Probabilistic Interpretation of Quantum Mechanics with Schrödinger Quantization Rule
Saurav Dwivedi

To cite this version:

HAL Id: tel-00573846
https://tel.archives-ouvertes.fr/tel-00573846
Submitted on 4 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Probabilistic Interpretation of Quantum Mechanics
with Schrödinger Quantization Rule

Saurav Dwivedi*

March 7, 2011

Abstract
Quantum theory is a probabilistic theory, where certain variables are hidden or non-accessible. It results in lack of representation of systems under study. However, I deduce system’s representation in probabilistic manner, introducing probability of existence \(w\), and quantize it exploiting Schrödinger’s quantization rule. The formalism enriches probabilistic quantum theory, and enables systems’s representation in probabilistic manner.

keywords Schrödinger Operators ● Probability ● Hidden Variables

PACS 03.65.-w; 02.30.Tb; 02.50.Cw

Contents
1 Introduction i
2 Probability Eigenvalue Formalism ii
3 Quantum Dynamical Equations iii
A Unit Operator iv

1 Introduction
Classical physics is based on mechanistic perspective, where no contingencies appear [1, 2]. It results in a deterministic theory, where no chances appear, and systems are governed by mechanistic laws. On the contrary, quantum theory is a probabilistic theory [3, p. 260]. So is its interpretation [4]. Quantum theory is not based on mechanistic order [2]. Indeterminism, an ingredient part of the theory, appears due to some hidden variables [5, 6, 7]. In a non-deterministic (acausal) theory (like QM) certain variables are (hidden) non-accessible. It persists in lack of representation of the system under study.

However, we define system’s existence in probabilistic manner. We assign a probability \((w)\) in order to define a system in isolation. For \(w = 1\) system is in pure state and all its variables are accessible, for \(w \epsilon (0, 1)\) it is in mixed state as certain of variables are hidden or non-accessible (e.g. in presence of many type of interactions [8]). For \(w = 0\) the system is in forbidden state and all its variables are hidden and system can be represented by none. We quantize this observable using Schrödinger’s quantization rule and obtain \(\tilde{w} = -\text{i}h\hat{\partial}/\partial s\). Exploiting usual formalism of QM [9, 10, 11] we further deduce quantum dynamical equations, based on non-commutativity between probability \(w\) and dynamicals \(A\).

*Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 INDIA. E-mail: Saurav.Dwivedi@gmail.com, Homepage: www.geocities.ws/dwivedi
2 Probability Eigenvalue Formalism

We have a general form of Schrödinger’s wavefunction\(^1\) belonging to system’s Hilbert space \(\mathbb{H}\), in
generalized perspective \([16]\)

\[
\psi(R(q_i, t), s(q_i, t)) := R(q_i, t) \exp \left(\frac{i}{\hbar} s(q_i, t) \right), \quad i = 1, 2, 3, \ldots, f,
\] (2.1)

which is orthonormalizable

\[
\langle \psi_\alpha | \psi_\beta \rangle = \int_{-\infty}^{+\infty} \psi_\alpha^*(R(q_i, t), s(q_i, t)) \psi_\beta(R(q_i, t), s(q_i, t)) d\tau = \delta_{\alpha\beta},
\] (2.2)

where \(d\tau := \prod_{i=1}^{f} h_i dq_i, \ h_i\) being scale factor and \(f\) is degrees of freedom) is generalized volume element

do f the configuration space. [The system has all these variables, except \(\psi\) (and tacitly its space \(\mathbb{H}\)) in

Praxic perspective]. Differentiate (2.1) partially w.r.t. Action \(s(q_i, t)\) to obtain

\[
\frac{\partial \psi(R(q_i, t), s(q_i, t))}{\partial s(q_i, t)} = \frac{i}{\hbar} \psi(R(q_i, t), s(q_i, t)).
\] (2.3)

I entail a unit (zero-order differential) operator that satisfies for an ordinary function \(f\) as well
as for wavefunction (See Appendix A)

\[
\mathcal{I} f = f; \quad \mathcal{I} \psi(R(q_i, t), s(q_i, t)) = \psi(R(q_i, t), s(q_i, t)).
\] (2.4)

Following deduction (2.4) for (2.3), we obtain

\[
\mathcal{I} \psi(R(q_i, t), s(q_i, t)) + i\hbar \frac{\partial \psi(R(q_i, t), s(q_i, t))}{\partial s(q_i, t)} = 0,
\] (2.5)

which is in the form of eigenvalue equation. We deduce Schrödinger unit operator \(\hat{\mathcal{T}}\) [in the sense of
Schrödinger’s quantization rule] satisfying unit eigenoperator equation \([13, Dwivedi 2005]\)

\[
\hat{\mathcal{T}} |\psi\rangle = \mathcal{I} |\psi\rangle; \quad \hat{\mathcal{T}} = -i\hbar \frac{\partial}{\partial s}.
\] (2.6)

Its expectation value is given by inner-product

\[
\langle \hat{\mathcal{T}} \rangle = \langle \psi | \hat{\mathcal{T}} |\psi\rangle = \int_{-\infty}^{+\infty} \psi^*(R(q_i, t), s(q_i, t)) \left(-i\hbar \frac{\partial \psi(R(q_i, t), s(q_i, t))}{\partial s(q_i, t)} \right) d\tau
\]

\[
eq \int_{-\infty}^{+\infty} |\psi(R(q_i, t), s(q_i, t))|^2 d\tau = \text{Prob.}(-\infty, +\infty).
\] (2.7)

[It could also be obtained alternatively using (2.4) and (2.6) in inner-product (2.7).] The operator \(\hat{\mathcal{T}}\), having trace \(\text{Prob.}(-\infty, +\infty)\), entails properties of our probability operator \(\hat{w}\). For a system in

isolation:

\[
\begin{align*}
\text{Prob.}(-\infty, +\infty) = w_{\text{pure}} &= 1 \quad \text{for pure state;} \\
\text{Prob.}(-\infty, +\infty) = w_{\text{mixed}} &\in (0, 1) \quad \text{for mixed state;} \\
\text{Prob.}(-\infty, +\infty) = w_{\text{forbidden}} &= 0 \quad \text{for forbidden state.}
\end{align*}
\] (2.8)

Thus \(\hat{\mathcal{T}}\) is essentially \(\hat{w}\) that satisfies probability eigenvalue equation

\[
\hat{w} |\psi_w\rangle = w |\psi_w\rangle; \quad \hat{w} = -i\hbar \frac{\partial}{\partial s}.
\] (2.9)

\(^1\)It is notable that \(\psi\) is function of \(q_i\) and \(t\) implicitly as well as function of \(R\) and \(s\) explicitly. Although Action
\(s[\ldots]\) is not function of \(q_i\) and \(t\) necessarily, instead it is often functional of the path. It has been taken function of
\(q_i\) and \(t\) here for mere convention, that does not hurt assertion. Nevertheless, the result holds intact if one prefers

\(\psi(R, s) := R \exp \left(\frac{i}{\hbar} s \right)\) over (2.1).
Or
\[w\psi_w(R(q_i, t), s(q_i, t)) + i\hbar \frac{\partial \psi_w(R(q_i, t), s(q_i, t))}{\partial s(q_i, t)} = 0, \] (2.10)

having solution
\[\psi_w(R(q_i, t), s(q_i, t)) = A \exp \left(\frac{i}{\hbar} ws(q_i, t) \right). \] (2.11)

For now we will treat \(\psi \) as function of \(s \) solely, for mere convention. For orthonormalization we have the inner-product,
\[(\psi_w | \psi_w) = \int_{-\infty}^{+\infty} \psi_w^*(s)\psi_w(s) \, ds \]
\[= |A|^2 \int_{-\infty}^{+\infty} \exp \left(\frac{i}{\hbar} (w - w') s \right) \, ds = |A|^2 2\pi \delta(w - w'). \] (2.12)

For \(A = 1/\sqrt{2\pi\hbar} \), we have
\[\psi_w(s) = \frac{1}{\sqrt{2\pi\hbar}} \exp \left(\frac{i}{\hbar} ws \right) \] (2.13)

that follows Dirac orthornormality
\[(\psi_w | \psi_w) = \delta(w - w'). \] (2.14)

However, these eigenfunctions form complete set \((\psi = \sum_w c_w\psi_w) \). For (square-integrable) function \(\psi(s), \)
\[\psi(s) = \int_{-\infty}^{+\infty} c(w)\psi_w(s) \, dw = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} c(w) \exp \left(\frac{i}{\hbar} ws \right) \, dw. \] (2.15)

The expansion coefficient is obtained by Fourier’s trick
\[(\psi_w | \psi) = \int_{-\infty}^{+\infty} c(w)\psi_w \, dw = \int_{-\infty}^{+\infty} c(w)\delta(w - w') \, dw = c(w'), \] (2.16)
or
\[c(w) = (\psi_w | \psi). \] (2.17)

Exploiting completeness (2.15), the amplitude \(R \) in (2.1) is obtained
\[R = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} c(w) \exp \left(\frac{i}{\hbar} (w - 1) \right) \, dw. \] (2.18)

3 Quantum Dynamical Equations

Dynamics is a law relating physical quantities in course of time (or some internal observables [15]).
In Praxic theory Action is a fundamental physical entity [14]. However, it could often be customary
to deduce dynamics in course of Action. Let differentiate the inner-product,
\[\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle = \int_{-\infty}^{+\infty} \psi^* \hat{A} \psi \, d\tau, \] (3.1)
exactly w.r.t. Action with differential-integral rule
\[\hat{f} g(k) = \hat{f} \int_{-\infty}^{+\infty} \phi(\tau)K(k, \tau) \, d\tau = \int_{-\infty}^{+\infty} \hat{f} \{ \phi(\tau)K(k, \tau) \} \, d\tau, \] (3.2)
we obtain (using chain rule for \(\hat{f} := \frac{\partial}{\partial s} \))
\[\frac{\partial}{\partial s} \langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle + \langle \psi | \hat{A} | \psi \rangle + \langle \psi | \hat{A} | \psi \rangle = \hat{f} g(k) \] (3.3)

\[2 \text{As Probability does not exist in the limit } (-\infty, 0) \cup (1, +\infty), \text{ we have omitted integration over this limit. It does not create trouble in formalism.} \]
Considering probability eigenvalue equations
\[\frac{\partial \psi}{\partial s} = \frac{i}{\hbar} [\hat{w} \psi], \quad \frac{\partial \psi}{\partial s} = -\frac{i}{\hbar} (\hat{w}^\dagger \psi), \] (3.4)
we obtain
\[\frac{\partial}{\partial s} (\hat{A}) = \left(\frac{\partial \hat{A}}{\partial s} - \frac{i}{\hbar} [\hat{w}^\dagger \psi, \hat{A}] - \langle \psi | \hat{A} \hat{w} | \psi \rangle \right). \] (3.5)
Here \(A \), defined by \(\hat{A} = \langle \psi | \hat{A} | \psi \rangle \), is a dynamical [15] — an observable-valued-function of system’s variables — \(\hat{A}(q_i, t) \) as distinct from observables. Since probability is a real aspect of nature, i.e., in operator representation, it must be hermitian\(^3\),
\[\langle \hat{w}^\dagger \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A} \hat{w} | \psi \rangle, \] (3.6)
which yields
\[\frac{\partial}{\partial s} (\hat{A}) = \left(\frac{\partial \hat{A}}{\partial s} - \frac{i}{\hbar} [\hat{w}, \hat{A}] \right). \] (3.7)
This is first order quantum dynamical equation. Following the analogy, we further obtain second and third order quantum dynamical equations
\[\frac{\partial^2}{\partial s^2} (\hat{A}) = \left(\frac{\partial^2 \hat{A}}{\partial s^2} - \frac{i}{\hbar} \left\{ [\hat{w}, \frac{\partial \hat{A}}{\partial s}] - \frac{\partial}{\partial s} \hat{A} - \frac{i}{\hbar} [\hat{w}, [\hat{w}, \hat{A}]] \right\} \right), \] (3.8)
and
\[\frac{\partial^3}{\partial s^3} (\hat{A}) = \left(\frac{\partial^3 \hat{A}}{\partial s^3} - \frac{i}{\hbar} \left\{ [\hat{w}, \frac{\partial^2 \hat{A}}{\partial s^2}] - \frac{\partial}{\partial s} [\hat{w}, \frac{\partial \hat{A}}{\partial s}] + \frac{\partial^2}{\partial s^2} \hat{A} \right. \right. \]
\[\left. \left. - \frac{i}{\hbar} \left([\hat{w}, [\hat{w}, \frac{\partial \hat{A}}{\partial s}]] - [\hat{w}, \frac{\partial}{\partial s} [\hat{w}, \hat{A}]] + \frac{\partial}{\partial s} [\hat{w}, [\hat{w}, \hat{A}]] \right) \right\} \right). \] (3.9)
For operators \(\hat{A}^{(n)}_{\partial \phi / \partial s^n} \), \(n = 0, 1, 2, ... \) compatible with \(\hat{w} \), these equations follow Ehrenfest’s theorem
\[\frac{\partial^n}{\partial s^n} (\hat{A}) = \left(\frac{\partial^n \hat{A}}{\partial s^n} \right). \] (3.10)
It holds good for observables having simultaneous eigenstates with probability \(w \).

Appendix

A Unit Operator

Unit operator (eigenoperator), analogous to identity matrix, is deduced as a zero-order (ordinary or partial) differential operator (irrespective of with respect to what) defined as
\[\mathcal{I} := \partial_x^0 = \frac{\partial^0}{\partial x^0}; \quad (x = q, p, t, ...). \] (A.1)
We have observed in mathematical analysis that a zero-order differential operator does not change the function to which it is applied which leads to deduce it unit operator satisfying \(\mathcal{I} f = f \). For example, in Ostrogradsky transformation, zero-order prime of generalized co-ordinate \(q^{(n)} \), \(n = 0, 1, 2, 3, ... \) for \(n = 0 \) is given by \(q \). It may be extended to \(q^{(n)} = \mathcal{I} q = q \) for \(n = 0 \) with \(\mathcal{I} := \partial_q^0 \). The deduction is less applicable in mathematical analysis but is very important to deal

\[\text{(- iv -)} \]
Quantum Probability Theory

REFERENCES

with quantum problems. Unit operator is quantized to \(\hat{I} := -i\hbar \frac{\partial}{\partial s} \) satisfying unit eigenoperator equation \(\hat{I}|\psi\rangle = |\psi\rangle \) while treating quantum problems. For example, a quantum transformation with \((n)\psi, (n = 0, 1, 2, 3, ...) \) (being \(n^{th}\) order partial derivative of \(\psi \) w.r.t. any variable \(x \)) is extended for \(n = 0 \), \(\psi = I|\psi\rangle = \psi \) with \(I := \frac{\partial^0}{\partial s} \). This is a quantum problem and we quantize \(I \) to \(\hat{I} \) which yields \(\psi + i\hbar \frac{\partial \psi}{\partial s} = 0 \), for \(n = 0 \).

Acknowledgements

Saurav Dwivedi would like to praise his gratitude towards Librarian Baddu Babu for spiritual support and Prof. David Finkelstein for his careful guidance and encouragements in his contributions. He is also indebted to Prof. Jacob Bekenstein for his suggestion to be self-critical. Saurav Dwivedi thanks Prof. Matej Pavsic and Prof. Larry Horwitz for valuable suggestions and support.

References

(- v -)