M. Abramowitz and A. Stegun, Pocket book of mathematical functions, 1984.

R. Bafico and P. Baldi, Small random perturbations of peano phenomena, Stochastics, vol.14, issue.3-4, pp.279-29282, 1981.
DOI : 10.1080/17442508208833208

D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de probabilités, pp.177-206, 1983.
DOI : 10.1007/BFb0075847

URL : http://archive.numdam.org/article/SPS_1985__19__177_0.pdf

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, of Mathématiques & Applications (Berlin) [Mathematics & Applications, 1994.

S. Benachour, B. Roynette, D. Talay, and P. Vallois, Nonlinear self-stabilizing processes ??? I Existence, invariant probability, propagation of chaos, Stochastic Processes and their Applications, vol.75, issue.2, pp.173-201, 1998.
DOI : 10.1016/S0304-4149(98)00018-0

S. Benachour, B. Roynette, and P. Vallois, Nonlinear self-stabilizing processes. II. Convergence to invariant probability. Stochastic Process, Appl, vol.75, issue.2, pp.203-224, 1998.

M. Benaïm, M. Ledoux, and O. Raimond, Self-interacting diffusions. Probab. Theory Related Fields, pp.1-41, 2002.

M. Benaïm and O. Raimond, Self-interacting diffusions II: convergenceBinBlaw, Annales de l?Institut Henri Poincare (B) Probability and Statistics, vol.39, issue.6, pp.1043-1055, 2003.
DOI : 10.1016/S0246-0203(03)00028-1

M. Benaïm and O. Raimond, Self-interacting diffusions. III. Symmetric interactions, The Annals of Probability, vol.33, issue.5, pp.1717-1759, 2005.
DOI : 10.1214/009117905000000251

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, The mechanism of stochastic resonance, Journal of Physics A: Mathematical and General, vol.14, issue.11, pp.453-457, 1981.
DOI : 10.1088/0305-4470/14/11/006

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Stochastic resonance in climatic changes, Tellus, vol.34, pp.10-16, 1982.

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, A Theory of Stochastic Resonance in Climatic Change, SIAM Journal on Applied Mathematics, vol.43, issue.3, pp.563-578, 1983.
DOI : 10.1137/0143037

N. Berglund and B. Gentz, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, The Annals of Applied Probability, vol.12, issue.4, pp.1419-1470, 2002.
DOI : 10.1214/aoap/1037125869

URL : https://hal.archives-ouvertes.fr/hal-00003010

N. Berglund and B. Gentz, Geometric singular perturbation theory for stochastic differential equations, Journal of Differential Equations, vol.191, issue.1, pp.1-54, 2003.
DOI : 10.1016/S0022-0396(03)00020-2

URL : https://hal.archives-ouvertes.fr/hal-00003006

N. Berglund and B. Gentz, Noise-induced phenomena in slow-fast dynamical systems. Probability and its Applications, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00010168

F. Bolley, A. Guillin, and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields, pp.3-4541, 2007.
DOI : 10.1007/s00440-006-0004-7

URL : https://hal.archives-ouvertes.fr/hal-00453883

A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times, Journal of the European Mathematical Society, vol.6, issue.4, pp.399-424, 2004.
DOI : 10.4171/JEMS/14

A. Bovier, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues, Journal of the European Mathematical Society, vol.7, issue.1, pp.69-99, 2005.
DOI : 10.4171/JEMS/22

S. C. Carmona and M. I. Freidlin, ON LOGARITHMIC ASYMPTOTICS OF STOCHASTIC RESONANCE FREQUENCIES, Stochastics and Dynamics, vol.03, issue.01, pp.55-71, 2003.
DOI : 10.1142/S0219493703000607

S. Chow, K. Lu, and J. Mallet-paret, Floquet Theory for Parabolic Differential Equations, Journal of Differential Equations, vol.109, issue.1, pp.147-200, 1994.
DOI : 10.1006/jdeq.1994.1047

M. Cranston and Y. L. Jan, Self attracting diffusions: Two case studies, Mathematische Annalen, vol.74, issue.1, pp.87-93, 1995.
DOI : 10.1007/BF01460980

D. A. Dawson and J. Gärtner, Large deviations from the mckean-vlasov limit for weakly interacting diffusions, Stochastics, vol.31, issue.4, pp.247-308, 1987.
DOI : 10.1214/aop/1176994984

M. V. Day, On the exponential exit law in the small parameter exit problem, Stochastics, vol.17, issue.4, pp.297-323, 1983.
DOI : 10.1080/17442508308833244

A. Dembo and O. Zeitouni, Large deviations techniques and applications, Applications of Mathematics, vol.38, 1998.

J. Deuschel and D. W. Stroock, Large deviations, Pure and Applied Mathematics, vol.137, 1989.
DOI : 10.1090/chel/342

C. Donati-martin and Y. Hu, Penalization of the Wiener Measure and Principal Values, Séminaire de Probabilités, XXXVI, pp.251-269, 2003.
DOI : 10.1007/978-3-540-36107-7_9

R. T. Durrett and L. C. Rogers, Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields, pp.337-349, 1992.

M. I. Freidlin and A. D. , Random perturbations of dynamical systems, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1984.

M. I. Freidlin, Quasi-deterministic approximation, metastability and stochastic resonance, Physica D: Nonlinear Phenomena, vol.137, issue.3-4, pp.333-352, 2000.
DOI : 10.1016/S0167-2789(99)00191-8

T. Funaki, A certain class of diffusion processes associated with nonlinear parabolic equations, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.61, issue.3, pp.331-348, 1984.
DOI : 10.1007/BF00535008

L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Reviews of Modern Physics, vol.70, issue.1, pp.223-287, 1998.
DOI : 10.1103/RevModPhys.70.223

S. Goldstein, ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION, The Quarterly Journal of Mechanics and Applied Mathematics, vol.4, issue.2, pp.129-156, 1951.
DOI : 10.1093/qjmam/4.2.129

M. Gradinaru, S. Herrmann, and B. Roynette, A singular large deviations phenomenon, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.37, issue.5, pp.555-580, 2001.
DOI : 10.1016/S0246-0203(01)01075-5

URL : https://hal.archives-ouvertes.fr/hal-00091327

S. Herrmann, Etude de processus de diffusion, Thèse université Henri Poincaré Nancy I, 2001.

S. Herrmann, Ph??nom??ne de Peano et grandes d??viations, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.11, pp.1019-1024, 2001.
DOI : 10.1016/S0764-4442(01)01983-8

S. Herrmann, Syst??me de processus auto-stabilisants, Dissertationes Mathematicae, vol.414, p.49, 2003.
DOI : 10.4064/dm414-0-1

S. Herrmann and P. Imkeller, BARRIER CROSSINGS CHARACTERIZE STOCHASTIC RESONANCE, Stochastics and Dynamics, vol.02, issue.03, pp.413-436, 2002.
DOI : 10.1142/S0219493702000509

S. Herrmann and P. Imkeller, The exit problem for diffusions with time-periodic drift and stochastic resonance, The Annals of Applied Probability, vol.15, issue.1A, pp.39-68, 2005.
DOI : 10.1214/105051604000000530

URL : https://hal.archives-ouvertes.fr/hal-00139455

S. Herrmann and P. Imkeller, Stochastic resonance, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00140404

S. Herrmann, P. Imkeller, and I. Pavlyukevich, Two Mathematical Approaches to Stochastic Resonance, Interacting stochastic systems, pp.327-351, 2005.
DOI : 10.1007/3-540-27110-4_15

URL : https://hal.archives-ouvertes.fr/hal-00140418

S. Herrmann, P. Imkeller, and D. Peithmann, Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: A large deviations approach, The Annals of Applied Probability, vol.16, issue.4, pp.1851-1892, 2006.
DOI : 10.1214/105051606000000385

URL : https://hal.archives-ouvertes.fr/hal-00139972

S. Herrmann, P. Imkeller, and D. Peithmann, Large deviations and a Kramers??? type law for self-stabilizing diffusions, The Annals of Applied Probability, vol.18, issue.4, pp.1379-1423, 2008.
DOI : 10.1214/07-AAP489

URL : https://hal.archives-ouvertes.fr/hal-00139965

S. Herrmann and B. Roynette, Boundedness and convergence of some self-attracting diffusions, Mathematische Annalen, vol.325, issue.1, pp.81-96, 2003.
DOI : 10.1007/s00208-002-0370-0

S. Herrmann and M. Scheutzow, Rate of convergence of some self-attracting diffusions. Stochastic Process, Appl, vol.111, issue.1, pp.41-55, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00146083

S. Herrmann and J. Tugaut, Non uniqueness of stationary measures for self-stabilizing processes. Prépublications de l'Institut Elie Cartan, p.12, 2009.

S. Herrmann and P. Vallois, From persistent random walk to the telegraph noise. Prépublications de l'Institut Elie Cartan, p.46, 2008.

P. Imkeller and I. Pavlyukevich, Stochastic resonance in two-state Markov chains, Archiv der Mathematik, vol.77, issue.1, pp.107-115, 2001.
DOI : 10.1007/PL00000461

P. Imkeller and I. Pavlyukevich, MODEL REDUCTION AND STOCHASTIC RESONANCE, Stochastics and Dynamics, vol.02, issue.04, pp.463-506, 2002.
DOI : 10.1142/S0219493702000583

P. Imkeller and I. Pavlyukevich, The Reduction of Potential Diffusions to Finite State Markov Chains and Stochastic Resonance, IUTAM Symposium on Nonlinear Stochastic Dynamics, pp.57-69, 2003.
DOI : 10.1007/978-94-010-0179-3_5

P. Imkeller and I. Pavlyukevich, Stochastic Resonance: A Comparative Study of Two-State Models, Seminar on Stochastic Analysis, Random Fields and Applications IV, pp.141-154, 2004.
DOI : 10.1007/978-3-0348-7943-9_10

P. Jung, Periodically driven stochastic systems, Physics Reports, vol.234, issue.4-5, pp.175-295, 1993.
DOI : 10.1016/0370-1573(93)90022-6

H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, vol.7, issue.4, pp.284-304, 1940.
DOI : 10.1016/S0031-8914(40)90098-2

P. Kuchment, Floquet theory for partial differential equations, volume 60 of Operator Theory : Advances and Applications, 1993.

A. Kurtzmann, Comportement asymptotique de diffusions renforcées sur R d, 2007.

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's. Stochastic Process, Appl, vol.95, issue.1, pp.109-132, 2001.

DOI : 10.1073/pnas.56.6.1907

H. P. Mckean and J. , Propagation of chaos for a class of non-linear parabolic equations, Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, pp.41-57, 1967.

C. Nicolis, Stochastic aspects of climatic transitions ? responses to periodic forcing, Tellus, vol.34, pp.1-9, 1982.

J. R. Norris, L. C. Rogers, and D. Williams, Self-avoiding random walk : a Brownian motion model with local time drift. Probab. Theory Related Fields, pp.271-287, 1987.

K. Oelschläger, A law of large numbers for moderately interacting diffusion processes, Zeitschrift f??r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.52, issue.2, pp.279-322, 1985.
DOI : 10.1007/BF02450284

E. Orsingher and L. Beghin, Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Related Fields, pp.141-160, 2004.

R. Pemantle and S. Volkov, Vertex-Reinforced Random Walk on Z Has Finite Range, The Annals of Probability, vol.27, issue.3, pp.1368-1388, 1999.
DOI : 10.1214/aop/1022677452

Z. Qian, F. Russo, and W. Zheng, Comparison theorem and estimates for transition probability densities of diffusion processes. Probab. Theory Related Fields, pp.388-406, 2003.

Z. Qian and W. Zheng, Sharp bounds for transition probability densities of a class of diffusions, Comptes Rendus Mathematique, vol.335, issue.11, pp.953-957, 2002.
DOI : 10.1016/S1631-073X(02)02579-7

Z. Qian and W. Zheng, A representation formula for transition probability densities of diffusions and applications. Stochastic Process, Appl, vol.111, issue.1, pp.57-76, 2004.

O. Raimond, Self-attracting diffusions : case of the constant interaction. Probab. Theory Related Fields, pp.177-196, 1997.

E. Renshaw and R. Henderson, The correlated random walk, Journal of Applied Probability, vol.177, issue.02, pp.403-414, 1981.
DOI : 10.1093/biomet/42.3-4.486

M. Rosenblatt, On a class of Markov processes, Transactions of the American Mathematical Society, vol.71, issue.1, pp.120-135, 1951.
DOI : 10.1090/S0002-9947-1951-0043406-9

B. Roynette, P. Vallois, and M. Yor, Some penalisations of the Wiener measure, Japanese Journal of Mathematics, vol.79, issue.1, pp.263-290, 2006.
DOI : 10.1007/s11537-006-0507-0

URL : https://hal.archives-ouvertes.fr/hal-00128461

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1979.
DOI : 10.1007/3-540-28999-2

A. Sznitman, Topics in propagation of chaos, Lecture Notes in Math, vol.22, issue.1, pp.165-251, 1989.
DOI : 10.1070/SM1974v022n01ABEH001689

Y. Tamura, On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.31, issue.1, pp.195-221, 1984.

Y. Tamura, Free energy and the convergence of distributions of diffusion processes of McKean type, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.34, issue.2, pp.443-484, 1987.

G. I. Taylor, Diffusion by Continuous Movements, Proceedings of the London Mathematical Society, pp.196-21222, 1921.
DOI : 10.1112/plms/s2-20.1.196

P. Vallois and C. S. Tapiero, Memory-based persistence in a counting random walk process, Physica A: Statistical Mechanics and its Applications, vol.386, issue.1, pp.303-317, 2007.
DOI : 10.1016/j.physa.2007.08.027

URL : https://hal.archives-ouvertes.fr/hal-00602039

G. H. Weiss, Aspects and applications of the random walk, Random Materials and Processes, 1994.

G. H. Weiss, Some applications of persistent random walks and the telegrapher's equation, Physica A: Statistical Mechanics and its Applications, vol.311, issue.3-4, pp.381-410, 2002.
DOI : 10.1016/S0378-4371(02)00805-1

L. Yan, Y. Sun, and Y. Lu, On the Linear Fractional Self-attracting Diffusion, Journal of Theoretical Probability, vol.28, issue.825, pp.502-516, 2008.
DOI : 10.1007/s10959-007-0113-y