c o n v e r g e n c e ] . P r i n t [ n r e f l , s y s t e m l e n g t h * nthrough ,
{ s y s t e m l e n g t h , s y s t e m l e n g t h * nthrough ,
Melting in Semiconductor Nanocrystals, Science, vol.256, issue.5062, pp.1425-1427, 1992. ,
DOI : 10.1126/science.256.5062.1425
High-Pressure Structural Transformations in Semiconductor Nanocrystals, Annual Review of Physical Chemistry, vol.46, issue.1, pp.595-625, 1995. ,
DOI : 10.1146/annurev.pc.46.100195.003115
Superconductivity in rapidly quenched metallic systems with nanoscale structure, Journal of Applied Physics, vol.73, issue.6, p.2934, 1993. ,
DOI : 10.1063/1.353024
Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications???a review, Journal of Aerosol Science, vol.29, issue.5-6, pp.5-6511, 1998. ,
DOI : 10.1016/S0021-8502(97)10032-5
Thermoelectric Cooling and Power Generation, Science, vol.285, issue.5428, pp.285703-706, 1999. ,
DOI : 10.1126/science.285.5428.703
New directions for Low-Dimensional thermoelectric materials, Advanced Materials, vol.19, issue.8, pp.1043-1053, 2007. ,
Thermoelectricity and thermoelectric power generation, Solid-State Electronics, vol.11, issue.9, pp.833-848, 1968. ,
DOI : 10.1016/0038-1101(68)90104-4
Complex thermoelectric materials, Nat Mater, vol.7, issue.2, pp.105-114, 2008. ,
DOI : 10.1038/nmat2090
Vehicular thermoelectric applications session DEER, 2009. ,
Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.47, issue.19, p.12727, 1993. ,
DOI : 10.1103/PhysRevB.47.12727
Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials, Applied Physics Letters, issue.23, p.633230, 1993. ,
Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.16631, 1993. ,
DOI : 10.1103/PhysRevB.47.16631
Lower limit to the thermal conductivity of disordered crystals, Physical Review B, vol.46, issue.10, pp.6131-6171, 1992. ,
DOI : 10.1103/PhysRevB.46.6131
Solid state physics, 1976. ,
Theory of electrical transport in semiconductors, 1972. ,
Electronic structure: basic theory and practical methods, 2004. ,
DOI : 10.1017/CBO9780511805769
Electrons and phonons, 2001. ,
Lattice Dynamics and Spectroscopic Properties by a Valence Force Potential of Diamondlike Crystals: C, Si, Ge, and Sn, The Journal of Chemical Physics, vol.56, issue.3, p.1022, 1972. ,
DOI : 10.1063/1.1677264
Thermal physics, 1980. ,
Monte Carlo transient phonon transport in silicon and germanium at nanoscales, Physical Review B, vol.72, issue.6, 2005. ,
DOI : 10.1103/PhysRevB.72.064305
URL : https://hal.archives-ouvertes.fr/hal-00017489
Heat transport in superlattices and nanowire arrays, 2002. ,
CRC handbook of thermoelectrics, 1995. ,
Thermoelectrics: basic principles and new materials developments, 2001. ,
DOI : 10.1007/978-3-662-04569-5
Theoretical solid state physics, 1973. ,
Physics of semiconductors and their heterostructures, 1993. ,
Chapter 1 Low-Field Electron Transport, pp.1-89, 1975. ,
DOI : 10.1016/S0080-8784(08)60331-2
Micro and nanoscale heat transfer, 2005. ,
A Review of Heat Transfer Physics, Nanoscale and Microscale Thermophysical Engineering, vol.12, issue.1, 2008. ,
DOI : 10.1080/15567260801917520
Nanoporous Materials-An overview. Nanoporous materials: science and engineering, p.1, 2004. ,
Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1???x, Applied Physics Letters, vol.87, issue.17 ,
DOI : 10.1063/1.2056590
URL : https://hal.archives-ouvertes.fr/hal-00182219
Thermoelectrics handbook: macro to nano, 2006. ,
Thermoelectric materials: new directions and approaches : symposium held, 1997. ,
The materials science of thin films: deposition and structure, 2002. ,
Nanostructures & Nanomaterials: Synthesis, Properties & Applications, 2004. ,
DOI : 10.1142/9781860945960
The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Reviews of Modern Physics, vol.55, issue.3, p.645, 1983. ,
DOI : 10.1103/RevModPhys.55.645
The evolution of nanoscale quantum effects in semiconductor physics, Nanostructured Materials, vol.12, issue.1-4, pp.1-8, 1999. ,
DOI : 10.1016/S0965-9773(99)00055-0
The use of nanocrystals in biological detection, Nature Biotechnology, vol.22, issue.1, pp.47-52, 2004. ,
DOI : 10.1038/nbt927
Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores, Journal of Applied Physics, vol.100, issue.6, p.64302, 2006. ,
DOI : 10.1063/1.2337786
Enhanced thermoelectric performance of rough silicon nanowires, Nature, issue.7175, pp.451163-167, 2008. ,
Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, vol.297, issue.5590, pp.2229-2232, 2002. ,
DOI : 10.1126/science.1072886
Conduction of heat in solids. Clarendon, 1984. ,
Microscale Heat Conduction in Dielectric Thin Films, Journal of Heat Transfer, vol.115, issue.1, pp.7-16, 1993. ,
DOI : 10.1115/1.2910673
Statistical physics II: nonequilibrium statistical mechanics, 1985. ,
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization, Journal of Heat Transfer, vol.123, issue.4, pp.749-759, 2001. ,
DOI : 10.1115/1.1377018
Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films, Journal of Applied Physics, vol.103, issue.5, p.53502, 2008. ,
DOI : 10.1063/1.2841697
URL : https://hal.archives-ouvertes.fr/hal-00351524
Thermal Conductance of Thin Silicon Nanowires, Physical Review Letters, vol.101, issue.10, p.105501, 2008. ,
DOI : 10.1103/PhysRevLett.101.105501
Phonon backscattering and thermal conductivity suppression in sawtooth nanowires, Applied Physics Letters, vol.93, issue.8, p.93083112, 2008. ,
DOI : 10.1063/1.2970044
Measurement of the thermal conductance of silicon nanowires at low temperature, Journal of Applied Physics, vol.101, issue.1, p.16104, 2007. ,
DOI : 10.1063/1.2400093
Theory of Quantum Conduction through a Constriction, Physical Review Letters, vol.62, issue.3, p.300, 1989. ,
DOI : 10.1103/PhysRevLett.62.300
Conductance oscillations in two-dimensional Sharvin point contacts, Physical Review B, vol.39, issue.8, p.5484, 1989. ,
DOI : 10.1103/PhysRevB.39.5484
Theory of the conductance of ballistic quantum channels, Solid State Communications, vol.68, issue.8, pp.715-718, 1988. ,
DOI : 10.1016/0038-1098(88)90050-6
Acoustic waveguide modes observed in electrically heated metal wires, Physical Review Letters, vol.69, issue.9, p.1427, 1992. ,
DOI : 10.1103/PhysRevLett.69.1427
Direct thermal conductance measurements on suspended monocrystalline nanostructures, Applied Physics Letters, vol.70, issue.20, p.2687, 1997. ,
DOI : 10.1063/1.118994
URL : http://authors.library.caltech.edu/10579/1/TIGapl97.pdf
Quantized Thermal Conductance of Dielectric Quantum Wires, Physical Review Letters, vol.81, issue.1, pp.232-235, 1998. ,
DOI : 10.1103/PhysRevLett.81.232
Phonon transport in nanowires coated with an amorphous material: An atomistic Green???s function approach, Physical Review B, vol.68, issue.24, p.245406, 2003. ,
DOI : 10.1103/PhysRevB.68.245406
???Nanoparticle-in-Alloy??? Approach to Efficient Thermoelectrics: Silicides in SiGe, Nano Letters, vol.9, issue.2, pp.711-715, 2009. ,
DOI : 10.1021/nl8031982
Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon, International Journal of Heat and Mass Transfer, vol.43, issue.4, pp.521-538, 2000. ,
Thermal conductivity of composites of aligned nanoscale and microscale wires and pores, Journal of Applied Physics, vol.100, issue.3, p.34307, 2006. ,
DOI : 10.1063/1.2219162
Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction, Physical Review B, vol.72, issue.12, 2005. ,
DOI : 10.1103/PhysRevB.72.125418
Lattice thermal conductivity of nanoporous Si: Molecular dynamics study, Applied Physics Letters, vol.91, issue.22, p.91223110, 2007. ,
DOI : 10.1063/1.2817739
Thermal conductivity modeling of periodic twodimensional nanocomposites, Physical Review B, vol.69, issue.19, 2004. ,
Thermoelectric power factor of nanoporous semiconductors, Journal of Applied Physics, vol.101, issue.1, p.14322, 2007. ,
DOI : 10.1063/1.2405232
Montecarlo statistical method, 1999. ,
Computer simulation of liquids, 1987. ,
Monte carlo and molecular dynamic simulation in polymer science, 1995. ,
Monte Carlo Calculations on Intranuclear Cascades. I. Low-Energy Studies, Physical Review, vol.110, issue.1, p.185, 1958. ,
DOI : 10.1103/PhysRev.110.185
DIRECT SIMULATION MONTE CARLO: Recent Advances and Applications, recent advances and applications1, pp.403-441, 1998. ,
DOI : 10.1146/annurev.fluid.30.1.403
Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects, Physical Review B, vol.38, issue.14, p.9721, 1988. ,
Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation, Physical Review B, vol.39, issue.11, p.397852, 1989. ,
DOI : 10.1103/PhysRevB.39.7852
Monte Carlo study of electron transport in silicon inversion layers, Physical Review B, vol.48, issue.4, p.2244, 1993. ,
DOI : 10.1103/PhysRevB.48.2244
The Monte Carlo Method in Radiative Heat Transfer, Journal of Heat Transfer, vol.120, issue.3, pp.547-560, 1998. ,
DOI : 10.1115/1.2824310
Phonon radiative heat transfer and surface scattering, Physical Review B, vol.38, issue.11, p.7576, 1988. ,
DOI : 10.1103/PhysRevB.38.7576
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity, Journal of Heat Transfer, vol.127, issue.10, pp.1129-1137, 2005. ,
DOI : 10.1115/1.2035114
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation, Journal of Heat Transfer, vol.130, issue.4, pp.42410-42421, 2008. ,
DOI : 10.1115/1.2818765
Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations, Physical Review B, vol.68, issue.11, 2003. ,
DOI : 10.1103/PhysRevB.68.113308
Electrical Conductivity of Thin Metallic Films with Unlike Surfaces, Journal of Applied Physics, vol.36, issue.5, pp.1632-1635, 1965. ,
DOI : 10.1063/1.1703100
Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, p.2461, 1963. ,
DOI : 10.1103/PhysRev.132.2461
Electronic structure and the properties of solid, 1989. ,
Thermal Conductivity of Ge-Si Alloys at High Temperatures, Physical Review, vol.125, issue.1, p.44, 1962. ,
DOI : 10.1103/PhysRev.125.44
Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures, Physical Review, vol.131, issue.5, p.1906, 1963. ,
DOI : 10.1103/PhysRev.131.1906
Boundary scattering of phonons in fine-grained hot-pressed Ge-Si alloys. II. Theory, Journal of Physics C: Solid State Physics, vol.13, issue.25, pp.4671-4678, 1980. ,
DOI : 10.1088/0022-3719/13/25/010
Thermal conductivity of nanoporous bismuth thin films, Applied Physics Letters, vol.84, issue.11, p.1883, 2004. ,
DOI : 10.1063/1.1682679
Theory of the thermoelectric power factor in nanowirecomposite matrix structures, Physical Review B, vol.74, issue.19, 2006. ,
Nonlinear electrical transport in porous silicon, Physical Review B, vol.49, issue.4, p.2981, 1994. ,
DOI : 10.1103/PhysRevB.49.2981
Nanophononics: Phonon Engineering in Nanostructures and Nanodevices, Journal of Nanoscience and Nanotechnology, vol.5, issue.7, pp.1015-1022, 2005. ,
DOI : 10.1166/jnn.2005.175
Phononics gets hot, Physics World, vol.21, issue.03, pp.27-29, 2008. ,
DOI : 10.1088/2058-7058/21/03/31
Power generation with laterally packaged piezoelectric fine wires, Nature Nanotechnology, vol.8, issue.1, pp.34-39, 2008. ,
DOI : 10.1038/nnano.2008.314
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.9332
Thermal Logic Gates: Computation with Phonons, Physical Review Letters, vol.99, issue.17, p.177208, 2007. ,
DOI : 10.1103/PhysRevLett.99.177208
Thermal characteristics of silicon nitride membranes at sub-Kelvin temperatures, Applied Physics Letters, vol.72, issue.11, p.721305, 1998. ,
DOI : 10.1063/1.120979
Measurement of the quantum of thermal conductance, Nature, issue.6781, pp.404974-977, 2000. ,
Thermal conductance and electron-phonon coupling in mechanically suspended nanostructures, Applied Physics Letters, vol.81, issue.1, p.31, 2002. ,
DOI : 10.1063/1.1491300
Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K, Physical Review B, vol.66, issue.4, p.45302, 2002. ,
DOI : 10.1103/PhysRevB.66.045302
Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire, Nano Letters, vol.9, issue.5, pp.1861-1865, 2009. ,
DOI : 10.1021/nl803844j
URL : https://hal.archives-ouvertes.fr/hal-00725956
Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Applied Physics Letters, vol.94, issue.4, p.41905, 2009. ,
DOI : 10.1063/1.3075065
Predominance of thermal contact resistance in a silicon nanowire on a planar substrate, Physical Review B, vol.77, issue.23, p.233309, 2008. ,
DOI : 10.1103/PhysRevB.77.233309
Material properties dependence of ballistic phonon transmission through two coupled nanocavities, Journal of Applied Physics, vol.105, issue.12, p.124305, 2009. ,
DOI : 10.1063/1.3152788
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device, Journal of Heat Transfer, vol.125, issue.5, pp.881-888, 2003. ,
DOI : 10.1115/1.1597619
Atomistic Simulations of Heat Transport in Silicon Nanowires, Physical Review Letters, vol.102, issue.19, 2009. ,
DOI : 10.1103/PhysRevLett.102.195901
Nanotube Phonon Waveguide, Physical Review Letters, vol.99, issue.4, p.45901, 2007. ,
DOI : 10.1103/PhysRevLett.99.045901
URL : http://www.osti.gov/scitech/servlets/purl/1176534
Blocking phonons via nanoscale geometrical design, Physical Review B, vol.82, issue.15 ,
DOI : 10.1103/PhysRevB.82.155458
URL : https://hal.archives-ouvertes.fr/hal-00725971
Spatial variation of currents and fields due to localized scatterers in metallic conduction, 1957. ,
Can a length of perfect conductor have a resistance?, Physics Letters A, vol.85, issue.2, pp.91-93, 1981. ,
DOI : 10.1016/0375-9601(81)90230-9
Conductance viewed as transmission, Reviews of Modern Physics, vol.71, issue.2, p.306, 1999. ,
DOI : 10.1103/RevModPhys.71.S306
Quantum Transport: Atom to Transistor, 2005. ,
DOI : 10.1017/CBO9781139164313
URL : http://cds.cern.ch/record/826119/files/0521631459_TOC.pdf
Transition from sharvin to drude resistance in high-mobility wires, Physical Review B, vol.49, issue.11, p.7778, 1994. ,
Mesoscopic phonon transmission through a nanowire-bulk contact, Physical Review B, vol.71, issue.12, p.125304, 2005. ,
DOI : 10.1103/PhysRevB.71.125304
Note on the conduction of heat in crystals, Physica, vol.5, issue.6, pp.495-500, 1938. ,
DOI : 10.1016/S0031-8914(38)80162-2
The Thermal Conductivity of Diamond at Low Temperatures, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.220, issue.1141, pp.171-183, 1141. ,
DOI : 10.1098/rspa.1953.0180
Die Gesetze der Molekularstr??mung und der inneren Reibungsstr??mung der Gase durch R??hren, Annalen der Physik, vol.41, issue.1, pp.75-130, 1909. ,
DOI : 10.1002/andp.19093330106
Zur kinetischen Theorie der Transpiration und Diffusion verd??nnter Gase, Annalen der Physik, vol.8, issue.16, pp.1559-1570, 1910. ,
DOI : 10.1002/andp.19103381623
Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys, Nano Letters, vol.8, issue.12, pp.4670-4674, 2008. ,
DOI : 10.1021/nl8026795
thermoelectric alloys, Journal of Applied Physics, vol.69, issue.8, pp.4333-4340, 1991. ,
DOI : 10.1063/1.348408
Thermal and Electrical Properties of Heavily Doped Ge???Si Alloys up to 1300??K, Journal of Applied Physics, vol.35, issue.10, pp.2899-2907, 1964. ,
DOI : 10.1063/1.1713126
Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Applied Physics Letters, vol.94, issue.10 ,
DOI : 10.1063/1.3097026
Boundary scattering of phonons in solid solutions, Physics Letters A, vol.27, issue.8 ,
DOI : 10.1016/0375-9601(68)90898-0
The thermal conductivity of sintered semiconductor alloys, Journal of Physics C: Solid State Physics, vol.2, issue.1, pp.147-151, 1969. ,
DOI : 10.1088/0022-3719/2/1/320
Materials for thermoelectric energy conversion, Reports on Progress in Physics, vol.51, issue.4, pp.459-539, 1988. ,
DOI : 10.1088/0034-4885/51/4/001
Phonon scattering at grain boundaries in heavily doped fine-grained silicon???germanium alloys, Nature, vol.8, issue.5809, pp.765-766, 1981. ,
DOI : 10.1038/290765a0
A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys, Journal of Applied Physics, vol.69, issue.1, pp.331-341, 1991. ,
Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach, Advanced Functional Materials, vol.2, issue.440, pp.357-376, 2010. ,
DOI : 10.1002/adfm.200901512
Etude du mat?Amat? mat?A c riau thermõ A c lectrique sige de la, 2010. ,
Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites, Advanced Materials, vol.41, issue.14, pp.1654-1658, 2010. ,
DOI : 10.1002/adma.200901955
URL : https://hal.archives-ouvertes.fr/hal-00496313
The Scattering of Low-Frequency Lattice Waves by Static Imperfections, Proc. Phys. Soc. A, p.68, 1113. ,
DOI : 10.1088/0370-1298/68/12/303
Measurement of phonon pressure coefficients for a precise determination of deformation potentials in SiGe alloys, physica status solidi (b), vol.8, issue.3, pp.246548-552, 2009. ,
DOI : 10.1002/pssb.200880531
Thermoelectric properties of nano structured sige: potential for further improvement ,
The maximum possible conversion efficiency of silicon-germanium thermoelectric generators, Journal of Applied Physics, vol.70, issue.5, pp.2694-2718, 1991. ,
alloys, Physical Review B, vol.33, issue.2, p.1026, 1986. ,
DOI : 10.1103/PhysRevB.33.1026
Modeling study of thermoelectric SiGe nanocomposites, Physical Review B, vol.80, issue.15, p.80, 2009. ,
DOI : 10.1103/PhysRevB.80.155327
alloys, Applied Physics Letters, vol.47, issue.2, pp.160-162, 1985. ,
DOI : 10.1063/1.96248
Electron Transport in GaAs, Physical Review B, vol.3, issue.8, p.2534, 1971. ,
DOI : 10.1103/PhysRevB.3.2534
The best thermoelectric., Proceedings of the National Academy of Sciences, p.7436, 1996. ,
DOI : 10.1073/pnas.93.15.7436
Electron Mobility in Direct-Gap Polar Semiconductors, Physical Review B, vol.2, issue.4, p.1012, 1970. ,
DOI : 10.1103/PhysRevB.2.1012
Deformation Potentials and Mobilities in Non-Polar Crystals, Physical Review, vol.80, issue.1, p.72, 1950. ,
DOI : 10.1103/PhysRev.80.72
Mobility of Electrons in Germanium-Silicon Alloys, Physical Review, vol.111, issue.1, p.125, 1958. ,
DOI : 10.1103/PhysRev.111.125
Recrystallization, redistribution, and electrical activation of strained-silicon/Si0.7Ge0.3 heterostructures with implanted arsenic, Journal of Applied Physics, vol.96, issue.1, p.261, 2004. ,
DOI : 10.1063/1.1758318
Influence of the doping element on the electron mobility in n-silicon, Journal of Applied Physics, vol.83, issue.6, p.3096, 1998. ,
DOI : 10.1063/1.367067
Electron Mobility in Ge, Si, and GaP, Physica Status Solidi (b), vol.39, issue.1, p.245, 1972. ,
DOI : 10.1002/pssb.2220530126
thermoelectric alloys, Journal of Applied Physics, vol.69, issue.8, pp.4333-4340, 1991. ,
DOI : 10.1063/1.348408
Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers, Nature Materials, vol.103, issue.6, pp.491-495, 2010. ,
DOI : 10.1038/nmat2752
URL : https://hal.archives-ouvertes.fr/hal-00505811
Coherent phonons spectroscopy in Si/SiGe superlattices, 2010. ,
Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, vol.80, issue.5, p.466, 2009. ,
DOI : 10.1039/b822664b
Dreizler, and North Atlantic Treaty Organization. Scientific Affairs Division. Density functional theory, 1995. ,