. [. Bibliographie, W. Baum, G. Fulton, and . Quart, Lefschetz-Riemann-Roch for singular varieties, Acta Math, vol.143, pp.193-211, 1979.

]. Bi1 and . Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom, vol.41, pp.53-157, 1995.

]. Bi2 and . Bismut, Superconnection currents and complex immersions, Inventiones Math, vol.99, pp.59-113, 1990.

[. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles I. Bott-Chern forms and analytic torsion, Communications in Mathematical Physics, vol.98, issue.1, pp.49-78, 1988.
DOI : 10.1007/BF01238853

[. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles, Communications in Mathematical Physics, vol.98, issue.1, pp.79-126, 1988.
DOI : 10.1007/BF01238854

[. Bismut, H. Gillet, and C. Soulé, Bott-Chern current and complex immersions , Duke Math, J, pp.60-255, 1990.

[. Bismut, H. Gillet, and C. Soulé, Complex Immersions and Arakelov Geometry, Birkhaüser, 1990.
DOI : 10.1007/BF01086022

[. Bismut and K. Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Alg. Geom, vol.1, pp.647-684, 1992.

R. [. Burgos-gil and . Li?canu, Singular Bott-Chern classes and the arithmetic Grothendieck Riemann Roch theroem for closed immersions, Documenta Math, vol.15, pp.73-176, 2010.

[. Bismut and X. Ma, Holomorphic immersions and equivariant torsion forms, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2004, issue.575, pp.189-235, 2004.
DOI : 10.1515/crll.2004.079

. N. Bgv, E. Berline, M. Getzler, and . Vergne, Heat kernels and the Dirac operator, Grundlehren der Math. Wiss, vol.298, 1992.

]. P. Do and . Donovan, The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France, pp.97-257, 1969.

H. Gillet and C. Soulé, Arithmetic intersection theory, Publications math??matiques de l'IH??S, vol.83, issue.3, pp.94-174, 1990.
DOI : 10.1007/BF02699132

C. [. Gillet and . Soulé, Characteristic Classes for Algebraic Vector Bundles with Hermitian Metric, II, The Annals of Mathematics, vol.131, issue.2, pp.163-203, 1990.
DOI : 10.2307/1971493

]. F. Hir and . Hirzebruch, Topological Methods in Algebraic Geometry, 1978.

]. L. Hoer and . Hörmander, The analysis of linear partial differential operators I, Grundlehren der mathematischen Wissenschaften, 1977.

]. B. Koe and . Köck, The Grothendieck-Riemann-Roch theorem for group scheme actions, 4ème série, pp.415-458, 1998.

D. [. Köhler and . Roessler, A fixed point formula of Lefschetz type in Arakelove geometry I : statement and proof, Inventiones Math, vol.145, issue.2, pp.333-396, 2001.

D. [. Köhler and . Roessler, Une formule du point fixe de type Lefschetz en g??om??trie d'Arakelov II : une formule des r??sidus, Annales de l???institut Fourier, vol.52, issue.1, pp.81-103, 2002.
DOI : 10.5802/aif.1877

]. X. Ma1 and . Ma, Submersions and equivariant Quillen metrics, Ann. Inst. Fourier (Grenoble ), vol.50, pp.1539-1588, 2000.

]. X. Ma2 and . Ma, Formes de torsion analytique et familles de submersions I, Bull. Soc. Math. France II, Asian J. Math, vol.127, issue.4, pp.541-562, 1999.

D. [. Maillot and . Roessler, Conjectures sur les d??riv??es logarithmiques des fonctions $L$ d'Artin aux entiers n??gatifs, Mathematical Research Letters, vol.9, issue.6, pp.5-6, 2002.
DOI : 10.4310/MRL.2002.v9.n6.a2

URL : http://arxiv.org/abs/math/0201234

]. D. Qui and . Quillen, Higher Algebraic K?theory I, Lecture Notes in Mathematics, vol.341, pp.85-147, 1973.

]. D. Roe and . Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math, J, vol.96, issue.1, pp.61-126, 1999.

. [. Grothendieck, Schémas en groupes I, II, III, Springer Lecture Notes 151, 1965.

]. R. Tho and . Thomason, Une formule de Lefschetz en K-théorie équivariante algébrique, Duke Math, J, vol.68, pp.447-462, 1992.