J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan et al., Self-Assembled Plasmonic Nanoparticle Clusters, Science, vol.328, issue.5982, p.1135, 2010.
DOI : 10.1126/science.1187949

S. Narayanan, J. Wang, and X. M. Lin, Small Angle X-Ray Scattering, Physical Review Letters, vol.93, issue.13, p.135503, 2004.
DOI : 10.1103/PhysRevLett.93.135503

URL : https://hal.archives-ouvertes.fr/hal-00297656

J. Leng, B. Lonet-t-i, P. Tabeling, M. Joanicot, and A. A. Jdari, Microevaporators for Kinetic Exploration of Phase Diagrams, Physical Review Letters, vol.96, issue.8, p.84503, 2006.
DOI : 10.1103/PhysRevLett.96.084503

URL : https://hal.archives-ouvertes.fr/hal-00016965

. Wat-er-st, Indeed, a rough est imat ion of t he change in wat er chemical pot ent ial ? µ (t he driving force of pervaporat ion) is of t he order of ? µ/ kT = Z (?)vm / vc for a colloidal suspension wit h Z (?) it s osmot ic compressibility, and vm / vc t he rat io of t he volumes of wat er molecules over t he colloid one. For our suspension, vm / vc ? 3 10 ? 6 and ? µ/ kT is negligible . T his argument also applies t o assess t hat t he decrease of t he pressure P due t o t he ?ow t hrough t he NPs dense st at e does not a ect pervaporat ion

S. Hu, Y. En, S. V. Rot-h, R. Gehrke, and J. Rieger, Facile Preparation of Macroscopic Soft Colloidal Crystals with Fiber Symmetry, Langmuir, vol.24, issue.5, p.1617, 2008.
DOI : 10.1021/la703332v

R. Piazza, T. Bellini, and V. Gegiorgio, Equilibrium sedimentation profiles of screened charged colloids: A test of the hard-sphere equation of state, Physical Review Letters, vol.71, issue.25, p.4267, 1993.
DOI : 10.1103/PhysRevLett.71.4267

L. Belloni, Yes, pair correlations alone do determine sedimentation profiles of highly charged colloids, The Journal of Chemical Physics, vol.123, issue.20, p.204705, 2005.
DOI : 10.1063/1.2121527

E. B. Sirot-a, H. D. Ou-yang, S. K. Sinha, P. M. Chaikin, J. D. et al., Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study, Physical Review Letters, vol.62, issue.13, p.1524, 1989.
DOI : 10.1103/PhysRevLett.62.1524

G. J. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical Strategies To Design Textured Materials:?? from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, vol.102, issue.11, pp.4093-4138, 2002.
DOI : 10.1021/cr0200062

S. M. Klein, V. N. Manoharan, D. J. Pine, and F. F. Lange, Synthesis of Spherical Polymer and Titania Photonic Crystallites, Langmuir, vol.21, issue.15, pp.6669-6674, 2005.
DOI : 10.1021/la0469957

B. Y. Cheng, More direct evidence of the fcc arrangement for artificial opal, Optics Communications, vol.170, issue.1-3, pp.41-46, 1999.
DOI : 10.1016/S0030-4018(99)00434-4

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Photonic crystals, Solid State Communications, vol.102, issue.2-3, pp.165-173, 1997.
DOI : 10.1016/S0038-1098(96)00716-8

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O-'brien, and C. B. Murray, Structural diversity in binary nanoparticle superlattices, Nature, vol.127, issue.7072, pp.43955-59, 2006.
DOI : 10.1038/nature04414

G. E. Fernandes, D. J. Beltran-villegas, and M. A. Bevan, Spatially controlled reversible colloidal self-assembly, The Journal of Chemical Physics, vol.131, issue.13, p.131, 2009.
DOI : 10.1063/1.3243686

L. C. Liau and Y. K. Huang, Effects of influential factors on sedimentation selfassembly processing of photonic band gap crystals by relative humidity-controlled environments, Chemical Engineering and Processing, vol.47, pp.9-101578, 2008.

T. Okubo, Sedimentation and drying dissipative patterns of colloidal silica (560??nm in diameter) suspensions in a glass dish and a watch glass, Colloid and Polymer Science, vol.59, issue.13, pp.1495-1503, 2007.
DOI : 10.1007/s00396-007-1715-8

K. E. Davis, W. B. Russel, and W. J. Glantschnig, Settling suspensions of colloidal silica: observations and X-ray measurements, Journal of the Chemical Society, Faraday Transactions, vol.87, issue.3, 1991.
DOI : 10.1039/ft9918700411

Y. D. Yin and Y. N. Xia, Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates, Advanced Materials, vol.14, issue.8, pp.605-608, 2002.
DOI : 10.1002/1521-4095(20020418)14:8<605::AID-ADMA605>3.0.CO;2-N

Y. N. Xia, Y. D. Yin, Y. Lu, and J. Mclellan, Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures, Advanced Functional Materials, vol.74, issue.150, pp.907-918, 2003.
DOI : 10.1002/adfm.200300002

A. S. Dimitrov and K. Nagayama, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir, vol.12, issue.5, pp.1303-1311, 1996.
DOI : 10.1021/la9502251

G. Berteloot, C. T. Pham, A. Daerr, F. Lequeux, and L. Limat, Evaporation-induced flow near a contact line: Consequences on coating and contact angle, EPL (Europhysics Letters), vol.83, issue.1, 2008.
DOI : 10.1209/0295-5075/83/14003

URL : https://hal.archives-ouvertes.fr/hal-00292117

M. Bardosova, M. E. Pemble, I. M. Povey, and R. H. Tredgold, The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres, Advanced Materials, vol.21, issue.448, pp.3104-3124, 2010.
DOI : 10.1002/adma.200903708

R. D. Deegan, Contact line deposits in an evaporating drop, Physical Review E, vol.62, issue.1, pp.756-765, 2000.
DOI : 10.1103/PhysRevE.62.756

T. Okubo, K. Kimura, and A. Tsuchida, Drying dissipative patterns of colloidal crystals of silica spheres on a cover glass at the regulated temperature and humidity, Colloid and Polymer Science, vol.18, issue.6-7, pp.6-7621, 2008.
DOI : 10.1007/s00396-007-1808-4

H. Mao, T. Yang, and P. S. Cremer, A Microfluidic Device with a Linear Temperature Gradient for Parallel and Combinatorial Measurements, Journal of the American Chemical Society, vol.124, issue.16, pp.4432-4435, 2002.
DOI : 10.1021/ja017625x

P. Laval, N. Lisai, J. B. Salmon, and M. Joanicot, A microfluidic device based on droplet storage for screening solubility diagrams, Lab on a Chip, vol.96, issue.7, p.829, 2007.
DOI : 10.1016/j.jcrysgro.2006.12.044

J. Atencia and D. J. Beebe, Controlled microfluidic interfaces, Nature, vol.128, issue.7059, pp.648-655, 2005.
DOI : 10.1093/emboj/21.11.2664

J. Dambrine, B. Geraud, and J. B. Salmon, Interdiffusion of liquids of different viscosities in a microchannel, New Journal of Physics, vol.11, issue.7, 2009.
DOI : 10.1088/1367-2630/11/7/075015

H. Becker and L. E. Locascio, Polymer microfluidic devices, Talanta, vol.56, issue.2, p.267, 2002.
DOI : 10.1016/S0039-9140(01)00594-X

J. C. Mcdonald, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, vol.66, issue.1, pp.27-40, 2000.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

D. J. Beebe, G. A. Mensing, and G. M. Walker, Physics and Applications of Microfluidics in Biology, Annual Review of Biomedical Engineering, vol.4, issue.1, pp.261-286, 2002.
DOI : 10.1146/annurev.bioeng.4.112601.125916

H. Miguez, S. M. Yang, and G. A. Ozin, Colloidal photonic crystal microchannel array with periodically modulated thickness, Applied Physics Letters, vol.81, issue.14, pp.2493-2495, 2002.
DOI : 10.1063/1.1510959

M. Ishii, H. Nakamura, H. Nakano, A. Tsukigase, and M. Harada, Large-Domain Colloidal Crystal Films Fabricated Using a Fluidic Cell, Langmuir, vol.21, issue.12, pp.5367-5371, 2005.
DOI : 10.1021/la050124v

M. Mastrangeli, Self-assembly from milli- to nanoscales: methods and applications, Journal of Micromechanics and Microengineering, vol.19, issue.8, 2009.
DOI : 10.1088/0960-1317/19/8/083001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832205

S. K. Lee, G. R. Yi, and S. M. Yang, High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips, Lab on a Chip, vol.31, issue.4, pp.1171-1177, 2006.
DOI : 10.1039/b606448e

S. M. Yang, H. Miguez, and G. A. Ozin, Opal Circuits of Light??-??Planarized Microphotonic Crystal Chips, Advanced Functional Materials, vol.12, issue.6-7, p.425, 2002.
DOI : 10.1002/1616-3028(20020618)12:6/7<425::AID-ADFM425>3.0.CO;2-U

J. Leng, B. Lonetti, P. Tabeling, M. Joanicot, and A. Ajdari, Microevaporators for Kinetic Exploration of Phase Diagrams, Physical Review Letters, vol.96, issue.8, p.96, 2006.
DOI : 10.1103/PhysRevLett.96.084503

URL : https://hal.archives-ouvertes.fr/hal-00016965

]. R. Clement, Etat de l'art sur la pervaporation et permeation de vapeur, 1999.

R. Atra, G. Vatai, and E. Bekassy-molnar, Ethanol dehydration by pervaporation, Hungarian Journal of Industrial Chemistry, vol.27, issue.2, pp.143-147, 1999.
DOI : 10.1016/s0255-2701(98)00073-7

R. Atra, G. Vatai, and E. Bekassy-molnar, Isopropanol dehydration by pervaporation, Chemical Engineering and Processing: Process Intensification, vol.38, issue.2, pp.149-155, 1999.
DOI : 10.1016/S0255-2701(98)00073-7

R. W. Baker, Separation of Volatile Organic Compounds from Water by Pervaporation, MRS Bulletin, vol.27, issue.03, pp.50-53, 1999.
DOI : 10.1557/S0883769400051927

Z. Chen and J. Q. Liu, Study on pervaporation mass transfer model of volatile organic components removal from water. Abstracts of Papers of the, p.154, 2004.

C. Lipski and P. Cote, The use of pervaporation for the removal of organic contaminants from water, Environmental Progress, vol.32, issue.4, pp.254-261, 1990.
DOI : 10.1002/ep.670090420

. Dr and . Metz, Water vapor and gas transport through polymeric membranes, 2003.

G. C. Randall and P. S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices, Proceedings of the National Academy of Sciences of the United States of America, pp.10813-10818, 2005.
DOI : 10.1073/pnas.0503287102

J. M. Watson and M. G. Baron, The behaviour of water in poly(dimethylsiloxane), Journal of Membrane Science, vol.110, issue.1, pp.47-57, 1996.
DOI : 10.1016/0376-7388(95)00229-4

E. Verneuil, A. Buguin, and P. Silberzan, Permeation-induced flows: Consequences for silicone-based microfluidics, Europhysics Letters (EPL), vol.68, issue.3, pp.412-418, 2004.
DOI : 10.1209/epl/i2004-10221-7

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clement, and J. Neel, Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis, Journal of Membrane Science, vol.92, issue.2, pp.169-184, 1994.
DOI : 10.1016/0376-7388(94)00060-3

S. R. Quake and A. Scherer, From Micro- to Nanofabrication with Soft Materials, Science, vol.290, issue.5496, pp.1536-1540, 2000.
DOI : 10.1126/science.290.5496.1536

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.7156

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.288113-116, 2000.
DOI : 10.1126/science.288.5463.113

J. Goulpeau, D. Trouchet, A. Ajdari, and P. Tabeling, Experimental study and modeling of polydimethylsiloxane peristaltic micropumps, Journal of Applied Physics, vol.98, issue.4, 2005.
DOI : 10.1063/1.1947893

J. Leng, M. Joanicot, and A. Ajdari, Microfluidic Exploration of the Phase Diagram of a Surfactant/Water Binary System, Langmuir, vol.23, issue.5, pp.2315-2317, 2007.
DOI : 10.1021/la063169k

URL : https://hal.archives-ouvertes.fr/hal-00110623

J. B. Salmon and J. Leng, Application of microevaporators to dynamic exploration of the phase diagram, Journal of Applied Physics, vol.107, issue.8, 2010.
DOI : 10.1063/1.3354084

M. Joanicot, J. Leng, A. Ajdari, and P. Tabeling, Microfluidic evaporators and process for determining physical and/or chemical compounds and mixtures of chemical compounds, Brevet USPO rhodia Recherches et Technologies, pp.724-127, 2005.

P. Moreau, J. Dehmoune, J. B. Salmon, and J. Leng, Microevaporators with accumulators for the screening of phase diagrams of aqueous solutions, Applied Physics Letters, vol.95, issue.3, p.33108, 2009.
DOI : 10.1063/1.3159811.1

M. Schindler and A. Ajdari, Modeling phase behavior for quantifying micro-pervaporation experiments, The European Physical Journal E, vol.28, issue.1, pp.27-45, 2009.
DOI : 10.1140/epje/i2008-10419-y

URL : http://arxiv.org/abs/0812.1166

M. Mooney, The viscosity of a concentrated suspension of spherical particles, Journal of Colloid Science, vol.6, issue.2, pp.162-170, 1951.
DOI : 10.1016/0095-8522(51)90036-0

R. Simha and T. Somcynsk, The viscosity of concentrated spherical suspensions, Journal of Colloid Science, vol.20, issue.3, p.278, 1965.
DOI : 10.1016/0095-8522(65)90017-6

I. E. Zarraga and D. T. Leighton, Shear-Induced Diffusivity in a Dilute Bidisperse Suspension of Hard Spheres, Journal of Colloid and Interface Science, vol.243, issue.2, pp.503-514, 2001.
DOI : 10.1006/jcis.2001.7854

D. M. Heyes, M. J. Cass, J. G. Powles, and W. A. Evans, Self-Diffusion Coefficient of the Hard-Sphere Fluid:?? System Size Dependence and Empirical Correlations, The Journal of Physical Chemistry B, vol.111, issue.6, pp.1455-1464, 2007.
DOI : 10.1021/jp067373s

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, vol.70, issue.23, pp.4974-4984, 1998.
DOI : 10.1021/ac980656z

Y. N. Xia and G. M. Whitesides, SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, pp.153-184, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

P. Amirfeiz, S. Bengtsson, M. Bergh, E. Zanghellini, and L. Borjesson, Formation of Silicon Structures by Plasma-Activated Wafer Bonding, Journal of The Electrochemical Society, vol.147, issue.7, pp.2693-2698, 2000.
DOI : 10.1149/1.1393591

A. K. Reinhardt and W. Kern, Handbook of silicon wafer cleaning technology, 2008.

P. Vulto, Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips, Lab on a Chip, vol.38, issue.12, pp.158-162, 2005.
DOI : 10.1039/b411885e

M. A. Eddings and B. K. Gale, A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices, Journal of Micromechanics and Microengineering, vol.16, issue.11, p.2396, 2006.
DOI : 10.1088/0960-1317/16/11/021

X. Noblin, Optimal vein density in artificial and real leaves, Proceedings of the National Academy of Sciences, pp.9140-9144, 2008.
DOI : 10.1073/pnas.0709194105

URL : https://hal.archives-ouvertes.fr/hal-00856512

H. Miguez, S. M. Yang, and G. A. Ozin, Optical Properties of Colloidal Photonic Crystals Confined in Rectangular Microchannels, Langmuir, vol.19, issue.8, pp.3479-3485, 2003.
DOI : 10.1021/la027014y

E. Vekris, V. Kitaev, D. D. Perovic, J. S. Aitchison, and G. A. Ozin, Visualization of Stacking Faults and their Formation in Colloidal Photonic Crystal Films, Advanced Materials, vol.8, issue.6, p.1110, 2008.
DOI : 10.1002/adma.200702431

D. Blair and E. Dufresne, The matlab particle tracking code repository

R. J. Davies, M. Burghammer, and C. , An overview of the esrf's id13 microfocus beamline, Synchrotron Radiation in Natural Science, vol.5, issue.12, 2006.

H. Y. Xiao, C. D. Li, D. Z. Yang, X. J. Li, and S. Y. He, Optical degradation of polydimethylsiloxane under 150 keV proton exposure, Journal of Applied Polymer Science, vol.91, issue.6, pp.4060-4064, 2008.
DOI : 10.1002/app.28591

F. Meseguer, Synthesis of inverse opals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.202, issue.2-3, pp.281-290, 2002.
DOI : 10.1016/S0927-7757(01)01084-6

M. T. Demko, J. C. Cheng, and P. Albert, High-Resolution Direct Patterning of Gold Nanoparticles by the Microfluidic Molding Process, Langmuir, vol.26, issue.22
DOI : 10.1021/la1022533

A. N. Kirgintsev and A. V. Luk-'yanov, Water vapor pressure in a water -glycerin system at 25???, Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, vol.56, issue.8, pp.1393-1394, 1962.
DOI : 10.1007/BF00907997