Models and inference for structured stochastic systems

Florence Forbes 1
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Résumé : Le contexte de mon travail est la mise au point d'outils statistiques pour le dévelopement et l'analyse de modèles stochastiques structurés. L'idée sous-jacente à la notion de structure est qu'il est souvent possible à l'aide d'hypothèses locales simples combinées de manière cohérente de rendre compte de phénomènes globaux potentiellement complexes. Cette idée de construction du local vers le global guide ainsi la modélisation, l'estimation et l'interprétation. Cette approche se révèle utile dans des domaines variés tels que le traitement du signal et de l'image, les neurosciences, la génomique, l'épidémiologie, etc. Inversement les besoins de ces domaines ont pu susciter en retour des développements théoriques importants. Par ailleurs, beaucoup de techniques statistiques sont encore limitées par des d'hypothèses restrictives pouvant conduire à des analyses imprécises voire erronées. Différentes sources de complexité peuvent mettre en défaut les approches classiques. Souvent les données exhibent une structure de dépendance non triviale, due par exemple à des répétitions, des groupements, des méthodes d'échantillonnage particulières, des associations dans l'espace ou le temps. Une seconde source de complexité est liée au processus de mesure qui peut impliquer l'utilisation d'instruments physiquement très différents, qui produisent des données hétérogènes, en grandes dimensions et potentiellement de manière défaillante de sorte qu'une partie des données peut être manquante. La plupart de mes objectifs de recherche sont centrés sur la mise au point de modèles et d'outils d'inférence pouvant faire face à ce genre de complications fréquentes dans les données modernes et contribuer ainsi au développement de nouvelles méthodes statistiques. En ce qui concerne la notion de dépendance et de localité, un concept central est celui d'indépendance conditionnelle. Les propriétés de Markov et les modèles markoviens permettent d'énoncer de telles indépendances conditionnelles et ce thème est central dans ma recherche. Pour ce qui est des données manquantes ou incomplètes, les modèles de mélanges sont une approche classique. Ces modèles conduisent plus généralement à la notion de modèles à structure manquantes. Ces derniers sont également utiles pour rendre compte d'hétérogénéités dans les données. Ils trouvent de nombreux échos en statistique: modèles de mélanges finis, modèles de Markov cachés, modèles à effet aléatoire, etc. La présence de données incomplètes induit cependant généralement des difficultés pour ce qui est de l'estimation des paramètres et de l'évaluation des performances. Modèles markoviens et modèles de mélanges sont mes deux principaux thèmes de recherche avec cette idée unificatrice de structure dans les modèles mais aussi dans les données. J'ai pu montrer que ces deux thèmes pouvaient être reliés utilement en traitant des problèmes difficiles dans diverses applications. Plus précisément, j'ai developpé des modèles à structure cachée essentiellement dans le but de résoudre des problèmes de classifications inhérents à certaines questions. J'ai souvent abordé le problème de l'estimation de ces modèles à partir de l'algorithme EM et développé des variantes permettant d'apporter des solutions satisfaisantes lorsque les outils classiques faisaient défaut. J'ai tenté également d'apporter des résultats sur les propriétés théoriques, e.g. convergence et vitesse, de ces algorithmes. Enfin, j'ai abordé la question de la sélection de modèles essentiellement en cherchant à proposer des critères de sélection dans les cas où les critères classiques n'étaient pas calculables.
Type de document :
HDR
Modeling and Simulation. Université de Grenoble, 2010
Liste complète des métadonnées

Littérature citée [102 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00578938
Contributeur : Florence Forbes <>
Soumis le : mardi 22 mars 2011 - 16:52:04
Dernière modification le : lundi 14 juillet 2014 - 21:32:32
Document(s) archivé(s) le : jeudi 23 juin 2011 - 02:53:40

Identifiants

  • HAL Id : tel-00578938, version 1

Collections

Citation

Florence Forbes. Models and inference for structured stochastic systems. Modeling and Simulation. Université de Grenoble, 2010. 〈tel-00578938〉

Partager

Métriques

Consultations de
la notice

1068

Téléchargements du document

526