J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Physics of Plasmas, vol.11, issue.2, p.339, 2004.
DOI : 10.1063/1.1578638

Y. Michel, Phénomène d'impact à haute vitesse sur cibles minces fragiles -Application au projet de Laser MégaJoule et à la problématique des débris spatiaux, 2007.

C. R. Phipps, J. R. Luke, G. G. Mcduff, and T. Lippert, Laser Ablation Powered Mini- Thruster. High-Power Laser Ablation IV, pp.833-842, 2002.

J. R. Asay, L. P. Mix, and F. C. Perry, Ejection of material from shocked surfaces, Applied Physics Letters, vol.29, issue.5, pp.284-287, 1976.
DOI : 10.1063/1.89066

J. R. Asay, Thick???plate technique for measuring ejecta from shocked surfaces, Journal of Applied Physics, vol.49, issue.12, pp.6173-6175, 1978.
DOI : 10.1063/1.324545

J. R. Asay and L. D. Bertholf, A model for estimating the effects of surface roughness on mass ejection from shocked materials, 1978.
DOI : 10.2172/6793637

P. Chapron, P. Gandeboeuf, and B. Laurent, Ejection de matière à la surface d'un matériau sous choc, Chocs, issue.23, pp.29-37, 2000.

C. L. Mader, LASL Phermex Data, 1980.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson et al., Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces, Journal of Applied Physics, vol.102, issue.1, p.13522, 2007.
DOI : 10.1063/1.2752130

M. B. Zellner, W. Vogan-mcneil, G. T. Gray, I. , D. C. Huerta et al., Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces, Journal of Applied Physics, vol.103, issue.8, p.83521, 2008.
DOI : 10.1063/1.2906107

M. B. Zellner, M. Byers, G. Dimonte, J. E. Hammerberg, T. C. Germann et al., Influence of shockwave profile on ejection of micron-scale material from shocked Sn surfaces: An experimental study, DYMAT 2009, 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, pp.89-94, 2009.
DOI : 10.1051/dymat/2009012

S. A. Novikov, I. I. Divnov, and A. G. Ivanov, The study of fracture of steel , aluminium, and copper under explosive loading, Phys Metals Metal sci(USSR), vol.21, pp.608-615, 1966.

L. Davison, D. E. Grady, and M. Shahinpoor, High pressure shock compression of solids II -Dynamic fracture and fragmentation, 1996.

T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov et al., Spall Fracture, 2002.

T. De-rességuier, L. Signor, A. Dragon, P. Severin, and M. Boustie, Spallation in laser shock-loaded tin below and just above melting on release, Journal of Applied Physics, vol.102, issue.7, p.73535, 2007.
DOI : 10.1063/1.2795436

D. L. Robbins, R. J. Gehr, R. W. Harper, T. D. Rupp, S. A. Sheffield et al., Laser-driven MiniFlyer induced gold spall, AIP Conference Proceedings, 2000.
DOI : 10.1063/1.1303676

G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point, Journal of Applied Physics, vol.90, issue.1, pp.136-143, 2001.
DOI : 10.1063/1.1374478

G. V. Stepanov, Spall fracture of metals by elastic-plastic loading waves, pp.66-70, 1976.

V. I. Romanchenko and G. V. Stepanov, The dependence of critical stresses upon the time parameters of load at spalling in copper, aluminium, and steel, Journal of Applied Mechanics and Technical Physics, vol.21, issue.4, pp.141-147, 1980.

M. A. Meyers and C. T. Aimone, Dynamic fracture (spalling) of metals, Progress in Materials Science, vol.28, issue.1, pp.1-96, 1983.
DOI : 10.1016/0079-6425(83)90003-8

S. Eliezer, I. Gilath, and T. Bar-noy, Laser???induced spall in metals: Experiment and simulation, Journal of Applied Physics, vol.67, issue.2, p.715, 1990.
DOI : 10.1063/1.345777

S. Eliezer, Y. Gazit, and I. Gilath, Shock wave decay and spall strength in laser???matter interaction, Journal of Applied Physics, vol.68, issue.1, p.356, 1990.
DOI : 10.1063/1.347142

M. Boustie and F. Cottet, Experimental and numerical study of laser induced spallation into aluminum and copper targets, Journal of Applied Physics, vol.69, issue.11, pp.7533-7538, 1991.
DOI : 10.1063/1.347570

T. De-rességuier, S. Couturier, J. David, and G. Nériat, Spallation of metal targets subjected to intense laser shocks, Journal of Applied Physics, vol.82, issue.5, pp.2617-2623, 1997.
DOI : 10.1063/1.366075

L. Tollier and R. Fabbro, Study of the laser-driven spallation process by the VISAR interferometry technique. II. Experiment and simulation of the spallation process, Journal of Applied Physics, vol.83, issue.3, p.1231, 1998.
DOI : 10.1063/1.366820

M. A. Meyers, F. Gregori, B. K. Kad, M. S. Schneider, D. H. Kalantar et al., Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper, AIP Conference Proceedings, p.619, 2001.
DOI : 10.1063/1.1483615

T. De-rességuier, L. Signor, A. Dragon, M. Boustie, and L. Berthe, On the dynamic fragmentation of laser shock-melted tin, Applied Physics Letters, vol.92, issue.13, p.131910, 2008.
DOI : 10.1063/1.2906907

J. S. Rinehart, Scabbing of Metals under Explosive Attack: Multiple Scabbing, Journal of Applied Physics, vol.23, issue.11, pp.1229-1233, 1952.
DOI : 10.1063/1.1702038

L. Signor, Contribution à la caractérisation et à la modélisation du micro-écaillage de l'étain fondu sous choc, 2008.

L. Signor, T. De-rességuier, G. Roy, A. Dragon, and F. Llorca, FRAGMENT-SIZE PREDICTION DURING DYNAMIC FRAGMENTATION OF SHOCK-MELTED TIN: RECOVERY EXPERIMENTS AND MODELING ISSUES., Shock Compression of Condensed Matter, 2007.
DOI : 10.1063/1.2833159

L. Signor, A. Dragon, T. De-rességuier, G. Roy, and F. Llorca, La fragmenation des métaux fondus sous choc. Elements de modélisation appliqués à l'étain. 18 ? Congrés Français de Mécanique, 2007.

T. De-rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy et al., Experimental investigation of liquid spall in laser shock-loaded tin Shock waves in condensed matter, Journal of applied physics, 1983.

J. P. Romain and E. Auroux, Acceleration???deceleration process of thin foils confined in water and submitted to laser driven shocks, Journal of Applied Physics, vol.82, issue.3, pp.1367-1373, 1997.
DOI : 10.1063/1.365913

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, A laser-accelerated flyer system, International Journal of Impact Engineering, vol.29, issue.1-10, pp.317-321, 2003.
DOI : 10.1016/j.ijimpeng.2003.09.027

T. De-rességuier, H. He, and P. Berterretche, Use of laser-accelerated foils for impact study of dynamic material behaviour, International Journal of Impact Engineering, vol.31, issue.8, pp.945-956, 2005.
DOI : 10.1016/j.ijimpeng.2004.07.003

L. M. Barker and R. E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.43, issue.11, p.434669, 1972.
DOI : 10.1063/1.1660986

L. Tollier, Caractérisation de chocs-laser à éclairements modérés par interférométrie Doppler VISAR. Application à l'étude de l'endommagement par écaillage de matériaux métalliques, 1996.

A. Bennuzi-mounaix, M. Koenig, G. Huser, B. Faral, D. Batani et al., Absolute equation of state measurements of iron using laser driven shocks, Physics of Plasmas, vol.9, issue.6, pp.2466-2469, 2002.
DOI : 10.1063/1.1478557

P. M. Celliers, G. W. Collins, L. B. Da-silva, D. M. Gold, and R. Cauble, Accurate measurement of laser-driven shock trajectories with velocity interferometry, Applied Physics Letters, vol.73, issue.10, pp.731320-1322, 1998.
DOI : 10.1063/1.121882

P. Mercier, J. Benier, A. Azzolina, J. M. Lagrange, and D. Partouche, Photonic doppler velocimetry in shock physics experiments, Journal de Physique IV (Proceedings), vol.134, pp.805-812, 2006.
DOI : 10.1051/jp4:2006134124

P. Mercier, J. Bénier, P. A. Frugier, A. Sollier, M. Rabec-le-gloahec et al., PDV MEASUREMENTS OF NS AND FS LASER DRIVEN SHOCK EXPERIMENTS ON SOLID TARGETS, 2009.
DOI : 10.1063/1.3295205

URL : https://hal.archives-ouvertes.fr/hal-00471204

W. W. Anderson and T. J. Ahrens, Physics of interplanetary dust capture via impact into organic polymer foams, Journal of Geophysical Research, vol.2, issue.1, pp.2063-2071, 1994.
DOI : 10.1029/93JE03147

F. Hörz, M. J. Cintala, M. E. Zolensky, R. B. Bernhard, W. E. Davidson et al., Capture of hypervelocity particles with low-density aerogel, 1998.

F. Hörz, G. Cress, and M. Zolensky, Optical analysis of impact features in aerogel from the orbital debris collection experiment on the Mir station, 1999.

F. Hörz, M. E. Zolensky, R. P. Bernhard, T. H. See, and J. L. Warren, Impact Features and Projectile Residues in Aerogel Exposed on Mir, Icarus, vol.147, issue.2, pp.559-579, 2000.
DOI : 10.1006/icar.2000.6450

Y. Kitazawa, A. Fujiwara, T. Kadono, K. Imagawa, Y. Okada et al., Hypervelocity impact experiments on aerogel dust collector, Journal of Geophysical Research: Planets, vol.68, issue.1, pp.22035-22052, 1999.
DOI : 10.1029/1998JE000554

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard et al., Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples, Physical Review B, vol.74, issue.22, pp.224106-224121
DOI : 10.1103/PhysRevB.74.224106

URL : https://hal.archives-ouvertes.fr/ujm-00122058

P. Maire, J. Breil, and S. Galera, A cell-centred arbitrary Lagrangian???Eulerian (ALE) method, International Journal for Numerical Methods in Fluids, vol.176, issue.8, pp.1161-1166, 2008.
DOI : 10.1002/fld.1557

P. Maire and J. Breil, A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, International Journal for Numerical Methods in Fluids, vol.178, issue.8, pp.1417-1423, 2008.
DOI : 10.1002/fld.1564

S. P. Lyon and J. D. Johnson, Sesame : The los alamos national laboratory equation of state database, 1992.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equation of state of metals at high energy densities. Russian academy of sciences, 1992.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Models of wide-range equations of state for matter under conditions of high energy density, Sov. Tech. Rev. B, issue.5, p.1, 1993.

F. R. Tuler and B. M. Butcher, A criterion for time dependence of dynamic fracture, Internal Journal of Fracture Mechanics, vol.4, issue.4, 1968.

E. Lescoute, T. De-rességuier, J. Chevalier, D. Loison, J. Cuq-lelandais et al., Ejection of spalled layers from laser shock-loaded metals, Journal of Applied Physics, vol.108, issue.9, 2010.
DOI : 10.1063/1.3500317

URL : https://hal.archives-ouvertes.fr/hal-01136321

G. E. Box and M. E. Muller, A Note on the Generation of Random Normal Deviates, The Annals of Mathematical Statistics, vol.29, issue.2, pp.610-611, 1958.
DOI : 10.1214/aoms/1177706645

C. Czarnota, N. Jacques, S. Mercier, and A. Molinari, Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum, Journal of the Mechanics and Physics of Solids, vol.56, issue.4, pp.1624-1650, 2008.
DOI : 10.1016/j.jmps.2007.07.017

URL : https://hal.archives-ouvertes.fr/hal-00449150

H. Trumel, F. Hild, G. Roy, Y. Pellegrini, and C. Denoual, On probabilistic aspects in the dynamic degradation of ductile materials, Journal of the Mechanics and Physics of Solids, vol.57, issue.12, pp.1980-1998, 2009.
DOI : 10.1016/j.jmps.2009.07.001

URL : https://hal.archives-ouvertes.fr/hal-00410324

C. Denoual, G. Barbier, and F. Hild, A statistical approach for fragmentation of brittle materials under dynamic loading, C. R. Acad. Sci. Paris-Series IIB, vol.325, issue.12, pp.685-691, 1997.

V. V. Silberschmidt, Crack propagation in random materials: computational analysis, Computational Materials Science, vol.26, pp.159-166, 2003.
DOI : 10.1016/S0927-0256(02)00410-X

V. V. Silberschmidt, Effect of material???s randomness on scaling of crack propagation in ceramics, International Journal of Fracture, vol.81, issue.1-4, pp.73-85, 2006.
DOI : 10.1007/s10704-005-3994-8

J. Cuq-lelandais, M. Boustie, L. Berthe, T. De-rességuier, P. Combis et al., Spallation generated by femtosecond laser driven shocks in thin metallic targets, Journal of Physics D: Applied Physics, vol.42, issue.6, p.65402, 2009.
DOI : 10.1088/0022-3727/42/6/065402

URL : https://hal.archives-ouvertes.fr/ujm-00365878

E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis et al., An increase of the spall strength in aluminium, copper, and Metglas at strain rates larger than 10 7 s -1, Journal of Applied Physics, issue.8, pp.834004-4011, 1998.

Z. Kaczkowski and H. S. Nam, Magnetic Properties of Amorphous Metals, 1987.

T. , D. Rességuier, and M. Hallouin, Effects of the ?-? phase transition on wave propagation and spallation in laser shock-loaded iron, Phys. Rev. B, vol.77, p.174107, 2008.

C. Voltz and G. Roy, Study of Spalling for High Purity Iron below and above Shock Induced ?? ??? ?? Phase Transition, AIP Conference Proceedings, pp.511-514, 2003.
DOI : 10.1063/1.1780289

E. B. Zaretsky, Shock response of iron between 143 and 1275 K, Journal of Applied Physics, vol.106, issue.2, p.23510, 2009.
DOI : 10.1063/1.3174442

L. R. Veeser, G. T. Gray, I. , J. E. Vorthman, P. J. Rodriguez et al., High pressure response of a high-purity iron, AIP Conference Proceedings, pp.73-76
DOI : 10.1063/1.1303424

L. Seaman, D. R. Curran, and D. A. Shockey, Computational models for ductile and brittle fracture, Journal of Applied Physics, vol.47, issue.11, pp.474814-4826, 1976.
DOI : 10.1063/1.322523

T. De-rességuier, D. Loison, E. Lescoute, L. Signor, and A. Dragon, Dynamic fragmentation of laser shock-melted metals : Some experimental advances, Journal of Theoretical and Applied Mechanics, vol.48, issue.4, pp.957-972, 2010.

L. Signor, T. De-rességuier, A. Dragon, G. Roy, A. Fanget et al., Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin, International Journal of Impact Engineering, vol.37, issue.8, pp.37887-900, 2010.
DOI : 10.1016/j.ijimpeng.2010.03.001

URL : https://hal.archives-ouvertes.fr/hal-00836554

D. J. Dever, Temperature dependence of the elastic constants in ?????iron single crystals: relationship to spin order and diffusion anomalies, Journal of Applied Physics, vol.43, issue.8, pp.3293-3301, 1972.
DOI : 10.1063/1.1661710

J. J. Adams, D. S. Agosta, R. G. Leisure, and H. Ledbetter, Elastic constants of monocrystal iron from 3???to???500???K, Journal of Applied Physics, vol.100, issue.11, p.113530, 2006.
DOI : 10.1063/1.2365714

J. Cuq-lelandais, Etude de l'endommagement dynamique des métaux par choc laser ultra-bref, 2010.

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, Femtosecond-laser-induced spallation in aluminum, Journal of Applied Physics, vol.89, issue.6, pp.3520-3522, 2001.
DOI : 10.1063/1.1346996

E. Lescoute, L. Hallo, B. Chimier, V. T. Tikhonchuk, D. Hébert et al., Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma, Physics of Plasmas, vol.15, issue.6, 2008.
DOI : 10.1063/1.2936267

D. Hébert and B. Etchessahar, Condensation en détente dans le vide, 2005.

Y. P. Zel-'dovich and Y. P. Raiser, Physics of shock waves and high temperature hydrodynamic phenomena, volume II, 1967.

Y. P. Raiser, Condensation of a cloud of vaporized matter expanding in vaccum, Soviet Physics JETP, vol.37, pp.1741-1750, 1959.

S. Kotake and I. I. Glass, Flows with nucleation and condensation, Progress in Aerospace Sciences, vol.19, pp.129-196, 1981.
DOI : 10.1016/0376-0421(79)90003-4

D. Boyer, P. Tamarat, A. Maali, M. Orrit, and B. Lounis, Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers, Science, vol.297, issue.5584, p.1160, 2002.
DOI : 10.1126/science.1073765

T. De-rességuier, E. Lescoute, G. Morard, and F. Guyot, DYNAMIC FRAGMENTATION AS A POSSIBLE DIAGNOSTIC FOR HIGH PRESSURE MELTING IN LASER SHOCK-LOADED IRON, Shock Compression of Condensed Matter, pp.1007-1010, 2009.
DOI : 10.1063/1.3294969

C. Broussillou, J. Lelandais, E. Lescoute, L. Berthe, M. Boustie et al., Laser shock adhesion test (LASAT) of thin films in CuInS2-based solar cells, SMT 23 23rd International conference on surface modification technologies, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00471150

C. Bolis, . Berthe, . Boustie, . Arrigoni, M. Barradas et al., Physical approach to adhesion testing using laser-driven shock waves, Journal of Physics D: Applied Physics, vol.40, issue.10, p.3155, 2007.
DOI : 10.1088/0022-3727/40/10/019

B. Annexe, Applications à d'autres thématiques B.2 Fragmentation de composites B.2.1 Objectifs de l'étude Les techniques développées au cours de cette thèse ont été appliquées à l'étude du comportement sous choc laser d'un matériau composite utilisé dans l'industrie aéronautique, étude qui fait l

. Le-matériau-Étudié-est-le, composite haute performance de référence commerciale Cytec 5276-1 G40-800, mis en oeuvre sur des structures aérospatiales et constitué du renfort en fibres continues de carbone de 5 µm diamètre 5 µm

B. La-figure, 6 présente des observations microscopiques de ces fragments dans le collecteur, qui permettent de distinguer les fibres de carbone composant l'échantillon. On peut constater que la répartition de ces fibres dans le gel semble aléatoire, probablement à cause de l'effet important de l'angle d

. De, qui présente l'observation de la surface du gel, montre que certaines fibres ont été stoppées dès la surface d'impact et n'ont donc pas pénétré dans le collecteur. Ces observations, réalisées avec des fragments dont les dimensions sont très particulières, tendent à confirmer l'hypothèse de la dépendance de la forme des éjectas sur la distance maximale de pénétration

B. Annexe and B. Applications-À-d-'autres-thématiques, 3 Tests d'adhérence sur des cellules photovoltaïques B.3.1 Objectifs de l'étude Les cellules solaires en films minces composées de matériaux chalcopyrites comme le Cu(In x ,Ga 1-x )(S x ,Se 1-x ) (CIGSSe) sont une alternative très intéressante d'un point de vue économique aux cellules classiques à base de silicium, Toutefois, elles consistent en un empilement de plusieurs couches déposées les unes sur les autres (Fig. B.7), et peuvent alors poser des problèmes d'adhésion entre ces différentes couches. (a) (b)