A. Cas-de-l-'échantillon-gris and N. , 40 mm) et partiellement saturé Résultats de perméabilité apparente. La Fig. 4.30 permet de visualiser la variation de perméabilité apparente K app en fonction de la température lors du seul cycle de chauffage jusqu'à 200 o C de cet échantillon. A partir de 150 o C (température du béton) et jusqu'à 180 o C, le capteur de pression situé en amont de l'échantillon montre que le gaz ne peut plus passer par le réseau poreux. Comme pour l'échantillon Gris N o -4L, la pression d'injection de gaz ne diminue plus, elle augmente même petit à petit

. Après, échantillon est replacé en étuve à 105 o C, pour vérifier s'il contient encore de l'eau libre Après 12 jours en étuve à 105 o C, l'échantillon a perdu seulement 0,1g : on peut dire qu'il n'y avait plus réellement d'eau libre dans l'échantillon après chauffage jusqu

. Résultats-de-perméabilité-intrinsèque-et-de-coefficient-de-klinkenberg, effet Klinkenberg, car la valeur de ? calculée est négative, voir la Fig. 4.31. L'interprétation est la même que pour les essais précédents. On trouve une perméabilité apparente très faible, de l'ordre de 10 ?19 m 2 . Par contre, à 200 o C, la perméabilité intrinsèque K int vaut 3,98×10 ?18 m 2 : cet échantillon, après avoir été chauffé à 200 o C, est beaucoup plus perméable qu'à l'état initial. Le coefficient de Klinkenberg ? est égal à 0,653MPa. Mais en l'absence d'effet Klinkenberg à température ambiante

. Klinkenberg-reste-négatif, et que la perméabilité augmente légèrement avec la pression d'injection . Par contre, en fin de cycle, lorsque l'on revient à la température ambiante, la perméabilité intrinsèque est beaucoup plus élevée par rapport à la valeur initiale : K int vaut 2, pp.55-65

. Sur-ce-béton-gris, effet de structure sur l'existence de l'effet bouchon : il existe même sur un échantillon beaucoup plus court (40mm de long et toujours 65mm de diamètre) Il dure également longtemps (plusieurs heures)

. Bap and . Bath, on n'observe un effet bouchon que pour l'échantillon long (80mm) lorsqu'on chauffe assez vite (3,74 o C/min), mais il existe de façon nette (de 52 o C à 192 o C -température du béton) Hormis la plus grande porosité de ce matériau par rapport au béton gris, une explication de l'absence d'effet bouchon sur l'échantillon court peut être liée à la présence de gros pores inattendus sur la carotte, ? Pour le béton avec granulats concassés calcaires qui permettent a priori aux fluides

F. Agostini, Inertage et valorisation des sédiments de dragage marins, Thèse de Doctorat, 2006.

F. Agostini, Z. Lafhaj, F. Skoczylas, and H. Loosveldt, Experimental study of accelerated leaching on hollow cylinders of mortar, Cement and Concrete Research, vol.37, issue.1, pp.71-78, 2007.
DOI : 10.1016/j.cemconres.2006.09.018

URL : https://hal.archives-ouvertes.fr/hal-00185685

Y. Anderberg, Spalling phenomena of HPC and OC, Proceedings of International Workshop on Fire Performance of High-Strength Concrete, pp.69-73, 1997.

B. D. Barnes, S. Diamond, and W. L. Dolch, The contact zone between portland cement paste and glass ???aggregate??? surfaces, Cement and Concrete Research, vol.8, issue.2, pp.233-243, 1978.
DOI : 10.1016/0008-8846(78)90012-1

J. Baron and R. Sauterey, Le béton hydraulique : connaissance et pratique, 1982.

Z. P. Ba?ant and M. F. Kaplan, Dynamics of fluids in porous media, 1996.

J. Bear, Concrete at High Temperatures : Material Properties and Mathematical Models, 1988.

F. Benboudjema, Modélisation des déformations différées du béton sous sollicitation biaxiales -Application aux enceintes de confinement de bâtiments réacteurs des centrales nucléaires, Thèse de Doctorat de l'Université de Marne la Vallée, U.F.R. de Science et Technologies, 2002.

M. A. Biot, General Theory of Three???Dimensional Consolidation, Journal of Applied Physics, vol.12, issue.2, pp.155-164, 1941.
DOI : 10.1063/1.1712886

URL : https://hal.archives-ouvertes.fr/hal-01368635

J. Bisschop and J. G. Van-mier, How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy?, Cement and Concrete Research, vol.32, issue.2, pp.279-287, 2002.
DOI : 10.1016/S0008-8846(01)00671-8

M. D. Bolton, A Guide to Soil Mechanics, 1979.
DOI : 10.1007/978-1-349-16208-6

N. Burlion, Technique d'essai et caractérisation expérimentale. in Comportement mécanique du béton, édité par G. Pijaudier-Cabot et, J.M. Reynouard, Traité MIN, 2002.

N. Burlion, N. Bourgeois, and J. F. Shao, Effects of desiccation on mechanical behaviour of concrete. Cement Concrete Composites, pp.367-379, 2005.

M. Castellote, C. Alonso, C. Andrade, X. Turrillas, and J. Campo, Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction, Cement and Concrete Research, vol.34, issue.9, pp.1633-1644, 2004.
DOI : 10.1016/S0008-8846(03)00229-1

C. Castillo and A. J. Durrani, Effect of transient high temperature on high strength concrete, American Concrete Institute (ACI) Materials Journal, pp.47-53, 1990.

X. T. Chen, C. A. Davy, F. Skoczylas, and M. Moranville, Poro-mechanical properties of heat-treated mortars under confinement, Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures, Proceedings of the 8 th International Conference CONCREEP 2008, pp.999-1004, 2008.

X. T. Chen, C. A. Davy, F. Skoczylas, and M. Moranville, Analysis of thermal damage effects on poroelastic property of cement-based materials, Poromechanics IV, Proceedings of the 4 th Biot Conference on Poromechanics, pp.858-863, 2009.

X. T. Chen, C. A. Davy, F. Skoczylas, and J. F. Shao, Analyse micromécanique des propriétés poro-élastiques d'un matériau à matrice cimentaire après chauffage

X. T. Chen, C. A. Davy, F. Skoczylas, and J. F. Shao, Effect of heat-treatment and hydrostatic loading upon the poro-elastic properties of a mortar, Cement and Concrete Research, vol.39, issue.3, pp.195-205, 2009.
DOI : 10.1016/j.cemconres.2008.12.001

URL : https://hal.archives-ouvertes.fr/hal-00362120

X. T. Chen, C. A. Davy, F. Skoczylas, and J. F. Shao, Propriétés poro-élastiques d'un matériau à matrice cimentaire après chauffage -expérimentation et modélisation

X. T. Chen, C. A. Davy, F. Skoczylas, and J. F. Shao, Sur la création de porosité ouverte dans une matrice cimentaire suite à un chauffage -validation expérimentale

X. T. Chen, F. Robert, C. A. Davy, F. Skoczylas, and M. Moranville, Gas Retention Phenomenon in Dry or Partially-Saturated Concrete: Permeability Assessment, Thermo-Hydromechanical and Chemical Coupling in Geomaterials and Applications, Proceedings of the 3 rd International Symposium GeoProc, pp.151-159, 2008.
DOI : 10.1002/9781118623565.ch13

X. T. Chen, . Th, C. A. Rougelot, W. Davy, F. Chen et al., Experimental evidence of a moisture clog effect in cement-based materials under temperature, Cement and Concrete Research, en 2 eme lecture, 2009.
DOI : 10.1016/j.cemconres.2009.07.015

URL : https://hal.archives-ouvertes.fr/hal-00431767

X. T. Chen, J. F. Shao, C. A. Davy, and F. Skoczylas, Elastoplastic modelling of cement based material and influence of temperature, International Symposium on Plasticity, 2009.

X. T. Chen, J. F. Shao, C. A. Davy, and F. Skoczylas, Experimental and micromechanical analysis of heat-induced microcracks in mortar, 2009.

X. T. Chen, J. F. Shao, C. A. Davy, and F. Skoczylas, Experimental study and constitutive modelling of elastoplastic damage in heat-treated mortar, International Journal for Numerical and Analytical Methods in Geomechanics, vol.805, pp.10-1002, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00454382

M. Choinska, Effets de la température, du chargement mécanique et de leurs interactions sur la perméabilité du béton de structure, Thèse de Doctorat, 2006.

H. Claudot-loosveldt, Etude expérimentale des comportements hydraulique et poromécanique d'un mortier sain ou dégradé chimiquement, Thèse de Doctorat, 2002.

G. Constantinides and F. J. Ulm, The nanogranular nature of C???S???H, Journal of the Mechanics and Physics of Solids, vol.55, issue.1, pp.64-90, 2007.
DOI : 10.1016/j.jmps.2006.06.003

L. E. Copeland and J. C. Hayes, The determination of non-evaporable water in hardened cement paste, ASTM Bulletin, cité par, vol.194, pp.70-74, 1953.

E. Dana, Contribution à la caractérisation des écoulements biphasiques dans les matériaux poreux. Etude expérimentale sur trois grès, Thèse de Doctorat, 1999.

E. Dana and F. Skoczylas, Experimental study of two-phase flow in three sandstones. II. Capillary pressure curve measurement and relative permeability pore space capillary models, International Journal of Multiphase Flow, vol.28, issue.12, pp.1965-1981, 2002.
DOI : 10.1016/S0301-9322(02)00091-5

URL : https://hal.archives-ouvertes.fr/hal-00140435

C. Davy, F. Skoczylas, J. Barnichon, and P. Lebon, Permeability of macro-cracked argillite under confinement: Gas and water testing, Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.8-14, pp.667-680, 2007.
DOI : 10.1016/j.pce.2006.02.055

URL : https://hal.archives-ouvertes.fr/hal-00155358

C. A. Davy, M. D. Bolton, and N. A. Fleck, The shearing behaviour of a sugar aggregate, Acta Materialia, vol.52, issue.12, pp.3587-3601, 2004.
DOI : 10.1016/j.actamat.2004.04.011

R. De-boer, Theoretical poroelasticity???a new approach, Chaos, Solitons & Fractals, vol.25, issue.4, pp.861-878, 2005.
DOI : 10.1016/j.chaos.2004.11.076

G. D. Marsily, Quantitative Hydrogeology. Groundwater Hydrology for Engineers, 1986.

S. Diamond, Mercury porosimetry, Cement and Concrete Research, vol.30, issue.10, pp.1517-1525, 2000.
DOI : 10.1016/S0008-8846(00)00370-7

U. Diederichs, U. M. Jumppanen, and V. Penttala, Behaviour of high strength concrete at high temperature, 1983.

F. A. Dullien, Porous media, fluid transport and pore structure, 1992.

A. Elsharief, M. D. Cohen, and J. Olek, Influence of lightweight aggregate on the microstructure and durability of mortar, Cement and Concrete Research, vol.35, issue.7, pp.1368-1376, 2005.
DOI : 10.1016/j.cemconres.2004.07.011

L. Montigny and F. Skoczylas, Etude expérimentale de la perméabilité de bétons pour le CERIB, 2006.

F. Skoczylas, J. M. Fleureau, . Gdr, and . Forpro, Benchmark Perméabilite sur mortier et argilite. Synthèse des résultats, Actes du Colloque du GDR-FORPRO, 22Ð24 septembre, 2003.

J. F. Shao, Y. Jia, D. Kondo, and A. S. Chiarelli, A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions, Mechanics of Materials, vol.38, issue.3, pp.218-232, 2006.
DOI : 10.1016/j.mechmat.2005.07.002

URL : https://hal.archives-ouvertes.fr/hal-00021987

D. Hoxha, F. Homand-etienne, and J. F. Shao, A continuum damage constitutive law for brittle rocks, Computers and Geotechnics, vol.22, pp.135-151, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00608978

D. Fabre and J. Gustkiewicz, Poroelastic properties of limestones and sandstones under hydrostatic conditions, International Journal of Rock Mechanics and Mining Sciences, vol.34, issue.1, pp.127-134, 1997.
DOI : 10.1016/S1365-1609(97)80038-X

M. C. Farage, J. Sercombe, and C. Gallé, Rehydration and microstructure of cement paste after heating at temperatures up to 300 ??C, Cement and Concrete Research, vol.33, issue.7, pp.1047-1056, 2003.
DOI : 10.1016/S0008-8846(03)00005-X

B. Fauchet, Analyse poroplastique des barrages en béton et leurs fondations Rôle de la pression interstitielle, Thèse de Doctorat, 1991.

R. F. Feldman and P. J. Sereda, A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties, Mat??riaux et Constructions, vol.49, issue.6, pp.509-519, 1968.
DOI : 10.1007/BF02473639

G. J. Fischer and M. S. Paterson, Dilatancy during rock deformation at high temperatures and pressures, Journal of Geophysical Research, vol.9, issue.5, pp.17607-17617, 1989.
DOI : 10.1029/JB094iB12p17607

Y. F. Fu, Y. L. Wong, C. S. Poon, and C. A. Tang, Stress-strain behaviour of highstrength concrete at elevated temperature. Magazine of Concrete Research, pp.535-544, 2005.

Y. F. Fu, Y. L. Wong, C. S. Poon, C. A. Tang, and P. Lin, Experimental study of micro/macro crack development and stress???strain relations of cement-based composite materials at elevated temperatures, Cement and Concrete Research, vol.34, issue.5, pp.789-797, 2004.
DOI : 10.1016/j.cemconres.2003.08.029

Y. F. Fu, Y. L. Wong, C. A. Tang, and C. S. Poon, Thermal induced stress and associated cracking in cement-based composite at elevated temperatures??????Part II: thermal cracking around multiple inclusions, Cement and Concrete Composites, pp.113-126, 2004.
DOI : 10.1016/S0958-9465(03)00087-8

K. Fuji and W. Kondo, Heterogeneous equilibrium of calcium silicate hydrate in water at 30 ??C, J. Chem. Soc., Dalton Trans., vol.2, issue.2, pp.645-651, 1981.
DOI : 10.1039/DT9810000645

I. Gaweska-hager, Comportement à haute température des bétons à haute performance -évolution des principales propriétés mécaniques, Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, 2004.

D. Gawin, C. E. Majorana, and B. A. Schrefler, Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature, Mechanics of Cohesive- Frictional Materials, pp.37-74, 1999.

D. T. Griggs, F. J. Turner, and H. C. Heard, Deformation of rocks at 500 to 800 o c. Rock deformation, The Geological Society America, 1960.

T. A. Hammer, H. Justnes, and S. Smeplass, A concrete technological approach to spalling during fire. Paper presented at a Nordic mini-seminar, SINTEF-report no, pp.65-89036, 1989.

D. J. Hart and H. F. Wang, A single test method for determination of poroelastic constants and flow parameters in rocks with low hydraulic conductivities, International Journal of Rock Mechanics and Mining Sciences, vol.38, issue.4, pp.577-583, 2001.
DOI : 10.1016/S1365-1609(01)00023-5

T. Hastié, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning : Data Mining, Influence and Prediction, 2003.

U. Häussler-combe and J. Hartig, Formulation and numerical implementation of a constitutive law for concrete with strain-based damage and plasticity, International Journal of Non-Linear Mechanics, vol.43, issue.5, pp.399-415, 2008.
DOI : 10.1016/j.ijnonlinmec.2008.01.005

H. C. Heard, Transition from brittle fracture to ductile flow in solenhofen limestone as a function of temperature, confining pressure, and intersititial fluid pressure. Rock deformation, 1960.

N. Hearn, Effect of shrinkage and load-induced cracking on water permeability of concrete, ACI Material J, vol.96, issue.2, pp.234-241, 1999.

N. Hearn and G. Lok, Measurement of permeability under uniaxial compression -A test method, ACI Material J, vol.95, pp.691-694, 1998.

F. H. Heukamp, F. Ulm-a-nd, and J. T. Germaine, Poroplastic properties of calcium-leached cement-based materials, Cement and Concrete Research, vol.33, issue.8, pp.1155-1173, 2003.
DOI : 10.1016/S0008-8846(03)00024-3

F. Homand, Comportement mécanique des roches en fonction de la température, Editions de la Fondation Scientifique de la Géologie et de ses Applications, 1986.

F. Homand, J. F. Shao, A. Giraud, C. Auvray, and D. Hoxha, P??trofabrique et propri??t??s m??caniques des argilites, Comptes Rendus Geoscience, vol.338, issue.12-13, pp.12-13882, 2006.
DOI : 10.1016/j.crte.2006.03.009

M. Husem, The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete, Fire Safety Journal, vol.41, issue.2, pp.155-163, 2006.
DOI : 10.1016/j.firesaf.2005.12.002

P. Jamet, A. Millard, and G. Nahas, Triaxial behaviour of a micro-concrete complete stress-strain for confining from 0 to 100mpa, Proc. of International Conference on Concrete under Multiaxial Conditions, pp.17-30, 1986.

H. M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, vol.30, issue.1, pp.101-116, 2000.
DOI : 10.1016/S0008-8846(99)00209-4

H. M. Jennings, Refinements to colloid model of C-S-H in cement: CM-II, Cement and Concrete Research, vol.38, issue.3, pp.275-289, 2008.
DOI : 10.1016/j.cemconres.2007.10.006

Y. Jia, Contribution à la modélisation thermo-hydro-mécanique des roches partiellement saturées : application au stockage des déchets radioactifs, Thèse de Doctorat, 2006.

J. W. Ju, On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects, International Journal of Solids and Structures, vol.25, issue.7, pp.803-833, 1989.
DOI : 10.1016/0020-7683(89)90015-2

R. Kherbouche, Etude du comportement poro-élasto-plastique de la craie, Thèse de Doctorat, 1994.

L. J. Klinkenberg, The permeability of porous media to liquids and gases. API Drilling and Production Practices, pp.200-213, 1941.

V. K. Kodur and L. T. Phan, Critical factors governing the fire performance of high strength concrete systems, Fire Safety Journal, vol.42, issue.6-7, 2007.
DOI : 10.1016/j.firesaf.2006.10.006

J. A. Larbi, Microstructure of the interfacial zone around aggregate particles in concrete, Heron, vol.38, issue.1, pp.1-69, 1993.

F. Lea, The Chemistry of Cement and Concrete, 1998.

P. Lebon and B. Mouroux, Knowledge of the three French underground laboratory sites, Engineering Geology, vol.52, issue.3-4, pp.251-256, 1999.
DOI : 10.1016/S0013-7952(99)00009-5

J. Lemaitre and J. Chaboche, Mécanique des matériaux solides, 1988.

. Ch, O. Lempp, D. H. Bayer, and . Welte, The effect of temperature on rock mechanical properties and fracture mechanisms in source rocks. Experimental results, Eurock 94, pp.147-154, 1994.

M. Lion, Influence de la température sur le comportement poromécanique ou hydraulique d'une roche carbonatée et d'un mortier. Etudes expérimentales, Thèse de Doctorat, 2004.

M. Lion, F. Skoczylas, Z. Lafhaj, and M. Sersar, Experimental study on a mortar. Temperature effects on porosity and permeability. Residual properties or direct measurements under temperature, Cement and Concrete Research, vol.35, issue.10, pp.1937-1942, 2005.
DOI : 10.1016/j.cemconres.2005.02.006

URL : https://hal.archives-ouvertes.fr/hal-00137236

M. Lion, F. Skoczylas, and B. Ledésert, Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France, International Journal of Rock Mechanics and Mining Sciences, vol.41, issue.6, pp.915-925, 2004.
DOI : 10.1016/j.ijrmms.2004.02.005

URL : https://hal.archives-ouvertes.fr/hal-00069671

M. Lion, F. Skoczylas, and B. Ledésert, Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone, International Journal of Rock Mechanics and Mining Sciences, vol.42, issue.4, pp.508-520, 2005.
DOI : 10.1016/j.ijrmms.2005.01.005

URL : https://hal.archives-ouvertes.fr/hal-00020350

H. Loosveldt, Z. Lafhaj, and F. Skoczylas, Experimental study of gas and liquid permeability of a mortar, Cement and Concrete Research, vol.32, issue.9, pp.1357-1363, 2002.
DOI : 10.1016/S0008-8846(02)00793-7

URL : https://hal.archives-ouvertes.fr/hal-00142687

A. Loukili, A. Khelidj, and P. Richard, Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete, Cement and Concrete Research, vol.29, issue.4, pp.577-584, 1999.
DOI : 10.1016/S0008-8846(99)00022-8

B. M. Luccioni, M. I. Figueroa, and R. F. Danesi, Thermo-mechanic model for concrete exposed to elevated temperatures, Engineering Structures, vol.25, issue.6, pp.729-742, 2002.
DOI : 10.1016/S0141-0296(02)00209-2

J. Mazars, Application de la mécanique de l'endommagement non linéaire et à la rupture du béton de structure, Thèse de doctorat, 1984.

A. Menou, Etude du comportement thermomécanique des bétons à haute température : approche multi échelles de l'endommagement thermique, Thèse de doctorat de l'Université de Pau et des Pays de l'Adour, 2004.

H. Meziani and F. Skoczylas, An experimental study of the mechanical behaviour of a mortar and of its permeability under deviatoric loading, Materials and Structures, vol.69, issue.6, pp.403-409, 1999.
DOI : 10.1007/BF02482711

C. Mian and C. Zhida, Effective stress laws for multi-porosity media, Applied Mathematics and Mechanics, vol.47, issue.1, pp.1207-1213, 1999.
DOI : 10.1007/BF02463788

J. G. Van-mier, Strain softening of concrete under multiaxial loading conditions, Thèse de Doctorat, 1984.

J. G. Van-mier, Framework for a generalized four-stage fracture model of cement-based materials, Engineering Fracture Mechanics, vol.75, issue.18, pp.5072-5086, 2008.
DOI : 10.1016/j.engfracmech.2008.07.011

L. Montigny, Etude de la perméabilité de matériaux cimentaires sous température, 2006.

G. Mounajed and W. Obeid, Modélisation du comportement thermo-hygromécanique des bétons à hautes températures, 2001.

P. Mounanga, Etude expérimentale du comportement de pâtes de ciment au très jeune âge : hydratation, retraits, propriétés thermophysiques, Thèse de doctorat de l'Université de Nantes, 2003.

T. Mura, Micromechanics of defects in solids. Second, revised edition, 1987.

K. W. Nasser and H. M. Marzouk, Properties of mass concrete containing fly ash at high temperatures, American Concrete Institute (ACI) Materials Journal, pp.537-550, 1979.

S. Nemat-nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Journal of Applied Mechanics, vol.63, issue.2, 1993.
DOI : 10.1115/1.2788912

A. M. Neville, Properties of Concrete, 1996.

A. Noumowé, Effet des hautes températures (20-600 o C) sur les bétons, cas particulier du béton à hautes performances, Thèse de doctorat, 1995.

A. N. Noumowé, R. Siddique, and G. Debicki, Permeability of high-performance concrete subjected to elevated temperature (600??C), Construction and Building Materials, vol.23, issue.5, pp.1855-1861, 2009.
DOI : 10.1016/j.conbuildmat.2008.09.023

A. N. Noumowe, P. Clastres, G. Debicki, and J. L. Costaz, Transient heating effect on high strength concrete, Nuclear Engineering and Design, vol.166, issue.1, pp.99-108, 1996.
DOI : 10.1016/0029-5493(96)01235-6

A. Nur and J. D. Byerlee, An exact effective stress law for elastic deformation of rock with fluids, Journal of Geophysical Research, vol.70, issue.2, pp.6414-6419, 1971.
DOI : 10.1029/JB076i026p06414

V. A. Papathanasopoulou, D. I. Fotiadis, G. Foutsitzi, and C. V. Massalas, A poroelastic bone model for internal remodeling, International Journal of Engineering Science, vol.40, issue.5, pp.511-530, 2002.
DOI : 10.1016/S0020-7225(01)00076-3

G. F. Peng, Evaluation of fire damage to high performance concrete, 1999.

V. Pensée, D. Kondo, and L. Dormieux, Micromechanical Analysis of Anisotropic Damage in Brittle Materials, Journal of Engineering Mechanics, vol.128, issue.8, pp.889-897, 2002.
DOI : 10.1061/(ASCE)0733-9399(2002)128:8(889)

L. T. Phan and N. J. Carino, Fire Performance of High Strength Concrete: Research Needs, Advanced Technology in Structural Engineering, 2000.
DOI : 10.1061/40492(2000)181

J. Piasta, Heat deformations of cement phases and microstructures of cement paste Materials and Structures : research and testing, RILEM, vol.17, issue.102, pp.415-420, 1984.

S. Pietruszczak, J. Jing, and F. A. Mirza, An elastoplastic constitutive model for concrete, International Journal of Solids and Structures, vol.24, issue.7, pp.705-722, 1988.
DOI : 10.1016/0020-7683(88)90018-2

J. R. Rice and M. R. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics, vol.80, issue.4, pp.227-241, 1976.
DOI : 10.1029/RG014i002p00227

I. G. Richardson, The nature of the hydration products in hardened cement pastes, Cement and Concrete Composites, vol.22, issue.2, pp.97-113, 2000.
DOI : 10.1016/S0958-9465(99)00036-0

I. G. Richardson, The calcium silicate hydrates. Cement & Concrete Research, pp.137-158, 2008.

M. Rossler and I. Odler, Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes. 1. effect of porosity. Cement & Concrete Research, pp.320-330, 1985.

R. S. Rostasy, R. Weiss, and G. Wiedemann, Changes of pore structure of cement mortars due to temperature, Cement and Concrete Research, vol.10, issue.2, pp.157-164, 1980.
DOI : 10.1016/0008-8846(80)90072-1

T. Rougelot, Etude expérimentale multi-échelles des couplages hydriques, mécaniques et chimiques dans les matériaux cimentaires, Thèse de Doctorat, 2008.

E. H. Rutter, The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks, Tectonophysics, vol.22, issue.3-4, pp.311-334, 1974.
DOI : 10.1016/0040-1951(74)90089-4

S. A. Salih, Permeability and pore structure of cementitious composites, Thèse de Doctorat, 1987.

J. Sanahuja, L. Dormieux, and G. Chanvillard, Modelling elasticity of a hydrating cement paste. Cement & Concrete Research, pp.1427-1439, 2007.

K. Scrivener, Backscattered electron imaging of cementitious microstructures: understanding and quantification, Cement and Concrete Composites, vol.26, issue.8, pp.935-945, 2004.
DOI : 10.1016/j.cemconcomp.2004.02.029

K. Scrivener, A. K. Crumbie, and P. Laugesen, The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science, vol.12, issue.4, pp.411-421, 2004.
DOI : 10.1023/B:INTS.0000042339.92990.4c

J. F. Shao, Poroelastic behaviour of brittle rock materials with anisotropic damage, Mechanics of Materials, vol.30, issue.1, pp.41-53, 1998.
DOI : 10.1016/S0167-6636(98)00025-8

J. F. Shao, D. Hoxha, M. Bart, F. Homand, G. Duveau et al., Modelling of induced anisotropic damage in granites, International Journal of Rock Mechanics and Mining Sciences, vol.36, issue.8, pp.1001-1012, 1999.
DOI : 10.1016/S1365-1609(99)00070-2

J. F. Shao and J. W. Rudnicki, A microcrack-based continuous damage model for brittle geomaterials, Mechanics of Materials, vol.32, issue.10, pp.607-619, 2000.
DOI : 10.1016/S0167-6636(00)00024-7

M. Sibaï, Etude de l'interaction fluide squelette dans les roches ; méthodes expérimentales et modélisations, Thèse de Doctorat, 1990.

M. Sibai, L. Dormieux, V. Pensée, and D. Kondo, Effets de la microfissuration en poroélasticité des roches : étude expérimentale et analyse théorique, Proceedings of the 16th French Mechanics Congress (CFM), 2003.

R. Sierra, Contribution a l'étude de l'hydratation des silicates calciques hydrauliques, 1974.

F. Skoczylas, N. Burlion, and I. Yurtdas, About drying effects and poro-mechanical behaviour of mortars. Cement and Concrete Composites, pp.383-390, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00147574

F. Skoczylas and H. Meziani, Variation de la perméabilié d'un mortier sous charge déviatorique, AUGC Durabilité des géomatériaux GEO, pp.101-110, 1999.

T. H. Smit, J. M. Huyghe, and S. C. Cowin, Estimation of the poroelastic parameters of cortical bone, Journal of Biomechanics, vol.35, issue.6, pp.829-835, 2002.
DOI : 10.1016/S0021-9290(02)00021-0

T. Sugiyama, T. W. Bremner, and T. A. Holm, Effect of stress on gas permeability in concrete, ACI Materials Journal, vol.93, issue.5, pp.443-450, 1996.

P. D. Tennis and H. M. Jennings, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cement and Concrete Research, vol.30, issue.6, pp.855-863, 2000.
DOI : 10.1016/S0008-8846(00)00257-X

J. M. Torrenti, Comportement multiaxial du béton : aspects expérimentaux et modélisation, Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, 1987.

J. M. Torrenti, L. Granger, M. Diruy, and P. Genin, Modélisation du retrait du béton en ambiance variable. Revue Francais de Génie Civil, pp.687-698, 1997.
DOI : 10.1080/12795119.1997.9692150

J. M. Torrenti, V. H. Nguyen, H. Colina, F. L. Maou, F. Benboudjema et al., Coupling between leaching and creep of concrete, Cement and Concrete Research, vol.38, issue.6, pp.816-821, 2008.
DOI : 10.1016/j.cemconres.2008.01.012

M. Tsimbrovska, Dégradation des bétons à hautes performances soumis à des températures élevées, évolution de la perméabilité en liaison avec la microstructure, Thèse de Doctorat, 1998.

S. Tsivilis, J. Tsantilas, G. Kakali, E. Chaniotakis, and A. Sakellariou, The permeability of Portland limestone cement concrete, Cement and Concrete Research, vol.33, issue.9, pp.1465-1471, 2003.
DOI : 10.1016/S0008-8846(03)00092-9

T. Turgay, H. O. Köksal, Z. Polat, and C. Karakoç, Stress???strain model for concrete confined with CFRP jackets, Materials & Design, vol.30, issue.8, 2008.
DOI : 10.1016/j.matdes.2008.11.022

F. J. Ulm, G. Constantinides, and F. H. Heukamp, Is concrete a poromechanics materials ? A multiscale investigation of poroelastic properties, Materials and Structures/Concrete Science and Engineering, vol.37, pp.43-58, 2004.

J. ?ervenka and V. K. Papanikolaou, Three dimensional combined fracture???plastic material model for concrete, International Journal of Plasticity, vol.24, issue.12, pp.2192-2220, 2008.
DOI : 10.1016/j.ijplas.2008.01.004

K. J. Willam and E. D. Warnkee, Constitutive model for the triaxial behaviour of concrete, Proc. Int. Ass. For Bridge and Struct. Engng, vol.19, pp.174-186, 1975.

J. Xiao and H. Falkner, On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures, Fire Safety Journal, vol.41, issue.2, pp.115-121, 2006.
DOI : 10.1016/j.firesaf.2005.11.004

Y. Xu, Y. L. Wong, C. S. Poon, and M. Anson, Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures, Cement and Concrete Research, vol.33, issue.12, pp.2009-2016, 2003.
DOI : 10.1016/S0008-8846(03)00216-3

I. Yurtdas, Couplage comportement mécanique et dessication des matériaux à matrice cimentaire : étude expérimentale sur mortiers, Thèse de Doctorat, 2003.

I. Yurtdas, N. Burlion, and F. Skoczylas, Triaxial mechanical behaviour of mortar: Effects of drying, Cement and Concrete Research, vol.34, issue.7, pp.1131-1143, 2004.
DOI : 10.1016/j.cemconres.2003.12.004

URL : https://hal.archives-ouvertes.fr/hal-00136812

G. P. Zaraisky and V. N. Balashov, Compressibility of Sandstones, 1991.

H. Zhou, Y. Jia, and J. F. Shao, A unified elastic???plastic and viscoplastic damage model for quasi-brittle rocks, International Journal of Rock Mechanics and Mining Sciences, vol.45, issue.8, pp.1237-1251, 2008.
DOI : 10.1016/j.ijrmms.2008.01.004

URL : https://hal.archives-ouvertes.fr/hal-00374858

R. W. Zimmerman, Discussion: ???The Constitutive Theory for Fluid-Filled Porous Materials??? (Katsube, N., 1985, ASME J. Appl. Mech., 52, pp. 185???189), Journal of Applied Mechanics, vol.52, issue.4, p.983, 1985.
DOI : 10.1115/1.3169185

R. W. Zimmerman, Compressibility of sandstones, 1991.

R. W. Zimmerman, Coupling in poroelasticity and thermoelasticity, International Journal of Rock Mechanics and Mining Sciences, vol.37, issue.1-2, pp.79-87, 2000.
DOI : 10.1016/S1365-1609(99)00094-5