R. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, and I. Gunsalus, Dynamics of ligand binding to myoglobin, Biochemistry, vol.14, issue.24, pp.5355-5373, 1975.
DOI : 10.1021/bi00695a021

J. Lakowicz and G. Weber, Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale, Biochemistry, vol.12, issue.21, pp.4171-4179, 1973.
DOI : 10.1021/bi00745a021

H. Park, S. Kim, A. Sancar, and J. Deisenhofer, Crystal structure of DNA photolyase from Escherichia coli, Science, vol.268, issue.5219, pp.1866-1872, 1995.
DOI : 10.1126/science.7604260

A. Sancar, Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors, Chemical Reviews, vol.103, issue.6, pp.2203-2237, 2003.
DOI : 10.1021/cr0204348

A. Kelner, Effect of Visible Light on the Recovery of Streptomyces Griseus Conidia from Ultra-violet Irradiation Injury, Proceedings of the National Academy of Sciences, vol.35, issue.2, pp.73-79, 1949.
DOI : 10.1073/pnas.35.2.73

H. Harm and C. Rupert, Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes: I. In vitro studies with haemophilus influenzae transforming DNA and yeast photoreactivating enzyme Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, p.355, 1968.

S. Weber, Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1707, issue.1, pp.1-23, 2005.
DOI : 10.1016/j.bbabio.2004.02.010

E. Schleicher, R. Bittl, and S. Weber, New roles of flavoproteins in molecular cell biology: Blue-light active flavoproteins studied by electron paramagnetic resonance, FEBS Journal, vol.94, issue.16, p.9999, 2009.
DOI : 10.1111/j.1742-4658.2009.07141.x

N. Tkachenko, Optical Spectroscopy Methods and Instrumentations, pp.129-149

P. Heelis and A. Sancar, Photochemical properties of Escherichia coli DNA photolyase: a flash photolysis study, Biochemistry, vol.25, issue.25, pp.8163-8166, 1986.
DOI : 10.1021/bi00373a006

M. Cheung, I. Daizadeh, A. Stuchebrukhov, and P. Heelis, Pathways of Electron Transfer in Escherichia coli DNA Photolyase:Trp306 to FADH, Biophysical Journal, vol.76, issue.3, pp.1241-1249, 1999.
DOI : 10.1016/S0006-3495(99)77287-5

C. Aubert, M. Vos, P. Mathis, A. Eker, and K. Brettel, Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, vol.405, pp.586-590, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00837017

M. Byrdin, A. Eker, M. Vos, and K. Brettel, Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation, Proceedings of the National Academy of Sciences, vol.100, issue.15, pp.8676-8681, 2003.
DOI : 10.1073/pnas.1531645100

M. Byrdin, S. Villette, A. Espagne, A. Eker, and K. Brettel, Polarized Transient Absorption To Resolve Electron Transfer between Tryptophans in DNA Photolyase, The Journal of Physical Chemistry B, vol.112, issue.22, pp.6866-6871, 2008.
DOI : 10.1021/jp711435y

URL : https://hal.archives-ouvertes.fr/hal-00512461

A. Lukacs, A. Eker, M. Byrdin, K. Brettel, and M. Vos, Electron Hopping through the 15 ?? Triple Tryptophan Molecular Wire in DNA Photolyase Occurs within 30 ps, Journal of the American Chemical Society, vol.130, issue.44, pp.14394-14395, 2008.
DOI : 10.1021/ja805261m

URL : https://hal.archives-ouvertes.fr/hal-00824266

V. Balland, M. Byrdin, A. Eker, M. Ahmad, and K. Brettel, What Makes the Difference between a Cryptochrome and DNA Photolyase? A Spectroelectrochemical Comparison of the Flavin Redox Transitions, Journal of the American Chemical Society, vol.131, issue.2, pp.426-427, 2009.
DOI : 10.1021/ja806540j

URL : https://hal.archives-ouvertes.fr/hal-00554092

M. Byrdin, V. Sartor, A. Eker, M. Vos, C. Aubert et al., Intraprotein electron transfer and proton dynamics during photoactivation of DNA photolyase from E. coli: review and new insights from an ???inverse??? deuterium isotope effect, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1655, pp.64-70, 2004.
DOI : 10.1016/j.bbabio.2003.07.001

URL : https://hal.archives-ouvertes.fr/hal-00831846

A. Lukacs, A. Eker, M. Byrdin, S. Villette, J. Pan et al., Role of the Middle Residue in the Triple Tryptophan Electron Transfer Chain of DNA Photolyase:?? Ultrafast Spectroscopy of a Trp???Phe Mutant, The Journal of Physical Chemistry B, vol.110, issue.32, pp.15654-15658, 2006.
DOI : 10.1021/jp063686b

URL : https://hal.archives-ouvertes.fr/halshs-00102077

J. Pan, M. Byrdin, C. Aubert, A. Eker, K. Brettel et al., Excited-State Properties of Flavin Radicals in Flavoproteins:?? Femtosecond Spectroscopy of DNA Photolyase, Glucose Oxidase, and Flavodoxin, The Journal of Physical Chemistry B, vol.108, issue.28, pp.10160-10167, 2004.
DOI : 10.1021/jp037837b

URL : https://hal.archives-ouvertes.fr/hal-00831842

M. Christie, R. Norrish, and G. Porter, The Recombination of Atoms. I. Iodine Atoms in the Rare Gases, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.216, issue.1125, pp.152-165, 1953.
DOI : 10.1098/rspa.1953.0013

R. Norrish and G. Porter, Chemical Reactions Produced by Very High Light Intensities, Nature, vol.164, issue.4172, pp.658-658, 1949.
DOI : 10.1038/164658a0

P. Rentzepis, Direct measurements of radiationless transitions in liquids, Chemical Physics Letters, vol.2, issue.2, pp.117-120, 1968.
DOI : 10.1016/0009-2614(68)80066-1

M. Topp, P. Rentzepis, and R. Jones, ???sec Range, Journal of Applied Physics, vol.42, issue.9, pp.3415-3419, 1971.
DOI : 10.1063/1.1660747

A. Zewail, Femtochemistry:?? Recent Progress in Studies of Dynamics and Control of Reactions and Their Transition States, The Journal of Physical Chemistry, vol.100, issue.31, pp.12701-12724, 1996.
DOI : 10.1021/jp960658s

M. Byrdin, V. Thiagarajan, S. Villette, A. Espagne, and K. Brettel, Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption, Review of Scientific Instruments, vol.80, issue.4, p.43102, 2009.
DOI : 10.1063/1.3117208

A. Mees, T. Klar, P. Gnau, U. Hennecke, A. Eker et al., Crystal Structure of a Photolyase Bound to a CPD-Like DNA Lesion After in Situ Repair, Science, vol.306, issue.5702, pp.1789-1793, 2004.
DOI : 10.1126/science.1101598

V. Berg, B. Sancar, and G. , Evidence for Dinucleotide Flipping by DNA Photolyase, Journal of Biological Chemistry, vol.273, issue.32, pp.20276-20284, 1998.
DOI : 10.1074/jbc.273.32.20276

S. Jordan, J. Alderfer, L. Chanderkar, and M. Jorns, Reaction of Escherichia coli and yeast photolyases with homogeneous short-chain oligonucleotide substrates, Biochemistry, vol.28, issue.20, pp.8149-8153, 1989.
DOI : 10.1021/bi00446a028

Y. Kao, C. Saxena, L. Wang, A. Sancar, and D. Zhong, Direct observation of thymine dimer repair in DNA by photolyase, Proceedings of the National Academy of Sciences, vol.102, issue.45, pp.16128-16132, 2005.
DOI : 10.1073/pnas.0506586102

S. Kim, P. Heelis, and A. Sancar, Energy transfer (deazaflavin .fwdarw. FADH2) and electron transfer (FADH2 .fwdarw. T.ltbbrac..rtbbrac.T) kinetics in Anacystis nidulans photolyase, Biochemistry, vol.31, issue.45, pp.11244-11248, 1992.
DOI : 10.1021/bi00160a040

A. Espagne, M. Byrdin, A. Eker, and K. Brettel, Very Fast Product Release and Catalytic Turnover of DNA Photolyase, ChemBioChem, vol.107, issue.11, pp.1777-1780, 2009.
DOI : 10.1002/cbic.200900328

V. Thiagarajan, S. Villette, A. Espagne, A. Eker, K. Brettel et al., DNA Repair by Photolyase: A Novel Substrate with Low Background Absorption around 265 nm for Transient Absorption Studies in the UV, Biochemistry, vol.49, issue.2, pp.297-303, 2010.
DOI : 10.1021/bi901562a

URL : https://hal.archives-ouvertes.fr/hal-00529478

C. Chatgilialoglu, M. Guerra, P. Kaloudis, C. Houee-levin, J. Marignier et al., Ring Opening of the Cyclobutane in a Thymine Dimer Radical Anion, Chemistry - A European Journal, vol.103, issue.32, pp.8979-8984, 2007.
DOI : 10.1002/chem.200700807

F. Masson, T. Laino, U. Rothlisberger, and J. Hutter, A QM/MM Investigation of Thymine Dimer Radical Anion Splitting Catalyzed by DNA Photolyase, ChemPhysChem, vol.103, issue.2, pp.400-410, 2009.
DOI : 10.1002/cphc.200800624

K. Zeldovich, P. Chen, and E. Shakhnovich, Protein stability imposes limits on organism complexity and speed of molecular evolution, Proceedings of the National Academy of Sciences, vol.104, issue.41, pp.16152-16157, 2007.
DOI : 10.1073/pnas.0705366104

N. Tokuriki and D. Tawfik, Stability effects of mutations and protein evolvability, Current Opinion in Structural Biology, vol.19, issue.5, pp.596-604, 2009.
DOI : 10.1016/j.sbi.2009.08.003

H. Eyring, The Activated Complex in Chemical Reactions, The Journal of Chemical Physics, vol.3, issue.2, pp.107-115, 1935.
DOI : 10.1063/1.1749604

H. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica A: Statistical and Theoretical Physics, pp.284-304, 1940.

R. Grote and J. Hynes, The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models, The Journal of Chemical Physics, vol.73, issue.6, pp.2715-2732, 1980.
DOI : 10.1063/1.440485

P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after Kramers, Reviews of Modern Physics, vol.62, issue.2, p.251, 1990.
DOI : 10.1103/RevModPhys.62.251

M. Olsson, W. Parson, and A. Warshel, Dynamical Contributions to Enzyme Catalysis:??? Critical Tests of A Popular Hypothesis, Chemical Reviews, vol.106, issue.5, pp.1737-1756, 2006.
DOI : 10.1021/cr040427e

J. Hynes, Autobiography of James T. (Casey) Hynes, The Journal of Physical Chemistry B, vol.112, pp.191-194, 2008.

H. Zhou and J. Mccammon, The gates of ion channels and enzymes, Trends in Biochemical Sciences, vol.35, issue.3, pp.179-185, 2010.
DOI : 10.1016/j.tibs.2009.10.007

V. Hilser and E. Thompson, Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins, Proceedings of the National Academy of Sciences, vol.104, issue.20, pp.8311-8315, 2007.
DOI : 10.1073/pnas.0700329104

S. Hay, L. Johannissen, M. Sutcliffe, and N. Scrutton, Barrier Compression and Its Contribution to Both Classical and Quantum Mechanical Aspects of Enzyme Catalysis, Biophysical Journal, vol.98, issue.1, pp.121-128, 2010.
DOI : 10.1016/j.bpj.2009.09.045

H. Wang, S. Lin, J. Allen, J. Williams, S. Blankert et al., Protein Dynamics Control the Kinetics of Initial Electron Transfer in Photosynthesis, Science, vol.316, issue.5825, pp.747-750, 2007.
DOI : 10.1126/science.1140030

D. Beratan, S. Skourtis, I. Balabin, A. Balaeff, S. Keinan et al., Steering Electrons on Moving Pathways, Accounts of Chemical Research, vol.42, issue.10, pp.1669-1678, 2009.
DOI : 10.1021/ar900123t

C. Jackson, J. Foo, N. Tokuriki, L. Afriat, P. Carr et al., Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase, Proceedings of the National Academy of Sciences, vol.106, issue.51, pp.21631-21636, 2009.
DOI : 10.1073/pnas.0907548106

H. Zhou, From Induced Fit to Conformational Selection: A Continuum of Binding Mechanism Controlled by the Timescale of Conformational Transitions, Biophysical Journal, vol.98, issue.6, pp.15-17, 2010.
DOI : 10.1016/j.bpj.2009.11.029

K. Pervushin, K. Vamvaca, B. Vogeli, and D. Hilvert, Structure and dynamics of a molten globular enzyme, Nature Structural & Molecular Biology, vol.26, issue.12, pp.1202-1206, 2007.
DOI : 10.1038/nsmb1325

M. Roca, B. Messer, D. Hilvert, and A. Warshel, On the relationship between folding and chemical landscapes in enzyme catalysis, Proceedings of the National Academy of Sciences, vol.105, issue.37, pp.13877-13882, 2008.
DOI : 10.1073/pnas.0803405105

H. Frauenfelder, S. Sligar, and P. Wolynes, The energy landscapes and motions of proteins, Science, vol.254, issue.5038, pp.1598-1603, 1991.
DOI : 10.1126/science.1749933

R. Wolfenden and M. Snider, The Depth of Chemical Time and the Power of Enzymes as Catalysts, Accounts of Chemical Research, vol.34, issue.12, pp.938-945, 2001.
DOI : 10.1021/ar000058i

V. Schramm, Enzymatic transition states and transition state analogues, Current Opinion in Structural Biology, vol.15, issue.6, p.604, 2005.
DOI : 10.1016/j.sbi.2005.10.017

W. Kauzmann, Some Factors in the Interpretation of Protein Denaturation, Advances in Protein Chemistry, vol.14, pp.1-63, 1959.
DOI : 10.1016/S0065-3233(08)60608-7

J. Rupley and G. Careri, Protein Hydration and Function, Advances in Protein Chemistry, pp.37-172, 1991.
DOI : 10.1016/S0065-3233(08)60197-7

V. Kurkal, R. Daniel, J. Finney, M. Tehei, R. Dunn et al., Enzyme Activity and Flexibility at Very Low Hydration, Biophysical Journal, vol.89, issue.2, pp.1282-1287, 2005.
DOI : 10.1529/biophysj.104.058677

J. Pérez, J. Zanotti, and D. D. , Evolution of the Internal Dynamics of Two Globular Proteins from Dry Powder to Solution, Biophysical Journal, vol.77, issue.1, pp.454-469, 1999.
DOI : 10.1016/S0006-3495(99)76903-1

A. Frölich, F. Gabel, M. Jasnin, U. Lehnert, D. Oesterhelt et al., From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity, Faraday Discuss., vol.301, pp.117-130, 2009.
DOI : 10.1039/B805506H

A. Schenk, S. Ivanchenko, C. Rocker, J. Wiedenmann, and G. Nienhaus, Photodynamics of Red Fluorescent Proteins Studied by Fluorescence Correlation Spectroscopy, Biophysical Journal, vol.86, issue.1, pp.384-394, 2004.
DOI : 10.1016/S0006-3495(04)74114-4

P. Fenimore, H. Frauenfelder, B. Mcmahon, and F. Parak, Slaving: Solvent fluctuations dominate protein dynamics and functions, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.16047-16051, 2002.
DOI : 10.1073/pnas.212637899

D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. Marden et al., Solvent viscosity and protein dynamics, Biochemistry, vol.19, issue.23, pp.5147-5157, 1980.
DOI : 10.1021/bi00564a001

S. Khodadadi, J. Roh, A. Kisliuk, E. Mamontov, M. Tyagi et al., Dynamics of Biological Macromolecules: Not a Simple Slaving by Hydration Water, Biophysical Journal, vol.98, issue.7, pp.1321-1326, 2010.
DOI : 10.1016/j.bpj.2009.12.4284

P. Ball, Water as an Active Constituent in Cell Biology, Chemical Reviews, vol.108, issue.1, pp.74-108, 2007.
DOI : 10.1021/cr068037a

C. Atilgan, A. Aykut, and A. Atilgan, How a Vicinal Layer of Solvent Modulates the Dynamics of Proteins, Biophysical Journal, vol.94, issue.1, pp.79-89, 2008.
DOI : 10.1529/biophysj.107.116426

P. Karplus and C. Faerman, Ordered water in macromolecular structure, Current Opinion in Structural Biology, vol.4, issue.5, pp.770-776, 1994.
DOI : 10.1016/S0959-440X(94)90178-3

K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt et al., Coupling of protein and hydration-water dynamics in biological membranes, Proceedings of the National Academy of Sciences, pp.18049-18054, 2007.
DOI : 10.1073/pnas.0706566104

K. Tielrooij, D. Paparo, L. Piatkowski, H. Bakker, and M. Bonn, Dielectric Relaxation Dynamics of Water in Model Membranes Probed by Terahertz Spectroscopy, Biophysical Journal, vol.97, issue.9, pp.2484-2492, 2009.
DOI : 10.1016/j.bpj.2009.08.024

D. Laage and J. Hynes, Do more strongly hydrogen-bonded water molecules reorient more slowly ? Chemical Physics Letters, pp.80-85, 2006.

F. Franks, Biophysics and biochemistry at low temperatures, FEBS Letters, vol.220, issue.2, 1985.
DOI : 10.1016/0014-5793(87)80854-2

O. Okan, A. Atilgan, and C. Atilgan, Nanosecond Motions in Proteins Impose Bounds on the Timescale Distributions of Local Dynamics, Biophysical Journal, vol.97, issue.7, pp.2080-2088, 2009.
DOI : 10.1016/j.bpj.2009.07.036

C. Dias, T. Ala-nissila, J. Wong-ekkabut, I. Vattulainen, M. Grant et al., The hydrophobic effect and its role in cold denaturation, Cryobiology, vol.60, issue.1, pp.91-99, 2010.
DOI : 10.1016/j.cryobiol.2009.07.005

B. Wowk, Thermodynamic aspects of vitrification, Cryobiology, vol.60, issue.1, pp.11-22, 2010.
DOI : 10.1016/j.cryobiol.2009.05.007

K. Henzler-wildman, M. Lei, V. Thai, S. Kerns, M. Karplus et al., A hierarchy of timescales in protein dynamics is linked to enzyme catalysis, Nature, vol.21, issue.7171, p.913, 2007.
DOI : 10.1038/nature06407

K. Henzler-wildman, V. Thai, M. Lei, M. Ott, M. Wolf-watz et al., Intrinsic motions along an enzymatic reaction trajectory, Nature, vol.49, issue.7171, pp.838-844, 2007.
DOI : 10.1038/nature06410

R. Callender and R. Dyer, Advances in Time-Resolved Approaches To Characterize the Dynamical Nature of Enzymatic Catalysis, Chemical Reviews, vol.106, issue.8, pp.3031-3042, 2006.
DOI : 10.1021/cr050284b

L. Stryer and R. Haugland, Energy transfer: a spectroscopic ruler., Proceedings of the National Academy of Sciences, vol.58, issue.2, pp.719-726, 1967.
DOI : 10.1073/pnas.58.2.719

R. Dale, J. Eisinger, and W. Blumberg, The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer, Biophysical Journal, vol.26, issue.2, pp.161-193, 1979.
DOI : 10.1016/S0006-3495(79)85243-1

D. Beljonne, C. Curutchet, G. Scholes, and R. Silbey, Beyond Fo??rster Resonance Energy Transfer in Biological and Nanoscale Systems, The Journal of Physical Chemistry B, vol.113, issue.19, pp.6583-6599, 2009.
DOI : 10.1021/jp900708f

H. Singh and B. Bagchi, Non-Förster distance and orientation dependence of energy transfer and applications of fluorescence resonance energy transfer to polymers and nanoparticles: How accurate is the spectroscopic ruler with 1/R 6 rule? Current Science, pp.1710-1719, 2005.

R. Knox and H. Van-amerongen, Refractive Index Dependence of the F??rster Resonance Excitation Transfer Rate, The Journal of Physical Chemistry B, vol.106, issue.20, pp.5289-5293, 2002.
DOI : 10.1021/jp013927+

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, Carbocyanine Dyes as Efficient Reversible Single-Molecule Optical Switch, Journal of the American Chemical Society, vol.127, issue.11, pp.3801-3806, 2005.
DOI : 10.1021/ja044686x

H. Chung, J. Louis, and W. Eaton, Distinguishing between Protein Dynamics and Dye Photophysics in??Single-Molecule FRET Experiments, Biophysical Journal, vol.98, issue.4, pp.696-706, 2010.
DOI : 10.1016/j.bpj.2009.12.4322

J. Colletier, D. Bourgeois, B. Sanson, D. Fournier, J. Sussman et al., Shootand-Trap: Use of specific x-ray damage to study structural protein dynamics by temperature-control led cryo-crystallography, Proceedings of the National Academy of Sciences of the United States of America, pp.11742-11747, 2008.

D. Bourgeois and M. Weik, Kinetic protein crystallography: a tool to watch proteins in action, Crystallography Reviews, vol.71, issue.2, pp.87-118, 2009.
DOI : 10.1080/08893110802604868

D. Bourgeois and A. Royant, Advances in kinetic protein crystallography, Current Opinion in Structural Biology, vol.15, issue.5, pp.538-547, 2005.
DOI : 10.1016/j.sbi.2005.08.002

F. Schotte, M. Lim, T. Jackson, A. Smirnov, J. Soman et al., Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography, Science, vol.300, issue.5627, pp.1944-1947
DOI : 10.1126/science.1078797

H. Ihee, S. Rajagopal, V. Pahl, R. Anderson, S. Schmidt et al., From The Cover: Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds, Proceedings of the National Academy of Sciences, vol.102, issue.20, pp.7145-7150
DOI : 10.1073/pnas.0409035102

J. Knapp, R. Pahl, V. Royer, and W. , Allosteric action in real time: Time-resolved crystallographic studies of a cooperative dimeric hemoglobin, Proceedings of the National Academy of Sciences, vol.103, issue.20, pp.7649-7654
DOI : 10.1073/pnas.0509411103

A. Wöhri, G. Katona, L. Johansson, E. Fritz, E. Malmerberg et al., Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction, Science, vol.328, issue.5978, pp.630-633, 2010.
DOI : 10.1126/science.1186159

A. Oleinikova, P. Sasisanker, and H. Weingartner, What Can Really Be Learned from Dielectric Spectroscopy of Protein Solutions? A Case Study of Ribonuclease A, The Journal of Physical Chemistry B, vol.108, issue.24, pp.8467-8474, 2004.
DOI : 10.1021/jp049618b

N. Nandi, K. Bhattacharyya, and B. Bagchi, Dielectric Relaxation and Solvation Dynamics of Water in Complex Chemical and Biological Systems, Chemical Reviews, vol.100, issue.6, pp.2013-2046, 2000.
DOI : 10.1021/cr980127v

G. Zaccai, How Soft Is a Protein? A Protein Dynamics Force Constant Measured by Neutron Scattering, Science, vol.288, issue.5471, pp.1604-1607, 2000.
DOI : 10.1126/science.288.5471.1604

F. Gabel, D. Bicout, U. Lehnert, M. Tehei, M. Weik et al., Protein dynamics studied by neutron scattering, Quarterly Reviews of Biophysics, vol.35, issue.4, pp.327-367, 2002.
DOI : 10.1017/S0033583502003840

E. Haustein and P. Schwille, Fluorescence Correlation Spectroscopy: Novel Variations of an Established Technique, Annual Review of Biophysics and Biomolecular Structure, vol.36, issue.1, pp.151-169, 2007.
DOI : 10.1146/annurev.biophys.36.040306.132612

A. Loman, I. Gregor, C. Stutz, M. Mund, and J. Enderlein, Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy, Photochem. Photobiol. Sci., vol.78, issue.2, pp.627-636, 2010.
DOI : 10.1039/B9PP00029A

J. Ries, S. Yu, M. Burkhardt, M. Brand, and P. Schwille, Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms, Nature Methods, vol.125, issue.9, pp.643-645, 2009.
DOI : 10.1364/AO.40.004011

C. Schmuttenmaer, Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy, Chemical Reviews, vol.104, issue.4, pp.1759-1780, 2004.
DOI : 10.1021/cr020685g

B. Born and M. Havenith, Terahertz Dance of Proteins and Sugars with Water, Journal of Infrared, Millimeter, and Terahertz Waves, vol.71, pp.1245-1254, 2009.
DOI : 10.1007/s10762-009-9514-6

M. Garcia-viloca, J. Gao, M. Karplus, and D. Truhlar, How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations, Science, vol.303, issue.5655, pp.186-195
DOI : 10.1126/science.1088172

A. Warshel and M. Levitt, Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, Journal of Molecular Biology, vol.103, issue.2, pp.227-249, 1976.
DOI : 10.1016/0022-2836(76)90311-9

P. Markwick, G. Bouvignies, L. Salmon, J. Mccammon, M. Nilges et al., Toward a Unified Representation of Protein Structural Dynamics in Solution, Journal of the American Chemical Society, vol.131, issue.46, pp.16968-16975, 2009.
DOI : 10.1021/ja907476w

A. Barducci, M. Bonomi, and M. Parinello, Linking Well-Tempered Metadynamics Simulations with Experiments, Biophysical Journal, vol.98, issue.9, pp.44-46, 2010.
DOI : 10.1016/j.bpj.2010.01.033

P. Zhuravlev, C. Materese, and G. Papoian, Deconstructing the Native State: Energy Landscapes, Function, and Dynamics of Globular Proteins, The Journal of Physical Chemistry B, vol.113, issue.26, pp.8800-8812, 2009.
DOI : 10.1021/jp810659u

D. Prada-gracia, J. Gomez-gardenes, P. Echenique, and F. Falo, Exploring the Free Energy Landscape: From Dynamics to Networks and Back, PLoS Computational Biology, vol.5, issue.6, p.1000415, 2009.
DOI : 10.1371/journal.pcbi.1000415.s003

E. Klipp, Timing matters. FEBS letters, pp.4013-4018, 2009.

H. Van-amerongen and R. Van-grondelle, [9] Transient absorption spectroscopy in study of processes and dynamics in biology, In Biochemical Spectroscopy. Edited by Methods In Enzymology, vol.1995, issue.246, pp.201-226
DOI : 10.1016/0076-6879(95)46011-X

S. Pal, J. Peon, and A. Zewail, Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution, Proceedings of the National Academy of Sciences, vol.99, issue.4, pp.1763-1768, 2002.
DOI : 10.1073/pnas.042697899

S. Pal and A. Zewail, Dynamics of Water in Biological Recognition, Chemical Reviews, vol.104, issue.4, pp.2099-2124, 2004.
DOI : 10.1021/cr020689l

T. Li, A. Hassanali, Y. Kao, D. Zhong, and S. Singer, Hydration Dynamics and Time Scales of Coupled Water???Protein Fluctuations, Journal of the American Chemical Society, vol.129, issue.11, pp.3376-3382, 2007.
DOI : 10.1021/ja0685957

D. Zhong, Hydration Dynamics and Coupled Water???Protein Fluctuations Probed by Intrinsic Tryptophan, Advances in chemical physics, pp.83-149
DOI : 10.1002/9780470508602.ch3

L. Zhang, Y. Yang, Y. Kao, L. Wang, and D. Zhong, Protein Hydration Dynamics and Molecular Mechanism of Coupled Water???Protein Fluctuations, Journal of the American Chemical Society, vol.131, issue.30, pp.10677-10691, 2009.
DOI : 10.1021/ja902918p

J. Stevens, J. Link, Y. Kao, C. Zang, L. Wang et al., Ultrafast Dynamics of Resonance Energy Transfer in Myoglobin: Probing Local Conformation Fluctuations, The Journal of Physical Chemistry B, vol.114, issue.3, pp.1498-1505, 2010.
DOI : 10.1021/jp910013f

C. Chang, Y. Kao, J. Li, C. Tan, T. Li et al., Ultrafast solvation dynamics at binding and active sites of photolyases, Proceedings of the National Academy of Sciences of the United States of America, pp.2914-2919, 2010.
DOI : 10.1073/pnas.1000001107

P. Abbyad, W. Childs, X. Shi, and S. Boxer, Dynamic Stokes shift in green fluorescent protein variants, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20189-20194, 2007.
DOI : 10.1073/pnas.0706185104

P. Carey, Spectroscopic Characterization of Distortion in Enzyme Complexes, Chemical Reviews, vol.106, issue.8, pp.3043-3054, 2006.
DOI : 10.1021/cr0502854

C. Fang, R. Frontiera, R. Tran, and R. Mathies, Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy, Nature, vol.89, issue.7270, pp.200-204, 2009.
DOI : 10.1038/nature08527

B. English, M. W. Van-oijen, A. Lee, K. Luo, G. Sun et al., Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited, Nature Chemical Biology, vol.2, issue.3, pp.87-94, 2006.
DOI : 10.1038/nchembio0306-168

F. Pinaud, S. Clarke, A. Sittner, and M. Dahan, Probing cellular events, one quantum dot at a time, Nature Methods, vol.9, issue.4, pp.275-285, 2010.
DOI : 10.1038/nmeth.1444

S. Ebbinghaus, A. Dhar, J. Mcdonald, and M. Gruebele, Protein folding stability and dynamics imaged in a living cell, Nature Methods, vol.44, issue.4, pp.319-323, 2010.
DOI : 10.1038/nmeth.1435

A. Deniz, S. Mukhopadhyay, and E. Lemke, Single-molecule biophysics: at the interface of biology, physics and chemistry, Journal of The Royal Society Interface, vol.14, issue.6, pp.15-45
DOI : 10.1016/S0079-6107(00)00014-6

M. Chalfie and . Gfp, GFP: Lighting Up Life (Nobel Lecture), Angewandte Chemie International Edition, vol.119, issue.31, pp.5603-5611, 2009.
DOI : 10.1002/anie.200902040

R. Tsien, Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture), Angewandte Chemie International Edition, vol.4, issue.31, pp.5612-5626, 2009.
DOI : 10.1002/anie.200901916

S. Violot, P. Carpentier, L. Blanchoin, and D. Bourgeois, Reverse pH-Dependence of Chromophore Protonation Explains the Large Stokes Shift of the Red Fluorescent Protein mKeima, Journal of the American Chemical Society, vol.131, issue.30, p.1035610357, 2009.
DOI : 10.1021/ja903695n

URL : https://hal.archives-ouvertes.fr/hal-00424231

P. Carpentier, S. Violot, L. Blanchoin, and D. Bourgeois, Structural basis for the phototoxicity of the fluorescent protein KillerRed, FEBS Letters, vol.9, issue.17, pp.2839-2842, 2009.
DOI : 10.1016/j.febslet.2009.07.041

URL : https://hal.archives-ouvertes.fr/hal-00437274

M. Lelimousin, V. Adam, G. Nienhaus, D. Bourgeois, and M. Field, Photoconversion of the Fluorescent Protein EosFP: A Hybrid Potential Simulation Study Reveals Intersystem Crossings, Journal of the American Chemical Society, vol.131, issue.46, pp.16814-16823, 2009.
DOI : 10.1021/ja905380y

V. Adam, P. Carpentier, S. Violot, M. Lelimousin, C. Darnault et al., Structural Basis of X-ray-Induced Transient Photobleaching in a Photoactivatable Green Fluorescent Protein, Journal of the American Chemical Society, vol.131, issue.50, p.18063, 2009.
DOI : 10.1021/ja907296v

URL : https://hal.archives-ouvertes.fr/hal-00474158

A. Warshel, P. Sharma, M. Kato, Y. Xiang, H. Liu et al., Electrostatic Basis for Enzyme Catalysis, Chem. Rev, 2006.

M. Prakash and R. Marcus, An interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations, Proceedings of the National Academy of Sciences, vol.104, issue.41, pp.15982-15987, 2007.
DOI : 10.1073/pnas.0707859104

M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic et al., Attosecond metrology, Nature, vol.414, issue.6863, pp.509-513, 2001.
DOI : 10.1038/35107000

S. Hammes-schiffer, S. Benkovic, . Relating, . Motion, and . Catalysis, Relating Protein Motion to Catalysis, Annual Review of Biochemistry, vol.75, issue.1, pp.519-541, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142800

M. Dantus and A. Zewail, Introduction:?? Femtochemistry, Chemical Reviews, vol.104, issue.4, pp.1717-1718, 2004.
DOI : 10.1021/cr020690k

S. Gill, V. Hippel, and P. , Calculation of protein extinction coefficients from amino acid sequence data, Analytical Biochemistry, vol.182, issue.2, pp.319-326, 1989.
DOI : 10.1016/0003-2697(89)90602-7

J. Lakowicz and G. Weber, Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules, Biochemistry, vol.12, issue.21, pp.4161-4170, 1973.
DOI : 10.1021/bi00745a020

S. Doose, H. Neuweiler, and M. Sauer, Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules, ChemPhysChem, vol.106, issue.9-10, pp.1389-1398, 2009.
DOI : 10.1002/cphc.200900238

M. Eftink and C. Ghiron, Exposure of tryptophanyl residues and protein dynamics, Biochemistry, vol.16, issue.25, pp.5546-5551, 1977.
DOI : 10.1021/bi00644a024

P. Callis, states of indole, The Journal of Chemical Physics, vol.95, issue.6, pp.4230-4240, 1991.
DOI : 10.1063/1.460778

P. Callis, L-1(a) and L-1(b) transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins, In Fluorescence Spectroscopy. Edited by Methods In Enzymology, vol.1997, issue.278, pp.113-150

P. Callis and T. Liu, Short range photoinduced electron transfer in proteins: QM-MM simulations of tryptophan and flavin fluorescence quenching in proteins, Chemical Physics, vol.326, issue.1, p.230, 2006.
DOI : 10.1016/j.chemphys.2006.01.039

P. Callis, A. Petrenko, P. Muino, and J. Tusell, Ab Initio Prediction of Tryptophan Fluorescence Quenching by Protein Electric Field Enabled Electron Transfer, The Journal of Physical Chemistry B, vol.111, issue.35, pp.10335-10339, 2007.
DOI : 10.1021/jp0744883

J. Leonard, E. Portuondo-campa, A. Cannizzo, F. Van-mourik, G. Van-der-zwan et al., Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues, Proceedings of the National Academy of Sciences of the United States of America, pp.7718-7723, 2009.
DOI : 10.1073/pnas.0812877106

S. Schenkl, F. Van-mourik, N. Friedman, M. Sheves, R. Schlesinger et al., Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption, Proceedings of the National Academy of Sciences, vol.103, issue.11, pp.4101-4106, 2006.
DOI : 10.1073/pnas.0506303103

URL : https://hal.archives-ouvertes.fr/hal-00211526

S. Schenkl, F. Van-mourik, G. Van-der-zwan, S. Haacke, and M. Chergui, Probing the Ultrafast Charge Translocation of Photoexcited Retinal in Bacteriorhodopsin, Science, vol.309, issue.5736, pp.917-920, 2005.
DOI : 10.1126/science.1111482

T. Tamada, K. Kitadokoro, Y. Higuchi, K. Inaka, A. Yasui et al., Crystal structure of DMA photolyase from Anacystis nidulans, Nature Structural Biology, vol.4, issue.11, pp.887-891, 1997.
DOI : 10.1107/S0021889891004399

N. Mcleod, M. Brolich, M. Damiani, O. Neill, and M. , Distinct recognition loop dynamics in cryptochrome-DASH and photolyase revealed by limited proteolysis, Biochemical and Biophysical Research Communications, vol.385, issue.3, pp.424-429, 2009.
DOI : 10.1016/j.bbrc.2009.05.087

M. Jorns, B. Wang, S. Jordan, and L. Chanderkar, Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives, Biochemistry, vol.29, issue.2, pp.552-561, 1990.
DOI : 10.1021/bi00454a032

M. Awt and R. Stanley, Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair, Biochemistry, vol.40, pp.15203-15214, 2001.

R. Gaska, J. Zhang, S. Andrew, J. Chennupati, and V. David, Deep UV LEDs, 2011 International Semiconductor Device Research Symposium (ISDRS), p.603706, 2005.
DOI : 10.1109/ISDRS.2011.6135383

P. Coureux, Z. Fan, V. Stojanoff, and U. Genick, Picometer-Scale Conformational Heterogeneity Separates Functional from Nonfunctional States of a Photoreceptor Protein, Structure, vol.16, issue.6, pp.863-872, 2008.
DOI : 10.1016/j.str.2008.02.022

A. Royant, P. Carpentier, J. Ohana, J. Mcgeehan, B. Paetzold et al., Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements, Journal of Applied Crystallography, vol.40, issue.6, pp.1105-1112, 2007.
DOI : 10.1107/S0021889807044196

P. Carpentier, A. Royant, J. Ohanaa, and D. Bourgeois, Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy, Journal of Applied Crystallography, vol.40, issue.6, pp.1113-1122, 2007.
DOI : 10.1107/S0021889807044202

D. Bourgeois, X. Vernede, V. Adam, E. Fioravanti, and T. Ursby, A microspectrophotometer for UV???visible absorption and fluorescence studies of protein crystals, Journal of Applied Crystallography, vol.35, issue.3, pp.319-326, 2002.
DOI : 10.1107/S0021889802003837

G. Durin, A. Delaunay, C. Darnault, D. Heyes, A. Royant et al., Simultaneous Measurements of Solvent Dynamics and Functional Kinetics in a Light-Activated Enzyme, Biophysical Journal, vol.96, issue.5, pp.1902-1910, 2009.
DOI : 10.1016/j.bpj.2008.10.065

B. Meyer, Low temperature spectroscopy, 1971.

M. Heilemann, P. Dedecker, J. Hofkens, and M. Sauer, Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification, Laser & Photonics Review, vol.4, issue.1-2, pp.180-202, 2009.
DOI : 10.1002/lpor.200810043

L. Shao, B. Isaac, S. Uzawa, D. Agard, J. Sedat et al., I5S: Wide-Field Light Microscopy with 100-nm-Scale Resolution in Three Dimensions, Biophysical Journal, vol.94, issue.12, pp.4971-4983, 2008.
DOI : 10.1529/biophysj.107.120352

M. Gustafsson, L. Shao, P. Carlton, C. Wang, I. Golubovskaya et al., Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination, Biophysical Journal, vol.94, issue.12, pp.4957-4970, 2008.
DOI : 10.1529/biophysj.107.120345

V. Westphal, L. Kastrup, and S. Hell, Lateral resolution of 28??nm (?? /25) in far-field fluorescence microscopy, Applied Physics B, vol.201, issue.4, pp.377-380, 2003.
DOI : 10.1046/j.1365-2818.2001.00845.x

S. Hell, Toward fluorescence nanoscopy, Nature Biotechnology, vol.21, issue.11, pp.1347-1355, 2003.
DOI : 10.1038/nbt895