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Abstract

Arithmetical constraints are widely used in formal languages like regular ex-
pressions, tree grammars and paths. In XML they are used to impose bounds
on the number of occurrences described by content models of schema languages
(XML Schema, RelaxNG). In query languages (XPath, XQuery), they allow
selecting nodes that have a bounded number of nodes reachable by a given
path expression. Counting types and paths are thus natural extensions of
their countless counterparts already regarded as the core constructs in XML
languages and type systems.

One of the biggest challenges in XML is to develop automated procedures
for ensuring static-type safety and optimization techniques. To this end, there
is a need to solve some basic reasoning tasks that involve constructions such
as counting XML schemas and XPath expressions. Every compiler of XML
programs will have to routinely solve problems such as type and path type-
checking, for ensuring at compile time that invalid documents can never arise
as the output of XML processing code.

This thesis studies efficient reasoning frameworks able to express counting
constraints on tree structures. It was recently shown that the µ-calculus, when
extended with counting constraints on immediate successor nodes is undecid-
able over graphs. Here we show that, when interpreted over finite trees, the
logic with counting constraints is decidable in single exponential time. Fur-
thermore, this logic allows more general counting operators. For example, the
logic can pose numerical constraints on number of ancestors or descendants.
We also present linear translations of counting XPath expressions and XML
schemas into the logic.

1





Résumé

Les contraintes arithmétiques sont largement utilisées dans les langages formels
comme les expressions, les grammaires d’arbres et les chemins réguliers. Ces
contraintes sont utilisées dans les modèles de contenu des types (XML Schemas)
pour imposer des bornes sur le nombre d’occurrences de nœuds. Dans les lan-
gages de requêtes (XPath, XQuery), ces contraintes permettent de sélectionner
les nœuds ayant un nombre limité de nœuds accessibles par une expression de
chemin donnée. Les types et chemins étendus avec les contraintes de comp-
tage constituent le prolongement naturel de leurs homologues sans comptage
déjà considérés comme des constructions fondamentales dans les langages de
programmation et les systèmes de type pour XML.

Un des défis majeurs en programmation XML consiste à développer des
techniques automatisées permettant d’assurer statiquement un typage correct
et des optimisations de programmes manipulant les données XML. À cette fin,
il est nécessaire de résoudre certaines tâches de raisonnement qui impliquent des
constructions telles que les types et les expressions XPath avec des contraintes
de comptage. Dans un futur proche, les compilateurs de programmes XML
devront résoudre des problèmes de base tels que le sous-typage afin de s’assurer
au moment de la compilation qu’un programme ne pourra jamais générer de
documents non valides à l’exécution.

Cette thèse étudie les logiques capables d’exprimer des contraintes de comp-
tage sur les structures d’arbres. Il a été montré récemment que le µ-calcul sur
les graphes, lorsqu’il est étendu à des contraintes de comptage portant ex-
clusivement sur les nœuds successeurs immédiats est indécidable. Dans cette
thèse, nous montrons que, sur les arbres finis, la logique avec contraintes de
comptage est décidable en temps exponentiel. En outre, cette logique four-
nit des opérateurs de comptage selon des chemins plus généraux. En effet,
la logique peut exprimer des contraintes numériques sur le nombre de nœuds
descendants ou même ascendants. Nous présentons également des traductions
linéaires d’expressions XPath et de types XML comportant des contraintes de
comptage dans la logique.
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Chapter 1

Introduction

The topic of this work is the study of formal languages in the context of math-
ematical logic.

[Kleene, 1956] first defined computational models for formal languages by
means of tree automata. Then, it was found in the seminal works of [Büchi, 1960],
[Trakhtenbrot, 1957] and [Elgot, 1960], that monadic second order logic is ex-
actly as expressive as tree automata. Since then, logical frameworks have been
of great importance in formal language research. The study of more general
structures than strings (regular expressions), such as trees or partial orders, is
an example where logical frameworks have served to deepen research in formal
languages.

[Pnueli, 1977] introduced the use of temporal logic in the verification of
programs, and later he also applied logic-based techniques to verify reactive
systems [Pnueli, 1985].

[Clarke and Emerson, 1981] and [Queille and Sifakis, 1982] introduced logic
as a framework for the model checking problem: given a model system, test
automatically if the model satisfies a given specification. Since then, a lot of
research has been explored for the model checking of software and hardware
systems.

1.1 Motivations

This work is devoted to the study of the satisfiability problem for tree logics:
given a logical formula, test automatically whether the formula has a tree model
or not. More precisely, we are interested in the development of satisfiability
algorithms for logics able to efficiently express counting constraints. We use
the algorithm to model several decision problems in formal languages, such as
the equivalence and containment of expressions.

15



16 CHAPTER 1. INTRODUCTION

Figure 1.1 Syntax of Regular Expressions over a signature Σ

e ∶= ε empty string

∣ p single symbol of the signature Σ

∣ e1e2 concatenation

∣ e1∣e2 alternation

∣ e⋆ Kleene star

1.1.1 Counting with regular expressions

Regular expressions were introduced by [Kleene, 1956] and their syntax is in
Figure 1.1. A regular expression is interpreted as a set of finite sequences
of symbols (strings or words) from a finite alphabet. Consider the following
example of a regular expression over the signature (alphabet) Σ = {p, q}:

(pq)⋆
This expression is interpreted as the following set:

{ε, pq, pqpq, pqpqpq, . . . , pqpqpqpqpqpq . . .}
It is well known that some formal languages easily described in English

may require voluminous regular expressions. For instance, as pointed out in
[Henriksen et al., 1995], the language L2a2b of all strings over Σ = {a, b, c} con-
taining at least two occurrences of a and at least two occurrences of b requires
a large expression, such as the following:

(a∣b∣c)⋆a(a∣b∣c)⋆a(a∣b∣c)⋆b(a∣b∣c)⋆b(a∣b∣c)⋆ ∣
(a∣b∣c)⋆a(a∣b∣c)⋆b(a∣b∣c)⋆a(a∣b∣c)⋆b(a∣b∣c)⋆ ∣
(a∣b∣c)⋆a(a∣b∣c)⋆b(a∣b∣c)⋆b(a∣b∣c)⋆a(a∣b∣c)⋆ ∣
(a∣b∣c)⋆b(a∣b∣c)⋆b(a∣b∣c)⋆a(a∣b∣c)⋆a(a∣b∣c)⋆ ∣
(a∣b∣c)⋆b(a∣b∣c)⋆a(a∣b∣c)⋆b(a∣b∣c)⋆a(a∣b∣c)⋆ ∣
(a∣b∣c)⋆b(a∣b∣c)⋆a(a∣b∣c)⋆a(a∣b∣c)⋆b(a∣b∣c)⋆

If we add ∩ to the operators for forming regular expressions, then the lan-
guage L2a2b can be expressed more concisely with the following expression.

((a∣b∣c)⋆a(a∣b∣c)⋆a(a∣b∣c)⋆) ∩ ((a∣b∣c)⋆b(a∣b∣c)⋆b(a∣b∣c)⋆)
In logical terms, conjunction offers a dramatic reduction in expression size,
which is crucial when the complexity of the decision procedure depends on
the formula size. More precisely, [Gruber and Holzer, 2009] showed that sim-
ple regular languages (without intersection) produce double-exponential larger
expressions than regular formalisms equipped with intersection.
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Figure 1.2 Instance of the regular tree type a[b[(d[ε])⋆]c[ε]]

d . . . . . . d

b c

a

If we now consider a formalism equipped with the ability to describe nu-
merical constraints on the frequency of occurrences, we get another exponential
reduction in size ([Kilpeläinen and Tuhkanen, 2003]). For instance, the above
expression can be formulated as follows:

((a∣b∣c)⋆a(a∣b∣c)⋆)2 ∩ ((a∣b∣c)⋆b(a∣b∣c)⋆)2
In the works of [Kilpeläinen and Tuhkanen, 2007], [Colazzo et al., 2009] and

[Gelade et al., 2009b], different extensions of regular expressions with intersec-
tion, counting constraints, and interleaving have been considered over strings,
and for describing content models of sibling nodes in XML schema languages.
The complexity of the inclusion problem over these different language exten-
sions and their combinations typically ranges from polynomial time to expo-
nential space (see [Gelade et al., 2009b] for a survey).

Most XML schema languages, such as DTDs, XML Schema or RELAX NG,
can be effectively embedded into regular tree types [Murata et al., 2005].

1.1.2 Counting with regular tree types

Regular tree types can been seen as regular expressions over tree models. See
Figure 1.2 for an instance of the following regular tree type expression.

a[b[(d[ε])⋆]c[ε]]
In the case of trees, it is often useful to express cardinality constraints not

only on the sequence of children nodes, but also in a particular region of a tree,
such as a subtree. Suppose, for instance, that we want to define a tree language
over Σ where there is no more than 2 “b” nodes. This requires a quite large
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regular tree type expression, such as the following:

xroot → b[xb≤1] ∣ c[xb≤2] ∣ a[xb≤2]
xb≤2 → (x¬bb[x¬b]x¬b, b[x¬b]x¬b) ∣ (x¬b, b[xb≤1]x¬b)∣ (x¬ba[xb≤2]x¬b) ∣ (x¬bc[xb≤2]x¬b) ∣ xb≤1
xb≤1 → x¬b ∣ (x¬bb[x¬b]x¬b) ∣ a[xb≤1] ∣ c[xb≤1]
x¬b → (a[x¬b] ∣ c[x¬b])∗

In the expression above (written as a grammar), xroot is the starting non-
terminal; x¬b, xb≤1, xb≤2 are non-terminals; the notation a[x¬b] describes a
subtree whose root is labeled a and in which there is no b node.

More generally, the widely adopted notations for regular tree grammars
produce very verbose definitions for properties involving cardinality constraints
on the nesting of elements. This is typically the reason why the standard DTD
for XHTML does not syntactically prevent the nesting of anchors, whereas this
nesting is actually prohibited in the XHTML standard.

The problem with counting constraints on regular languages is that one is
forced to fully expand all the patterns of interest using concatenation, union,
and Kleene star. Instead, it is often tempting to rely on another kind of (formal)
notation that just describes a simple pattern and additional constraints on
it, which are intuitive and compact with respect to size. For instance, one
could imagine denoting the previous example as follows, where the additional
constraint is described using XPath notation.

(x→(a[x] ∣ b[x] ∣ c[x])∗) ∧ count(/descendant-or-self::b) ≤ 2
Although this kind of counting operators does not increase the expressive

power of regular languages, it has a drastic impact on succinctness, thus making
reasoning over these languages harder. Indeed, reasoning on this kind of count-
ing extensions without relying on their expansion (in order to avoid syntactic
blow-ups) is often tricky, as noted by [Gelade et al., 2009a]. Determining sat-
isfiability, containment, and equivalence over these classes of extended regular
languages typically requires involved algorithms with higher complexity than
ordinary regular languages. Actually, according to [Meyer and Stockmeyer, 1972],
the equivalence of regular expressions with squaring (certain kind of counting
constraints) requires exponential space to be computed.

1.1.3 Counting with regular paths

The XPath language is the standard query language for XML documents.
XPath expressions look like directory navigation paths over unraked tree struc-
tures. See for instance in Figure 1.4 the tree shaped format of the XML docu-
ment of Figure 1.3. XPath is also an important part of other XML technologies
such as XSLT and XQuery.

From a given context node, XPath expressions selects subsets of tree nodes.
Take for instance the following expression:

/movies/dvd/movie/title[.=”Ronin”]
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Figure 1.3 Example of a XML document
<movies>

<dvd>
<movie>

<title>Ronin</title>
<year>1998 </year>
<director>John Frankenheimer </director>

</movie>
<movie>

<title>Los olvidados</title>
<year>1950 </year>
<director>Luis Bu~nuel </director>

</movie>
<movie>

<title>Cidade de Deus</title>
<year>2002</year>
<director>Fernando Meirelles</director>
<director>Katia Lund</director>

</movie>
</dvd>
<blue-ray>

<movie>
<title>Amores Perros</title>
<year>2000</year>
<director>Alejandro González</director>

</movie>
<movie>

<title>El Topo</title>
<year>1970</year>
<director>Alejandro Jodorowsky</director>

</movie>
<movie>

<title>Belle de Jour</title>
<year>1967</year>
<director>Luis Bu~nuel</director>

</movie>
</blue-ray>

</movies>
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Figure 1.4 Tree structure of the XML document of Figure 1.3
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The expression navigates from the root movies to the child labelled by dvd,
then it goes to the movie children, and it proceeds navigating to the children
named title that have at least a child labelled by Ronin.

One of the reasons why XPath is popular for web programming resides in
its ability to express multidirectional navigation. Indeed, XPath expressions
may use recursive navigation, to access descendant nodes, and also backward
navigation, to reach previous siblings or ancestor nodes. For instance in the
previous example, we can select the node named Ronin without even knowing
the structure of the document in a more compact manner as follows:

/descendant::*[.=”Ronin”]

XPath expressions can also express cardinalities constraints. In contrast
with regular expressions and types, cardinality constraints in XPath expres-
sions can be imposed in other nodes than the children ones. For instance, in
order to select the titles of the movies with more than 1 directors from the
database in Figure 1.4 we can write the following:

/descendant::movie[count(director/*)>1]/title
Note that the counted nodes are not the ones labelled by director, but their
children nodes, that is, the counted nodes are descendants of the movie nodes.

From the works of [Genevès and Rose, 2005], [Demri and Lugiez, 2006] and
[ten Cate and Marx, 2009], we know that expressing cardinality restrictions on
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nodes accessible by recursive multidirectional paths may introduce an extra-
exponential cost, or may even lead to undecidable formalisms.

1.1.4 Research challenges and methodology

Reasoning on expressive logics with counting constraints has been shown to be
very hard. Computational complexity ranges from PSPACE to undecidability
(see for instance [Demri and Lugiez, 2006]).

Automata machinery has been the most popular computational framework
for expressive logics. However, efficient implementations of automata have been
very difficult to achieve. For instance, ofter decidability of Monadic Second Or-
der Logic was shown by means of tree automata by [Büchi, 1960], it took around
35 years to implement an efficient automata-based solver [Henriksen et al., 1995].

From works of [Tanabe et al., 2005] and [Genevès et al., 2007], we have
learned that certain automata-free techniques for decision procedures of ex-
pressive logics can result in efficient implementations.

We aim in this work to develop expressive logics, able to express regular
properties as well as counting constraints. We are also particularly interested
in the development of computational frameworks for the logics that can be
efficiently implemented. For that purpose, we chose to develop automata-free
decision algorithms for the logics in the manner of [Genevès et al., 2007].

1.2 Thesis overview

To overcome the challenges involved in the problem of logic-based reasoning
with counting constraints, we follow two directions: first we design a tree logic
able to efficiently express counting constraints on children nodes in Chapter 3;
then, in Chapter 4, we present a logic able to express counting constraints on
nodes which are reachable by means of multidirectional recursive paths.

Proper justification for our work is provided in Chapter 2, where a detailed
state of the art of works on reasoning in trees with counting constraints is
presented.

Conclusion and further research directions are detailed in Chapter 5.
In the remainder of this section we present an overview of the contributions.

1.2.1 Counting on children

We present a tableau-based satisfiability algorithm for the fully enriched alternate-
free µ-calculus for trees in Chapter 3. The tree logic is able to express multi-
directional recursive navigations and to express numerical constraints on the
number of children nodes. Fully enriched µ-calculus was previously shown to be
undecidable when interpreted over graph models by [Bonatti and Peron, 2004].

We also show in Chapter 3 how to efficiently encode regular paths and
types, with counting constraints on children, into the logic. This results in
a reasoning framework for XPath and XML schema languages with counting
constraints with an exponential computational cost. No previous work is known
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to solve the equivalence of XML schemas with counting constraints on children
in exponential time.

1.2.2 Deep counting

In Chapter 4 we extended µ-calculus with counting constraints on regular
paths. This logic, in contrast with the one introduced in Chapter 3, can pose
counting constraints on further nodes than children ones, as descendant nodes
for instance.

Equipping logics with counting constraints on regular paths may produce
undecidable formalisms, as noted in the work of [Demri and Lugiez, 2006]. We
were able to identify a decidable in exponential time form of deep counting:
counting expressions cannot occur in the scope of fixpoints and other counting
operators. We also showed in Chapter 4, that the logic is able to capture
XPath and XML type expressions with counting constraints on multidirectional
recursive paths.

Recall although the logic in Chapter 3 can pose counting constraints only
on children, in contrast with the logic of Chapter 4, it is possible for counting
formulas to occur in the scope of fixpoints and other counting operators. This
makes the two logics incomparable in terms of succinctness.



Chapter 2

Automated Reasoning on Trees

Given an artificial language, by automated reasoning, we mean automatic
methods to test the truth status of language expressions. For instance, in
the context of formal languages, the equivalence of two regular expressions is
a reasoning problem.

Mathematical logic has been extensively used as a formalization tool, and
its application as a reasoning framework can be traced back to Leibniz. In this
chapter, we present a state of the art of the modern use of mathematical logic
in automated reasoning on tree structures.

This chapter is divided in two parts: classical and modal logics. Classical
logics represent the older and now more or less well understood setting, and
they are often used as context for the study of theoretical issues. Regarding
modal logics, there is nowadays an increasing interest in them, mainly because
such logics have turned out to have very appealing computational properties.

The study of reasoning frameworks for counting (arithmetical) expressions
has been always to much interest of the scientific community due to their
importance in many fields. Mathematicians for instance were the first in de-
veloping logical frameworks for the analysis of arithmetic. We focus, in this
chapter, on studies of reasoning frameworks for tree structures able to express
counting constraints. More precisely, we closely follow the application of rea-
soning frameworks in the analysis of XML programming languages. The static
analysis of XPath and XML schema languages is of special interest to us.

2.1 Classical First Order Theories

When David Hilbert raised the question about the consistency of arithmetic,
Kurt Gödel used First Order Logic (FOL) as a formal framework in the analysis
of arithmetical expressions. It turned out that there is no way to prove the

23
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consistency of arithmetic using the theory of arithmetic itself [Gödel, 1931].
It was later shown, independently by [Church, 1936b] and [Rosser, 1936],

that the theory of Peano arithmetic (PA) is undecidable: there is no algo-
rithm able to decide whether an arithmetic expressions is valid or not. On
the other hand, the undecidablity of FOL was proven by [Church, 1936a] and
[Turing, 1936].

Fortunately, these negative results do not preclude the existence of decid-
able, and indeed very useful, fragments of both PA and FOL.

2.1.1 Arithmetic

The encoding of Peano postulates (Figure 2.1) about Arithmetic (PA) into FOL
resulted in the first order theory of multiplication and addition. As already
mentioned, this theory turned out to be undecidable.

[Presburger, 1929] showed that the first order theory of addition, that is,
PA without multiplication, is decidable. This theory was called Presburger
Arithmetic (PresA). Since then, many other related decidable theories were
identified. For instance, [Beltyukov, 1976] and [Lipshitz, 1976] showed that the
existential theory of addition and divisibility is also decidable. Among the most
recent works, [Bozga and Iosif, 2005] identified another decidable fragment of
the theory of addition and divisibility. A detailed survey about decidability
results in Arithmetic is provided by [Bés, 2002].

PresA found application in practically all areas of Computer Science. For
instance, in Program Verification, balanced tree structures, in contrast with
their unbalanced counterpart, require frameworks able to capture counting
constraints [Manna et al., 2007]. PresA has been also successfully applied in
Program Verification by [Zee et al., 2008] and [Nguyen et al., 2007]. Counting
expressions came along with Programming Languages, and PresA has been
always represented a strong formal framework candidate.

In the XML setting, we found the works of [Dal-Zilio et al., 2004] and
[Seidl et al., 2004]. In these works, logics are extended with Presbuger con-
straints over tree structures in order to provide an analysis framework for XML.

Regarding the computational complexity, it turned out that PresA is not
particularly easy to compute when encoded into FOL. An exponential lower
bound was provided by [Fischer and Rabin, 1974], whereas a decision algorithm
with a triple exponential upper bound was introduced by [Oppen, 1978].

2.1.2 First Order Logic

First Order Logic (FOL) is a formalism widely used by mathematicians inter-
ested in foundations because it is expressive enough to capture two important
mathematical theories: Zermelo-Fraenkel Set Theory and Peano Arithmetic
[Mendelson, 1964]. Although full FOL was long ago proven to be undecid-
able by [Gödel, 1931], many decidable fragments turned out to be very use-
ful in many areas of Computer Science, such as the specification and ver-
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Figure 2.1 Peano postulates encoded into First Order Logic

∀x, y, z ∈ IN ∶ (x + y) + z = x + (y + z) ∀x, y ∈ IN ∶ x + y = y + x
∀x, y, z ∈ IN ∶ (x ∗ y) ∗ z = x ∗ (y ∗ z) ∀x, y ∈ IN ∶ x ∗ y = y ∗ x
∀x, y, z ∈ IN ∶ x ∗ (y + z) = (x ∗ y) + (x ∗ z) ∀x ∈ IN ∶ x + 0 = x ∗ 1 = x
∀x ∈ IN ∶ x ∗ 0 = 0 ∀x ∈ IN ∶ x + 0 = x
∀x, y, z ∈ IN ∶ x < y ∧ y < z⇒ x < z ∀x ∈ IN ∶ ¬(x < x)
∀x, y ∈ IN ∶ x < y ∨ x = y ∨ y > x ∀y, y, z ∈ IN ∶ x < y⇒ x + z < y + z
∀x, y, z ∈ IN ∶ 0 < z ∧ x < y⇒ x ∗ z < y ∗ z ∀x, y ∈ IN,∃z ∈ IN ∶ x < y⇒ x + z = y
0 ≤ 1 ∧ ∀x ∈ IN ∶ x > 0⇒ 1 ≤ x ∀x ∈ IN ∶ 0 ≤ x

ification of systems and programming languages, artificial intelligence, etc.
[Grädel and Otto, 1999].

[Mortimer, 1975] showed the decidability of the fragment of FOL where
only binary predicates are allowed, that is, where predicates have only two
variables (FOL2). Much later, it was shown by [Grädel et al., 1997a] that the
decidability problem for FOL2 can be solved in non-deterministic exponential
time. Two variable logics and their application in the modelling of transition
systems are nicely surveyed by [Grädel and Otto, 1999].

One of the pioneering works in the characterization of XPath by means
of FOL is the one of [Benedikt et al., 2003]. However, the XPath fragment
considered in this work does not consider the negation operator and sibling
axes.

[Gottlob et al., 2005] identified the navigation core of XPath, and what is
commonly known as Core XPath. This XPath fragment comprises the main
navigational features of XPath: recursive and multi-directional axes, path com-
position, and the boolean combination of qualifiers (including negation).

[Marx and de Rijke, 2005] provided a FOL characterization of Core XPath.
Furthermore, in this last work, an extension of Core XPath was defined in order
to be complete with respect to FOL.

A recent work by [Kieronski and Otto, 2005] studies FO2 enriched with the
presence of binary equivalence relations. More precisely, the logic resulting
from the addition of exactly one equivalence relation to FO2 enjoys the finite
model property and it is decidable in exponential time. It was also found that
the logic extended with two equivalence relations is also decidable. Moreover,
when more than 2 equivalence relations are considered, then the logic becomes
undecidable.

The consideration of an equivalence relation, in the XML context, can serve
as a model for data equality tests, that is, such a relation holds when the
content of the two nodes is the same. [Bojanczyk et al., 2009] provided a FO2

characterization of a XPath fragment with data equality tests. Complexity
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results for decidability range from NEXPTIME to 3NEXPTIME.

2.1.3 Counting in First Order Logic

[Grädel et al., 1997b] showed the decidability of the logic C2 resulted from
extending FO2 with numerical constraints.

For instance, in C2 we can write the following formula, where k is a natural
number.

∀x∃≤kyφ(x, y)
If φ is thought of as the edge relation of graph structures, the formula denotes
all graphs whose degree is bounded by k.

C2 was shown not to have the finite model property, that is, some formulas
may only be satisfiable over infinite models. The problem of deciding whether
a formula has a finite model or not is known as finite satisfiability.

Regarding the complexity of C2, [Pacholski et al., 1997] showed that both
satisfiability and finite satisfiability have a non-deterministic exponential cost.
However, the assumption of a unary encoding of numbers in formulas was
assumed. Note that a binary representation of numbers provides exponentially
more succinct formulas. Hence, from the work of [Pacholski et al., 1997], we
can only obtain a non-deterministic doubly exponential complexity bound for
C2.

It was only until the work of [Pratt-Hartmann, 2005], where a non-deterministic
single exponential bound was provided for C2. In this later work, a binary en-
coding of numbers in formulas was considered.

The main motivation for study of second order theories to model formal
languages came with the classical result of [Büchi, 1960], that established the
exact correspondence between regular languages (those definable by tree au-
tomata) and Monadic Second Order Logic (MSO).

2.2 Classical Second Order Theories

The notion of regular expressions, widely known in Computer Science, was
originally introduced by [Kleene, 1956]. More precisely, Kleene characterized
finite regular expressions (words or strings) in terms of finite automata.

In a different research direction, [Church, 1957] explored the connection
between automata theory and arithmetic. Church introduced a method that
solves the problem of circuit synthesis by means of some restricted systems
of arithmetic. Such arithmetical systems turned to be expressible in terms
of Monadic Second Order Logic (MSO). In order to provide a computational
model for the arithmetical sytems, Church aimed an automata framework for
MSO.

The automata machinery for MSO was developed by [Trakhtenbrot, 1957],
[Büchi, 1960], and [Elgot, 1960]. Consequently, due to its relationship with tree
automata, finite regular expressions were also characterized by MSO formulas.
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Figure 2.2 Second Order Induction Axiom

∀X ∶ ((0 ∈X ∧ ∀x ∶ (x ∈X ⇒ (x + 1) ∈X))⇒ ∀x ∶ (x ∈X))

2.2.1 Monadic Second Order Logic

In Second Order Logic, besides first order variables ranging over nodes, there
are second order variables ranging over relations. See for instance the second
order formula of Figure 2.2, which is part of the encoding of Peano Arithmetic
into Second Order Logic.

In Monadic Second Order Logic (MSO), second order variables can only be
quantified over unary relations, that is, sets. When second order quantification
is restricted to finite sets, then we call the logic Weak Monadic Second Order
Logic.

[Trakhtenbrot, 1957], [Büchi, 1960], and [Elgot, 1960] showed the decid-
ability of Weak Monadic Second Order Logic with only one succesor relation
(WS1S), that is, where models are finite strings. Later, [Büchi, 1962] showed
decidability for S1S: when infinite strings models are considered.

Weak Monadic Second Order Logic with two succesor relations, that is,
where models are finite binary trees, is called WS2S. The decidability of WS2S
was shown by [Thatcher and Wright, 1968], and later [Doner, 1970]. [Rabin, 1969]
proved decidability of S2S: the case with infinite tree models.

Using symbolic techniques [Bryant, 1986] and tree automata, the Mona
solver for WS1S and WS2S was implemented by [Henriksen et al., 1995] and
[Elgaard et al., 1998]. These results were applied to the verfication of linked
data structures by [Jensen et al., 1997] and [Møller and Schwartzbach, 2001].
Also [Biehl et al., 1996] reported an application of Mona to arithmetic.

A translation of Core XPath (including backward navigation) into WS2S
was first presented in [Genevès and Layäıda, 2007]. Also experimental results
on XPath decision problems with the MONA solver were reported in this last
work.

2.2.2 Counting in Second Order Logic

[Courcelle, 1990] introduced an extension of Monadic Second Order Logic with
counting quantifiers, called CMSOL. Since quantification ranges over both
nodes and sets of nodes, then also the cardinality constraints are applied over
nodes and sets of nodes. For this work only finite models were considered, and
it was also shown that MSO is strictly contained in CMSOL.

Another kind of counting in MSO was introduced by [Bárány et al., 2009].
Finitely branching tree models with a countable height are considered by this
logic. In this approach, cardinality constraints can be imposed only over sets
of nodes. Moreover, this logic can only impose constraints with cardinalities
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greater than the cardinality of natural numbers. To illustrate the use of such
kind of constraints consider the following expression:

There exist uncountably many subsets of nodes satisfying some property
expressed by a MSO formula.

[Seidl et al., 2003] designed a logic combining WS2S with Presburger Arith-
metic, where the cardinality constraints are imposed only on children nodes.
The following expression can be succinctly encoded by this logic:

Nodes labelled X have less children than nodes labelled Y

The logic in the work of [Seidl et al., 2003] was introduced to support rea-
soning on XML documents, that is, unranked trees. Unfortunately, the logic
turned out to be undecidable.

One of the drawbacks of WS2S is its high complexity for decidability, which
was reported to be non-elementary by [Stockmeyer, 1974] and [Meyer, 1975].
Modal logics have been identified as fragments of FOL and MSOL with nice
computational properties, which places them as more attractive alternatives.

2.3 Modal logics

Modal logic is the logic resulting from propositional logic enhanced with the
modal operators of necessity ◻ and possibility ◇. The relational semantics
of modal logic was independently developed by Hintikka, Kanger and Kripke,
and its current form was introduced in [Kripke, 1963]. The intuition behind
what is known as Kripke semantics for modal logic is that the truth status of
formulas is related with nodes in a graph structure. Then, necessity means true
at all accessible nodes, and possibility means true at some accessible nodes. See
for instance the interpretation of the modal operators, according to a Kripke
semantics, in Figure 2.3.

Modal logics have two nice computational properties: great expressive
power and low computational cost. Propositional modal logic was shown to
have a PSPACE-complete complexity by [Ladner, 1977].

A possible explanation for the nice computational behaviour of modal logic
was given by [van Benthem, 1976]. He showed that propositional modal logic
represents the fragment of FOL2 that cannot distinguish bisimilar models.

One of the pioneering works exploiting the nice computational features
of modal logics was done by [Pnueli, 1977]. It was shown in that work that
the verification of some program properties can be efficiently achieved using
temporal logic.

2.3.1 Temporal logics

Temporal logic, or linear temporal logic (LTL), is the modal logic where models
are restricted to strings. If models are tree-shaped, then we call such a logic the
branching time temporal logic. Several extensions of modal logic with other
logical operators have been proposed.
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Figure 2.3 Modal formulas

φ

◻φ

φ φ ¬φ

◇φ

φ ¬φ

Computational Tree Logic (CTL) is the branching time temporal logic in-
troduced by [Clarke and Emerson, 1981]. CTL includes the temporal operators
X,F,G, and U, which mean next, finally, globally, and until, respectively. These
operators can only occur immediately after the path quantifiers A and E, which
mean, respectively, for all and there exists .

For instance, consider the following expression.

There exists a path (sequence of nodes) starting from the current node, such
that p holds in all nodes of the path except in the last one, where actually q
holds.

Such expression is denoted by the following formula.

EpUq

Relationships between an existential fragment of CTL and some XPath
fragments were studied by [Miklau and Suciu, 2004] and [Gottlob et al., 2005].
XPath fragments decidable in exponential time are developed there. However,
the capability to perform bi-directional navigation is not supported by those
XPath fragments due to the lack of temporal operators for the past in the
logics.

[Emerson and Halpern, 1986] introduced an extension of CTL called CTL⋆.
In this extension, the quantifiers and temporal operators can be freely mixed,
in contrast with CTL, where temporal operators can only occur immediately
after a path quantifier.

[Laroussinie and Schnoebelen, 2000] and [Reynolds, 2000] developed an ex-
tension of CTL⋆ with temporal operators for the past called PCTL⋆.

Extensive studies on the use of CTL⋆, PCTL⋆ and other CTL⋆ exten-
sions in the semi-structured data context have been described in the work of
[Barceló and Libkin, 2005]. In particular, they showed that all such CTL⋆ ex-
tensions are embeddable into FOL2. Therefore, these formalisms are unable to
capture regular tree languages.

2.3.2 Propositional dynamic logic and µ-calculus

In order to add second order properties to temporal logics, [Pratt, 1976] and
[Fischer and Ladner, 1979] developed what is called Propositional Dynamic
Logic (PDL).
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PDL is a multimodal logic where the transitions in models are labelled. This
labels are called modalities. Instead of the usual box and diamond operators,
operators [α] and ⟨α⟩ are considered, where α is a regular expression composed
by modalities. Operator [α] and ⟨α⟩ denote all or some paths (sequences of
modalities) in α, respectively. Consider for instance the following formula.

⟨1⋆⟩φ
When interpreted the formula over a model, it denotes the nodes that can
access, by means of a path in 1⋆, a node where φ holds. Figure 2.4 depicts a
graphical representation of the example.

In [Pratt, 1978] and [Pratt, 1980], PDL decidability is shown to be EXPTIME-
complete. A PDL version for finite ordered trees was introduced by [Kracht, 1995].
[Afanasiev et al., 2005] revisited this PDL version and identified some first and
second order fragments.

µ-calculus, introduced in its current form in [Kozen, 1983], is a propositional
multimodal logic extended with least µ and greatest fixpoints ν. In contrast
with PDL, where regular expressions of modalities are allowed, in µ-calculus
only single modalities are allowed. Finite and infinite recursive navigation is
achieved by means of the fixpoints. These fixpoints provide a great expressive
power: actually, µ-calculus turned out to encompass all program-based logics,
that is, all families of linear temporal logics, CTL and PDL. As an example,
consider the following µ-calculus formula.

µx.φ ∨ ⟨1⟩x
Since this formula is equivalent to the PDL formula ⟨1⋆⟩φ, a graphical inter-
pretation is also found in Figure 2.4.

[Arnold and Niwinski, 1992] showed that the expressive power of WS2S cor-
responds exactly to the expressive power of the µ-calculus fragment where there
is no alternation between fixpoints, that is, the alternation-free fragment. In
the case of infinite tree models, it was shown by [Janin and Walukiewicz, 1996]
that the full µ-calculus has the same expressivity as the MSOL fragment unable
to distinguish bisimilar models.

Regarding the complexity of µ-calculus, it is EXPTIME-complete, the lower
bound comes from [Fischer and Ladner, 1979], and the upper bound was shown
by [Emerson and Jutla, 1988].

The great expressive power and low computational complexity of µ-calculus
have made this logic an attractive reasoning framework and many extensions
have been studied. [Vardi, 1998] showed that adding converse modalities to
µ-calculus yields an exponentially more succinct logic which is still decidable
in EXPTIME. These converse modalities allow capturing backward navigation
along the tree models.

Due to the close relationship between µ-calculus and MSOL, the most
popular computational machinery developed for µ-calculus has been tree au-
tomata. Despite the elegance and power of this automata theory, it turned
out to be very hard to implement such automata-based decision procedures. It
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Figure 2.4 A PDL (µ-calculus) formula

µx.φ ∨ ⟨1⟩x
⟨1⋆⟩φ ¬φ . . . ¬φ φ

1 11 1

was not before the work of [Tanabe et al., 2005] that a decision procedure for
the satisfiability of the alternation-free fragment of µ-calculus with converse
was successfully implemented. This tableau-based satisfiability algorithm has
an upper bound complexity of 2O(n logn), where n is the original formula size.
[Genevès and Layäıda, 2006] showed that Core XPath and regular tree types
can been embedded in this µ-calculus version.

In [Genevès et al., 2007], it was shown that reasoning over trees with the
alternation-free fragment of µ-calculus can be more efficient. They developed
and implemented a tableau-based satisfiability algorithm with a single expo-
nential time complexity 2O(n). This implementation offers an efficient static
analysis system for XPath decision problems in the presence of XML types
[Genevès and Layäıda, 2010b].

Automata-based computing machinery for the XPath fragment considered
in the work of [Genevès et al., 2007] was later independently reported in the
works of [Libkin and Sirangelo, 2010] and [Calvanese et al., 2009].

In [Libkin and Sirangelo, 2010], they introduce a temporal logic for trees
with the operators next and until, and their dual backward navigation oper-
ators. Tree automata techniques were developed to compute the satisfiability
and model-checking of the logic.

[Calvanese et al., 2009] provided a direct XPath translation into tree au-
tomata. In both cases, [Libkin and Sirangelo, 2010] and [Calvanese et al., 2009]
the complexity of the satisfiability algorithms is single exponential.

2.3.3 Equality

The extension of modal logics with an operator that can perform equality
tests was first introduced by [Alur and Henzinger, 1989]. This operator, called
freeze quantification, stores in a register the equivalence class of nodes. In
[Alur and Henzinger, 1989], such a freeze quantification operator is considered
for linear temporal logic. The navigation involved in the freeze operator con-
sidered in this work is limited to the forward direction.

It was shown by [Demri and Lazic, 2006] that freeze quantification in linear
temporal logic with finite models is decidable but not primitive recursive, that
is, the problem is not decidable in either primitive recursive time or space. The
logic becomes undecidable if it is extended with one of the following features:
infinite models; past operators (converse modalities); more than one register.

[Lazic, 2006] showed that the safety fragment of linear temporal logic ex-
tended with freeze quantification over infinite models is decidable in exponential
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memory space.
Freeze quantification has been studied also in the scope of branching time

temporal logics. [Jurdzinski and Lazic, 2007] proposed an extension of µ-calculus
with freeze quantification. This logic is shown to be decidable, but with a non-
primitive recursive complexity. Data equality test in a forward fragment of
XPath (with no backward navigation) is also shown to be embeddable into the
logic. DTDs are also shown to be captured by the logic. Hence, satisfiability
of the forward fragment of Core XPath with data equality test in the presence
of DTDs is also decidable.

2.3.4 Graded modalities

Graded modalities are a generalization of the modal operators, where the num-
ber of transitions among nodes is bounded by some constant. For instance
consider the following formula: ◇>kφ
This formula holds on nodes if and only if there are more than k accessible
nodes where φ holds. Pioneer works introducing the idea of graded modalities
are the ones of [Goble, 1970] and [Fine, 1972]. An example of a formula of
µ-calculus with graded modalities is depicted in Figure 3.7.

The complexity of the satisfiability problem of propositional modal logic, ex-
tended with graded modalities, is known to be PSPACE. This result was shown
by [Hollunder and Baader, 1991] when numbers occurring in graded modalities
are encoded in unary. The same upper bound holds even when numbers are
coded in binary [Tobies, 1999].

[Kupferman et al., 2002] showed that the addition of graded modalities to
µ-calculus comes at no additional cost, that is, the satisfiability problem re-
mains in EXPTIME.

[Bonatti et al., 2006] studied the logic obtained when graded µ-calculus is
enriched with converse modalities. The cost of satisfiability for this logic, called
full graded µ-calculus, is not affected, that is, it is also in EXPTIME.

A richer logic was introduced in [Bonatti and Peron, 2004]. The logic,
called fully enriched µ-calculus, has the following features:

• fixpoints for finite and infinite recursive navigation;

• converse modalities for backward navigation;

• graded modalities for numerical constraints over immediate neighbour
nodes; and

• nominals, proposition interpreted as singletons, that is, propositions that
hold at a single node in the models.

This logic turned out to be undecidable.
In Chapter 3, we show that the alternation-free fragment of this fully en-

riched µ-calculus is decidable in exponential time when it is interpreted over fi-
nite trees. A tableau-based algorithm is proposed for the satisfiability problem.
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Furthermore, we show how this logic can be used to solve decision problems
within XPath, XML types and regular expressions where numerical restrictions
over the occurrence of nodes are present.

Counting constraints over immediate forward nodes, similar to graded modal-
ities, were added to CTL⋆ by [Moller and Rabinovich, 2003]. This graded ver-
sion of CTL⋆ was found to have the same expressive power than Monadic Path
Logic (MPL).

Recently, a more general kind of counting was independently studied by
[Ferrante et al., 2009] and [Bianco et al., 2009]. Instead of counting over simple
modalities, in their approach, they impose numerical constraints over paths.
More precisely, CTL was extended with counting constraints over paths. For
example, the following expression can be expressed by this logic:

From the current node, there are more than k forward paths satisfying φ1

in all nodes but the last one, where φ2 holds

Furthermore, [Bianco et al., 2009] showed that this graded version of CTL
is exponentially more succinct than the graded µ-calculus. For instance, re-
stricting the number of descendant nodes in a tree requires exponentially larger
formulas in the graded µ-calculus than in graded CTL.

Since the complexity of decision procedures for logics is mainly parametrized
by the formula size, then an exponential gain in succinctness implies an expo-
nentially more efficient procedure.

In both cases, [Ferrante et al., 2009] and [Bianco et al., 2009], exponential
satisfiability algorithms are provided, although an unary encoding of numbers
in formulas is assumed.

Also note that the binary encoding of numbers is exponentially more suc-
cinct than the unary encoding.

We present in Chapter 4 a µ-calculus for trees with counting constraints
over paths. With respect to [Ferrante et al., 2009] and [Bianco et al., 2009],
our logic presents the following advantages:

• The fixpoint of µ-calculus can perform more general recursive navigations.
µ-calculus encompasses other logics, such as CTL, CTL⋆ and PDL.

• Backward navigation is supported by means of converse modalities. As
noted by [Vardi, 1998], converse modalities provide an exponential gain
in succinctness compared to only forward modalities.

• The paths constrained by the counting operators are expressed by regular
expressions formed by modalities, similar to PDL.

• Since the logic supports converse modalities in the counting constraints,
the paths involved in the numerical restrictions can be recursive and
multi-directional.

• The numbers occurring in the counting constraints can be encoded in
binary.
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• A tableau-based satisfiability algorithm with single exponential complex-
ity.

We also provide a linear embedding of XPath and XML type expressions with
counting constraints. Hence, the logic can be used as a static analysis frame-
work for XML.

2.3.5 Presburger constraints

The extension of Modal logics with Presburger formulas provides a more gen-
eral way to impose counting constraints than graded modalities. Consider for
instance the following expression.

The current node has more children named p than children named q

Modal logics enriched with Presburger formulas in normal form are intro-
duced by [Dal-Zilio and Lugiez, 2003] and [Dal-Zilio et al., 2004]. This logics,
called Sheaves logics, were designed for unraked trees in order to model XML
documents with counting constraints. This logics are also extended with regu-
lar constraints, in the sense of regular expressions (tree automata).

In order to ensure decidability of Sheaves logics, Presburger constraints can
only be applied to children nodes.

In the logic introduced in [Dal-Zilio and Lugiez, 2003], a shuffle or inter-
leaving (&) operator was also supported. As a consequence, a DTD XML type
language with the shuffle operator could be characterized via this Sheaves logic.

[Cardelli and Gordon, 2000] designed a modal logic for mobile ambients,
for instance, spatially distributed systems. [Dal-Zilio et al., 2004] showed de-
cidability of a fragment of this ambient logic by means of the Sheaves logic
supporting Presburger constraints. The complexity for Sheaves logic satis-
fiability was shown to be non-elementary computational by means of a tree
automata.

An extension of propositional modal logic extended with Presburger and
regular constraints is reported on [Demri and Lugiez, 2006]. Decidability for
the logic was achieved by means of a tableau-based satisfiability-algorithm with
a PSPACE complexity.

The complexity of the Sheaves logic in [Dal-Zilio et al., 2004] was improved
to PSPACE via a translation into the logic of [Demri and Lugiez, 2006].

PDL for trees, as presented by [Afanasiev et al., 2005], enriched with Pres-
burger constraints was shown to be undecidable also by [Demri and Lugiez, 2006].

[Seidl et al., 2004] developed a modal logic for trees with the following fea-
tures:

• Presburger constraints on children nodes;

• regular constraints; and

• a fixpoint operator.
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In contrast with the work of [Dal-Zilio et al., 2004] and [Demri and Lugiez, 2006],
the logic reported by [Seidl et al., 2004] additionally considers a fixpoint oper-
ator which enables it to perform finite recursive navigation in the same manner
as the least fixpoint of µ-calculus. Consider the following statement in order
to illustrate the expressive power of the logic.

The current node has a descendant node with less children labelled by p than
children labelled by q

In contrast with the logics proposed here, the works of [Dal-Zilio et al., 2004],
[Demri and Lugiez, 2006] and [Seidl et al., 2004], cannot support converse nav-
igation. This lack makes it hard for the logic to be used as a reasoning frame-
work for XPath, where backward navigation is essential for expressing all nav-
igational axes, as well as qualifier predicates.

Note that the logic proposed in Chapter 4 offers at least a double-exponential
gain in succinctness with respect to current approaches [Dal-Zilio et al., 2004] ,
[Demri and Lugiez, 2006] and [Seidl et al., 2004]: multi-directional navigation
and counting on recursive paths.

2.4 Conclusion

We have reviewed in this Chapter the state of the art of logical frameworks
for automated reasoning on transition systems. The focus was on logics for
tree-shaped structures and their application to the static analysis of XML doc-
uments. Since the topic of this work is to study the capability of logics of
expressing counting constraints, the state of the art on logics with such fea-
tures was in particular reviewed in this Chapter.

The first lesson we have learned so far is that it is required for the logical
frameworks to express certain second order properties (for instance, MSOL) in
order to properly capture regular tree languages (XML types).

We have also seen that the use of reasoning frameworks of classical log-
ics serves as an excellent reference context for the study of some fundamental
aspects, such as expressivity. However, the practical implementation of rea-
soning algorithms for classical logics does not seem appealing due to their high
complexity ([Meyer, 1975]).

In order to pursue more efficient decision procedures, we chose to study
modal logics, which seem more attractive for us as reasoning frameworks due to
their great expressive power combined with their relatively low computational
analysis cost.

The logical languages developed in this work do not go beyond the ex-
pressive power of regular tree languages. On the other hand, the logics are
equipped succinct notations for counting constraints and multi-directional re-
cursive navigation over tree models. The gain in succinctness of our languages
represents exponentially more efficient reasoning algorithms with respect to
current known approaches.





Chapter 3

Fully enriched µ-calculus for
trees

The fully enriched µ-calculus [Bonatti et al., 2006] is a modal logic with the
following features: converse modalities, for backward navigation; least and
greatest fixpoints, for finite and infinite recursive navigation; graded modalities,
to describe numerical constraints on contiguous nodes; and nominals, to denote
singleton node sets. [Bonatti and Peron, 2004] showed that the fully enriched
µ-calculus is undecidable. We show in this Chapter that this undecidability
result does not extend to finite tree models, that is, we show that the fully
enriched µ-calculus for trees is decidable.

[Genevès et al., 2007] developed a tableau-based algorithm for the satisfi-
ability of the µ-calculus with converse and without graded modalities. The
complexity of this algorithm was shown to be single exponential. Here we
show that adding graded modalities comes at no cost. For that purpose, we
develop a tableau-based algorithm for the satisfiability of the fully enriched
µ-calculus. We then prove that the satisfiability algorithm is correct and that
its complexity is in single exponential time.

The fragment of the XML query language XPath, known as Core XPath,
has the following main features:

• Multi-directional and recursive navigation, as expressed by the relations:
child, parent, descendant, ancestor.

• Boolean path filters, known as qualifiers, which are boolean predicates
witnessing the existence/absence of boolean combinations of paths.

Since the µ-calculus captures recursive and multi-directional navigation on
trees, it represents an ideal candidate for an efficient reasoning framework for

37
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Core XPath. A linear embedding of Core XPath into µ-calculus has already
been shown by [Genevès et al., 2007].

In the work of [ten Cate and Marx, 2009] it was shown that extending Core
XPath with counting expressions, with all the navigational features, can lead
to undecidable languages. We introduce in Section 3.5 a first extension of Core
XPath with counting constraints on children nodes. We then show that the
graded modalities in the fully enriched µ-calculus can efficiently capture such
counting constraints. We use this result to introduce a decidable extension of
XPath, with counting constraints on children, in EXPTIME. This result leads
us to identifying an extension decidable in EXPTIME of Core XPath with
counting constraints on children.

In the XML context, structural constraints on documents are expressed by
schema languages, such as DTDs, XML Schema, and RELAX NG. A general-
ization of such schema languages, that is, a language strictly more expressive
than them, is defined by Regular Tree Types. These regular types can be seen
as the tree-model version of regular expressions over words. We also provide in
this Chapter a linear translation of XML types with counting constraints into
the fully enriched µ-calculus.

The embedding of XPath and XML type expressions in the fully enriched
µ-calculus, together with the satisfiability algorithm, offers an efficient static
analysis framework for XPath and XML types with counting constraints on
children.

3.1 Trees

In this Section, we give a formal introduction of trees represented as Kripke
structures in the style of Modal Logics. For this purpose, before proceeding to
the definition of trees, we first define Kripke structures.

3.1.1 Kripke Structures

The goal of this Section is to give a relational semantics to modal logics as
introduced by [Kripke, 1963]. Kripke structures considered here are relational
structures representing connected graphs with a countable number of nodes.

Definition 3.1.1 (Signature). A signature is a tuple (P ,M), such that:

• P a is countable set of propositions; and

• M is a countable set of modalities.

We will name nominals some special propositions.

Definition 3.1.2 (Kripke Structure). Given a signature (P ,M), a Kripke
structure K is defined as a tuple (NK ,RK ,LK), such that:

• NK is a countable set of nodes;
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Figure 3.1 A Kripke Structure

p1

p2

p3

1 2

• RK is a set of binary relations Rm ∶ NK ×NK for each m ∈M, we writeRK(n1,m) = n2 when (n1, n2) ∈Rm; and

• LK is a total and injective function NK ↦ P , in the case of non nominal
propositions, that is, a labelling function that marks every node with
exactly one proposition. For the case of nominals, the function is not
required to be total nor injective.

When the structure K is clear from the context, we often omit the superscript.

Figure 3.1 is a graphical representation of the Kripke structureK = (N ,R,L)
such that:

• the signature (P ,M) is defined by

– P = {p1, p2, p3};
– M = {1,2};

• N = {n1, n2, n3};
• R(n1,1) = n2, and R(n2,2) = n3; and

• L(ni) = pi, where i = 1,2,3.
Definition 3.1.3 (Converse modalities). A Kripke structure K with converse
modalities is a Kripke structure where:

• the set of modalities is partitioned in two subsetsM andM; and

• for all distinct pairs of nodes n1, n2, RK(n1,m) = n2, if and only if,RK(n2,m) = n1, where m ∈M and m ∈M.

m ∈M can also be written m. Modalities inM are called converse modalities.

As an example, consider the Kripke structure of Figure 3.1. Then, the
Kripke structure with converse must satisfy:

• M = {1,2,1,2}; and
• R(n1,1) = n2, R(n2,2) = n3, R(n2,1) = n1, and R(n3,2) = n2.
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3.1.2 Tree Structures

We first define trees in terms of Kripke structures. Then we show that there is
a bijection between binary trees and trees with arbitrary finite degree.

A tree is a connected graph with no cycles. In contrast with ranked trees,
where there is an a priori bound on the number of children for each node, we
consider here unranked trees, trees with no such bound.

Definition 3.1.4 (Trees). A tree structure or simply a tree is a Kripke structure
K with converse modalities satisfying the following properties:

• for every node n, except one (the root), there is exactly one parent, that
is, there is exactly one converse modality m, such that RK(n,m) = n′
holds;

• for exactly one node n, the root, there is no parent, that is, there is no
converse modality m, such that RK(n,m) = n′ holds.

If RK(n1,m) = n2, where m is a non-converse modality, we say that n1 is the
parent of n2, and that n2 is the child of n1. A binary tree is a tree where every
node has no more than two children.

As already noted by [Hosoya and Pierce, 2003] and [Neven, 2002], there is a
straightforward isomorphism between n-ary trees and binary trees. In a binary
tree, one transition is interpreted as the first child relation, whereas the second
transition is interpreted as the following sibling relation.

Definition 3.1.5 (Bijection among n-ary trees and binary trees). Consider a
signature (P1,M1) of a k-ary tree K1, that is, where every node has at most
k children. We define the equivalent binary tree K2 of K1 as follows:

• the signature (P2,M2) of K2 is:

– P2 = P1; and

– M2 = 1,2,1,2;
• NK2 =NK1 ; LK2 = LK1 ; and

• for every node n, such that RK1(n,mi) = ni for i = 1, . . . , l and mi is not
a converse modality, we have that RK2(n,1) = n1 and RK2(nj ,2) = nj+1
for j = 1, . . . , l − 1.

An equivalent n-ary tree of a binary tree is defined analogously.

Figure 3.2 depicts a graphical representation of the bijection among n-ary
trees and binary trees.

Therefore, from now on, without loss of generality, we will only consider
binary trees.
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Figure 3.2 n-ary to binary trees
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3.2 The tree logic

We now introduce a fully enriched µ-calculus for trees. The alternation-free
µ-calculus, originally introduced by [Genevès et al., 2007], is extended with
graded modalities. The main features of the modal tree logic presented here
are the following:

• a fixpoint operator, that allows recursive navigation;

• converse modalities, which allow backward navigation;

• graded modalities, which allow counting constraints on children nodes;
and

• nominals, which denote singleton subsets of the tree model.

3.2.1 Syntax

We assume a fixed signature (P ,M), such thatM = {1,2,1,2}. 1 is interpreted
as the first child relation, the dual 1 is considered as the parent relation of the
first child. 2 is the following sibling relation, whereas the dual 2 is the previous
sibling relation.

We also consider a fixed countable set of variables X.
Formulas of the µ-calculus are basically composed by propositions in the

base case. Boolean combinations are also considered: negation, conjunction
and disjunction of formulas. A modal and a n-ary fixpoint operators are also
considered. When we write x and φ, we mean finite sequences x1, . . . , xk and
φ1, . . . ,φk, respectively. We also consider two types of graded formulas: the
greater than φ>k, and the less or equal than φ≤k, where k is a natural number.
Detailed syntax in negation normal form is given in Figure 3.3.

The negation normal form of a formula is computed by the rules of Fig-
ure 3.4, where φ [x1/x2] means that every occurrence of x2 in φ is replaced by
x1, φ [x1/x2] is the n-ary version of φ [x1/x2], and ¬x = ¬x1, . . . ,¬xk.

We also consider the syntactic sugar from Figure 3.5.
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Figure 3.3 Enriched µ-calculus syntax in negated normal form

Φ ∋ φ ∶= p proposition

⊺ true constant

x recursion variable

¬p negated proposition

¬⊺ false constant

¬⟨m⟩⊺ no transition

φ ∨ φ disjunction

φ ∧ φ conjunction

⟨m⟩φ modal formula

µx.φ in φ least n-ary fixpoint

φ#k graded formula

Figure 3.4 Negation Normal Form of Formulas in Enriched µ-calculus

¬⟨m⟩φ ≡ ¬⟨m⟩⊺ ∨ ⟨m⟩¬φ
¬µx.φ in φ ≡ µx.¬φ [x/¬x] in φ [x/¬x]
¬φ>k ≡ φ≤k
¬φ≤k ≡ φ>k

Figure 3.5 Syntactic sugar for enriched µ-calculus

¬φ ≡ negated normal form of φ

µx.φ ≡ µx.φ in x

φ=k ≡ φ≤k ∧ φ>k−1
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3.2.2 Cycle-freeness

We will only consider cycle-free formulas. The notion of cycle-freeness was orig-
inally introduced by [Genevès et al., 2007]. The purpose of cycle-free formulas
is to make least and greatest fixpoints coincide. For that reason we do not
include the greatest fixpoint in the syntax of the logic. Intuitively, a cycle-free
formula is a formula where the fixpoint variables do not occur under the scopes
of both a modality and its converse. For instance, the following formula is not
cycle-free: µx.⟨1⟩x ∨ ⟨1⟩x.

In order to formally define cycle-free formulas, we first need to extract the
sequences of modalities in formulas.

Definition 3.2.1 (Trail of a formula). The trail of a formula is the set of
sequences of modalities generated by the unfolding of the fixpoints, and is
defined as follow:

trail(p) = trail(¬p) = trail(⊺) = trail(¬⊺) = trail(¬⟨m⟩⊺) = ε
trail(⟨m⟩φ) = {m ⋅ ρ ∣ ρ ∈ trail(φ)}
trail(φ#k) = trail(⟨1⟩µx.φ ∨ ⟨2⟩x)
trail(φ1 ∧ φ2) = trail(φ1 ∨ φ2) = trail(φ1) ∪ trail(φ2)
trail(µx.φ) = trail(φ [µx.φ/x])

We are now ready to define cycles.

Definition 3.2.2 (Cycles). Given a sequence of modalities ρ, we define the
set of cycles in ρ, cycles(ρ), as the set of subsequences mm of ρ.

Definition 3.2.3 (Cycle-free formulas). We say a formula φ is cycle-free, when
for every ρ ∈ trail(φ), we have that the set cycles(ρ) is finite.
3.2.3 Semantics

Formulas are interpreted as sets of tree nodes. If the formula denotes a non-
empty subset of the nodes in a tree, then we say the tree is a model for the
formula. If there is a model for a formula, then we say the formula is satisfiable.
When a formula is satisfiable in every model, then we call it a valid formula.

Propositions serve as labels for nodes; negation is interpreted as set com-
plement; conjunction and disjunction denote, respectively, set intersection and
union; modal formulas denote a one-step multi-directional navigation; least
fixpoint is used to perform recursive navigation; and graded formulas impose
cardinality constraints on children nodes.

Given a tree K and a valuation V , the formal semantics is defined in Fig-
ure 3.6, where:

• V is a valuation function X ↦ 2NK

;

• V [N ′ /x] is written when V (x) =N ′, where N ′ is a subset of nodes;
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Figure 3.6 Semantics of the enriched µ-calculus

[[p]]KV = {n ∣ LK(n) = p}
[[¬p]]KV = {n ∣ LK(n) ≠ p}
[[⊺]]KV = NK

[[¬⊺]]KV = ∅
[[¬⟨m⟩⊺]]KV = {n ∣RK(n,m) is not defined}
[[φ1 ∧ φ2]]KV = [[φ1]]KV ∩ [[φ2]]KV
[[φ1 ∨ φ2]]KV = [[φ1]]KV ∪ [[φ2]]KV
[[⟨m⟩φ]]KV = {n ∣RK(n,m) ∈ [[φ]]KV }
[[µx.φ in φ]]K

V
= [[φ]]K

V [N ′′ /x] ,where N ′′ =⋂{N ′ ∣ [[φ]]KV [N ′ /x] ⊆N ′}
[[φ#k]]K

V
= {n ∣ ∣ [[φ]]KV ∩ children(n)∣#k}

• V [N ′ /x] is the n-ary version of V [N ′ /x]; and
• for a given node n,

children(n) = {n′ ∣RK(n,1) = n′ ∨ [RK(n′′,2) = n′ ∧ n′′ ∈ children(n)]}
From the work of [Tarski, 1955], we know that the interpretation of µx.φ in φ

corresponds to the least fixpoint.
If the interpretation of two formulas is the same at every tree, we say the

formulas are equivalent.
An example of the intepretation of formulas is depicted in Figure 3.7.

3.2.4 Encoding of graded modalities

In order to show there is a finite unfolding of every fixpoint, we first encode
graded formulas into plain µ-calculus formulas (with no counting operators).
Then, we use that fact that there is a finite unfolding for every fixpoint for
plain µ-calculus.

The encoding of graded modalities comes at an exponential cost, that is,
encoded formulas are exponentially larger than the original ones. Since the size
of formulas is the main parameter for the computational cost for satisfiability
testing, exponentially larger formulas are exponentially harder to check. Later,
in Section 3.3, we introduce a satisfiability algorithm that avoids this blow-up.

We first define the notion of formula size as the number of non logical
symbols in the formula. Formal definition of formula size is given in Figure 3.8.
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Figure 3.7 Intepretation of an enriched µ-calculus formula
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(µx.p1>2 ∨ ⟨1⟩x ∨ ⟨2⟩x) ∧ (p2 ∧ ⟨2⟩p5)>0 ∧ ⟨2⟩p4 ∧ p3
p4

1
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1 2

Figure 3.8 Formula size in enriched µ-calculus

∣p∣ = ∣⊺∣ = ∣x∣ = 1
∣¬φ∣ = ∣µx.φ∣ = ∣φ∣
∣⟨m⟩φ∣ = ∣φ∣ + 1
∣φ1 ∧ φ2∣ = ∣φ1 ∨ φ2∣ = ∣φ1∣ + ∣φ2∣
∣φ#k ∣ = ∣φ∣ + k + 1

Fixpoint formulas can be used to perform the children navigation involved
in graded formulas:

φ>0 ≡ ⟨1⟩µx.φ ∨ ⟨2⟩x
In order to mimic the numerical constraints over the children, it is possible

to nest the fixpoint formulas.

φ>1 ≡ ⟨1⟩µx.(φ ∧ ⟨2⟩µy.φ ∨ ⟨2⟩y) ∨ ⟨2⟩x
Details about the encoding of graded formulas are given in Figure 3.9.

Lemma 3.2.1 (Encoding graded modalities). A formula φ and its encoding
ch(φ), defined in Figure 3.9, are equivalent, and the size of ch(φ) is exponen-
tially larger than the size of φ.

Proof. The equivalence is proven by a double induction: one on the structure
of the formula; and then, in the case of graded formulas, another one on the
numerical constraint.

We now consider the blow-up in the size of ch(φ). We proceed also by
double induction: on the structure of φ, and on the numerical constraints. The
only interesting case is when φ is a counting formula ψ#k. First consider the
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Figure 3.9 Encoding graded formulas in µ-calculus

ch(φ) = φ for φ = p,¬p, x,⊺,¬⊺,¬⟨m⟩⊺
ch(φ1 ∧ φ2) = ch(φ1) ∧ ch(φ2) ch(φ1 ∨ φ2) = ch(φ1) ∨ ch(φ2)
ch(⟨m⟩φ) = ⟨m⟩ch(φ) ch(µx.φ) = µx.ch(φ)
ch(φ≤k) = ¬ch(φ>k) ch(φ>k) = ⟨1⟩µx.(φ ∧ fsibsk(ch(φ))) ∨ ⟨2⟩x
fsibs0(φ) = ⊺ fsibsk+1(φ) = ⟨2⟩µx.(φ ∧ fsibsk(φ)) ∨ ⟨2⟩x

case when ψ contains no counting subformulas. Hence, ∣ψ#k ∣ ≤ (k + 1)∣ψ∣. If ψ
contains counting subformulas, then ∣ψ#k ∣ ≤ (k′ + 1) l times. . . (k′ + 1)∣ψ∣, where k′
is the greatest numerical constraint occurring in ψ, and l is the greatest level
of nesting of counting subformulas. Therefore, ∣ψ#k ∣ ≤ (k + 1)∣ψ∣∣ψ∣.
Theorem 3.2.1 (Double exponential satisfiability of enriched µ-calculus). For-
mulas of µ-calculus with graded and converse modalities are decidable in double
exponential time.

Proof. [Genevès et al., 2007] showed that the µ-calculus with converse modali-
ties is decidable in single exponential time; then from the exponential blow-up
of encoding graded formulas (Lemma 3.2.1), we get the double exponential
bound.

3.2.5 Fixpoint unfolding and normal forms

Since the size of the negation normal form of a formula is not significantly
greater than the size of the original formula, then without loss of generality,
we consider formulas in negated normal form.

Lemma 3.2.2 (Negation Normal Form). A formula and its negation normal
form are equivalent, furthermore, the negation normal form has a linear size
with respect to the original formula.

Now, we formally introduce the notion of an unfolding.

Definition 3.2.4 (Unfolding). Given a fixpoint formula µx.φ, we define its
unfolding as follows.

unf0(µx.φ) = µx.φ

unfk+1(µx.φ) = φ [unfk(µx.φ)/x]
We are now ready to show there is a finite unfolding for every fixpoint

formula.
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Lemma 3.2.3 (Finite unfolding). There is an equivalent finite unfolding for
every fixpoint formula, that is,

[[unfk(µx.φ) [¬⊺/µx.φ]]]KV = [[µx.φ]]KV ,

for some natural number k.

Proof. From Lemma 3.2.1, we know we can encode graded modalities into plain
µ-calculus. [Genevès et al., 2007] showed there is a finite unfolding for plain
µ-calculus.

We can also use the encoding of graded modalities to show there is a guarded
normal form for formulas. For a formula in guarded normal form, the variables
in fixpoint formulas occur only in the scope of a modal or counting operator.

Theorem 3.2.2 (Guarded Normal Form). Given a fixpoint formula µx.φ, there
is an equivalent fixpoint formula µx.ψ, such that the variable x occurs only in
ψ under the scope of a modality or a counting operator.

Proof. By Lemma 3.2.1, we can encode graded formulas in simple µ-calculus.
For a proof for plain µ-calculus (with no counting operators), see for instance
[Schneider, 2004].

3.2.6 Nominals

We will now show that the logic is expressive enough to restrict the special
propositions, called nominals, to occur only once in the models. Since the
logic is able to perform multi-directional recursive navigation, from some fixed
context node, it is easy to visit all other nodes in the tree. For instance, the
formula EW (φ) holds at every node of every model of φ.

EW (φ) ≡ µx.µy.(φ ∨ ⟨1⟩y ∨ ⟨2⟩y) ∨ ⟨1⟩x ∨ ⟨2⟩x
We can now define a global conditional operator, that is, whenever a formula

φ is true in a model, we select the nodes where ψ holds.

ψ ∧EW (φ)
Nominals are special propositions that only occur once in the model, that

is, their interpretation is a singleton. Since we are able to visit all the nodes in
a model, then we are also able to express nominals. For this purpose, we first
define the auxiliary formulas of Figure 3.10. Then we define a nominal @n as
a proposition n which we constrain to hold only once in a model:

@n ≡ n ∧ ¬[ descendant(n) ∨ ancestor(n)∨
ancestor-or-self(siblings(descendant-or-self(n)))]
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Figure 3.10 Auxiliary formulas for nominals

descendant(φ) ≡ ⟨1⟩µx.φ ∨ ⟨1⟩x ∨ ⟨2⟩x
following-sibling(φ) ≡ µx.⟨2⟩φ ∨ ⟨2⟩x
preceding-sibling(φ) ≡ µx.⟨2⟩φ ∨ ⟨2⟩x
descendant-or-self(φ) ≡ µx.φ ∨ ⟨1⟩µy.x ∨ ⟨2⟩y
ancestor(φ) ≡ µx.⟨1⟩(φ ∨ x) ∨ ⟨2⟩x
ancestor-or-self(φ) ≡ µx.φ ∨ ⟨1⟩µy.x ∨ ⟨2⟩y
siblings(φ) ≡ following-sibling(φ) ∨ preceding-sibling(φ)

3.3 Satisfiability Algorithm

In this Section, we present a tableau-based algorithm for checking the satisfia-
bility of formulas. We show that the algorithm is correct: a satisfying tree for
a formula is found if and only if the formula is satisfiable. In the last part of
the Section, we prove complexity to be exponential.

3.3.1 Overview

The satisfiability algorithm performs two tasks. First, it enumerates all possible
satisfying trees of a given formula, and then evaluates the formula against every
possible witness model.

In the enumeration of tree models, syntactic characterizations of trees are
actually built. At this stage, all possible nodes for the models are considered.
These nodes are constructed from a set called the lean. The lean contains the
propositions and modal subformulas.

Once we have the nodes, we proceed to iteratively build the trees in a
bottom-up manner. First, in the base case, all possible leaves (nodes without
children or siblings) are considered. Then, in the iteration step, we consistently
connect every possible parent to the subtrees built in previous steps. After each
step, we evaluate the consistency of the formula against each tree. In order to
ensure termination of this process, the number of identical nodes used to build
the trees is bounded.

The algorithm terminates whenever:

• a consistent tree is built, the formula is satisfiable; or

• no more different trees can be built, the formula is unsatisfiable.
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3.3.2 Preliminaries

In order to extract the propositional and navigational information contained
in the formula, we first consider all subformulas, where fixpoints are expanded
only once, and the navigation information of graded formulas is represented by
fixpoint formulas performing the children navigation.

Definition 3.3.1 (Fischer-Ladner Closure). For a given formula φ, the Fischer-
Ladner closure FL(φ) is defined as the following set.

FL(φ)0 = {φ},
FL(φ)i+1 = FL(φ)i ∪ {ψ ∣ Rfl(ξ,ψ), ξ ∈ FL(φ)i},
FL(φ) = FL(φ)k,

where k is the smallest integer such that FL(φ)k+1 = FL(φ)k, and Rfl is defined
as follows:

Rfl(φ1 ∧ φ2,φi) Rfl(φ1 ∨ φ2,φi)
Rfl(⟨m⟩ψ,ψ) Rfl (µx.ψ,ψ [µx.ψ/x]) Rfl(ψ#k, ⟨1⟩µx.ψ ∨ ⟨2⟩x)

for i = 1,2, and # ∈ {>,≤}.
We now define the set containing the propositional and navigational infor-

mation composing the nodes.

Definition 3.3.2 (Lean set). Consider a formula φ and a proposition σ not
occurring in φ. We define the lean set of φ as follows.

lean(φ) = {p, ⟨m⟩ψ ∈ FL(φ)} ∪ {σ, ⟨m⟩⊺}
The syntactic representation of nodes is now defined.

Definition 3.3.3 (φ-node). A φ-node of a formula φ, written nφ, is defined as
a subset of lean(φ), such that:

• exactly one non nominal proposition is present;

• when ⟨m⟩ψ occurs, also does ⟨m⟩⊺; and
• ⟨1⟩⊺ and ⟨2⟩⊺ cannot occur simultaneously.

We will often refer to a φ-node simply as a node.

The set of φ-nodes is denoted byNφ. When the formula under consideration
is fixed, we often omit the superscript.

Definition 3.3.4 (φtree). A φtree is inductively defined as follows:

• an empty tree ∅ is a tree; and

• a triple (nφ,Γ1,Γ2) is a tree, provided that Γ1 and Γ2 are φtrees.
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Figure 3.11 Entailment relation for enriched µ-calculus: trees and formulas

Γ ⊢ ⊺
φ ∈ n

(n,Γ1,Γ2) ⊢ φ
φ /∈ n

(n,Γ1,Γ2) ⊢ ¬φ
Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

Γ ⊢ φ
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ
Γ ⊢ φ ∨ ψ

Γ ⊢ φ [µx.φ/x]
Γ ⊢ µx.φ

Γ1 ⊢ φk′ k′#k

(n,Γ1,Γ2) ⊢ φ#k

Figure 3.12 Auxiliary entailment relation: counting on siblings

(n,∅,∅) ⊢ ¬φ
(n,∅,∅) ⊢ φ0

(n,∅,∅) ⊢ φ
(n,∅,∅) ⊢ φ1

(n,Γ1,Γ2) ⊢ ¬φ Γ2 ⊢ φk

(n,Γ1,Γ2) ⊢ φk

(n,Γ1,Γ2) ⊢ φ Γ2 ⊢ φk−1
(n,Γ1,Γ2) ⊢ φk

When clear from the context, we refer to φtrees simply as trees.

Definition 3.3.5. The set of subtrees of a given tree is defined as follows:

• the set of subtrees of the empty tree is the empty set.

• the set of subtrees of a tree (n,Γ1,Γ2) is the union of {(n1,Γ1,Γ2)} with
the subtrees of Γ1 and Γ2.

We now define the notion of consistent trees. To this end, we define an
entailment relation between trees and formulas as shown in Figure 3.11. In
Figure 3.12, we define an auxiliary entailment relation in charge of counting
sibling nodes, where ¬φ means the negation normal form of φ.

Definition 3.3.6 (Modal consistency). Given a formula φ, two trees Γ1, Γ2,
and a node n0, we say the tree (n0,Γ1,Γ2) is modally consistent, written
∆(n0,Γ1,Γ2), if and only if, for i = 1,2, we have that

∀⟨i⟩ψ ∈ lean(φ), ⟨i⟩φ ∈ n0 ⇐⇒ Γi ⊢ φ
∀⟨i⟩ψ ∈ lean(φ), ⟨i⟩φ ∈ ni ⇐⇒ (n0,Γ1,Γ2) ⊢ φ

We conclude the preliminaries by introducing some final notations. The
root of a tree is defined as follows:

root(∅) = ∅
root((n,Γ1,Γ2)) = n

A tree Γ satisfies a formula φ if there is a subtree Γ′ in Γ such that

• Γ′ entails φ, that is Γ′ ⊢ φ; and
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• neither ⟨1⟩⊺ nor ⟨2⟩φ occur in root(Γ).
We write Γ ⊩ φ when Γ satisfies φ. Given a set of trees ST , we write ST ⊩ φ
when there is a tree in ST satisfying φ.

3.3.3 The Algorithm

We now present the satisfiability-checking algorithm. Candidate trees are con-
sistently built in a bottom-up manner. At each step, the algorithm verifies if
there is a tree satisfying the formula. If such a satisfying tree is found, the al-
gorithm returns true. The set of nodes is finite, and the number of occurrences
of children nodes is bounded by maxK(φ) (defined in Figure 3.13). Hence, the
number of steps in the algorithm is finite. If no satisfying tree is found, then
the algorithm returns false.

Algorithm 1 Enriched µ-Calculus: Check Satisfiability of φ
ST ← ∅
repeat

AUX ← {(n,Γ1,Γ2) ∣ {we extend the trees}
maxch(n,Γ2) ≤maxK(φ) {with an available node}
∆(n,Γ1,Γ2) {checking consistency}
where Γi ∈ ST ∪ {∅}}

if AUX ⊆ ST then
return false {no new tree was built}

end if
ST ← ST ∪AUX

until ST ⊩ φ
return true

To bound the size of the trees that are built, we restrict the number of
identical children nodes by maxK(φ), defined in Figure 3.13. The function
maxch is in charge of counting the identical children nodes (also defined in
Figure 3.13).

Consider for instance the formula φ = p1 ∧ p>22 . The computed lean is as
follows, where ψ = µx.p2 ∨ ⟨2⟩x:

{p1, p2, p3, ⟨1⟩⊺, ⟨2⟩⊺, ⟨1⟩⊺, ⟨2⟩⊺, ⟨1⟩ψ, ⟨2⟩ψ}
Labels other than p1 and p2 are represented by p3. The bound on children

nodes maxK(φ) is 3.
After the first step, ST consists of the following trees, where i = 1,2,3 and

j = 1,2. {({pi},∅,∅), ({pi, ⟨j⟩⊺},∅,∅)}
At this point the three finished trees are tested and found not to satisfy φ.

Many trees are created after the second iteration, but the one of interest is
the following:

Γ0 = ({p2, ⟨2⟩ψ, ⟨2⟩⊺, ⟨2⟩⊺},∅, ({p2, ⟨2⟩⊺},∅,∅))
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Figure 3.13 Enriched µ-calculus: occurrences bound functions

maxK(p) =maxK(¬p) =maxK(¬⟨m⟩⊺) =maxK(⊺) =maxK(x) = 0
maxK(φ1 ∧ φ2) =maxK(φ1 ∨ φ2) =maxK(φ1) +maxK(φ2)
maxK(⟨m⟩φ) =maxK(µx.φ) =maxK(φ)
maxK(φ#k) = k + 1 +maxK(φ)

maxch(n, (n,Γ1,Γ2)) = 1 +maxch(n,Γ2)
maxch(n, (n′,Γ1,Γ2)) = maxch(n,Γ2),where n ≠ n′
maxch(n,∅) = 1

Figure 3.14 Checking φ = p1 ∧ p>22

p1 p2 p3 . . . p2. . .

p2

p2

p1

1

2

2

The third iteration yields the following tree.

Γ1 = ({p2, ⟨2⟩ψ, ⟨2⟩⊺, ⟨1⟩⊺},∅,Γ0)
We can conclude at the fourth iteration when we find the tree satisfying φ.

({p1, ⟨1⟩ψ, ⟨1⟩⊺},Γ1,∅)
As there is no repetition in the children nodes, the bound maxK(φ) is

satisfied. Figure 3.14 depicts a graphical representation of the example, where
counted nodes are drawn as thick circles.

3.4 Correctness and Complexity

Termination of the algorithm is ensured because the number of nodes is finite,
and there is a bound on the number of identical nodes permitted in the trees.
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We now show that the algorithm is sound and complete, that is, a formula
is satisfiable if and only if the algorithm returns true.

The complexity of the algorithm is analysed in the last part of the Section.

3.4.1 Soundness

If the algorithm terminates with a candidate tree satisfying a given formula,
that is, the algorithm returns true, we need to show that the formula is satis-
fiable. To this end, we first define a tree structure out of a φtree.

Definition 3.4.1. Given a φtree Γ, we define the tree structure K(Γ) =(N ,R,L), such that:

• N = {n ∣ n is a φnode in Γ};
• for every subtree (n,Γ1,Γ2) of Γ, if Γi ≠ ∅, then R(n, i) = root(Γi); and
• if a proposition p ∈ n ∈N , then L(n) = p.
We now show that K(Γ) satisfies φ.

Theorem 3.4.1 (Soundness). Given a formula φ, if the satisfiability algorithm
returns 1, that is, Γ ⊩ φ where Γ ∈ ST , then K(Γ) satisfies φ.

Proof. By induction on the structure of φ.
When φ is either p, ⊺, ¬p or ¬⟨m⟩⊺, then the algorithm stops at the first

step. Hence, only leaf nodes are considered. From definition of K(φ), it is easy
to see that φ is satisfiable.

The cases for disjunction and conjunction are also straightforward. If it is
disjunction ψ1 ∨ψ2, then by induction at least one ψi (i ∈ {1,2}) is satisfied by
K(Γ). In the conjunction case ψ1 ∧ ψ2, we get also by induction that both ψi

(i = 1,2) are satisfied by K(Γ).
Consider now when φ is a modal formula ⟨m⟩ψ. Then we know that there

is a subree Γ1 of Γ, such that Γ1 ⊢ ⟨m⟩ψ. By construction of Γ, there is another
subtree Γ2 of Γ, such that:

• Γ2 ⊢ ψ; and
• if m = 1, then we have that

– ∆1(root(Γ1),Γ2,Γ3), or
– ∆1(root(Γ2),Γ1,Γ3);

• if m = 2, then we have that

– ∆2(root(Γ1),Γ3,Γ2), or
– ∆2(root(Γ2),Γ3,Γ1);
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From Γ2 ⊢ ψ and by induction, we get that K(Γ) satisfies ψ. Then, consis-
tently with ∆m, we obtain that R(root(Γ1),m) = root(Γ2). Hence, K(Γ) also
satisfies ⟨m⟩ψ.

If φ is a fixpoint formula µx.ψ, then we proceed by induction on k, where
k is the smallest number such that unfk(µx.ψ) [¬⊺/µx.ψ] is equivalent to µx.ψ
(Lemma 3.2.3). The base case (k = 1) is easy, since by induction on the struc-
ture, unf1(µx.ψ) = ψ [¬⊺/x] is also satisfied by K(Γ). We consider now the
induction step. Note that µx.ψ is equivalent to ψ [µx.ψ/x], hence the equiva-

lent finite unfolding of ψ [µx.ψ/x] is unfk−1(µx.ψ) [¬⊺/µx.ψ]. By inductive hy-

pothesis on k, unfk−1(µx.ψ) [¬⊺/µx.ψ] is satisfied by K(Γ), then by induction
unfk(µx.ψ) [¬⊺/µx.ψ] is also satisfied. Therefore, we get K(Γ) that satisfies
µx.ψ.

We now consider the cases when φ is a graded formula ψ>k or ψ≤k. Given
that Γ ⊢ ψ#k, we know by rules in Figures 3.11 and 3.12, that there is sequence
of subtrees Γ0, . . . ,Γk′ in Γ, such that for i = 1, . . . , k′, we have that:

• Γ0 ⊢ ψ#k and Γi ⊢ ψ ;

• the roots of Γi are children of the root of Γ0; and

• k′#k.

Then by induction and construction of Γ, we get that there is a sequence of
nodes n0, . . . , nk′ in K(φ) such that n0 is the parent of ni (i = 1, . . . , k′) and ψ
holds a each ni. Therefore, since k′#k, we get that n0 satisfies ψ#k.

3.4.2 Completeness

We now show that given a tree structureK satisfying a formula φ, the algorithm
constructs a satisfying φtree for φ, that is, the algorithm returns true.

The proof is divided in two main steps. First we build a φtree out of the
satisfying K structure, and then we show that the φtree also satisfies φ. The
second step consists in showing that the algorithm can actually construct such
a satisfying φtree.

We first define a lean labelled φtree homomorphic to K.

Definition 3.4.2. Given a tree structure K satisfying a formula φ, we define
a φtree Γ(K) as follows:

• for every node n in K, there is a corresponding node n′ in Γ(K), such
that for every ψ in lean(φ), if n ∈ [[ψ]]K∅ , then ψ ∈ n′; and

• for every node n0 in K, if RK(n0,1) = n1 and RK(n0,2) = n2, then(n′0,Γ1,Γ2) is a subtree of Γ(K), where root(Γi) = n′i (i = 1,2) and n′1, n′2
and n′0 are the corresponding nodes, defined in the previous step, of n1, n2

and n0. When RK(n0, i) (i ∈ {1,2}) is not defined, then Γi = ∅.
We now show that Γ(K) satisfies the original formula.
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Lemma 3.4.1. If a tree structure K satisfies a formula φ, then the φtree Γ(φ)
also does, that is, Γ(φ) ⊩ φ.

Proof. We consider the smallest tree structure satisfying φ, and we proceed by
induction on the structure of φ.

The base cases are when φ is p, ⊺, ¬p and ¬⟨m⟩φ. The smallest tree structure
satisfying φ is a leaf. In the case of p, since p is in the lean, then the leaf in
Γ(K) satisfies p. If φ is ⊺, then any leaf is fine. As for the negated cases ¬p
and ¬⟨m⟩φ, none of them belongs to the lean, so the leaf satisfies them.

Conjunction and disjunction cases are straightforward. By induction each/a
member of the conjunction/disjunction is satisfied by Γ(K), and so φ is also
satisfied.

We now refer to the case when φ is a modal formula ⟨m⟩ψ and holds at
node n. Since ⟨m⟩ψ is in the lean, and according to the construction of Γ(K),
then the corresponding node n′ in Γ(K) of n contains ⟨m⟩ψ, and hence Γ(K)
satisfies ⟨m⟩ψ.

When φ is a fixpoint formula µx.ψ, we consider the equivalent formula
ψ [µx.ψ/x]. Then we proceed by another induction on the structure of ψ. All
the cases, but the fixpoint, are similar to the first structural induction applied in
this proof. Fixpoints never occur in this induction step: recall that variables in
fixpoint formulas occur only under the scope of modalities or counting operators
(Theorem 3.2.2).

Consider now the case where ψ#k holds at n0. Then we know ψ holds in
the children nodes n1, . . . , nk′ of n0 such that k′#k, and for every child node n′
of n0 different from ni, we have that ψ does not hold there. Then by induction
we get that Γi ⊢ ψ (i = 1, . . . , k′), where root(Γi) are the corresponding nodes
in Γ(K) of ni. Therefore, Γ(K) = (n′,Γ1,Γ2) satisfies ψ#k, where n′0 is the
corresponding node of n0 and ∆(n′0,Γ1,Γ2) holds.

We next show that the Γ(K) can actually be built by the algorithm. We
closely follow the proof of [Genevès et al., 2007], for the µ-calculus with no
graded modalities, with a crucial exception: we need to make sure there are
enough instances of each child node. Indeed, in [Genevès et al., 2007], the
algorithm uses a node (a subset of the lean) at most once. This yields a simple
halting condition for the algorithm to conclude that the formula is unsatisfiable.
However, in the presence of graded formulas, a given child node can occur more
than once. To maintain the termination of the algorithm, we put a bound on
the number of identical children nodes that may be needed by maxK(φ), as
defined in Figure 3.13. We need also to show that this bound is sufficient to
build a tree for any satisfiable formula.

[Kupferman et al., 2002] first showed that maxK(φ) is a bound for the
number of children nodes for the graded µ-calculus with no converse modalities:
“if a formula φ is satisfiable (by a Kripke graph), then there is a tree model
(possibly infinite) such that each node has at most l(k + 1) children, where l
is the number of subformulas ψ>k′ and k is the greatest numerical constraint
occurring in such graded subformulas”. This result was extended for graded µ-
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calculus with converse, called fully graded µ-calculus, by [Bonatti et al., 2006].
We now show this result also applies in the finite tree setting.

Theorem 3.4.2. If a formula φ is satisfiable, then there is a model of φ such
that each node hast at most l(k + 1) children, where l is the number of subfor-
mulas ψ>k′ and k is the greatest numerical constraint occurring in such graded
subformulas”.

Proof. We proceed by contradiction. It is assumed that φ is satisfiable and
there is no tree where each node has at most l(k + 1) nodes. Consider K0 to
be such tree. We now build a tree K1 isomorphic to K0 such that each node
in K1 contains the lean formulas satisfied by their corresponding node in K0.
It is immediate that K1 also satisfies φ.

We then build a tree K2 from K1 such that all “unnecessary” children in
K1 are removed, that is, where each node in K2 has at most l(k + 1) children.
Let n be the node in NK1 that satisfies φ, we then define NK2 = N (φ, n),
where:

• if φ is a atomic formula p,⊺,¬⊺,¬⟨m⟩⊺, then N (φ, n) = {n};
• N (φ1 ∧ φ2, n) =N (φ1, n) ∩N (φ2, n);
• N (φ1 ∨ φ2, n) =N (φ1, n) ∪N (φ2, n);
• N (⟨m⟩ψ, n) = N (ψ, n′), such that m ∈ {2,2}, n′ satisfies ψ and it is a
following (preceding) sibling of n according to K1;

• N (⟨m⟩ψ, n) =N (ψ, n′), such that RK1(n,m) = n′ and m ∈ {1,1};
• N (µx.ψ, n) = N (unfk(µx.ψ), n), such that unfk(µx.ψ) is the smallest
unfolding of µx.ψ;

• N (ψ>k, n) = {n} ∪N (ni,ψ), such that i = 1, . . . , k + 1, n is the parent of
ni and ni satisfies ψ; and

• N (ψ≤k, n) = {n}∪N (ni,ψ), such that i = 1, . . . , k′ ≤ k, n is the parent of
ni and ni satisfies ψ.

We now define RK2 =R(φ, n), where:
• if φ is a atomic formula, then R(φ, n) = ∅;
• R(φ1 ∧ φ2, n) =R(φ1, n) ∪R(φ2, n);
• R(φ1 ∨ φ2, n) = R(φi, n) for i ∈ {1,2}, or R(φ1 ∧ φ2, n) = R(φ1, n) ∪R(φ2, n);
• R(⟨m⟩ψ, n) =R(ψ, n′)∪{(n,m,n′)}, such thatm = {1,1} andRK1(n,m) =
n′;
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• R(⟨m⟩ψ, n) =R(ψ, n′)∪{(n,m,n′)}, such thatm = {2,2} andRK1(n,m) =
n′, or in case RK1(n,m) ≠ n′, then n′ is a following (preceding) sibling
of n according to K1 and ∆m(n,n′);

• R(µx.ψ, n) = R(unfk(µx.ψ), n), such that unfk(µx.ψ) is the smallest
unfolding of µx.ψ;

• R(ψ>k, n) = ⋃k+1
i=1 R(ψ, ni)∪(n,1, n1)∪⋃k

j=2(nj ,2, nj+1), such that n is the
parent of ni according to K1, ∆1(n,n1) and ∆2(ni, ni+1) (i = 2, . . . , k);
and

• R(ψ≤k, n) = ⋃k′
i=1R(ψ, ni)∪(n,1, n1)∪⋃k′−1

j=2 (nj ,2, nj+1), such that k′ ≤ k,
n is the parent of ni according to K1, ∆1(n,n1) and ∆2(ni, ni+1) (i =
2, . . . , k − 1).

It is now shown by structural induction on φ that K2 satisfies φ, and each
node in K2 has no more than l(k + 1) children. This is immediatte from the
construction of K2.

We are now ready to show the completeness.

Theorem 3.4.3 (Completeness). If a formula is satisfiable, then a satisfying
tree is built by the algorithm.

Proof. We consider the smallest tree structure K satisfying a formula φ, and
we proceed by induction on the height of K.

The base case is straightforward, since K is a leaf, and all leaves are pro-
duced by the algorithm in the first step.

For the induction step, we consider a tree structure K with height k + 1.
Consider the two main subtrees K1 and K2 of K, such that RK(n0, i) = ni

(i = 1,2), where ni is the root of Ki and n0 is the root of K. Since both Ki have
a height less or equal than k, then by induction, we know the trees Γ(Ki) have
been produced by the algorithm in ST . It is now easy to see thatRK(n0, i) = ni

implies ∆(n′0,Γ(K1),Γ(K2)), where n′0 is the corresponding node in Γ(K) of
n0. That n′0 is available, that is, maxch(n′0,Γ(K2)) ≤ maxK(φ), comes from
Theorem 3.4.2. Therefore Γ(K) is built by the algorithm.

3.4.3 Complexity

We now show that the time complexity of the satisfiability algorithm is expo-
nential in the formula size. We show this result in two steps: we first show that
the lean size is linear with respect to the formula size; then we show that the
algorithm has a single exponential complexity with relation to the lean size.

Lemma 3.4.2. The lean size is linear in terms of the original formula size.

Proof Sketch. By the size of the lean we mean the number of elements it con-
tains; we do not care about the size of its elements.
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[Genevès et al., 2007] showed the lean size of µ-calculus formulas, that does
not include graded formulas, is linear w.r.t. formula size.

Graded formulas ψ#k only introduce two extra formulas to the lean: ⟨1⟩ξ
and ⟨2⟩ξ, where ξ is ⟨1⟩µx.ψ ∨ ⟨2⟩x.
Theorem 3.4.4. The satisfiability algorithm for the logic is decidable in time
2O(n), where n is the size of the formula.

Proof Sketch. By Lemma 3.4.2, we know the size of the lean is linear in terms
of the formula size. Now, we will show the algorithm complexity is exponential
w.r.t. to the size of the lean.

Since a node is defined as a subset of the lean, then the size of the set
containing all the nodes is bounded by 2k, where k is the lean size. Now,
the number of identical nodes that may occur in every tree is bounded by
maxK(φ) ≤ l(m+1), where l is the number of graded formulas occurring in φ,
and m is the greatest numerical constraint occurring in such graded formulas.
Hence, the number of steps of the algorithm is bounded by 2k ∗ l ∗m.

Three operations are performed at each step in the loop cycle of the algo-
rithm: the definition of AUX; a subset inclusion AUX ⊂ ST ; and a set union
ST ∪AUX.

In order to determine the cost of AUX, we need to examine the cost of
its three main operations: the traversals to form the triples (n,Γ1,Γ2); the
cost of computing the function maxch; and the cost of the modal compatibility
relation ∆. Since the number of different nodes is exponential, and the number
of different subtrees too, the maximum number of newly formed trees (triples)
at each step also has an exponential bound. The function maxch performs a
single traversal of the tree which is also exponential. In the definition of the
relation ∆, the entailment relation performs a traversal of the tree to verify
each graded formula. Hence, the cost of ∆ is also exponentially bounded.

The set inclusion AUX ⊆ ST and the set union ST ∪ AUX are linear
operations in terms of exponentially sized sets.

The stop condition of the algorithm is checked by the satisfaction relation⊩. It involves traversals parametrized by the number of trees, the number of
nodes in each tree, and the number of traversals for the entailment relation
of each graded formula. Hence, the upper bound for the stop condition is(2k ∗ l ∗m)3.

Therefore, the total time complexity of the algorithm is bounded by (2k ∗
l ∗m)k′ , for some constant k′.

3.5 Application to Regular Paths

[Clark and DeRose, 1999] introduced XPath as part of the W3C XSLT trans-
formation language. XPath is a language for selecting nodes and computing
values from an XML document. Since it became a standard, XPath has been
included as part of several other standards, in particular it forms the “naviga-
tion subset” of the XQuery language.
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Figure 3.15 Syntax of Core XPath expressions

Axis ∶= self ∣ child ∣ parent ∣ descendant ∣ ancestor ∣
following-sibling ∣ preceding-sibling ∣ following ∣ preceding

NameTest ∶= QName ∣ ∗
Step ∶= Axis ∶∶ NameTest

PathExpr ∶= PathExpr/PathExpr ∣ PathExpr[Qualifier] ∣ Step
Qualifier ∶= PathExpr ∣ Qualifier and Qualifier ∣ Qualifier or Qualifier ∣

not Qualifier ∣ CountExpr
StepCh ∶= child ∶∶ NameTest

CountExpr ∶= count(StepCh)#k ∣ count(StepCh[Qualifier])#k

# ∶= ≤∣>∣=
XPathExpr ∶= PathExpr ∣ /PathExpr ∣ XPathExpr union PathExpr ∣

XPathExpr intersect PathExpr ∣
XPathExpr except PathExpr

In the first part of this Section, we give a formal presentation of an extension
of what is known as Core XPath. The extension consists in considering XPath
expressions with numerical constraints on the number of the selected nodes.

[Genevès et al., 2007] have already shown there is a linear translation of
Core XPath expressions (without counting) into the µ-calculus. We show in
this Section how to extend this translation to XPath counting expressions with
graded formulas of the enriched µ-calculus.

3.5.1 XPath expressions

In their simplest form, XPath expressions look like “directory navigation paths”.
For instance, the XPath expression

/company/personnel/employee

first navigates from the root of a document through the top-level “company”
node to its “personnel” children nodes and from there, to “employee” children
nodes. The result of the evaluation of the entire expression is the set of all the
“employee” nodes that can be reached in this manner.

Each step of the navigation of XPath expressions can perform more sophis-
ticated navigation to select nodes. For instance, the selection of “descendant”
nodes requires a recursive navigation. XPath expressions are also able to nav-
igate upward and recursively, as represented by the “parent” and “ancestor”
axes.
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Figure 3.16 Interpretation of Core XPath expressions

[[Axis ∶∶ NameTest]] = {(n1, n2) ∈N ×N ∣ n2 is an Axis of n1,

and n2 is labeled by NameTest}
[[/P ]] = {(n1, n2) ∈N ×N ∣ n2 is the root, n2 ∈ [[P ]]}[[P1/P2]] = [[P1]] ○ [[P2]][[P1 union P2]] = [[P1]] ∪ [[P2]][[P1 intersect P2]] = [[P1]] ∩ [[P2]][[P1 except P2]] = [[P1]] ∖ [[P2]][[P [Q]]] = {(n1, n2) ∈ [[P ]] ∣ n2 ∈ [[Q]]q}[[P ]]q = {n1 ∣ ∃n2 ∶ (n1, n2) ∈ [[P ]]}[[count(P )#k]]q = {n1 ∣ ∣{n2 ∣ (n1, n2) ∈ [[P ]]}∣#k}
[[Q1 and Q2]]q = [[Q1]]q ∩ [[Q2]]q[[Q1 or Q2]]q = [[Q1]]q ∪ [[Q2]]q[[not Q]]q = N ∖ [[Q]]q

One of the most powerful features of XPath expressions is the ability to
“filter” the selection of nodes at each navigation step. For instance, the ex-
pression

/company[descendant::employee/name/Pierre]/name

selects company names that have at least one employee named Pierre. Often,
it is of interest to have more general numerical constraints than “at least one”.
For instance,

/company/personnel[count(employee)> 10000]/name

which selects the name of companies with more than 10000 employees.
The syntax and semantics of Core XPath, extended with counting con-

straints on children nodes, are respectively given in Figure 3.15 and Figure 3.16.
XPath expressions are interpreted as pairs of nodes in a tree structure. The
considered XPath fragment allows absolute and relative paths, path union,
intersection, composition, as well as node test and qualifiers with counting
operators on children nodes, conjunction, disjunction, negation, and path nav-
igation. Furthermore, it supports all XPath axes allowing multi-directional
and recursive navigation.

3.5.2 XPath embedding

We will now show we can consistently encode XPath expressions with counting
constraints into the µ-calculus with graded modalities. Furthermore, we will
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Figure 3.17 Logic embedding of Axis

/self0χ = χ

/child0χ = µx.⟨1⟩χ ∨ ⟨2⟩x
/following-sibling0χ = µx.⟨2⟩χ ∨ ⟨2⟩x
/preceding-sibling0χ = µx.⟨2⟩χ ∨ ⟨2⟩x
/parent0χ = ⟨1⟩µx.χ ∨ ⟨2⟩x
/descendant0χ = µx.⟨1⟩(χ ∨ x) ∨ ⟨2⟩x
/descendant-or-self0χ = µy.χ ∨ µx.⟨1⟩(y ∨ x) ∨ ⟨2⟩x
/ancestor0χ = ⟨1⟩µx.χ ∨ ⟨1⟩x ∨ ⟨2⟩x
/ancestor-or-self0χ = µx.χ ∨ ⟨1⟩µy.x ∨ ⟨2⟩y
/following0χ = /descendant-or-self0%following-sibling&!ancestor-or-self"χ/preceding0χ = /descendant-or-self0%preceding-sibling&!ancestor-or-self"χ

show that the encoding is linear. That is, the size of the translation of the
XPath expressions into the logic is linear with respect to the size of the original
XPath expression.

Figure 3.17 shows how XPath navigation is translated into the µ-calculus.
Logical formulas are also able to capture step navigation in XPath expres-

sions. For example, consider the following expression with its corresponding
translation.

child::p1/descendant ∶∶ p2
p2 ∧ µy.(p1 ∧ µx.⟨1⟩⊺ ∨ ⟨2⟩x) ∨ µx.⟨1⟩(y ∨ x) ∨ ⟨2⟩x

In contrast with the interpretation of paths outside qualifiers, which actually
selects nodes reachable by the path, paths inside qualifiers are interpreted as
boolean functions, that is, their interpretation requires to navigate through the
path, in order to test the existence of nodes, without changing the focus nodes
achieved before the qualifier. In order to maintain such focus, we interpret
the paths inside qualifiers in an inverse manner. In order to illustrate how
the translation works, consider the following expression and its corresponding
translation.

child::p1[child ∶∶ p2]
p1 ∧ µx.⟨1⟩⊺ ∨ ⟨2⟩x ∧ ⟨1⟩µx.p2 ∨ ⟨2⟩x

From this example, we can see that forward and backward navigation are crucial
to succinctly capture XPath expressions.
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Figure 3.18 Logic embedding of XPath expressions

/∗0 = ⊺
/QName0 = QName

/Axis ∶∶ NameTest0pχ = /Axis0χ ∧ /NameTest0
/P1/P20pχ = /P20p%P1&pχ/P [Q]0pχ = /P 0pχ ∧ /Q0q⊺
//P 0χ = /P 0p

µx.(¬⟨1⟩⊺∨⟨2⟩x)∧µy.(χ∧ S○)∨⟨1⟩y∨⟨2⟩y
/P 0χ = /P 0pχ∧ S○

/P1 union P20χ = /P10χ ∨ /P20χ
/P1 intersect P20χ = /P10χ ∧ /P20χ
/P1 except P20χ = /P10χ ∧ ¬ /P20χ

The µ-calculus formulas with graded modalities provide a natural way to
extend XPath expressions with counting constraints on children nodes, as ex-
emplified by the following expression and its corresponding logical representa-
tion.

ancestor::p1[count(child ∶∶ p2) ≤ 5]
(p1 ∧ ⟨1⟩µx.⊺ ∨ ⟨1⟩x ∨ ⟨2⟩x) ∧ p≤52

Full translation of Core XPath with counting constraints on children is
given in Figure 3.18. Auxiliary definitions are given in Figure 3.19, Figure 3.20
and Figure 3.17.

Notice that counting expressions like:

count(child ∶∶ p[Q])#k

are supported with no restriction on the qualifier Q, for instance, nested count-
ing expressions are supported.

Lemma 3.5.1. XPath expressions with counting constraints on children are
linearly translated into enriched µ-calculus.

Proof. We proceed by induction on the structure of the XPath expression.
[Genevès et al., 2007] showed all the cases except when the qualifier is a count-
ing expression. Hence, we address these additional cases.

The case when the qualifier is count(child ∶∶ p)#k is trivial. For the case
count(child ∶∶ p[Q])#k, we know by induction that Q is linearly translated,
then the full expression is also linearly translated.
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Figure 3.19 Logic embedding of Qualifiers

/Axis0qχ = 1Axis2
χ

/Axis ∶∶ QName0qχ = /Axis0qχ∧%QName&
/P1/P20qχ = /P10q%P2&qχ/P [Q]0qχ = /P 0qχ∧%Q&q⊺/Q1 and Q20qχ = /Q10qχ ∧ /Q20qχ
/Q1 or Q20qχ = /Q10qχ ∨ /Q20qχ
/not Q0qχ = ¬ /Q0qχ
/count(child ∶∶ QName)#k0qχ = (/QName0)#k

/count(child ∶∶ QName[Q])#k0qχ = (/QName0 ∧ /Q0q⊺)#k

Figure 3.20 Dual Axis in XPath

Axis = Axis self = self

child = parent following-sibling = preceding-sibling

ancestor = descendant ancestor-or-self = descendant-or-self

following = preceding

3.6 Application to Regular Types

A tree schema denotes a set of trees satisfying certain structural constraints. In
the XML context, several schema languages are actively used by applications:

• DTDs [Bray et al., 2004],

• XML Schema (W3C) [Fallside and Walmsley, 2004], and

• RELAX NG [Clark and Murata, 2001].

Regular tree types are a tree schema formalism that captures all XML schema
languages used in practice [Murata et al., 2005].

Numerical restrictions on the number of children nodes can also be ex-
pressed by regular tree types. Actually, XML Schema provides explicit nota-
tions for such constraints using the following attributes: MinOccur and Max-
Occur. This kind of counting constraints does not go beyond the expressivity



64 CHAPTER 3. FULLY ENRICHED µ-CALCULUS FOR TREES

Figure 3.21 Syntax of Regular Tree Types

TypeExpr ∶= ε ∣ TypeExpr1∣TypeExpr2 ∣ p(x1, x2)
p(x#k

1 , x2) ∣ let x.TypeExpr in TypeExpr

of regular languages, however, they provide a succinct notation for otherwise
exponentially larger expressions.

In this Section, we first formally define regular types with counting con-
straints, and then we show those types can be embedded into µ-calculus with
graded modalities.

We later define some common decision problems in the XML setting that
involve the analysis of XPath expressions and XML schemas. Then, via the
translation of XPath expressions and regular types into enriched µ-calculus,
we show how XML static analysis problems, with counting constraints, can be
decided in exponential time.

3.6.1 Type Expressions

Analogously to the isomorphism between n-ary and binary trees (Figure 3.2),
there is also a straightforward isomorphism between regular types for n-ary
trees and regular types for binary trees, as presented by [Genevès, 2006]. Hence,
without loss of generality we consider types for binary trees as presented by
the syntax described in Figure 3.21.

Regular types are interpreted as sets of tree structures. Their formal se-
mantics is given in Figure 3.22, where V is a valuation function from vari-
ables to sets of trees, and lfp(f) is the least fixpoint of f defined as follows:

f(V ′) = V [x/[[T ]]
V ′ ]. Note that function f is monotone according to subset or-

dering, hence by the fixpoint theorem ([Tarski, 1955]), f has always a fixpoint.
Other traditional operators, like the Kleene star, are just syntactic sugar.

For instance, if we want to express the recursive concatenation of a label p, we
write the following expression.

let x1, x2.p(x2, x1)∣ε, ε in x1

Recall also that the counting operator does not add expressivity to regular
types, as illustrated by the following equivalent expressions.

let x1, x2, x3.p1(x=22 , x3), p2(x3, x3), ε in x1

let x1, x2, x3, x4.p1(x2, x4), p2(x4, x3), p2(x4, x4), ε in x1

The advantage of the counting operator is that it produces exponentially smaller
expressions.
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Figure 3.22 Semantics of Regular Tree Types

[[ε]]V = {∅}
[[p(x1, x2)]]V = {K ∣ the root of K is labelled by p,

its first children is in V (x1), and
its following sibling is in V (x2)}[[T1∣T2]]V = [[T1]]V ∪ [[T2]]V

[[p(x#k
1 , x2)]]

V
= {K ∣ the root of K is labelled by p,

the amount of its children in V (x1) satisfies #k, and

its following sibling is in V (x2)}
[[let x.T in T ]]

V
= [[T ]]lfp(f)

3.6.2 Types Embedding

We will show now that regular tree types with counting operators can be trans-
lated into µ-calculus with graded modalities. This translation is linear with
respect to the size of the original type expression.

The relations involved in tree types are first child and following sibling.
These relations are captured by modalities 1 and 2. Recursion in types is
captured by the least fixpoint. We illustrate this correspondence between µ-
calculus and types with the following example.

let x1, x2, x3.p1(x>k2 , x3), p2(x3, x3), ε in x1

This expression denotes the trees where p1 nodes, with no siblings, have at
least k + 1 children nodes labelled wih p2. We translate the expression into the
logic as follows.

p1 ∧ ¬⟨2⟩⊺ ∧ (p2 ∧ ¬⟨1⟩⊺)>k
A translation function for arbitrary types is given in Figure 3.23. Auxiliary

definitions required for the translation can be found in Figure 3.24.

Lemma 3.6.1. For a given regular tree type expression, the lean size of its
translation into enriched µ-calculus is linear with respect to the original ex-
pression size.

Proof. We proceed by induction on the structure of the type expression.
For all the cases but the counting one, [Genevès et al., 2007] have already

shown that the translation size is linear with respect to the size of the original
type expression. We then consider the counting case.

Since variables must occur bounded, then let variables x1 and x2 be bounded
by T1 and T2, respectively, in the type p(x#k

1 , x2). We know by induction that
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Figure 3.23 Embedding of Regular Tree Types into Enriched µ-calculus

/ε0 = ¬⊺
/T1∣T20 = /T10 ∨ /T20/p(x1, x2)0 = p ∧ succ1(x1) ∧ succ2(x2)
3p(x#k

1 , x2)4 = p ∧ x#k
1 ∧ succ2(x2)

1let x.T in T 2 = µx./T 0? in /T 0
/T 0? =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
/T 0# if x, bounded to T ,

is under the scope of a # operator

/T 0 otw.

/ε0# = ¬⊺
/T1∣T20# = /T10# ∨ /T20#
/p(x1, x2)0# = p ∧ succ1(x1) ∧ succ#(x2)
3p(x#k

1 , x2)4# = p ∧ x#k
1 ∧ succ#(x2)

1let x.T in T 2# = µx./T 0# in /T 0#

the leans of the following formulas are linear w.r.t. their corresponding subex-
pressions.

p /T10# succ2(x2)
Recall that the lean of (/T10#)#k is the same as the one of ⟨1⟩µx. /T10# ∨ ⟨2⟩x,
hence only two additional modal formulas are introduced in the lean.

3.6.3 XML decision problems

With the previous translations, we are now able to translate both XPath and
Regular type expressions into µ-calculus. Several decision problems for the
involving static analysis of XPath and XML schemas can be solved via this
translation.

We need a special proposition S○ in the translation of XPath expressions.
This proposition marks the initial context node from which an XPath expres-
sion is evaluated. Since this context is unique in the tree, it may serves to
compare several XPath expressions, e.g. for testing the equivalence of expres-
sions.
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Figure 3.24 Auxiliary Functions in the Translation of Regular Tree Types

succm = ⎧⎪⎪⎨⎪⎪⎩
¬⟨m⟩⊺ if nullable(x)
⟨m⟩x if not nullable(x)

succ# = ⎧⎪⎪⎨⎪⎪⎩
⊺ if nullable(x)
⟨2⟩x if not nullable(x)

nullable(x) = nullable(T ) x is bound to T
nullable(ε) = true

nullable(T1∣T2) = nullable(T1) and nullable(T2)
nullable(p(x1, x2)) = false

nullable(p(x#k
1 , x2)) = false

nullable(let x.T in T ) = nullable(T )

XML decision problems are now defined in terms of the µ-calculus. In
this context, an expression can be either: an XPath expression, a regular type
expression, or an XPath expression under some regular type expression.

• Containment. An expression is said to be contained into another ex-
pression when the first expression always selects nodes that are selected
by the second expression. We say the XPath expression P1 is con-
tained in the XPath expression P2, written P1 ⊆ P2, when the formula/P10 ∧ ¬ /P20 is unsatisfiable. Moreover, we can test XPath contain-
ment under schema constraints (type expression): P1(T1) ⊆ P2(T2) iff/T10 ∧ /P10 ∧ ¬(/T20 ∧ /P20) is not satisfiable.

• Equivalence. Two expressions are equivalent if one is contained into the
other, and vice versa.

• Emptiness. An expression is empty when it always selects the empty
set. For testing non emptiness, we write P ≠ ∅, T ≠ ∅, and P (T ) ≠ ∅,
respectively, whenever the respective formula /P 0, /T 0, or /P (T )0 is not
satisfiable.

• Overlap. Two expressions overlap if they both select a common node.
This can be tested by checking the unsatisfiability of the conjunction of
the translations of both expressions.

• Coverage. Given a finite sequence of expressions e1, . . . , ek, e1 is covered
by e2, . . . , ek iff e1 is contained in the union of ei (i = 2, . . . , k). Recall e1
can be an XPath expression, a type or an XPath expression under some
schema.
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Theorem 3.6.1. In the context of XPath and XML schema languages with
cardinality constraints on children nodes, the XML decision problems of con-
tainment, equivalence, emptiness, overlap and coverage are decidable in expo-
nential time with respect to the problem size.

Proof. Immediate from Theorem 3.4.4, Lemma 3.5.1 and Lemma 3.6.1.

3.7 Conclusion

The logic introduced in this Chapter is the alternate-free µ-calculus for trees,
with converse, nominals and graded modalities. Although the logic does not go
beyond the expressive power of simple µ-calculus, it provides notations with a
doubly exponential gain in succinctness.

The main contributions of this Chapter are twofold: the logic is shown
to be decidable, and XPath and XML schema translations into the logic are
provided. Decidability of the logic is shown via a tableau-based algorithm with
a single exponential complexity. The characterization of the XML languages
provides an efficient framework for expressions with counting constraints on
children nodes.

One may now wonder whether it is possible to express counting constraints
beyond children nodes, for instance, descendants. In [Bianco et al., 2009], it
was shown that imposing constraints, via µ-calculus with graded modalities, on
descendant nodes comes at exponential costs for succinctness. This exponential
blow-up implies that satisfiability of expressions with counting constraints on
descendants is in double exponential time.

In Chapter 4, we equip µ-calculus with counting operators able to express
constraints on nodes which are reachable by means of regular paths, for in-
stance, descendant or ancestor nodes.



Chapter 4

µ-calculus with graded paths

In this Chapter, we extend µ-calculus with counting operators which are more
general than those of graded modalities, which are limite in scope to children
nodes. In the logic proposed here, it is possible to constrain the number of
multi-directional recursive paths. For instance, the formula ⟨1⟩⟨(1∣2)⋆⟩φ>10
holds at nodes with more than 10 descendants where φ holds.

It is has been already observed by [Bianco et al., 2009] that this kind of
counting constraints can be exponentially more succinct than graded modali-
ties.

Previous work of [Bonatti et al., 2006] shows that extending µ-calculus with
graded modalities and nominals over general graph models is undecidable. We
showed in Chaper 3 that such result does not apply when we consider tree mod-
els. Here, we extended decidability of µ-calculus with more general counting
constraints. In particular, we present a tableau-based algorithm for the satisfi-
ability of the logic with an exponential complexity. The logic here can perform
a more general kind of counting than graded modalities of Chapter 3, but we
restrict the nesting of counting formulas in other formulas. This restriction
make it difficult to compare the logic here with the one of Chapter 3.

We present in this chapter also a linear embedding of XPath expressions in
the presence of XML structural constraints. XPath and XML Type expressions,
in contrast with the ones defined in Chapter 3, are able to express counting
constraints on arbitrary regular paths.

4.1 The Tree Logic

As in the previous chapter, we extended the alternation-free µ-calculus, orig-
inally introduced by [Genevès et al., 2007], with counting constraints. The
main features of the logic are the following:

69



70 CHAPTER 4. µ-CALCULUS WITH GRADED PATHS

Figure 4.1 Syntax of Trails

α ∶= α0 ∣ α⋆0 ∣ α⋆0α
α0 ∶= m ∣ α0α0 ∣ α0∣α0

• a fixpoint operator, that allows to perform recursive navigation;

• converse modalities, which allow to perform backward navigation;

• counting formulas, which allow to efficiently express counting constraints
on non contiguous nodes; and

• nominals, which denote singleton subsets of the tree model.

Before defining the logic, we first introduce the notion of trails. Trails will
serve to denote the navigation performed by counting formulas.

4.1.1 Trails

Trails are defined as regular expressions formed by modalities only (see Fig-
ure 4.1).

For the form of trails, instead of considering the traditional regular expres-
sion form, we define a safe form in Figure 4.1. This form will be used to show
that our satisfiability algorithm for the logic is complete. The notion of cycle-
free trails is also considered. In order to properly define such notion, we first
extract the set of sequences of modalities (paths) produced by a trail with the
following function.

paths(m) = {m} paths(α1α2) = {ρ1ρ2 ∣ ρi ∈ αi}
paths(α1 ∣ α2) = paths(α1) ∪ paths(α2) paths(α⋆) = paths(αα⋆)
Definition 4.1.1 (Cycle-free trails). We say a trail α is cycle-free, when for
every sequence ρ ∈ paths(α), we have that the set cycles(ρ) is finite.

We will use trails to represent multi-directional recursive navigation over
trees. More precisely, trails denote sets of paths among two nodes in tree
structures.

Definition 4.1.2. In a given tree K, we say there is a trail α from a node
n1 to the node n2, written n1

α(→ n2, if and only if there is a sequence
of nodes n0, . . . , nk and a path ρ = m1 . . .mk, such that ρ ∈ paths(α), andRK(nj ,mj+1) = nj+1 for every j = 0, . . . , k − 1.
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Figure 4.2 Graded Paths Logic Syntax

Φ ∋ φ ∶= p ∣ ⊺ ∣ x ∣ ¬p ∣
¬⊺ ∣ ¬⟨m⟩⊺ ∣ φ ∧ φ ∣ φ ∨ φ ∣
⟨m⟩φ ∣ µx.ψ in ψ ∣ ⟨α⟩ψ#k

ψ ∶= p ∣ ⊺ ∣ x ∣ ¬p ∣
¬⊺ ∣ ¬⟨m⟩⊺ ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣
⟨m⟩ψ ∣ µx.ψ in ψ

Figure 4.3 Negated Normal Form of Graded Paths Formulas

¬⟨m⟩φ ≡ ¬⟨m⟩⊺ ∨ ⟨m⟩¬φ
¬µx.φ in φ ≡ µx.¬φ [x/¬x] in φ [x/¬x]
¬⟨α⟩φ>k ≡ ⟨α⟩φ≤k
¬⟨α⟩φ≤k ≡ ⟨α⟩φ>k

4.1.2 Syntax and Semantics

The syntax of the logic is given in Figure 4.2, where m is a modality, k is a
natural number, and # ∈ {≤,>}. A formula written φ may contain counting
subformulas, whereas formulas written ψ cannot. We thus disallow counting
under counting or under fixpoints.

The syntax of this logic follows the same intuition than the one defined
in Figure 3.3. A fixed signature of propositions, modalities and variables is
considered. In contrast to the logic of Figure 3.3, formulas of the form φ#k are
now of the form ⟨α⟩ψ#k.

The syntax in Figure 4.2 is also given in negation normal form defined by
the usual DeMorgan’s rules and the rules of Figure 4.3.

We also consider here only cycle-free formulas. In order to define cycle-free
formulas we first need to update our notion of the trail of a formula.

Definition 4.1.3 (Trail of a formula). The trail of a formula is the set of
sequences of modalities generated by the unfolding of the fixpoints, and it is
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Figure 4.4 Syntactic sugar for Graded Paths Formulas

¬φ ≡ negated normal form of φ

µx.φ ≡ µx.φ in x

⟨α⟩φ=k ≡ ⟨α⟩φ≤k ∧ ⟨α⟩φ>k−1

defined as follow:

trail(p) = trail(¬p) = trail(⊺) = trail(¬⊺) = trail(¬⟨m⟩⊺) = ε
trail(⟨m⟩φ) = {m ⋅ ρ ∣ ρ ∈ trail(φ)}
trail(⟨α⟩φ#k) = {ρ1 ⋅ ρ2 ∣ ρ1 ∈ paths(α),ρ2 ∈ trail(φ)}
trail(φ1 ∧ φ2) = trail(φ1 ∨ φ2) = trail(φ1) ∪ trail(φ2)
trail(µx.φ) = trail(φ [µx.φ/x])

Definition 4.1.4 (Cycle-free formulas). We say a formula φ is cycle-free, when
for every ρ ∈ trail(φ), the set cycles(ρ) is finite.

We also consider the syntactic sugar from Figure 4.4.
Formulas are interpreted as subsets of nodes in a tree structure K. A

counting formula ⟨α⟩φ>k satisfied at a node n means that there are at least
k + 1 different nodes satisfying φ that can be reached from n through the trail
α. Hence the formula ⟨α⟩φ>k is interpreted as the as the set of nodes such that,
for each of them, the previously described condition holds. Formal semantics
of the logic is depicted in Figure 4.5.

In order to illustrate the intepretation of formulas, consider the following
formula.

p1 ∧ ⟨1⟩⟨(1∣2)⋆⟩p>42
This formula holds at nodes labeled by p1 that have more than 4 descendant
nodes labeled by p2. A graphical representation of this example is depicted in
Figure 4.6.

4.1.3 Encoding of graded paths

For the satisfiability algorithm in Section 4.2, we need to show there is a finite
unfolding for every fixpoint formula. For that purpose, we first encode counting
formulas into plain µ-calculus (with no counting operator), then we use the fact
that there is a finite unfolding for every fixpoint formula in the plain µ-calculus.

First notice that the navigation performed by trails can also be done by
plain µ-calculus formulas.

⟨1⋆⟩φ>0 ≡ µx.φ ∨ ⟨1⟩x
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Figure 4.5 Graded Paths Logic Semantics

[[p]]KV = {n ∣ LK(n) = p}
[[¬p]]KV = {n ∣ LK(n) ≠ p}
[[⊺]]KV = NK

[[¬⊺]]KV = ∅
[[¬⟨m⟩⊺]]KV = {n ∣RK(n,m) is not defined}
[[φ1 ∧ φ2]]KV = [[φ1]]KV ∩ [[φ2]]KV
[[φ1 ∨ φ2]]KV = [[φ1]]KV ∪ [[φ2]]KV
[[⟨m⟩φ]]KV = {n ∣RK(n,m) ∈ [[φ]]KV }
[[µx.ψ in ψ]]K

V
= [[ψ]]K

V [N ′′ /x] ,where N ′′ =⋂{N ′ ∣ [[ψ]]KV [N ′ /x] ⊆N ′}
[[⟨α⟩ψ#k]]K

V
= {n ∣ ∣n′ ∈ [[ψ]]KV ∣ n α(→ n′∣#k}

Figure 4.6 Intepretation of a graded paths formula

p1

p2

p2p2

p2 p2

1

21

2 2

p1 ∧ ⟨1⟩⟨(1∣2)⋆⟩p2>4

Navigation performed by trails is defined by the nav function of Figure 4.7.

In order to count different nodes satisfying the same formula, we now
make use of an order, called document ordering, as already presented by
[Afanasiev et al., 2005].

Definition 4.1.5. We define the next function as follows:

next1(φ) ≡ next(φ) ≡ nav(11⋆∣(1⋆22⋆1⋆),φ)
nextk+1(φ) ≡ nextk(φ ∧ next(φ))

The navigation performed by the trail 11⋆∣(1⋆22⋆1⋆ is a left-depth first
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Figure 4.7 Extracting the navigational information of trails

nav(φ) = φ for φ = p,¬p, x,⊺,¬⊺,¬⟨m⟩⊺
nav(φ1 ∧ φ2) = nav(φ1) ∧ nav(φ2) nav(φ1 ∨ φ2) = nav(φ1) ∨ nav(φ2)
nav(⟨m⟩φ) = ⟨m⟩nav(φ) nav(µx.φ) = µx.nav(φ)
nav(⟨α⟩φ#k) = nav(α,φ)

nav(m,φ) = ⟨m⟩nav(φ)
nav(α1α2,φ) = nav(α1,nav(α2,nav(φ)))
nav(α1∣α2,φ) = nav(α1,dc(φ)) ∨ nav(α2,nav(φ))
nav(α⋆,φ) = µx.nav(φ) ∨ nav(α, x)

traversal of the tree. Note now that the formula nextk(φ) holds at the root of
tree models such that there are exactly k different nodes where φ holds.

We now get rid of counting operators.

Definition 4.1.6. We define the discount transformation function as follows:

dc(⟨α⟩ψ>k) = @n ∧ nav(α,ψ) ∧ nav((1∣2)⋆, root ∧ nextk+1(ψ ∧ nav(α,@n))
dc(⟨α⟩ψ≤k) = ¬dc(⟨α⟩ψ>k)
where @n is a fresh nominal introduced by each counting subformula, the
trail (1∣2)⋆ goes to the root node, which is defined by the formula root =¬⟨1⟩⊺ ∧ ¬⟨2⟩⊺, and α is the inverse trail as defined as follows.

α1α2 = α2α1 α1∣α2 = α1∣α2 α⋆ = α⋆
We now show that the coding introduced by the discount function comes at

exponential cost. An updated notion of formula size is detailed in Figure 4.8.

Lemma 4.1.1. A counting formula φ and its encoding dc(φ) are equivalent,
and the size of dc(φ) is exponentially larger than the size of φ.

Proof sketch. The equivalence is proven by a double induction: on the struc-
ture, and on the numerical constraint of the counting formula.

Regarding the exponential blow-up, note that size of nextk(ψ) directly de-
pends on the numerical constraint k. If the number k is encoded in binary,
then the size nextk(ψ) increases exponentially w.r.t. k.

We now can conclude a double exponential satisfiability for the logic.

Theorem 4.1.1. The logic is satisfiable in double exponential time.
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Figure 4.8 Formula size in µ-calculus with graded paths

∣p∣ = ∣⊺∣ = ∣x∣ = ∣m∣ = 1
∣¬φ∣ = ∣µx.φ∣ = ∣φ∣
∣⟨m⟩φ∣ = ∣φ∣ + 1
∣φ1 ∧ φ2∣ = ∣φ1 ∨ φ2∣ = ∣φ1∣ + ∣φ2∣
∣⟨α⟩φ#k ∣ = ∣φ∣ + k + 1 + ∣α∣
∣α1α2∣ = ∣(α1∣α2)∣ = ∣α1∣ + ∣α2∣∣α⋆∣ = ∣α∣

4.1.4 Fixpoint unfolding and normal forms

With a formal notion of size, we can now state that the negated normal form
is linear with respect to the original formula.

Lemma 4.1.2 (Negation Normal Form). A formula and its negation normal
form are equivalent, furthermore, the negation normal form has a linear size
with respect to the original formula.

Since we now know the logic is satisfiable (Theorem 4.1.1), and the logic
without counting operators has a finite unfolding (Definition 3.2.4), for every
fixpoint formula ([Genevès et al., 2007]), we can now state a finite unfolding
property for our logic.

Lemma 4.1.3. There is a finite unfolding for every fixpoint formula.

4.1.5 Global counting formulas

To conclude this section, we turn to an illustration of the expressive power of
the logic. An interesting consequence of the inclusion of backward axes in trails
is the ability to reach every node in the tree from any node of the tree, using
the trail (1∣2)⋆(1∣2)⋆. We can thus select some nodes based on some global
counting property. Consider the following formula, where # stands for one of
the comparison operators ≤,> or =.

⟨(1∣2)⋆(1∣2)⋆⟩φ#k
1

Intuitively, this formula counts how many nodes in the whole tree satisfy
φ1. For each node of the tree, it selects it if and only if the count is compatible
with the comparison considered. The interpretation of this formula is thus
either every node of the tree, or none. It is then easy to restrict the selected
nodes to some other formula φ2, using intersection.

⟨(1∣2)⋆(1∣2)⋆⟩φ#k
1 ∧ φ2
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This formula selects every node satisfying φ2 if and only if there are #k
nodes satisfying φ1, which we write as follows.

φ1#k)⇒ φ2

We can now express existential properties, such as: select every node satis-
fying φ2 if there exists a node satisfying φ1.

φ1 > 0)⇒ φ2

Universal properties can also be expressed: select every node satisfying φ2

if every node satisfies φ1. ¬φ1 ≤ 0)⇒ φ2

An alternative definition of nominals, to the one in Subsection 3.2.6, is by
means of the following counting formulas:

@n ≡ (n > 0)⇒ n)
4.2 Satisfiability Algorithm

We present here the corresponding algorithm for checking satisfiability of for-
mulas. Given a formula, the algorithm seeks to build a tree containing a node
selected by the formula. We show that our algorithm is correct and complete:
a satisfying tree is found if and only if the formula is satisfiable. We also show
that the time complexity of the algorithm is exponential in the size of the
formula.

4.2.1 Overview

Similarly to the algorithm introduced at Section 3.3, the algorithm defined in
this section operates in two stages.

First, a formula φ is decomposed into a set of subformulas, called the lean.
The lean gathers all subformulas that are useful for determining the truth
status of the initial formula, while eliminating redundancies. For instance,
conjunctions and disjunctions are eliminated at this stage. More precisely, the
lean mainly gathers atomic propositions and modal subformulas. From the
lean, one may gather a finite number of formulas, called a φ-node, which may
be satisfied at a given node of a tree. Trees of φ-nodes represent the exhaustive
search universe in which the algorithm searches for a satisfying tree.

The second stage of the algorithm consists in the building of sets of such
trees in a bottom-up manner, ensuring consistency at each step. Initially, all
possible leaves (i.e., φ−node that do not have children nodes) are considered.
During further steps, the algorithm considers every possible φ-node that can be
connected with a tree of the previous steps, while maintaining consistency. For
instance, if a formula at a φ-node n involves a forward modality ⟨1⟩φ′, then φ′
must be verified at the first child of n. Reciprocally, due to converse modalities,
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a φ-node may impose restrictions on its possible parent nodes. The new trees
that are built may involve converse modalities also, which will be satisfied
during further steps of the algorithm. To ensure the algorithm terminates, a
bound on the number of times each φ-nodee may occur in the tree is given.

Finally, the algorithm terminates whenever:

• either a tree that satisfies the initial formula has been found, and its root
does not contain any pending (unproven) backward modality; or

• every tree has been considered (the exploration of the whole search uni-
verse is complete): the formula is unsatisfiable.

The main difference with respect to the algorithm of Section 3.3 is that the
machinery in charge of handling counting formulas is generalized in order to
support general trails instead of only children-trails.

4.2.2 Preeliminaries

Two notions are defined here: φtrees, and an entailment relation among φtrees
and formulas. φtrees are intended to be syntactic versions of tree models. In
order to define φtrees, we also need to define syntactic versions of nodes and
the transition relation of between nodes. All information needed to build the
φtrees is extracted from formulas, hence we first define the machinery required
to extract such information.

Definition 4.2.1 (Fischer-Ladner Closure). For a given formula φ, the Fischer-
Ladner closure FL(φ) is defined as the following set.

FL(φ)0 = {φ},
FL(φ)i+1 = FL(φ)i ∪ {ψ ∣ Rfl(ξ,ψ), ξ ∈ FL(φ)i},
FL(φ) = FL(φ)k,

where k is the smallest integer such that FL(φ)k+1 = FL(φ)k, and Rfl is defined
as follow:

Rfl(φ1 ∧ φ2,φi) Rfl(φ1 ∨ φ2,φi)
Rfl(⟨m⟩ψ,ψ) Rfl (µx.ψ,ψ [µx.ψ/x])
Rfl(⟨α⟩ψ>k,nav(ψ ∧ c)) Rfl(⟨α⟩ψ≤k,nav((ψ ∧ c) ∨ (¬ψ ∧ ¬c))

where i = 1,2, # ∈ {>,≤}, c is a fresh proposition, and nav is defined in Fig-
ure 4.7. The fresh proposition c will serve as an identifier for the nodes aimed
to be counted for each counting subformula.

We now define the set containing the aimed propositional and navigational
information composing the nodes.
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Figure 4.9 Local entailment relation for graded paths

n ⊢ ⊺
φ ∈ n

Γ(ρ) ⊢ φ
φ /∈ Γ(ρ)
n ⊢ ¬φ

n ⊢ φ n ⊢ ψ
n ⊢ φ ∧ ψ

n ⊢ φ
n ⊢ φ ∨ ψ

n ⊢ ψ
n ⊢ φ ∨ ψ

n ⊢ φ [µx.φ/x]
n ⊢ µx.φ

n ⊢ nav(α,φ)
n ⊢ ⟨α⟩φ>k

n ⊢ nav(α, (φ ∧ c) ∨ (¬φ ∧ ¬c))
n ⊢ ⟨α⟩φ≤k

Definition 4.2.2 (Lean set). Consider a formula φ and a proposition σ not
occurring in φ. We define the lean set of φ as follows.

lean(φ) = {p, ⟨m⟩ψ ∈ FL(φ)} ∪ {σ, ⟨m⟩⊺}
The syntactic representation of nodes is now defined.

Definition 4.2.3 (φ-node). A φ-node of a formula φ, written nφ, is defined as
a subset of lean(φ), such that:

• exactly one non nominal proposition is present;

• when ⟨m⟩ψ occurs, also does ⟨m⟩⊺; and
• both ⟨1⟩⊺ and ⟨2⟩⊺ cannot occur simultaneously.

The set of φ-nodes is denoted by Nφ. When the formula under consideration
is fixed, we often omit the superscript.

With a clear definition of φ-nodes, we can now define the φtrees.

Definition 4.2.4 (φtree). A φtree is either an empty tree ∅, or a triple(nφ,Γ1,Γ2), where Γ1 and Γ2 are φtrees. When clear from the context, we
refer to φtrees simply as trees.

We now turn to the definition of consistency of a φtree. To this end, we
define in Figure 4.9 an entailment relation between a node and a formula.

The main purpose of the local entailment relation is to serve in the definition
of the transition relation between two nodes.

Definition 4.2.5 (Modal consistency). Given a formula φ, two φ-nodes n1,
n2, we say n1 and n2 are modally consistent, written ∆(n1, n2), if and only if,
for i = 1,2, we have that

∀⟨i⟩ψ ∈ lean(φ), ⟨i⟩φ ∈ n1 ⇐⇒ n2 ⊢ φ
∀⟨i⟩ψ ∈ lean(φ), ⟨i⟩φ ∈ n2 ⇐⇒ n1 ⊢ φ
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Figure 4.10 Global entailment relation for graded paths: trees and formulas

Γ(ρ) ⊩ ⊺
φ ∈ Γ(ρ)
Γ(ρ) ⊩ φ

φ /∈ Γ(ρ)
Γ(ρ) ⊩ ¬φ

Γ(ρ) ⊩ φ Γ(ρ) ⊩ ψ

Γ(ρ) ⊩ φ ∧ ψ
Γ(ρ) ⊩ φ

Γ(ρ) ⊩ φ ∨ ψ
Γ(ρ) ⊩ ψ

Γ(ρ) ⊩ φ ∨ψ
Γ(ρ) ⊩ φ [µx.φ/x]

Γ(ρ) ⊩ µx.φ

∣{Γ(ρρ′) ∣ ρ′ ∈ α,Γ(ρρ′) ⊩ φ}∣ > k
Γ(ρ) ⊩ ⟨α⟩φ>k

∣{Γ(ρρ′) ∣ ρ′ ∈ α,Γ(ρρ′) ⊩ φ}∣ ≤ k ∀ρ′ ∈ α ∶ Γ(ρρ′) ⊩ (φ ∧ c) ∨ (¬φ ∧ ¬c)
Γ(ρ) ⊩ ⟨α⟩φ≤k

Consistency is checked each time a node is added to the tree, ensuring that
forward modalities of the node are indeed satisfied by the nodes below, and
that pending backward modalities of the node below are consistent with the
added node. Note that in the case of counting formulas, in the local entailment
relation, it is only checked whether the nodes contains the modal information
required to navigate to the counted nodes. Such information is represented by
the nav function.

In order to properly check the satisfaction of counting formulas, we actually
need to perform the navigation of the trails occurring in the counting formulas.
For that purpose, we will refer to nodes in a non empty tree, by means of a
unique path (sequences of modal symbols) leading to them from the root, in
the following manner, where i = 1,2.
(n,Γ1,Γ2)(ε) = n (n,Γ1,Γ2)(ρi) = Γi (n,Γ1,Γ2)(ρii) = (n,Γ1,Γ2)

Now, we are able to define a global entailment relation as given in φtrees in
Figure 4.10. This relation extends the local entailment relation with checks for
counting formulas that actually count nodes.

We conclude the preliminaries by introducing some final notations. The
root of a tree is defined as follows.

root(∅) = ∅
root((n,Γ1,Γ2)) = n

A tree Γ satisfies a formula φ, if there is a path ρ, such that Γ(ρ) ⊢ φ, and
neither ⟨1⟩⊺ nor ⟨2⟩φ occur in root(Γ). We write Γ ⊩ φ, when Γ satisfies φ.
Given a set of trees ST , we write ST ⊩ φ, when there is a tree in ST satisfying
φ.
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Figure 4.11 Enriched µ-calculus: occurrences bound functions

maxK(p) =maxK(¬p) =maxK(¬⟨m⟩⊺) =maxK(⊺) =maxK(µx.φ) = 0
maxK(φ1 ∧ φ2) =maxK(φ1 ∨ φ2) =maxK(φ1) +maxK(φ2)
maxK(⟨m⟩φ) =maxK(φ)
maxK(⟨α⟩φ#k) = k + 1

nmax(n,Γ1,Γ2) = max(nmax(n,Γ1),nmax(n,Γ2))
nmax(n, (n,Γ1,Γ2)) = 1 + nmax(n,Γ1,Γ2)
nmax(n, (n′,Γ1,Γ2)) = nmax(n,Γ1,Γ2),where n ≠ n′
nmax(n,∅) = 0

4.2.3 The Algorithm

We are now ready to present the algorithm, which is parametrized bymaxK(φ)
(defined in Figure 4.11), the maximum number of occurrences of a given node
in a path from the root of the trees to a leaf.

The algorithm builds consistent candidate trees bottom up, and checks at
each step if one of the built tree satisfies the formula, returning 1 if it is the
case. As the set of nodes from which to build the trees is finite, it evetually
stops and returns 0 if no satisfying tree has been found.

Algorithm 2 µ-Calculus with graded paths: Check Satisfiability of φ
ST ← ∅
repeat
AUX ← {(n,Γ1,Γ2) ∣ {we extend the trees}

nmax(n,Γ1,Γ2) ≤maxK(φ) + 2 {with an available node}
∆(n, root(Γi)) {checking consistency}
where Γi ∈ ST ∪ {∅} andi = 1,2}

if AUX ⊆ ST then
return 0 {no new tree was built}

end if
ST ← ST ∪AUX

until ST ⊩ φ
return 1

To bound the size of the trees that are built, we restrict the number of
identical nodes in paths from the root to leaves by maxK(φ), defined in Fig-
ure 4.11. The function nmax is in charge of counting the identical nodes in
paths from the root to the leaves, and it is also defined in Figure 4.11.

Recall that counting formulas tested by the algorithm of Subsection 3.3.3
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counts only children nodes. This case is covered, in this Section, by the count-
ing formulas with the trail 1,2⋆. Hence, since the algorithm introduced here
operates basically in the same manner (triples are formed bottom up), the
corresponding formula for the example of Figure 3.14 is p1 ∧ ⟨12⋆⟩p>22 . The
algorithm builds basically the same triples.

As another example, consider now the following formula.

p1 ∧ ⟨1⟩⟨(1∣2)⋆⟩p>42
The lean is the following set, where ψ = µx.(p2∧c)∨⟨1⟩x∨⟨2⟩x, c is the counting
proposition corresponding to ⟨(1∣2)⋆⟩p>42 , m = 1,2,1,2, and p3 is a proposition
not occurring in the original formula.

{p1, p2, c, p3, ⟨m⟩⊺, ⟨1⟩⟨(1∣2)⋆⟩p>42 , ⟨1⟩ψ, ⟨2⟩ψ}
The following leaf is built in the first step of the algorithm.

Γ0 = ({p2, c, ⟨2⟩⊺},∅,∅)
In the second step, we obtain the following subtrees.

Γ1 = ({p2, c, ⟨2⟩⊺, ⟨1⟩⊺, ⟨2⟩ψ},∅,Γ0)
Γ2 = ({p2, c, ⟨2⟩⊺, ⟨2⟩⊺, ⟨2⟩ψ},∅,Γ0)

A new tree with Γ1 and Γ2 as subtrees is formed in step 3.

Γ3 = ({p2, c, ⟨1⟩⊺, ⟨2⟩⊺, ⟨1⟩ψ, ⟨2⟩ψ, ⟨1⟩⊺},Γ1,Γ2)
We conclude in step 4 by finding the following satisfying triple, which corre-
sponds to the model of Figure 4.6.

({p1, ⟨1⟩⊺, ⟨1⟩ψ, ⟨1⟩⟨(1∣2)⋆⟩p>42 },Γ3,∅)
4.3 Correctness and Complexity

Proving termination of the algorithm is straightforward, as only a finite number
of trees may be built and the algorithm stops as soon as it cannot build new
trees.

In this Section, we show that the algorithm is sound and complete: given
a formula, it is satisfiable if and only if the algorithm returns 1.

We conclude with an analysis of the complexity of the algorithm.

4.3.1 Soundness

If the algorithm terminates with a candidate tree, we show that the initial
formula is satisfiable.

We prove soundness similarly as in Section 3.4.1. First we build a tree
structure out of the φtree Γ that makes the algorithm to stop. Such a tree is
defined by K(Γ) (Definition 3.4.1).
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Theorem 4.3.1 (Soundness). Given a formula φ, if the satisfiability algorithm
returns 1, due to Γ ⊩ φ (Γ ∈ ST ), then K(Γ) satisfies φ.

Proof. We proceed by induction on the structure of φ. All cases, but the
one of counting formulas, are exactly the same as the ones in the proof of
Theorem 3.4.1.

We now consider the case of counting formulas ⟨α⟩ψ#k. In the greater than
case >, we rely on the k + 1 selected nodes that have to satisfy ψ ∧ c thus ψ. In
addition, in the less than case ≤, every node that is not counted has to satisfy¬ψ ∧ ¬c, so in particular ¬ψ. In both cases we conclude by induction.

4.3.2 Completeness

Our proof proceeds in two steps. We first build a φtree that satisfies the
formula, then we show it is actually built by the algorithm.

Assume that a formula φ is satisfiable by a tree K. We consider the smallest
such tree (i.e., the tree with the fewest number of nodes) and fix n⋆, a node
witnessing satisfiability.

We start by annotating counted nodes along with their corresponding count-
ing proposition, yielding a new tree Kc.

Definition 4.3.1. Given a formula φ satisfied by a smallest tree K at node
n⋆, we annotate nodes counted by counting subformulas of φ, yielding a new
tree Kc as follows.

• The nodes and shapes of the trees are the same: NK = NKc , and RK =RKc .

• By annotate, we mean enriching the labelling function of Kc, such that it
labels the counted nodes with their corresponding counting proposition.
Such counting propositions are special propositions that can occur in the
same node with other propositions.

– We first copy the labelling function of K: for every node n, ifLK(n) = p, then LKc(n) = p.
– The annotation procedure then starts from n⋆ and by induction on

φ, as follows. For formulas with no counting subformula, including
recursion, we stop. For conjunction and disjunction of formulas,
we recursively annotate according to both subformulas. For modal-
ities, we recursively annotate from the node under the modality.
For ⟨α⟩ψ#k, we annotate every counted node with a fresh counting
proposition corresponding to the formula: for every node n such
that n ∈ [[ψ]]KV , we have that LKc(n) = c. For ⟨α⟩ψ>k, we annotate
exactly k + 1 nodes.

We now show K and Kc are equivalent.

Lemma 4.3.1. A formula is satisfied by a tree K if and only if it is also
satisfied by Kc.
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Figure 4.12 Formula induced by a lean

ψ ∈ lean(φ)
ψ ∈ lean(φ)

ψ1 ∈ lean(φ) ψ2 ∈ lean(φ)
ψ1 ∧ ψ2 ∈ lean(φ)

ψi ∈ lean(φ)
ψ1 ∨ ψ2 ∈ lean(φ)

⊺ ∈ lean(φ)
ψ /∈ lean(φ)
¬ψ ∈ lean(φ)

Proof. We proceed by recursion on the derivation n⋆ ∈ [[φ]]K∅ . The cases where
no counting formula is involved, thus including fixpoints, are immediate, as
the selected nodes are identical. The disjunction, conjunction, and modality
cases are also immediate by induction. The interesting cases are the counting
formulas.

For ⟨α⟩ψ>k, as there are exactly k + 1 nodes annotated, the property is
true by induction. For ⟨α⟩ψ≤k, we rely on the fact that every counted node
is annotated. We conclude by remarking that ψ does not contain a counting
formula, thus we have [[ψ]]KV = [[ψ]]KV and [[¬ψ]]KV = [[¬ψ]]KV .

We now reuse the Definition 3.4.2 of lean labelled trees Γ(Kc), which will
be called simply Γ in the remainder of the Subsection.

We now check that Γ is consistent, starting with local consistency.
In the following, we say a formula ψ is induced by the lean of φ, written

ψ ∈ lean(φ), if it consists of the boolean combination of subformulas from the
lean as defined in Figure 4.12.

Lemma 4.3.2. Let ⟨m⟩ψ be a formula in lean(φ), and let ψ′ be ψ after un-
folding its fixpoint formulas not under modalities. We have ψ′ ∈ lean(φ).
Proof. By definition of the lean and of the ∈ relation.

Lemma 4.3.3. Let ψ be a formula induced by lean(φ). We have n ∈ [[ψ]]K∅ if
and only if nφ ⊢ ψ.
Proof. We proceed by induction on ψ. The base cases (the formula is in the
φ-node or is a negation of a lean formula not in the φ-node) hold by definition
of nφ. The inductive cases are straightforward as these formulas only contain
fixpoints under modalities.

Lemma 4.3.4. Let n1 and n2, such that R(n1,m) = n2, with m ∈ {1,2}. We
have ∆m(nφ

1 , n
φ
2).

Proof. Let ⟨m⟩ψ be a formula in lean(φ). We show that ⟨m⟩ψ ∈ nφ
1 ⇐⇒

nφ
2 ⊢ ψ. We have ⟨m⟩ψ ∈ nφ

1 if and only if n1 ∈ [[⟨m⟩ψ]]K∅ by definition of nφ
1 ,

which in turn holds if and only if n2 = R(n1,m) ∈ [[ψ]]K∅ . We now consider ψ′
which is ψ after unfolding its fixpoint formulas not under modalities. We have[[ψ′]]K∅ = [[ψ]]K∅ and we conclude by Lemmas 4.3.2 and 4.3.3.
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We now turn to global consistency, taking counting formulas into account.

Lemma 4.3.5. Let φs be a subformula of φ, and ρ be a path from the root in
K such that K(ρ) ∈ [[φs]]K∅ . We then have Γ(ρ) ⊢ φs.

Proof. We proceed by induction on φs.
If φs does not contain any counting formula, we consider φ′s which is φs after

unfolding its fixpoint formulas not under modalities. We have [[φ′s]]K∅ = [[φs]]K∅
and φ′s ∈ lean(φ). We conclude by Lemma 4.3.3.

For most inductive cases, the proof is immediate by induction, as the for-
mula size decreases.

For ⟨α⟩ψ>k, we have by induction for every counted node Γ(ρρ′) ⊢ ψ and
Γ(ρρ′) ⊢ c. We conclude by the conjunction rule and by the counting rule of
Figure 4.9.

For ⟨α⟩ψ≤k, we proceed as above for the counted nodes. For the nodes that
are not counted, we have Γ(ρρ′) ⊢ ¬ψ by Lemma 4.3.3 (since ¬ψ ∈ lean(φ)).
We conclude by remarking that the node is not annotated by c, hence Γ(ρρ′) ⊢¬c.

In order to show the algorithm can build Γ, we first need to show there is a
bound on the number of identical nodes occurring in a path from the root to a
leaf. We proceed in two steps: first we show that counted nodes (with counted
propositions) imply a bound on the number of identical φ-nodes on a branch
for a smallest tree. Second, we show that this minimal marking is bound by
maxK(φ).

We recall that φ is a satisfiable formula and Kc is a smallest tree such that
φ is satisfied, and n⋆ is a witness of satisfiability. In the following, we call
counted nodes and node n⋆ annotations.

Definition 4.3.2 (Projection). Let ρ be a path from the root of the tree to a
leaf. An annotation projects on ρ at ρ1 if ρ = ρ1ρ2, the annotation is at ρ1ρm,
and ρ2 shares no prefix with ρm.

Lemma 4.3.6. Let Kc be the annotated tree satisfying a formula φ, ρ a path
from the root of the tree to a leaf, n1 and n2 two distinct nodes of ρ such
that nφ

1 = nφ
2 . Then either annotations projects both on ρ at n1 and n2, or an

annotation projects strictly between n1 and n2.

Proof. We proceed by contradiction: we assume there is no annotation that
projects between n1 and n2 and at most one of them has an annotation that
projects on it. Without loss of generality, we assume that n2 is below n1 in the
tree.

Assume neither n1 nor n2 is annotated (through projection). We consider
the tree Ks where n2 is “grafted” upon n1. Formally, let ρ1 be the path to
n1 and ρ1ρ2 the path to n2. We remove every node whose path is of the
form ρ1ρ3 where ρ2 is not a prefix of ρ3, and we also remove node n2. The
mapping RKs from nodes and modalities to nodes is the same as before for
the node that are kept except for n1, where RKs(n1,1) = RKc(n2,1) and
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RKs(n1,2) = RKc(n2,2). For every path ρ of Γ, let ρs be the potentially
shorter path if it exists (i.e., if it was not removed when pruning the tree).
More precisely, if ρ′ = ρ′1ρ′3 where ρ′1 is a prefix of ρ1 and the paths are disjoint
from there, then Γs(ρ′) = Γ(ρ′). If ρ′ = ρ1ρ2ρ3, then Γs(ρ1ρ3) = Γ(ρ′).

We now show that Γs still satisfies φ at n⋆, a contradiction since this tree
is strictly smaller than Γ.

First, as there was no annotation projected, n⋆ is still part of this tree at
a path ρs. We show that we have Γs(ρs) ⊢ φ by induction on the derivation
Γ(ρ) ⊢ φ. Let Γ(ρ′) ⊢ φ′ in the derivation, assuming that ρ′s is defined.

The case where φ′ does not mention any counting formula is trivial: Γ(ρ′) =
Γs(ρ′s) thus local entailment is immediate.

Conjunction and disjunction are also immediate by induction.
We now turn to the modality case, ⟨m⟩φ′ where φ′ contains a counting

formula. If ρ′ is neither ρ1 nor ρ1ρ2, we deduce from the fact that ρ′s is defined
that (ρ′m)s is also defined and we conclude by induction. We now assume that
ρ′ is either ρ1 or ρ1ρ2 and find a contradiction. First, remark that Γ(ρ′) ⊢ ⟨m⟩φ′
implies that the navigation generated by ⟨m⟩φ′ is in Γ(ρ1) = Γ(ρ1ρ2). As
each syntactic occurrence of a counting formula mentions a distinct counting
proposition c, this is possible only if the counting formula is under a fixpoint
or under another counting formula, both of which are impossible.

We finally turn to the counting case ⟨α⟩ψ#k. We say that a path does
not cross over when this path does not contain n1 nor n2. For nodes that
are reached using paths that do not cross over, we conclude by induction that
they are also counted. We show that the remaining nodes reached through a
crossover remain reachable (there cannot be any counted node in the part of
the tree that is removed since counted nodes are annotated and there was no
annotation in the part removed). Without loss of generality, assume that ρ′ is
a prefix of ρ1 (the counting formula is in the “top” part of the tree), and let ρn
be the path from the counting formula to the counted node (ρn is an instance
of the trail α). This path is of the shape ρ′1ρ2ρc, with ρ1 = ρ′ρ′1. We now show
that the path ρ′1ρc is an instance of α if and only if ρn is an instance of the
trail, thus the same node is still reached.

Recall that α is of the shape α1, . . . ,αn,αn+1 where α1 to αn are of the
form α⋆ri and where αn+1 does not contain a repeated trail. We say that a
prefix ρp of a path ρ stops at i if there is a suffix ρs such that ρpρs is still a
prefix of ρ, ρpρs ∈ α1, . . . ,αi, and there is no shorter suffix ρ′s and j such that
ρpρ

′
s ∈ α1, . . . ,αj . (Intuitively, αi is the trail being used when matching the

end of ρp.) If there are several satisfying indices i, we consider the smallest.
We first show that a counting proposition is necessarily mentioned in a

formula of nφ
2 , by contradiction. Assume no counting proposition is mentioned,

yet the counting crossed-over. This can only occur for a “less than” counting
formula that reaches n2 which is not counted (because the formula was false),
and if there is no path whose ρn is a strict prefix that is an instance of α
(otherwise, by definition of the lean and of nav (Figure 4.7), a formula of
the form nav(α′, (ψ ∧ c)∨ (¬ψ ∧¬c)) would be true and thus would be present,
contradicting the assumption that no counting proposition is mentioned). Since
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nφ
1 = nφ

2 , the same is true for nφ
1 , a direct contradiction to the fact that n2 is

also reached by the trail. Thus counting propositions are mentioned in nφ
1 and

nφ
2 .
We next show that there are i ≤ j ≤ n such that both ρ′1 stops at i and ρ′1ρ2

stop at j, i.e., neither i nor j may be n + 1. Recall that αn+1 does not contain
a repeated subtrail. Thus every formula of nφ

2 mentioning c is of the form
nav(α′,ψ), where α′ does not contain a repetition. We consider the largest
such formula. Since n1 is before n2 in the path from the counting node to the
counted node, a similar formula with a larger trail or with a repetition must
occur in nφ

1 , contradicting nφ
1 = nφ

2 .
Consider next the suffixes ρ1s and ρ2s computed when stating that the paths

stop at i and j. These suffixes correspond to the path matching the end of αi

and αj , respectively (before the next iteration or switching to the next subtrail).

They have matching formulas in nφ
1 and nφ

2 . As the formulas are present in
both nodes, then the remainder of the paths (ρ2ρc and ρc) are instances of(ρ1s ∣ρ2s)αi . . .αn+1, thus ρ′1ρc is an instance of α if and only if ρn is.

In the case of “greater than” counting, we conclude immediately by induc-
tion as the same nodes are selected (thus there are enough). In the case of
“less than”, we need to check that no new node is counted in the smaller tree.
Assume it is not the case for the formula ⟨α⟩ψ≤k, thus there is a path ρn ∈ α
to a node satisfying ψ. As the same node can be reached in Γ, and as we have
Γ(ρ′ρn) ⊢ ¬ψ by induction, we have a contradiction.

This concludes the proof when neither n1 nor n2 is annotated. The proof
is identical when n2 is annotated. If n1 is annotated, we look at the first
modality between n1 and n2. If it is a 1, then we build the smaller tree by
doingRKs(n1,1) =RKc(n2,1) (we remove the 2 subtree from n2 instead of n1).
Symmetrically, if the first modality is a 2, we consider RKs(n1,2) =RKc(n2,2)
as smaller tree. The rest of the proof proceeds as above.

We are now ready to show the algorithm consistently builds Γ.

Theorem 4.3.2 (Completeness). Given a smallest model K of a formula φ,
the algorithm constructs the satisfying tree Γ(Kc).
Proof. We proceed by induction on the height of K.

Since leaves are produced by the algorithm in the first step, the base case
is immediate.

Let K1 and K2 the two main subtrees of Kc. By induction we know the
trees Γ(Ki) (i = 1,2) are already in ST .

That RKc implies ∆ comes from Lemma 4.3.4.
We now show the root node is available to be joined, by means of ∆, with

Γ(Ki). By Lemma 4.3.6, we know there are at most k + 1 identical nodes,
where k is the number of annotations, in every path from the root to a leaf.
The number of annotations is l, where l is the number of counted nodes. We
show by immediate induction on the formula φ that l is bound by maxK(φ),
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as defined in Figure 4.11. We conclude by remarking that maxK(φ)+ 2 is the
number of identical nodes we allow in the algorithm.

4.3.3 Complexity

We now show that the time complexity of the satisfiability algorithm is expo-
nential with respect to the formula size. This is achieved in two steps: we first
show that the lean size is linear in the formula size, then we show that the
algorithm has a single exponential complexity with relation to the lean size.

Lemma 4.3.7. The lean size is linear in terms of the original formula size.

Proof Sketch. First note that the size of the lean is the number of elements it
contains; the size of each element does not matter.

It was shown in [Genevès et al., 2007] that the size of the lean generated
by a non-counting formula is linear with respect to the formula size.

We now describe the case for counting formulas. The lean consists of propo-
sitions and of modal subformulas, including the ones generated by the naviga-
tion of counting formulas (Figure 4.7). Moreover, each counting formula adds
one fresh counting proposition. In the case of “less than” formulas ⟨α⟩ψ≤k, a
duplication occurs due to the consideration of the negated normal form of ψ.
Since there is no counting under counting, this duplication and the fact that
the negated normal form of a formula is linear in the size of the original formula
result in the lean remaining linear. Another duplication occurs in the case of
counting formulas of the form ⟨α1∣α2⟩ψ#k. This duplication does not double
the size of the lean, however, since ψ still occurs only once in the lean, thus
the number of elements in the lean induced by nav(α1,ψ) ∨ nav(α2,ψ) is the
same as the sum of the ones in nav(α1,ψ) and in nav(α2, ⋅).
Theorem 4.3.3. The satisfiability algorithm for the logic is decidable in time
2O(n), where n is the size of the lean.

Proof Sketch. The maximum number of considered nodes is the number of
distinct tree nodes which is 2n, the number of subsets of the lean. For a given
formula φ, the number of occurrences of the same node in the tree is bounded
by maxK(φ) ≤ k∗m, where k is the greatest constant occurring in the counting
formulas and m is the number of counting subformulas of φ. Hence the number
of steps of the algorithm is bounded by 2n ∗ k ∗m.

At each iteration, the main operation performed by the algorithm is the
composition of trees stored in AUX. The cost of each iteration consists in: the
different searches needed to form the necessary triples (n,Γ1,Γ2), the nmax
function and ∆. Since the total number of nodes is exponential, and the num-
ber of different subtrees too, therefore the maximum number of newly formed
trees (triples) at each step has also an exponential bound. The function nmax
performs a single traversal of the tree which is also exponential. Since the
entailment relation involved in the definition of ∆ is local, ∆ is performed in
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linear time. Computing the containment AUX ⊆ ST and the union ST ∪AUX
are linear operations over sets of exponential size.

The stop condition of the algorithm is checked by the global entailment
relation. It involves traversals parametrized by the number of trees, the number
of nodes in each tree, the number of traversals for the entailment relation of
counting formulas, and maxK(φ). Its time complexity is bounded by (2n ∗k ∗
m)3.

Hence, the total time complexity of the algorithm is bounded by (2n ∗ k ∗
m)k′ , for some constant k′.

4.4 Application to XML

We now show the logic can be used as a reasoning framework for XPath decision
problems in the presence of XML types, where expressions can have counting
constraints.

Counting constraints on both XPath expressions and XML Types have been
already considered in Sections 3.5 and 3.6, respectively. Such constraints can
only be imposed on children nodes. In this Section, the navigation involved
in the counting constraints can be any arbitrary XPath expression, that is, a
multi-directional and recursive path.

4.4.1 XPath

We have already introduced an extension of Core XPath with counting con-
straints on children in Section 3.6. An example of a XPath expressions with
counting on children is the following.

/company/personnel[count(employee)> 10000]/name

Such expression selects the name of companies with more than 10000 em-
ployees. The node of employees are assumed to be children nodes of the per-
sonnel nodes.

We also show in Section 3.6 how to use graded modalities of µ-calculus
to model the counting constraints. For instance, the following expressions are
equivalent.

ancestor::p1[count(child ∶∶ p2) ≤ 5]
(p1 ∧ ⟨1⟩µx.⊺ ∨ ⟨1⟩x ∨ ⟨2⟩x) ∧ p≤52

The XPath specification allows counting on other nodes than children nodes.
In particular, it is allowed to count on nodes reachable by means of an arbitrary
XPath expressions. For instance, consider the following expression.

/company[count(descendant/employee)> 10000]/name

We now extend the Core XPath language with counting constraints defined
in Figure 4.13. The interpretation of XPath expressions is formally defined in
Figure 3.16.
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Figure 4.13 Syntax of Core XPath expressions

Axis ∶= self ∣ child ∣ parent ∣ descendant ∣ ancestor ∣
following-sibling ∣ preceding-sibling ∣ following ∣ preceding

NameTest ∶= QName ∣ ∗
Step ∶= Axis ∶∶ NameTest

PathExpr ∶= PathExpr/PathExpr ∣ PathExpr[Qualifier] ∣ Step
Qualifier ∶= PathExpr ∣ Qualifier and Qualifier ∣ Qualifier or Qualifier ∣

not Qualifier ∣ CountExpr ∣ @n

QualifierC ∶= PathExprC ∣ QualifierC and QualifierC ∣ QualifierC or QualifierC ∣
not QualifierC ∣ @n

PathExprC ∶= PathExprC/PathExprC ∣ PathExprC[QualifierC] ∣ Step
CountExpr ∶= count(PathExprC)#k

# ∶= ≤∣>∣=
XPathExpr ∶= PathExpr ∣ /PathExpr ∣ XPathExpr union PathExpr ∣

XPathExpr intersect PathExpr ∣
XPathExpr except PathExpr

Logical formulas capture the aforementioned XPath counting constraints.
For example, consider the following XPath expression:

child::a[count(descendant::b[parent::c])>5]
This expression selects the children nodes named “a” provided they have

more than 5 descendants which (1) are named “b” and (2) whose parent is
named “c”. The logical formula denoting the set of children nodes named “a”
is:

ψ = a ∧ µx.⟨1⟩⊺ ∨ ⟨2⟩x
The logical translation of the above XPath expression is:

ψ ∧ ⟨1⟩⟨(1∣2)⋆⟩(b ∧ µx.⟨1⟩c ∨ ⟨2⟩x)>5
This formula holds for nodes selected by the XPath expression.
Let consider another example (XPath expression e1):

child::a/child::b[count(child::e/descendant::h)>3]
Starting from a given context in a tree, this XPath expression navigates to
children nodes named “a” and selects their children named “b”. Finally, it
retains only those “b” nodes for which the qualifier between brackets holds.
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Figure 4.14 Translation of XPath counting expressions into graded paths

/count(P )0qχ = @n ∧ ⟨(1∣2)⋆(1∣2)⋆⟩(/P 0χ∧@n)#k

The first path can be translated in the logic as follows:

ϑ = b ∧ µx.⟨1⟩(a ∧ µy.⟨1⟩⊺ ∨ ⟨2⟩y) ∨ ⟨2⟩x
The counting part requires a more sophisticated translation in the logic.

This is because it makes implicit that “e” nodes (whose existence is simply
tested for counting purposes) must be children of selected “b” nodes. The
translation of the full aforementioned XPath expression is as follows:

ϑ ∧@n ∧ ⟨(1∣2)⋆, (1∣2)⋆⟩η>3
where @n is a new fresh nominal used to mark a “b” node which is filtered by
the qualifier and the formula η describes the counted “h” nodes:

η = h ∧ µx.⟨1⟩(e ∧ µy.⟨1⟩@n ∨ ⟨2⟩y) ∨ ⟨2⟩x ∨ ⟨1⟩x
Intuitively, the general idea behind the translation is to first translate the
leading path, use a fresh nominal for marking a node which is filtered, then
find at least “3” instances of “h” nodes from which we can reach back the
marked node via the inverse path of the counting formula.

Since trails make it possible to navigate but not to test properties (like
existence of labels), we test for labels in the counted formula η and we use a
general navigation (1∣2)⋆(1∣2)⋆ to look for counted nodes everywhere in the
tree. Introducing the nominal is necessary to bind the context properly (with-
out loss of information). Indeed, the XPath expression e1 makes implicit that
a “e” node must be a child of a “b” node selected by the outer path. Using
a nominal, we restore this property by connecting the counted nodes to the
initial single context node.

Note the only difference of the XPath expressions defined in Figure 4.13 with
respect to the expressions defined in Figure 3.15 is that counting expressions
in Figure 4.13 allow arbitrary XPath expressions with no nested counting.
Hence, we reuse the definition of the translation defined in Figure 3.18. and
we only update the translation of counting expressions occurring in qualifiers
(Figure 4.14).

Lemma 4.4.1. The translation of Core XPath expressions with counting con-
straints into the logic is linear.

It is proven by structural induction in a similar manner as done in Sec-
tion 3.5 or by [Genevès et al., 2007] (in which the translation is proven for
expressions without counting constraints). For counting formulas, the use of
nominals and the general (constant-size) counting trail make it possible to avoid
duplication of trails so that the translation remains linear.
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4.4.2 XML Types

Regular Tree Types, defined in Section 3.6, capture most of the schemas in
use today [Murata et al., 2005]. The logic can express all regular tree lan-
guages (it is easy to prove that regular expression types in the manner of e.g.,
[Hosoya et al., 2005] can be linearly translated into the logic: see Section 3.6
or [Genevès et al., 2007]).

In practice, schema languages often provide shorthands for expressing car-
dinality constraints on node occurrences. XML Schema notably offers two
attributes minOccurs and maxOccurs for this purpose. For instance, the fol-
lowing XML schema definition:

<xsd:element name="a">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="b" minOccurs="4" maxOccurs="9"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

is a notation that restricts the number of occurrences of “b” nodes to be at
least 4 and at most 9, as children of “a” nodes. The goal here is to have a
succinct notation for expressing regular languages which could otherwise be
exponentially larger if written with usual regular expression operators. The
above regular requirement can be translated as the formula:

φ ∧ ⟨1⟩(⟨2⋆⟩b>3 ∧ ⟨2⋆⟩b≤9)
where φ corresponds to the regular tree type a[b∗] as follows:

φ = (a ∧ (¬⟨1⟩⊺ ∨ ⟨1⟩ψ)) ∧ ¬⟨2⟩⊺
ψ = µx. (b ∧ ¬⟨1⟩⊺ ∧ ¬⟨2⟩⊺) ∨ (b ∧ ¬⟨1⟩⊺ ∧ ⟨2⟩x)

This example only involves counting over children nodes. The logic allows
counting through more general trails, and in particular arbitrarily deep trails.
Trails corresponding to the XPath axes “preceding, ancestor, following” can be
used to constrain the context of a schema. The “descendant” trail can be used
to specify additional constraints over the subtree defined by a given schema.
For instance, suppose we want to forbid webpages containing nested anchors
“a” (whose interpretation makes no sense for web browsers). We can build the
logical formula f which is the conjunction of a considered schema for webpages
(e.g. XHTML) with the formula a/descendant::a in XPath notation. Nested
anchors are forbidden by the considered schema iff f is unsatisfiable.

As another example, suppose we want paragraph nodes (“p” nodes) not to
be nested inside more than 3 unordered lists (“ul” nodes), regardless of the
schema defining the context. One may check for the unsatisfiability of the
following formula:

p ∧ ⟨(1∣2)⋆,1⟩ul>3
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We now conclude with a logic-based reasoning framework for the XML
decision problems defined in Subsection 3.6.3.

Theorem 4.4.1. In the context of XPath and XML schema languages with car-
dinality constraints, the XML decision problems of containment, equivalence,
emptiness, overlap and coverage, are decidable in exponential time with respect
to the problem size.

4.5 Conclusion

In this Chapter we have extended the alternation-free µ-calculus with converse
for finite trees with graded paths. From a given context, graded paths allow
describing numerical constraints on nodes reachable by some regular paths.
The novelty of this logic is that paths can be multidirectional and recursive
such as those obtained by the composition of child, parent, descendant, and
ancestor XPath axes.

A tableau-based satisfiability algorithm for the logic is presented and proved
correct. The computational complexity of the algorithm is shown to be in
exponential time with respect to the original formula size.

We also introduced a linear translation of XPath expressions into the logic.
The counting features of this logic allow capturing the counting constraints of
arbitrary XPath expressions except those involving nesting. We also showed,
through examples, the potential benefits of counting deeply in XML schema
languages by means of conjunctions of schemas and counting path expressions.
All traditional decision problems of XPath expressions such as containment,
equivalence and coverage are solved in exponential time by means of the satis-
fiability decision procedure presented here.

The logic presented in this chapter is more general than the fully enriched
µ-calculus of Chapter 3. However, we syntactically disallow for the graded
paths the nesting of counting and counting under recursion. Therefore, there
are still some kinds of counting constraints that cannot be expressed by this
logic in a succinct manner.



Chapter 5

Conclusions and Perspectives

We now summarize the main contributions of this work, and propose further
research directions.

5.1 Summary of Contributions

The main contributions of this thesis are twofold: first, we showed that the
fully enriched µ-calculus for trees is decidable unlike its graph counterpart.
The fully enriched µ-calculus corresponds to µ-calculus equipped with converse
programs, graded modalities, and nominals. Graded modalities are special
modal operators able to express numerical constraints on the number children
nodes. Second, we designed a tree logic with graded paths. Graded paths allow
the specification of cardinality constraints on nodes that are ”deeper” in the
tree beyond the children nodes.

5.1.1 Graded Modalities

[Bonatti and Peron, 2004] showed the undecidability of fully enriched µ-calculus.
We showed in Chapter 3 that the fully enriched µ-calculus is decidable when
interpreted on finite trees. More precisely, we developed and proved correct a
tableau-based satisfiability algorithm for the logic. The computational com-
plexity of the algorithm is exponential with respect to the formula size, even
when the numbers occurring in the formulas are coded in binary.

[Dal-Zilio et al., 2004] and [Seidl et al., 2004] developed a similar tree logic
able to express Presburger constraints on children nodes. These constraints
are expressed via formulas of Presburger arithmetic, which are more gen-
eral than the numerical restrictions introduced here for graded modalities.
Compared to the the fully enriched µ-calculus presented here, the work of
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[Dal-Zilio et al., 2004] and [Seidl et al., 2004] do not support backward navi-
gation even between sibling nodes nor deep counting.

In Chapter 3, we presented a linear translation of XML types and XPath
expressions with counting operators into the logic. This translation allows for-
mulating succinctly typical problems on XPath queries such as satisfiability,
type checking under regular tree types constraints, containment, or equiva-
lence. The main navigational features of XPath, usually called Core XPath
are captured by the logic: recursive navigation (descendant axis), backward
navigation (parent and ancestor axis), qualifiers, and counting operators over
children nodes (child axis).

5.1.2 Graded Paths

In Chapter 4, we extended the µ-calculus with converse modalities and nom-
inals with graded paths. In contrast with the logic of Chapter 3, counting
operators involved in the graded paths are restricted not to occur under the
scope of fixpoints or other counting operators.

[Demri and Lugiez, 2006] extended the logic of [Dal-Zilio et al., 2004] with
Presburger constraints, by means of regular forward paths, on nodes with a
scope that goes beyond children nodes. They proved that such a logic is unde-
cidable. In the logic of Chapter 4, we chose a different tradeoff: comparisons
are restricted to constants but applied to nodes accessible by regular paths.
The logic with graded paths presented here supports compositions of recursive
forward and backward navigation in the same path and for both counting and
non-counting ones. This is achieved in formulas by means of fixpoint operators
and the forward and converse modalities.

With the notable exception of [Demri and Lugiez, 2006], the computational
machinery used for reasoning is automata-based. Here, we use tableaux satis-
fiability algorithms instead.

We have shown in Chapter 4 that the logic can linearly embed Core XPath
expressions and XML types enhanced with counting operators over regular
and multi-directional paths. Except the restriction that forbids the nesting of
counting operators, in contrast with the XPath fragment supported in Chap-
ter 3, the counting operators proposed in Chapter 4 are sufficient to capture
all the counting paths expressed by the XPath language (recursive and multi-
directional).

5.2 Perspectives

There are a number of interesting and promising directions for further research
that builds on the results and ideas developed in this dissertation.

Typical further research directions for this work are the extensions of tree
logics with operators in order to increase their expressivity or (and) succinct-
ness. Novel implementation techniques for these enriched logics are needed,
including algorithms that do not always perform in the worst case. Such ex-
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tensions may be motivated by practical problems not only in theory of formal
languages, but in other areas such as the verification of software and hardware.

5.2.1 Fully Graded Paths

In order to show completeness of the satisfiability algorithm of µ-calculus with
graded paths in Chapter 4, we restricted counting operators not to occur in
scope of fixpoints or other counting operators. It remains an open question to
check if this restriction can be eliminated. This can result in a much simpler
syntax for the logic and the support of XPath nested counting operators.

5.2.2 Data Values

Data values comparisons for node and attributes values in XML documents
are commonly used in XPath experessions, XSLT transformations and schema
languages such as Schematron. However, preliminary results reported in the
literature have shown that reasoning with data values can be very hard. In
particular, [Bojanczyk et al., 2009] characterized XPath fragments including
data values, in the context of FO2, and the complexity results are shown to be
ranging from NEXPTIME to 3NEXPTIME.

In the modal setting, [Jurdzinski and Lazic, 2007] identify some decidable
fragments of XPath with data equality test via an extension of µ-calculus for
trees. However, the decision algorithm presented there turned out to have a
non-primitive recursive computational cost.

A further research direction, in the setting of data trees, is the development
of decision algorithms with the logic techniques presented in this work. The
presence of both, data values and counting constraints, in reasoning frameworks
for trees has not been well-studied neither.

5.2.3 Implementations

A direct implementation of the satisfiability algorithm presented in Chapter 4
is underway. [Genevès et al., 2007] and [Tanabe et al., 2005] have shown that
tableau-based algorithms for µ-calculus can be efficiently implemented and take
full advantage of symbolic techniques such as Binary Decision Diagrams. They
have also shown that such solvers can be used successfully in practical sys-
tems to solve realistic and even large use cases. The satisfiability algorithms
developed in this thesis requires more investigations to reach the same level
of maturity. In particular, it is interesting to explore ways of combining such
solvers with satisfiability modulo solvers (SMT) to obtain the same type of
monotonic processes that allows to seek witnessing trees while propagating
the numerical constraints at the same time. It is also interesting to have
an idea of the orders of magnitudes in terms of time and memory space re-
quired to solve XML static analysis problems with counting for realistic cases.
In particular, this can provide figures for some important applications such
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as those described in [Genevès et al., 2009], [Genevès and Layäıda, 2010a] and
[Layäıda and Genevès, 2010].

5.2.4 Modular Regular Tree Types

One of the advantages of the logic developed in this thesis is its ability to
capture both paths and types. One possible use of this logic is to develop
schema languages that uses both types and path expressions. It is well known
that one of the drawbacks of schema languages such as XML Schema and
RelaxNG is their reuse. The reason behind this lies in the fact that usually
schema designers describe the types in the forward direction starting from the
root and by declaring the content models of every sub-schema fragments. If the
type of these fragments is sensitive to the context, the context information is
propagated across the different elements nesting. This process yields schemas
and sub-schemas that can be hardly reused.

An interesting alternative is to design new schema languages where the con-
text is captured by means of backward path expressions declared from within
the sub-schema. Such languages are more modular in the sense that schema
fragments can be extracted and re-used in other contexts while retaining their
contextual constraints. This will help also building some kind of modular
schema libraries that can be used as building blocks for more involved ones.

5.2.5 Verification of Programs

Applications of this work can be found in other areas such as program verifi-
cation of linked data structures. Proving correctness of programs is a crucial
part in the verification of software, such as operating or real-time systems.
The implementation of efficient high level program structures are often based
on balanced tree structures, such as AVL trees, red-black trees, splay trees, etc.

Reasoning frameworks with in-depth counting constraints, such as the ones
handled in Chapter 4, play a major role in the verification of balanced tree
structures, as presented by [Habermehl et al., 2010] and [Manna et al., 2007].

Therefore, we believe it is possible to extend the field of applications of the
reasoning frameworks developed in this work to the verification of balanced
tree structures.
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[Barceló and Libkin, 2005] Barceló, P. and Libkin, L. (2005). Temporal logics
over unranked trees. In LICS, pages 31–40. 29

[Beltyukov, 1976] Beltyukov, A. P. (1976). Decidability of the universal the-
ory of natural numbers with addition and divisibility. Zapiski Nauch. Sem.
Leningrad Otdeleniya Mathematical Institute, 60:15–28. 24

[Benedikt et al., 2003] Benedikt, M., Fan, W., and Kuper, G. M. (2003). Struc-
tural properties of XPath fragments. In Calvanese, D., Lenzerini, M., and
Motwani, R., editors, ICDT, volume 2572 of Lecture Notes in Computer
Science, pages 79–95. Springer. 25

[Bés, 2002] Bés, A. (2002). A survey of arithmetical definability. In A Tribute
to Maurice Boffa. Bulletin de la Société Mathématique de Belgique. 24
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[Grädel and Otto, 1999] Grädel, E. and Otto, M. (1999). On logics with two
variables. Theor. Comput. Sci., 224(1-2):73–113. 25
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[Layäıda and Genevès, 2010] Layäıda, N. and Genevès, P. (2010). Debug-
ging standard document formats. In Rappa, M., Jones, P., Freire, J., and
Chakrabarti, S., editors, WWW, pages 1269–1272. ACM. 96

[Lazic, 2006] Lazic, R. (2006). Safely freezing LTL. In Arun-Kumar, S. and
Garg, N., editors, FSTTCS, volume 4337 of Lecture Notes in Computer
Science, pages 381–392. Springer. 31

[Libkin and Sirangelo, 2010] Libkin, L. and Sirangelo, C. (2010). Reasoning
about XML with temporal logics and automata. J. Applied Logic, 8(2):210–
232. 31

[Lipshitz, 1976] Lipshitz, L. (1976). The diophantine problem for addition and
divisibility. Transaction of the American Mathematical Society, 235:271–283.
24

[Manna et al., 2007] Manna, Z., Sipma, H. B., and Zhang, T. (2007). Verifying
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