitement thermique des cellules).

Après traitement thermique, l’absorption des différentes couches actives est légèrement améliorée (cf. Figure III.12) : la plus forte absorbance est attribuable aux couches actives à base de P3HT : PCBM dopées SWCNT-C-e.

Le pic et les épauplements observés sur la Figure III.11 comme sur la Figure III.12, proviennent du polymère conjugué P3HT -RR [Bro03]. En conséquence, il apparait que l’insertion des SWCNT-C-e dans le composite P3HT -RR : PCBM modifie le spectre d’absorption de P3HT -RR après recuit. Ceci implique que la structure du polymère est fortement modifiée par son interaction avec les SWCNT-C-e. L’incorporation des SWCNT-C-e modifie la structure du polymère P3HT -RR, qui semble s’ordonner encore d’avantage après recuit, alors qu’il est déjà très ordonné avant traitement thermique [McC01]. En plus cet ordonnancement augmente les interactions interchaines dans le composite, comparé à P3HT : PCBM, en accord avec ce qui a été rapporté [Mus07, Goh06]. Des études
supplémentaires en absorption UV-Visible ont été réalisées sur les différentes couches actives avant et après traitement thermique à différentes températures.

Ces résultats sont également en accord avec les caractéristiques RX obtenues pour les différentes couches actives (P3HT, P3HT :PCBM, P3HT : x % SWCNT-C-e et P3HT :PCBM :x % SWCNT-C-e) avant et après traitement thermique à 100°C pendant 10 minutes. Les diffractogrammes obtenus à partir des couches P3HT :0.4% SWCNT-C-e et P3HT :PCBM :0.4% SWCNT-C-e après recuit à 100°C pendant 10 minutes, sont présentés sur la Figure III.13.

Nous constatons sur la Figure III.13 que l’ajout des SWCNT -C-e favorise la cristallisation des composites P3HT :PCBM. Nous avons constaté l’apparition d’une réflexion supplémentaire (28°) sur le diffractogramme obtenu à partir du composite P3HT :PCBM :0.4% SWCNT -C-e en comparaison avec celui du composite P3HT :PCBM après recuit.(cf. Figure II.6).
Nous constatons sur le Tableau III-7 que la tension V_{oc} augmente après l’incorporation des SWCNT -C-e et peut atteindre 0.751 V dans le cas des systèmes dopés à 0.1% en SWCNT-C-e. Ceci peut se traduire par la forte interaction entre les SWCNT-C-e et le polymère P3HT-RR, ce qui peut entraîner la création des chemins de percolations et ainsi l’augmentation de l’efficacité de l’extraction des charges libres. La tension de circuit ouvert V_{oc} est plus élevée comparée à celle rapportée par S. Berson et al. [Ber07b] et Kymakis et al. [Kym08]. Ceci est probablement attribuable à la purification et la fonctionnalisation des SWCNT-C-e, ainsi qu’à la diminution de leur caractère métallique et à l’augmentation du degré de leur dispersion dans les solvants organiques. Ces importantes variables influencent directement l’interaction entre les polymères et les SWCNT-C-e. Nous remarquons, après traitement thermique des
dispositifs (cf. Tableau III-7), que les performances photovoltaïques ont été légèrement améliorées. Le rendement de conversion le plus élevé 3.66% est obtenu dans le cas des cellules dopées 0.2% SWCNT-C-e.

Des cellules solaires dopées à des concentrations supérieures à 0.6% en SWCNT-C-e ont été élaborées. Nous avons constaté par contre que les performances PV délivrées par ces cellules solaires sont très faibles. Ceci peut être expliqué par la longueur des SWCNT-C-e (comparable à l’épaisseur de la couche active) qui peut affecter les caractéristiques des cellules en résultant des courts circuits.

En conclusion, nous constatons lors des études réalisées sur les cellules solaires à base de composite P3HT -RR :PCBM, dopées à différentes concentrations en SWCNT-C-e, que leur incorporation améliore les contacts entre les matériaux et la mobilité des charges libres ainsi la densité de courant J_{sc} et la tension V_{oc} augmentent. Les caractéristiques photovoltaïques ont été améliorées et leur rendement de conversion peut atteindre 2.85%, avant traitement thermique des cellules PV (cf. Figure III.10). Notre approche consistant à maximiser la génération, la séparation et le transport des porteurs de charges libres dans les cellules solaires, grâce à la fonctionnalisation covalente des SWCNT-C-e [Lan05,Kan09], semble bien vérifiée par nos études. Nos études ont montré aussi que le dopage des cellules solaires à fortes concentrations diminue les performances PV (cf. Tableau III-7).

III.3.2. Cas des mélanges à base de nanotubes de carbone HiPco fonctionnalisés esters (SCWNT-H-e)

A la suite des résultats rapportés ci-dessus à partir de mélanges P3HT :PCBM contenant une faible proportion de nanotubes de carbone CarboLex fonctionnalisés esters (SWCNT-C-e), nous avons également cherché à étudier l’influence de nanotubes de carbone HiPco fonctionnalisés esters (SWCNT-H-e), dans des conditions expérimentales très comparables.

Le mélange P3HT -RR : SWCNT-H-e est réalisé comme précédemment à partir d’une solution dispersion de SWCNT-H-e dans le chlorobenzène à 0.1 mg. mL$^{-1}$, qui est ajoutée à une solution de 10 mg de P3HT dans le chlorobenzène, de façon à obtenir au bilan 1 mL de mélange.
Les mélanges P3HT :SWCNT-H-e ont été réalisés en suivant le même protocole que celui utilisé précédemment à partir des nanotubes CarboLex fonctionnalisés esters (SWCNT-C-e) dispersés dans le chlorobenzène, décrit page 17 et 18 de Chapitre III. Les quantités relatives des constituants dans ces nouveaux mélanges P3HT -RR : SWCNT-H-e sont indiqués dans le Tableau III-8.

<table>
<thead>
<tr>
<th>Volume initial de solution de P3HT (10mg) [(1-x) mL chlorobenzène]</th>
<th>Volume de solution de SWCNT-C-e (x mL)</th>
<th>x % SWCNT-C-e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>0 mL</td>
<td>0%</td>
</tr>
<tr>
<td>0.9 mL</td>
<td>0.1 mL</td>
<td>0.1 %</td>
</tr>
<tr>
<td>0.8 mL</td>
<td>0.2 mL</td>
<td>0.2 %</td>
</tr>
<tr>
<td>0.7 mL</td>
<td>0.3 mL</td>
<td>0.3 %</td>
</tr>
<tr>
<td>0.6 mL</td>
<td>0.4 mL</td>
<td>0.4 %</td>
</tr>
</tbody>
</table>

Tableau III-8 : Quantités relatives de SWCNT-H-e utilisées lors de l’optimisation des cellules solaires à base de P3HT -RR : PCBM :x% SWCNT-H-e.

Les cellules solaires à base de SWCNT-H-e élaborées à partir de ces mélanges selon la configuration ITO/PEDOT :PSS/P3HT :PCBM (1 :0.8) :x% SWCNT-H-e/LiF-Al ont fourni les caractéristiques PV présentées sur la Figure III.14:
Figure III.14 : Caractéristiques I-V des cellules solaires organiques à base de composites P3HT : PCBM : 0.X% SWCNT-H-e, dans l’obscurité et sous éclairement 107 mW/cm² : a) Avant traitement thermique des cellules, b) Après traitement thermique des cellules à 100°C -10 min.
Les paramètres PV extraits des courbes caractéristiques I-V, obtenus avant et après recuit des cellules PV, sont regroupés dans le Tableau III-9 :

<table>
<thead>
<tr>
<th>P3HT : PCBM (1 : 0.8) : x% SWCNT-C-e</th>
<th>Avant traitement Thermique</th>
<th>Après traitement Thermique 100°C-10min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{oc} (V)</td>
<td>J_{sc} (A/cm²)</td>
</tr>
<tr>
<td>0%</td>
<td>0.533</td>
<td>6.8</td>
</tr>
<tr>
<td>0.1%</td>
<td>0.841</td>
<td>9.81</td>
</tr>
<tr>
<td>0.2%</td>
<td>0.816</td>
<td>9.85</td>
</tr>
<tr>
<td>0.3%</td>
<td>0.635</td>
<td>10.1</td>
</tr>
<tr>
<td>0.4%</td>
<td>0.672</td>
<td>8.83</td>
</tr>
</tbody>
</table>

Tableau III-9 : Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT : PCBM : x% SWCNT-H-e avant et après recuit à 100°C pendant 10 minutes, sous éclairement 107 mW/cm².

La Figure III.14 montre que l’addition des SWCNT-H-e améliore nettement les caractéristiques PV des cellules solaires avant traitement thermique. En outre, ces caractéristiques correspondent à des valeurs plus élevées que celles fournies par des cellules à base de SWCNT-C-e (cf. Tableau III-8). La densité de courant de 9.81 mA/cm², la tension à circuit ouvert : 0.841 V, le facteur de forme : 0.417 avec un rendement de conversion de 3.24% sont délivrés par la cellule à base de P3HT : PCBM : 0.1% SWCNT-H-e.

L’influence des SWCNT-H-e sur la couche active peut être étudiée en examinant principalement leur effet sur la densité de courant J_{sc}. On pourra ainsi chercher à corrélérer ce paramètre J_{sc} avec l’évolution de l’absorption des couches actives en tenant compte de la concentration des nanotubes dans ces couches.

Les Figures III.15-a et III-15-b montrent l’évolution de l’absorbance des couches en fonction de différents pourcentages de SWCNT-H-e, avant et après traitement thermique à 100°C pendant 10 minutes. Le Tableau III-9 montre que l’optimum de la densité de courant (10.1 mA/cm²) est obtenu dans le cas des cellules dopées à 0.1 - 0.3 % en SWCNT-H-e avant recuit. Cette valeur est fortement supérieure d’un facteur de 1.45 par rapport à celle délivrée par les cellules à base de composite P3HT : PCBM élaborées dans les mêmes conditions (cf. Tableau III-9).
La corrélation de ces résultats avec les spectres d’absorption obtenus avant traitement thermique des couches actives dopées SWCNT-H-e montre une meilleure organisation des matériaux (une meilleure structuration du polymère), permettant ainsi un bon transport de charges (augmentation de la mobilité des trous) au sein de la couche organique d’une part et la multiplication du taux des excitons photogénérés par l’absorption des SWCNT-H-e dans le proche infra rouge d’autre part. Ces résultats corroborent ceux décrits précédemment dans le cas des SWCNT-C-e et les résultats obtenus en diffraction- RX (cf. Figure III.16). En effet, en raison des plus faibles dimensions structurales des SWCNT-H-e, les chaînes polymères P3HT-RR peuvent se déplacer facilement dans la matrice P3HT:PCBM. De ce fait, les
possibilités de contacts entre les SWCNT-H-e et le polymère conjugué P3HT -RR sont augmentées [Sin08].

Le traitement thermique améliore légèrement l’intensité de l’absorbance des couches actives, et fait apparaître des épaulements aux voisinages de 514, 550 et 610 nm qui sont attribuables une structuration significative du polymère. Ces résultats sont en accord avec ceux obtenus en diffraction-RX (Figure III.20), où un degré élevé de cristallisation de P3HT apparaît.

A partir des différentes séries d’expériences réalisées sur les cellules solaires PV incorporant des SWCNT-C-e ou des SWCNT-H-e, nous avons observé généralement une augmentation significative de la V_{oc} avant traitement thermique des dispositifs, jusqu’à 0.84 V (liée à l’amélioration des contacts entre les matériaux au sein de la matrice et aussi à la réduction de la perte par recombinaison des charges [Cha07]), et de la J_{sc} (liée à l’augmentation de la mobilité des trous) des cellules PV, ainsi qu’une légère diminution de la valeur du facteur de forme ff.

Le traitement thermique des cellules solaires à base de SWCNT-H-e améliore les performances des cellules, et qui peuvent atteindre 0.829 V en V_{oc}, 12.21 en $J_{sc},0.492$ en facteur de forme et 4.69% en rendement de conversion. Ces résultats sont meilleurs que ceux obtenus dans le cas des cellules élaborées à partir de composite P3HT :PCBM : x% SWCNT-C-e. Ceci peut être associé aux dimensions structurales et au taux de groupements esters greffés sur les différents nanotubes de carbone. Les caractéristiques PV (V_{oc} et $\eta\%$) obtenues sont plus élevées que celles délivrées par un dispositif à base de composite P3HT :PCBM. Ceci montre l’intérêt de travailler avec des nouveaux matériaux tels que les nanotubes de carbone fonctionnalisés afin d’améliorer les performances PV des cellules.

Nous constatons que la tension V_{oc} quant à elle diminue continuellement avec l’ajout de SWCNT-H-e, pour atteindre des valeurs comparables à celles obtenues avec les SWCNT-C-e (cf. Tableau III.9). Cette diminution peut être due à l’incorporation croissante des SWCNT-H-e conduisant au renforcement de contact entre les nanotubes de carbone d’ou une forte percolation peut se produire.

Nous avons aussi constaté que les caractéristiques PV des cellules s’affaiblissent lorsque ces cellules sont élaborées en incorporant des concentrations supérieures à 0.4% en SWCNT-H-e. Cette diminution pourrait également provenir de courts-circuits liés à la présence de nanotubes percolant ou filamenteux entre les deux électrodes.
III.4. CELLULES SOLAIRES PHOTOVOLTAÏQUES A RESEAU INTERPENETRE A BASE DE SWCNT-CS-E

Des cellules solaires PV ont été élaborées à base de P3HT : PCBM dopé nanotubes de carbone mono-parois de type Carbon Solutions fonctionnalisés par des groupements esters (SWCNT-CS-e) suivant cette structure : ITO/PEDOT : PSS/P3HT : PCBM (1 : 0.8) : 0.2% SWCNT-CS-e estérisés LiF-Al. Les paramètres PV extraits des caractéristiques $I-V$ (cf. Figure III.17) des cellules avant et après traitement thermique sont donnés par le Tableau III-10:
Tableau III-10: Paramètres photovoltaïques des cellules solaires organiques à base de composites P3HT : PCBM : 0.2% SWCNT-CS-e avant et après recuit à 100°C pendant 10 minutes, sous éclairement 107 mW/cm².

<table>
<thead>
<tr>
<th></th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>ff</th>
<th>η%</th>
<th>V_{oc} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avant traitement thermique 100°C-10min</td>
<td>0.825</td>
<td>0.055</td>
<td>0.436</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Après traitement thermique 100°C-10min</td>
<td>0.754</td>
<td>0.122</td>
<td>0.555</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Les cellules solaires à base de SWCNT-CS-e ont fourni de faibles caractéristiques PV en comparaison avec celles obtenues à partir des cellules à base de SWCNT-C-e ou encore SWCNT-H-e. Ces résultats semblent en accord avec les caractéristiques physico-chimiques de ce type de SWCNT-CS-e voire leurs dimensions structurales qui ont un impact directe sur la morphologie ainsi leur interaction avec le polymère conjugué P3HT -RR d’une part et les courts-circuits qui les résultent d’autre part. Ceci peut être expliqué par leur faible taux de fonctionnalisation et de purification (contenance en nanotubes métalliques et catalyseurs qui représentent des centres de recombinaisons des charges libres). Il faut noter que les cellules solaires dopées à forte concentration en SWCNT-CS-e, n’ont délivré aucun effet PV.

III.5. CONCLUSIONS

A partir des résultats obtenus lors de nos études, nous avons constaté que les SWCNT-C, SWCNT-H et SWCNT-CS utilisés sont plus au moins chimiquement réactifs qui semble être associé à leurs dimensions structurales. Le taux le plus élevé de groupements esters fonctionnalisés a été déterminé pour les SWCNT-H.
Lors de ces études effectuées sur des cellules photovoltaïques à base de P3HT-RR :PCBM incorporant différents types de SWCNT-e, nous avons constaté que les caractéristiques PV dépendent fortement de la concentration des SWCNT-e, de leur nature et du solvant organique utilisé pour la dispersion des nanotubes de carbone. Nous avons remarqué aussi que l’incorporation des SWCNT-C-e et SWCNT-H-e améliore les performances PV sans que les cellules subissent un traitement thermiquement. Ces paramètres V_{oc}, J_{sc} et ff correspondent respectivement à 0.67 V, 10 mA/cm2 et 0.47 dans le cas d’un dispositif PV à base de P3HT-RR :PCBM dopé à 0.2% SWCNT-C-e. Dans le cas des cellules dopées en SWCNT-H-e, les performances PV sont plus élevées avec un rendement de conversion qui peut atteindre 3.2%.

Pour ces mêmes dispositifs, le traitement thermique (100°C, 10 min) a amélioré les caractéristiques PV
- Dans le cas de SWCNT-C-e : V_{oc} = 0.67 V, J_{sc} = 11 mA/cm2, ff = 0.52 et η% de 3.7%.
- Dans le cas de SWCNT-H-e : V_{oc} = 0.83 V, J_{sc} = 12.2 mA/cm2, ff = 0.492 et η% de 4.7%.

Les caractéristiques PV des cellules incorporant des SWCNT-C-e, SWCNT-H-e ou SWCNT-CS-e possédant différentes propriétés physico-chimiques, montrent que ces nanotubes de carbone interagissent différemment avec les matériaux P3HT : PCBM. Le dopage du P3HT : PCBM par les différents SWCNT-C-e ou SWCNT-H-e, améliore la densité du courant J_{sc} et la tension V_{oc} des systèmes. Ceci est principalement dû à l’amélioration de la mobilité des charges libres [Sin08].

Par ailleurs, les dimensions (longueurs et diamètres) des SWCNT ont un impact direct sur le seuil de percolation entre les matériaux au sein de la matrice [Arr08]. Ceci peut expliquer les résultats obtenus pour les systèmes PV dopés SWCNT-H-e où les rendements peuvent atteindre 3.2% avant recuit et 4.7% après recuit, dans le cas d’une couche photovoltaïque P3HT : PCBM : 0.1% SWCNT SWCNT-H-e, avec une tension à circuit ouvert au voisinage de 0.82 V. Il est notable que non seulement le type et les dimensions des SWCNT doivent être pris en compte mais aussi le taux d’impuretés qu’ils contiennent [Arr08]. En effet, nous avons constaté que la tension V_{oc} dépend de la pureté des SWCNT-e; elle augmente quand les nanotubes de carbone sont de haute pureté. Ces résultats sont en accord avec ceux obtenus à partir des systèmes P3HT : PCBM dopés MWCNT par S. Berson [Ber07b, Ber07c] ou encore par B.J. Landi et al. [Lan04] lors de la réalisation des cellules à base de composite P3OT : SWCNT. Ils ont obtenu une V_{oc} supérieure à celle obtenue par S. Bhattacharyya et al.
[Bha04] pour la même structure. Ils ont évoqué que cette augmentation est due à la pureté des SWNT d’où une forte interaction entre le polymère P3OT et SWCNT [Lan05, Bha04].
CONCLUSION GÉNÉRALE

Les études entreprises au long de cette thèse ont porté sur des cellules solaires à réseau interpénétré. L’optimisation d’un tel réseau conduit à un mélange homogène d’un donneur et d’un accepteur intimement liés, favorisant la dissociation, le transport et la collecte des charges (diminution des pertes par recombinaison). Les performances délivrées par ces cellules dépendent de façon critique de la morphologie de la couche active, des contacts entre la couche active et les électrodes, des propriétés physico-chimiques et structures moléculaires des matériaux organiques et de toutes les étapes de la mise en œuvre : les solvants organiques utilisés, les traitements subis par les cellules et les conditions de préparation des dispositifs.

Dans la première partie du mémoire, nous avons étudié différents dérivés de fullerène possédant des structures moléculaires différentes et des caractéristiques électrochimiques très proches en poursuivant différents objectifs. Des cellules solaires de type HJV à base de P3HT:PCBM (1:1 et 1:0.8) ont été réalisées comme cellules de référence à chaque fois que des cellules étaient élaborées à partir de nouveaux dérivés de fullerène.

Pour la première famille de dérivés de fullerène ; dyade C₆₀-pérylène diimide, nous avons mis en évidence l’efficacité du transfert d’énergie entre fullerène et pérylène diimide. Les propriétés physico-chimiques et les performances PV délivrées par les cellules conçues à partir de cette famille dépendent fortement du substituant : OPh/Br ou Cl. Notre approche met en évidence l’effet de la structure moléculaire sur la morphologie des couches actives. En effet, même avec la même quantité de C₆₀ dans la couche active P3HT:dérivé fullerène, avec un rapport en masse 1:1, les résultats photovoltaïques sont très différents.

La seconde famille de cyclopropanofullerène, étudiée avec l’idée d’améliorer la solubilité des fullérènes, confirme cette hypothèse. Nous utilisons le même protocole expérimental basé sur l’utilisation de la même quantité de C₆₀ dans la couche active. En revanche, nous n’utilisons pas trois matériaux différents comme dans le cas de la première famille, mais seulement deux matériaux, le polymère en tant que donneur et le cyclopropanofullerène en tant qu’accepteur.
L’utilisation des cyclopropano[60]fullerène a montré que les performances PV dépendent de la structure moléculaire et plus précisément de la longueur et de la symétrie des chaînes ester greffées sur le noyau C₆₀. Nous avons constaté que l’organisation des matériaux au sein de la couche active dépend directement des structures moléculaires des dérivés. Les mesures par diffraction RX, absorption en UV visible et imagerie AFM le confirment.

L'utilisation de cyclopropano[70]fullerènes améliore les performances PV par l’apparition d’un nouveau photocourant comme révélé par la réponse spectrale des cellules HJV. En effet, en plus du rendement quantique externe de 51% obtenu entre 450 et 530 nm, un pic à 71% est mesuré à 430 nm. Le rendement de conversion délivré par cette cellule est 1.5 % contre 1.23 % dans le cas du dérivé de C₆₀.

Nous observons les meilleurs rendements avec les molécules dont les chaînes sont courtes et dissymétriques. La longueur élevée des chaînes esters (trop de miscibilité) apparaît nuisible pour la mobilité des porteurs de charges libres.

Dans la troisième partie de cette thèse, nous avons élaboré des couches actives à partir de différents types de nanotubes mono-parois fonctionnalisés par des groupements esters (SWCNT-C-e, SWCNT-H-e, SWCNT-CS-e). Il est apparu que la réactivité chimique est différente d’un type de SWCNT-e à un autre. Les caractérisations physico-chimiques réalisées montrent que la fonctionnalisation améliore non seulement la dispersion des SWCNT-e mais aussi changent leurs propriétés physico-chimiques. Les spectres Raman obtenus à partir des SWCNT-H-e mettent en évidence une perte importante de leur caractère métallique. Ceci a été mis à profit pour optimiser les performances des cellules solaires qui en dépendent.

Les cellules solaires à base de ces nanotubes de carbones fonctionnalisés délivrent des rendements de conversion supérieurs à ceux obtenus pour les dispositifs à base de P3HT:PCBM, avant recuit. Notamment, leurs caractéristiques PV (Jsc et Voc) sont améliorées. Des études supplémentaires en diffraction RX et absorption UV-Visible-proche infra-rouge confirment que l’incorporation des SWCNT-e dans une matrice de P3HT:PCBM entraîne la cristallisation du P3HT-RR, modifiant la morphologie des matériaux au sein de la couche active. Après traitement thermique à 100°C pendant 10 minutes, nous avons constaté que les performances PV de ces cellules sont améliorées. Dans le cas des SWCNT-C-e, le rendement de conversion délivré par les cellules est inférieur à 4%, (celui qui est obtenu pour la cellule à
base de P3HT : PCBM), mais avec une tension à circuit ouvert qui atteint 0.75 V. Dans le cas des SWCNT-H-e, les rendements de conversion peuvent atteindre 4.7% dans le cas de la cellule dopée à 0,1% en SWCNT-H-e avec une tension à circuit ouvert qui atteint une valeur de 0.84 V. Cette valeur élevée de V_{oc} permet d’entrevoir une nouvelle approche – l’incorporation de nouveaux matériaux tels que les nanotubes de carbone – permettant l’augmentation de la tension à circuit ouvert qui est un point clé dans le choix des matériaux selon le diagramme de M.C. Scharber [Sch06a]. L’ajout à forte concentration des SWCNT-H-e diminue la tension de circuit ouvert jusqu’à des valeurs comparables à celles obtenues dans le cas des SWCNT-C-e, ce qui peut être attribué à la taille excessive des SWCNT-e. Cette nouvelle méthode peut elle aussi être utilisée pour couvrir des surfaces flexibles étendues sans nécessité de recuit. Ces études nous ont montré que plusieurs paramètres contribuent à l’efficacité des cellules solaires. La maîtrise de chaque paramètre mentionné ci dessous est nécessaire:

- la morphologie via la structure moléculaire et la concentration des matériaux organiques, le solvant organique utilisé
- les propriétés physico-chimiques des matériaux : solubilité, niveaux énergétiques et absorption
- l’architecture des cellules, les contacts avec les électrodes et la nature des électrodes
- le traitement des dispositifs PV : traitement thermique, électrochimique ou application d’une tension externe.

La pleine maîtrise de ces paramètres permettra d’envisager la réalisation des cellules solaires photovoltaïques organiques possédant des rendements de conversion suffisants pour assurer leur développement.
ANNEXES
REFERENCES BIBLIOGRAPHIQUES

