V. P. Carey, Liquid-vapour phase-change phenomena, 1992.

S. G. Bankoff, Ebullition from solid surfaces in the absence of a pre-existing gaseous phase, Trans, Am. Soc. Mech. Eng, vol.79, pp.735-740, 1957.

W. Fritz, Maximum volume of vapour bubbles, Physik Zeitschr, vol.36, pp.379-384, 1935.

R. Cole, A photographic study of pool boiling in the region of the critical heat flux, AIChE Journal, vol.6, issue.4, pp.533-542, 1960.
DOI : 10.1002/aic.690060405

N. Zuber, Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, International Journal of Heat and Mass Transfer, vol.6, issue.1, pp.53-78, 1963.
DOI : 10.1016/0017-9310(63)90029-2

A. P. Hatton and I. S. Hall, Photographic study of boiling on prepared surfaces, Third International Heat Transfer Conference, vol.4, pp.24-37, 1966.

H. J. Ivey, Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling, International Journal of Heat and Mass Transfer, vol.10, issue.8, pp.1023-1040, 1967.
DOI : 10.1016/0017-9310(67)90118-4

C. H. Wang and V. K. Dhir, On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water, Journal of Heat Transfer, vol.115, issue.3, pp.670-679, 1993.
DOI : 10.1115/1.2910738

S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, International Journal of Heat and Mass Transfer, vol.9, issue.12, pp.367-374, 1934.
DOI : 10.1016/0017-9310(66)90138-4

M. G. Cooper, Heat flows rates in saturated pool boiling ? a wide ranging examination using reduced properties, Advanced in Heat Transfer, pp.157-239, 1984.

B. B. Mikic and W. M. Rohsenhow, A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics, Journal of Heat Transfer, vol.91, issue.2, pp.245-250, 1969.
DOI : 10.1115/1.3580136

M. G. Cooper and A. J. Lloyd, The microlayer in nucleate pool boiling, International Journal of Heat and Mass Transfer, vol.12, issue.8, pp.895-913, 1969.
DOI : 10.1016/0017-9310(69)90154-9

P. Stephan and J. Hammer, A new model for nucleate boiling heat transfer, Warme Und Stoffubertragung, vol.30, pp.119-125, 1994.

F. Demiray and J. Kim, Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling, International Journal of Heat and Mass Transfer, vol.47, issue.14-16, pp.3257-3268, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.02.008

J. R. Thome, Boiling in microchannels: a review of experiment and theory, International Journal of Heat and Fluid Flow, vol.25, issue.2, pp.128-139, 2004.
DOI : 10.1016/j.ijheatfluidflow.2003.11.005

S. S. Mehendale, A. M. Jacobi, and R. K. Shah, Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design, Applied Mechanics Reviews, vol.53, issue.7, pp.53-175, 2000.
DOI : 10.1115/1.3097347

S. G. Kandlikar and W. J. Grande, Evolution of Microchannel Flow Passages--Thermohydraulic Performance and Fabrication Technology, Heat Transfer Engineering, vol.9, issue.1, pp.3-17, 2003.
DOI : 10.1117/12.251203

L. Lin and A. P. Pisano, Bubble forming on a micro line heater, micromechanical sensors, actuators, and systems, ASME DSC, vol.32, pp.147-164, 1991.

P. Kew and K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering, vol.17, issue.8-10, pp.705-715, 1997.
DOI : 10.1016/S1359-4311(96)00071-3

A. Ullmann and N. Brauner, THE PREDICTION OF FLOW PATTERN MAPS IN MINICHANNELS, Multiphase Science and Technology, vol.19, issue.1, pp.49-73, 2007.
DOI : 10.1615/MultScienTechn.v19.i1.20

A. Serizawa, Z. Feng, and Z. Kawara, Two-phase flow in microchannels, Experimental Thermal and Fluid Science, vol.26, issue.6-7, pp.703-714, 2002.
DOI : 10.1016/S0894-1777(02)00175-9

K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-khalik, and D. L. Sadowski, Gas???liquid two-phase flow in microchannels Part I: two-phase flow patterns, International Journal of Multiphase Flow, vol.25, issue.3, pp.377-394, 1999.
DOI : 10.1016/S0301-9322(98)00054-8

C. Yang and C. Shieh, Flow pattern of air???water and two-phase R-134a in small circular tubes, International Journal of Multiphase Flow, vol.27, issue.7, pp.1163-1177, 2001.
DOI : 10.1016/S0301-9322(00)00070-7

R. Revellin and J. R. Thome, Experimental investigation of R-134a and R-245fa two-phase flow in microchannels for different flow conditions, International Journal of Heat and Fluid Flow, vol.28, issue.1, pp.63-71, 2007.
DOI : 10.1016/j.ijheatfluidflow.2006.05.009

N. Caney, J. Bigot, and P. Marty, Experimental flow boiling study in mini-channel, Thirteenth Int, Heat Transfer Conference, 2006.

F. Madrid, N. Caney, and P. Marty, Study of a Vertical Boiling Flow in Rectangular Mini-Channels, Heat Transfer Engineering, vol.64, issue.8-9, pp.753-760, 2007.
DOI : 10.1016/j.expthermflusci.2005.10.001

C. M. Callizo, R. Ali, and P. Palm, Dryout incipience and critical heat flux in saturated flow boiling of refrigerants in a vertical uniformly heated microchannel, Sixth Inter, Conference on Nanochannels, Microchannels and Minichannels, 2008.

R. Revellin and J. R. Thome, A theoretical model for the prediction of the critical heat flux in heated microchannels, International Journal of Heat and Mass Transfer, vol.51, issue.5-6, pp.1216-1225, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2007.03.002

T. Young, An Essay on the Cohesion of Fluids, Philosophical Transactions of the Royal Society of London, vol.95, issue.0, pp.65-87, 1805.
DOI : 10.1098/rstl.1805.0005

D. Quéré, Non-sticking drops, Reports on Progress in Physics, vol.68, issue.11, pp.2495-2532, 2005.
DOI : 10.1088/0034-4885/68/11/R01

W. A. Zisman, Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution, Advances in Chemistry Series, vol.43, pp.1-51, 1964.
DOI : 10.1021/ba-1964-0043.ch001

C. Rulison, So you want to measure surface energy?, KRÜSS technical note TN306e

D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, vol.13, issue.8, p.1741, 1969.
DOI : 10.1002/app.1969.070130815

R. J. Good and L. A. Girifalco, A THEORY FOR ESTIMATION OF SURFACE AND INTERFACIAL ENERGIES. III. ESTIMATION OF SURFACE ENERGIES OF SOLIDS FROM CONTACT ANGLE DATA, The Journal of Physical Chemistry, vol.64, issue.5, pp.561-565, 1960.
DOI : 10.1021/j100834a012

F. M. Fowkes, ATTRACTIVE FORCES AT INTERFACES, Industrial & Engineering Chemistry, vol.56, issue.12, pp.40-52, 1964.
DOI : 10.1021/ie50660a008

R. N. Wenzel, RESISTANCE OF SOLID SURFACES TO WETTING BY WATER, Industrial & Engineering Chemistry, vol.28, issue.8, pp.7426-7431, 1936.
DOI : 10.1021/ie50320a024

A. B. Cassie and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, vol.40, pp.546-551, 1944.
DOI : 10.1039/tf9444000546

B. He, N. A. Patankar, and J. Lee, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, vol.19, issue.12, pp.4999-5003, 2003.
DOI : 10.1021/la0268348

A. Lafuma and D. Quéré, Superhydrophobic states, Nature Materials, vol.2, issue.7, pp.457-460, 2003.
DOI : 10.1038/nmat924

L. Gao and T. J. Mccarthy, How Wenzel and Cassie Were Wrong, Langmuir, vol.23, issue.7, pp.3762-3765, 2007.
DOI : 10.1021/la062634a

M. Jakob, Heat transfer, pp.636-638, 1949.

R. L. Webb and N. Kim, Principles of enhanced heat transfer, 2005.

A. E. Bergles and M. C. Chyu, Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings, Journal of Heat Transfer, vol.104, issue.2, pp.279-285, 1982.
DOI : 10.1115/1.3245084

S. Khandekar, Y. M. Joshi, and B. Metha, Thermal performance of closed two-phase thermosyphon using nanofluids, International Journal of Thermal Sciences, vol.47, issue.6, pp.659-667, 2007.
DOI : 10.1016/j.ijthermalsci.2007.06.005

H. D. Kim, J. Kim, and M. H. Kim, Experimental studies on CHF characteristics of nano-fluids at pool boiling, International Journal of Multiphase Flow, vol.33, issue.7, pp.691-706, 2007.
DOI : 10.1016/j.ijmultiphaseflow.2007.02.007

Y. Wang, L. Wang, and M. Liu, Antifouling and Enhancing Pool boiling by TiO 2 Coating Surface in Nanometer Scale Thickness, AIChE-Wiley InterScience, vol.53, pp.3062-3076, 2006.

I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3???water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer, vol.48, issue.12, pp.2407-2419, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2004.12.047

D. Wen and Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based ??-alumina nanofluids, Journal of Nanoparticle Research, vol.83, issue.Part A, pp.265-274, 2005.
DOI : 10.1007/s11051-005-3478-9

J. Tu, N. Dinh, and T. Theofanous, An experimental study of nanofluid boiling heat transfer, Proc. 6 th Int. Symp. Heat Transfer, pp.91-96, 2004.

S. M. You and J. Y. Chang, Pool boiling Heat Transfer in Saturated Nanofluids, pp.2004-61108, 2004.

R. Vassallo, S. D. Kumar, and . Amico, Pool boiling heat transfer experiments in silica???water nano-fluids, International Journal of Heat and Mass Transfer, vol.47, issue.2, pp.407-411, 2004.
DOI : 10.1016/S0017-9310(03)00361-2

S. Witharana, Boiling of refrigerants on enhanced surfaces and boiling of nanofluids, Licenciate Thesis, Department of energy technology, The Royal Institute of, Technology, 2003.

S. K. Das, N. Putra, and W. , Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, vol.46, issue.5, pp.851-862, 2003.
DOI : 10.1016/S0017-9310(02)00348-4

S. J. Kim, T. Mckrell, J. Buongiorno, and L. Hu, Enhancement of flow critical heat flux in water-based nanofluids with alumina nanoparticles, Twelfth Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-12, 2007.

H. D. Kim and M. H. Kim, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Applied Physics Letters, vol.91, issue.1, p.14104, 2007.
DOI : 10.1063/1.2754644

T. Kunugi, K. Muko, and M. Shibahara, Ultrahigh heat transfer enhancement using nano-porous layer, Superlattices and Microstructures, vol.35, issue.3-6, pp.531-542, 2004.
DOI : 10.1016/j.spmi.2004.04.002

S. Vemuri and K. J. Kim, Pool boiling of saturated FC-72 on nano-porous surface, International Communications in Heat and Mass Transfer, vol.32, issue.1-2, pp.27-31, 2005.
DOI : 10.1016/j.icheatmasstransfer.2004.03.020

S. Kim, H. Kim, H. D. Kim, H. S. Ahn, M. H. Kim et al., Experimental investigation of critical heat flux enhancement by micro/nanoscale surface modification in pool boiling, The Sixth Int, ASME Conference on Nanochannels, Microchannels and Minichannels ICNMM2008, 2008.

D. S. Wen and B. X. Wang, Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions, International Journal of Heat and Mass Transfer, vol.45, issue.8, pp.1739-1747, 2002.
DOI : 10.1016/S0017-9310(01)00251-4

S. P. Liaw and V. P. Dhir, Void Fraction Measurements During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces, Journal of Heat Transfer, vol.111, issue.3, pp.731-738, 1989.
DOI : 10.1115/1.3250744

Y. Takata, S. Hidaka, J. M. Cao, T. Nakamura, H. Yamamoto et al., Effect of surface wettability on boiling and evaporation, Energy, vol.30, issue.2-4, pp.209-220, 2005.
DOI : 10.1016/j.energy.2004.05.004

P. Griffith and J. D. Wallis, The role of surface conditions in nucleate boiling, Chem. Eng. Prog. Symp. Ser, vol.56, pp.49-63, 1960.

R. F. Gaertner, Methods and means for increasing the heat transfer coefficient between a wall and boiling liquid, U.S. Patent, vol.3301, p.314, 1967.

R. L. Hummel, Means for increasing the heat transfer coefficient between a wall and boiling liquid, U.S. Patent, vol.3207, p.209, 1965.

R. I. Vachon, G. H. Nix, and G. E. Tanger, Evaluation of constants for the Rohsenow poolboiling correlation, J. Heat Trans, pp.90-239, 1968.

D. M. Mattox, Handbook of physical vapor deposition (PVD) processing: film formation, adhesion, surface preparation and contamination control, 2010.

A. Billard and F. Perry, Pulvérisation cathodique magnétron, pp.1-17, 2005.

D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition: What's Going on Inside the Reactor, 2003.
DOI : 10.1007/978-94-017-0369-7

C. Chouquet, Élaboration et caractérisation de revêtements type « Diamond-Like Carbon » déposés par un procédé chimique en phase vapeur assisté par un plasma basse fréquence, 2008.

N. Blondiaux, E. Scolan, A. M. Popa, J. Gavillet, and R. Pugin, Fabrication of superhydrophobic surfaces with controlled topography and chemistry, Applied Surface Science, vol.256, issue.3, pp.46-53, 2009.
DOI : 10.1016/j.apsusc.2009.04.194

J. Nestler, A. Morschhauser, K. Hiller, T. Otto, S. Bigot et al., Polymer lab-on-chip systems with integrated electrochemical pumps suitable for large-scale fabrication, The International Journal of Advanced Manufacturing Technology, vol.244, issue.1-4, pp.47-137, 2010.
DOI : 10.1007/s00170-009-1948-4

S. Zanini, C. Riccardia, M. Orlandib, and E. Grimoldia, Characterisation of SiOxCyHz thin films deposited by low-temperature PECVD, Vacuum, vol.82, issue.2, pp.290-293, 2008.
DOI : 10.1016/j.vacuum.2007.07.001

E. Billy, F. Maillard, A. Morin, L. Guetaz, F. Emieux et al., Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell, Journal of Power Sources, vol.195, issue.9, pp.2737-2746, 2010.
DOI : 10.1016/j.jpowsour.2009.10.101

J. Békési, J. Klein-wiele, and P. Simon, Efficient submicron processing of metals with femtosecond UV pulses, Applied Physics A: Materials Science & Processing, vol.76, pp.355-357, 2003.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, Ablation induced by single-and multiple-femtosecond laser pulses in lithium niobate, Laser Physics, vol.17, issue.12, pp.1378-1381, 2007.
DOI : 10.1134/S1054660X07120079

H. Paqueton and J. Ruste, Microscopie électronique à balayage -Principe et équipement, pp.1-16, 2006.

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

G. Binnig and H. Rohrer, Scanning Tunneling Microscopy???from Birth to Adolescence(Nobel Lecture), Angewandte Chemie International Edition in English, vol.26, issue.7, p.615, 1987.
DOI : 10.1002/anie.198706061

F. Salvan and F. Thibaudau, Microscopie à sonde locale, pp.1-18, 1999.

Y. Gu, Contact angle measurement techniques for determination of wettability, Encyclopedia of Surface and Colloid Science, pp.1525-1539, 2006.

R. Situ, M. Ishii, T. Hibiki, J. Y. Tu, G. H. Yeoh et al., Bubble departure frequency in forced convective subcooled boiling flow, International Journal of Heat and Mass Transfer, vol.51, issue.25-26, pp.6268-6282, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2008.04.028

N. Zuber, Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, International Journal of Heat and Mass Transfer, vol.6, issue.1, pp.53-78, 1963.
DOI : 10.1016/0017-9310(63)90029-2

A. P. Hatton and I. S. Hall, Photographic study of boiling on prepared surfaces, Third Int, Heat Transfer Conference, vol.4, pp.24-37, 1966.

H. J. Ivey, Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling, International Journal of Heat and Mass Transfer, vol.10, issue.8, pp.1023-1040, 1967.
DOI : 10.1016/0017-9310(67)90118-4

M. G. Cooper, Heat flows rates in saturated pool boiling ? a wide ranging examination using reduced properties, Advanced in Heat Transfer, pp.157-239, 1984.

Y. Takata, S. Hidaka, J. M. Cao, T. Nakamura, H. Yamamoto et al., Effect of surface wettability on boiling and evaporation, Energy, vol.30, issue.2-4, pp.209-220, 2005.
DOI : 10.1016/j.energy.2004.05.004

J. Mitrovic, Formation of a liquid jet after detachment of a vapour bubble, International Journal of Heat and Mass Transfer, vol.40, issue.18, pp.4309-4317, 1997.
DOI : 10.1016/S0017-9310(97)00085-9

V. P. Carey, Liquid-vapour phase-change phenomena, 1992.

L. Z. Zeng, J. F. Klausner, and R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems??? I. Pool boiling, International Journal of Heat and Mass Transfer, vol.36, issue.9, pp.2261-2270, 1993.
DOI : 10.1016/S0017-9310(05)80111-5

J. P. Mchale and S. V. Garimella, Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces, International Journal of Multiphase Flow, vol.36, issue.4, pp.249-260, 2010.
DOI : 10.1016/j.ijmultiphaseflow.2009.12.004

S. G. Bankoff, Ebullition from solid surfaces in the absence of a pre-existing gaseous phase, Trans, Am. Soc. Mech. Eng, vol.79, pp.735-740, 1957.

F. Demiray and J. Kim, Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling, International Journal of Heat and Mass Transfer, vol.47, issue.14-16, pp.3257-3268, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.02.008

A. Cattide, G. P. Celata, P. D. Marco, and W. Grassi, Experimental study on bubble detachment under variable heat load and the action of electric field, Fluid Dynamics Research, vol.40, issue.7-8, pp.485-496, 2008.
DOI : 10.1016/j.fluiddyn.2008.01.003

B. E. Staniszewski, Bubble growth and departure in nucleate boiling, MIT, 1959.

S. Siedel, S. Cioulachtjian, and J. Bonjour, Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites, Experimental Thermal and Fluid Science, vol.32, issue.8, pp.1504-1511, 2008.
DOI : 10.1016/j.expthermflusci.2008.04.004

URL : https://hal.archives-ouvertes.fr/hal-00351579

C. W. Van-der and . Geld, Bubble detachment criteria: some criticism of ???Das Abreissen von Dampfblasen an festen Heizfl??chen???, International Journal of Heat and Mass Transfer, vol.39, issue.3, pp.653-657, 1996.
DOI : 10.1016/0017-9310(95)00145-Y

Y. Chen and M. , Dynamics and shape of bubbles on heating surfaces: A simulation study, International Journal of Heat and Mass Transfer, vol.49, issue.5-6, pp.1115-1128, 2006.
DOI : 10.1016/j.ijheatmasstransfer.2005.07.053

P. S. Laplace, Theory of capillary attraction, Supplements to the 10th book of Celestial Mechanics (1806, 1807), translated and annotated by N, Bowditch, 1839.

M. G. Cooper and A. J. Lloyd, The microlayer in nucleate pool boiling, International Journal of Heat and Mass Transfer, vol.12, issue.8, pp.895-913, 1969.
DOI : 10.1016/0017-9310(69)90154-9

F. Demiray and J. Kim, Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling, International Journal of Heat and Mass Transfer, vol.47, issue.14-16, pp.3257-3268, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.02.008

G. Hetsroni, A. Mosyak, E. Pogrebnyak, I. Sher, and Z. Segal, Bubble growth in saturated pool boiling in water and surfactant solution, International Journal of Multiphase Flow, vol.32, issue.2, pp.159-182, 2006.
DOI : 10.1016/j.ijmultiphaseflow.2005.10.002

H. L. Lee, B. D. Oh, S. W. Bae, and M. H. Kim, Single bubble growth in saturated pool boiling on a constant wall temperature surface, International Journal of Multiphase Flow, vol.29, issue.12, pp.1857-1874, 2003.
DOI : 10.1016/j.ijmultiphaseflow.2003.09.003

P. C. Wayner, Intermolecular forces in phase-change heat transfer: 1998 Kern award review, AIChE Journal, vol.5, issue.10, pp.2055-2068, 1999.
DOI : 10.1002/aic.690451004

F. Demiray and J. Kim, Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling, International Journal of Heat and Mass Transfer, vol.47, issue.14-16, pp.3257-3268, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.02.008

I. L. Mostinski, Application of the rule of corresponding states for the calculation of heat transfer and critical heat flux, pp.66-71, 1963.

D. Gorenflo, Pool boiling, VDI Heat Atlas, 1993.

G. Ribatski, J. M. Saiz, and . Jabardo, Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces, International Journal of Heat and Mass Transfer, vol.46, issue.23, pp.4439-4451, 2003.
DOI : 10.1016/S0017-9310(03)00252-7

W. Wu, H. Bostanci, L. C. Chow, Y. Hong, M. Sua et al., Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces, International Journal of Heat and Mass Transfer, vol.53, issue.9-10, pp.1773-1777, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.01.013

T. G. Theofanous and T. N. Dinh, HIGH HEAT FLUX BOILING AND BURNOUT AS MICROPHYSICAL PHENOMENA: MOUNTING EVIDENCE AND OPPORTUNITIES, Multiphase Science and Technology, vol.18, issue.3, pp.1-26, 2006.
DOI : 10.1615/MultScienTechn.v18.i3.30

S. G. Kandlikar, A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation, Journal of Heat Transfer, vol.123, issue.6, pp.1071-1079, 2001.
DOI : 10.1115/1.1409265

S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, vol.50, issue.19-20, pp.50-4105, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2007.02.002

H. D. Kim and M. H. Kim, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Applied Physics Letters, vol.91, issue.1, p.14104, 2007.
DOI : 10.1063/1.2754644

S. P. Liaw and V. P. Dhir, Void Fraction Measurements During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces, Journal of Heat Transfer, vol.111, issue.3, pp.731-738, 1989.
DOI : 10.1115/1.3250744

J. S. Coursey and J. H. Kim, Nanofluid boiling: The effect of surface wettability, International Journal of Heat and Fluid Flow, vol.29, issue.6, pp.1577-1585, 2008.
DOI : 10.1016/j.ijheatfluidflow.2008.07.004

D. Brutin, F. Topin, and L. Tadrist, Experimental study of unsteady convective boiling in heated minichannels, International Journal of Heat and Mass Transfer, vol.46, issue.16, pp.2957-2965, 2003.
DOI : 10.1016/S0017-9310(03)00093-0

C. Choi, C. Huh, D. Kim, and M. Kim, Wettability effect on flow boiling in an memsbased single glass microchannel, The Sixth Int, ASME Conference on Nanochannels, Microchannels and Minichannels ICNMM2008, 2008.

J. R. Thome, Heat Transfer engineering data book III, Web-based reference book available on web at www.wlv.com/products, 2010.

K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-khalid, and D. L. Sadowski, Gas???liquid two-phase flow in microchannels Part I: two-phase flow patterns, International Journal of Multiphase Flow, vol.25, issue.3, pp.377-394, 1999.
DOI : 10.1016/S0301-9322(98)00054-8

E. Sobierska, R. Kulenovic, and R. Mertz, Heat transfer mechanism and flow pattern during flow boiling of water in a vertical narrow channel???experimental results, International Journal of Thermal Sciences, vol.46, issue.11, pp.1172-1181, 2007.
DOI : 10.1016/j.ijthermalsci.2007.06.011

S. G. Kandlikar, Nucleation characteristics and stability considerations during flow boiling in microchannels, Experimental Thermal and Fluid Science, vol.30, issue.5, pp.441-447, 2006.
DOI : 10.1016/j.expthermflusci.2005.10.001

J. W. Tyrrell and P. Attard, Images of Nanobubbles on Hydrophobic Surfaces and Their Interactions, Physical Review Letters, vol.87, issue.17, p.176104, 2001.
DOI : 10.1103/PhysRevLett.87.176104

R. W. Lockhart and R. C. Martinelli, Proposed correlation data for isothermal two-phase two-component flow in pipes, Chem. Eng. Progr, vol.45, pp.39-45, 1949.

K. Mishima and T. Hibiki, Some characteristics of air-water two-phase flow in small diameter vertical tubes, International Journal of Multiphase Flow, vol.22, issue.4, pp.703-712, 1996.
DOI : 10.1016/0301-9322(96)00010-9

D. Chisholm, Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels, International Journal of Heat and Mass Transfer, vol.16, issue.2, pp.347-358, 1973.
DOI : 10.1016/0017-9310(73)90063-X

S. G. Bankoff, A Variable Density Single-Fluid Model for Two-Phase Flow With Particular Reference to Steam-Water Flow, Journal of Heat Transfer, vol.82, issue.4, pp.265-272, 1960.
DOI : 10.1115/1.3679930

H. Muller-steinhagen and K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chemical Engineering and Processing: Process Intensification, vol.20, issue.6, pp.297-308, 1986.
DOI : 10.1016/0255-2701(86)80008-3

D. Steiner, Heat transfer to boiling saturated liquids, VDI-Warmeatlas (VDI Heat Atlas, Editor: Verein Deutscher Ingenieure, VDI-Gessellschaft Verfahrenstechnik und Chemie-ingenieurwesen (GCV), Translator: J.W. Fullarton, 1993.

M. G. Cooper, Heat flows rates in saturated pool boiling ? a wide ranging examination using reduced properties, Advanced in Heat Transfer, pp.157-239, 1984.

R. N. Wenzel, RESISTANCE OF SOLID SURFACES TO WETTING BY WATER, Industrial & Engineering Chemistry, vol.28, issue.8, pp.7426-7431, 1936.
DOI : 10.1021/ie50320a024

V. Embryo, . At, . Solid, . With, A. ?. Contact et al., 7 FIGURE 1-3, 13 FIGURE 1-6. SCHEMATIC REPRESENTATION OF PRINCIPAL FLOW PATTERNS IN MICROCHANNELS. ......................... 14 FIGURE 1-7. LOCAL HEAT TRANSFER COEFFICIENT VERSUS LOCAL QUALITY (FROM CANEY ET AL. [1.25] FOR FLOW BOILING OF HFE-7100 IN 40 PARALLEL RECTANGULAR CHANNELS HAVING 0.84 MM HYDRAULIC DIAMETER)

.. , B. ). Of, . On, .. Surface, S. Surface et al., 17 FIGURE 1-10. DETERMINATION OF THE SOLID SURFACE TENSION: A) ZISMAN PLOT FOR, DATA FROM KRÜSS TECHNICAL NOTE [1.33])

C. Angle, . Is, . Determined, . Solid-liquid, . A. Interactions et al., 21 FIGURE 1-12, 21 FIGURE 1-13. ILLUSTRATION OF CROSS SECTION OF: A) FIGURE 2-1. CEA MAGNETRON SPUTTERING REACTOR: A) EXPERIMENTAL, p.34

D. Of, C. Built, . Reactor, C. Silicon, . View et al., 36 FIGURE 2-4, p.40

S. View, O. Block, . Of, .. Force-microscope, . Diagram et al., 41 FIGURE 2-9 42 FIGURE 2-10 43 FIGURE 2-11 43 FIGURE 2-12. EXAMPLE OF A CLEAR PICTURE FOR DETERMINATION OF THE CONTACT ANGLE [2.15] 43 FIGURE 2-13. DETERMINATION OF THE CONTACT ANGLE HYSTERESIS: A) INCREASING, 44 FIGURE 2-15. DIAGRAM OF CIRCUIT FOR RESISTANCE MEASUREMENT BY 2-. 45 FIGURE 2-16. DIAGRAM OF CIRCUIT FOR RESISTANCE MEASUREMENT BY 4, pp.47-50

F. Deposition, . Layer, . In, .. Conditions-of, . Uncoated et al., 55 FIGURE 3-5. EXPERIMENTAL SETUP: (1) SAMPLE HEATER 56 FIGURE 3-6. BOILING CURVES OF: A) 58 b FIGURE 3-7, 0003%V OF AU DURING 600 S, B) 0.01%V OF AL 2 O 3 DURING 60 STATIC CONTACT ANGLES OF 2-µL SESSILE WATER-DROPLETS ON STAINLESS STEEL SURFACES WITH AND WITHOUT NANOPARTICLE DEPOSITION, pp.53-56

A. Topography, . The, .. Surface-s-ref, A. By-pecvd:-s-siox, S. Surfaces et al., 69 FIGURE 4-7 70 FIGURE 4-9 HEAT 71 FIGURE 4-10 EFFECTS 71 FIGURE 4-11 CONTACT 72 FIGURE 4-12 DYNAMIC 73 FIGURE 4-13 CONTACT 77 FIGURE 4-18 SCHEMATIC 79 FIGURE 4-19 SCHEMATIC 83 FIGURE 4-21 84 FIGURE 4-23 COMPARISON 86 FIGURE 4-24. COMPARISON WITH EXPERIMENTAL DATA: A) 88 FIGURE 4-25 SCHEMATIC 89 FIGURE 4-26 SCHEMATIC 89 FIGURE 4-27 91 FIGURE 5-1. FABRICATION PROCEDURE OF SMOOTH SURFACES: A) TOP 98 FIGURE 5-2. SIDE VIEW OF FABRICATION PROCEDURE OF STRUCTURED SURFACES: A) µ-TI SURFACE AND B) µ-SIOX 99 FIGURE 5-3 100 c FIGURE 5-6 101 FIGURE 5-7. FEG-SEM IMAGES OF THE µ-TI SURFACE: A) 102 FIGURE 5-8. FEG-SEM IMAGES OF THE µ-SIOX SURFACE: A) 119 FIGURE 6-2. TWO-PHASE PRESSURE DROPS: A) AT 100 122 FIGURE 6-6. ANALYSED IMAGES OF FLOW PATTERNS ON DLC SURFACE: A) VS. HEAT FLUX AND B) VS 123 FIGURE 6-8. REPRESENTATIVE IMAGES OF FLOW PATTERN ON SIOC SURFACE: A) BUBBLES ARE CREATED IN 1°C- SUBCOOLED FLUID AND B) CHURN FLOW REGIME (CF), FIGURE 6-10. FLOW PATTERN MAP: A) OF TRIPLETT ET AL. [6.7] FOR AIR-WATER IN A 1.1 MM HORIZONTAL CHANNEL AND B) GIVEN BY THE PRESENT VISUALIZATION FOR 100 AND.. 136 FIGURE 6-21. SCHEMATICALLY VIEW OF THE CROSS SECTION OF THE TEST CHANNEL FOR A) LOW-WETTED SURFACES AND B) HIGHLY-WETTED SURFACES.. 138 d FIGURE 6-23. COMPARISON OF EXPERIMENTAL AND PREDICTED HEAT TRANSFER COEFFICIENT FOR A) SIOX SURFACE AND B) TI SURFACE AT 120 KG/M² S. FOR EACH HEAT FLUX, THE PREDICTED CURVE IS A CONTINUOUS LINE WITH THE SAME COLOUR AS THE EXPERIMENTAL DOTS TWO-PHASE PRESSURE DROP ON THE SMOOTH (SIOX AND TI) AND STRUCTURED (µ-TI AND µ-SIOX) SURFACES AT 100 KG/M² S AND AT 120 KG REPRESENTATIVE IMAGES OF FLOW PATTERNS OBSERVED ON µ-SIOX SURFACE: A) SLUG-ANNULAR FLOW AND B) BACK FLOW OBSERVATION: A) ON µ-TI SURFACE WITH ORIGINAL AND ANALYSED IMAGES AND B) ON TI-SURFACE WITH ANALYSED IMAGES COMPARISON OF EVOLUTIONS OF THE HEAT TRANSFER COEFFICIENT WITH THE VAPOUR QUALITY FOR SIOX AND µ-SIOX SURFACES AT 100 KG/M² S AND BOILING CURVES OF SMOOTH ANS STRUCTURED SAMPLE SURFACES AT A) 100 KG/M² S AND B), pp.74-78