G. En and D. , iminoaspartate sur le C-3 du DHAP, entraînant le départ du phosphate (en effet, l'attaque de la fonction amine de l'iminoaspartate sur le C-1 du DHAP paraît beaucoup moins favorable) Le départ du phosphate est en accord avec les données cristallographiques obtenues sur NadA de P. horikoshii, qui excluent la présence du groupement phosphate dans le site actif Les étapes suivantes consistent en une double déshydratation aboutissant à la cyclisation et la formation d'acide quinolinique comme indiqué sur la Figure 119, Sur cette même Figure 119, j'ai également indiqué les différentes étapes de déshydratation dans lesquelles nous continuons de penser que le centre [4Fe-4S] de l'enzyme puisse jouer un rôle même si nous n'avons aucune preuve aujourd'hui, 2005.

A. R. Anderson and . Cooper, The role of triose phosphate isomerase, FEBS Letters, vol.168, issue.1, pp.19-20, 1969.
DOI : 10.1016/0014-5793(69)80184-5

A. J. Andreoli, M. Ikeda, Y. Nishizuka, and &. O. Hayaishi, Quinolinic acid: A precursor to nicotinamide adenine dinucleotide in Escherichiacoli, Biochemical and Biophysical Research Communications, vol.12, issue.2, pp.92-97, 1963.
DOI : 10.1016/0006-291X(63)90241-9

T. P. Begley, C. Kinsland, R. A. Mehl, A. Osterman, and &. P. Dorrestein, The biosynthesis of nicotinamide adenine dinucleotides in bacteria, Vitam Horm, vol.61, pp.103-119, 2001.
DOI : 10.1016/S0083-6729(01)61003-3

H. Beinert, Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins, Analytical Biochemistry, vol.131, issue.2, pp.373-378, 1983.
DOI : 10.1016/0003-2697(83)90186-0

H. Beinert, M. C. Kennedy, and &. D. Stout, Aconitase as Iron???Sulfur Protein, Enzyme, and Iron-Regulatory Protein, Chemical Reviews, vol.96, issue.7, pp.2335-2374, 1996.
DOI : 10.1021/cr950040z

P. Belenky, K. L. Bogan, and &. C. Brenner, NAD+ metabolism in health and disease, Trends in Biochemical Sciences, vol.32, issue.1, pp.12-19, 2007.
DOI : 10.1016/j.tibs.2006.11.006

B. Bennett, M. J. Gruer, J. R. Guest, and &. J. Thomson, Spectroscopic Characterisation of an Aconitase (AcnA) of Escherichia coli, European Journal of Biochemistry, vol.29, issue.1, pp.317-326, 1995.
DOI : 10.1039/dt9940001025

F. Berger, M. H. Ramirez-hernandez, and &. M. Ziegler, The new life of a centenarian: signalling functions of NAD(P), Trends in Biochemical Sciences, vol.29, issue.3, pp.111-118, 2004.
DOI : 10.1016/j.tibs.2004.01.007

R. K. Bhatia and . Calvo, The Sequencing, Expression, Purification, and Steady-State Kinetic Analysis of Quinolinate Phosphoribosyl Transferase fromEscherichia coli, Archives of Biochemistry and Biophysics, vol.325, issue.2, pp.270-278, 1996.
DOI : 10.1006/abbi.1996.0034

P. C. Bieganowski and . Brenner, Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans, Cell, vol.117, issue.4, pp.495-502, 2004.
DOI : 10.1016/S0092-8674(04)00416-7

K. Blinova, R. L. Levine, E. S. Boja, G. L. Griffiths, Z. D. Shi et al., Mitochondrial NADH Fluorescence Is Enhanced by Complex I Binding, Biochemistry, vol.47, issue.36, pp.9636-9645, 2008.
DOI : 10.1021/bi800307y

T. J. Borody, P. Cole, S. Noonan, A. Morgan, J. Lenne et al., Recurrence of duodenal ulcer and Campylobacter pylori infection after eradication, Med J Aust, vol.151, pp.431-435, 1989.

D. Yun, S. Schnappinger, K. J. Ehrt, &. E. Williams, and . Barry, Biosynthesis and recycling of nicotinamide cofactors in mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli, J Biol Chem, vol.3, issue.283, pp.19329-19341, 2008.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

T. D. Brock, The bacterial nucleus: a history, Microbiol. Rev, vol.52, issue.4, pp.397-411, 1988.

M. &. Bruschi and . Guerlesquin, Structure, function and evolution of bacterial ferredoxins, FEMS Microbiology Letters, vol.54, issue.2, pp.155-175, 1988.
DOI : 10.1111/j.1574-6968.1988.tb02741.x

URL : https://hal.archives-ouvertes.fr/hal-00320314

A. Burkle, Poly(ADP-ribose). The most elaborate metabolite of NAD+, FEBS Journal, vol.24, issue.21, pp.4576-4589, 2005.
DOI : 10.1016/S0960-9822(00)00752-1

L. Calzolai, C. M. Gorst, Z. H. Zhao, Q. Teng, M. W. Adams et al., 1H NMR Investigation of the Electronic and Molecular Structure of the Four-Iron Cluster Ferredoxin from the Hyperthermophile Pyrococcus furiosus. Identification of Asp 14 as a Cluster Ligand in Each of the Four Redox States, Biochemistry, vol.34, issue.36, pp.11373-11384, 1995.
DOI : 10.1021/bi00036a010

F. Ceciliani, T. Caramori, S. Ronchi, G. Tedeschi, M. Mortarino et al., Cloning, Overexpression, and Purification of Escherichia coli Quinolinate Synthetase, Protein Expression and Purification, vol.18, issue.1, pp.64-70, 2000.
DOI : 10.1006/prep.1999.1153

J. L. Chandler, R. K. Gholson, and &. T. Scott, Studies on the de novo biosynthesis of NAD in Escherichia coli I. Labelling patterns from precursors, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.222, issue.2, pp.523-526, 1970.
DOI : 10.1016/0304-4165(70)90145-5

A. Chatterjee, Y. Li, Y. Zhang, T. L. Grove, M. Lee et al., Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily, Nature Chemical Biology, vol.276, issue.12, pp.758-765, 2008.
DOI : 10.1021/bi8010253

W. J. Cheng and . Roth, Evidence for two NAD kinases in Salmonella typhimurium., Journal of Bacteriology, vol.176, issue.14, pp.4260-4268, 1994.
DOI : 10.1128/jb.176.14.4260-4268.1994

R. M. Cicchillo, L. Tu, J. A. Stromberg, L. M. Hoffart, C. Krebs et al., Quinolinate Synthetase Does Indeed Harbor a [4Fe-4S] Cluster, Journal of the American Chemical Society, vol.127, issue.20, pp.7310-7311, 2005.
DOI : 10.1021/ja051369x

K. L. Colabroy and . Begley, The Pyridine Ring of NAD Is Formed by a Nonenzymatic Pericyclic Reaction, Journal of the American Chemical Society, vol.127, issue.3, pp.840-841, 2005.
DOI : 10.1021/ja0446395

K. D. Collins, An activated intermediate analogue. The use of phosphoglycolohydroxamate as a stable analogue of a transiently occurring dihydroxyacetone phosphate-derived enolate in enzymatic catalysis, J Biol Chem, vol.249, pp.136-142, 1974.

J. Coves, C. Lebrun, G. Gervasi, P. Dalbon, and &. M. Fontecave, Overexpression of the FAD-binding domain of the sulphite reductase flavoprotein component from Escherichia coli and its inhibition by iodonium diphenyl chloride, Biochemical Journal, vol.342, issue.2, pp.465-472, 1999.
DOI : 10.1042/bj3420465

J. M. Crawford and . Blum, Quantitative analysis of flux along the gluconeogenic, glycolytic and pentose phosphate pathways under reducing conditions in hepatocytes isolated from fed rats, Biochemical Journal, vol.212, issue.3, pp.585-598, 1983.
DOI : 10.1042/bj2120585

J. A. Diefenbach and . Burkle, Poly-ADP-ribosylation in health and disease, CMLS Cellular and Molecular Life Sciences, vol.62, issue.7-8, pp.721-730, 2005.
DOI : 10.1007/s00018-004-4503-3

D. Dobritzsch, G. Schneider, K. D. Schnackerz, and &. Y. Lindqvist, Crystal structure of dihydropyrimidine dehydrogenase, a major determinant of the pharmacokinetics of the anti-cancer drug 5-fluorouracil, The EMBO Journal, vol.20, issue.4, pp.650-660, 2001.
DOI : 10.1093/emboj/20.4.650

M. Dobrzanska, B. Szurmak, A. Wyslouch-cieszynska, and &. E. Kraszewska, Cloning and Characterization of the First Member of the Nudix Family from Arabidopsis thaliana, Journal of Biological Chemistry, vol.277, issue.52, pp.50482-50486, 2002.
DOI : 10.1074/jbc.M205207200

C. A. Elvehjem, R. J. Madden, F. M. Strong, and &. W. Woolley, THE ISOLATION AND IDENTIFICATION OF THE ANTI-BLACK TONGUE FACTOR*, Nutrition Reviews, vol.32, issue.2, pp.48-50, 1974.
DOI : 10.1111/j.1753-4887.1974.tb06263.x

W. W. Fish, [27] Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples, Methods Enzymol, vol.158, pp.357-364, 1988.
DOI : 10.1016/0076-6879(88)58067-9

R. Flachmann, N. Kunz, J. Seifert, M. Gutlich, F. J. Wientjes et al., Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB, European Journal of Biochemistry, vol.280, issue.2, pp.221-228, 1988.
DOI : 10.1016/0378-1119(82)90172-X

A. Fleming, Penicilin. Nobel lecture physiology or medecine, pp.83-93, 1945.

D. H. Flint and . Allen, Iron???Sulfur Proteins with Nonredox Functions, Chemical Reviews, vol.96, issue.7, pp.2315-2334, 1996.
DOI : 10.1021/cr950041r

M. Fonvielle, H. Therisod, M. Hemery, and &. M. Therisod, New competitive inhibitors of cytosolic (NADH-dependent) rabbit muscle glycerophosphate dehydrogenase, Bioorganic & Medicinal Chemistry Letters, vol.17, issue.2, pp.410-413, 2007.
DOI : 10.1016/j.bmcl.2006.10.030

M. Fonvielle, P. Weber, K. Dabkowska, and &. M. Therisod, New highly selective inhibitors of class II fructose-1,6-bisphosphate aldolases, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.11, pp.2923-2926, 2004.
DOI : 10.1016/j.bmcl.2004.03.040

G. T. Acton, S. K. Montelione, &. L. Chapman, and . Tong, Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase, Proc Natl Acad Sci, vol.104, pp.473-478, 2007.

A. C. Foster, W. C. Zinkand, and &. R. Schwarcz, Quinolinic Acid Phosphoribosyltransferase in Rat Brain, Journal of Neurochemistry, vol.40, issue.2, pp.446-454, 1985.
DOI : 10.1016/0304-3940(83)90458-5

J. W. Foster and . Moat, Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems, Microbiol Rev, vol.44, pp.83-105, 1980.

J. W. Foster, Y. K. Park, T. Penfound, T. Fenger, and &. M. Spector, Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon., Journal of Bacteriology, vol.172, issue.8, pp.4187-4196, 1990.
DOI : 10.1128/jb.172.8.4187-4196.1990

J. W. Foster and . Penfound, : Location of regions involved with DNA binding, nucleotide transport and intramolecular communication, FEMS Microbiology Letters, vol.112, issue.2, pp.179-183, 1993.
DOI : 10.1111/j.1574-6968.1993.tb06445.x

P. R. Gardner and . Fridovich, Quinolinate synthetase: The oxygen-sensitive site of de novo NAD(P)+ biosynthesis, Archives of Biochemistry and Biophysics, vol.284, issue.1, pp.106-111, 1991.
DOI : 10.1016/0003-9861(91)90270-S

P. R. Gardner and . Fridovich, Superoxide sensitivity of the Escherichia coli aconitase, J Biol Chem, vol.266, pp.19328-19333, 1991.

P. R. Gardner and . Fridovich, Superoxide sensitivity of the Escherichia coli 6- phosphogluconate dehydratase, J Biol Chem, vol.266, pp.1478-1483, 1991.

&. A. Overbeek and . Osterman, Comparative genomics of NAD biosynthesis in cyanobacteria, J Bacteriol, vol.188, pp.3012-3023, 2006.

S. A. Shatalin, M. Y. Chowdhury, &. A. Fonstein, and . Osterman, From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways, J Bacteriol, vol.184, pp.4555-4572, 2002.

G. R. Griffith, J. L. Chandler, and &. K. Gholson, Studies on the de novo Biosynthesis of NAD in Escherichia coli. The Separation of the nadB Gene Product from the nadA Gene Product and Its Purification, European Journal of Biochemistry, vol.20, issue.1, pp.239-245, 1975.
DOI : 10.1016/0304-4165(73)90249-3

J. H. Grose, U. Bergthorsson, and &. J. Roth, Regulation of NAD Synthesis by the Trifunctional NadR Protein of Salmonella enterica, Journal of Bacteriology, vol.187, issue.8, pp.2774-2782, 2005.
DOI : 10.1128/JB.187.8.2774-2782.2005

L. Guarente, Sirtuins as potential targets for metabolic syndrome, Nature, vol.127, issue.7121, pp.868-874, 2006.
DOI : 10.1038/nature05486

A. H. Guse, Regulation of Calcium Signaling by the Second Messenger Cyclic Adenosine Diphosphoribose (cADPR), Current Molecular Medicine, vol.4, issue.3, pp.239-248, 2004.
DOI : 10.2174/1566524043360771

A. H. Guse, Biochemistry, Biology, and Pharmacology of Cyclic Adenosine Diphosphoribose (cADPR), Current Medicinal Chemistry, vol.11, issue.7, pp.847-855, 2004.
DOI : 10.2174/0929867043455602

A. J. Hall and . Knowles, Uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. Quantitative assessment of the effectiveness of an enzyme catalyst, Biochemistry, vol.14, issue.19, pp.4348-4352, 1975.
DOI : 10.1021/bi00690a032

D. R. Hall, G. A. Leonard, C. D. Reed, C. I. Watt, A. Berry et al., The crystal structure of Escherichia coli class II fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity11Edited by R. Huber, Journal of Molecular Biology, vol.287, issue.2, pp.383-394, 1999.
DOI : 10.1006/jmbi.1999.2609

Q. Han, B. T. Beerntsen, and &. J. Li, The tryptophan oxidation pathway in mosquitoes with emphasis on xanthurenic acid biosynthesis, Journal of Insect Physiology, vol.53, issue.3, pp.254-263, 2007.
DOI : 10.1016/j.jinsphys.2006.09.004

F. C. Hartman, Haloacetol phosphates. Characterization of the active site of rabbit muscle triose phosphate isomerase, Biochemistry, vol.10, issue.1, pp.146-154, 1971.
DOI : 10.1021/bi00777a021

K. O. Higuchi and . Hayaishi, Enzymic formation of d-kynurenine from d-tryptophan, Archives of Biochemistry and Biophysics, vol.120, issue.2, 1967.
DOI : 10.1016/0003-9861(67)90256-1

P. Zipkin, A. Chung, L. L. Kisielewski, B. Zhang, &. D. Scherer et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, vol.425, pp.191-196, 2003.

Y. L. Janin, Antituberculosis drugs: Ten years of research, Bioorganic & Medicinal Chemistry, vol.15, issue.7, pp.2479-2513, 2007.
DOI : 10.1016/j.bmc.2007.01.030

URL : https://hal.archives-ouvertes.fr/pasteur-00166358

T. Johansson, C. Oswald, A. Pedersen, S. Tornroth, M. Okvist et al., X-ray Structure of Domain I of the Proton-pumping Membrane Protein Transhydrogenase from Escherichia coli, Journal of Molecular Biology, vol.352, issue.2, pp.299-312, 2005.
DOI : 10.1016/j.jmb.2005.07.022

H. Kadokura, F. Katzen, and &. J. Beckwith, Protein Disulfide Bond Formation in Prokaryotes, Annual Review of Biochemistry, vol.72, issue.1, pp.111-135, 2003.
DOI : 10.1146/annurev.biochem.72.121801.161459

A. Harden, . Young, and . Wj, The Alcoholic Ferment of Yeast-Juice. Part II.--The Conferment of Yeast-Juice, Proceedings of the Royal Society B: Biological Sciences, vol.78, issue.526, pp.369-375, 1906.
DOI : 10.1098/rspb.1906.0070

L. B. Kasarov and . Moat, Metabolism of nicotinamide adenine dinucleotide in human and bovine strainsof Mycobacterium tuberculosis, J Bacteriol, vol.110, pp.600-603, 1972.

A. Kornberg, The participation of inorganic pyrophosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide, J Biol Chem, vol.176, p.1475, 1948.

Y. I. Kotake and . Masayama, Studien ??ber den intermedi??ren Stoffwechsel des Tryptophans XVIII???XXIV., Hoppe-Seyler??s Zeitschrift f??r physiologische Chemie, vol.243, issue.6, pp.237-244, 1936.
DOI : 10.1515/bchm2.1936.243.6.237

O. Kurnasov, V. Goral, K. Colabroy, S. Gerdes, S. Anantha et al., NAD Biosynthesis, Chemistry & Biology, vol.10, issue.12, pp.1195-1204, 2003.
DOI : 10.1016/j.chembiol.2003.11.011

O. Kurnasov, L. Jablonski, B. Polanuyer, P. Dorrestein, T. Begley et al., Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase, FEMS Microbiology Letters, vol.227, issue.2, pp.219-227, 2003.
DOI : 10.1016/S0378-1097(03)00684-0

. Osterman, Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis, J Bacteriol, vol.184, pp.6906-6917, 2002.

A. M. Lesk, NAD-binding domains of dehydrogenases, Current Opinion in Structural Biology, vol.5, issue.6, pp.775-783, 1995.
DOI : 10.1016/0959-440X(95)80010-7

H. Liu, K. Woznica, G. Catton, A. Crawford, N. Botting et al., Structural and Kinetic Characterization of Quinolinate Phosphoribosyltransferase (hQPRTase) from Homo sapiens, Journal of Molecular Biology, vol.373, issue.3, pp.755-763, 2007.
DOI : 10.1016/j.jmb.2007.08.043

E. A. Fontecave, &. M. Pilon-smits, and . Pilon, Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and Nad synthesis, J Biol Chem, vol.282, pp.18254-18264, 2007.

G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli et al., Structure and Function of Nicotinamide Mononucleotide Adenylyltransferase, Current Medicinal Chemistry, vol.11, issue.7, pp.873-885, 2004.
DOI : 10.2174/0929867043455666

G. Magni, A. Amici, M. Emanuelli, N. Raffaelli, and &. S. Ruggieri, Enzymology of Nad+ Synthesis, Adv Enzymol Relat Areas Mol Biol, vol.73, pp.135-182, 1999.
DOI : 10.1002/9780470123195.ch5

A. Trautwein, A. M. Negri, &. G. Albertini, and . Tedeschi, Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis, FEBS J, vol.275, pp.5090-5107, 2008.

B. M. Martins, H. Dobbek, I. Cinkaya, W. Buckel, and &. A. Messerschmidt, Crystal structure of 4-hydroxybutyryl-CoA dehydratase: Radical catalysis involving a [4Fe-4S] cluster and flavin, Proceedings of the National Academy of Sciences, vol.101, issue.44, pp.15645-15649, 2004.
DOI : 10.1073/pnas.0403952101

A. Mattevi, A close look at NAD biosynthesis, Nature Structural & Molecular Biology, vol.12, issue.7, pp.563-564, 2006.
DOI : 10.1038/nsmb0706-563

B. Schafer, J. M. Hoorelbeke, H. Meyer, &. P. De-greve, and . Cornelis, The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway, Mol Microbiol, vol.52, pp.371-384, 2004.

M. Merdanovic, E. Sauer, and &. J. , Coupling of NAD+ Biosynthesis and Nicotinamide Ribosyl Transport: Characterization of NadR Ribonucleotide Kinase Mutants of Haemophilus influenzae, Journal of Bacteriology, vol.187, issue.13, pp.4410-4420, 2005.
DOI : 10.1128/JB.187.13.4410-4420.2005

O. Feldblyum, I. T. White, W. C. Paulsen, J. Nierman, B. Lee et al., Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage, J Bacteriol, vol.185, pp.5220-5233, 2003.

S. Moore, D. H. Spackman, and &. W. Stein, Automatic recording apparatus for use in the chromatography of amino acids, Fed Proc, vol.17, pp.1107-1115, 1958.

M. Mortarino, A. Negri, G. Tedeschi, T. Simonic, S. Duga et al., L-Aspartate Oxidase from Escherichia coli. I. Characterization of Coenzyme Binding and Product Inhibition, European Journal of Biochemistry, vol.169, issue.2, pp.418-426, 1996.
DOI : 10.1016/0378-1119(93)90238-X

&. M. Trautwein and . Fontecave, Iron-sulfur interconversions in the anaerobic ribonucleotide reductase from Escherichia coli, J Biol Inorg Chem, vol.4, pp.614-620, 1999.

D. G. Mustacich and . Powis, Thioredoxin reductase, Biochemical Journal, vol.346, issue.1, pp.1-8, 2000.
DOI : 10.1042/bj3460001

S. R. Nasu and . Gholson, Replacement of the B protein requirement of the E. coli quinolinate synthetase system by chemically-generated iminoaspartate, Biochemical and Biophysical Research Communications, vol.101, issue.2, pp.533-539, 1981.
DOI : 10.1016/0006-291X(81)91292-4

S. Nasu, F. D. Wicks, and &. K. Gholson, L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase, J Biol Chem, vol.257, pp.626-632, 1982.

S. Nasu, F. D. Wicks, and &. K. Gholson, The mammalian enzyme which replaces b protein of e. coli quinolinate synthetase is d-aspartate oxidase, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.704, issue.2, pp.240-252, 1982.
DOI : 10.1016/0167-4838(82)90152-2

Y. C. Nicolet and . Drennan, AdoMet radical proteins--from structure to evolution--alignment of divergent protein sequences reveals strong secondary structure element conservation, Nucleic Acids Research, vol.32, issue.13, pp.4015-4025, 2004.
DOI : 10.1093/nar/gkh728

B. J. North and . Verdin, Sirtuins: Sir2-related NAD-dependent protein deacetylases, 2004.

I. L. Norton and . Hartman, Haloacetol phosphates. Comparative study of the active sites of yeast and muscle triose phosphate isomerase. V, Biochemistry, vol.11, issue.24, pp.4435-4441, 1972.
DOI : 10.1021/bi00774a003

N. Ogasawara, J. L. Chandler, R. K. Gholson, R. J. Rosser, and &. J. Andreoli, Biosynthesis of quinolinic acid in a cell-free system, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.141, issue.1, pp.199-201, 1967.
DOI : 10.1016/0304-4165(67)90265-6

S. Ollagnier-de-choudens, L. Loiseau, Y. Sanakis, F. Barras, and &. M. Fontecave, Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis, FEBS Letters, vol.257, issue.17, pp.3737-3743, 2005.
DOI : 10.1016/j.febslet.2005.05.065

S. Ollagnier-de-choudens, Y. Sanakis, K. S. Hewitson, P. Roach, J. E. Baldwin et al., Iron-Sulfur Center of Biotin Synthase and Lipoate Synthase, Biochemistry, vol.39, issue.14, pp.4165-4173, 2000.
DOI : 10.1021/bi992090u

A. L. Osterman and . Begley, A subsystems-based approach to the identification of drug targets in bacterial pathogens, Prog Drug Res, vol.64, issue.131, pp.133-170, 2007.
DOI : 10.1007/978-3-7643-7567-6_6

C. Ozment, J. Barchue, L. J. Delucas, and &. D. Chattopadhyay, Structural Study of Escherichia coli NAD Synthetase: Overexpression, Purification, Crystallization, and Preliminary Crystallographic Analysis, Journal of Structural Biology, vol.127, issue.3, pp.279-282, 1999.
DOI : 10.1006/jsbi.1999.4152

J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings et al., Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.46, issue.8, pp.2720-2722, 2002.
DOI : 10.1128/AAC.46.8.2720-2722.2002

T. J. Penfound and . Foster, NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium, J Bacteriol, vol.181, pp.648-655, 1999.

N. Pollak, C. Dolle, and &. M. Ziegler, The power to reduce: pyridine nucleotides ??? small molecules with a multitude of functions, Biochemical Journal, vol.402, issue.2, pp.205-218, 2007.
DOI : 10.1042/BJ20061638

J. P. Preiss and . Handler, Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects, J Biol Chem, vol.233, pp.493-500, 1958.

J. P. Preiss and . Handler, Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates, J Biol Chem, vol.233, pp.488-492, 1958.

S. J. Putman, A. F. Coulson, I. R. Farley, B. Riddleston, and &. J. Knowles, Specificity and kinetics of triose phosphate isomerase from chicken muscle, Biochemical Journal, vol.129, issue.2, pp.301-310, 1972.
DOI : 10.1042/bj1290301

N. Raffaelli, T. Lorenzi, P. L. Mariani, M. Emanuelli, A. Amici et al., The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity, J Bacteriol, vol.181, pp.5509-5511, 1999.

N. Raffaelli, L. Sorci, A. Amici, M. Emanuelli, F. Mazzola et al., Identification of a novel human nicotinamide mononucleotide adenylyltransferase, Biochemical and Biophysical Research Communications, vol.297, issue.4, pp.835-840, 2002.
DOI : 10.1016/S0006-291X(02)02285-4

P. R. Rich, The molecular machinery of Keilin's respiratory chain, Biochemical Society Transactions, vol.31, issue.6, pp.1095-1105, 2003.
DOI : 10.1042/bst0311095

S. V. Rieder and . Buchanan, Studies on the biological formation of glucosamine in vivo. I. Origin of the carbon chain, J Biol Chem, vol.232, pp.951-957, 1958.

M. &. Rizzi and . Schindelin, Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis, Current Opinion in Structural Biology, vol.12, issue.6, pp.709-720, 2002.
DOI : 10.1016/S0959-440X(02)00385-8

D. A. Rodionov, J. De-ingeniis, C. Mancini, F. Cimadamore, H. Zhang et al., Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators, Nucleic Acids Research, vol.36, issue.6, pp.2047-2059, 2008.
DOI : 10.1093/nar/gkn047

M. S. Zhang, &. A. Gelfand, and . Osterman, Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon, Nucleic Acids Res, vol.36, pp.2032-2046, 2008.

P. Rossolillo, I. Marinoni, E. Galli, A. Colosimo, and &. A. Albertini, YrxA Is the Transcriptional Regulator That Represses De Novo NAD Biosynthesis in Bacillus subtilis, Journal of Bacteriology, vol.187, issue.20, pp.7155-7160, 2005.
DOI : 10.1128/JB.187.20.7155-7160.2005

C. Rousset, M. Fontecave, and &. S. Ollagnier-de-choudens, : Investigation of cluster ligands, FEBS Letters, vol.96, issue.19, pp.2937-2944, 2008.
DOI : 10.1016/j.febslet.2008.07.032

J. J. Rowe, R. D. Lemmon, and &. J. Tritz, Nicotinic acid transport in Escherichia coli, Microbios, vol.44, pp.169-184, 1985.

D. A. Rozwarski, G. A. Grant, D. H. Barton, W. R. Jacobs, and J. J. Sacchettini, Modification of the NADH of the Isoniazid Target (InhA) from Mycobacterium tuberculosis, Science, vol.279, issue.5347, pp.98-102, 1998.
DOI : 10.1126/science.279.5347.98

H. Sakuraba, H. Tsuge, K. Yoneda, N. Katunuma, and &. T. Ohshima, Crystal Structure of the NAD Biosynthetic Enzyme Quinolinate Synthase, Journal of Biological Chemistry, vol.280, issue.29, pp.26645-26648, 2005.
DOI : 10.1074/jbc.C500192200

H. Sakuraba, K. Yoneda, I. Asai, H. Tsuge, N. Katunuma et al., Structure of l-aspartate oxidase from the hyperthermophilic archaeon Sulfolobus tokodaii, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1784, issue.3, pp.563-571, 2008.
DOI : 10.1016/j.bbapap.2007.12.012

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning a laboratory manual, 1989.

C. M. Sassetti, D. H. Boyd, and &. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Molecular Microbiology, vol.1, issue.Suppl 1), pp.77-84, 2003.
DOI : 10.1046/j.1365-2958.2003.03425.x

A. A. Sauve, NAD+ and Vitamin B3: From Metabolism to Therapies, Journal of Pharmacology and Experimental Therapeutics, vol.324, issue.3, pp.883-893, 2008.
DOI : 10.1124/jpet.107.120758

M. Scarpellini, A. Neves, R. Horner, A. J. Bortoluzzi, B. Szpoganics et al., -Aqua/Hydroxy Copper(II) Complexes Containing Tridentate Imidazole-rich Ligands, Inorganic Chemistry, vol.42, issue.25, pp.8353-8365, 2003.
DOI : 10.1021/ic026277c

URL : https://hal.archives-ouvertes.fr/hal-00599484

F. Q. Schafer and . Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radical Biology and Medicine, vol.30, issue.11, pp.1191-1212, 2001.
DOI : 10.1016/S0891-5849(01)00480-4

P. Schar, G. Herrmann, G. Daly, and &. T. Lindahl, A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand??breaks, Genes & Development, vol.11, issue.15, pp.1912-1924, 1997.
DOI : 10.1101/gad.11.15.1912

K. J. Schray, E. L. O-'connell, and &. I. Rose, Inactivation of muscle triose phosphate isomerase by D-and L-glycidol phosphate, J Biol Chem, vol.248, pp.2214-2218, 1973.

V. Sharma, C. Grubmeyer, and &. J. Sacchettini, Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target, Structure, vol.6, issue.12, pp.1587-1599, 1998.
DOI : 10.1016/S0969-2126(98)00156-7

J. Skulan, Y. S. Yang, and &. J. Zhou, Geometric and electronic structure/function correlations in non-heme iron enzymes, Chem Rev, vol.100, pp.235-350, 2000.

D. Straus, R. Raines, E. Kawashima, J. R. Knowles, and &. W. Gilbert, Active site of triosephosphate isomerase: in vitro mutagenesis and characterization of an altered enzyme., Proceedings of the National Academy of Sciences, vol.82, issue.8, pp.2272-2276, 1985.
DOI : 10.1073/pnas.82.8.2272

N. Suzuki, J. Carlson, G. Griffith, and &. K. Gholson, Studies on the De novo biosynthesis of nad in Escherichia coli V. properties of the quinolinic acid synthetase system, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.304, issue.2, pp.309-315, 1973.
DOI : 10.1016/0304-4165(73)90249-3

S. C. Tabor and . Richardson, A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes., Proceedings of the National Academy of Sciences, vol.82, issue.4, pp.1074-1078, 1985.
DOI : 10.1073/pnas.82.4.1074

W. Tempel, W. M. Rabeh, K. L. Bogan, P. Belenky, M. Wojcik et al., Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+, PLoS Biology, vol.285, issue.10, p.263, 2007.
DOI : 10.1371/journal.pbio.0050263.sg001

G. S. Timmins and . Deretic, Mechanisms of action of isoniazid, Molecular Microbiology, vol.99, issue.9, pp.1220-1227, 2006.
DOI : 10.1016/0003-9861(77)90059-5

J. M. Trapp and . Jung, The Role of NAD+ Dependent Histone Deacetylases (sirtuins) in Ageing, Current Drug Targets, vol.7, issue.11, pp.1553-1560, 2006.
DOI : 10.2174/1389450110607011553

G. J. Tritz and . Chandler, Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis, J Bacteriol, vol.114, pp.128-136, 1973.

G. J. Tritz, T. S. Matney, J. L. Chandler, and &. K. Gholson, Chromosomal location of the C gene involved in the biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli K-12, J Bacteriol, vol.104, pp.45-49, 1970.

G. J. Tritz, T. S. Matney, and &. K. Gholson, Mapping of the nadB locus adjacent to a previously undescribed purine locus in Escherichia coli K-12, J Bacteriol, vol.102, pp.377-381, 1970.

B. P. Vinet and . Morissette, L'acide mycophénolique en transplantation : mécanisme d'action, métaolisme et « monitoring » sérique, Ann. Biol. Chim. Qué, vol.39, issue.1, pp.11-14, 2001.

A. Volbeda, M. Charon, C. Piras, E. Hatchikian, M. Frey et al., Crystal structure of the nickel???iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, issue.6515, pp.580-587, 1995.
DOI : 10.1038/373580a0

S. J. Vollmer, R. L. Switzer, and &. G. Debrunner, Oxidation-reduction properties of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase, J Biol Chem, vol.258, pp.14284-14293, 1983.

O. Warburg and C. W. , Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide, Biochemische Zeitschrift, vol.287, p.291, 1936.

J. Warren and B. Marshallb, Unidentified curved bacilli on gastric epithelium in active chronic gastritis, Lancet, vol.321, pp.1273-1275, 1983.

F. D. Wicks, S. Sakakibara, and &. R. Gholson, Evidence for an intermediate in quinolinate biosynthesis in Escherichia coli, J Bacteriol, vol.136, pp.136-141, 1978.

F. D. Wicks, S. Sakakibara, R. K. Gholson, and &. T. Scott, The mode of condensation of aspartic acid and dihydroxyacetone phosphate in quinolinate synthesis in escherichia coli, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.500, issue.1, pp.213-216, 1977.
DOI : 10.1016/0304-4165(77)90061-7

A. Wilkinson, J. Day, and &. R. Bowater, Bacterial DNA ligases, Molecular Microbiology, vol.19, issue.6, pp.1241-1248, 2001.
DOI : 10.1046/j.1365-313x.2000.00856.x

J. W. Wimpenny and . Firth, Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen, J Bacteriol, vol.111, pp.24-32, 1972.

R. Wolfenden, Transition State Analogues for Enzyme Catalysis, Nature, vol.151, issue.5207, pp.704-705, 1969.
DOI : 10.1016/0022-2836(67)90221-5

K. Yamada, N. Hara, T. Shibata, H. Osago, and &. M. Tsuchiya, The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry, Analytical Biochemistry, vol.352, issue.2, pp.282-285, 2006.
DOI : 10.1016/j.ab.2006.02.017

V. A. Souza-pinto, A. Bohr, R. Rosenzweig, A. A. De-cabo, &. D. Sauve et al., Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival, Cell, vol.130, pp.1095-1107, 2007.

C. Yanofsky, The absence of a tryptophan-niacin relationship in Escherichia coli and Bacillus subtilis, J Bacteriol, vol.68, pp.577-584, 1954.

C. R. Zerez, D. E. Moul, E. G. Gomez, V. M. Lopez, and &. J. Andreoli, Negative modulation of Escherichia coli NAD kinase by NADPH and NADH., Journal of Bacteriology, vol.169, issue.1, pp.184-188, 1987.
DOI : 10.1128/jb.169.1.184-188.1987

M. Ziegler, New functions of a long-known molecule, European Journal of Biochemistry, vol.270, issue.6, pp.1550-1564, 2000.
DOI : 10.1046/j.1432-1327.2000.01187.x

M. Dawson, Data for biochemical research third edition, 1987.

D. E. Metzler, Biochemistry the chemical reactions of living cells, 1977.