M. Abplanalp, Piezoresponse scanning force microscopy of ferroelectric domains, Thèse de doctorat, 2001.

. Abplanalp, Higher Order Ferroic Switching Induced by Scanning Force Microscopy, Physical Review Letters, vol.86, issue.25, pp.86-57995802, 2001.
DOI : 10.1103/PhysRevLett.86.5799

URL : http://hdl.handle.net/2003/18770

S. Abrahams, Structurally based predictions of ferroelectricity in 7 inorganic materials with space group pba2 and 2 experimental conrmations, Acta Crystallographica B, p.45228232, 1989.

. Abrahams, Ferroelectric lithium tantalateIII, Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K. J, 1973.

. Agronin, Nanoscale piezoelectric coecient measurements in ionic conducting ferroelectrics, J. Appl. Phys, issue.8, p.97084312, 2005.

A. Et-sodano-]-anton, S. R. Sodano, and H. A. , A review of power harvesting using piezoelectric materials, Smart Materials & Structures, pp.1-21, 2003.

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.7, issue.12, 1939.
DOI : 10.1063/1.1750380

. Ballandras, A novel surface wave transducer based on periodically poled piezoelectric domain, IEEE International Frequency Control Sympposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003, pp.893-896, 2003.
DOI : 10.1109/FREQ.2003.1275208

A. A. Ballman, Growth of Piezoelectric and Ferroelectric Materials by the CzochraIski Technique, Journal of the American Ceramic Society, vol.48, issue.2, p.112, 1965.
DOI : 10.1111/j.1151-2916.1965.tb11814.x

. Barry, INSA de Lyon, tous droits réservés Microstructuring of lithium niobate using dierential etch-rate between inverted and non-inverted ferroelectric domains, Mater. Lett, vol.37, pp.4-5246, 1998.

B. Bas, B. Van-aken-et-spaldin-]-bas, T. T. Van-aken, A. F. Palstra, and N. A. Et-spaldin, The origin of ferroelectricity in magnetoelectric YMnO 3, Nat. Mater, vol.3, p.164, 2004.

. Berger, Functional-group imaging by adhesion AFM applied to lipide monolayers, Langmuir, issue.11, p.1141884192, 1995.

. Bühlmann, Polarization reversal due to charge injection in ferroelectric lms, Phys. Rev. B, issue.21, p.72214120, 2005.

. Bhushan, Nanotribology and nanomechanics of AFM probe-based data recording technology, Journal of Physics: Condensed Matter, vol.20, issue.36, p.20365207, 2008.
DOI : 10.1088/0953-8984/20/36/365207

. Binnig, Atomic Force Microscope, Phys. Rev. Lett, vol.56, issue.9, p.930933, 1986.

. Binnig, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, issue.1, p.5761, 1982.
DOI : 10.1103/PhysRevLett.49.57

. Bluhm, Electrostatic force microscopy on ferroelectric crystals in inert gas atmosphere, Physical Review B, vol.55, issue.1, p.4, 1997.
DOI : 10.1103/PhysRevB.55.4

A. J. Bray, Theory of phase-ordering kinetics, Advances in Physics, vol.65, issue.3, pp.357-459, 1994.
DOI : 10.1143/JPSJ.60.1153

M. Bruel, Silicon on insulator material technology, Electronics Letters, vol.31, issue.14, pp.311201-1202, 1995.
DOI : 10.1049/el:19950805

J. W. Burgess, Thickness twist anharmonic modes in lithium tantalate and lithium niobate plate resonators, Journal of Physics D: Applied Physics, vol.8, issue.3, p.223, 1975.
DOI : 10.1088/0022-3727/8/3/012

L. Bursill, L. A. Bursill, and P. J. Et-lin, Electron microscopic studies of ferroelectric crystals, Ferroelectrics, vol.13, issue.1, p.191, 1986.
DOI : 10.1016/0304-3991(85)90140-8

. Busacca, Surface periodic poling in congruent lithium tantalate, Electronics Letters, vol.42, issue.9, pp.42546-547, 2006.
DOI : 10.1049/el:20060518

. Butt, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports, vol.59, issue.1-6, 2005.
DOI : 10.1016/j.surfrep.2005.08.003

W. Cady, Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals. Piezoelectricity : An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, 1964.

. Cho, Electrostatic Force Microscopy study on the domain switching properties of the Pb, 2008.

Y. Cho, Scanning Nonlinear Dielectric Microscope with Super High Resolution, INSA de Lyon, tous droits réservés, p.4644284434, 2007.
DOI : 10.1143/JJAP.46.4428

. Cho, . Hirose, Y. Cho, and R. Et-hirose, Surface Studied Using Noncontact Scanning Nonlinear Dielectric Microscopy, Physical Review Letters, vol.99, issue.18, p.99186101, 2007.
DOI : 10.1103/PhysRevLett.99.186101

. Cho, Scanning nonlinear dielectric microscopy with nanometer resolution, Appl. Phys. Lett, issue.18, p.7528332835, 1999.
DOI : 10.1016/s0955-2219(01)00187-x

. Cho, Scanning nonlinear dielectric microscope, Rev. Sci. Instrum, vol.67, issue.6, p.22972303, 1996.
DOI : 10.1002/3527604650.ch16

. Courjal, Extinction-ratioindependent method for chirp measurements of Mach-Zehnder modulators, Opt. Express, issue.3, p.12442448, 2004.

. Cunningham, Noncontact scanning probe microscope potentiometry of surface charge patches: Origin and interpretation of time-dependent signals, Applied Physics Letters, vol.73, issue.1, p.123125, 1998.
DOI : 10.1063/1.121788

. Dahan, Ferroelectric domain inversion: The role of humidity, Applied Physics Letters, vol.89, issue.15, pp.89-152902, 2006.
DOI : 10.1063/1.2358855

. Dawber, Physics of thin-lm ferroelectric oxides, Rev. Mod. Phys, vol.77, issue.4, p.10831130, 2005.

E. Defa¸, Elaboration et caractérisation de couches minces piézoélectriques de Pb(Zr,Ti)O 3 sur silicium pour applications aux microsystèmes, Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, 1999.

A. F. Devonshire, Theory of barium titanate -Part I. Philosophiae Magazine, p.1040, 1949.

R. Dianoux, Injection et détection de charges dans des nanostructures semiconductrices par Microscopie à Force Atomique, 2004.

. Dorjin, G. Simakov-]-dorjin, and I. Et-simakov, Acoustic study of adsorbed liquid layers, Acoustical Physics, vol.48, issue.4, pp.436440-436450, 2002.
DOI : 10.1134/1.1494022

G. E. Ewing, Ambient thin lm water on insulator surfaces, Chemical Reviews, vol.106, issue.4, p.15111526, 2006.
DOI : 10.1002/chin.200625217

. Felten, Modeling and measurement of surface displacements in BaTiO 3 bulk material in piezoresponse force microscopy, J. Appl. Phys, vol.96, issue.1, p.563568, 2004.

. Fousek, J. Fousek, and V. Et-janovec, The Orientation of Domain Walls in Twinned Ferroelectric Crystals, Journal of Applied Physics, vol.40, issue.1, p.135142, 1969.
DOI : 10.1063/1.1657018

. Fu, Dynamics of nanoscale polarization backswitching in tetragonal lead zirconate titanate thin lm, 2003.

K. Fujimoto and Y. Et-cho, INSA de Lyon, tous droits réservés High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO 3, Appl. Phys. Lett, vol.83, issue.25, p.52655267, 2003.

. Ganpule, Domain nucleation and relaxation kinetics in ferroelectric thin lms, Appl. Phys. Lett, issue.20, p.7732753277, 2000.

. Ganpule, Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin lms, 2001.

. Gantz, The Diverse and Exploding Digital Universe, 2008.

B. Gautier, Contribution de la microscopie a force atomique et Techniques dérivées à la détermination à l'échelle Nanométrique des propriétés électriques des Matériaux. Application aux couches minces et Ferro-électriques et aux semiconducteurs, 2006.

. Gautier, Influence of the Microstructure and of an Ion Beam Etching on the Domain Propagation in PZT Thin Films, Integrated Ferroelectrics, vol.50, issue.1, p.231, 2002.
DOI : 10.1080/10584580215530

URL : https://hal.archives-ouvertes.fr/hal-00149627

S. Gidon, Modeling capped ferroelectric media for probe storage recording, Journal of Applied Physics, vol.103, issue.11, p.114111, 2008.
DOI : 10.1063/1.2937250

. Goniakowski, Polarity of oxide surfaces and nanostructures, Reports on Progress in Physics, vol.71, issue.1, p.16501, 2008.
DOI : 10.1088/0034-4885/71/1/016501

URL : https://hal.archives-ouvertes.fr/hal-00425166

. Gopalan, V. Mitchell-]-gopalan, and T. Mitchell, Wall velocities, switching times, and the stabilization mechanism of 180 degrees domains in congruent LiTaO 3 crystals, J. Appl. Phys, vol.83, issue.2, p.941954, 1998.

. Gopalan, Switching kinetics of 180?? domains in congruent LiNbO3 and LiTaO3 crystals, Solid State Communications, vol.109, issue.2, pp.111-117, 1998.
DOI : 10.1016/S0038-1098(98)00509-2

G. Et-kalinin-]-gruverman, A. Et-kalinin, and S. V. , Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics, J. Mater. Sci, vol.16, p.107, 2006.

. Gruverman, Nanoscale imaging of domain dynamics and retention in ferroelectric thin lms, 1997.

. Gualtieri, Piezoelectric materials for acoustic wave applications, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.41, issue.1, pp.4153-59, 1994.
DOI : 10.1109/58.265820

C. Harnagea and P. A. , Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films, Integrated Ferroelectrics, vol.17, issue.1-4, p.23, 2001.
DOI : 10.1063/1.124770

. Hatano, Improved powderpattern technique for delineating ferroelectric domains, Japanese Journal of Applied Physics, issue.10, p.1216441645, 1973.
DOI : 10.1143/jjap.12.1644

. Hiranaga, Novel HDD-type SNDM ferroelectric data storage system aimed at highspeed data transfer with single probe operation, IEEE T. Ultrason. Ferr, issue.12, pp.542523-2528, 2007.

. Hiranaga, Ferroelectric Single Crystal Recording Media Fabricated by Polarization Controlled Wet Etching Process, Japanese Journal of Applied Physics, vol.43, issue.No. 4B, pp.43-569, 2004.
DOI : 10.1143/JJAP.43.L569

. Hong, Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy, Physical Review B, vol.58, issue.8, p.5850785084, 1998.
DOI : 10.1103/PhysRevB.58.5078

P. Hong, S. Hong, and N. Park, Scanning Probe Microscopy -Resistive Probe Storage : Read/Write Mechanism, volume IV.36, 2007.
DOI : 10.1007/978-0-387-28668-6_36

. Hong, Principle of ferroelectric domain imaging using atomic force microscope, Journal of Applied Physics, vol.89, issue.2, p.13771386, 2001.
DOI : 10.1063/1.1331654

M. Hooton, J. A. Hooton, and W. J. Et-merz, Etch patterns and ferroelectric domains in BaTiO 3 single crystals, Phys. Rev, vol.98, issue.2, p.409413, 1955.

T. Houe, M. Houe, and P. D. Et-townsend, An introduction to methods of periodic poling for second-harmonic generation, Journal of Physics D: Applied Physics, vol.28, issue.9, p.1747, 1995.
DOI : 10.1088/0022-3727/28/9/001

. Hu, Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers, Applied Physics Letters, vol.67, issue.4, 1995.
DOI : 10.1063/1.114541

D. Jeong and Y. Cho, Characterization and comparison of nanoscale domain boundary in congruent and stoichiometric LiTaO3 with scanning nonlinear dielectric microscopy, Applied Physics Letters, vol.95, issue.2, p.22908, 2009.
DOI : 10.1063/1.3182713

J. Et-shirane-]-jona, F. Et-shirane, and G. , Ferroelectric crystals, 1962.

. Joshi, Electrical conduction in water revisited: roles of field-enhanced dissociation and a reaction-based boundary condition, IEEE Transactions on Dielectrics and Electrical Insulation, vol.10, issue.2, pp.225-232, 2003.
DOI : 10.1109/TDEI.2003.1194103

. Jungk, Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy, Applied Physics Letters, vol.89, issue.16, 2006.
DOI : 10.1063/1.2362984

. Jungk, Challenges for the determination of piezoelectric constants with piezoresponse force microscopy, Applied Physics Letters, vol.91, issue.25, 2007.
DOI : 10.1063/1.2827566

K. Kaja, Développement de techniques nano-sondes pour la mesure du travail de sortie et application aux matériaux en microélectronique, Thèse de doctorat, 2010.

. Kalinin, A decade of piezoresponse force microscopy: progress, challenges, and opportunities, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.53, issue.12, pp.532226-2252, 2006.
DOI : 10.1109/TUFFC.2006.169

. Kalinin, S. V. Kalinin, and D. A. Et-bonnell, Local potential and polarization screening on ferroelectric surfaces, Physical Review B, vol.63, issue.12, p.63125411, 2001.
DOI : 10.1103/PhysRevB.63.125411

. Kalinin, S. V. Kalinin, and D. A. Et-bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Physical Review B, vol.65, issue.12, p.65125408, 2002.
DOI : 10.1103/PhysRevB.65.125408

. Kalinin, S. V. Kalinin, and D. A. Et-bonnell, Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements, Nano Letters, vol.4, issue.4, p.555560, 2004.
DOI : 10.1021/nl0350837

. Kalinin, Materials contrast in piezoresponse force microscopy, Applied Physics Letters, vol.88, issue.23, p.88232904, 2006.
DOI : 10.1063/1.2206992

URL : http://arxiv.org/abs/cond-mat/0603010

. Kalinin, Nanoelectromechanics of polarization switching in piezoresponse force microscopy, Journal of Applied Physics, vol.97, issue.7, p.74305, 2005.
DOI : 10.1063/1.1866483

. Kalinin, Domain polarity and temperature induced potential inversion on the batio[sub 3](100) surface, J. Appl. Phys, issue.6, p.9138163823, 2002.
DOI : 10.1063/1.1446230

. Kalinin, Local polarization dynamics in ferroelectric materials, Reports on Progress in Physics, vol.73, issue.5, 2010.
DOI : 10.1088/0034-4885/73/5/056502

. Kan, Growth evolution and decay properties of the abnormally switched domains in linbo[sub 3] crystals, Appl. Phys. Lett, issue.17, p.92172910, 2008.

. Kan, Domain reversal and relaxation in linbo, 2006.

C. Katoh, . Katoh, T. M. Mirai, and Y. Et-cho, Observation of Ring Shaped Domain Patterns Using a Scanning Nonlinear Dielectric Microscopy, Integrated Ferroelectrics, vol.50, issue.1, p.207, 2004.
DOI : 10.1063/1.1593830

. Kholkin, Anomalous polarization inversion in ferroelectrics via scanning force microscopy, Nanotechnology, vol.18, issue.9, p.18095502, 2007.
DOI : 10.1088/0957-4484/18/9/095502

. Kim, INSA de Lyon, tous droits réservés Domain reversal and nonstoichiometry in lithium tantalate, these.pdf © A. Brugère], pp.902949-2963, 2001.

. Kim, Direct x-ray synchrotron imaging of strains at 180?? domain walls in congruent LiNbO3 and LiTaO3 crystals, Applied Physics Letters, vol.77, issue.13, 2000.
DOI : 10.1063/1.1312854

. Kim, Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy, Applied Physics Letters, vol.94, issue.3, p.32907, 2009.
DOI : 10.1063/1.3046786

. Kim, Correlation between grain size and domain size distributions in ferroelectric media for probe storage applications, Applied Physics Letters, vol.89, issue.16, p.162907, 2006.
DOI : 10.1063/1.2363942

. Korkishko, . Fedorov, Y. N. Korkishko, and V. A. Et-fedorov, Ion exchange in single crystals for integrated optics and optoelectronics. Cambridge international science publishing, 1999.

K. Kryder, M. Kryder, and C. S. Kim, After Hard Drives-What Comes Next ? Magnetics, IEEE Transactions on, issue.10, pp.453406-3413, 2009.
DOI : 10.1109/tmag.2009.2024163

. Lambeck, P. Lambeck, and G. Et-jonker, The nature of domain stabilization in ferroelectric perovskites, Journal of Physics and Chemistry of Solids, vol.47, issue.5, pp.47453-461, 1986.
DOI : 10.1016/0022-3697(86)90042-9

R. Landauer, Electrostatic considerations in BaTiO 3 domain formation during polarization reversal, J. Appl. Phys, vol.28, issue.2, p.227234, 1957.

L. Lang, S. B. Et-muensit, and S. , Review of some lesser-known applications of piezoelectric and pyroelectric polymers, Applied Physics A, vol.17, issue.93, p.125134, 2006.
DOI : 10.1007/s00339-006-3688-8

. Lee, Microcantilevers integrated with heaters and piezoelectric detectors for nano data-storage application, Applied Physics Letters, vol.83, issue.23, p.48394841, 2003.
DOI : 10.1063/1.1633009

. Lehman, Fabrication and evaluation of a freestanding pyroelectric detector made from single-crystal LiNbO 3 lm, Opt. Lett, issue.22, p.2516571659, 2000.

. Lerner, Stoechiom??trie des monocristaux de m??taniobate de lithium, Journal of Crystal Growth, vol.3, issue.4, pp.3-4231, 1968.
DOI : 10.1016/0022-0248(68)90139-5

. Light, The Fundamental Conductivity and Resistivity of Water, Electrochemical and Solid-State Letters, vol.8, issue.1, 2005.
DOI : 10.1149/1.1836121

. Lines, . Glass, M. E. Lines, and A. M. Et-glass, Principles and applications of ferroelectrics and related materials, 1979.

. Liu, Nanoscale chemical etching of near-stoichiometric lithium tantalate, Journal of Applied Physics, vol.97, issue.6, p.64308, 2005.
DOI : 10.1063/1.1870115

. Loyo-menoyo, INSA de Lyon, tous droits réservés Electron paramagnetic resonance of Cr3+ in near-stoichiometric LiTaO 3, these.pdf © A. Brugère], [2011], p.97123905, 2005.

M. Maya, Cours de Mécanique des Milieux Continus Ecole Nationale Supérieure d'Arts et Métiers Centre, 2010.

E. J. Mele, Screening of a point charge by an anisotropic medium: Anamorphoses in the method of images, American Journal of Physics, vol.69, issue.5, p.557562, 2001.
DOI : 10.1119/1.1341252

W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO 3 single crystals, Phys. Rev, vol.95, issue.3, p.690698, 1954.

W. J. Merz, Switching time in ferroelectric BaTiO 3 and its dependence on crystal thickness, J. Appl. Phys, issue.8, p.27938943, 1956.

. Miller, . Savage, R. C. Miller, and A. Et-savage, Velocity of sidewise 180° domain-wall motion in BaTiO 3 as a function of the applied electric eld, Phys. Rev, vol.112, issue.3, p.755762, 1958.

. Miller, . Weinreich, R. C. Miller, and G. Et-weinreich, Mechanism for the Sidewise Motion of 180?? Domain Walls in Barium Titanate, Physical Review, vol.117, issue.6, p.14601466, 1960.
DOI : 10.1103/PhysRev.117.1460

. Mizuuchi, . Yamamoto, K. Mizuuchi, and K. Et-yamamoto, Harmonic blue light generation in bulk periodically poled LiTaO 3, Appl. Phys. Lett, issue.22, p.6629432945, 1995.

M. Müller, E. Soergel, and B. K. , Visualization of ferroelectric domains with coherent light, Optics Letters, vol.28, issue.24, p.2515, 2003.
DOI : 10.1364/OL.28.002515

M. Molotskii, Generation of ferroelectric domains in films using atomic force microscope, Journal of Applied Physics, vol.97, issue.1, p.14109, 2005.
DOI : 10.1063/1.1823028

. Molotskii, Ferroelectric domain breakdown, 2003.
DOI : 10.1146/annurev.matsci.37.052506.084223

. Molotskii, . Shvebelman, M. I. Molotskii, and M. M. Et-shvebelman, Domain growth as manifestation of a Coulomb instability of bound charge, Journal of Applied Physics, vol.100, issue.5, p.54103, 2006.
DOI : 10.1063/1.2336490

T. Morita and Y. Et-cho, Observation of Antiparallel Polarization Reversal Using a Scanning Nonlinear Dielectric Microscope, Japanese Journal of Applied Physics, vol.42, issue.Part 1, No. 9B, p.4262146217, 2003.
DOI : 10.1143/JJAP.42.6214

. Morozovska, Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach, Physical Review B, vol.80, issue.21, p.80214110, 2009.
DOI : 10.1103/PhysRevB.80.214110

. Morozovska, Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall, Journal of Applied Physics, vol.103, issue.12, p.124110, 2008.
DOI : 10.1063/1.2939369

. Morozovska, Piezoresponse force spectroscopy of ferroelectric-semiconductor materials, Journal of Applied Physics, vol.102, issue.11, p.114108, 2007.
DOI : 10.1063/1.2818370

. Moulet, High piezoelectric properties in LiNbO 3 transferred layer by the Smart Cut trade technology for ultra wide band baw lter applications, IEDM 2008. IEEE International Electron Devices Meeting. Technical Digest, p.4, 2008.

T. Mura, Micromechanics of Defects in Solids, Martinus Nijho, 1987.

P. Muralt, Recent Progress in Materials Issues for Piezoelectric MEMS, Journal of the American Ceramic Society, vol.2, issue.5, p.1385, 2008.
DOI : 10.1080/10584580108016897

Y. Nakagawa, Roadmap of Scanning Probe Microscopy, 2006.

Z. Ning, LiTaO 3 crystal periodically poled by applying an external pulsed eld, J. Appl. Phys, issue.10, p.7754815483, 1995.

. Odagawa, . Cho, N. Odagawa, and Y. Et-cho, Study of Long-Term-Retention Characteristics and Wall Behavior of Nano-Inverted domains on Congruent Single-Crystal LiTaO<inf>3</inf> Based on Wall Energy, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, p.4575607563, 2006.
DOI : 10.1109/ISAF.2007.4393257

C. Ohara, K. Ohara, and Y. Et-cho, Non-contact scanning nonlinear dielectric microscopy, Nanotechnology, vol.16, issue.3, pp.10-1088, 2005.
DOI : 10.1088/0957-4484/16/3/010

S. Olson, A. H. Olson, and S. P. Et-sutton, The physical mechanisms leading to electrical breakdown in underwater arc sound sources, The Journal of the Acoustical Society of America, vol.94, issue.4, p.22262231, 1993.
DOI : 10.1121/1.407493

. Paruch, Domain wall roughness in epitaxial ferroelectric PbZr 0 .2Ti 0 .8O 3 thin lms, Phys. Rev. Lett, p.94, 2005.

. Paruch, Nanoscale studies of domain wall motion in epitaxial ferroelectric thin lms, J, 2006.

A. Paz-de, Fatigue-free ferroelectric capacitors with platinum electrodes, Nature, vol.374, p.627, 1995.

. Pertsev, Dynamics of ferroelectric nanodomains in BaTiO 3 epitaxial thin lms via piezoresponse force microscopy, Nanotechnology, issue.37, p.19, 2008.

. Pozidis, Scanning probes entering data storage : From promise to reality Emerging Technologies -Nanoelectronics, tous droits réservés IEEE Conference on, pp.39-44, 2006.

. Prume, Compensation of the parasitic capacitance of a scanning force microscope cantilever used for measurements on ferroelectric capacitors of submicron size by means of nite element simulations, Japanese Journal of Applied Physics, issue.11B, p.4171987201, 2002.

R. Ramesh and S. N. , Multiferroics: progress and prospects in thin films, Nature Materials, vol.2, issue.1, p.21, 2007.
DOI : 10.1038/nmat1805

. Rodriguez, Three-dimensional high-resolution reconstruction of polarization in ferroelectric capacitors by piezoresponse force microscopy, Journal of Applied Physics, vol.95, issue.4, p.19581962, 2004.
DOI : 10.1063/1.1638889

. Rodriguez, Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy, Applied Physics Letters, vol.86, issue.1, p.12906, 2005.
DOI : 10.1063/1.1845594

A. Roelofs, Size eects in ferroelectric thin lms, Thèse de doctorat, 2003.

. Rosenman, Submicron ferroelectric domain structures tailored by highvoltage scanning probe microscopy, Appl. Phys. Lett, vol.82, issue.1, p.103105, 2003.
DOI : 10.1063/1.1534410

. Sawyer, C. B. Sawyer, and C. H. Et-tower, Rochelle Salt as a Dielectric, Physical Review, vol.35, issue.3, p.269273, 1930.
DOI : 10.1103/PhysRev.35.269

. Scrymgeour, Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate, Physical Review B, vol.71, issue.18, pp.71-184110, 2005.
DOI : 10.1103/PhysRevB.71.184110

V. Sergei, . Kalinin, V. Sergei, E. A. Kalinin, and A. N. Eliseev, Materials contrast in piezoresponse force microscopy, ArXiv Condensed Matter > Materials Science, 2006.

. Setter, Ferroelectric thin lms : Review of materials, properties, and applications, J, 2006.

. Shin, Nucleation and growth mechanism of ferroelectric domain-wall motion, Nature, vol.7, issue.7164, pp.449-881884, 2007.
DOI : 10.1038/nature06165

V. Shur, Kinetics of ferroelectric domains : Application of general approach to LiNbO 3 and LiTaO 3, J. Mater. Sci, vol.41, issue.10, pp.10853-10858, 1007.

V. Y. Shur, Ferroelectric Thin Films : Synthesis and Basic Properties, 1996.

. Shur, Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications, Ferroelectrics, vol.41, issue.1, p.129, 2000.
DOI : 10.1080/00150199208227088

. Shvebelman, Scanning probe microscopy of well-dened periodically poled ferroelectric domain structure, Appl. Phys. Lett, issue.10, p.8018061808, 2002.

E. Soergel, Visualization of ferroelectric domains in bulk single crystals, Applied Physics B, vol.29, issue.6, pp.729751-729761, 2005.
DOI : 10.1007/s00340-005-1989-9

. Spanier, Ferroelectric phase transition in individual single-crystalline batio3 nanowires, Nano Lett, vol.6, issue.4, p.735739, 2006.

. Stiévenard, D. Stiévenard, and B. Et-legrand, Silicon surface nano-oxidation using scanning probe microscopy, Progress in Surface Science, vol.81, issue.2-3, pp.112-140, 2006.
DOI : 10.1016/j.progsurf.2006.01.003

. Tagantsev, . Gerra, A. K. Tagantsev, and G. Et-gerra, Interface-induced phenomena in polarization response of ferroelectric thin films, Journal of Applied Physics, vol.100, issue.5, p.51607, 2006.
DOI : 10.1063/1.2337009

. Tagantsev, Identication of passive layer in ferroelectric thin lms from their switching parameters, J. Appl. Phys, vol.78, issue.4, p.26232630, 1995.

. Tagantsev, Polarization fatigue in ferroelectric lms : Basic experimental ndings, phenomenological scenarios, and microscopic features, J. Appl. Phys, vol.90, issue.3, p.13871402, 2001.

. Tanaka, Scanning Nonlinear Dielectric Microscopy Nano-Science and Technology for Next Generation High Density Ferroelectric Data Storage, Japanese Journal of Applied Physics, vol.47, issue.5, p.4733113325, 2008.
DOI : 10.1143/JJAP.47.3311

. Tauzin, 3-inch single-crystal LiTaO 3 lms onto metallic electrode using smart cut technology, Electronics Letters, issue.13, pp.44822-824, 2008.
DOI : 10.1049/el:20081057

. Terabe, Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO 3 crystal, Appl. Phys. Lett, vol.82, issue.3, p.433435, 2003.

. Tikhomirova, Visualization of static and the dynamics of domain structure in triglycine sulfate by liquid crystals, Ferroelectrics, vol.8, issue.7, p.145, 1980.
DOI : 10.1080/00150198008008470

. Tybell, Domain wall creep in epitaxial ferroelectric PbZr 0, 2002.

. Insa-de-lyon, R. Stutz, D. Wiesmann, G. Binnig, P. Bachtold et al., Thousands of microcantilevers for highly parallel and ultra-dense data storage, Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, p.32, 2003.

. Vettiger, The ???Millipede??????More than thousand tips for future AFM storage, IBM Journal of Research and Development, vol.44, issue.3, p.323, 2000.
DOI : 10.1147/rd.443.0323

. Wada, Domain Wall Engineering in Barium Titanate Single Crystals for Enhanced Piezoelectric Properties, Ferroelectrics, vol.44, issue.1, p.1727, 2006.
DOI : 10.1080/00150190600689647

. Weeks, Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy, Langmuir, vol.21, issue.18, p.80968098, 2005.
DOI : 10.1021/la0512087

. Weisenhorn, Forces in atomic force microscopy in air and water, Applied Physics Letters, vol.54, issue.26, p.5426512653, 1989.
DOI : 10.1063/1.101024

. Wright, Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes, IEEE Transactions On Nanotechnology, vol.5, issue.1, pp.50-61, 2006.
DOI : 10.1109/TNANO.2005.861400

. Yamada, Piezoelectric and elastic properties of LiTaO 3 : Temperature characteristics, Japanese Journal of Applied Physics, vol.8, issue.9, p.11271132, 1969.

. Yano, . Ikeda, K. Yano, and T. Et-ikeda, Stable bit formation in polyimide Langmuir-Blodgett lm using an atomic force microscope, Appl. Phys. Lett, vol.80, issue.6, p.10671069, 2002.

. Zhao, A MEMS read-write head for ferroelectric probe storage. Micro Electro Mechanical Systems, MEMS 2008. IEEE 21st International Conference on, p.155, 2008.

B. Ghyselen and . Gautier, Piezoresponse Force Microscopy study of a single-crystal LiTaO 3 thin lm obtained by Smart Cut TM technology, Applications of Ferroelectrics ISAF-10, 19th IEEE International Symposium, 2010.

A. Brugère, S. Gidon, B. Gautier, A. , A. Brugère et al., Impact of the humidity on the domain growth kinetics in single-crystal LiTaO 3Anti-parallel switching of ferroelectric domains created by the tip of an atomic force microscope in a congruent LiTaO 3 single-crystal thin lm, Journal of Applied Physics 2011 A paraitre B.2 Communications orales dans des congrès interna- tionaux A. Brugère, S. Gidon, A. Tchelnokov et B. Gautier, FEM Simulation of Nanodomain Formation in LiTaO 3 , 10 th International Symposium on Ferroic Domains, 2010.

A. Brugère, S. Gidon, A. Tchelnokov, J. Moulet, C. Deguet et al., Piezoresponse Force Microscopy study of a single-crystal LiTaO 3 thin lm obtained by Smart Cut TM technology, th International Symposium on the Applications of Ferroelectrics (ISAF-10), pp.9-12, 2010.

S. Brugère, A. Gidon, J. S. Tchelnokov, C. Moulet, L. Deguet et al., Piezo Force Microscopy : Etude de lms mono-cristalin de 221

. Mandine, Mesure et cartographie à l'échelle nanométrique des propriétés ferroélectriques et diélectriques des couches minces par les techniques dérivées de la microscopie à force atomique. Journées annuelles de la société francaise de métallurgie et de matériaux, 2009.

C. Unité-de, U. De-chimie-du-solide, and . Cnrs, Faculté Jean Perrin Rue Jean Souvraz SP18 62307 Lens Cedex rachel.desfeux@univ-artois

B. Examinateur and . Sylvain, Directeur de recherche FEMTO-ST 32, avenue de l'Observatoire 25044 Besançon cedex sylvain.ballandras@femto-st.fr Examinateur GIDON Serge, Ingénieur CEA CEA/ LETI / MINATEC 17 rue des martyrs 38054 GRENOBLE cédex serge.gidon@cea.fr Co-encadrant GAUTIER Brice, Professeur Institut des Nanotechnologies de Lyon 7