P. R-i-n-t, c o n v e r g e n c e ] . P r i n t [ n r e f l , s y s t e m l e n g t h * nthrough

. Appendto-[-cndcty, { s y s t e m l e n g t h , s y s t e m l e n g t h * nthrough

A. N. Goldstein, C. M. Echer, and A. P. , Melting in Semiconductor Nanocrystals, Science, vol.256, issue.5062, pp.1425-1427, 1992.
DOI : 10.1126/science.256.5062.1425

S. H. Tolbert and A. P. , High-Pressure Structural Transformations in Semiconductor Nanocrystals, Annual Review of Physical Chemistry, vol.46, issue.1, pp.595-625, 1995.
DOI : 10.1146/annurev.pc.46.100195.003115

R. Goswami, S. Banerjee, K. Chattopadhyay, and A. K. Raychaudhuri, Superconductivity in rapidly quenched metallic systems with nanoscale structure, Journal of Applied Physics, vol.73, issue.6, p.2934, 1993.
DOI : 10.1063/1.353024

F. E. Kruis, H. Fissan, and A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications???a review, Journal of Aerosol Science, vol.29, issue.5-6, pp.5-6511, 1998.
DOI : 10.1016/S0021-8502(97)10032-5

F. J. Disalvo, Thermoelectric Cooling and Power Generation, Science, vol.285, issue.5428, pp.285703-706, 1999.
DOI : 10.1126/science.285.5428.703

J. Ren, P. Fleurial, and . Gogna, New directions for Low-Dimensional thermoelectric materials, Advanced Materials, vol.19, issue.8, pp.1043-1053, 2007.

F. D. Rosi, Thermoelectricity and thermoelectric power generation, Solid-State Electronics, vol.11, issue.9, pp.833-848, 1968.
DOI : 10.1016/0038-1101(68)90104-4

G. , J. Snyder, and E. S. Toberer, Complex thermoelectric materials, Nat Mater, vol.7, issue.2, pp.105-114, 2008.
DOI : 10.1038/nmat2090

W. John and . Fairbanks, Vehicular thermoelectric applications session DEER, 2009.

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.47, issue.19, p.12727, 1993.
DOI : 10.1103/PhysRevB.47.12727

L. D. Hicks, T. C. Harman, and M. S. Dresselhaus, Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials, Applied Physics Letters, issue.23, p.633230, 1993.

L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.16631, 1993.
DOI : 10.1103/PhysRevB.47.16631

D. G. Cahill, S. K. Watson, and R. O. , Lower limit to the thermal conductivity of disordered crystals, Physical Review B, vol.46, issue.10, pp.6131-6171, 1992.
DOI : 10.1103/PhysRevB.46.6131

W. Neil, N. Ashcroft, and . David-mermin, Solid state physics, 1976.

B. R. Nag, Theory of electrical transport in semiconductors, 1972.

R. M. Martin, Electronic structure: basic theory and practical methods, 2004.
DOI : 10.1017/CBO9780511805769

J. M. Ziman, Electrons and phonons, 2001.

R. Tubino, Lattice Dynamics and Spectroscopic Properties by a Valence Force Potential of Diamondlike Crystals: C, Si, Ge, and Sn, The Journal of Chemical Physics, vol.56, issue.3, p.1022, 1972.
DOI : 10.1063/1.1677264

C. Kittel and H. Kroemer, Thermal physics, 1980.

D. Lacroix, K. Joulain, and D. Lemonnier, Monte Carlo transient phonon transport in silicon and germanium at nanoscales, Physical Review B, vol.72, issue.6, 2005.
DOI : 10.1103/PhysRevB.72.064305

URL : https://hal.archives-ouvertes.fr/hal-00017489

S. Thomas and H. , Heat transport in superlattices and nanowire arrays, 2002.

C. M. Bhandari, CRC handbook of thermoelectrics, 1995.

G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: basic principles and new materials developments, 2001.
DOI : 10.1007/978-3-662-04569-5

W. Jones and N. H. March, Theoretical solid state physics, 1973.

J. Singh, Physics of semiconductors and their heterostructures, 1993.

D. L. Rode, R. K. Willardson, and A. C. Beer, Chapter 1 Low-Field Electron Transport, pp.1-89, 1975.
DOI : 10.1016/S0080-8784(08)60331-2

S. Volz, Micro and nanoscale heat transfer, 2005.

V. P. Carey, G. Chen, C. Grigoropoulos, M. Kaviany, and A. Majumdar, A Review of Heat Transfer Physics, Nanoscale and Microscale Thermophysical Engineering, vol.12, issue.1, 2008.
DOI : 10.1080/15567260801917520

G. Q. Lu, Nanoporous Materials-An overview. Nanoporous materials: science and engineering, p.1, 2004.

N. Chen, Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1???x, Applied Physics Letters, vol.87, issue.17
DOI : 10.1063/1.2056590

URL : https://hal.archives-ouvertes.fr/hal-00182219

D. Michaël and R. , Thermoelectrics handbook: macro to nano, 2006.

M. Terry and . Tritt, Thermoelectric materials: new directions and approaches : symposium held, 1997.

M. Ohring, The materials science of thin films: deposition and structure, 2002.

G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, 2004.
DOI : 10.1142/9781860945960

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Reviews of Modern Physics, vol.55, issue.3, p.645, 1983.
DOI : 10.1103/RevModPhys.55.645

L. Esaki, The evolution of nanoscale quantum effects in semiconductor physics, Nanostructured Materials, vol.12, issue.1-4, pp.1-8, 1999.
DOI : 10.1016/S0965-9773(99)00055-0

P. Alivisatos, The use of nanocrystals in biological detection, Nature Biotechnology, vol.22, issue.1, pp.47-52, 2004.
DOI : 10.1038/nbt927

R. Prasher, Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores, Journal of Applied Physics, vol.100, issue.6, p.64302, 2006.
DOI : 10.1063/1.2337786

I. Allon, R. Hochbaum, R. D. Chen, W. Delgado, E. C. Liang et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, issue.7175, pp.451163-167, 2008.

T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, vol.297, issue.5590, pp.2229-2232, 2002.
DOI : 10.1126/science.1072886

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids. Clarendon, 1984.

A. Majumdar, Microscale Heat Conduction in Dielectric Thin Films, Journal of Heat Transfer, vol.115, issue.1, pp.7-16, 1993.
DOI : 10.1115/1.2910673

M. Ry¯-ogo-kubo, N. Toda, and . Hashitsume, Statistical physics II: nonequilibrium statistical mechanics, 1985.

S. Mazumder and A. Majumdar, Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization, Journal of Heat Transfer, vol.123, issue.4, pp.749-759, 2001.
DOI : 10.1115/1.1377018

J. Randrianalisoa and D. Baillis, Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films, Journal of Applied Physics, vol.103, issue.5, p.53502, 2008.
DOI : 10.1063/1.2841697

URL : https://hal.archives-ouvertes.fr/hal-00351524

R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang et al., Thermal Conductance of Thin Silicon Nanowires, Physical Review Letters, vol.101, issue.10, p.105501, 2008.
DOI : 10.1103/PhysRevLett.101.105501

A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, Phonon backscattering and thermal conductivity suppression in sawtooth nanowires, Applied Physics Letters, vol.93, issue.8, p.93083112, 2008.
DOI : 10.1063/1.2970044

O. Bourgeois, T. Fournier, and J. Chaussy, Measurement of the thermal conductance of silicon nanowires at low temperature, Journal of Applied Physics, vol.101, issue.1, p.16104, 2007.
DOI : 10.1063/1.2400093

A. Szafer and A. D. Stone, Theory of Quantum Conduction through a Constriction, Physical Review Letters, vol.62, issue.3, p.300, 1989.
DOI : 10.1103/PhysRevLett.62.300

E. G. Haanappel and D. Van, Conductance oscillations in two-dimensional Sharvin point contacts, Physical Review B, vol.39, issue.8, p.5484, 1989.
DOI : 10.1103/PhysRevB.39.5484

G. Kirczenow, Theory of the conductance of ballistic quantum channels, Solid State Communications, vol.68, issue.8, pp.715-718, 1988.
DOI : 10.1016/0038-1098(88)90050-6

J. Seyler and M. N. Wybourne, Acoustic waveguide modes observed in electrically heated metal wires, Physical Review Letters, vol.69, issue.9, p.1427, 1992.
DOI : 10.1103/PhysRevLett.69.1427

T. S. Tighe, J. M. Worlock, and M. L. Roukes, Direct thermal conductance measurements on suspended monocrystalline nanostructures, Applied Physics Letters, vol.70, issue.20, p.2687, 1997.
DOI : 10.1063/1.118994

URL : http://authors.library.caltech.edu/10579/1/TIGapl97.pdf

L. G. Rego and G. Kirczenow, Quantized Thermal Conductance of Dielectric Quantum Wires, Physical Review Letters, vol.81, issue.1, pp.232-235, 1998.
DOI : 10.1103/PhysRevLett.81.232

N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green???s function approach, Physical Review B, vol.68, issue.24, p.245406, 2003.
DOI : 10.1103/PhysRevB.68.245406

N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, ???Nanoparticle-in-Alloy??? Approach to Efficient Thermoelectrics: Silicides in SiGe, Nano Letters, vol.9, issue.2, pp.711-715, 2009.
DOI : 10.1021/nl8031982

J. D. , C. , and M. Kaviany, Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon, International Journal of Heat and Mass Transfer, vol.43, issue.4, pp.521-538, 2000.

R. Prasher, Thermal conductivity of composites of aligned nanoscale and microscale wires and pores, Journal of Applied Physics, vol.100, issue.3, p.34307, 2006.
DOI : 10.1063/1.2219162

R. Yang, G. Chen, and M. Dresselhaus, Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction, Physical Review B, vol.72, issue.12, 2005.
DOI : 10.1103/PhysRevB.72.125418

J. Lee, J. C. Grossman, J. Reed, and G. Galli, Lattice thermal conductivity of nanoporous Si: Molecular dynamics study, Applied Physics Letters, vol.91, issue.22, p.91223110, 2007.
DOI : 10.1063/1.2817739

R. Yang and G. Chen, Thermal conductivity modeling of periodic twodimensional nanocomposites, Physical Review B, vol.69, issue.19, 2004.

N. Mingo and D. A. Broido, Thermoelectric power factor of nanoporous semiconductors, Journal of Applied Physics, vol.101, issue.1, p.14322, 2007.
DOI : 10.1063/1.2405232

G. Casella and C. P. Robert, Montecarlo statistical method, 1999.

D. J. Tildesley and M. P. Allen, Computer simulation of liquids, 1987.

K. Binder, Monte carlo and molecular dynamic simulation in polymer science, 1995.

N. Metropolis, R. Bivins, M. Storm, A. Turkevich, J. M. Miller et al., Monte Carlo Calculations on Intranuclear Cascades. I. Low-Energy Studies, Physical Review, vol.110, issue.1, p.185, 1958.
DOI : 10.1103/PhysRev.110.185

E. S. Oran, C. K. Oh, B. Z. Cybyk, . Direct, . Simulation et al., DIRECT SIMULATION MONTE CARLO: Recent Advances and Applications, recent advances and applications1, pp.403-441, 1998.
DOI : 10.1146/annurev.fluid.30.1.403

V. Massimo, S. E. Fischetti, and . Laux, Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects, Physical Review B, vol.38, issue.14, p.9721, 1988.

P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar et al., Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation, Physical Review B, vol.39, issue.11, p.397852, 1989.
DOI : 10.1103/PhysRevB.39.7852

M. V. Fischetti and S. E. Laux, Monte Carlo study of electron transport in silicon inversion layers, Physical Review B, vol.48, issue.4, p.2244, 1993.
DOI : 10.1103/PhysRevB.48.2244

J. R. Howell, The Monte Carlo Method in Radiative Heat Transfer, Journal of Heat Transfer, vol.120, issue.3, pp.547-560, 1998.
DOI : 10.1115/1.2824310

T. Klitsner, J. E. Vancleve, H. E. Fischer, and R. O. , Phonon radiative heat transfer and surface scattering, Physical Review B, vol.38, issue.11, p.7576, 1988.
DOI : 10.1103/PhysRevB.38.7576

Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity, Journal of Heat Transfer, vol.127, issue.10, pp.1129-1137, 2005.
DOI : 10.1115/1.2035114

M. Jeng, R. Yang, D. Song, and G. Chen, Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation, Journal of Heat Transfer, vol.130, issue.4, pp.42410-42421, 2008.
DOI : 10.1115/1.2818765

N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations, Physical Review B, vol.68, issue.11, 2003.
DOI : 10.1103/PhysRevB.68.113308

M. S. Lucas, Electrical Conductivity of Thin Metallic Films with Unlike Surfaces, Journal of Applied Physics, vol.36, issue.5, pp.1632-1635, 1965.
DOI : 10.1063/1.1703100

M. G. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, p.2461, 1963.
DOI : 10.1103/PhysRev.132.2461

W. A. Harrison, Electronic structure and the properties of solid, 1989.

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, Thermal Conductivity of Ge-Si Alloys at High Temperatures, Physical Review, vol.125, issue.1, p.44, 1962.
DOI : 10.1103/PhysRev.125.44

B. Abeles, Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures, Physical Review, vol.131, issue.5, p.1906, 1963.
DOI : 10.1103/PhysRev.131.1906

N. Savvides and H. J. Goldsmid, Boundary scattering of phonons in fine-grained hot-pressed Ge-Si alloys. II. Theory, Journal of Physics C: Solid State Physics, vol.13, issue.25, pp.4671-4678, 1980.
DOI : 10.1088/0022-3719/13/25/010

D. W. Song, W. Shen, B. Dunn, C. D. Moore, M. S. Goorsky et al., Thermal conductivity of nanoporous bismuth thin films, Applied Physics Letters, vol.84, issue.11, p.1883, 2004.
DOI : 10.1063/1.1682679

D. Broido and N. Mingo, Theory of the thermoelectric power factor in nanowirecomposite matrix structures, Physical Review B, vol.74, issue.19, 2006.

M. Ben-chorin, F. , and F. Koch, Nonlinear electrical transport in porous silicon, Physical Review B, vol.49, issue.4, p.2981, 1994.
DOI : 10.1103/PhysRevB.49.2981

A. A. Balandin, Nanophononics: Phonon Engineering in Nanostructures and Nanodevices, Journal of Nanoscience and Nanotechnology, vol.5, issue.7, pp.1015-1022, 2005.
DOI : 10.1166/jnn.2005.175

L. Wang and B. Li, Phononics gets hot, Physics World, vol.21, issue.03, pp.27-29, 2008.
DOI : 10.1088/2058-7058/21/03/31

R. Yang, Y. Qin, L. Dai, and Z. Wang, Power generation with laterally packaged piezoelectric fine wires, Nature Nanotechnology, vol.8, issue.1, pp.34-39, 2008.
DOI : 10.1038/nnano.2008.314

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Wang and B. Li, Thermal Logic Gates: Computation with Phonons, Physical Review Letters, vol.99, issue.17, p.177208, 2007.
DOI : 10.1103/PhysRevLett.99.177208

M. M. Leivo and J. P. Pekola, Thermal characteristics of silicon nitride membranes at sub-Kelvin temperatures, Applied Physics Letters, vol.72, issue.11, p.721305, 1998.
DOI : 10.1063/1.120979

K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Measurement of the quantum of thermal conductance, Nature, issue.6781, pp.404974-977, 2000.

C. S. Yung, D. R. Schmidt, and A. N. Cleland, Thermal conductance and electron-phonon coupling in mechanically suspended nanostructures, Applied Physics Letters, vol.81, issue.1, p.31, 2002.
DOI : 10.1063/1.1491300

W. Fon, K. C. Schwab, J. M. Worlock, and M. L. Roukes, Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K, Physical Review B, vol.66, issue.4, p.45302, 2002.
DOI : 10.1103/PhysRevB.66.045302

J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire, Nano Letters, vol.9, issue.5, pp.1861-1865, 2009.
DOI : 10.1021/nl803844j

URL : https://hal.archives-ouvertes.fr/hal-00725956

R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Applied Physics Letters, vol.94, issue.4, p.41905, 2009.
DOI : 10.1063/1.3075065

Y. Chalopin, J. Gillet, and S. Volz, Predominance of thermal contact resistance in a silicon nanowire on a planar substrate, Physical Review B, vol.77, issue.23, p.233309, 2008.
DOI : 10.1103/PhysRevB.77.233309

W. Huang, M. Zou, G. Huang, J. Yao, and W. Hu, Material properties dependence of ballistic phonon transmission through two coupled nanocavities, Journal of Applied Physics, vol.105, issue.12, p.124305, 2009.
DOI : 10.1063/1.3152788

L. Shi, D. Li, C. Yu, W. Jang, D. Kim et al., Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device, Journal of Heat Transfer, vol.125, issue.5, pp.881-888, 2003.
DOI : 10.1115/1.1597619

D. Donadio and G. Galli, Atomistic Simulations of Heat Transport in Silicon Nanowires, Physical Review Letters, vol.102, issue.19, 2009.
DOI : 10.1103/PhysRevLett.102.195901

C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Nanotube Phonon Waveguide, Physical Review Letters, vol.99, issue.4, p.45901, 2007.
DOI : 10.1103/PhysRevLett.99.045901

URL : http://www.osti.gov/scitech/servlets/purl/1176534

J. S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois, Blocking phonons via nanoscale geometrical design, Physical Review B, vol.82, issue.15
DOI : 10.1103/PhysRevB.82.155458

URL : https://hal.archives-ouvertes.fr/hal-00725971

R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, 1957.

R. Landauer, Can a length of perfect conductor have a resistance?, Physics Letters A, vol.85, issue.2, pp.91-93, 1981.
DOI : 10.1016/0375-9601(81)90230-9

Y. Imry and R. Landauer, Conductance viewed as transmission, Reviews of Modern Physics, vol.71, issue.2, p.306, 1999.
DOI : 10.1103/RevModPhys.71.S306

S. Datta, Quantum Transport: Atom to Transistor, 2005.
DOI : 10.1017/CBO9781139164313

URL : http://cds.cern.ch/record/826119/files/0521631459_TOC.pdf

M. J. De and J. , Transition from sharvin to drude resistance in high-mobility wires, Physical Review B, vol.49, issue.11, p.7778, 1994.

C. Chang and M. R. Geller, Mesoscopic phonon transmission through a nanowire-bulk contact, Physical Review B, vol.71, issue.12, p.125304, 2005.
DOI : 10.1103/PhysRevB.71.125304

H. B. Casimir, Note on the conduction of heat in crystals, Physica, vol.5, issue.6, pp.495-500, 1938.
DOI : 10.1016/S0031-8914(38)80162-2

R. Berman, F. E. Simon, and J. M. Ziman, The Thermal Conductivity of Diamond at Low Temperatures, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.220, issue.1141, pp.171-183, 1141.
DOI : 10.1098/rspa.1953.0180

M. Knudsen, Die Gesetze der Molekularstr??mung und der inneren Reibungsstr??mung der Gase durch R??hren, Annalen der Physik, vol.41, issue.1, pp.75-130, 1909.
DOI : 10.1002/andp.19093330106

M. V. Smoluchowski, Zur kinetischen Theorie der Transpiration und Diffusion verd??nnter Gase, Annalen der Physik, vol.8, issue.16, pp.1559-1570, 1910.
DOI : 10.1002/andp.19103381623

G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu et al., Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys, Nano Letters, vol.8, issue.12, pp.4670-4674, 2008.
DOI : 10.1021/nl8026795

C. B. Vining, W. Laskow, J. O. Hanson, R. R. Vanderbeck, and P. D. Gorsuch, thermoelectric alloys, Journal of Applied Physics, vol.69, issue.8, pp.4333-4340, 1991.
DOI : 10.1063/1.348408

J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, Thermal and Electrical Properties of Heavily Doped Ge???Si Alloys up to 1300??K, Journal of Applied Physics, vol.35, issue.10, pp.2899-2907, 1964.
DOI : 10.1063/1.1713126

W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Applied Physics Letters, vol.94, issue.10
DOI : 10.1063/1.3097026

H. J. Goldsmid and A. W. Penn, Boundary scattering of phonons in solid solutions, Physics Letters A, vol.27, issue.8
DOI : 10.1016/0375-9601(68)90898-0

J. Parrott, The thermal conductivity of sintered semiconductor alloys, Journal of Physics C: Solid State Physics, vol.2, issue.1, pp.147-151, 1969.
DOI : 10.1088/0022-3719/2/1/320

C. Wood, Materials for thermoelectric energy conversion, Reports on Progress in Physics, vol.51, issue.4, pp.459-539, 1988.
DOI : 10.1088/0034-4885/51/4/001

D. M. Rowe, V. S. Shukla, and N. Savvides, Phonon scattering at grain boundaries in heavily doped fine-grained silicon???germanium alloys, Nature, vol.8, issue.5809, pp.765-766, 1981.
DOI : 10.1038/290765a0

B. Cronin and . Vining, A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys, Journal of Applied Physics, vol.69, issue.1, pp.331-341, 1991.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach, Advanced Functional Materials, vol.2, issue.440, pp.357-376, 2010.
DOI : 10.1002/adfm.200901512

M. Alexis, Etude du mat?Amat? mat?A c riau thermõ A c lectrique sige de la, 2010.

M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo et al., Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites, Advanced Materials, vol.41, issue.14, pp.1654-1658, 2010.
DOI : 10.1002/adma.200901955

URL : https://hal.archives-ouvertes.fr/hal-00496313

P. G. Klemens and G. H. Briggs, The Scattering of Low-Frequency Lattice Waves by Static Imperfections, Proc. Phys. Soc. A, p.68, 1113.
DOI : 10.1088/0370-1298/68/12/303

J. S. Reparaz, A. R. Go-ni, A. Bernardi, M. I. Alonso, and M. Garriga, Measurement of phonon pressure coefficients for a precise determination of deformation potentials in SiGe alloys, physica status solidi (b), vol.8, issue.3, pp.246548-552, 2009.
DOI : 10.1002/pssb.200880531

C. Bera, C. Soulier, . Navone, . Simon, . Roux et al., Thermoelectric properties of nano structured sige: potential for further improvement

A. Glen, M. A. Slack, and . Hussain, The maximum possible conversion efficiency of silicon-germanium thermoelectric generators, Journal of Applied Physics, vol.70, issue.5, pp.2694-2718, 1991.

S. Krishnamurthy, A. Sher, and A. Chen, alloys, Physical Review B, vol.33, issue.2, p.1026, 1986.
DOI : 10.1103/PhysRevB.33.1026

A. Minnich, H. Lee, X. Wang, G. Joshi, M. Dresselhaus et al., Modeling study of thermoelectric SiGe nanocomposites, Physical Review B, vol.80, issue.15, p.80, 2009.
DOI : 10.1103/PhysRevB.80.155327

S. Krishnamurthy, A. Sher, and A. Chen, alloys, Applied Physics Letters, vol.47, issue.2, pp.160-162, 1985.
DOI : 10.1063/1.96248

D. L. Rode and S. Knight, Electron Transport in GaAs, Physical Review B, vol.3, issue.8, p.2534, 1971.
DOI : 10.1103/PhysRevB.3.2534

G. D. Mahan and J. O. Sofo, The best thermoelectric., Proceedings of the National Academy of Sciences, p.7436, 1996.
DOI : 10.1073/pnas.93.15.7436

D. L. Rode, Electron Mobility in Direct-Gap Polar Semiconductors, Physical Review B, vol.2, issue.4, p.1012, 1970.
DOI : 10.1103/PhysRevB.2.1012

J. Bardeen and W. Shockley, Deformation Potentials and Mobilities in Non-Polar Crystals, Physical Review, vol.80, issue.1, p.72, 1950.
DOI : 10.1103/PhysRev.80.72

M. Glicksman, Mobility of Electrons in Germanium-Silicon Alloys, Physical Review, vol.111, issue.1, p.125, 1958.
DOI : 10.1103/PhysRev.111.125

N. Sugii, T. Shigefumi-irieda-morioka, and . Inada, Recrystallization, redistribution, and electrical activation of strained-silicon/Si0.7Ge0.3 heterostructures with implanted arsenic, Journal of Applied Physics, vol.96, issue.1, p.261, 2004.
DOI : 10.1063/1.1758318

G. Kaiblinger-grujin, H. Kosina, and S. Selberherr, Influence of the doping element on the electron mobility in n-silicon, Journal of Applied Physics, vol.83, issue.6, p.3096, 1998.
DOI : 10.1063/1.367067

D. L. Rode, Electron Mobility in Ge, Si, and GaP, Physica Status Solidi (b), vol.39, issue.1, p.245, 1972.
DOI : 10.1002/pssb.2220530126

C. B. Vining, W. Laskow, J. O. Hanson, R. R. Vanderbeck, and P. D. Gorsuch, thermoelectric alloys, Journal of Applied Physics, vol.69, issue.8, pp.4333-4340, 1991.
DOI : 10.1063/1.348408

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen et al., Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers, Nature Materials, vol.103, issue.6, pp.491-495, 2010.
DOI : 10.1038/nmat2752

URL : https://hal.archives-ouvertes.fr/hal-00505811

H. Michel, Y. Ezzahri, A. Shakouri, G. Pernot, J. Rampnoux et al., Coherent phonons spectroscopy in Si/SiGe superlattices, 2010.

A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, vol.80, issue.5, p.466, 2009.
DOI : 10.1039/b822664b

K. U. Eberhard, . Gross, and M. Reiner, Dreizler, and North Atlantic Treaty Organization. Scientific Affairs Division. Density functional theory, 1995.