A. Titre-d-'exemple, les structures attendues pour la famille la plus représentée, M-SIGEp, sont données sur la figure C.1. Les caractéristiques principales deséchantillonsdeséchantillons, classés par famille

E. Figure, 3 ? Représentation des quatre premiers niveaux de masque, Lequatrì eme niveau

E. Figure, 4 ? Représentation des cinq premiers niveaux de masque, Lecinquì eme niveau

J. Fourier and H. Oersted, Sur quelques nouvelles expériences thermo-´ electriques faites par M. le Baron Fourier et M. OErsted (Notice luè a l'Académie des Sciences par M. OErsted) Annales de Chimie et de Physique, pp.375-389, 1823.

L. Anatychuk, J. Stockholm, and G. Pastorino, On the discovery of thermoelectricity by A. Volta, Proceedings of the 8th European Conference on Thermoelectrics, pp.15-18, 2010.

T. J. Seebeck, Magnetische Polarisation der Metalle und Erze durch Temperatur- Differenz, Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin aus den Jahren 1822 und 1823, pp.265-373

H. Oersted, Nouvelles expériences de M. Seebeck sur les actionsélectroactionsélectro-magnétiques (Note communiquée par M. OErsted) Annales de Chimie et de Physique, pp.199-201, 1823.

J. Peltier, Nouvelles expériences sur la caloricité des couransélectriquescouransélectriques, Annales de Chimie et de Physique, pp.371-386, 1834.

W. Thomson, On a mechanical theory of thermoelectric currents, Proceedings of the Royal Society of Edinburgh, pp.91-98, 1851.

M. Telkes, The Efficiency of Thermoelectric Generators. I., Journal of Applied Physics, vol.18, issue.12, p.1116, 1947.
DOI : 10.1063/1.1697593

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, issue.19, p.4712727, 1993.

L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.4716631, 1993.
DOI : 10.1103/PhysRevB.47.16631

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O-'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, issue.6856, pp.413-597, 2001.

T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, vol.297, issue.5590, pp.2972229-2232, 2002.
DOI : 10.1126/science.1072886

A. I. Boukai, Y. Bunimovich, J. Tahir-kheli, J. Yu, W. A. Goddard et al., Silicon nanowires as efficient thermoelectric materials, Nature, issue.7175, pp.451168-171, 2008.
DOI : 10.1038/nature06458

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, issue.7175, pp.451163-167, 2008.

W. Thomson, On the dynamical theory of heat, Mathematical and Physical Papers, vol.1, issue.232, p.1882

M. Quiret, Quand la chaleur se mue enélectricitéenélectricité, LesEchos.fr, p.14, 2006.

M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou et al., Micro thermoelectric modules and their application to wristwatches as an energy source, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407), pp.301-307, 1999.
DOI : 10.1109/ICT.1999.843389

M. Alais, R. Berger, R. Boucher, and P. Laurens, Générateur isotopique au plutonium 238 pour stimulateur implantablé electro-systolique (G.I.P.S.I.E.). Bulletin d, Informations Scientifiques et Techniques, C.E.A, issue.142, pp.31-38, 1969.

S. B. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, vol.23, issue.8, pp.913-935, 2003.
DOI : 10.1016/S1359-4311(03)00012-7

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, vol.7, issue.2, pp.105-114, 2008.
DOI : 10.1142/9789814317665_0016

G. Savelli and M. Plissonnier, New methodology of thermoelectric modules design to an increase of performance, Proceedings of PowerMEMS 2009, pp.288-291, 2009.

A. Majumdar, MATERIALS SCIENCE: Enhanced: Thermoelectricity in Semiconductor Nanostructures, Science, vol.303, issue.5659, pp.777-778, 2004.
DOI : 10.1126/science.1093164

B. C. Sales, D. Mandrus, and R. K. , Williams : Filled skutterudite antimonides : A new class of thermoelectric materials, Science, issue.5266, pp.2721325-1328, 1996.

I. Terasaki and Y. Sasago, single crystals, Physical Review B, vol.56, issue.20, p.12685, 1997.
DOI : 10.1103/PhysRevB.56.R12685

URL : https://hal.archives-ouvertes.fr/hal-01056563

R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani et al., An Oxide Single Crystal with High Thermoelectric Performance in Air, Japanese Journal of Applied Physics, vol.39, issue.Part 2, No. 11B, pp.39-1127, 2000.
DOI : 10.1143/JJAP.39.L1127

B. Bhushan, Nanometer-Scale thermoelectric materials, Springer handbook of nanotechnology, pp.347-372, 2006.

M. Wagner, Simulation of Thermoelectric Devices, Thèse de doctorat, 2007.

C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. , Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features, Advanced Materials, vol.96, issue.220, pp.3970-3980, 2010.
DOI : 10.1002/adma.201000839

J. Callaway, Model for Lattice Thermal Conductivity at Low Temperatures, Physical Review, vol.113, issue.4, p.1046, 1959.
DOI : 10.1103/PhysRev.113.1046

M. G. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, p.2461, 1963.
DOI : 10.1103/PhysRev.132.2461

T. Harman, P. Taylor, D. Spears, and M. Walsh, Thermoelectric quantum-dot superlattices with high ZT, Journal of Electronic Materials, vol.70, issue.1, pp.1-2, 2000.
DOI : 10.1007/s11664-000-0117-1

D. Li, Y. Wu, P. Kim, L. Shi, P. Yang et al., Thermal conductivity of individual silicon nanowires, Applied Physics Letters, vol.83, issue.14, p.2934, 2003.
DOI : 10.1063/1.1616981

N. S. Hudak and G. G. , Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion, Journal of Applied Physics, vol.103, issue.10, pp.101301-101325, 2008.
DOI : 10.1063/1.2918987

S. Borkar, Design challenges of technology scaling, IEEE Micro, vol.19, issue.4, pp.23-29, 1999.
DOI : 10.1109/40.782564

B. Kaczer, R. Degraeve, N. Pangon, and G. Groeseneken, The influence of elevated temperature on degradation and lifetime prediction of thin silicon-dioxide films. Electron Devices, IEEE Transactions on, issue.7, pp.471514-1521, 2000.

A. Shakouri, Nanoscale Thermal Transport and Microrefrigerators on a Chip, Proceedings of the IEEE, pp.1613-1638, 2006.
DOI : 10.1109/JPROC.2006.879787

I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan et al., On-chip cooling by superlattice-based thin-film thermoelectrics, Nature Nanotechnology, vol.20, issue.4, pp.235-238, 2009.
DOI : 10.1038/nnano.2008.417

E. Aldrete-vidrio, D. Mateo, and J. Altet, Differential temperature sensors fully compatible with a 0.35-µm CMOS process. Components and Packaging Technologies, IEEE Transactions on, vol.30, issue.4, pp.618-626, 2007.

E. R. Johnson and S. M. Christian, Some Properties of Germanium-Silicon Alloys, Physical Review, vol.95, issue.2, p.560, 1954.
DOI : 10.1103/PhysRev.95.560

F. Herman, Speculations on the Energy Band Structure of Ge???Si Alloys, Physical Review, vol.95, issue.3, p.847, 1954.
DOI : 10.1103/PhysRev.95.847

M. Glicksman, Magnetoresistance of Germanium-Silicon Alloys, Physical Review, vol.100, issue.4, p.1146, 1955.
DOI : 10.1103/PhysRev.100.1146

D. J. Paul, Si/SiGe heterostructures: from material and physics to devices and circuits, Semiconductor Science and Technology, vol.19, issue.10, pp.75-108, 2004.
DOI : 10.1088/0268-1242/19/10/R02

J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, Thermal and Electrical Properties of Heavily Doped Ge???Si Alloys up to 1300??K, Journal of Applied Physics, vol.35, issue.10, pp.2899-2907, 1964.
DOI : 10.1063/1.1713126

B. Abeles, Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures, Physical Review, vol.131, issue.5, p.1906, 1963.
DOI : 10.1103/PhysRev.131.1906

C. Bera, N. Mingo, and S. Volz, Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials, Physical Review Letters, vol.104, issue.11, p.115502, 2010.
DOI : 10.1103/PhysRevLett.104.115502

URL : https://hal.archives-ouvertes.fr/hal-00496310

G. A. Slack and M. A. Hussain, The maximum possible conversion efficiency of silicon???germanium thermoelectric generators, Journal of Applied Physics, vol.70, issue.5, pp.2694-2718, 1991.
DOI : 10.1063/1.349385

J. M. Ziman, Electrons and Phonons : The Theory of Transport Phenomena in Solids, 2001.

N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, ???Nanoparticle-in-Alloy??? Approach to Efficient Thermoelectrics: Silicides in SiGe, Nano Letters, vol.9, issue.2, pp.711-715, 2009.
DOI : 10.1021/nl8031982

N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nanoparticle in alloy " approach to efficient thermoelectrics : Silicides in SiGe, Nano Letters, vol.10, issue.6, 2010.

R. Caflisch, Interface dynamics in epitaxial growth, 2000.

G. Cao, Nanostructures & nanomaterials : synthesis, properties & applications, 2004.
DOI : 10.1142/9781860945960

P. Ashburn, SiGe Heterojunction Bipolar Transistors, 2003.
DOI : 10.1002/047009074X

M. Richard, ´ Etudes in situ et ex situ par rayonnement synchrotron de la croissance d'? ?lots de Ge sur substrats de Si(001) nominaux et préstructurés, Thèse de doctorat, 2007.

A. Rastelli and H. , Surface evolution of faceted islands, Surface Science, vol.515, issue.2-3, pp.493-498, 2002.
DOI : 10.1016/S0039-6028(02)01998-2

B. Voigtländer, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surface Science Reports, vol.43, issue.5-8, pp.5-8127, 2001.
DOI : 10.1016/S0167-5729(01)00012-7

. Williams, Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes, Science, vol.279, issue.5349, pp.353-355, 1998.

J. S. Christensen, Dopant diffusion in Si and SiGe, Thèse de doctorat, KTH, Microelectronics and Information Technology, 2004.

K. Tillmann, H. Trinkaus, and W. Jäger, Self-assembled SiGe nanostructures, Properties of Silicon Germanium and SiGe : Carbon, numéro 24, 2000.

V. , L. Thanh, T. T. Ngo, H. Bui, D. Bouchier et al., Selective growth of SiGe quantum dots on hydrogen-passivated si(100) surfaces, Thin Solid Films, vol.428, issue.12, pp.144-149, 2003.

K. Grimm, L. Vescan, C. C. Visser, L. K. Nanver, and H. Lüth, Annealing experiments on supercritical Si1???xGex layers grown by RPCVD, Materials Science and Engineering: B, vol.69, issue.70, pp.69-70261, 2000.
DOI : 10.1016/S0921-5107(99)00305-0

T. Grasby, SiGe(C) epitaxial technologies???issues and prospectives, Thin Solid Films, vol.412, issue.1-2, pp.44-49, 2002.
DOI : 10.1016/S0040-6090(02)00311-5

C. Mouchet, Croissance de nanofils de silicium et de Si/SiGe, Thèse de doctorat, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00345969

J. M. Hartmann, V. Loup, G. Rolland, P. Holliger, F. Laugier et al., Séméria : SiGe growth kinetics and doping in reduced pressure-chemical vapor deposition, Journal of Crystal Growth, vol.236, pp.1-310, 2002.

B. S. Meyerson, K. J. Uram, and F. K. , LeGoues : Cooperative growth phenomena in silicon/germanium low-temperature epitaxy, Applied Physics Letters, issue.25, p.532555, 1988.

D. J. Robbins, J. L. Glasper, A. G. Cullis, and W. Y. Leong, films from hydrides, Journal of Applied Physics, vol.69, issue.6, p.693729, 1991.
DOI : 10.1063/1.348466

E. Kasper, Growth and properties of Si/SiGe superlattices, Surface Science, vol.174, issue.1-3, pp.630-639, 1986.
DOI : 10.1016/0039-6028(86)90484-X

S. Bozzo, J. Lazzari, C. Coudreau, A. Ronda, F. Arnaud-d-'avitaya et al., Chemical vapor deposition of silicon???germanium heterostructures, Journal of Crystal Growth, vol.216, issue.1-4, pp.1-4171, 2000.
DOI : 10.1016/S0022-0248(00)00429-2

R. S. Wagner and W. C. , VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, p.89, 1964.
DOI : 10.1063/1.1753975

D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang et al., Nanoscale silicon wires synthesized using simple physical evaporation, Applied Physics Letters, vol.72, issue.26, p.723458, 1998.
DOI : 10.1063/1.121665

Y. Wu and P. Yang, Melting and Welding Semiconductor Nanowires in Nanotubes, Advanced Materials, vol.13, issue.7, pp.520-523, 2001.
DOI : 10.1002/1521-4095(200104)13:7<520::AID-ADMA520>3.0.CO;2-W

K. Lew, L. Pan, E. C. Dickey, and J. M. , Vapor???Liquid???Solid Growth of Silicon???Germanium Nanowires, Advanced Materials, vol.15, issue.24, pp.2073-2076, 2003.
DOI : 10.1002/adma.200306035

Y. Wu, R. Fan, and P. Yang, Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires, Nano Letters, vol.2, issue.2, pp.83-86, 2002.
DOI : 10.1021/nl0156888

C. Mouchet, L. Latu-romain, C. Cayron, E. Rouviere, C. Celle et al., Simonato : Growth of one-dimensional Si/SiGe heterostructures by thermal CVD, Nanotechnology, issue.33, p.19335603, 2008.

G. Capellini, L. Di-gaspare, F. Evangelisti, and E. Palange, Atomic force microscopy study of self-organized Ge islands grown on Si(100) by low pressure chemical vapor deposition, Applied Physics Letters, vol.70, issue.4, pp.493-495, 1997.
DOI : 10.1063/1.118191

V. Zela, I. Pietzonka, T. Sass, C. Thelander, S. Jeppesen et al., Unimodal dome-shaped island population of Ge, UHV-CVD

E. Sutter, P. Sutter, and L. , Vescan : Organization of self-assembled quantum dots in SiGe/Si multilayers : effect of strain and substrate curvature, Materials Science and Engineering B, vol.89, pp.1-3196, 2002.

T. I. Kamins, E. C. Carr, R. S. Williams, and S. J. , Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures, Journal of Applied Physics, vol.81, issue.1, pp.211-219, 1997.
DOI : 10.1063/1.364084

C. Hernandez, Y. Campidelli, D. Simon, D. Bensahel, I. Sagnes et al., Ge/Si self-assembled quantum dots grown on Si(001) in an industrial high-pressure chemical vapor deposition reactor, Journal of Applied Physics, vol.86, issue.2, pp.1145-1148, 1999.
DOI : 10.1063/1.370856

R. Loo, P. Meunier-beillard, D. Vanhaeren, H. Bender, M. Caymax et al., Structural and optical properties of Ge islands grown in an industrial chemical vapor deposition reactor, Journal of Applied Physics, vol.90, issue.5, pp.902565-2574, 2001.
DOI : 10.1063/1.1389335

J. Hartmann, F. Bertin, G. Rolland, and M. N. Séméria, Effects of the temperature and of the amount of Ge on the morphology of Ge islands grown by reduced pressure???chemical vapor deposition, Thin Solid Films, vol.479, issue.1-2, pp.113-120, 2005.
DOI : 10.1016/j.tsf.2004.11.204

K. Brunner, Si/Ge nanostructures, Reports on Progress in Physics, vol.65, issue.1, 2002.
DOI : 10.1088/0034-4885/65/1/202

T. S. Kuan and S. S. Iyer, Strain relaxation and ordering in SiGe layers grown on (100), (111), and (110) Si surfaces by molecular???beam epitaxy, Applied Physics Letters, vol.59, issue.18, p.592242, 1991.
DOI : 10.1063/1.106083

V. , L. Thanh, V. Yam, P. Boucaud, F. Fortuna et al., Vertically self-organized Ge/Si(001) quantum dots in multilayer structures, Physical Review B, issue.8, p.605851, 1999.

I. Berbezier, M. Abdallah, and A. Ronda, Bremond : Fabrication of self-organised ge dots using self-patterned SiGe template layer, Materials Science and Engineering B, pp.69-70367, 2000.

J. L. Liu, A. Khitun, K. L. Wang, W. L. Liu, G. Chen et al., Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices, Physical Review B, vol.67, issue.16, p.67165333, 2003.
DOI : 10.1103/PhysRevB.67.165333

Y. Bao, W. L. Liu, M. Shamsa, K. Alim, A. A. Balandin et al., Electrical and Thermal Conductivity of Ge???Si Quantum Dot Superlattices, Journal of The Electrochemical Society, vol.152, issue.6, pp.432-435, 2005.
DOI : 10.1149/1.1897365

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen et al., Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers, Nature Materials, vol.103, issue.6, pp.491-495, 2010.
DOI : 10.1038/nmat2752

URL : https://hal.archives-ouvertes.fr/hal-00505811

T. Fedeli and . Billon, RP-CVD grown Ge/Si(001) islands stacking for 1.3-1.6 µm photodetection, MRS Spring Meeting -Symposium L : New Materials for Microphotonics, 2004.

J. L. Regolini, D. Bensahel, E. Scheid, and J. Mercier, Selective epitaxial silicon growth in the 650?1100 ? C range in a reduced pressure chemical vapor deposition reactor using dichlorosilane, Applied Physics Letters, issue.7, p.54658, 1989.

M. Floyd, Y. Zhang, K. P. Driver, J. Drucker, P. A. Crozier et al., Nanometer-scale composition measurements of Ge/Si(100) islands, Applied Physics Letters, vol.82, issue.9, p.1473, 2003.
DOI : 10.1063/1.1558215

A. J. Pidduck, D. J. Robbins, A. G. Cullis, W. Y. Leong, and A. M. Pitt, Evolution of surface morphology and strain during SiGe epitaxy, Thin Solid Films, vol.222, issue.1-2, pp.78-84, 1992.
DOI : 10.1016/0040-6090(92)90042-A

P. Sutter and M. G. Lagally, Embedding of Nanoscale 3D SiGe Islands in a Si Matrix, Physical Review Letters, vol.81, issue.16, p.3471, 1998.
DOI : 10.1103/PhysRevLett.81.3471

A. Rastelli, E. Müller, and H. , Shape preservation of Ge/Si(001) islands during Si capping, Applied Physics Letters, vol.80, issue.8, p.1438, 2002.
DOI : 10.1063/1.1453476

G. Capellini, M. De-seta, L. Di-gaspare, and F. , Evangelisti et F. d'Acapito : Evolution of Ge/Si(001) islands during si capping at high temperature, Journal of Applied Physics, issue.12, p.98124901, 2005.

M. D. Seta, G. Capellini, F. Evangelisti, C. Ferrari, L. Lazzarini et al., Effect of interlayer strain interaction on the island composition and ordering in Ge/Si(001) island superlattices, Journal of Applied Physics, vol.102, issue.4, p.43518, 2007.
DOI : 10.1063/1.2771066

H. Hirayama and T. Tatsumi, Phosphorus gas doping in gas source silicon-MBE, Thin Solid Films, vol.184, issue.1-2, pp.125-130, 1990.
DOI : 10.1016/0040-6090(90)90405-3

M. Racanelli and D. W. Greve, by ultrahigh vacuum chemical vapor deposition, Applied Physics Letters, vol.56, issue.25, p.562524, 1990.
DOI : 10.1063/1.102876

M. L. Yu, D. J. Vitkavage, and B. S. Meyerson, with Si(100), Journal of Applied Physics, vol.59, issue.12, p.4032, 1986.
DOI : 10.1063/1.336708

S. Bodnar, Hétérostructures Si/Si1-xGex : ´ etude et intégration dans les technologies BiCMOS et CMOS avancées, Thèse de doctorat, Institut National des Sciences Appliquées de Toulouse, 1996.

M. L. Lee and R. Venkatasubramanian, Effect of nanodot areal density and period on thermal conductivity in SiGe???Si nanodot superlattices, Applied Physics Letters, vol.92, issue.5, pp.53112-53115, 2008.
DOI : 10.1063/1.2842388

J. Alvarez-quintana, X. Alvarez, J. Rodriguez-viejo, D. Jou, P. D. Lacharmoise et al., Cross-plane thermal conductivity reduction of vertically uncorrelated Ge???Si quantum dot superlattices, Applied Physics Letters, vol.93, issue.1, pp.13112-13115, 2008.
DOI : 10.1063/1.2957038

I. Yonenaga, T. Akashi, and T. Goto, Thermal and electrical properties of Czochralski grown GeSi single crystals, Journal of Physics and Chemistry of Solids, vol.62, issue.7, pp.1313-1317, 2001.
DOI : 10.1016/S0022-3697(01)00026-9

S. Lee and D. G. Cahill, Heat transport in thin dielectric films, Journal of Applied Physics, vol.81, issue.6, pp.2590-2595, 1997.
DOI : 10.1063/1.363923

T. I. Kamins, G. Medeiros-ribeiro, D. A. Ohlberg, and R. S. Williams, Influence of phosphine on Ge/Si(001) island growth by chemical vapor deposition, Journal of Applied Physics, vol.94, issue.6, pp.4215-4224, 2003.
DOI : 10.1063/1.1604957

P. S. Chen, Z. Pei, Y. H. Peng, S. W. Lee, and M. Tsai, Boron mediation on the growth of Ge quantum dots on Si (100) by ultra high vacuum chemical vapor deposition system, Materials Science and Engineering: B, vol.108, issue.3, pp.213-218, 2004.
DOI : 10.1016/j.mseb.2003.11.017

M. Katayama, T. Nakayama, M. Aono, and C. F. Mcconville, Influence of surfactant coverage on epitaxial growth of Ge on Si(001), Physical Review B, vol.54, issue.12, p.8600, 1996.
DOI : 10.1103/PhysRevB.54.8600

C. J. Gomes, M. Madrid, J. V. Goicochea, and C. H. , In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics, Journal of Heat Transfer, vol.128, issue.11, pp.1114-1121, 2006.
DOI : 10.1115/1.2352781

B. Yang, W. L. Liu, J. L. Liu, K. L. Wang, and G. Chen, Measurements of anisotropic thermoelectric properties in superlattices, Applied Physics Letters, vol.81, issue.19, pp.813588-3590, 2002.
DOI : 10.1063/1.1515876

C. Giroud-garampon, Matériaux nanostructurés pour la conversion d'´ energie, 2008.

J. L. Dresselhaus, K. Liu, and . Wang, Thermoelectric property characterization of low-dimensional structures, Proceedings of the 20th International Conference on Thermoelectrics, pp.30-34, 2001.

L. J. Van-der-pauw, A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE, Philips Research Reports, vol.13, issue.1, pp.1-9, 1958.
DOI : 10.1142/9789814503464_0017

E. Hall, On a New Action of the Magnet on Electric Currents, American Journal of Mathematics, vol.2, issue.3, pp.287-292, 1879.
DOI : 10.2307/2369245

W. Shockley, A. Goetzberger, and R. M. Scarlett, Research and investigation of inverse epitaxial UHF power transistors, 1964.

H. Berger, Contact resistance on diffused resistors, 1969 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pp.160-161, 1969.
DOI : 10.1109/ISSCC.1969.1154702

H. Berger, Models for contacts to planar devices. Solid-State Electronics, pp.145-158, 1972.

S. Blanqué, Optimisation de l'implantation ionique et du recuit thermique pour SiC

D. G. Cahill and R. O. , Thermal conductivity of amorphous solids above the plateau, Physical Review B, vol.35, issue.8, p.4067, 1987.
DOI : 10.1103/PhysRevB.35.4067

D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. , Thermal conductivity of thin films: Measurements and understanding, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, pp.1259-1266, 1989.
DOI : 10.1116/1.576265

D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3?? method, Review of Scientific Instruments, vol.61, issue.2, pp.802-808, 1990.
DOI : 10.1063/1.1141498

O. B. Wright, Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics, Journal of Applied Physics, vol.71, issue.4, p.1617, 1992.
DOI : 10.1063/1.351218

H. T. Grahn, H. J. Maris, and J. Tauc, -Si:H multilayers, Physical Review B, vol.38, issue.9, p.6066, 1988.
DOI : 10.1103/PhysRevB.38.6066

URL : https://hal.archives-ouvertes.fr/hal-00806587

C. Rossignol, Nondestructive evaluation of micrometric diamond films with an interferometric picosecond ultrasonics technique, Journal of Applied Physics, vol.95, issue.8, p.4157, 2004.
DOI : 10.1063/1.1687049

URL : https://hal.archives-ouvertes.fr/hal-00018237

G. Pernot, Identification de propriétés thermiques et spectroscopie térahertz de nanostructures par thermoréflectance pompe-sonde asynchrone ; applicationàapplicationà l'´ etude du transport des phonons dans les super-réseaux, Thèse de doctorat, 2010.

R. Venkatasubramanian, Phonon blocking electron transmitting superlattice structures, Recent Trends in Thermoelectric Materials Research III, 2001.

T. Borca-tasciuc, W. L. Liu, J. L. Liu, K. L. Wang, and G. Chen, In-Plane thermoelectric properties characterization of a Si/Ge super lattice using a microfabricated test structure, Proceedings of the 35th National Heat Transfer Conference, 2001.

B. W. Olson, S. Graham, and K. Chen, A practical extension of the 3?? method to multilayer structures, Review of Scientific Instruments, vol.76, issue.5, p.53901, 2005.
DOI : 10.1063/1.1896619

B. Yang, J. Liu, K. Wang, and G. Chen, Characterization of cross-plane thermoelectric properties of Si/Ge superlattices, Proceedings of the 20th International Conference on Thermoelectrics, pp.344-347, 2001.

B. Yang, J. L. Liu, K. L. Wang, and G. Chen, Simultaneous measurements of seebeck coefficient and thermal conductivity across superlattice Puyoô : Caractérisation thermique de nanofils de silicium pour applicationsàapplicationsà la thermoélectriciité, Thèse de doctorat, pp.1758-1760, 2002.

J. Committee, . Guides, and . Metrology, Guide to the expression of uncertainty in measurement (JCGM 100) http ://www.iso.org/sites, 2008.

H. Iwasaki, M. Koyano, and H. Hori, Evaluation of the Figure of Merit on Thermoelectric Materials by Harman Method, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 11A, pp.6606-6609, 2002.
DOI : 10.1143/JJAP.41.6606

Z. Bian, Y. Zhang, H. Schmidt, and A. Shakouri, Thin film ZT characterization using transient harman technique, Proceedings of the 24th International Conference on Thermoelectrics, pp.76-78, 2005.

R. Singh, Z. Bian, A. Shakouri, G. Zeng, J. Bahk et al., Direct measurement of thin-film thermoelectric figure of merit, Applied Physics Letters, vol.94, issue.21
DOI : 10.1063/1.3094880

T. Borca-tasciuc, A. R. Kumar, and G. Chen, Data reduction in 3?? method for thin-film thermal conductivity determination, Review of Scientific Instruments, vol.72, issue.4, pp.2139-2147, 2001.
DOI : 10.1063/1.1353189

D. Hauser and M. Plissonnier, Procédé de caractérisation thermique d'une portion de matériau, 2009.

J. Michel, Développement d'un procédé de fabrication pour la mesure des propriétés thermoélectriques des films minces en technologie microélectronique, 2010.

M. C. Steele and F. D. Rosi, Thermal Conductivity and Thermoelectric Power of Germanium???Silicon Alloys, Journal of Applied Physics, vol.29, issue.11, p.291517, 1958.
DOI : 10.1063/1.1722984

P. D. Maycock, Thermal conductivity of silicon, germanium, III-V compounds and III-V alloys. Solid-State Electronics, pp.161-168, 1967.