]. A. Aco85a and . Acosta, Upper bounds for large deviations of dependent random vectors, Z

]. A. Wahrscheinlichkeitstheorieaco85b and . Acosta, On large deviations of sums of independent random variables, In Lecture notes in Math, vol.69, issue.1153, pp.551-5651, 1985.

A. Acosta, Large Deviations for Vector-Valued Functionals of a Markov Chain: Lower Bounds, The Annals of Probability, vol.16, issue.3, pp.925-960, 1988.
DOI : 10.1214/aop/1176991670

A. Acosta, Large deviations for empirical measures of Markov chains, Journal of Theoretical Probability, vol.3, issue.3, pp.395-4311660, 1990.
DOI : 10.1007/BF01061260

R. Azencottbahzab79-]-r, S. Bahadur, . Zabellbalmey00-]-s, S. Balaji, and . Meyn, Ecole de Proba. de Saint-Flour VIII, number 774 in lectures notes in math Large deviations for the sample mean in general vector spaces Multiplicative ergodicity and large deviations for an irreductible Markov chain Stoch, Grandes déviations et applications, pp.1-176587, 1979.

P. Baldibalmey00-]-s, S. P. Balaji, and . Meyn, Large deviations and stochastic homogenisation Multiplicative ergodicity and large deviaitoons for an irreductible Markov chain Some familiar examples for which the large deviation principle does not hold, Ann. Mat. Pura Appl. Stoch. Proc. and their Appl. Commun. Pure Appl. Math, vol.151, issue.1, pp.161-177123, 1988.

B. Bercubergamlav00-]-b, F. Bercu, M. Gamboa, . Laviellebergamrou96-]-b, F. Bercu et al., ESAIM Sharp Large deviations for Gaussian quadratic forms with applications. ESAIM Prob Large deviations for quadratic forms of stationary gaussian processes Concentration inequalities, large and moderate deviaition for self-normalized empirical processes, On large deviations in the gaussian autoregressive process : stable, instable and explosive cases Stoch. Proc. and their Appl. To appear in Ann. Prob.. [BerRou98] B. Bercu and A. Rouault. Sharp large deviations for the Ornstein-Uhlenback process Stoch. Proc. and their Appl, pp.299-3161, 1997.

J. Bretagnolle, Formules de Chernoff pour les lois empiriques de variablesàvariablesà valeurs dans des espaces généraux, Séminaire de statistique de l'Université de Paris-Sud. Grandes déviations et applications statistiques, pp.33-52, 1979.

G. A. Brosamler, An almost everywhere central limit theorem, Mathematical Proceedings of the Cambridge Philosophical Society, vol.104, issue.03, pp.561-574, 1988.
DOI : 10.1007/BF01404058

]. W. Brydem97, A. Bryc, and . Dembo, Large deviations for quadratic Functionals of gaussian processes, J. of Theoretical Prob, vol.10, pp.307-322, 1997.

D. Cellier, Méthodes de fission pour l'´ etude de la récurrence des chaines de Markov, Théorèmes limites par moyennisation logarithmique pour les martingales et applications statistiques, 1980.

F. Chaabane, Invariance principles with logarithmic averaging for martingales [ChaMaa00] F. Chaabane and F. Maaouia. Théorèmes limites avec poids pour les martingales vectorielles, Maaouia and A. Touati. Généralisation du théorème de la limite centrale presque-sûre pour les martingales vectorielles. C.R. Académie des sciences, pp.21-52137, 1998.

H. Chernov, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations, The Annals of Mathematical Statistics, vol.23, issue.4, pp.493-507, 1952.
DOI : 10.1214/aoms/1177729330

X. Chen and S. Kusuoka, Moderate deviations for Markovian occupation times The large deviations principle for hypermixing processes, Stoc. Proc. Appl. Probab. Th. Rel. fields, vol.94, issue.78, pp.51-70627, 1988.

H. Cramér, Sur un nouveau th??or??me-limite de la th??orie des probabilit??s, Actualités Scientifiques et Industrielles number 736 in Colloque consacréconsacréà la théorie des probabilités, pp.5-23, 1938.
DOI : 10.1007/978-3-642-40607-2_8

M. Csörgö, L. Horváthdemsha98c, ]. Dembo, Q. M. Shaodemsha98a, ]. Dembo et al., Invariance principles for logarithmic averages Large and moderate deviations for Hotelling's T 2 statistic . Preprint Self-normalized moderate deviations and LILs, Self-normalized large deviations in vector spaces. Progress in probability proceeding OberwolfachDemZei98] A. Dembo and O. Zeitouni Large deviations Techniques and Applications, pp.195-20551, 1989.

I. H. Dinwoodie, Identifying a large deviation rate function [DinNey95] I. H. Dinwoodie and P. Ney Occupation measures for Markov chains, Ann. Prob. J. Theoretical Prob, vol.23, issue.8, pp.216-231679, 1993.

I. H. Dinwoodie, S. L. Zabelldonvar75a-]-m, S. R. Donsker, M. D. Varadhan, S. R. Donsker et al., Large deviations for exchangeable random vectors Asymptotic evaluation of certain Markov process expectations for large time I Asymptotic evaluation of certain Markov process expectations for large time III, Ann. Prob. Commun. Pure Appl. Math. Commun. Pure Appl. Math, vol.3, issue.23, pp.1147-11661, 1975.

M. Duflo, Random Iterative Models., Volume 38 de Applications of mathematics, 1997.

R. , D. Dupuis, and R. S. Ellis, Real analysis and probability A weak convergence approach to the theory of large deviations, 1989.

R. S. Ellis, Large Deviations for a General Class of Random Vectors, Ell85] R. S. Ellis. Entropy, Large deviations and Statistical Mechanics Springer, pp.1-12, 1984.
DOI : 10.1214/aop/1176993370

R. S. Ellisethkur86-]-s, T. G. Ethier, ]. Kurtzflopha97, H. Florens, . V. Phamgulliplot94-]-o et al., Markov chain with an application to the multivariate empirical measure Ann Markov processes : characterization and convergence Large deviations in estimation of an Ornstein-Uhlenbeck model A para??trepara??tre dans Journa of applied probability [Gar77] J. G? artner. On large deviations from the invariant measure Large deviations for unbounded additive Functionals of a Markov process with discrete time (non compact case), Prob. Th. Prob Appl. J. Appl. Math. Stoch. Anal, vol.16, issue.73, pp.1496-150824, 1977.

B. Hajek, Hitting-time and occupation-time bounds implied by drift analysis with applications, Advances in Applied Probability, vol.13, issue.03, pp.502-525, 1982.
DOI : 10.2307/3212767

M. K. Heck and F. Maaouia, The principle of large deviations for martingale additive functionnals of recurrent Markov processes. Electronic journa of probability, pp.1-26, 2001.

M. Iltis, Sharp asymptotics of large deviations for general state space Markov-additive chains in R d . Stat. and Prob letters, IscNeyNum85] I. Iscoe, P. Ney and E. Nummelin Large deviations of uniformly recurrent Markov additive process Advances in applied mathematics, pp.365-380373, 1985.

N. Jain, Large deviations for additive Functionals of Markov processes : discrete time, non compact case Ann Prob [KonMey02] I. Kontoyiannis and S.P. Meyn Spectral theory and limit theory for geometrical ergodic Markov processes, pp.1071-1098, 1990.

P. Lezaud, Chernov-type bound for finite Markov chains. The annals of appl Prob, pp.849-867, 1998.

P. Lezaud, Chernoff and Berry???Ess??en inequalities for Markov processes, ESAIM: Probability and Statistics, vol.5, pp.183-201, 2001.
DOI : 10.1051/ps:2001108

P. Lévy, Sur les séries dont les termes sont des variablesévéntuellementvariablesévéntuellement indépendantes, Studia math, vol.3, pp.119-155, 1931.

R. Lipster, Large deviations for occupation measures of Markov processe : discrete time, non compact case. theory Probab, Maa01a] F. Maaouia. Théorèmes asymptotiques par moyennisation logarithmique pour les processus de Markov et applications statistiques, 1993.

F. Maaouia, processus de markov, The Annals of Probability, vol.29, issue.4, pp.1859-1902, 2001.
DOI : 10.1214/aop/1015345775

K. Marton and T. Seppalainen, A measure concentrations inequality for contracting Markov chains Geometric and functional analysis Large deviations for the almost everywhere central limit theorem, J. theor. Prob, vol.6, issue.10, pp.556-571935, 1996.

H. Millerneynum86-]-p, E. Ney, and . Nummelin, A convexity property in the theory of random variables defined on a finite Markov chain Markov additive processes (ii) : Eigenvalue properties and limit theorems Markov additive processes (ii) : Large deviations, NeyNum87] P. Ney and E. NummelinNumTuo82] E. Nummelin and P. Tuominen Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stoch Proc. and their Appl, pp.1260-1270561, 1961.

G. L. O-'brien, Sequencies of capacities, with connections to large deviations theory, J. theoretical Prob, vol.9, pp.15-35, 1996.

]. G. Obrsun96, ]. G. O-'brien-et-jobrver91, W. O-'brien, G. L. Vervaat, W. O-'brien et al., Sun Large deviations on linear spaces Capacities, large deviations and log-log laws, Compactness in the theory of large deviations Stoch. Proc. and their appl, pp.261-273, 1995.

J. W. Pitman, Uniform rates of convergence for Markov chain transition probabilities, Puk91] A. A. Puhalskii. On functional principle of large deviations, pp.193-227, 1974.
DOI : 10.1007/BF00536280

]. A. Vsp-/-mokslaspuk94a and . Puhalskii, On the theory of large deviations, Theory of Probab. and Applications, vol.38, pp.490-497, 1991.

D. M. Revuzsam00-]-p and . Samson, Markov chains North Holland mathematical library Rudin Functional analysis Concentration of measure inequalities for Markov chains and ?-mixing processes, pp.416-461, 1973.

Q. M. Shaosha97b-]-q and . Shao, Self-normalized large deviations A cramer type large deviations result for Student's t-statistics, Ann. Prob. J. of theoretical Prob, vol.25, issue.12, pp.285-328385, 1997.

Q. M. Shao, Recent Developments on Self-normalized Limit Theorems, Asymptotic methods in probability and statistics, pp.467-480, 1998.
DOI : 10.1016/B978-044450083-0/50031-9

V. Strassen, The Existence of Probability Measures with Given Marginals, The Annals of Mathematical Statistics, vol.36, issue.2, pp.423-439, 1965.
DOI : 10.1214/aoms/1177700153

D. W. Stroockstr94-]-d and . Stroock, Probability theory, an analytic view An introduction to large deviations, Var66] S.R.S. Varadhan. Asymptotic probabilities and differential equations, pp.261-286, 1966.

S. R. Varadhan, Large deviations and applications, 1984.

J. Worms, Moderate deviations for stable Markov chains and regression models, Electronic Journal of Probability, vol.4, issue.0, pp.1-28, 1999.
DOI : 10.1214/EJP.v4-45

J. Worms, Moderate deviations for martingales and for some kernel estimators, Mathematicals methods of statistics, 2000.

J. Worms, Large and moderate deviations upper bounds for the gaussian autoregressive process. Statistics and probability letters, pp.235-243, 2001.