M. Lopez-lopez, A. Guillen-cervantes, Z. Rivera-alearez, and I. Hernandez-calderon, Hillocks formation during the molecular beam epitaxial growth of ZnSe on GaAs substrates, Journal of Crystal Growth, vol.193, issue.4, p.528, 1998.
DOI : 10.1016/S0022-0248(98)00515-6

Y. Wang, G. Meng, L. Zhang, C. Liang, and J. Zhang, Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence, Chemistry of Materials, vol.14, issue.4, p.1773, 2002.
DOI : 10.1021/cm0115564

Y. Wang, L. Zhang, C. Liang, G. Wang, and X. Peng, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires, Chemical Physics Letters, vol.357, issue.3-4, p.314, 2002.
DOI : 10.1016/S0009-2614(02)00530-4

M. Tchernycheva, L. Travers, G. Patriarche, J. C. Harmand, and G. E. Cirlin, Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis, Journal of Applied Physics, vol.102, issue.9, p.94313, 2007.
DOI : 10.1063/1.2809417

K. A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson et al., Failure of the Vapor???Liquid???Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires, Nano Letters, vol.5, issue.4, p.761, 2005.
DOI : 10.1021/nl050301c

M. Yazawa, M. Koguchi, A. Muto, and K. Hiruma, Semiconductor nanowhiskers, Advanced Materials, vol.32, issue.7-8, p.577, 1993.
DOI : 10.1002/adma.19930050715

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber et al., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Advanced Materials, vol.13, issue.2, p.113, 2001.
DOI : 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Preparation and photoluminescence properties of crystalline GeO2 nanowires, Chemical Physics Letters, vol.349, issue.3-4, p.210, 2001.
DOI : 10.1016/S0009-2614(01)01213-1

X. Liu, C. Li, S. Han, J. Han, and C. Zhou, Synthesis and electronic transport studies of CdO nanoneedles, Applied Physics Letters, vol.82, issue.12, p.1950, 2003.
DOI : 10.1063/1.1562331

S. Gradecak, F. Qian, Y. Li, H. Park, and C. M. Lieber, GaN nanowire lasers with low lasing thresholds, Applied Physics Letters, vol.87, issue.17, p.173111, 2005.
DOI : 10.1063/1.2115087

Y. S. Park, S. Lee, J. Ob, C. Park, and T. Kang, Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions, Journal of Crystal Growth, vol.282, issue.3-4, p.313, 2005.
DOI : 10.1016/j.jcrysgro.2005.05.058

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche et al., Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization, Nanotechnology, vol.18, issue.38, p.385306, 2007.
DOI : 10.1088/0957-4484/18/38/385306

C. Bougerol, R. Songmuang, D. Camacho, Y. M. Niquet, R. Mata et al., The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures, Nanotechnology, vol.20, issue.29, p.295706, 2009.
DOI : 10.1088/0957-4484/20/29/295706

URL : https://hal.archives-ouvertes.fr/hal-01003087

P. J. Pauzauskie and P. Yang, Nanowire photonics, Materials Today, vol.9, issue.10, p.36, 2006.
DOI : 10.1016/S1369-7021(06)71652-2

C. Bougerol, R. Songmuang, D. Camacho, Y. M. Niquet, and B. Daudin, Structural properties of GaN nanowires and GaN/AlN insertions grown by molecular beam epitaxy, Journal of Physics: Conference Series, vol.209, p.12010, 2010.
DOI : 10.1088/1742-6596/209/1/012010

K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson et al., A New Understanding of Au-Assisted Growth of III-V Semiconductor Nanowires, Advanced Functional Materials, vol.1, issue.10, p.1603, 2005.
DOI : 10.1002/adfm.200500157

S. G. Ihn, J. I. Song, Y. H. Kim, and J. Y. Lee, GaAs nanowires on Si substrates grown by a solid source molecular beam epitaxy, Applied Physics Letters, vol.89, issue.5, p.53106, 2006.
DOI : 10.1063/1.2245348

G. Zhang, K. Tateno, T. Sogawa, and H. Nakano, Growth and characterization of GaP nanowires on Si substrate, Journal of Applied Physics, vol.103, issue.1, p.14301, 2008.
DOI : 10.1063/1.2828165

A. L. Roest, M. A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem et al., Position-controlled epitaxial III???V nanowires on silicon, Nanotechnology, vol.17, issue.11, p.271, 2006.
DOI : 10.1088/0957-4484/17/11/S07

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, Journal of Applied Physics, vol.97, issue.11, p.114325, 2005.
DOI : 10.1063/1.1903106

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Physical Review B, vol.74, issue.12, p.121302, 2006.
DOI : 10.1103/PhysRevB.74.121302

B. J. Scheffler, W. Ohlsson, U. Riess, L. Gösele, and . Samuelson, Nanowire-based onedimensional electronics in Materials Today, Octobre, Nature Biotechnology, vol.23, p.1294, 2005.

Y. Li, F. Qian, J. Xiang, C. M. Lieber-haraguchi, T. Katsuyama et al., Materials Today, Octobre, Appl. Phys. Lett, vol.54, issue.60, p.6, 1992.

E. D. Minot, F. Kelkensberg, M. Kouwen, J. A. Van-dam, L. P. Kouwenhoven et al., Single Quantum Dot Nanowire LEDs, Nano Letters, vol.7, issue.2, p.367, 2007.
DOI : 10.1021/nl062483w

URL : http://arxiv.org/abs/cond-mat/0701119

K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, GaAs/AlGaAs Core Multishell Nanowire-Based Light-Emitting Diodes on Si, Nano Letters, vol.10, issue.5, p.1639, 2010.
DOI : 10.1021/nl9041774

R. Könenkamp, R. C. Word, and C. Schlegel, Vertical nanowire light-emitting diode, Applied Physics Letters, vol.85, issue.24, p.6004, 2004.
DOI : 10.1063/1.1836873

W. Wei, X. Bao, C. Soci, Y. Ding, Z. Wang et al., Direct Heteroepitaxy of Vertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics and Photodetection, Nano Letters, vol.9, issue.8, p.2926, 2009.
DOI : 10.1021/nl901270n

P. Lalanne, Summer school on semiconductor nanowires, 15-20 Juin, J. Vac. Sci. Tech, vol.8, p.31, 1971.

A. Cho and J. Arthur, Molecular beam epitaxy, Progress in Solid State Chemistry, vol.10, p.157, 1975.
DOI : 10.1016/0079-6786(75)90005-9

URL : https://hal.archives-ouvertes.fr/hal-01492483

X. Duan and C. M. Lieber, General Synthesis of Compound Semiconductor Nanowires, Advanced Materials, vol.12, issue.4, p.298, 2000.
DOI : 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y

D. N. Mcllroy and M. G. Norton, Nanospring formation???unexpected catalyst mediated growth, Journal of Physics: Condensed Matter, vol.16, issue.12, p.415, 2004.
DOI : 10.1088/0953-8984/16/12/R02

J. M. Blakely and K. A. Jackson, Growth of Crystal Whiskers, The Journal of Chemical Physics, vol.37, issue.2, p.428, 1962.
DOI : 10.1063/1.1701338

V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth kinetics and crystal structure of semiconductor nanowires, Physical Review B, vol.78, issue.23, p.235301, 2008.
DOI : 10.1103/PhysRevB.78.235301

V. G. Dubrovskii and N. V. Sibirev, Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires, Physical Review B, vol.77, issue.3, pp.35414-70, 2008.
DOI : 10.1103/PhysRevB.77.035414

F. Glas, J. C. Harmand, and G. Patriarche, Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors?, Physical Review Letters, vol.99, issue.14, p.146101, 2007.
DOI : 10.1103/PhysRevLett.99.146101

V. G. Dubrovskii and N. V. Sibirev, Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires, Physical Review E, vol.70, issue.3, p.31604, 2004.
DOI : 10.1103/PhysRevE.70.031604

L. E. Fröberg, W. Seifert, and J. Johansson, Diameter-dependent growth rate of InAs nanowires, Physical Review B, vol.76, issue.15, p.153401, 2007.
DOI : 10.1103/PhysRevB.76.153401

A. I. Persson, L. E. Froberg, S. Jeppesen, M. T. Bjork, and L. Samuelson, Surface diffusion effects on growth of nanowires by chemical beam epitaxy, Journal of Applied Physics, vol.101, issue.3, p.34313, 2007.
DOI : 10.1063/1.2435800

J. C. Harmand, F. Glas, and G. Patriarche, nanowire, Physical Review B, vol.81, issue.23, p.235436, 2010.
DOI : 10.1103/PhysRevB.81.235436

URL : https://hal.archives-ouvertes.fr/hal-01096617

X. L. Chen, Y. C. Lan, J. Y. Li, and Y. G. Cao, Radial growth dynamics of nanowires, Journal of Crystal Growth, vol.222, issue.3, p.586, 2001.
DOI : 10.1016/S0022-0248(00)00971-4

M. C. Plante and R. R. Lapierre, Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy, Journal of Crystal Growth, vol.286, issue.2, p.394, 2006.
DOI : 10.1016/j.jcrysgro.2005.10.024

M. C. Plante and R. R. Lapierre, Au-assisted growth of GaAs nanowires by gas source molecular beam epitaxy: Tapering, sidewall faceting and crystal structure, Journal of Crystal Growth, vol.310, issue.2, p.356, 2008.
DOI : 10.1016/j.jcrysgro.2007.10.050

M. C. Plante and R. R. Lapierre, Analytical description of the metal-assisted growth of III???V nanowires: Axial and radial growths, Journal of Applied Physics, vol.105, issue.11, p.114304, 2009.
DOI : 10.1063/1.3131676

A. Fontcuberta-i-morral, J. Arbiol, J. D. Prades, A. Cirera, and J. R. Morante, Synthesis of Silicon Nanowires with Wurtzite Crystalline Structure by Using Standard Chemical Vapor Deposition, Advanced Materials, vol.7, issue.10, p.1347, 2007.
DOI : 10.1002/adma.200602318

R. Leitsmann and F. Bechstedt, Surface influence on stability and structure of hexagon-shaped III-V semiconductor nanorods, Journal of Applied Physics, vol.102, issue.6, p.63528, 2007.
DOI : 10.1063/1.2783899

T. Akiyama, K. Sano, K. Nakamura, and T. Ito, An Empirical Potential Approach to Wurtzite-Zinc-Blende Polytypism in Group III-V Semiconductor Nanowires, Japanese Journal of Applied Physics, vol.45, issue.No. 9, p.275, 2006.
DOI : 10.1143/JJAP.45.L275

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. C-hasnain, Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates, Journal of Applied Physics, vol.104, issue.4, p.44313, 2008.
DOI : 10.1063/1.2968345

S. Cahangirov and S. Ciraci, First-principles study of GaAs nanowires, Physical Review B, vol.79, issue.16, p.165118, 2009.
DOI : 10.1103/PhysRevB.79.165118

T. Yamashita, T. Akiyama, K. Nakamura, and T. Ito, Effects of Facet Orientation on Relative Stability between Zinc Blende and Wurtzite Structures in Group III???V Nanowires, Japanese Journal of Applied Physics, vol.49, issue.5, p.55003, 2010.
DOI : 10.1143/JJAP.49.055003

M. Martensson, W. Borgström, B. J. Seifert, L. Ohlsson, and . Samuelson, Fabrication of individually seeded nanowire arrays by vapour???liquid???solid growth, Nanotechnology, vol.14, issue.12, pp.1255-90, 2003.
DOI : 10.1088/0957-4484/14/12/004

S. G. Ihn, J. Song, Y. Kim, and J. Y. Lee, GaAs nanowires on Si substrates grown by a solid source molecular beam epitaxy, Applied Physics Letters, vol.89, issue.5, p.53106, 2006.
DOI : 10.1063/1.2245348

G. Zang, K. Tateno, T. Sogawa, and H. Nakano, Growth and characterization of GaP nanowires on Si substrate, Journal of Applied Physics, vol.103, issue.1, p.14301, 2008.
DOI : 10.1063/1.2828165

S. T. Boles, C. V. Thompson, and E. A. Fitzgerald, Influence of indium and phosphine on Au-catalyzed InP nanowire growth on Si substrates, Journal of Crystal Growth, vol.311, issue.5, p.1446, 2009.
DOI : 10.1016/j.jcrysgro.2008.12.043

K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core???shell nanowires on Si(111) substrate, Nanotechnology, vol.20, issue.14, p.145302, 2009.
DOI : 10.1088/0957-4484/20/14/145302

.. Influence-de-la-température-de-croissance, 82 a) 82 b) Sur la vitesse de croissance axiale, .

.. Influence-de-la-pef-de-phosphore, 86 a), ., vol.86, issue.87

.. Influence-de-la-pef-d-'indium, 89 a) Sur la densité des, 91 II.2.2

.. Conclusions-sur-les-propriétés-structurales, 124 IV Propriétés optiques des NFs, 126 IV.2 Le confinement quantique dans les NFs, p.132

B. Ressel, K. C. Prince, and S. Heun, Wetting of Si surfaces by Au???Si liquid alloys, Journal of Applied Physics, vol.93, issue.7, p.3886, 2003.
DOI : 10.1063/1.1558996

T. Goislard-de-monsabert, Couches de Nanotubes et Filaments de Carbone pour l'Emission Froide d'électrons -Intégration Aux écrans Plats à émission de Champ, Thèse de Doctorat, 2006.

A. L. Roest, M. A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem et al., Position-controlled epitaxial III???V nanowires on silicon, Nanotechnology, vol.17, issue.11, p.271, 2006.
DOI : 10.1088/0957-4484/17/11/S07

S. A. Fortuna and X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions, Semiconductor Science and Technology, vol.25, issue.2, p.24005, 2010.
DOI : 10.1088/0268-1242/25/2/024005

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-hasnain et al., Critical diameter for III-V nanowires grown on lattice-mismatched substrates, Applied Physics Letters, vol.90, issue.4, p.43115, 2007.
DOI : 10.1063/1.2436655

J. M. Blakely and K. A. Jackson, Growth of Crystal Whiskers, The Journal of Chemical Physics, vol.37, issue.2, p.428, 1962.
DOI : 10.1063/1.1701338

V. G. Dubrovskii and N. V. Sibirev, Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires, Physical Review E, vol.70, issue.3, p.31604, 2004.
DOI : 10.1103/PhysRevE.70.031604

V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth kinetics and crystal structure of semiconductor nanowires, Physical Review B, vol.78, issue.23, p.235301, 2008.
DOI : 10.1103/PhysRevB.78.235301

M. Tchernycheva, L. Travers, G. Patriarche, J. C. Harmand, and G. E. Cirlin, Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis, Journal of Applied Physics, vol.102, issue.9, p.94313, 2007.
DOI : 10.1063/1.2809417

L. H. Tizei, T. Chiaramonte, D. Ugarte, and M. A. Cotta, III???V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?, Nanotechnology, vol.20, issue.27, p.275604, 2009.
DOI : 10.1088/0957-4484/20/27/275604

M. C. Plante and R. R. Lapierre, Analytical description of the metal-assisted growth of III???V nanowires: Axial and radial growths, Journal of Applied Physics, vol.105, issue.11, p.114304, 2009.
DOI : 10.1063/1.3131676

J. C. Harmand, F. Glas, and G. Patriarche, nanowire, Physical Review B, vol.81, issue.23, p.235436, 2010.
DOI : 10.1103/PhysRevB.81.235436

URL : https://hal.archives-ouvertes.fr/hal-01096617

T. Akiyama, K. Sano, K. Nakamura, and T. Ito, An Empirical Potential Approach to Wurtzite-Zinc-Blende Polytypism in Group III-V Semiconductor Nanowires, Japanese Journal of Applied Physics, vol.45, issue.No. 9, p.275, 2006.
DOI : 10.1143/JJAP.45.L275

M. Galicka, R. Buka?a, P. Buczko, and . Kacman, Modelling the structure of GaAs and InAs nanowires, Journal of Physics: Condensed Matter, vol.20, issue.45, p.454226, 2008.
DOI : 10.1088/0953-8984/20/45/454226

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. C-hasnain, Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates, Journal of Applied Physics, vol.104, issue.4, p.44313, 2008.
DOI : 10.1063/1.2968345

F. Glas, J. C. Harmand, and G. Patriarche, Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors?, Physical Review Letters, vol.99, issue.14, p.146101, 2007.
DOI : 10.1103/PhysRevLett.99.146101

P. Mohan, J. Motohisa, and T. Fukui, Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays, Nanotechnology, vol.16, issue.12, p.2903, 2005.
DOI : 10.1088/0957-4484/16/12/029

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson et al., Optical Properties of Rotationally Twinned InP Nanowire Heterostructures, Nano Letters, vol.8, issue.3, p.836, 2008.
DOI : 10.1021/nl072921e

S. Münch, S. Reitzenstein, M. Borgström, C. Thelander, L. Samuelson et al., -capped InP nanowires, Nanotechnology, vol.21, issue.10, p.105711, 2010.
DOI : 10.1088/0957-4484/21/10/105711

L. M. Smith, H. E. Jackson, J. M. Yarrison-rice, and C. Jagadish, Insights into single semiconductor nanowire heterostructures using time-resolved photoluminescence, Semiconductor Science and Technology, vol.25, issue.2, p.24010, 2010.
DOI : 10.1088/0268-1242/25/2/024010

URL : http://hdl.handle.net/1885/27244

I. Sommaire, 141 II Origine des directions de croissance des nanofils, .

C. De-nfs-d-'inp-sur-au, /. De-tc, and .. , 152 a) Influence, 152 b) Influence de la PEF de

L. Gao, R. L. Woo, B. Liang, M. Pozuelo, S. Prikhodko et al., Self-Catalyzed Epitaxial Growth of Vertical Indium Phosphide Nanowires on Silicon, Nano Letters, vol.9, issue.6, p.2223, 2009.
DOI : 10.1021/nl803567v

A. L. Roest, M. A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem et al., Position-controlled epitaxial III???V nanowires on silicon, Nanotechnology, vol.17, issue.11, p.271, 2006.
DOI : 10.1088/0957-4484/17/11/S07

S. T. Boles, C. V. Thompson, and E. A. Fitzgerald, Influence of indium and phosphine on Au-catalyzed InP nanowire growth on Si substrates, Journal of Crystal Growth, vol.311, issue.5, p.1446, 2009.
DOI : 10.1016/j.jcrysgro.2008.12.043

A. Fontcuberta, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Applied Physics Letters, vol.92, issue.6, p.63112, 2008.
DOI : 10.1063/1.2837191

M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, and E. I. Kauppinen, Catalyst-free growth of In(As)P nanowires on silicon, Applied Physics Letters, vol.89, issue.6, p.63119, 2006.
DOI : 10.1063/1.2336599

J. Cheng, L. Largeau, G. Patriarche, P. Regreny, G. Hollinger et al., Influence of the surface reconstruction on the growth of InP on SrTiO3(001), Journal of Crystal Growth, vol.311, issue.4, p.1042, 2009.
DOI : 10.1016/j.jcrysgro.2008.12.014

J. C. Harmand, F. Glas, and G. Patriarche, nanowire, Physical Review B, vol.81, issue.23, p.235436, 2010.
DOI : 10.1103/PhysRevB.81.235436

URL : https://hal.archives-ouvertes.fr/hal-01096617

I. Sommaire, 177 II Insertion de segments d'InAs dans les NFs 179 II

.. Formation-d-'un-puits-quantique-cylindrique-d-'inas, 187 II.4 L'interface InP

L. H. Tizei, T. Chiaramonte, D. Ugarte, and M. A. Cotta, III???V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?, Nanotechnology, vol.20, issue.27, p.275604, 2009.
DOI : 10.1088/0957-4484/20/27/275604

P. Mohan, J. Motohisa, and T. Fukui, Fabrication of InP???InAs???InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy, Applied Physics Letters, vol.88, issue.13, p.133105, 2006.
DOI : 10.1063/1.2189203

J. Dufouleur, C. Colombo, T. Garma, B. Ketterer, E. Uccelli et al., P-Doping Mechanisms in Catalyst-Free Gallium Arsenide Nanowires, Nano Letters, vol.10, issue.5, p.1734, 2010.
DOI : 10.1021/nl100157w

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Femeasurablemink, W. J. Van-enckevort et al., Twinning superlattices in indium phosphide nanowires, Nature, vol.60, issue.7220, p.369, 2008.
DOI : 10.1038/nature07570

C. Colombo, M. Hei, M. Grätzel, and A. Fontcuberta, Gallium arsenide p-i-n radial structures for photovoltaic applications, Applied Physics Letters, vol.94, issue.17, p.173108, 2009.
DOI : 10.1063/1.3125435

URL : http://infoscience.epfl.ch/record/148563

B. Salem, Rapport interne LTM, 2009.

S. Boutami, «. Microcavites, . Verticales, . Base, . Cristaux et al., Thèse soutenue à l'Ecole Centrale de Lyon, 2007.

M. C. Plante and R. R. Lapierre, Analytical description of the metal-assisted growth of III???V nanowires: Axial and radial growths, Journal of Applied Physics, vol.105, issue.11, p.114304, 2009.
DOI : 10.1063/1.3131676