J. Greg, A. Badros, and . Borning, The cassowary linear arithmetic constraint solving algorithm: Interface and implementation, ACM transactions on computer human interaction, 1998.

C. Barrett, M. Deters, A. Oliveras, and A. Stump, DESIGN AND RESULTS OF THE 3RD ANNUAL SATISFIABILITY MODULO THEORIES COMPETITION (SMT-COMP 2007), International Journal on Artificial Intelligence Tools, vol.17, issue.04, pp.569-606, 2008.
DOI : 10.1142/S0218213008004060

C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, Splitting on Demand in SAT Modulo Theories, Proc. 13th Int'l Conf. on Logic for Programming , Artificial Intelligence, and Reasoning (LPAR), pp.512-526, 2006.
DOI : 10.1007/11916277_35

A. Stump, C. Tinelli, and C. Barrett, The SMT-LIB standard: Version 2.0, 2010.

H. Richard, G. H. Bartels, and . Golub, The simplex method of linear programming using LU decomposition, Commun. ACM, vol.12, pp.266-268, 1969.

R. J. Bayardo, Using CSP look-back techniques to solve realworld SAT instances, pp.203-208, 1997.

R. Bellman, On a routing problem, Quarterly of Applied Mathematics, vol.16, issue.1, pp.87-90, 1958.
DOI : 10.1090/qam/102435

D. , L. Berre, and L. Simon, SAT 2009 competition, 2009.

D. Le-berre and L. Simon, Fifty-Five Solvers in Vancouver: The SAT 2004 Competition, SAT, pp.321-344, 2004.
DOI : 10.1007/11527695_25

F. Besson, On using an inexact floating-point LP solver for deciding linear arithmetic in an SMT solver, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00517308

P. Bjesse, T. Leonard, and A. Mokkedem, Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers, pp.454-464, 2001.
DOI : 10.1007/3-540-44585-4_44

R. Bland, New Finite Pivoting Rules for the Simplex Method, Mathematics of Operations Research, vol.2, issue.2, pp.103-107, 1977.
DOI : 10.1287/moor.2.2.103

T. Bouton, D. Caminha, B. De-oliveira, D. Déharbe, and P. Fontaine, veriT: An Open, Trustable and Efficient SMT-Solver
DOI : 10.1007/978-3-540-73595-3_38

URL : https://hal.archives-ouvertes.fr/inria-00430634

T. Boy-de-la-tour, An optimality result for clause form translation, Journal of Symbolic Computation, vol.14, issue.4, pp.283-301, 1992.
DOI : 10.1016/0747-7171(92)90009-S

M. Bozzano, R. Bruttomesso, R. Cimatti, T. Junttila, S. Ranise et al., Efficient Satisfiability Modulo Theories via Delayed Theory Combination, Proc. CAV 2005, pp.335-349, 2005.
DOI : 10.1007/11513988_34

R. Bruttomesso, R. Cimatti, A. Franzen, A. Griggio, and R. Sebastiani, Delayed theory combination vs. nelson-oppen for satisfiability modulo theories: A comparative analysis, Proc. LPAR 06, pp.527-541, 2006.

A. Stephen and . Cook, The complexity of theorem-proving procedures, STOC '71: Proceedings of the third annual ACM symposium on Theory of computing, pp.151-158, 1971.

H. Thomas, C. E. Cormen, R. L. Leiserson, C. Rivest, and . Stein, Introduction to Algorithms, Second Edition, 2001.

G. B. Dantzig, A. Orden, and P. Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific Journal of Mathematics, vol.5, issue.2, pp.183-195, 1955.
DOI : 10.2140/pjm.1955.5.183

G. Dantzig, Linear Programming and Extensions, 1998.
DOI : 10.1515/9781400884179

B. George, B. C. Dantzig, and . Eaves, Fourier-Motzkin elimination and its dual, Journal of Combinatorial Theory (A), vol.14, pp.288-297, 1973.

M. Davis, G. Logemann, and D. Loveland, A machine program for theorem-proving, Communications of the ACM, vol.5, issue.7, pp.394-397, 1962.
DOI : 10.1145/368273.368557

M. Davis and H. Putnam, A Computing Procedure for Quantification Theory, Journal of the ACM, vol.7, issue.3, pp.201-215, 1960.
DOI : 10.1145/321033.321034

L. De, M. , and N. Bjørner, Model-based theory combination, Electronic Notes in Theoretical Computer Science, vol.198, issue.2, pp.37-49, 2008.

D. Caminha, B. De-oliveira, D. Déharbe, and P. Fontaine, Combining decision procedures by (model-)equality propagation, Electron . Notes Theor. Comput. Sci, vol.240, pp.113-128, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00337979

D. Oliveira, Deciding difference logic in a Nelson-Oppen combination framework, 2007.

D. Detlefs, G. Nelson, J. , and B. Saxe, Simplify: a theorem prover for program checking, Journal of the ACM, vol.52, issue.3, 2003.
DOI : 10.1145/1066100.1066102

W. Edsger and . Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.1, pp.269-271, 1959.

B. Dutertre and L. De-moura, A Fast Linear-Arithmetic Solver for DPLL(T), Computer Aided Verification, pp.81-94, 2006.
DOI : 10.1007/11817963_11

B. Dutertre and L. D. Moura, Integrating simplex with DPLL(T), 2006.

N. Eén and N. Sörensson, An extensible SAT-solver, Theory and Applications of Satisfiability Testing 6th International Conference, pp.333-336, 2003.

G. Faure and R. Nieuwenhuis, SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial Solvers, Theory and Applications of Satisfiability Testing, pp.77-90, 2008.
DOI : 10.1007/978-3-540-79719-7_8

URL : https://hal.archives-ouvertes.fr/inria-00358813

C. P. Gomes, B. Selman, K. Mcaloon, C. Tretkoff36, and ]. R. Gomory, Randomization in backtrack search: Exploiting heavy-tailed profiles for solving hard scheduling problems An algorithm for integer solutions to linear programs, AIPS Recent Advances in Mathematical Programming, pp.208-213, 1963.

G. Robert, J. Jeroslow, and . Wang, Solving propositional satisfiability problems, Annals of Mathematics and Artificial Intelligence, vol.1, pp.167-187, 1990.

A. Henry, B. Kautz, and . Selman, Pushing the envelope: Planning, propositional logic and stochastic search, AAAI/IAAI, pp.1194-1201, 1996.

H. Konuk and T. Larrabee, Explorations of sequential ATPG using Boolean satisfiability, Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium, pp.85-90, 1993.
DOI : 10.1109/VTEST.1993.313303

D. Kroening and O. Strichman, Decision Procedures: An Algorithmic Point of View, 2008.
DOI : 10.1007/978-3-662-50497-0

O. Kullmann, Fundaments of branching heuristics, Handbook of Satisfiability, pp.205-244, 2009.

K. Shuvendu, M. Lahiri, and . Musuvathi, An efficient nelson-oppen decision procedure for difference constraints over rationals, Electr. Notes Theor. Comput. Sci, vol.144, issue.2, pp.27-41, 2006.

J. P. Marques-silva and K. A. Sakallah, GRASP: A New Search Algorithm for Satisfiability, International Conference on Computer-Aided Design (ICCAD'96), pp.220-227, 1996.

P. João, K. A. Marques-silva, and . Sakallah, Grasp: A search algorithm for propositional satisfiability, IEEE Transactions on Computers, vol.48, pp.506-521, 1999.

J. E. Mitchell, Branch-and-cut algorithms for combinatorial optimization problems, Handbook of Applied Optimization, pp.65-77, 2002.

D. Monniaux, On Using Floating-Point Computations to Help an Exact Linear Arithmetic Decision Procedure, Computer-aided verification (CAV), pp.570-583, 2009.
DOI : 10.1007/978-3-642-02658-4_42

URL : https://hal.archives-ouvertes.fr/hal-00354112

S. Steven and . Morgan, A comparison of simplex method algorithms, 1997.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff, Proceedings of the 38th conference on Design automation , DAC '01, pp.530-535, 2001.
DOI : 10.1145/378239.379017

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff, Proceedings of the 38th conference on Design automation , DAC '01, pp.530-535, 2001.
DOI : 10.1145/378239.379017

A. Nadel and V. Ryvchin, Assignment Stack Shrinking, SAT, pp.375-381, 2010.
DOI : 10.1007/978-3-642-14186-7_35

N. George-ciprian, Compiling with proofs, 1998.

G. Nelson and D. Oppen, Simplification by Cooperating Decision Procedures, ACM Transactions on Programming Languages and Systems, vol.1, issue.2, pp.245-257, 1979.
DOI : 10.1145/357073.357079

G. Nelson and D. Oppen, Fast Decision Procedures Based on Congruence Closure, Journal of the ACM, vol.27, issue.2, pp.356-364, 1980.
DOI : 10.1145/322186.322198

P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain et al., Verification of Timed Automata via Satisfiability Checking, Proc. Formal Techniques in Real-Time and FaultTolerant Systems FTRTFT'02, pp.225-244, 2002.
DOI : 10.1007/3-540-45739-9_15

URL : https://hal.archives-ouvertes.fr/hal-00374806

R. Nieuwenhuis and A. Oliveras, DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic, CAV?05 LNCS 3576, pp.321-334, 2005.
DOI : 10.1007/11513988_33

D. Oppen, Complexity, convexity and combinations of theories, Theoretical Computer Science, vol.12, issue.3, pp.291-302, 1980.
DOI : 10.1016/0304-3975(80)90059-6

C. Sinz, SAT-race 2010, 2010.

S. Ranise and C. Tinelli, The SMT-LIB standard: Version 1.2, 2006.

S. Ranise, C. Tinelli, and J. K. Reid, The Satisfiability Modulo Theories Library SMT-LIB). www.SMT-LIB.org A sparsity-exploiting variant of the bartels-golub decomposition for linear programming bases, Mathematical Programming, pp.55-69, 1007.

H. Rueß and N. Shankar, Solving linear arithmetic constraints, 2004.

S. J. Russell and P. Norvig, Artificial Inteligence: A modern Approach. publisher, 2002.

P. M. João and . Silva, The impact of branching heuristics in propositional satisfiability algorithms, Proceedings of the 9th Portuguese Conference on Artificial Intelligence: Progress in Artificial Intelligence, EPIA '99, pp.62-74, 1999.

N. Sörensson and A. Biere, Minimizing Learned Clauses, Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing, SAT '09, pp.237-243, 2009.
DOI : 10.1007/978-3-540-24605-3_37

M. Richard, G. J. Stallman, and . Sussman, Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis, Artificial Intelligence, vol.9, issue.2, pp.135-196, 1977.

P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-vincentelli, Combinational test generation using satisfiability, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.15, issue.9, 1992.
DOI : 10.1109/43.536723

R. E. Tarjan, Depth-First Search and Linear Graph Algorithms, SIAM Journal on Computing, vol.1, issue.2, pp.146-160, 1972.
DOI : 10.1137/0201010

C. Tinelli and M. Harandi, A New Correctness Proof of the Nelson-Oppen Combination Procedure, Frontiers of Combining Systems of Applied Logic Series, pp.103-120, 1996.
DOI : 10.1007/978-94-009-0349-4_5

N. Miroslav and . Velev, Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors, Journal of Symbolic Computation, pp.226-231, 2001.

M. Harvey and . Wagner, A Comparison of the Original and Revised Simplex Methods, OPERATIONS RESEARCH, vol.5, issue.3, pp.361-369, 1957.

S. Warshall, A Theorem on Boolean Matrices, Journal of the ACM, vol.9, issue.1, pp.11-12, 1962.
DOI : 10.1145/321105.321107

H. Zhang and J. Hsiang, Solving open quasigroup problems by propositional reasoning, Proceedings of the International Computer Symp, 1994.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik, Efficient conflict driven learning in Boolean satisfiability solver, Proc. Int'l Conf. on Computer Aided Design (ICCAD), pp.279-285, 2001.

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, Efficient conflict driven learning in a boolean satisfiability solver, Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, ICCAD '01, pp.279-285, 2001.