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Résumé

La théorie de la commande a évolué de façon significative dans le domaine de l’automatique
non-linéaire. Cependant, les méthodes utilisées actuellement dans l’industrie aérospatiale
sont le plus souvent basées sur des techniques de commande linéaire. Les spécifications,
toujours plus exigeantes en termes de fiabilité et performance, imposent l’utilisation de
techniques de plus en plus complexes. Ainsi, l’industrie cherche des solutions dans les
nouvelles techniques de la théorie de la commande non-linéaire. En particulier, la lim-
itation des actionneurs représente un phénomène non-linéaire commun dans la plupart
des systèmes physiques. Des actionneurs saturés peuvent engendrer la dégradation de
la performance, l’apparition de cycles limites ou d’états d’équilibre non désirés et même
l’instabilité du système bouclé. Le but de la thèse est d’adapter et de développer les tech-
niques de synthèse anti-windup à la commande de haute précision des axes angulaires et
linéaires de satellites. Dans le domaine spatial, cet objectif se retrouve dans les missions
de commande en accélération et aussi du vol en formation. Ces missions utilisent des
propulseurs de haute précision où leur capacité maximale est très basse. Ces systèmes
propulsifs présentent une modélisation particulière. Des fonctions de répartition adaptées
à la synthèse anti-windup ont été étudiées. De plus, en tenant compte de l’état de l’art
de la synthèse anti-windup, il y a un vrai besoin d’utiliser des techniques de symétrisation
pour la fonction saturation. Le but principal de ce travail consiste à utiliser les techniques
développées sur une application aérospatiale. A titre d’exemple, une stratégie complète
est proposée afin de contrôler l’attitude et la position relative d’une mission de vol en
formation.
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Abstract

Automatic control theory has significantly evolved in the field of the non-linear control.
However, the methods used in the aerospace industry lie usually on linear techniques ap-
plied to linearized models. The increasing requirements in terms of operational reliability
and performance ask for the development of new control techniques more complex in order
to meet the new demands. Therefore the industry is moving to the modern control theory
looking for new non-linear approaches. In particular, actuators saturation represents a
non-linear phenomenon common in almost all physical applications. This can then lead
to performance degradation, limit cycle appearance, non-desired equilibrium conditions
and even system instability. The objective of this thesis is to adapt and develop the anti-
windup compensator design to the control with high precision for the angular and the
linear axes of a satellite. In the aerospace application field, this situation meets with the
drag-free or the formation flying missions. These missions use high precision thrusters as
actuators whose capacity appears to be critically low. Moreover thrusters have a particu-
lar modelling. Allocation functions adapted to the anti-windup design are then explored.
In addition considering the current state of the art of the anti-windup design, there is a
strong necessity of using symmetrizing techniques for the saturation. The main objective
of this work consists in applying the developed tools on an aerospace study case. As
an example, a complete methodology is proposed to control a formation flying mission
controlling both attitude and relative position.
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φ(u,ū)(·) Asymmetric dead-zone function
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Introduction

Background and thesis framework

Automatic control theory has significantly evolved in the field of the non-linear control.
Analysis and synthesis methods have appeared providing constructive tools to solve the
control problems [TGGE07, KGE02, KA01, Val10]. Conversely, the methods used in the
aerospace industry usually rely on linear techniques applied to linearized models. The
increasing requirements in terms of operational reliability and performance ask for the
development of new and more complex control techniques in order to meet the new de-
mands [PCU+05, PDTP08, KTP08]. Therefore industry is moving to modern control
theory looking for new non-linear approaches which are still unexplored when applied
in the real control applications. Such approaches improve the control solutions as some
non-linear behaviors of the considered system (omitted in the traditional linear approach)
are introduced in the synthesis process. Moreover, the implementation of the non-linear
analysis tools may be translated into a reduction of the validation time as the gap between
the synthesis model considered and the real flight certification model would be reduced.
These improvements would be also translated into a reduction of the cost and the re-
sources addressed to flight control law validation. Therefore there exists a real necessity
of adapting the new non-linear control tools to real industrial problems.

In particular, the control limitation due to the constraints of the actuators’ maximum
capacity represents a non-linear phenomenon common in almost all physical applications.
Traditionally, a classical solution, at least in industry, consists in imposing important
margins in order to prevent the actuators from reaching their maximum capacity, that
is, to avoid saturation [CNE05]. In that manner, one tries to ensure the linearity of the
system. However this a posteriori validation be insufficient because, non-nominal distur-
bances, transitions between operational modes, and the presence of system failures can
force the actuators to reach their limits. Actuator saturation can then lead to performance
degradation, limit cycle appearance, non-desired equilibrium conditions and even system
instability [AR89, HL01, KGE02, Ste89].

The non-linear techniques dealing with saturation can be classified in two main re-
search lines. The first one seeks to introduce the non-linear saturation in the synthesis
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process of the controller [PTH07, GT91, GH85, HL01, SS99]. The second one introduces
an extra layer to the existing linear controller, accounting for the non-linearities. This
strategy, also called anti-windup design, allows the designer to keep the existing linear
controller (already validated) and only to introduce a compensator which is only active
when the non-linearity arises [KCMN94, CLW02, WL03, GdSJT05]. In that manner, the
control design process is not completely changed as it would be with the first approach.
Therefore, the development of constructive methods for the anti-windup design dealing
with the saturation non-linearity is completely justified. See for example, the recent
survey [GTTZ09, TT09] and the numerous references therein. In a context where the
applicability of the modern technique is sought, the second approach is kept.

The objective of this thesis is to adapt and develop anti-windup compensator de-
sign to high precision control of the linear and angular displacements of a satellite. In
the aerospace application field, this situation meets with the drag-free or the formation
flying missions. These missions use thrusters as actuators with a high precision and fine-
quantification. However their maximal propulsion capacity appears to be critically low.
These actuators have also to ensure the transition coming from less precise flying modes
to other more accurate modes, the robustness to the environmental disturbances and in
certain cases, the survival of the satellite. In these modes the actuators may reach their
maximum capacity introducing the non-linear effects of saturation. Consequently, the
introduction of the anti-windup becomes an interesting technique to ensure the mission
requirements and its reliability.

Space missions involving thrusters as actuators are modelled in a particular way. The
control variables of the physical systems and the action provided by thrusters are not the
same. An allocation function is included in the modelling of the actuators to distribute the
control among the actuators [Dur93, NW99, BHSB96]. In the classical linear approach this
function can be omitted, however, when the saturation of the actuators arises, its behavior
has to be considered in the control design [BHSB96]. Allocation functions adapted to the
anti-windup design have to be explored. Moreover the presence of thrusters introduces
a peculiar formulation of the saturation function. The saturation presents asymmetric
bounds with the minimum equal to zero. Considering the current state of the art of the
anti-windup design, there is a strong necessity of using symmetrizing techniques for the
saturation.

The symmetrizing procedure and the allocation function defined are put along with
the anti-windup design to be applied in a spacecraft mission configuration. The control of
both attitude and position in a formation flying becomes an interesting benchmark to test
the functionality of developed techniques. The multi-objective behavior of the formation
flying mission introduces couplings between the linear and the angular dynamics which
can activate the saturation. Additionally, the transition from a low precision mode to high
precision one may lead to the saturation of the actuators. For these situations where linear
control theory is insufficient, the introduction of the anti-windup compensator represents
a potential way of improvement.
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Thesis outline

This manuscript is organized in five chapters. The first three chapters are dedicated to
the theoretical concepts and the main results of the thesis. On the other hand, the last
two chapters are completely focused on the application of the previous results to different
satellite configurations.

Chapter 1 presents the basic tools for the analysis of the stability of the systems
presenting a saturation non-linearity. Concepts like Lyapunov stability, non-linear sector
condition or dead-zone function are recalled. These tools represent the bases of the results
presented in Chapter 3.

The main issue of the manuscript is anti-windup compensator design. However, first,
in Chapter 2 the problem of the saturation symmetrization is analyzed. The chapter
presents the context where this problem is solved. Symmetrizing techniques are given
along with some practical examples [BPT+09]. With these symmetrizing tools the problem
considered can be written in a general context where the anti-windup techniques apply.

Chapter 3 is dedicated to anti-windup compensator design. A general overview of
the problem is given analyzing the state of the art of the anti-windup technique. More
precisely, a complete description of the two main approaches in anti-windup design is
provided. Constructive techniques for each approach are given. In addition a third new
approach is proposed as an alternative to the previous ones [BPT+10b]. Finally, The
validity of the anti-windup results with asymmetric saturations is studied. An illustration
of these approaches allows the reader to have an overview of the advantages and drawbacks
of each one.

The last two chapters are dedicated to the presentation of the applications where
the anti-windup techniques are tested. First, Chapter 4 presents three formation flying
scenarios. The modelling of these study cases is introduced. Finally, simulations illustrate
the advantages of the anti-windup compensator [BPT+10a]. Second, Chapter 5 deals with
the drag-free control problem. A model of a drag-free configuration is tested with an
anti-windup compensator in the loop. Simulations show the benefits of the anti-windup
compensation.

A general conclusion and some perpectives recall the main results presented. An
appendix ends this manuscript.
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Educational example

Aim of the example

Let us first present an educational example. This example will illustrate the theory
presented in the first three chapters of the thesis. It is called educational because it
consists in a very basic example whose aim is only to provide a fixed framework throughout
the reading. The choice has been sought to avoid the numerical problems that may
introduce poor conditioning or a high order of the system. We pretend to make easier
the comprehension of the different results presented in this thesis. Moreover this example
should make the text more consistent as all results will be related through it, being a
useful tool for the reader to set relationships between results.

The example can be slightly modified in some cases to show clearly the improvement
of the concerned result. In these cases, a justification will be provided as well as a detailed
description of the modifications.

Finally remark that the example has a physical meaning and therefore, some comments
on the results will be also used in the second part of this manuscript.

Model description

The example is based on the control of the attitude of a satellite along one axis. The values
are obtained from Microscope satellite model [PPT+05]. Figure 1 shows the example block
representation. The plant P is modelled by a double integrator scaled by the inertia

f
ū

u
C M P

yp

upyc zp

Figure 1: Control Loop

matrix:

P :





ẋp = Apxp + Bpup =

[
0 1
0 0

] [
θ

θ̇

]
+

[
0

J−1

]
up

yp = Cpxp = [1 0]xp = θ
zp = Czxp = [1 0]xp = θ

(1)

where xp = [θ θ̇]
′

is the state vector composed by the attitude of the satellite and its
time-derivative; up ∈ ℜ is the control input which in this case is a control torque as the
angular axis is controlled; yp = θ is the measured output and zp = θ is the performance
output which, in this particular case, is equal to yp. J stands for the inertia of the satellite
and is equal to J = 37.5kgm2.
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The stability of the linear closed-loop system (i.e. when uc = yp) is provided by
a controller C. The controller is a fourth order controller whose coefficients have been
taken from the controller used in the Microscope mission [PPT+05]. The state space
representation of this controller reads:

C :
{

ẋc = Acxc +Bcyp
yc = Ccxc +Dcyp

(2)

with

Ac =




−8 · 10−4 0.13 −0.49 0.7
−7.2 · 10−5 −8 · 10−4 −8.6 · 10−2 0.12

0 0 −5.87 8.37
0 0 0 −5.87


 (3)

Bc =




0.17
0.029
1.98
−4.87


 (4)

Cc = [−12.93 0 − 37.97 24.19] (5)

Dc = −12.54 (6)

The controller is computed assuming the unconstrained interconnection up = yc. How-
ever, the system uses thrusters as actuators. Actuator function is modelled by the follow-
ing equation:

up = Msat(u,ū)(f(yc)) (7)

where sat(u,ū)(·) is a saturation function with u = 0 and ū = 150µN . Such a non-linearity
will be detailed in Chapter 1.

Only a two thrusters configuration is considered, the first one provides the positive
command and the second one the negative one. Hence, M = [1 − 1] is the influence
matrix which sets the relationship between the thrust provided and the control input up

performed. More explanations on the influence matrix are given in Chapter 2.

Finally f is an allocation function. It allocates the control yc between the different
thrusters available. f is designed to verify up = Mf(yc) = yc, allowing the designer to
neglect the actuators. Nevertheless, this relation is no longer true because of the presence
of the saturation function. The actuator is then modelled by equation (7). More details
on the allocation are given in Chapter 2.
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The closed-loop system formulation CL for the example reads:

CL :





ẋp = Apxp + BpMsat(u,ū)(f(yc))

=

[
0 1
0 0

] [
θ

θ̇

]
+

[
0 0

J−1 −J−1

]
sat(0,ū)(f(yc))

ẋc = Acxc + BcCpxp

yc = Ccxc +DcCpxp

zp = Czxp = [1 0]xp = θ

(8)

The allocation function f is left undefined. There are many possible formulations of f
available. This issue is treated in Chapter 2 where further explanations are given. Indeed,
the example (8) will allow us to test the different choices of f proposed in Chapter 2.

In order to illustrate the effect of the saturation non-linearity, system (8) is simulated.
First, to avoid the problem of the allocation function, the actuator (7) is modelled by a
symmetric saturation between ū = 150µN and u = −150µN . Then the actual system
tested in the following simulation reads:





ẋp = Apxp + Bpsat(u,ū)(yc)

=

[
0 1
0 0

] [
θ

θ̇

]
+

[
0

J−1

]
sat(−1.5·10−4,1.5·10−4)(yc)

ẋc = Acxc + BcCpxp

yc = Ccxc +DcCpxp

zp = Czxp = [1 0]xp = θ

(9)

with Ac, Bc, Cc and Dc defined in (3)-(6).

The simulation considers the initial condition xp(0) = [−7 · 10−4 0]
′

. Figure 2 shows
the response zp in both the linear and the non-linear (saturated) cases.

Figure 3 presents the plant input up of system (9). In Figures 2 and 3 one observes
easily that the presence of the saturation induces undesirable oscillations on the system.
Assuming no saturation, the linear system reaches the origin in less than 50 seconds.
However, as soon as the non-linearity of the actuator arises, the system starts to oscillate,
still converging, but being closer to instability.
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Figure 2: Effect of the saturation non-linearity on system (9).
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1.1 Introduction

Stability theory plays a central role in dynamical control systems theory. There are several
ways to define the stability of a system in the literature. This section seeks to present the
approaches most commonly used. Some basic concepts are then reviewed.

Initially, autonomous systems are introduced and a general definition of stability for
these kinds of dynamic systems is exposed. Afterwards, given this general definition, a
point on the particularity of the linear systems is done. Once this kind of systems is
treated, the Lyapunov stability theory is detailed as well as the second Lyapunov method
and the notions of local and global stability. From that point, the LaSalle invariance
principle is presented as well as the concept of the region of attraction of the origin.

A specific class of dynamic systems pays the attention of this work: the systems under
input constraints. This kind of systems presents a non-linearity that has to be modelled
before any stability theory may be investigated. Therefore, some results dealing with
non-linear constraints such as saturation or the dead-zone function are provided.

The Lyapunov theory is used to study the stability of the non-linear systems under
input constraints. The saturation function modelling does not provide quadratic condi-
tions. Some mathematical work is done to obtain quadratic conditions that can be solve
with existing optimization algorithms.

Finally, the conditions to estimate the stability domain are presented. Moreover,
several possibilities to optimize the stability domain are introduced. The stability analysis
techniques are applied to the educational example.

Several definitions and results are presented in this chapter. No proofs are given as
they are classical results and could be easily found in the literature. See, for example,
works from Khalil [Kha92], Slotine and Li [SL91] and Vidyasagar [Vid92].

1.2 Stability of dynamic systems

1.2.1 Autonomous systems

Consider the function f locally Lipschitz in the set X ⊆ ℜn:

f :

{
X −→ ℜn

x 7−→ f(x)
(1.2.1)

The autonomous system is characterized by
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ẋ(t) = f(x(t)) (1.2.2)

Then suppose xe ∈ X is an equilibrium point of (1.2.2), in other words, f(xe) = 0.
The characterization and the study of the stability of the autonomous system (1.2.1) is
related to the analysis of the stability of xe.

In order to simplify the problem, all the definitions and results are stated considering
xe = 0 as equilibrium point. There is no loss of generality because any equilibrium point
can be brought back to the origin via a change of variables.

Remark 1.1. Through the change of variables x̄ = x− xe, the resulting system ˙̄x = f(x̄)
has its equilibrium point at x̄e = 0.

1.2.2 Lyapunov stability

For a system like (1.2.2), Lyapunov stability which was introduced at the end of 19th

century [Lya92], can be formulated as follows.

Definition 1.1. [Kha92] The equilibrium point xe = 0 of system (1.2.2) is

1. stable if for all ǫ > 0, there is a scalar η > 0 such that:

‖x(0)‖ ≤ η ⇒ ‖x(t, x(0))‖ ≤ ǫ, ∀t ≥ 0 (1.2.3)

where x(t, x(0)) is the solution of (1.2.1) with initial condition x(0).

2. attractive if there exists η such as

lim
t→∞

x(t, x(0)) = 0, ∀ ‖x(0)‖ ≤ η (1.2.4)

3. asymptotically stable if stable and attractive.

4. unstable if it is not stable.

This notion of stability is directly related to the notion of a neighborhood of the origin.
The neighborhoodW(x, ǫ) of a point x is a set characterized by the parameter ǫ containing
x inside its interior. Then from Definition 1.1, to prove the stability of the origin, for any
value ǫ defining a neighborhood W(0, ǫ), we have to find a neighborhood defined by the
value of η, W(0, η), such that every trajectory starting from W(0, η) will remain confined
inW(0, ǫ). In addition, if insideW(0, ǫ) the trajectory goes towards the origin x = 0, the
system is called asymptotically stable. On the other hand, a system is unstable means
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W(0, η)

W(0, η)

W(0, η)

W(0, η)

W(0, ǫ)

W(0, ǫ)

x(t, x(0))

x(t, x(0))

x(t, x(0))

x(t, x(0))

x(0)

x(0)

x(0)

x(0)

(d)(c)

(b)(a)

Figure 1.1: (a) Stable; (b) Attractive; (c) Asymptotically stable; (d) Unstable

that there is, at least, a trajectory with x(0) ∈ W(0, η) ⊂ W(0, ǫ) which does not remain
in W(0, ǫ) for ǫ > 0 and for any η > 0 (See Figure 1.1 for illustration).

Given the previous definition and its explanation, we may define the concept of the
domain of attraction of the origin as follows.

Definition 1.2. The domain of attraction of the origin is the set D constituted by all the
initial conditions, x(0), from which any trajectory x(t) of the system (1.2.2) converges to
the origin.

Remark 1.2. Given a system (1.2.2), the domain of attraction of the origin can be either
a strict subset of ℜn (local case) or the whole state space ℜn (global case).
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Definition 1.3. The equilibrium of the origin is defined as

1. locally asymptotically stable, if the domain of attraction is strictly included in ℜn,
D ⊂ ℜn.

2. globally asymptotically stable, if the domain of attraction is ℜn, D = ℜn.

Theoretically, given Definition 1.1, to conclude stability of system (1.2.2), we need to
know all the trajectories of the system which is, in general, really difficult, even impossible.
Therefore, another formulation of the Lyapunov stability, using the notion of Lyapunov
function, might be formulated. That is called the Lyapunov’s second method.

1.2.2.a Lyapunov’s Second Method

This so-called Lyapunov’s second method seeks to characterize the stability of the equilib-
rium point without knowing explicitly the behavior of the trajectories near to this point.
This method is based on the use of the Lyapunov functions. So let us first, define what
we name a Lyapunov function.

Definition 1.4. A candidate Lyapunov function is a function V : X ⊆ ℜn → ℜ+ such
that V is continuous as well as its partial derivatives, and, V is positive definite (i.e V > 0
for all x 6= 0 and V (0) = 0).

The following theorem gives sufficient conditions for the stability of system (1.2.2).

Theorem 1.1. Let X ⊂ ℜn be an open set containing the origin and let V : X → ℜ+ be
a candidate Lyapunov function.

1. If V̇ (x) ≤ 0 for all x ∈ X , then the origin is locally stable.

2. If V̇ (x) < 0 for all x ∈ X , x 6= 0 , then the origin is locally asymptotically
stable.

where V̇ is the time-derivative of V along the system (1.2.2) defined as V̇ = ∂V
∂x

f(x).

A function V , as in Definition 1.4 is known as a positive definite function. A weaker
condition could be V (x) ≥ 0 for x 6= 0, which is said to be positive semidefinite. A function
V is said to be negative definite or negative semidefinite when the function −V is positive
definite or positive semidefinite, respectively. Using this terminology the previous theorem
may be reformulated as: if there is a differentiable and positive definite function V such
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that its time-derivative V̇ is negative semidefinite, then the origin is stable. Moreover if
V̇ is negative definite then the origin is asymptotically stable.

Considering X = ℜn, we can formulate, using Theorem 1.1, the sufficient conditions
to assure global stability.

Theorem 1.2. x = 0 is a globally stable equilibrium point for the system (1.2.2) if and
only if there is a continuously differentiable function, V : ℜn → ℜ+ which verifies

1. V (x) > 0, ∀x 6= 0 and V (0) = 0,

2. V̇ (x) < 0 for all x ∈ ℜn, x 6= 0

3. ‖x‖ → ∞⇒ V (x)→∞.

Remark 1.3. Theorem 1.2 gives sufficient conditions for the stability. If we are not able
to find a Lyapunov function verifying Lyapunov’s theorem, no conclusion may be extracted
from that. Notice that the choice of the candidate Lyapunov function constitutes a hard
task. There is no general procedure to find it and normally the experience or the physical
behavior of the dynamic system may guide us into this choice.

Typically, a common candidate Lyapunov function, widely used, has the following
form: V (x) = x′Px, where P is a symmetric positive definite matrix. Such a function V
is a quadratic function.

This kind of Lyapunov function is particularly interesting for linear or nonlinear sys-
tems with a linear part [Kha92, Vid92, Isi89]. Indeed, linear systems have a special interest
as in practice a large number of systems can be studied through their linear representa-
tion. The characterization of the stability of the origin for the linear systems is presented
in the next subsection.

1.2.3 Stability for autonomous linear systems

Consider a linear time-invariant system described by

ẋ(t) = Ax(t) (1.2.5)

Then it has a unique equilibrium point at x = 0 if det(A) 6= 0, or equivalently, A is
nonsingular. However, if the A matrix is singular there is a non trivial null space, and
then the system (1.2.5) has a subspace of equilibrium points. From that point we only
focus on the study of the stability of the origin x = 0.

A common result in linear systems theory is that the stability analysis of x = 0 may
be achieved through the examination of the eigenvalues of A. The following theorem
characterizes the stability properties of the origin [Che84, Lev95].
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Theorem 1.3. For the system (1.2.5), the equilibrium point is

1. asymptotically stable if Re(λi(A)) < 0, ∀i = 1, ..., n. In that case A is said to be
Hurwitz.

2. critically stable if Re(λi(A)) ≤ 0, ∀i = 1, ..., n and for every eigenvalue Re(λj) =
0, its algebraic multiplicity mj is associated to mj eigenvectors.

3. critically unstable if Re(λi(A)) ≤ 0, ∀i = 1, ..., n and at least one eigenvalue
Re(λj) = 0, with algebraic multiplicity mj, is associated to less than mj eigenvectors.

4. unstable if there is an eigenvalue of A which verifies Re(λi(A)) > 0.

Remark 1.4. For a given eigenvalue, λi(A), its algebraic multiplicity is related to its
multiplicity as a root from the characteristic polynomial of A. On the other hand, its
geometric multiplicity is the number of eigenvectors of A, linearly independent, associated
to λi(A) [Che84]. Therefore, system (1.2.5) is critically stable if the Jordan decomposition
of A, associated to the eigenvalues Re(λi(A)) = 0, is block-diagonal.

1.2.4 Positive invariance and contractivity

There are two concepts that would be interesting to introduce as they are strongly related
to the Lyapunov stability approach presented in Section 1.2.2: positive invariance and
contractivity.

First, let us consider an autonomous system as it has been formulated in the system
(1.2.2). Given x0 = x(0) ∈ ℜn an initial condition for (1.2.2), then a trajectory for the
system starting from x0 is denoted x(t, x0).

Definition 1.5. The set D ⊂ ℜn is positively invariant with respect to the system (1.2.2)
if ∀x0 ∈ D we have x(t, x0) ∈ D, ∀t ≥ 0.

Definition 1.6. The set D ⊂ ℜn is contractive with respect to the system (1.2.2) if
x(t) ∈ α(t)D, where α(t) ≤ 1 ( and if 0 ≤ α(t̃) < α(t), with t̃ > t, such that x(t̃) ∈ α(t̃)D),
for a suitable function α : [0,∞)→ [0,∞).

From Definition 1.5, we call a set D as positively invariant with respect to the system
(1.2.2) if any trajectory starting in D remains in D. On the other hand, a set D is
contractive if any trajectory starting in D evolves to a smaller subset contained in D. It
is easy to see that a contractive set with respect to the system (1.2.2) is also positively
invariant. The converse may be false. This is illustrated on Figure 1.2.

These concepts may be related to the definition of Lyapunov stability as in Definition
1.4. However, first we have to introduce the concept of Lyapunov surface.
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Definition 1.7. Given V a candidate Lyapunov function and c a positive scalar. The
surface defined in the state space as

∂Ωc = {x ∈ ℜn;V (x) = c}

with
Ωc = {x ∈ ℜn;V (x) ≤ c}

is called a Lyapunov surface.

x(0)
x(0)

x(t)

x(t)

(a) (b)

DD

αD

Figure 1.2: (a) Positive Invariance; (b) Contractivity

Then, if V̇ (x) ≤ 0 for x ∈ D such as V (x) = c, the origin is a stable equilibrium
point for the system (1.2.2), as the first condition of Theorem 1.1 is verified. At the
same time, the set Ωc = {x ∈ ℜn;V (x) ≤ c} bounded by the Lyapunov surface, ∂Ωc =
{x ∈ ℜn;V (x) = c} is a positively invariant set, as any trajectory starting in Ωc remains
in it. Moreover, if x = 0 is stable then there exists a positive invariant set containing it.
In addition, if V̇ (x) < 0 for all x 6= 0, by the second condition of Theorem 1.1, we can
affirm that the origin is an asymptotically stable equilibrium point for the system (1.2.2).
Moreover, the set Ωc is a contractive set as all the trajectories go asymptotically towards
a smaller set containing x = 0.

1.2.4.a LaSalle Invariance Principle

Theorem 1.1 provides a useful method to ensure the stability of dynamic systems. How-
ever, if the chosen Lyapunov function only verifies V̇ (x) ≤ 0, then no conclusion about
asymptotic stability can be obtained. Although there are other points different from
the origin where V̇ (x) = 0, if we can assure that any trajectory may not stay at these
points, except from x = 0, then the trajectories must converge to zero. That is what is
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called LaSalle’s Theorem or the LaSalle Invariance Principle. This result is stronger than
Theorems 1.1 and 1.2.

Theorem 1.4. Let

1. M be a positively invariant set with respect to the system (1.2.2).

2. V :M→ ℜ be a function such that V̇ (x) ≤ 0, ∀x ∈M.

3. E = {x ∈M; V̇ (x) = 0}.

4. L be the largest invariant set contained in E.

Then, every trajectory starting inM converges to L.

If we want to prove the asymptotic stability, we need x(t) → 0 as t → ∞. In other
words, from Theorem 1.4, we need to prove that the largest invariant set in E is reduced
to the origin. In that case, we can formulate two corollaries allowing us to conclude on
the asymptotic stability of the origin.

Corollary 1.1. Let

1. x = 0 be an equilibrium point of the system (1.2.2).

2. V :M→ ℜ be a Lyapunov function candidate such that V̇ (x) ≤ 0, ∀x ∈M.

3. E = {x ∈ M; V̇ (x) = 0} and suppose that no trajectory can stay in E, other than
the origin.

Then, x = 0 is asymptotically stable.

Corollary 1.2. Let

1. x = 0 be an equilibrium point of the system (1.2.2).

2. V : ℜn → ℜ be a Lyapunov function candidate such that ‖V (x)‖ → ∞ as x → ∞
and V̇ (x) ≤ 0, ∀x ∈ ℜn.

3. E = {x ∈ ℜn; V̇ (x) = 0} and suppose that no trajectory can stay in E, other than
the origin.

Then, x = 0 is globally asymptotically stable.
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1.3 Modelling of dynamic systems under input cons-

traints

In this section, the tools to describe a non-linear system under input constraints are
presented. The model of the saturation function is carried out. Also, because of its
practical interest, the dead-zone function is introduced.

1.3.1 Saturation and dead-zone functions

Let u ∈ ℜm be the control vector of a dynamical system, we define the saturation function
as follows:

Ψ(u,ū) :

{
ℜm → ℜm

u → Ψ(u,ū)(u) = sat(u,ū)(u)
(1.3.1)

where u(i) < 0 and ū(i) > 0, ∀i = 1, ...,m, are the lower and the upper limits of the
saturation. Generally only the Lipschitz-memoryless-decentralized saturation function is
considered for each i=1,...,m.

sat(u,ū)(u(t))(i) = sat(u,ū)(u(i)(t)) =





ū(i) if u(i)(t) > ū(i)

u(i)(t) if u(i) ≤ u(i)(t) ≤ ū(i)

u(i) if u(i)(t) < u(i)

(1.3.2)

Commonly, in order to simplify the mathematical development, the saturation is taken as
symmetric. That is equivalent to ū = −u. When both upper and lower bounds are equal
in absolute value the notation is simplified by replacing them by u0 = |ū| = |u|. Figure
1.3a shows the general aspect of a symmetric saturation function. Symmetric saturations
are then denoted: sat(u0)(u).

The saturation function is an intuitive formulation to describe the physicial limitation
of the actuators. However from a theoretical point of view the called dead-zone appears
to be a more interesting tool. The dead-zone function presented in Figure 1.3b is an
alternative non-linear function to represent the control constraint. The advantage of
the dead-zone formulation is that it can be seen as a disturbance which is null in the
linear domain. On the other hand, when the actuator saturates, the dead-zone is active
modifying the linear dynamics. Its formulation is given in the following equation:
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sat(u0)(u)

u0

−u0

u

(a)

φ(u0)(u)

u0

−u0

u

(b)

Figure 1.3: Saturation and Dead-zone non-linear functions.

φ(u,ū)(u) = u− sat(u,ū)(u) (1.3.3)

φ(u,ū)(u(i)) =





u− ū(i) if u(i) > ū(i)

0 if u(i) ≤ u(i) ≤ ū(i)

u− u(i) if u(i) < u(i)

Similarly, a symmetric version of the dead-zone (1.3.3) is considered:

φ(u0)(u) = u− sat(u0)(u) (1.3.4)

φ(u0)(u(i)) =





u− u0(i) if u(i) > u0(i)

0 if −u0(i) ≤ u(i) ≤ u0(i)

u+ u0(i) if u(i) < −u0(i)

Both saturation and dead-zone non-linearities are depicted in Figure 1.3.
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1.3.2 Closed-loop system with static state feedback

Consider a linear time-invariant system defined by

ẋ(t) = Ax(t) + Bu(t) (1.3.5)

where A ∈ ℜn×n and B ∈ ℜn×m.

Consider now that the input u(t) is saturated by a saturation function like (1.3.2).
And suppose that the system presented in (1.3.5) is in closed-loop with a static saturated
state feedback. Then, the feedback loop can be defined through the following expression

u(t) = sat(u0)(Kx(t)), K ∈ ℜm×n (1.3.6)

The final expression for the closed-loop system with the previous feedback (1.3.6) and
the system (1.3.5) is written as follows:

ẋ(t) = Ax(t) + Bsat(u0)(Kx(t)) (1.3.7)

It is easy to see, by the definition of the saturation function (1.3.2), that the set

Sl(u0) = {x ∈ ℜn;−u0(i) ≤ K(i)x ≤ u0(i), ∀i = 1, ...,m} (1.3.8)

is the region of linearity for the system (1.3.7). Therefore, in this domain, the non-linear
system (1.3.7) behaves like

ẋ(t) = (A+ BK)x(t). (1.3.9)

Remark 1.5. For all x ∈ Sl(u0) the saturated system (1.3.7) follows the time-invariant
system (1.3.9). However, even if an initial condition x(0) ∈ Sl(u0), we cannot conclude
that the resulting trajectory x(t) stays in Sl(u0), ∀t > 0, even if the closed-loop system
(1.3.7) is asymptotically stable (Re(λi(A + BK)) < 0). This is the reason why the non-
linearity introduced by the saturation has to be taken into account in order to analyze the
behavior of system (1.3.7). To ensure linear behavior for all trajectories we should find
the largest invariant set included in Sl(u0). Then, any trajectory x(t, x(0)) starting in this
invariant set would be described by the dynamics of system (1.3.9) [Kha92].

Finally the system (1.3.7) may be rewritten replacing the saturated function by a
dead-zone function (1.3.4) as follows:
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ẋ(t) = (A+ BK)x(t)− Bφ(u0)(Kx(t)) (1.3.10)

ẋ(t) = Ãx(t) + B̃φ(u0)(Kx(t)) (1.3.11)

with obvious definitions of Ã and B̃.

Remark 1.6. Writing the system as in (1.3.10)-(1.3.11) gives the possibility to represent
the system through a LFT (Linear Fractional Transformation) where the dead-zone is an
uncertainty of the linear system [RBTP07].

Considering system (1.3.11) the negativity condition of the time-derivative of a quadratic
Lyapunov function V (x) = x

′

Px, P = P
′

> 0, reads:

V̇ (x) = ẋ
′

Px+x
′

Pẋ = x
′

(Ã
′

P +PÃ)x+x
′

PB̃φ(u0)(Kx)+φ(u0)(Kx)
′

B̃
′

Px < 0 (1.3.12)

then, since the term x
′

PB̃φ(u0)(Kx) is a real, x
′

PB̃φ(u0)(Kx) = φ(u0)(Kx)
′

B̃
′

Px and
hence relation (1.3.12) reads:

V̇ (x) = ẋ
′

Px+ x
′

Pẋ = x
′

(Ã
′

P + PÃ)x+ 2x
′

PB̃φ(u0)(Kx) < 0 (1.3.13)

When the variables P and K are unknown, the inequality (1.3.13) is non-linear and it is
difficult to directly compute the domain of the state space where it is verified. This domain
is generally called the domain of stability. The strategy to compute this domain consists in
proposing a characterization (conservative) of the saturation (dead-zone) function which
provides a sufficient convex condition for the relation V̇ (x) < 0.

First, the modelling by non-linear sector condition is presented. Afterwards, the sat-
uration regions approach and the polytopic approach are developed. Only a brief formu-
lation is exposed.

1.3.3 Non-linear sector condition

Memoryless function like saturation can be modelled by a sector non-linearity. An ap-
proach has been developed in [GdSJT05, TPGdSJ06] to include the saturation in a non-
linear sector. Consider a dead-zone function φ(u0)(·), as it has been defined in (1.3.4) and
a closed-loop system (1.3.11). Finally, consider the following polyhedral set:

S(u0) =
{
(u, ω) ∈ ℜm ×ℜm;

∣∣u(i) + ω(i)

∣∣ ≤ u0(i) , i = 1, ...,m
}

(1.3.14)

With all these elements the following Lemma may be stated.
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Lemma 1.1. [TPGdSJ06] Consider the function φ(u0)(u) defined in (1.3.4). If u and ω
belong ∈ S(u0) then the relation

φ(u0)(u)
′T [φ(u0)(u) + ω] ≤ 0 (1.3.15)

is verified for any matrix T ∈ ℜm×m diagonal and positive definite.

This lemma is proven in [TPGdSJ06] for a general case of nested saturations whereas
the simple case of one saturation is studied in [GdSJT05]. Condition (1.3.15) is called a
modified sector condition since it can be considered as an extension of the classical one
described in [Kha92]:

φ(u0)(u)
′T [φ(u0)(u)− Λu] ≤ 0 (1.3.16)

where Λ stands for a diagonal matrix fixed a priori verifying 0 < Λ < Im. Replacing
ω = −Λu in relation (1.3.15), one gets (1.3.16). The classical sector condition (1.3.16)
is a particular case of the modified sector condition (1.3.15) hence the classical sector
condition is more conservative than the modified one [TT09, TGGE07]. Moreover, the
classical condition (1.3.16) is only valid locally for values of u in the interval [−L,L], as
depicted in Figure 1.4.

φ(u0)(u)

u0−u0 L

−L

(a) Modified sector condition (1.3.15)
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�������
�������
�������
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�������
�������

Penalizing surface φ(u0)(u)

L

−L

(b) Classical sector condition (1.3.16)

Figure 1.4: Graphic interpretation of sector conditions.

A graphical interpretation of the previous result is proposed in the Figure 1.4 for the
case of a single input m = 1. The grey zone represents the different possible values



1.3. Modelling of dynamic systems under input constraints 23

of φ(u0)(·) verifying the modified sector condition (see Figure 1.4a). It is important to
point out that the dead-zone function is not the only function belonging to this sector.
Therefore, one deduces that some conservatism is induced by this modelling. Nevertheless,
this conservatism is null in the linear domain (interval [−u0, u0]) for the modified sector
condition (1.3.15). On the other hand, the classical sector condition (see Figure 1.4b) adds
more conservatism than the modified one. This additional conservatism is remarkable in
the linear domain as there are values satisfying the sector condition while in the modified
case (1.3.15) any extra value is included. Graphically, one can see the extra conservatism
introduced by (1.3.16) with respect to (1.3.15) as there exists a penalizing surface (darker
zone) which contains extra values verifying the sector condition.

Other ways to represent the saturation can be considered. Some of them are now
briefly presented.

1.3.4 Saturation regions approach

The exact representation of the saturation function may be carried out by dividing the
state space in 3m different regions [JR98, GdSJT99, GdSJ97].

First of all, define a vector ξ ∈ ℜm where each element ξ(i) = {−1, 0− 1}, i = 1, ...,m.
Each element is related to a component of the control vector u. Then, the value 1, 0 or
−1, for ξ(i) means that the associated control component is saturated to the upper limit,
non-saturated or saturated to the lower limit, respectively. All this might be stated as:

1. If u(i) = u0(i), then ξ(i) = 1.

2. If u(i) = K(i)x, then ξ(i) = 0.

3. If u(i) = −u0(i), then ξ(i) = −1.

Thus, each vector ξ represents a possible combination between saturated or non-saturated
inputs. It is easy to realize that we need 3m vectors ξ in order to fully describe the behavior
of the constrained input system. For each one of these vectors ξ, x belongs to a saturation
region. Each region, related to a vector ξ(i), i = 1, ..., 3m, can be defined by the polyhedral
set:

S(Ri, di) = {x ∈ ℜn;Rix � di} (1.3.17)

where di ∈ ℜli is a vector composed by the saturation limits ±u0 and Ri ∈ ℜli×n a matrix
composed by the rows of ±K.
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Remark 1.7. Such a representation is mainly used for stability analysis purpose, and, in
general, in the case of systems with few inputs. As it is remarked in [GdSJ97, GdSJTR05],
as the dimension of the input vector increases, the algorithm tends to become numerically
untractable. For example, in the case of a two inputs constrained system the number of
regions to consider is already large: m = 2→ 3m = 9 regions.

1.3.5 Polytopic approach

In this section we present the polytopic representation proposed by [HLC02] and based
on the use of linear differential inclusion (LDI). Other previous developments regarding
polytopic representation for saturated systems can be found in [BT96, HT99, GdSJT06].

Let us first give the definition of a LDI [BEGFB01].

Definition 1.8. A linear differential inclusion (LDI) is given by:

ẋ ∈ Ωx; x(0) = x0

where Ωx is a subset of ℜn.

By this way the following result applying to the saturated system (1.3.7) can be stated.

Define the polyhedral set Sp(H, u0):

Sp(H, u0) =
{
x ∈ ℜn;−u0(i) ≤ H(i)x ≤ u0(i), i = 1, ...,m

}
(1.3.18)

Lemma 1.2. [HLC02] If x ∈ Sp(H, u0) then the saturated term satisfies:

sat(u0)(Kx) ∈ Co {(GjK + (Im −Gj)H)x, j = 1, ..., 2m} (1.3.19)

where Gj, j = 1, ..., 2m, are diagonal matrices whose diagonal elements take the value 1 or
0 and Co stands for the closed convex hull.

Then, it follows for x ∈ Sp(H, u0):

ẋ ∈ Co {A+ B(GjK + (Im −Gj)H)x, j = 1, ..., 2m} (1.3.20)

Relation (1.3.20) means that for x ∈ S(H, u0) the saturated system (1.3.7) can be repre-
sented by a polytopic model:

ẋ =
2m∑

j=1

λj(A+B(GjK + (Im −Gj)H)x (1.3.21)

with
∑2m

j=1 λj = 1, λj ≥ 0.
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For more details about this kind of model, the reader can consult [HL01]. Some
extensions to the case of non-linear differential inclusions (NLDI) have been proposed by
Alamo and his co-workers [ACL05]. Moreover, note that the dead-zone φ(u0)(Kx) could
be also approximated through LDI [CTQ08].

Remark 1.8. One of the main drawbacks of the polytopic approach is a potential larger
numerical complexity, in comparison with the modified sector condition modelling mainly
to the tests to provide on 2m parties. In [TPGdSJ06] a comparison between both ap-
proaches is done and the LMI complexity for each case is discussed.

1.4 Analysis of a dynamic systems under input cons-

traints

The polytopic modelling presented in Section 1.3.5 provides matrix inequalities for as-
sessing the stability of system (1.3.11). These results are interesting for the stability
analysis of saturated systems or even the synthesis of controllers considering the satura-
tion [HL01, KGE02, PTH07]. However this is not the case when another approach to
handle the saturation is considered [HLC02, CLW02, HTZ05]. This is the anti-windup
synthesis problem which is briefly introduced in Section 1.4.2 and fully detailed in Chap-
ter 3. Nevertheless, let us remark that the use of the polytopic approach asks for the
resolution of a non-convex problem when the anti-windup resolution is sought, even if
only the static case is considered [CLW02].

The main objective of this manuscript is to provide constructive methods for the
anti-windup design and their evaluation for control of satellites. The modelling by sector
condition presents convex conditions for the static anti-windup synthesis and under certain
conditions, for the dynamic anti-windup synthesis. Therefore, in this manuscript the
sector condition modelling is kept instead of using the polytopic or the saturation regions
approaches.

In this section a theorem for stability analysis is presented. These conditions are
presented in terms of Linear Matrix Inequalities (LMI) providing an estimation of the
stability domain. Moreover, optimization techniques are introduced to maximize the
computed estimation. Finally, a brief introduction to the windup problem and its related
solution, the anti-windup compensator, are given.
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1.4.1 Stability domain estimation

Let us define a saturated system like (1.3.11):




ẋ = Ax+ Bφ(u0)(y)
y = Cx ∈ ℜm

x(0) = x0 ∈ ℜn

(1.4.1)

Then, the purpose of the analysis is to find the larger domain of the state space where
the stability of the constrained system (1.4.1) is verified.

Remark 1.9. The feedthrough between φ(u0) and y is null, as nested saturations are
avoided. This choice is motivated by the following reasons: several definitions and results
are presented in this chapter. No proof is given as they are classical results and could be
easily found in the literature. See, for example, works from Khalil [Kha92], Slotine and
Li [SL91] and Vidyasagar [Vid92].

• Nested saturations arise when limitations such as rate saturation are considered. In
some case this phenomenon may be avoided with the modelling proposed in [BTF06].

• Extra theoretical considerations have to be taken into account to treat nested satu-
rations, increasing the level of conservatism which is undesirable for synthesis pur-
pose. Some solutions can be however considered in this case: see, for example
[TPGdSJ06, BL02].

The following theorem allows the characterization of a stability domain for system
(1.4.1) [GdSJT05, BTF06].

Theorem 1.5. (Stability domain analysis) If there exist a symmetric positive-definite
matrix W ∈ ℜn×n, a diagonal positive-definite matrix S ∈ ℜm×m and a matrix Y ∈ ℜm×n

such as the following LMI conditions are verified:
[
WA

′

+ AW BS + Y
′

∗ −2S

]
< 0 (1.4.2)

[
W WC

′

(i) − Y
′

(i)

∗ u2
0(i)

]
≥ 0, ∀i = 1, ...,m (1.4.3)

then the ellipsoid:
E(P ) = {x ∈ ℜn; x′Px ≤ 1} (1.4.4)

with P = W−1, is a domain of asymptotic stability for the system (1.4.1).

Proof of Theorem 1.5: Consider a quadratic Lyapunov function V (x) = x
′

Px with
P = P

′

> 0. Let us get back the expression of the time-derivative of the Lyapunov
function in (1.3.13).
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V̇ (x) = ẋ
′

Px+ x
′

Pẋ = x
′

(A
′

P + PA)x+ 2x
′

PBφ(u0)(Cx) (1.4.5)

The sector condition (1.3.15) domain of validity is defined by the following set:

S(u0) =
{
x ∈ ℜn;

∣∣(C(i) −G(i))x
∣∣ ≤ u0(i) , i = 1, ...,m

}
(1.4.6)

One to guarantee that the sector condition is satisfied in the whole ellipsoid E(P )
(1.4.4). This is assured by imposing E(P ) ⊆ S(u0). Then the following relationship has
to hold:

x
′

(C(i) −G(i))
′ 1

u2
0(i)

(C(i) −G(i))x ≤ x
′

Px ≤ 1, i = 1, ...,m (1.4.7)

to satisfy (1.4.7) it suffices to verify:

P − (C(i) −G(i))
′ 1

u2
0(i)

(C(i) −G(i)) ≥ 0, i = 1, ...,m (1.4.8)

Hence, by Schur’s complement one obtains the following matrix inequality:

[
P C

′

(i) −G
′

(i)

∗ u2
0(i)

]
≥ 0, i = 1, ...,m (1.4.9)

Finally by pre- and post-multiplying (1.4.9) by diag(P−1, I), one obtains relation (1.4.3)
with W = P−1 and Y = GW .

Therefore, the satisfaction of relation (1.4.3) guarantees that E(P ) ⊆ S(u0). Then sec-
tor condition (1.3.15) is verified in the ellipsoid (1.4.4) defined by the quadratic Lyapunov
function.

Applying the sector condition (1.3.15) in Lemma 1.1 with ω = −Gx and using the
S-procedure [AG64] the inequality (1.4.5) becomes:

V̇ (x) ≤ ẋ
′

Px+ x
′

Pẋ = x
′

(A
′

P + PA)x+ 2x
′

PBφ(u0)(Cx)

− 2φ(u0)(Cx)′T [φ(u0)(Cx)−Gx] (1.4.10)

for any x ∈ E(P ).

With S = T−1 andW = P−1, the right-hand term of relation (1.4.10) can be expressed
in a matrix formulation:

L =
[
x

′

W−1 φ
′

(u0)
S−1

] [
WA

′

+ AW BS +WG
′

∗ −2S

] [
W−1x
S−1φ(u0)

]
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Finally by using the change of variables GW = Y one recovers condition (1.4.2).
Therefore, the satisfaction of relation (1.4.2) ensures that L < 0 or equivalently V̇ (x) ≤
L < 0, that is, the negativity of the time-derivative of Lyapunov function for any x in the
ellipsoid E(P ) (1.4.4).

In conclusion, E(P ) is a region of asymptotic stability for system (1.4.1).

End of Proof.

Theorem 1.5 provides conditions to find a possible domain of stability. However the
problem can be transformed into an optimization problem. A possible manner is to
maximize the volume of the stability domain E(P ). Indeed, the volume of an ellipsoid
defined by relation (1.4.4) is proportional to the determinant of the matrix W = P−1.
Hence, to maximize the volume of E(P ) is equivalent to maximize the trace of W , which
can be written as a convex problem [VBW98, TGGE07]. Then the problem is stated as

min ρ s.t. (1.4.2), (1.4.3) and:

[
W In
∗ ρIn

]
≥ 0 (1.4.11)

It is also possible to maximize the domain of stability E(P ) in a given direction v of the
state space. This is translated to the minimization of the objective β. This optimization
is stated as

min β s.t. (1.4.2), (1.4.3) and:

[
W v
∗ β

]
≥ 0 (1.4.12)

Some other solutions are proposed by [HL01].

1.4.1.a Educational example

Let us recover the education example to illustrate the computation of the stability domain
estimation. The system considered is described by (9). With some tedious algebra,
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Figure 1.5: Stability domain estimation of system (9).

one obtains the closed-loop matrices and set the relationship with the general system
considered in (1.4.1). The closed-loop matrices then read:

A =

[
Ap + BpDcCp BpCc

BcCp Ac

]
;B = [B

′

p 0]
′

;C = [DcCp Cc]. (1.4.13)

with the state x = [x
′

p x
′

c]
′

and the output y = yc.

Given matrices (1.4.13) one may apply directly Theorem 1.5. Two problems are solved.
First the size of the stability domain is maximized through the trace of P , thus optimiza-
tion problem (1.4.11) applies. Then the optimization of the stability domain in a given
direction v is performed, thus (1.4.12) applies. The solutions to these problems are com-
pared in Figure 1.5. In this example v = [1 0 0 0 0 0]

′

, that is, the domain is maximized
in the x(1), direction which corresponds in the education example case to xp(1) = θ.

Figure 1.5 shows the stability domain estimation in the (θ, θ̇) plane. Normally the
stability domain is a ℜ6 space. However, the controller state xc can be considered to be
initialized at the origin [CNE05]. Then, the section x = [x

′

p 0]
′

is representative of the
actual stability domain. In the figure one can see the interest to maximize towards a given
direction instead of seeking the whole domain as we may obtain a better estimation of
the initial admissible state. Moreover because of the fact that xc is normally initialized
at the origin it seems more judicious to steer the optimization towards the sensible state
directions. In addition several trajectories of the system have been plotted showing that
the domain computed is a conservative estimation as some initial conditions outside the
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domain still converge. Parallel lines limit the linear domain, that is the set defined in
(1.3.8).

1.4.2 The windup phenomenon

The windup is a phenomenon which becomes manifest by an important overshoot in the
control and output signals and an excessive reaction time due to the saturation of the
actuators. The windup phenomenon was first documented in the middle of the 20th cen-
tury [Loz56]. It usually appears in systems which include actuators subject to saturations
and present a feedback loop through a controller including integrators, like for example
a PID [FR67, AR89]. When the saturation is active, the continuous error is integrated,
distorting the control commands. Neglecting these limitations can be a source of unde-
sirable or even catastrophic behaviors for the closed-loop system as a strong degradation
of performance in even the loss of stability [BHSB96]. An approach to deal with this
phenomenon is the anti-windup compensation [TT09, GTTZ09].

The basic idea is to introduce control modifications, in the previously designed linear
controller, in order, for example, to enlarge the region of stability of the closed-loop
system or to recover as much as possible the performance of the unsaturated (linear)
system. The anti-windup compensator, therefore, is an extra layer which is added to the
linear controller in order to consider the non-linear behavior.

Figure 1.6 presents the general principle of the anti-windup technique. There is a
separation between the “unconstrained“ controller and anti-windup compensator showing
this idea of extra layer. The anti-windup receives as an input the difference between the
saturated and unsaturated control signal, to generate two output signals, one (vy) which
modifies the controller output and another (vx) which modifies the controller dynamics.

Controller

vx

vy

yc

yp

±u0

φ(u0)

P lant

+

+

+

−

Anti-windup
Compensator

sat(u0)(yc)
zp

Figure 1.6: General anti-windup structure

Remark 1.10. The signal vx may influence the controller either by modifying directly the
controller state equation (i.e. vx has the same dimension of the state vector) or by being
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added to the plant output yp (i.e. vx and yp have the same dimension), without changing
substantially the stability and optimality conditions.

Chapter 3 will be dedicated to different approaches in the literature and constructive
techniques for designing suitable anti-windup compensator.

1.5 Conclusion

The main elements on the stability of saturated system have been provided in this chapter.

First, a review of the main concepts on the stability of dynamic systems has been pre-
sented. Stability, attraction and asymptotic stability concepts have been fully described
in the framework of Lyapunov stability. In particular, Lyapunov’s second method has
been shown as an interesting practical method to study the stability of dynamic systems.

The modelling of a particular case of dynamic system has been tackled: namely systems
presenting a non-linearity input constraint. Two models for this particular non-linearity
have been provided: the saturation function and the dead-zone function. These functions
have to be characterized to apply Lyapunov’s second method. Three characterizations
have been presented: the sector condition approach, the saturation regions approach and
the polytopic approach.

Finally, some analysis tools for the dynamic systems under input constraints have
been given. The application of Lyapunov second method along with the sector condition
characterization of the saturation function have provided constructive conditions for the
estimation of the domain of stability. These conditions have been given into the form of
Linear Matrix Inequalities conditions. They have been briefly applied in the case of the
educational example.
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Symmetrizing saturations
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2.1 Introduction

Saturations are present in most modern industrial applications. The synthesis of non-
linear control laws considering saturation is an important issue in the literature. The sat-
urations can be a source of undesirable or even catastrophic behaviors for the closed-loop
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system (as loss of stability of the system [BHSB96]). Research has focused on stability do-
main estimation [SS99, VBW98], control design under actuator constraints [HL01, KGE02]
and even on so-called anti-windup compensator design [Tee99, BRTZ00, TGGE07]. For
example, amplitude and/or rate limitations of the actuator have been implicated in various
aircraft crashes and the meltdown of the Chernobyl nuclear power station [Ste89].

Spacecraft control is also subject to saturation problems. Future space missions present
more demanding requirements in terms of control precision. Even though new actuators
can satisfy the demands on high precision, the maximal propulsion capacity appears to
be critically low, which could lead to saturation of the actuator.

Traditionally, on-board satellite control has been focused on attitude control. It seeks
to ensure the right orientation of the satellite in order to satisfy the needs of the mission.
This kind of control system is performed with an architecture based on the use of reac-
tion wheels as primary torque actuator [CNE05]. The principle is to counteract external
disturbance torques by a closed-loop strategy with the previous mentioned actuators and
attitude sensors. Future missions requirement includes acceleration or relative position
control which requires actuators that can provide an effort in the linear axis. Therefore
propulsive systems apply.

Moreover, systems using a propulsive system usually present an allocation problem
[Dur93]. Dynamical systems like satellites are modelled by the classic equations of rigid
body dynamics which are expressed in terms of angular and linear accelerations as a
function of an effort vector composed by forces and torques. However, as the action is
performed through a propulsive system, which provides unidirectional impulses, a function
is needed to determine how to generate a specified generalized effort (forces and torques)
from a redundant set of actuators. Allocation functions are normally highly non-linear
and, thus, it is difficult to set mathematical conditions to ensure stability and performance
level. Some works have instead considered optimal MIMO controllers which stabilize the
closed-loop system as well as perform the control allocation. In this work only the first
approach is considered. A general introduction to the allocation function and possible
approximations for it are proposed in this chapter.

Saturations associated to thrusters appear to be asymmetric. Indeed this kind of
actuators only provides a positive thrust. Generally, in the literature, in either stabil-
ity domain estimation or anti-windup compensator design for systems under actuator
constraints, only the symmetric saturation has been considered. Some few works have
symmetrized the saturations by a conservative approach such as [Lan03]. In this chapter
two symmetrizing techniques are proposed to enable further analysis and anti-windup
loop synthesis methods.

This chapter is organized as follows. First, in Section 2.2 the structure of the system
considered is introduced. Then, the allocation problem is provided in Section 2.3. Af-
terwards, some allocations functions are proposed in Section 2.4. Finally symmetrizing
techniques are proposed in Section 2.5.
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2.2 System structure description

lacemen

yc
fC

T ū

0

sat(0,ū)(T )
M P

ypup

Figure 2.1: Closed-loop system under study.

Let us consider the block-diagram in Figure 2.1 describing the control diagram of a
system presenting an allocation function and thrusters as actuators. The plant is described
by the following equations:

P :

{
ẋp = Apxp +Bpup

yp = Cpxp
(2.2.1)

with xp ∈ ℜnp the state of the plant, yp ∈ ℜq the output of the plant and up ∈ ℜmc

the control input. Matrices Ap, Bp and Cp are real constant matrices of appropriate
dimensions. Pairs (Ap,Bp) and (Cp,Ap) are assumed to be controllable and observable,
respectively.

A controller, computed by whatever way, is given and it ensures the asymptotic sta-
bility and some performance level for the unconstrained (i.e. linear) closed-loop system.
A state space representation of the controller C is given by the following formulation:

C :
{

ẋc = Acxc + Bcyp
yc = Ccxc +Dcyp

(2.2.2)

where xc ∈ ℜnc is the state of the controller and yc ∈ ℜmc is the control output. Ac, Bc,
Cc, Dc, are real constant matrices of appropriate dimensions.

The relationship between the control output yc and the control input up is performed by
a propulsive system. Thrusters do not perform directly the signal of the control output
yc. The relationship between yc and the thrust vector T ∈ ℜm is set by an allocation
function f . On the other hand, the thrust T is linked with the control input up through
the influence matrix M ∈ ℜmc×m. These elements are described later in Section 2.3.
Finally, thrusters present power limitations which are modelled by a saturation function.
Moreover thrusters only provide a positive thrust as they only can thrust towards one
direction. Thrusters are modelled by a decentralized non-symmetric saturation between
0 and ū:

sat(0,ū)(T(i)) =





ū(i) if T(i) > ū(i)

T(i) if 0 ≤ T(i) ≤ ū(i)

0 if T(i) < 0
, i = 1, ...,m. (2.2.3)
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2.3 Introduction to allocation functions

An allocation function (AF) is an algorithm needed for optimal distribution of control
outputs to the different actuators. The generalized control force (forces and torques)
yc is generated by a controller, assuring the stability of the linear closed-loop system.
Regardless the control loop, the AF algorithm is responsible for calculating an optimal
solution of actuator (thrusters) set-points that at all times satisfy the presumed attainable
generalized force signal. A characteristic feature of control allocation problems is that
there are more control signals than the number of controlled forces and moments, such
that the system is over-actuated.

In general, finding an AF is a dynamic non-linear optimization problem since there
are sector limitations such as actuator maximum capacity. This problem can be solved
using non-linear optimization techniques [NW99], e.g., quadratic programming. The
aerospace community has addressed constrained AF methods since a long time. The
two most frequently reported strategies are Durham’s tailor-made generalized inverse
[Dur93, Dur94b, Dur94a] and actuator daisy chaining [BHSB96]. The sets of admissi-
ble controls is usually an n-dimensional rectangle. The set of attainable thrusts is convex
[Dur94b, Dur94a].

Most existing AF approaches rely on a linear model that describes the relationship be-
tween the actuators signals and the generalized forces. This allows least-squares solutions
to be found in an explicit form. Thus the AF can be implemented using simple matrix
computations such as generalized inverses [Sor97]. The actuators thrust denoted by the
vector T ∈ ℜm is related to the control input up by the influence matrix M ∈ ℜmc×m. The
matrix M contains the information concerning the geometric distribution and orientations
of the thrusters. In the linear domain, the influence of the thrusters on up is defined by
the following expression:

up = MT, where T =
[
T

′

(1) T
′

(2) · · · T
′

(m)

]′
(2.3.1)

Given the influence matrix and considering the positivity constraint of the T vector,
let us define the AF as:

Definition 2.1. A function f : ℜmc → ℜm is an allocation function (AF) if:

• T = f(yc) � 0, ∀yc ∈ ℜmc,

• up = Mf(yc) = yc and, f(0) = 0.

Choosing the optimization criterium of minimizing the thrust provided, proportionally
to
∑m

i=1(T(i))
2, then we get an analytic solution to the AF which is the pseudo-inverse
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matrix of the influence matrix:

T = M
′

(MM
′

)−1

︸ ︷︷ ︸
M∗

yc (2.3.2)

However this solution does not ensure sector constraints of positivity. Thrusters are
devices which only provide a positive action as they are unidirectional. Several algorithms
exist in order to modify the least-squares algorithm solution to verify the positivity of
the thrusts. An example is the algorithm based on the Householder decomposition of
the influence matrix (used in CNES Microscope mission [PPT+05]). Allocation function
algorithms have to deal with real-time implementation when they are designed for on-
board use. Finite convergence of the algorithm is not assured yet. Therefore, to satisfy
the real-time implementation constraint two options arise: 1) the algorithm has usually to
be truncated at a suitable iteration [BD95, PPT+05] or 2) it has to use explicit solutions
[Fos02, Sor97, SJ09, JFT05]. However these options are either conservative in terms of
utilizing only a limited fraction of the attainable control input up set1 or not optimal
in terms of power consumption [Fos02, Sor97, JFT05]. Figure 2.2 shows the attainable
control set (left) given the attainable thrust set (right). At the same time, the minimal
control capacity (MCC) could be defined as the minimum norm of the control yc which
reaches the actuator capacity bounds. On the other hand, AF mathematical expression
is usually too complex to be formulated and highly non-linear [BD95, PPT+05]. That
complicates the analysis of other non-linearities such as the saturation.

T

u0

F

C
MCC

f(MCC)

f

Figure 2.2: Attainable control set vs attainable thrust set.

Considering the saturation function (2.2.3) and the AF Definition 2.1, the general
expression connecting yc and up is given by:

up = Msat(0,ū)(T ) = Msat(0,ū)(f(yc)) (2.3.3)

1The attainable control input set is the set of control inputs that can be generated by the thrusters
while fulfilling the constraints.
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then, the closed-loop system can be written:





ẋp = Apxp +Bpup

yp = Cpxp

ẋc = Acxc + Bcyp
yc = Ccxc +Dcyp
up = Msat(0,ū)(f(yc))

(2.3.4)

In order to analyze its stability and performance, an expression for AF is needed. Some
AF are proposed hereafter in order to provide an explicit expression which may be ex-
ploited easily in other analysis. The simplicity is sought rather than the optimality or the
achievement of the sector constraints. This choice will be also justified.

2.4 Choosing an allocation function

As explained before, the allocation function used on real applications is a highly non-linear
function. Thus, it is difficult to set a mathematical expression for f(yc). The presence of
a non-linear function makes the treatment of the saturation harder. In the linear case,
the term Mf(yc) is reduced to yc. Hence, the non-linear behavior is hidden. However,
as the saturation of the actuator applies, the simplification is not possible anymore. We
seek to find a simplified model for f(yc) while keeping its main properties and without
modifying plant behavior.

Roughly speaking, the considered allocation function is based on switching structure,
ensuring the positivity of the computed thrust guaranteing the validity of the equality
up = yc. Even though this family of allocation functions is not optimal, it represents an
interesting benchmark for study.

2.4.1 The easiest allocation function: the pseudo-inverse matrix

A possible strategy for the allocation function f is to use the pseudo-inverse matrix of
the influence matrix M . We can denote such a pseudo-inverse matrix as M∗. Even if
it does not verify the positivity constraints and thus, providing a not-optimal solution,
this approach provides a simple relation which is not iterative. Therefore, there are no
convergence problems, differently to some other existing AF. As the pseudo-inverse based
model does not provide positive thrust, there is no guarantee of stability. In fact, the
plant may become unstable when saturations are active.

Usually, the AF has the function of setting a thrust vector providing the right control
vector yc and checking the actuators limitations [Dur93, Dur94b]. However this spec-
ification demands for a complex AF. Proposing the pseudo-inverse matrix as AF, the
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properties are relaxed but the stability domain decreased. We know that the system may
be unstable as soon as the actuator saturates, but its simplicity suggests an interesting
option. The idea is to handle the actuator limitation from the control and not from the
AF. Control modifications will be introduced expecting to recover (even increase) the sta-
bility domain and the performance (even improve) provided by a better but more complex
AF.

The first proposal for the allocation function is:

T = f(yc) = M∗yc (2.4.1)

Finally, the actuation is described by the following expression:

up = Msat(0,ū) (T ) = Msat(0,ū) (f(yc)) = Msat(0,ū) (M
∗yc) (2.4.2)

2.4.2 The multi-saturation based allocation function

An alternative allocation function is proposed in [BPT+10a]. We seek to obtain a closer
mathematical expression to the non-linear f . The idea is to treat each effort yc(i) individ-
ually, computing the right set of positive thrusts T i needed to perform it, and finally add
them all. Each column of M∗

(:,i) times yc(i) provides the set of thrusts which performs a
control input up(i) equal to the control output yc(i).

However, when M∗
(:,i) is multiplying an effort yc(i), the resultant set of thrusts is not

necessary positive. The proposed approach introduces an additional saturation after each
individual T i computation. Extra saturations ensure a set of thrusts for each effort where
all components are positive. All positive thrusts are summed providing a final thrust T
where all components are positive.

T = f(yc) =sat1(0,ū)(M
∗
(:,1)yc(1)) + sat2(0,ū)(M

∗
(:,2)yc(2)) + · · ·

+ satmc(0,ū)(M
∗
(:,mc)yc(mc)) (2.4.3)

Finally, the saturation issued from the physical limitations of the actuator applies to
the computed thrust. Additional saturations (with subscript) are emphasized with respect
to those belonging to the AF and the saturation representing thrusters limitations (no
subscript). The equations modelling the allocation function and the whole actuator are:

up = Msat(0,ū)(T ) = Msat(0,ū)

(
mc∑

i=1

sati(0,ū)(M
∗
(:,i)yc(i))

)
(2.4.4)
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Figure 2.3: f(yc) and the actuator model

Figure 2.3 shows a block diagram of the actuator. Equation (2.4.3) represents an
alternative f to the previous one presented in (2.4.1). However, one can realize that
equations (2.4.2) and (2.4.4) are the same when mc = 1. When yc is a single variable, the
chain of saturations is reduced to a unique saturation. Hence, (2.4.3) represents a real
alternative way when mc > 1, that is, a coupling appears as the same actuator is used for
different efforts. This second choice represents a non-linear AF (but still mathematically
treatable) which introduces a different behavior to the actuator when coupling is present.
However, it can be noted that extra conservatism is added.

To illustrate the difference, let us consider a simple propulsive system composed by
four thrusters, the influence matrix M and its pseudo-inverse could be represented by:

M =

[
1 −1 −1 1
1 1 −1 −1

]
M∗ =

1

4




1 1
−1 1
−1 −1
1 −1




Then let us assume a control output yc ∈ ℜ2 where both components of the vector are
larger than the saturation bound ū and let us also suppose that2 yc(1) >> yc(2) >> umax,
such as, yc(1) − yc(2) > 4umax. Using (2.4.2) the resulting control up is:

up = Msat(0,ū) (M
∗yc)

= Msat(0,ū)



1

4




yc(1) + yc(2)
−yc(1) + yc(2)
−yc(1) − yc(2)
yc(1) − yc(2)





 = M




umax

0
0

umax


 =

[
2umax

0

]
(2.4.5)

2ū ∈ ℜ4 with ū(j) = ū(i) = umax for i, j = 1, ..., 4 with i 6= j.
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Similarly, considering (2.4.4) one obtains:

up = Msat(0,ū)
(
sat1(0,ū)(M

∗
(:,1)yc(1)) + sat2(0,ū)(M

∗
(:,2)yc(2))

)

= Msat(0,ū)


sat1(0,ū)



1

4




yc(1)
−yc(1)
−yc(1)
yc(1)





+ sat2(0,ū)



1

4




yc(2)
yc(2)
−yc(2)
−yc(2)










= Msat(0,ū)







umax + umax

umax

0
umax





 = M




umax

umax

0
umax


 =

[
umax

umax

]

(2.4.6)

which is different to (2.4.5).

It is important to emphasize that the pseudo-inverse based AF (2.4.1) yields the control
which saturates the most (yc(1) in that case) as all the thrusting capacity (2ū) is used for the
first component of up. On the other hand, the multi-saturation based AF (2.4.3) splits the
capacity in both components of the control up. This different behavior has consequences
for the stability of the saturated system. Because of this kind of distributing the thrusting
capacity, the system is stable for the multi-saturation based AF as shown in Figure 2.4
(for a given initial condition).

2.4.2.a Educational example

Figure 2.4 represents the time-evolution of the first regulated output zp(1) of a modified
version of the educational example.The education example system (8) is composed of a
SISO-controller and a SISO-plant. We have increased the education example in order to
obtain a system which can illustrate the difference between AF (2.4.1) and (2.4.3). The
simulated state matrices read:

P̃ = diag(P ,P) (2.4.7)

C̃ = diag(C, C) (2.4.8)

M =

[
−1 1 −1 1
1 −1 −1 1

]
(2.4.9)

where P stands for the plant (1) and C stands for the controller (2). The structure of
the educational example has not been modified and thus the block diagram in Figure 1
still applies. With this increase of the system dimension there are two control outputs
that have to be allocated to four thrusters. Thus AFs (2.4.1) and (2.4.3) have different
behaviors.

Figure 2.4 depicts the response of the first output of the increased system (2.4.7)-
(2.4.9). The plant initial condition has been set to x̃p(0) = 10−3 · [10 0 1.1 0]

′

. With
this initial condition the system saturates and there is an input direction which related
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Figure 2.4: Comparison the output zp(1) with different allocation functions f

control output saturates more (it is further than the admissible limit) than the other input
direction.

Figure 2.4 shows how the system becomes unstable when the AF is based on the
pseudo-inverse of the influence matrix (solid line). On the contrary, the system is stable
with the multi-saturation based allocation function (dash-doted line). Roughly speaking,
one could say that the AF (2.4.1) forgets about some dynamics of the plant, and it diverges
too much to recover them and, therefore, the whole system diverges. On the other hand,
the AF (2.4.3) acts on all plant dynamics, stabilizing the system even in presence of a
gap between yc and ū. Hence, even if the complexity of the AF is increased, this new
modelling provides a mathematical formulation for AF where the relaxations done are
less important. Then, as the constrained system is stable, this AF should provide a
bigger domain of stability and performances when the control modifications (to handle
the saturation) will be introduced.

Henceforth, we will denote as pseudo-inverse matrix the allocation function described
in (2.4.1) and as multi-sat the one in (2.4.3). The goal is to compare further results
with a simpler but inefficient allocation function (pseudo-inverse matrix) with a good
approximation of the non-linear f which is more complex and conservative but stable
(multi-sat). In Chapter 4, we show the benefits of the anti-windup compensator in each
case and we evaluate the necessity of complex AFs when the anti-windup compensator is
in the loop.
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2.5 Saturation symmetrization

2.5.1 First option: a conservative approach

Saturations have been an important research issue in the last century. In several works
dealing with actuator limitation [HL01, PTH07, TGGE07], saturations are supposed to
be symmetric, that is, the upper and lower bounds are equal in absoulte value. This
assumption has been done to use quadratic lyapunov functions. Generally, this hypothesis
is realistic as the actuators generally provide bi-directional efforts. From flight control
problems [RBTP07] to marine vessel control [SS99], this hypothesis applies. However
symmetric hypothesis is not always possible.

Saturating actuators may present different behavior in the upper-saturating zone and
in the lower-saturating one. This situation arises when absolute values of the upper and
lower bounds are different. In this case, saturation function is called asymmetric and it is
defined by (1.3.2). In order to apply existing techniques on the saturated system analysis
and control design, the saturation has to be symmetrized. This is defined as process
where the saturation bounds are modified in order to obtain both upper and lower bound
equal in absolute value. A first manner to symmetrize the saturation consist in keeping
the smaller of both bound in absolute value [Lan03]. This approach can be stated in the
following lemma:

Lemma 2.1. Consider an asymmetric saturation sat(u,ū)(·) where u < ū, the saturation
can be symmetrized to sat(−u0,u0)(·) with u0

u0 = min(|u|, |ū|) (2.5.1)

where ū (resp. u) is the upper (resp. the lower) bound of the asymmetric saturation.

Lemma 2.1 introduces conservatism as some actuator capacity is being neglected.
However, it is a manner to obtain a symmetric saturation allowing other analysis like the
stability domain using simple methods.

Although it is a common technique, this option is unfeasible for the actuators consid-
ered throughout this manuscript.

Remark 2.1. Systems using thrusters are actuators presenting saturation constraints
where the minimum bound is zero. Thus, when procedure (2.5.1) is applied, the symmetric
bound is u0 = 0 which is useless. Therefore a different symmetrization technique has to
be applied.
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2.5.2 Kernel symmetrization

It is well-known that the introduction of any constant vector into the saturation input
can allow to modify the bounds of the saturation

Property 2.1. Consider u and Nζ belonging to ℜm, Nζ being a constant vector. The
following equality holds:

sat(0,ū)(u+Nζ) = sat(−Nζ,ū−Nζ)(u) +Nζ (2.5.2)

provided that
0 < Nζ(i) < ū(i), i = 1, ...,m. (2.5.3)

Hereafter, we use Property 2.1 in order to modify the bounds of the saturation block
and the allocation function when the saturation occurs. Consider the scheme depicted in
Figure 2.5.

+

+

+

+

fC
ū

0

ū−Nζ

−Nζ

M

Nζ

Nζ

P

Figure 2.5: Saturation bounds modification

Nevertheless, some restrictions have to be imposed in order to verify the coherence of
the new bounds of the saturation and keep the linear closed-loop dynamics unchanged.
Adding Nζ to f(yc) the saturation bounds are modified, but, at the same time, up changes
as well:

Lemma 2.2. Suppose Nζ ∈ Ker(M), that is MNζ = 0. Then:

1. during the linear behavior (without saturation), up is unchanged since up = MT =
M(f(yc) +Nζ) = Mf(yc) = yc where f(·) satisfies Definition 2.1;

2. during the non-linear behavior (with saturation), up is slightly modified as up =
Msat(0,ū)(f(yc) +Nζ) = Msat(−Nζ,ū−Nζ)(f(yc)).
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Lemma 2.2 implies that the introduction of the vector Nζ modifies the plant input up

in the non-linear domain. Initially, this vector has been presented as a way to modify the
saturation bounds. However it can be seen as a modification of the allocation function:
f̃ = f(yc) +Nζ. Actually, this modification changes the values of f̃ and centers its mean
value between the bounds (0, ū) (instead of being centered around the lower bound (0)
for f). However, one keeps the aim of Nζ vector to be a modification of the saturation
bounds as it is consistent with the whole Section 2.5.
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Figure 2.6: Equivalent saturations

Figure 2.6 shows two structures which are the same. Mathematically the relationship
reads:

up = M(sat(−Nζ,ū−Nζ)(f(yc)−Nζ) +Nζ)

= M(sat(0,ū)(f(yc)) +Nζ −Nζ) = Msat(0,ū)(f(yc)) (2.5.4)

However this technique does not modify the behavior of f(yc) which appears to be crit-
ical when a pseudo-inverse AF is used. In general any allocation function which does
not ensure the positivity of its output presents systematic saturation problems and conse-
quently system performance degradation. Therefore, Property 2.1 is kept as symmetrizing
technique as it provides an interesting f(yc) behavior.

To sum up, for any Nζ vector seeking to obtain a symmetric saturation, the previous
Property 2.1 and Lemma 2.2 have to be verified. Thus, a symmetrizing vector candidate
is defined as follows:

Definition 2.2. If there exists a vector Nζ satisfying 0 < Nζ(i) < ū(i), i = 1, ...,m,
and MNζ = 0 (i.e. Nζ belongs to Ker(M)), then Nζ is called a symmetrizing vector
candidate.

With saturation bounds modified, the problem (as pointed out in Remark 2.1) about
the presence of a null bound in the thrusters saturation is overcome. Then, one may apply
Lemma 2.1 as first approach of saturation symmetrization.

The consevatism introduced by Lemma 2.1 may be avoided by forcing both terms in
(2.5.1) to be equal. This is possible with a certain Nζ denoted symmetrizing vector:
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Definition 2.3. A symmetrizing vector candidate Nζ is a symmetrizing vector Nζsym
when absolute value of both upper and lower bound are matched:

| −Nζsym(i)| = |ū(i) −Nζsym(i)|, i = 1, ...,m. (2.5.5)

Thus Nζsym reads:

Nζsym =
ū(i)

2
, i = 1, ...,m. (2.5.6)

When such a vector exists then saturation may be symmetrized avoiding any conser-
vatism:

Lemma 2.3. [BPT+09] If there exists a symmetrizing vector candidate, then given a
asymmetric saturation sat(0,ū)(·), the saturation can be symmetrized to sat(−u0,u0)(·) =
sat(u0)(·) where u0 is

u0 =
ū

2
(2.5.7)

with a symmetrizing vector verifying Definition 2.3.

Remark 2.2. Definition 2.2 imposes MNζsym = 0. Later in Section 2.5.5 conditions to
satisfy the kernel belonging are provided. Physically, the condition can be stated as there
exists a feasible thrust for all thrusters that produces a null control effort up.

Finally, applying Lemmas 2.2 and 2.3 in (2.3.4) the closed-loop system may be rewrit-
ten as follows:





ẋp = Apxp + BpMsat(u0)(f(yc))
ẋc = Acxc + BcCpxp

yc = Ccxc +DcCpxp

(2.5.8)

with u0(i) =
ū(i)

2
verifying Definition 2.3.

Remark 2.3. As both lower and upper bounds are equal in absolute value (i.e. |u0|), only
one bound is shown in the saturation term in (2.5.8).

2.5.3 Variable kernel function

When the saturation function (2.5.2) is transformed into a symmetric one, an additional
term Nζsym, verifying Definition 2.3, is added to f . In the absence of disturbance, the
equilibrium point is xeq = 0 and the performed control output is zero (yceq = 0). However
the thrust provided is non zero:

Teq = f(yceq) +Nζsym = f(0)︸︷︷︸
0

+
ū

2
=

ū

2
(2.5.9)
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Even if there is no need for any thrust, because of the symmetrizing vector, thrusters
are spending fuel at the equilibrium and, thus, the lifetime of the mission is clearly reduced.
Therefore, there is a necessity to cancel the actual thrust at the equilibrium point (uceq =
yceq = Teq = 0) in order to avoid unnecessary fuel consumption.

The next step would be to propose a Nζvar vector evolving with yc such that it sym-
metrizes the saturation function when the control are high enough to saturate a thruster,
and brings the consumption to zero at the equilibrium point.

Definition 2.4. [BPT+09] A vector function Nζvar(yc) : ℜmc → ℜm is a Variable Kernel
Function (VKF) if:

1. Nζvar(i) =
ū(i)
2

= Nζsym(i) if

(
f(i)(yc) +Nζvar(i)

)
< 0 or

(
f(i)(yc) +Nζvar(i)

)
> ū(i)

In other words, the variable kernel function is equal to the symmetrizing one when
the system saturates, that is |f(i)(yc)| > ū(i)

2
.

2. In the commutation surface, |f(i)(yc)| = ū(i)

2
, Nζvar(i) is continuous with Nζsym(i),

that is Nζvar(i) = Nζsym(i) =
ū(i)

2
.

3. In the linear zone, |f(i)(yc)| < ū(i)

2
, Nζvar(i) is such that

0 ≤ f(i)(yc) +Nζvar(i) ≤ ū(i)

4. Nζvar(i) ∈ Ker(M), that is, MNζvar = 0.

Remark 2.4. In the saturated domain, the aim of adding a vector Nζ is to symmetrize
the saturation. Hence, the VKF has to be equal to the symmetrizing vector Nζsym when
saturation is active. On the other hand, in the linear domain, the VKF is not fixed. Any
function is possible as long as it belongs to Ker(M) and the system remains in the linear
domain.

For example, one could define an VKF such that it is null when the system attains
its equilibrium state (i.e. Nζvareq = 0). Then replacing the symmetrizing vector by the
VKF in (2.5.9) the provided thrust at the equilibrium is Teq = 0 avoiding extra fuel
consumption.
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2.5.4 Saturation symmetrization for a multi-sat AF

The multi-sat AF introduces mc extra saturations which have to be symmetrized for
stability domain analysis or anti-windup computation purposes. The technique proposed
in Section 2.5.2 sets a framework to do this. However, a slight modification has to be
considered because of these extra saturations. Defining mc different vectors for the mc

extra saturations (Nζi ∈ ℜm) and for the actual actuator saturation (Ñζ ∈ ℜm), using
Property 2.1 saturations bounds can be modified:

T = sat(0,ū)

(
mc∑

i=1

sati(0,ū)(M
∗
(:,i)yc(i) +Nζi) + Ñζ

)

= sat(−η,ū−η)

(
mc∑

i=1

sati(−Nζi,ū−Nζi)(M
∗
(:,i)yc(i))

)
+ η (2.5.10)

where η = Ñζ +
∑mc

i=1 Nζi and Nζi are given vectors in ℜm for i = 1, . . . ,mc. Writing

Ñζ = Nζ −∑mc

i=1 Nζi, we get η = Nζ. Thus η is simplified from a sum of vectors to a
unique independent constant vector Nζ. Then the plant input up reads:

up = Msat(−Nζ,ū−Nζ)

(
mc∑

i=1

sati(−Nζi,ū−Nζi)(M
∗
(:,i)yc(i))

)
+MNζ (2.5.11)

Only the symmetrizing vector Nζ, related to the physical saturation, appears in the
system control input expression. Thus Nζ has to verify Definition 2.2 to disappear from
(2.5.11), and we get:

up = Msat(−Nζ,ū−Nζ)

(
mc∑

i=1

sati(−Nζi,ū−Nζi)(M
∗
(:,i)yc(i))

)
(2.5.12)

Conversely, Nζi is only forced to follow the assumptions (2.5.3) presented in Property
2.1.

Saturations can be symmetrized without conservatism as exposed previously in Lemma
2.3. Choosing Nζ and Nζi to be the symmetrizing vector like in Definition 2.3, that is
Nζsym = ū

2
and Nζi =

ū
2
, all saturations are symmetrized without conservatism.

Finally, we can quickly adapt the variable kernel function strategy by only replacing
Nζ by Nζvar. On the other hand, Nζi vectors do not appear on the thrust T expression,
hence they do not add extra consumption at the equilibrium. Therefore they can remain
as constant vectors.
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2.5.5 Symmetrizing kernel examples

In both Sections 2.5.2 and 2.5.3, symmetrizing techniques have been exposed. However
some details are missing for a full comprehension. In the kernel symmetrization case,
Definition 2.2 provides the conditions that a symmetrizing vector candidate has to verify.
Furthermore, from Definition 2.3, a symmetrizing vector is Nζsym = ū

2
. The variable

kernel function (VKF) case, only Definition 2.4 has been provided. In this section we
provide two examples of VKF to illustrate how this function can be designed.

The symmetrizing vector Nζsym = ū
2
has to verify conditions introduced by Definition

2.2. It is easy to see that ū
2
∈ Ker(M) (i.e. M ū

2
= 0 ) is the hard point to check.

First, let us consider all thrusters to be the same. Then ū is a constant vector whose
components are equal, that is, ū(1) = ū(i) = ū(m). This hypothesis seems to be coherent
with the propulsive system design, as we expect to choose all the thrusters to be the same.
Thus, the symmetrizing vector is rewritten as follows:

Nζsym =
ū(∗)

2
[1 · · · 1]′ .

where ū(∗) = ū(1) = · · · = ū(m) is the maximum bound of the thrusters. Then MNζsym
writes:

MNζsym = M
ū(∗)

2




1
...
1


 =

ū(∗)

2




∑m

i=1 M(1,i)
...∑m

i=1 M(j,i)
...∑m

i=1 M(mc,i)




for i = 1, ...,m and j = 1, ...,mc. (2.5.13)

Hence, the following Lemma can be stated:

Lemma 2.4. Nζsym = ū
2
is a symmetrizing vector candidate if

∑m

i=1 M(j,i) = 0 and
ū(i) = ū(k) for j = 1, ...,mc, i = 1, ...,m, k = 1, ...,m and i 6= k.

This result can be interpreted physically as the situation where the plant input up,
generated by a set of thrusters producing the same thrust, is zero. That situation happens
when a symmetric propulsive system is designed. Even if it represents a constraint into
the propulsive systems design, it should not be significant as a symmetric configuration
is usually pretended. Only in case of thruster failure, the condition would not be verified.
However, this situation is not studied and left as future prospects. Finally, let us remark
that it is a particular case of the physical interpretation given in Remark 2.2.

A second main point to analyze is the existence of a VKF.
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Proposition 2.1. Let us consider M and ū verifying Lemma 2.4 and the following func-
tion:

Nζvar = min
(
max(i)(|f(yc)|), Nζsym(i)

)



1
...
1


 (2.5.14)

Then (2.5.14) is an VKF as introduced in Definition 2.4.

Proof of Proposition 2.1: First and second points of Definition 2.4 are easily proven
using (2.5.14) and:

Nζvar = Nζsym when |f(i)(yc)| ≥
ū(i)

2
for all i = 1, ...,m.

Then, in the third condition we suppose

|f(i)(yc)| <
ū(i)

2
for all i = 1, ...,m.

Consequently,
Nζvar = max(i)(|f(yc)|) [1 · · · 1]

′

In the worst case:

(f(i)(yc) +Nζvar(i)) = 2max(i)(|f(yc)|) < ū(i), if f(i)(yc) > 0

(f(i)(yc) +Nζvar(i)) = 0, if f(i)(yc) < 0

Therefore, the third condition is verified.

Finally condition MNζvar = 0 has to be verified. It follows from Lemma 2.4, Nζsym ∈
Ker(M). Hence, Nζvar belongs to the Ker(M) in the saturated domain as Nζvar =

Nζsym. In the linear domain, Nζvar(i) = max(i)(|f(yc)|) [1 · · · 1]
′

. By analogy with

Nζsym =
ū(∗)

2
[1 · · · 1]′ and recovering the same procedure in (2.5.13), one can easily re-

alize that Nζvar ∈ Ker(M) in the linear domain, with M verifying Lemma 2.4.

Therefore, (2.5.14) is a VKF.

End of Proof.

Remark 2.5. VKF (2.5.14) brings the performed thrust back to zero at the equilibrium
(i.e. yceq = 0), avoiding extra-fuel consumption.

The existence of another VKF can be explored. Let us, first, consider the following
function:

Nζvar(i) = min(|f(i)(yc)|, Nζsym(i)), i = 1, ...,m. (2.5.15)
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being the whole Nζvar constructed component by component, that is

Nζvar =




min(|f(1)(yc)|, Nζsym(1))
...

min(|f(i)(yc)|, Nζsym(i))
...

min(|f(m)(yc)|, Nζsym(m))



, i = 1, ...,m. (2.5.16)

Let us then suppose the following influence matrix:

M =

[
1 −1 1 −1
−1 −1 1 1

]
(2.5.17)

For a peudo-inverse AF, that is, f(yc) = M∗yc, Nζvar = |M∗yc| reads:

|M∗yc| =
1

4




|yc(1) − yc(2)|
| − yc(1) − yc(2)|
|yc(1) + yc(2)|
| − yc(1) + yc(2)|


 =

1

4




|yc(1) − yc(2)|
|yc(1) + yc(2)|
|yc(1) + yc(2)|
|yc(1) − yc(2)|


 (2.5.18)

Finally, the plant input up reads:

up = M |M∗yc| =
1

4

[
1 −1 1 −1
−1 −1 1 1

]



|yc(1) − yc(2)|
|yc(1) + yc(2)|
|yc(1) + yc(2)|
|yc(1) − yc(2)|


 = 0 (2.5.19)

showing that Nζvar (2.5.15) belongs to the Ker(M).

Consider then the definition of VKF (Definition 2.4), first and second points of the
definition are easily verified by Nζvar (2.5.15) as Nζvar(i) = Nζsym(i) when |f(i)(yc)| > ū

2
.

Then, in the third condition we suppose

|f(i)(yc)| <
ū

2
for all i = 1, ...,m

Consequently, Nζvar(i) = |f(i)(yc)|. Then,

(f(i)(yc) +Nζvar(i)) = 2|f(i)(yc)| < ū(i) if f(i)(yc) > 0

or
(f(i)(yc) +Nζvar(i)) = 0 if f(i)(yc) < 0

Therefore, the third condition is verified.
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Property 2.2. Summing up previous considerations, one realizes that, for the particular
case of the influence matrix (2.5.17), the function (2.5.15) is a VKF.

Remark 2.6. The first three conditions in Definition 2.4 are satisfied by function (2.5.15).
Unfortunately we have not found yet sufficient conditions for the matrix M (like in Lemma
2.4)to ensure that the function (2.5.15) belongs to Ker(M).

However, as it has been shown, there exists a configuration for the influence matrix M
where Definition 2.4 is satisfied. The particular structure of M that allows the function
(2.5.15) to belong to Ker(M) usually appears in practical applications. Therefore, even if
function (2.5.15) cannot be proven to be a VKF, it is interesting to consider it for further
simulations where (2.5.15) verifies VKF definition.

In the linear zone (|f(i)(yc)| < ū
2
), when f(i)(yc) < 0, the provided thrust is Ti =

f(i)(yc) +max(|f(i)(yc)|) ≥ 0 for the VKF (2.5.14) case. On the other hand, for (2.5.15)
case the thrust becomes Ti = f(i)(yc) + |f(i)(yc)| = 0. Therefore, when the control output
provides a negative value, the function (2.5.15) adjusts the thrust to zero, avoiding extra-
consumption. That is why we say that VKF (2.5.15) has a better behavior in terms of
fuel consumption.

Remark 2.7. One can be interested in using function (2.5.15) as it has a better behavior
in terms of consumption than the one in (2.5.14).

2.5.5.a Educational example

In order to illustrate the benefits of the symmetrization, the educational example (8) is
simulated. The pseudo-inverse AF is used, that is f(yc) = M∗yc. Then the system (8)
reads:

CL(s) :





ẋp = Apxp + BpMsat(−Nζ,ū−Nζ)(M
∗yc)

ẋc = Acxc + BcCpxp

yc = Ccxc +DcCpxp

zp = Czxp = θ

(2.5.20)

Notice that the system (2.5.20) saturation has already its bounds modified due to the
use of the symmetrizing techniques. Two options are considered: Nζ = Nζsym (2.5.6)
and Nζ = Nζvar (2.5.14).

Figure 2.7 shows the response of the educational example (2.5.20) for an initial condi-
tion xp = [−7 · 10−4 0]

′

and xc = 01×4. Three curves are plotted: the first response (solid
line) is the system without saturation symmetrized (Nζ = 0), the second and the third
(dash-dotted line and line with dots respectively) present the output zp behavior when
the symmetrizing techniques are applied. The dash-dotted line uses a Nζsym vector like in
(2.5.6) and the line with dots a Nζvar vector like in (2.5.14). The Figure 2.7 shows how the
system has a faster response as some of the negative solutions of the pseudo-inverse AF
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Figure 2.7: Attitude response with different symmetrizing vectors

fit in the saturation limits. Moreover both responses applying a symmetrizing technique
are equal.

The thrust applied by the first thruster is shown in Figure 2.8. The comparison is
more interesting because it illustrates the advantage of using a VKF. One may see how
the dash-dotted line related with Nζsym vector converges towards a fixed value equal
to ū

2
as it was announced in Section 2.5.3. Thus it becomes interesting to apply the

variable kernel function approach to fix the thrust to zero as soon as the system attains
the equilibrium.

Remark 2.8. It would be interesting to compare the two proposed VKF (2.5.14) and
(2.5.15) but for the educational example used is not possible. The simplicity of the influence
matrix (M = [1 − 1]) makes both VKF to be equivalent (for M = [1 − 1] (2.5.15) is
VKF).

Thus let us consider the extended version of the educational example previously pre-
sented in Section 2.4.2. The plant, the controller and the influence matrix are described
by relations (2.4.7), (2.4.8) and (2.4.9) respectively. The pseudo-inverse AF and three
symmetrizing vectors are applied, Nζsym like in (2.5.6) and Nζvar like in (2.5.14) and
(2.5.15).

Remark 2.9. M matrix (2.4.9) formulation is such as (2.5.15) is an VKF as proven in
Property 2.2.
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Figure 2.8: Thruster(1) response with different symmetrizing vectors
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Figure 2.9 shows the first thruster response of the extended version of the educational
example. Different symmetrizing strategies have been applied: the symmetrizing vector
Nζsym(2.5.6) (solid line), the VKF (2.5.14) (dashed line) and the VKF (2.5.15) (dot-
dashed line). The initial condition for the simulation has been set to xp(0) = [−5 0 −
1 0]

′

10−4. The important thing here is to realize the difference between the thrust
provided by VKF in (2.5.15) with respect to VKF in (2.5.14). Because VKF in (2.5.15)
handles the thrust of each thruster individually it is able to bring back the thrust to zero
faster than in the VKF (2.5.14) case.

Assuming the consumption to be proportional to the integral of all the thrust responses
one can compare the performance in terms of consumption between both VKF. Integrating
the response of the four thrusters for each VKF one obtains:

V KF (2.5.14) Consumption :
∑n

i=1

∫ t

0
T (n)dt = 5.2 · 10−2 (2.5.21)

V KF (2.5.15) Consumption :
∑n

i=1

∫ t

0
T (n)dt = 3.3 · 10−2 (2.5.22)

Therefore, the integral shows that the actual consumption is lower when VKF pre-
sented in relation (2.5.15) is applied. To complete the analysis just remark that the
thrusters are the 6 initial seconds active with VKF (2.5.14) while they are 30 seconds
active with VKF (2.5.15)

2.5.6 Minimal control capacity: equivalent saturations

Actuator limitations define a convex set of attainable thrusts. As presented previously,
this set is associated to an attainable control. The relationship through both sets is
characterized by the AF. Instead of setting the saturation bounds in terms of thrusters
limitation, one could look at the associated bound in the control output (i.e. yc). Nev-
ertheless, the norm of yc allowed, before thrusters saturate, depends on its direction. A
conservative choice is to use the minimal control capacity (MCC) as equivalent saturation
in the control output domain. Figure 2.2 recalls these concepts. The MCC vector can be
projected in the different components of yc as it is shown in Figure 2.2. The projection de-
fines saturation bounds u0 which ensure that ||yc|| will never exceed the MCC. Hereafter,
sat(u0), where u0 is obtained from the projection of the MCC vector to the axes control
output domain, will be denoted as sat(mcc). This approach is critically conservative as one
is neglecting a part of the control domain. However, in some cases, this approach could
provide interesting preliminary results, as we can obtain a first (conservative) estimation
of the stability domain.

The main advantage of this approach is that the allocation function is not considered
in the closed-loop system. The saturation applies to the control output, then the input to
the AF verifies the actuator limitations and, thus, the term Mf is reduced to the identity
matrix. Thus up = yc holds and with Definition 2.1:

up = Msat(0,ū)(f(sat(mcc)(yc))) = Mf(sat(mcc)(yc)) = sat(mcc)(yc) (2.5.23)
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Consequently, the problems introduced by the AF non-linearity are avoided, allowing
the AF design to be decoupled from the anti-windup compensator design, for example.
Considering (2.5.23) the closed-loop system expression becomes:





ẋp = Apxp + Bpsat(mcc)(yc)
ẋc = Acxc +BcCpxp

yc = Ccxc +DcCpxp

(2.5.24)

Finally let us remark that finding the MCC could not be an easy task. The mini-
mization problem on iterative AF is not trivial. Then, Monte-Carlo tests may allow us
to evaluate a representative sample of yc directions. The minimum norm obtained is the
MCC candidate.

Remark 2.10. In order to find the exact MCC one should test all the directions of yc
and kept the minimum norm ||yc|| which saturates the thrusters. The MCC would be
the minimun between the retained values of of ||yc||. However, it is impossible to test
all the infinite directions of the control output. Therefore the resulting MCC from the
Monte-Carlo test is only an estimation.

2.6 Conclusion

In this chapter the problem of asymmetric saturation has been addressed. Particularly,
the case where the system presents an allocation function in the control loop has been
considered. Moreover, the attention of the chapter has been focused on the actuators
providing only a limited positive action.

Generally, the allocation function presents non-linear formulations which are compli-
cate to treat mathematically for stability purposes. In order to include them in fur-
ther stability considerations two allocation functions have been introduced. Initially, the
pseudo-inverse matrix has been proposed as allocation function as it is the solution of
the minimum squares problem. Then, a more complex non-linear allocation function has
been proposed. This last allocation function is based on a chain of saturations and thus,
it remains treatable mathematically.

Afterwards, the problem of the saturation symmetrization has been tackled. Several
possibilities have been proposed.

A first proposal is based on a conservative approach which takes the minimum of the
two saturation bounds. However this technique has been shown useless for the applications
considered.

A second approach, based on the introduction of a symmetrizing vector has been
presented. A lemma giving conditions of validity of the symmetrizing vector has been
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provided. However this particular approach has been detected to be undesirable for space-
craft application as it forces the actuators to be active even at the equilibrium. To solve
this issue a variable kernel function strategy has been proposed. Particular examples of
symmetrizing vector and variable kernel functions have been provided. These examples
have been compared in the educational example framework.

Finally, another conservative symmetrizing approach has been given. It is based on the
minimal control capacity. This limits the control output in order to avoid the allocation
to saturate the actuator.
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3.1 Introduction

Saturations are present in all modern industrial problems and one of the most important
challenges in non-linear control consists in computing a controller law that handles sat-
urations. Several works treat this subject in the literature and various techniques have
been developed in that direction.

Roughly speaking, two approaches in the literature [TT09] treat the saturation prob-
lem. The first one will be referred to as the one stage approach. The goal is to design a
controller which takes into account the demands in terms of performance as well as the
effect of the saturation. This controller, which may be non-linear, attempts to ensure the
nominal specifications imposed, while also handling the input constraints. This approach
has been studied in several works in the literature. Initially some researchers have pre-
sented different ways to compute the maximal set of initial states such that the saturation
is avoided and the resulting closed-loop system follows a linear behavior [GT91, DS91].
However, the system is not necessary instable when the saturation is active. Therefore,
the stability domain estimation obtained with this approach is critically conservative.
Then, for this kind of approach, a further step is done. It consists in the computation of
a control law which maximizes the stability domain allowing the saturation of the actu-
ator [GH85, HL01, KGE02, PTH07, TGGE07, SSY94, Tee95]. Whereas this approach is
satisfactory in principle, and has a significant portion of the literature devoted to it, it
has often been criticized because of its conservatism, lack of intuition (in terms of tuning
rules) and lack of applicability to some practical problems.

On the other hand, a second alternative approach is to separate the design of the
controller in two phases. Therefore the approach will be referred to as the two stages
approach. The first part of the computation is devoted to nominal performance. Actually,
the controller is determined considering a linear unconstrained plant. The second part
is devoted to handle the input constraint. One of the main two stages approach is also
known as anti-windup compensation. A controller, designed using standard linear design
tools, is given, then, a so-called anti-windup compensator is added. The presence of
this compensator seeks to cope with the saturation constraints and to prevent its bad
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effects as much as possible. One classical basic idea of the anti-windup design is to
introduce control modifications in presence of saturation. It is only when saturation is
encountered that the anti-windup compensator becomes active and acts to modify the
closed-loop behavior. The goal is to find an anti-windup compensator which ensures the
stability for a state space region as large as possible, while degrading as less as possible
the performance of the closed-loop. It seems obvious that a certain trade-off will have to
be done in the compensator design between performance and size of the stability domain.
Such an approach is really attractive as the anti-windup loop may work with a priori given
control laws. Indeed, it represents an interesting technique for the controller designers who
can use familiar and intuitive techniques for them and then, simply add an extra layer
which will consider the non-linear behavior. Originally, results on anti-windup design
consist of ad-hoc methods intended to work with PID controllers [FR67, AR89], which are
commonly used in industrial applications. The anti-windup approach has been proposed
in several applications from different fields like aeronautic applications [QTG06, RBTP07],
aerospace applications [PDTP08, BPT+09], mechanical applications [TZM06] or even in
nuclear fusion control [SWHK05].

The anti-windup approach pretends to reduce the effect of the saturation. There are
several strategies defining the compensator which where first presented in a unified frame-
work in[KCMN94]. In these work two architectures in anti-windup have been distinguished
[GTTZ09]. The first one is called direct linear anti-windup (DLAW) and a second one
called model recovery anti-windup (MRAW). Some other strategies are proposed in the
literature. An interesting approach is the so-called coprime factor anti-windup presented
by [WP00]. However in this work we have decided to follow the distinction proposed by
[GTTZ09].

The basic idea of the DLAW is to introduce a direct feedback from the saturation to
the controller through the anti-windup compensator. In the last decade, the anti-windup
problem dealing with exponentially unstable systems has been tackled. An important
paper in this direction is [KM97, MP96], which addresses the static anti-windup prob-
lem. [GdSJT05], [CLW02] represent the first applications of LMIs to the synthesis of
the static anti-windup problem assuring local asymptotic stability. Furthermore, [WL03]
suggests a formulation allowing the computation of a dynamic anti-windup compensator.
Recently, [BRT07, GHP+03] present LMI conditions to compute the anti-windup com-
pensator dealing with the L2 performance. See [BT09] for a practical approach and also
[WP98, BRT07, TGdSJB06] in global stability context.

MRAW follows a different paradigm on the anti-windup matrices definition. It is based
on selecting the anti-windup compensator as a dynamic filter, incorporating a model of the
plant. The aim of this filter is to try to recover the closed-loop response of the system when
no saturation occurs. This approach stands on the companion papers [TK97a, TK97b]
where the MRAW is called L2 anti-windup problem. Illustrations of this architecture can
be found in [ZT02] for exponentially stable plants, in [TZM06] for marginally stable plants
and in [Tee99] for exponentially unstable ones.
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These architectures are different ways to present a solution to the same problem: the
anti-windup computation. Each one has its advantages and drawbacks. In this work, a
new architecture called Extended Model Recovery Anti-Windup (EMRAW) is proposed.
The EMRAW is the main result of the chapter. This third possible anti-windup strategy
consists in mixing both MRAW and DLAW approaches. EMRAW uses the filtering tech-
nique of the MRAW while a DLAW complements the control structure. This extension
offers interesting results as one may improve the MRAW approach with the DLAW.

Both DLAW and MRAW and they combination, the EMRAW, propose a solution
to the anti-windup computation. As introduced before there are other approaches on
the anti-windup design. However, all can be related. For example the coprime factor
anti-windup can be easily related to the MRAW in particular cases. See for example
[WP00, HTP04, VMJ06, TP04] in this particular approach. In [WP00] the coprime factor
anti-windup is also linked to IMC approach proposed in [CM90]. Therefore, even if there
are several proposals for the anti-windup computation all may be described in a unified
structure. Consequently, along this manuscript all presented approaches will be described
by the generic anti-windup structure presented in Figure 1.6.

This chapter is organized as follows. First in Section 3.2 a general introduction of
the anti-windup problem is provided, setting the separation between the DLAW and the
MRAW approaches. The EMRAW interest is briefly introduced. Section 3.3 presents the
main results on the DLAW approach, from the static anti-windup synthesis to the fixed
order dynamic anti-windup. The MRAW strategy is then described in Section 3.4 with a
short parenthesis on the particular case of a double integrator plant. In Section 3.5 the
EMRAW architecture is presented and some algorithms solving the bilinear problem are
presented. Afterwards, the application of these techniques with asymmetric saturation is
tackled in Section 3.6. Finally, each approach main characteristics are illustrate with the
educational example.

3.2 The anti-windup problem

The windup is a phenomenon which becomes apparent by an important overshoot in the
output signal and an excessive reaction time. The windup phenomenon usually appears in
systems which include actuators subject to saturation and present a feedback loop through
a controller including integrators, for example a PID. When saturation is active, the error
is still integrated even if the control applied to the system has been altered. Then integral
state value tends to large levels, inducing undesired effects such as oscillations or even
instability [FR67, AR89]. Even if the word windup comes from PID controllers, the word
has been kept for modern problems when a non-linearity, like saturation, arises [FR67].

From a practical point of view that can be found in industrial environments the windup
phenomenon is measured as the difference between the performance sought for the un-
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constrained system (i.e. linear) and the actual non-linear one. The anti-windup problem
has been always stated as the minimization of the deviation of the systems response
with saturation in relation to the behavior without saturation. The designed response
for the unconstrained system is considered as the ideal one and denoted as unconstrained
response. Therefore, the anti-windup purpose could be summarized as follows:

1. If the controller output does not exceed the saturation levels, then the system re-
sponse with anti-windup compensator coincides with the unconstrained response.

2. If the controller output does exceed the saturation levels, then the anti-windup
compensator objective is to minimize the error between the non-linear and the linear
responses.

Modern anti-windup design can be classified into families where other constructive
techniques may fall. Let us first introduce the system considered in the following sections.
The unconstrained LTI plant is described by the following state space description:

P





ẋp = Apxp + Bpup + Bdud

yp = Cpxp +Dpup +Ddud

zp = Czxp +Dzuup

(3.2.1)

with xp ∈ ℜnp the state of the system, yp ∈ ℜq the output of the system, up ∈ ℜmc

the control input and ud ∈ ℜm the disturbance input vector. zp ∈ ℜp is the regulated
output vector. Matrices Ap, Bp, Bd, Cp, Dp, Dd, Cz and Dzu are real constant matrices
of appropriate dimensions. Pairs (Ap,Bp) and (Cp,Ap) are assumed to be controllable and
observable, respectively.

Considering the plant (3.2.1), a given controller ensures that the unconstrained (i.e.
linear) closed-loop system is asymptotically stable and its performance is adjusted. Intro-
ducing the compensation inputs the controller state space representation can be written
as follows:

C
{

ẋc = Acxc + Bcuc + vx
yc = Ccxc +Dcuc + vy

(3.2.2)

where xc ∈ ℜnc is the state of the controller, yc ∈ ℜm and uc ∈ ℜq are the controller
output and the controller input vector. vx, vy are extra inputs used for anti-windup
purposes. In absence of saturation the interconnection (3.2.1)-(3.2.2) is set with the
following relationships:

up = yc, uc = yp, vx = 0, vy = 0 (3.2.3)

Remark 3.1. The closed-loop system (3.2.1)-(3.2.3) is supposed to be well posed [Sta09],
that is, the matrix ∆ = (I −DcDp) is invertible. Moreover, the unconstrained closed-loop
system is assumed to be globally exponentially stable, that is, the closed-loop state matrix
is Hurwitz which expression reads:

[
Ap + Bp∆

−1DcCp Bp∆
−1Cc

Bc + BcDp∆
−1DcCp Ac + BcDp∆

−1Cc

]
(3.2.4)
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Remark 3.2. Hereafter direct transmission are set to zero (Dp = 0, Dd = 0) to simplify
the mathematical development. this allows the main ideas of the work to be conveyed while
avoiding technical issues such as uniqueness and existence of solutions.

Then the magnitude limitations on the input vector up are considered1:

|up(i)| ≤ u0(i), i = 1, ...,mc (3.2.5)

Due to the control limitation the interconnection between the plant and the controller
is a saturated signal. Thus, up and yc are related to the saturation function, that is,
up = sat(u0)(yc).

up = sat(u0)(yc), uc = yp (3.2.6)

Let us recall the definition for the decentralized symmetric saturation:

sat(u0)(yc(i)) = sign(yc(i))min(|yc(i)|, u0(i)), i = 1, ...,m (3.2.7)

where u0 is the level of saturation. The plant output saturation can also be considered.
That is expressed as follows:

uc = sat(u0)(yp) (3.2.8)

Relation (3.2.8) stands for the sensor saturation [TT06], however it is not tackled in
this manuscript.

Given all these considerations, it is now possible to introduce the different anti-windup
architectures.

3.3 Direct linear anti-windup

Let us consider the plant (3.2.1) and its associated controller (3.2.2) with the relationships
(3.2.6):





ẋp = Apxp + Bpsat(u0)(yc) + Bdud

yp = Cpxp

zp = Czxp +Dzusat(u0)(yc)
ẋc = Acxc +Bcyp + vx
yc = Ccxc +Dcyp + vy

(3.3.1)

1Saturations bounds are symmetric in this chapter. In Section 2.5 symmetrizing techniques were
presented. Then we assume that these techniques have been applied previously and therefore the system
saturations can be supposed symmetric.
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All the results developed in the Direct Linear Anti-Windup (DLAW) context are based
upon the use of the dead-zone non-linearities and associated modified sector conditions.
Indeed, any system, where saturation is present, may be rewritten with dead-zone non-
linearity. Let us recall that the dead-zone function is defined by: φ(u0)(yc) = yc −
sat(u0)(yc). System (3.3.1) with the dead-zone function as non-linear operator reads:





ẋp = Apxp +Bpyc −Bpφ(u0)(yc) + Bdud

yp = Cpxp

zp = Czxp +Dzuyc −Dzuφ(u0)(yc)
ẋc = Acxc + Bcyp + vx
yc = Ccxc +Dcyp + vy

(3.3.2)

Signals vx and vy are the outputs of the anti-windup compensator. In the DLAW context,
the anti-windup compensator is defined as follows:

AW





ẋaw = Aawxaw + Bawφ(u0)(yc)
vx = [Inc

0]
(
Cawxaw +Dawφ(u0)(yc)

)

vy = [0 Im]
(
Cawxaw +Dawφ(u0)(yc)

) (3.3.3)

where xaw ∈ ℜnaw is the anti-windup state, naw ≥ 0, φ(u0)(yc), the dead-zone output is
the anti-windup input, v = [v

′

x v
′

y]
′ ∈ ℜnc+m is the anti-windup output and Aaw, Baw,

Caw, Daw are matrices of appropriate dimensions. Figure 3.1 presents the block diagram
describing the DLAW structure.

xc

C

vx

vy = 0

yc

yp

±u0

ud

φ(u0)(yc)

xp

P

+

+

−

DLAW

xaw

sat(u0)(yc)

zp

Figure 3.1: Direct Linear Anti-Windup Structure.

Remark 3.3. The presence of the vy introduces an implicit loop in the closed-loop system.
By considering a simplified anti-windup compensator where the output is only injected in
the controller dynamics xc, the implicit loop can be avoided. Another way consist in
filtering the signal vy and therefore to inject v̄y = F (s)vy. Thus, a lower-pass filter F (s)
can, for example, be used to avoid algebraic-loop-derived effects [BT09].

Henceforth, only the anti-windup output vx is kept and vy = 0.
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3.3.1 Introducing robustness and performance criterion

3.3.1.a Disturbance tolerance

In order to consider its disturbance influence in the anti-windup design, it is interesting
to introduce it as a new state variable of the closed-loop system. The disturbance can be
modelled by a step-like function which slowly decreases with time. This behavior may be
described more generally by a linear system with a small-damping-decreasing exponential
behavior [BTF06]. The space state representation of the disturbance is defined by:

{
ẋd = Adxd

ud = Cdxd
(3.3.4)

where xd ∈ ℜnd and Ad is Hurwitz. Ad and Cd are matrices of appropriate dimensions.
For a slowly decreasing step function, matrices become Ad = −τInd

, τ > 0, Cd = Ind

and the maximum disturbance amplitude ud0 = xd(0). With this modelling, the initial
condition of the disturbance state system defines the amplitude of the step.

Remark 3.4. The choice of a step-like disturbance allows the computation of the maximal
admissible disturbance amplitude. Even if other modellings are possible all are reduced to
a space state representation. Therefore, further considerations are valid for other kinds
of disturbance models.

Then we define the following set:

Wǫ(δ) =
{
xd : ℜnd , xd(t) = ud0e

−τt; ∀t ≥ 0, ‖ud0‖2 ≤ δ
}

(3.3.5)

Therefore, for example, the tolerance of the disturbance could be optimized by maximizing
the stability domain in the disturbance state direction.

3.3.1.b Performance criterion

Let us define, the linear closed-loop system as follows:
{

ẋl = Alxl

zl = Clxl
(3.3.6)

where xl ∈ ℜnl with nl = np + nc, Al =

[
Ap +BpDcCp BpCc

BcCp Ac

]
and Cl = Cz.

Following the anti-windup compensator objective of minimizing the error between the
non-linear and the linear responses, [BTF06] proposes to introduce a performance criterion
by comparing the non-linear response zp to the linear one zl. The goal is then to minimize
the difference between the system output, zp, and the unconstrained one, zl. Therefore,
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Figure 3.2: Performance optimization strategy.

the linear dynamics are set in parallel to the non-linear one. This strategy is presented in
Figure 3.2 We define z = zp − zl, and we minimize the L2 norm of z.

Let us consider the saturated system (3.3.2), the disturbance dynamics (3.3.4) and the
linear dynamics (3.3.6). Then, extending the state vector ξ = [x

′

p x
′

c x
′

d x
′

l]
′ ∈ ℜnM , with

nM = np + nc + nd + nl the closed-loop system reads:





ξ̇ = Aξ + Bφφ(u0)(ν) + Bvvx
ν = Kξ
z = Cξ + Dφφ(u0)(ν)
vx = Cawxaw +Dawφ(u0)(ν)

(3.3.7)

where A =




Ap +BpDcCp BpCc BdCd 0
BcCp Ac 0 0
0 0 Ad 0
0 0 0 Al


, Bφ = [−B′

p 0 0 0]
′

, Bv = [0 Inc
0 0]

′

,

K = [DcCp Cc 0 0], C = [Cz +DzuDcCp DzuCc 0 − Cl] and Dφ = −Dzu.

The strategy chosen to arise a certain performance criterion doubles the plant and
the controller states. This is clearly unefficient as the dymension of the considered closed-
loop can become significant. Some numerical problems may be derived from this approach.
Alternative mismatch system strategies can be found in [WP98, VMJ06]. However the
strategy proposed by [BTF06] and kept in this thesis provides a more intuitive manner to
tune the anti-windup computation.

Finally, the anti-windup state is included in the closed-loop state vector ζ = [ξ
′

xaw]
′ ∈

ℜn, with n = nM + naw. Consequently, the final expression for the closed-loop system
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(3.3.7) with (3.3.3) is expressed as follows:





ζ̇ = Aζ + Bφφ(u0)(ν)
ν = Kζ
z = Cζ +Dφφ(u0)(ν)

(3.3.8)

where A =

[
A BvCaw

0 Aaw

]
, Bφ =

[
Bφ + BvDaw

Baw

]
, K = [K 0], C = [C 0] and Dφ = Dφ.

3.3.2 Problem formulation

Once the final system is defined the problem to solve is defined as follows:

Problem 3.1. Find an anti-windup compensator and a stability domain Ω such that

• the system (3.3.8) is stabilized by the anti-windup compensator;

• the domain Ω is maximized in the direction of the disturbance xd (that is ud);

• the selected output zp of the plant remains as close as possible to the linear reference
zl (associated with the linear behavior), i.e. the upper-bound γ, such that ‖z‖22 =∫∞
0

z(t)
′

z(t)dt ≤ γ, is minimized.

The objectives, when designing the anti-windup compensator, can be summed up:

1. The closed-loop stability of the non-linear system has to be ensured.

2. Robustness in front of disturbances is needed. In order to assure it, the stability
domain has to be large enough to contain the disturbance initial condition xd(t = 0).
Even if an actuator saturates, the system will be able to return to the origin once
the disturbance is over.

3. The selected output of the system zp has to be degraded as less as possible. The
anti-windup compensator has to keep saturated behavior close to the unconstrained
one.

3.3.3 Static anti-windup synthesis

Initially we seek to solve the particular case of the static anti-windup. In this situation
one chooses naw = 0 and anti-windup matrices are null except Daw (Aaw = Baw = Caw =
0). Even if it is a simpler case, because of the interesting results that are computed
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[QTG06, BPT+09, BTF06] and the convexity of the optimization problem, it is important
to treat it separately.

Defining n = np+nc+nd+nl+naw (naw = 0, that is n = nM) and a static anti-windup
output vx:

vx = Dawφ(u0)(ν) (3.3.9)

then the relations (3.3.7) and (3.3.8) are the same. Finally, a theorem with respect to the
system (3.3.8) can be stated:

Theorem 3.1. (Static anti-windup synthesis). Given v ∈ ℜn, kγ and kρ positive
values, if there exist positive scalars γ and ρ, a symmetric positive-definite matrix W ∈
ℜn×n, a matrix Y ∈ ℜm×n, a matrix Z ∈ ℜnc×m and a diagonal positive-definite matrix
S ∈ ℜm×m satisfying min kγγ + kρρ s.t.




WA
′

+ AW BφS + BvZ + Y
′

WC
′

∗ −2S SD
′

φ

∗ ∗ −γIp


 < 0 (3.3.10)

[
W WK

′

(i) − Y
′

(i)

⋆ u2
0(i)

]
≥ 0, ∀i = 1, ...,m (3.3.11)

[
W v
∗ ρ

]
≥ 0 (3.3.12)

then the static DLAW Daw = ZS−1 stabilizes the system (3.3.8) for any initial condition
in the ellipsoid

E(P ) =
{
ξ ∈ ℜn; ξ

′

Pξ ≤ 1
}

with P = W−1, which is maximized in the v direction with the weight kρ, and the perfor-
mance 1/γ is maximized with the weight kγ.

Proof of Theorem 3.1: For the proof, refer to Appendix A.3.1. End of Proof.

Remark 3.5. Relation (3.3.12) allows the maximization of the stability domain towards v
by adding the optimization criterion min ρ. Indeed, if we set v = [0np

0nc
x

′

d(0) 0nl
0naw

]
′

the domain of stability is maximized in the disturbance state direction (i.e. the disturbance
amplitude ud(0)). The parameter ρ in Theorem 3.1 is related with admissible amplitude δ
defining the set (3.3.5) by the following relation:

δ = 1/
√

(ρ) (3.3.13)

Remark 3.6. An extension of Theorem 3.1 for the static DLAW computation adapted to
the multi AF (2.4.3) is introduced in Appendix A.3.2. Given closed-loop in (4.5.2) one
may apply the extensions of Appendix A.3.2.
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3.3.4 Full order dynamic anti-windup synthesis

The results presented in this paragraph are derived from those in [BRT07, Roo97]. Propo-
sition 3.1 below provides conditions for the computation of the dynamic anti-windup
compensator presented in (3.3.3). Generally conditions appear as BMI (Bilinear Matrix
Inequality). Nevertheless, conditions such that the problem becomes linear are recalled.
Moreover, Proposition 3.1 introduces constraints to the anti-windup dynamics forcing Aaw

eigenvalues to be larger than a certain threshold.

Defining n = np + nc + nd + nl + naw and He(A) = A+ A
′

, the following proposition
with respect to the system (3.3.8) can be stated:

Proposition 3.1. (Full order anti-windup synthesis) Given v ∈ ℜn, kγ, kρ and λ
positive values, if there exist positive scalars γ and ρ, matrices Aaw ∈ ℜnaw×naw , Baw ∈
ℜnaw×m, Caw ∈ ℜnc×naw and Daw ∈ ℜnc×m, a symmetric positive-definite matrix W ∈
ℜn×n, a matrix Z ∈ ℜm×n and a diagonal positive-definite matrix S ∈ ℜm×m satisfying
min kγγ + kρρ s.t.




He

[[
A BvCaw

0 Aaw

]
W + λ

[
0 0
0 Inaw

]
W

]
∗ ∗

S

[
Bφ + BvDaw

Baw

]
+ Z −2S ∗

CW DφS −γIp



< 0 (3.3.14)

[
W WK′

(i) − Z
′

(i)

⋆ u2
0(i)

]
≥ 0, ∀i = 1, ...,m (3.3.15)

[
W v
∗ ρ

]
≥ 0 (3.3.16)

then the system (3.3.8) is asymptotically stable for any initial condition in the ellipsoid

E(P ) =
{
ζ ∈ ℜn; ζ

′

Pζ ≤ 1
}

(3.3.17)

with P = W−1, which is maximized in the v direction, with the weight kρ, and the per-
formance 1/γ is maximized with the weight kγ. Moreover the output z is finite energy
satisfying: ∫ ∞

0

z
′

zdt ≤ γ (3.3.18)

Proof of Proposition 3.1: This proof is omitted as it follows the same mathematical
development than the proof of Theorem 3.1. End of Proof.

Remark 3.7. Like in Theorem 3.1 if one sets v = [0np
0nc

x
′

d(0) 0nl
0naw

]
′

, the stability
domain is maximized in the disturbance state direction (i.e. the disturbance amplitude
ud(0)).
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The introduction of λ imposes a lower bound for the Aaw eigenvalues in absolute value
[Roo97]. This is interesting in the case where only the stability is under consideration,
and consequently kγ = 0. In that situation the optimization process tends to provide an
anti-windup compensator as slow as possible. That could bring the anti-windup dynamics
to levels which may be critically low if parameter λ was not there. Moreover, we set the
threshold λ to avoid small values in Aaw. Therefore, λ improves the resulting conditioning
number of the matrices.

The anti-windup Problem 3.1 is solved by the optimization of the decision variables
W and the anti-windup matrices (Aaw, Baw, Caw and Daw) simultaneously. Consequently,
the inequality (3.3.14) losses its convexity and becomes a BMI. However, in the case of
full order anti-windup, that is, naw = nM = np+nc+nd+nl, inequalities (3.3.14)-(3.3.16)
present a particular structure which can be used to obtain a convex formulation. The
resulting formulation is presented in the following proposition.

Proposition 3.2. (Full order anti-windup synthesis 2)[RB08] Given v ∈ ℜn, kγ,
kρ, λ positive values and Γ = diag(Nv, Im, Inc

) where Nv is the matrix which its columns
form the basis of the Ker(B

′

v). There exists a full order anti-windup compensator such as
conditions in Proposition 3.1 are satisfied if and only if there exist positive scalars γ and
ρ, symmetric positive-definite matrices X, Y ∈ ℜnM×nM , matrices U, V ∈ ℜm×nM , and a
diagonal positive-definite matrix S ∈ ℜm×m satisfying min kγγ + kρρ s.t.

Γ
′




A
′

Y + Y A BφS + V ′ Y C
′

∗ −2S SD
′

φ

∗ ∗ −γIp


Γ < 0 (3.3.19)




AX +XA
′ − 2λX 2λY XC

′

∗ −2λY 0
∗ ∗ −γIp


 < 0 (3.3.20)




X X U(i)
′

∗ Y Y C
′

φ(i) − V
′

(i)

∗ ∗ u2
0(i)


 ≥ 0, ∀i = 1, ...,m (3.3.21)




X X v
∗ Y v
∗ ∗ ρ


 ≥ 0 (3.3.22)

Proof of Proposition 3.2: For the proof, refer to Appendix A.3.3. End of Proof.

Remark 3.8. Reconstruction of the matrix W is done by applying the following relation:

W =

[
Y I

′

nM

N 0

] [
InM

X−1

0 M

]−1

(3.3.23)

Then conditions in Proposition 3.1 are not BMI but LMI and can be solved with existing
LMI solvers [BcPS07].
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3.3.5 Fixed order dynamic anti-windup synthesis

The resulting anti-windup compensator from Proposition 3.2 is an nM order system.
In some applications this order can be too large to be implemented in a real on-board
calculator. Thus, the goal now is to find a low order anti-windup compensator. The
following proposition presents a technique which allows the computation of a fixed order
anti-windup compensator.

Proposition 3.3. The matrix inequality (3.3.14) becomes convex if matrices Aaw and
Caw of the anti-windup compensator are fixed.

Proof of Proposition 3.3: For the proof, refer to Appendix A.3.4. End of Proof.

This results allows the introduction of the following algorithm [BRT07]:

Algorithm 3.1. (Fixed order anti-windup synthesis)

1. Choose matrices Aaw and Caw of the controller to compute.

2. Solve min kγγ + kρρ under LMI constraints (3.3.14)-(3.3.16) w.r.t. the decision
variables W , S, Y , B̃aw and D̃aw.

3. Compute matrices Baw and Daw inverting the variables change from Proposition 3.3.

The main difficulty of this algorithm is the choice of matrices Aaw and Caw in Step
1. In [BRT07] a practical method for the construction of the matrices is proposed. This
method is based on the choice of the representative poles of the full order anti-windup
compensator. Hence among the poles of the full anti-windup dynamics (i.e., Aaw), we can
choose a suitable amount of poles: for example we can eliminate the fast and the slow
dynamics. However, the way to select such a set of poles requires the knowledge of the
system as well as the experience of the designer. Systematic methods to do this selection
can be found in [BT09, KTP08]. Once the eigenvalues chosen, the resulting matrices Aaw

and Caw may be constructed and Algorithm 3.1 applies.

3.4 Model recovery anti-windup

As already introduced the Model Recovery Anti-Windup (MRAW) is based on a different
paradigm. It consists in selecting the anti-windup compensator as a dynamical filter,
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incorporating a model of the plant [GTTZ09]. The aim of this filter is to recover the
unconstrained closed-loop dynamics. The plant control is limited by the saturation non-
linearity, thus, recovering the missing control and filtering it throughout the anti-windup
compensator we can recover the missing dynamics of the plant. This recovered dynamics
allows the system to keep tracking what the closed-loop response would be in the absence
of saturation. The equations describing filter dynamics are stated by:





ẋaw = Apxaw + Bp (v1 − φu0(yc + v1))

yaw = Cpxaw +Dp (v1 − φu0(yc + v1))

v1 = g(xaw)

(3.4.1)

where xaw ∈ ℜnp is the anti-windup compensator state, yaw ∈ ℜq and v1 ∈ ℜm its outputs.

The anti-windup compensator structure is represented in Figure 3.3.
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Figure 3.3: MRAW control block diagram

The plant and controller equations are related to the anti-windup compensator (3.4.1)
through v1 and yaw as follows:

P :

{
ẋp = Apxp + Bpsat(u0)(yc + v1)
yp = Cpxp +Dpsat(u0)(yc + v1)

(3.4.2)

C :
{

ẋc = Acxc + Bc(yp − yaw)
yc = Ccxc +Dc(yp − yaw)

(3.4.3)

Remark 3.9. From Remark 3.2, we have Dp = 0.

Notice that the controller (3.2.2) can be recontruced from (3.4.2) and (3.4.3) by con-
sidering uc = yp and inputs vx and vy as follows:

vx = −Bcyaw
vy = −Dcyaw + v1

(3.4.4)
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The block diagram of Figure 3.4 presents the MRAW approach in the general anti-windup
context described by Figure 1.6.

Under the assumption of perfect knowledge of the plant the linear state can be recov-
ered xl = xp− xaw. The aim of the anti-windup is to drive the actual system towards the
linear closed-loop behavior. If the anti-windup dynamics (3.4.1) are stable, xaw converges
to zero and the plant and the controller state [x

′

p x
′

c]
′

converges to the linear dynamics
xl. From Figure 3.3, the relationship yref = yp − yaw holds. Hence, if the anti-windup
is stable, yaw → 0 and the system output yp converges to a fictitious reference yref . In
the MRAW approach, yref is the linear system output yl. The anti-windup dynamics are
stabilized with a function v1 = g(xaw) suitably designed [TK97a, ZT02]. Therefore the
goal is to find v1 stabilizing the anti-windup loop.
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C

vx

vy

v1

yaw

Dc

−Bc

yc
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±u0

φ(u0)(yc)

xp

P

+

+

+

+

−

−
−

MRAW = P

Anti-windup Compensator

xaw

sat(yc)

zp

Figure 3.4: MRAW in a general anti-windup structure

MRAW architecture presents possible different solutions depending on how the signal
v1 is designed. Within this framework, the simplest v1 that one can think of is the one
that only focus on stabilizing the linear dynamics of the anti-windup loop (3.4.1). The
anti-windup linear dynamics reads:

ẋaw = Apxaw + Bpv1
yaw = Cpxaw +Dpv1
v1 = g(xaw)

(3.4.5)

Therefore, a first possible solution to the MRAW problem is to select v1 as a linear
state feedback from xaw designed completely disregarding the saturation effects. These
solutions are associated to local stability properties but, for exponentially stable plants,
the global stability is possible [GOTZ07].

Another type of solutions that one can propose within the MRAW compensation is to
select v1 as a non-linear function of the anti-windup compensator state xaw. This type
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of solution is certainly the most difficult to design and to implement but it is the most
advanced scheme within this framework. Reference [GTZ07] gives constructive conditions
to find such a stabilizing law v1.

Several algorithms in function of the nature of the plant are presented in the litera-
ture. The works [MZ89, TK97a, ZT02] present different strategies to compute stabilizing
feedback v1 when the plant is exponentially stable (i.e. Ap Hurwitz). With exponentially
stable plants, the simplest possible compensation scheme is given by the so-called IMC
(Internal Model Control)-based anti-windup [CM90, MZ89]. In the context of MRAW,
the IMC scheme simply amounts to selecting v1 = 0. This strategy corresponds to blindly
use the controller as if no saturation was in place and delivering to the plant the same
signal as the controller would have produced without saturation.

In the case of marginally stable plants (plants without poles with positive real part)
[TK97a, ZWT07] suggest algorithms to compute global asymptotically stable v1. These
methods are especially useful for practical situations with integrating plants which belong
to the class addressed here. Finally, in the unstable plant case, first tackled by [Tee99], the
region of attraction is bounded, and only local stability is guaranteed by the stabilizing
feedback v1. In [GTZ07] constructive conditions are proposed for this kind of plants.

In the particular case where the plant is modelled by a saturated double integrator2 a
non-linear v1 introduced by [FGZ10] can be applied.

v1 = g(xaw) = −
k

b0

(
xaw(1) + xaw(2)max

{ |xaw(2)| b0
2u0

,
2ξ√
k

})
(3.4.7)

where ξ and k are tuning parameters. The stabilizing feedback (3.4.7) is based on a bang-
bang law. Indeed [FGZ10] shows that (3.4.7) is actually a bang-bang law when xaw is
far from the origin and it switches to a static feedback law as it gets closer. Moreover in
[FGZ10] is proven that (3.4.7) ensure global asymptotic stability to the saturated double
integrator.

Remark 3.10. If the system is modelled by a saturated double integrator and one applies
(3.4.7), then the anti-windup loop is global asymptotically stable. Hence, from implications
given in [TK97a], the whole closed-loop is also global asymptotically stable.

Note that the MRAW architecture is independent of the controller dynamics. By this
fact, any stabilizing controller can be used within the MRAW structure and closed-loop
stability will be guaranteed. However, extra assumptions on the controller dynamics are
highly desirable because they are necessary for robustness [TK97a, ZT02].

2The double integrator plant is defined by the following state matrices:

Ap =

[
0 1
0 0

]
;Bp =

[
0
b0

]
(3.4.6)

.
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Perhaps the most important drawback of the MRAW is the same than the plant,
which is often large. On the other hand, the fixed DLAW approach presents the possi-
bility to compute a low-order anti-windup. This is not possible in the MRAW context.
Recently, a reduced order MRAW approach has been implemented in the discrete context
in [PZCG07].

3.5 Extended model recovery anti-windup

This section presents an extension of the MRAW approach by combining it with a static
DLAW to compute a dynamic anti-windup compensator dealing with exponential unstable
plants. This combination is called Extended Model Recovery Anti-Windup (EMRAW).
The EMRAW follows the same paradigm of the MRAW. Therefore, the anti-windup
compensator is constructed with the plant model state matrices. However the EMRAW
extends the MRAW approach with the introduction of a static gain. This gain can be
presented as a static DLAW itself. Figure 3.5 shows the EMRAW structure.

+

+

+
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−ve
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C
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yp

±u0

v1 − φ(u0)(yc + v1)
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P

DLAW

MRAW = P
EMRAW

xaw

xaw

sat(yc + v1)
zp

Figure 3.5: Extended MRAW block diagram.

Recovering the plant (3.4.2), the controller (3.4.3) and the MRAW (3.4.1) and ex-
tending them with a static DLAW, the EMRAW strategy is described by the following
equations:
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P :

{
ẋp = Apxp + Bpsat(u0)(yc + v1)
yp = Cpxp

(3.5.1)

C :

{
ẋc = Acxc + Bc(yp − yaw) + ve
yc = Ccxc +Dc(yp − yaw)

(3.5.2)

AW :





ẋaw = (Apxaw + Bpv1)−Bpφ(u0)(yc + v1)
yaw = Cpxaw

v1 = Fawxaw

ve = Eawφ(u0)(yc + v1)

(3.5.3)

where xaw ∈ ℜnaw is the anti-windup compensator state with naw = np, yaw ∈ ℜq and
v1 ∈ ℜm are the outputs generated by MRAW stage and ve ∈ ℜnc is the output issued by
the static DLAW stage (gain Eaw) .

Notice Eaw is an static DLAW as it feedbacks the dead-zone function φ(u0) directly
into the controller dynamics xc through the signal ve.

The EMRAW presents an anti-windup loop stabilized with v1. Like in the MRAW
approach the chanllenge is to find a control law to compute a feedback v1 stabilizing the
anti-windup compensator (3.5.3). If the anti-windup loop is stable with a feedback v1
the output yaw converges to zero. Consequently, the output of the system yp converges
towards the reference yref .

The choice of the stabilizing feedback v1 is not trivial for non-stable exponentially
plants. In this work only local stability is sought. Therefore we have set v1 like a static
feedback

v1 = Fawxaw (3.5.4)

Given this choice of v1 the EMRAW approach is, indeed, a MRAW with v1 as a static
feedback plus a static DLAW. Considering v1 in (3.5.4), the anti-windup loop (3.5.3)
reads:

ẋaw = (Ap + BpFaw)xaw −Bpφ(u0)(yc + Fawxaw)
yaw = Cpxaw

(3.5.5)

where Faw is a static gain ensuring the asymptotic stability of matrix Ap+BpFaw, that is
the existence of a matrix Pp = P

′

p > 0 such that (Ap +BpFaw)
′

Pp + Pp(Ap +BpFaw) < 0.

From [TK97a] it is known that, if the anti-windup loop (3.5.3) is locally stable with
v1 = Fawxaw, then the system (3.5.1)-(3.5.3) is also locally stable. The goal is then to
optimize the stability domain in order to assure the reliability of the mission. Thus, the
Faw computation has to be done maximizing the stability region.

The stability is then guaranteed by v1 (3.5.4) and the stability domain is maximized
with Faw computation. Therefore, the extra degrees of freedom of the EMRAW approach,
with respect to a MRAW, introduced by the static gain Eaw can be used to improve the
performance of system.
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3.5.1 Introducing a performance criterion

Previously in Section 3.3.1, the closed-loop system (3.3.2) has been extended with the
linear system (3.3.6). The goal of this technique was to steer the solution of the anti-
windup problem providing a non-linear behavior as close as possible to the linear one. In
the EMRAW approach, one may use this strategy but with a slightly different goal.

In the EMRAW structure, assuming an anti-windup loop stable, the system output
yp converges to yref . A system denoted ideal is set in parallel to the closed-loop system
(3.5.1)-(3.5.3). The ideal system output yid describes the desired behavior for yp. That
is, we would like yp to behave like yid. yp converges to the reference yref instead. Then,
if yref is as close as possible to yid, the saturated output yp will converge to a better
response. Therefore, the difference between yref and yid has to be minimized to improve
the performance of the system.

xc

C

ve

yid

yrefyaw
v1

yc

yp
±u0

v1 − φ(u0)(yc + v1)

xp

P

ẋid = Aidxid

xid

+

+

+

+

−

−

−

EMRAW
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sat(u0)(yc + v1)

zp

z

Figure 3.6: Performance optimization strategy for the EMRAW.

The optimization criterion in the EMRAW context is to minimize the L2 {z} where
z = yref −yid. Figure 3.6 block diagram describes this performance optimization strategy.

The ideal system dynamics are expressed in the following state space representation:

ẋid = Aidxid; yid = Cidxid (3.5.6)

where xid ∈ ℜnid and yid ∈ ℜq, and matrices Aid and Cid of appropriate dimensions. Aid

is Hurwitz. Matrices Aid and Cid are chosen in the synthesis process by the designer.
However the choice has to be done regarding to the system dynamics. This choice is
illustrated in further Section 3.7.4.

Defining the extended state vector ξ = [x
′

p x
′

c x
′

aw x
′

id]
′

, the closed-loop system
(3.5.1), (3.5.2), (3.5.3) and (3.5.6) reads:

ξ̇ = (A− BφFawCs)ξ + (Bφ + BvEaw)φ(u0)((K+ FawCs)ξ)

z = yref − yid = yp − yaw − yid = Cξ (3.5.7)
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where z ∈ ℜp and

A =




Ap + BpDcCp BpCc BpDcCp 0
BcCp Ac BcCp 0
0 0 Ap 0
0 0 0 Aid


 ;Bφ =




−Bp

0
−Bp

0


 ;Bv =




0
Inc

0
0


 ;

Cs = [0 0 Inaw
0] ;C = [Cp 0 − Cp − Cid] ;K = [DcCp Cc −DcCp 0] .

Remark 3.11. Roughly speaking, the two stages of the EMRAW carry out different mis-
sions. The first stage, i.e. the MRAW one, ensures the convergence of yp towards yref ,
while the second stage, i.e. the static DLAW, modifies the yref to be as close as possible
to yid.

The EMRAW strategy given by Figure 3.5 can be presented in a generic anti-windup
structure as shown in Figure 3.7. Signals vx and vy considered in (3.2.2) can be recon-
structed easily from the EMRAW outputs:

vx = ve − Bcyaw
vy = −Dcyaw + v1

(3.5.8)
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Figure 3.7: Extended MRAW on a generic Anti-windup structure.

3.5.2 EMRAW design procedure

Given the system (3.5.7) and defining n = np + nc + naw + nid and He(A) = A+ A
′

, the
following theorem can be stated:
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Theorem 3.2. [BPT+10b] Given v ∈ ℜn, kγ and kρ positive values, if there exist positive
scalars γ and ρ, a symmetric positive-definite matrix W ∈ ℜn×n, a matrix Y ∈ ℜm×n,
a matrix Z ∈ ℜnc×m, a diagonal positive-definite matrix S ∈ ℜm×m and a matrix Faw ∈
ℜm×np satisfying min (kγγ + kρρ) s.t.




He [AW − BφFawCsW ] J1 WC
′

∗ −2S 0
∗ ∗ −γIp


 < 0 (3.5.9)

[
W WK

′

(i) − Y
′

(i)

∗ u2
0(i)

]
≥ 0; i = 1, ...,m. (3.5.10)

[
W v
∗ ρ

]
≥ 0 (3.5.11)

where J1 = BφS +BvZ + Y
′

+WC
′

sF
′

aw, then E(P ) =
{
ξ ∈ ℜn; ξ

′

Pξ < 1
}
with P = W−1

is a domain of stability for the system (3.5.7) with Eaw = ZS−1 and Faw. Furthermore,
E(P ) is maximized in the direction v, with the weight kρ, and the performance 1/γ is
maximized with the weight kγ.

Remark 3.12. If v = xp(0) in (3.5.11) then the stability domain is maximized towards
the selected states of the saturated plant.

Proof of Theorem 3.2: Let us consider a quadratic Lyapunov function such as
V (ξ) = ξ

′

Pξ, P = P
′

> 0. Then a sufficient condition for the stability of the system
(3.5.7) in the ellipsoid domain E(P ) with the constraint ‖z‖22 =

∫∞
0

z′zdt ≤ γ is given by

V̇ (ξ) + γ−1z′z < 0, for any ξ ∈ E(P ) [BT09].

The expression of the time-derivative V̇ (ξ) along the trajectories of system (3.5.7)
gives:

V̇ (ξ) = ξ̇
′

Pξ + ξ
′

P ξ̇

= ξ
′

(He[P (A− BφFawCs)]) ξ

+ 2ξ′P (Bφ + BvEaw)φ(u0)((K+ FawCs)ξ)

Lemma 1.1 applies by considering u = (K+FawC)ξ and ω = (−G−FawCs)ξ, and the
set:

S(u0) =
{
ξ ∈ ℜn;

∣∣(K(i) −G(i))ξ
∣∣ ≤ u0(i) , i = 1, ...,m

}

Hence by setting W = P−1 and Y = GW , the satisfaction of relation (3.5.10) guarantees
that E(P ) ⊆ S(u0).

Thus, for any ξ ∈ E(P ) ⊆ S(u0) one gets:
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V̇ (ξ) + γ−1ξ
′

C
′

Cξ ≤ξ′

(He[P (A− BφFawCs)]) ξ

+ 2ξ′P (Bφ + BvEaw)φ(u0)((K+ FawCs)ξ)

− 2φ
′

(u0)
S−1

(
φ(u0) −Gξ − FawCsξ

)
+ γ−1ξ

′

C
′

Cξ

(3.5.12)

Then the right-hand side writes: L = X
′

MX with X
′

=
[
ξ
′

W−1 φ
′

(u0)
S−1

]
and

M =

[
He [AW − BφFawCsW ] + γ−1WC

′

CW J1

⋆ −2S

]

with J1 = BφS + BvZ + Y
′

+WC
′

sF
′

aw and Z = EawS. Finally, using Schur complement
on γ−1WC

′

CW , one gets relation (3.5.9). Therefore, the satisfaction of relation (3.5.9)
ensures that L < 0 or equivalently, V̇ (ξ) + γ−1z

′

z ≤ L < 0 for any ξ ∈ E(P ). In other
words, as in the proof of Theorem 3.1, one can conclude that E(P ) is a region of asymptotic
stability for system (3.5.7) with ‖z‖22 ≤ γ.

Relation (3.5.11) allows the maximization of the stability domain towards v by adding
the optimization criterion min ρ. Moreover kγ and kρ are the optimization weights which
perform the trade-off between performance (γ−1) and stability (ρ).

End of Proof.

Nevertheless, one can infer from previous equations that Faw and W cannot be com-
puted in one shot as inequalities are not linear in these decision variables (see the product
FawCsW in (3.5.9)). Therefore a method is proposed hereafter to solve the anti-windup
problem.

3.5.3 EMRAW computation

3.5.3.a Coordinate-descending Algoritm

The bilinear matrix inequality (BMI) (3.5.9) can be expressed differently allowing the
adaptation of a coordinate-descending algorithm [PA01].

Proposition 3.4. Given kγ and kρ positive values, there exist anti-windup gains Faw and
Eaw such as conditions in Theorem 3.2 are satisfied if there exist positive scalars γ and ρ, a
symmetric positive-definite matrix W ∈ ℜn×n, a matrix Y ∈ ℜm×n, a matrix Z ∈ ℜnc×m,
a diagonal positive-definite matrix S ∈ ℜm×m, matrices Ks ∈ ℜn×np, F ∈ ℜnp×np and
R ∈ ℜm×np satisfying min(kγγ + kρρ) s.t. (3.5.10), (3.5.11) and
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


He [AW ] WC
′

s BφS + BvZ + Y
′

WC
′

∗ 0 0 0
∗ ∗ −2S 0
∗ ∗ ∗ −γIp




+He







Ks

Inaw

0
0



[
R

′

B
′

φ F −R′

0
]

 < 0 (3.5.13)

Furthermore E(W−1) =
{
ξ ∈ ℜn; ξ

′

W−1ξ < 1
}

is a domain of stability for the system

(3.5.7) with Eaw = ZS−1 and Faw = R(F
′

)−1.

Proof of Proposition 3.4: First, let us rewrite relation (3.5.9) of theorem 3.2 as a
product of matrices:

Φ




He [AW ] WC
′

s BφS + BvZ + Y
′

WC
′

∗ 0 0 0
∗ ∗ −2S 0
∗ ∗ ∗ −γIp


Φ

′

(3.5.14)

where Φ =




In −BφFaw 0 0
0 Faw Im 0
0 0 0 Ip


. Then by applying the elimination lemma [OS01]

backwards one obtains:



He [AW ] WC
′

s BφS + BvZ + Y
′

WC
′

∗ 0 0 0
∗ ∗ −2S 0
∗ ∗ ∗ −γIp




+He







F1

F

0
0



[
F

′

awB
′

φ Inaw
−F ′

aw 0
]

 < 0 (3.5.15)

where F1 and F are Lagrange multipliers. Let us remark that there are not more multipliers
because are set to zero. Finally F multiplies and divides the second term as follows:




He [AW ] WC
′

s BφS + BvZ + Y
′

WC
′

∗ 0 0 0
∗ ∗ −2S 0
∗ ∗ ∗ −γIp




+He







F1F
−1

Inaw

0
0



[
FF

′

awB
′

φ F −FF ′

aw 0
]

 < 0 (3.5.16)
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Then by setting F1F
−1 = Ks and FF

′

aw = R
′

one obtains expression (3.5.13).

End of Proof.

Given the new formulation of Proposition 3.4 one can adapt the algorithm presented
in [PA01]. It does not prevent from using a relaxation scheme, but allows to search for
the matrix related to the Lyapunov function at each step. This algorithm is decomposed
in four operations as follows:

Algorithm 3.2. (Coodinate-descending)

1. (Initializing step - k=1) choose an initializing gain Ks.

2. (Step k - first part) for this choice of Ks, solve the following LMI minimization
problem:

min(kγγ + kρρ) s.t. (3.5.10), (3.5.11) and (3.5.13)

Keep the values of R and F obtained.

3. (Step k - second part), for this choice of R and F, solve the following LMI mini-
mization problem:

Critk = min(kγγ + kρρ) s.t. (3.5.10), (3.5.11) and (3.5.13)

Keep the value of Ks obtained.

4. (Termination step) if |Critk+1 − Critk| < ǫ, then stop, Faw = R(F
′

)−1, otherwise
k ← k + 1 and go to step 2.

The delicate point of Algorithm 3.2 is the initialization step whereKs has to be chosen.
However, this choice can be easier if some properties of Ks related to the stability of the
closed-loop system (3.5.7) are provided.

Lemma 3.1. The variable Ks of inequality (3.5.13) is a stabilizing feedback such that
the Lyapunov function V (ξ) = ξ

′

W−1ξ proves simultaneously the stability of both systems
(3.5.7) and ξ̇ = (A+KsCs)ξ.

Proof of Lemma 3.1: Multiplying inequality (3.5.13) on the left by

[
In Ks 0 0
0 0 Im Ip

]

and on the right by its transpose, on the left up corner of the resulting matrix one gets:

He[(A+KsCs)W ] < 0 (3.5.17)

Hence, the existence of a symmetric positive matrix W satisfying (3.5.13) and (3.5.17),
ensures the stability of the matrix (A +KsCs) and the stability of the saturated system
(3.5.7).
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End of Proof.

Remark 3.13. Knowing the necessary condition expressed in Lemma 3.1 one has a useful
guide to initialize Algorithm 3.2.

3.5.3.b Objective-based Algorithm

An alternative algorithm is proposed. It is based on the knowledge of the objective of
each gain in the EMRAW approach. That means, that in one hand Faw computation is
sought knowing that the gain stabilizes the anti-windup loop dynamics, and in the other
hand the Eaw computation is performed considering the convergence of yref towards yid.
This algorithm is divided in two independent parts which yield the third last part.

Algorithm 3.3. [BPT+10b](Objective-based)

• (Analysis part - 1) Tune Faw which guarantees (Ap+BpFaw)
′

Pp+Pp(Ap+BpFaw) < 0
with Pp = P

′

p > 0 providing the best possible dynamics (fast time of respose and low
oscillation). Simulate the system with Eaw = 0 and analyze the reference.

Keep the value of Faw obtained.

• (LMI part - 2) Choose a big ratio kγ/kρ. Then tune F ∗
aw verifying (Ap+BpF

∗
aw)

′

Pp+
Pp(Ap + BpF

∗
aw) < 0 and providing a fast dynamics3. Since F ∗

aw is fixed, relations
(3.5.9)-(3.5.11) become LMIs in the other decision variables. Solve Theorem 3.2 with
kγ/kρ and F ∗

aw to compute Eaw.

Keep the value of Eaw obtained.

• (Verification Part) Solve relations (3.5.9)-(3.5.11) with Faw (from Analysis part -
step 1) and Z = EawS (Eaw from LMI part - step 2).

Evaluate the stability parameter ρ: if ρ < ρdesired stop, otherwise go back to LMI
part (step 2) with a smaller kγ/kρ and/or slower (Ap + BpF

∗
aw) speed dynamics.

In contrast to Algorithm 3.2, there is no proof of convergence for Algorithm 3.3.
However in certain applications the knowledge of the system can be used in the first part
of Algorithm 3.3, leading to better results in terms of time of response can be obtained.

3Analysis part (step 1) gives directions about the way to choose the poles of (Ap +BpF
∗

aw) (generally
ten times faster than poles of (Ap +BpFaw)).
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3.6 Anti-windup with asymmetric saturations

The objective of this thesis is to adapt and develop the anti-windup to the control with
high precision for the angular and the linear axis of a satellite. In this control problem
the thrusters are used as actuators. The saturation describing the thrusters limitation
presents asymmetric bounds.

In Chapter 2 several techniques to symmetrize the saturation have been presented. At
the beginning of this chapter the saturations of the considered system have been supposed
symmetric. Regarding the system considered in this manuscript this assumption demands
the application of the symmetrizing techniques.

In previous sections, three approaches for the anti-windup computation have been pre-
sented. In the three cases, the anti-windup problem can be represented under a generic
formulation presented in Figure 1.6 (See also Figures 3.1, 3.4 and 3.7). Therefore, consid-
ering the block diagram in Figure 3.8, the anti-windup problem can be expressed under
the following formulation:

{
ξ̇ = Aξ + BφMφ(0,ū)(ν +Nζ)
ν = Cξ +DφMφ(0,ū)(ν +Nζ)

(3.6.1)

where the state vector is ξ = [x
′

p x
′

c x
′

aw]
′

.

Notice that the influence matrix, a symmetrizing vector Nζ and the asymmetric sat-
uration have been introduced in order to characterize the considered problem in Figure
3.8.

xc

C

vx

vy

f(yc)

yp

ū

M
0

φ(u0)(f(yc) +Nζ)

xp

P
+

+

+

+

−

Anti-windup
Compensator

xaw

sat(u0)(f(yc) +Nζ) zp

Nζ

Figure 3.8: General anti-windup structure

Figure 3.8 shows the block diagram of the generic problem to deal with. In the figure,
Nζ can be a symmetrizing vector verifying from Definition 2.3 or a function satisfying
the VKF definition (Definition 2.5.3).
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In this section, conditions on the validity of the anti-windup results when the system
saturation is symmetrized are given. First the system kernel symmetrization technique is
applied. Then, the variable kernel function is used to symmetrize the saturation.

3.6.1 Anti-windup design with Kernel symmetrization

The following proposition can be stated:

Proposition 3.5. [BPT+09] If there exists Nζsym verifying the conditions of Definition
2.2 then the anti-windup synthesis applies on system (3.6.1) regardless of the symmetrizing
process.

Proof of Proposition 3.5: Initially the symmetrizing vector Nζsym (2.5.6) verifying
Definition 2.2 is considered. Nζsym modifies the bounds of the dead-zone function. Then
the system (3.6.1) reads:

{
ξ̇ = Aξ + BφMφ(−Nζsym,ū−Nζsym)(ν) + BφMNζsym
ν = Cξ +DφMφ(−Nζsym,ū−Nζsym)(ν) +DφMNζsym

(3.6.2)

From Definition 2.2 Nζsym ∈ Ker(M) then it holds:

{
ξ̇ = Aξ + BφMφ(−Nζsym,ū−Nζsym)(ν)
ν = Cξ +DφMφ(−Nζsym,ū−Nζsym)(ν)

(3.6.3)

Given Nζsym = ū
2
, the dead-zone bounds are symmetrized with u0 = ū

2
as symmetric

bound (see Lemma 2.3). Then the system (3.6.1) is equivalent to the following one:

{
ξ̇ = Aξ + BφMφ(−u0,u0)(ν)
ν = Cξ +DφMφ(−u0,u0)(ν)

(3.6.4)

Therefore, the anti-windup compensator and the guaranteed domain stability of sta-
bility computed for the symmetric4 system (3.6.4) are valid for the asymmetric system
(3.6.1).

End of Proof.

Remark 3.14. Proposition 3.5 implies that the anti-windup techniques presented in Chap-
ter 3 apply to system (3.6.4) regardless of if it was symmetrized or it was already sym-
metric.

4A system with symmetric saturation bounds is denoted symmetric system.
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3.6.2 Anti-windup design with Variable Kernel Function (VKF)

The following result can be stated:

Proposition 3.6. [BPT+09] If there exists Nζvar verifying the conditions of Definition
2.4 (VKF definition) then the anti-windup and the stability domain E(P ) for the system
(3.6.1) with Nζsym verifying Definition 2.2, are also valid for the system (3.6.1) using a
variable kernel function Nζvar.

Proof of Proposition 3.6: Let us consider system (3.6.1). It has been proven by
Proposition 3.5 that one can find an anti-windup and a guaranteed stability domain for
the system (3.6.1) with Nζsym.

In the saturation region, as Nζvar(i) = Nζsym(i), the system is unchanged and it is
stable in E(P ). The computation of anti-windup compensator is unchanged as well. In
the linear zone, Nζvar(i) verifies 0 ≤

(
f(i)(yc) +Nζvar(i)

)
≤ ū(i), then system (3.6.1) is

described by:





ξ̇ = Aξ + BφM φ(0,ū)(ν +Nζvar)︸ ︷︷ ︸
=0

ν = Cξ +DφM φ(0,ū)(ν +Nζvar)︸ ︷︷ ︸
=0

(3.6.5)

In the linear domain, the symmetrizing term does not appear in the linear closed-loop
system because the saturation is not active. Therefore the system (3.6.1) behavior with
a symmetrizing vector Nζsym is the same as the behavior with a VKF Nζvar.

Finally we need to assure the equivalence between the system (3.6.1) with Nζsym and
the system (3.6.1) with VKF in the transition from the linear domain to the saturation
region. From Definition 2.4 Nζvar(i) = Nζsym(i) in the commutation surface. Therefore
the equivalence is verified.

In conclusion, the system (3.6.1) is equivalent with both symmetrizing techniques in
the whole state space. Therefore, the computation of the anti-windup compensator and
the stability domain for the system (3.6.1) with Nζsym are also valid for the system (3.6.1)
using Nζvar.

End of Proof.

Remark 3.15. The symmetrizing vector Nζsym does not affect the anti-windup computa-
tion as proven in Proposition 3.5. The system can be considered with symmetric bounds.
On the other hand, Proposition 3.6 means that for anti-windup purposes, Nζvar is equiv-
alent to Nζsym as they are equal when the saturation is active. In the linear domain the
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dead-zone is null, then the anti-windup compensator input is null even if Nζ in (3.6.1) is
a constant symmetrizing (Nζsym) or a VKF(Nζvar) is used.

3.6.3 Conclusion on the anti-windup with asymmetric satura-
tions

In this section the validity of the anti-windup techniques in asymmetric saturations is
tackled. First Proposition 3.5 shows that an anti-windup compensator valid for a system
with symmetric saturation bounds is also valid for a system which bounds have been
symmetrized previously.

Proposition 3.6 proves that, for anti-windup computation purposes, the use of a sym-
metrizing vector Nζsym or a VKF Nζvaris equivalent. Then the anti-windup compensator
computed on a system symmetrized with symmetrizing vector is also valid for the system
with a VKF function.

Therefore, the anti-windup compensator techniques presented in this chapter can be
applied regardless of the symmetrizing techniques defined in Chapter 2.

3.7 Educational example

The educational example is used to illustrate the anti-windup techniques presented in
this chapter. The pseudo-inverse matrix allocation function given by (2.4.1) is used in the
system (8).

In the educational example, the saturation function considered is asymmetric. Results
on anti-windup synthesis consider symmetric saturations. Thus, before computing an anti-
windup compensator the saturation has to be symmetrized. Therefore the symmetrizing
techniques from Chapter 2 are used. From Section 3.6 it is deduced that the symmetrizing
techniques do not effect the anti-windup compensator synthesis.

The symmetrizing vector Nζsym (2.5.6) is applied to system (8) to symmetrize its
saturation. Then, the formulation of the educational example considered for anti-windup
purposes reads: 




ẋp = Apxp + BpMsat(u0)(M
∗yc)

ẋc = Acxc + BcCpxp

yc = Ccxc +DcCpxp

zp = Czxp

(3.7.1)

where u0 =
1
2
150 · 10−6.



3.7. Educational example 89

3.7.1 Educational example on static DLAW

Let us consider first the static DLAW. Introducing this anti-windup compensator in the
system (3.7.1) the system reads





ẋp = Apxp + BpMsat(u0)(M
∗yc)

ẋc = Acxc +BcCpxp +Dawφ(u0)(M
∗yc)

yc = Ccxc +DcCpxp

zp = Czxp

(3.7.2)

With some mathematical development, the system (3.7.2) meets formulation (3.3.7).

Remark 3.16. The disturbance is not considered in the educational example. However
that does not imply any difference in the previous results as the system remains essentially
the same.

For this example, the stability domain is maximized in the first state variable di-
rection, that is, in the θ direction. That means that we maximize the allowed initial
condition θmax(0) where the system remains stable. Then Theorem 3.1 is applied with
v = [1 0 01×4 01×6]

′

and [kγ , kρ] = [1010, 1] as optimization weights. The resulting
anti-windup gain is:

Daw =




0.0448 −0.0448
0.008 −0.008
0.5856 −0.5856
−0.8572 0.8572


 (3.7.3)

Figure 3.9 presents the attitude response of the education example. The simulations
are performed setting an initial condition for the plant xp(0) = [−7 · 10−4 0]

′

and leaving
the system naturally evolve towards the origin. The solid line stands for the system
(3.7.1) without anti-windup and the dash-dotted line corresponds to the response with
static DLAW. The positive effect of the static DLAW is shown as the oscillations are
reduced.

In Figure 3.10 the estimations of the stability domain in the (θ, θ̇) plan are presented.
The domains for the system (3.7.1) without anti-windup (solid line ellipsoid) and with anti-
windup (dashed-line ellipsoid) are presented. The trajectories related to the simulations
of Figure 3.10 are also plotted. The solid line depicts the trajectory without static DLAW
and the dashed-line the trajectory with static DLAW. Finally, the parallel dotted lines
limit the linear region.

The anti-windup compensator increases the stability domain. However notice that the
initial condition xp(0) = [−7 · 10−4 0]

′

simulated is not included in the stability domain.
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Figure 3.9: Educational example attitude response for xp(0) = [−7 · 10−4 0]
′

.

By simulation, it has been shown that the system (with and without anti-windup) is stable
for this initial condition. Therefore the estimated stability domains are conservative. This
conservatism has been introduced in different steps of the anti-windup design such as the
Lyapunov function considered, the sector condition modelling and the application of the
S-procedure.

However, the following strategy can be used to improve the estimation: once the anti-
windup is computed, a stability analysis of the system is performed. Applying Theorem
3.1 with Z = DawS and [kγ , kρ] = [0, 1] a less conservative estimation of the stability
domain is obtained. Actually in Figure 3.10 the dash-dotted line is the estimation issued
by this analysis (post-analysis estimation). The dashed ellipsoid shows the estimation
obtained from the gain Daw synthesis (pre-analysis estimation).

Optimization weights [kρ, kγ ] permit to tune the stability-performance trade-off. Fig-
ure 3.11 shows the θ response for an increasing kγ (kρ = 1). The figure demonstrates the
enhancement on the performance when kγ increases. However, the improvement in the
performance comes with a reduction of the stability domain estimation. Tested values of
kγ go from 0 to 1010. In Figure 3.12 the estimation of the stability domain is shown for
different kγ . Notice that the estimation of the stability domain decreases when kγ grows.
In any case, as it is an estimation no conclusion can be obtained about the influence of
kγ on the actual stability domain.

Theorem 3.1 gives us, a stability criterion ρ. This criterion is related to the stability
domain estimation by the following expression:

v
′

ξmax(0) =
1√
ρ

(3.7.4)
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Figure 3.10: Stability domain estimations for different static anti-windup cases.
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Figure 3.11: Attitude response for different performance weights kγ (kρ = 1).
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Figure 3.12: Stability domain for different performance weights kγ (kρ = 1).

where ξmax(0) is the maximal admissible initial condition for the state vector.

Fixing ρ in Theorem 3.1, the computed anti-windup compensator ensures a given
stability 1√

ρ
. However, because of the estimation conservatism one may run a risk of not

finding a solution to the LMI problem. The stability criterion obtained for the system
(3.7.2) is:

ρs(synthesis) = 2.68 · 107; ρa(analysis) = 1.047 · 107; (3.7.5)

In this study case v
′

ξmax(0) = xp(1)(0) = θmax(0). Therefore, the maximal admissible
initial attitude θmax(0) can be obtained from the parameter ρa: θmax(0) =

1√
ρa

= 3.091 ·
10−4. This is exactly the point where the dot-dashed ellipsoid in the Figure 3.10 cuts the
θ̇-axis (i.e. xp(2)(0) = 0-axis).

In Figure 3.13 the thrust of the system (3.7.1) with the static DLAW (3.7.3) is pre-
sented. Two thrust responses are depicted: first, the system (3.7.1) symmetrized with
Nζsym (dashed-line) and second, the system (3.7.1) symmetrized with VKF (2.5.14) (dot-
dashed line). A constant thrust is provided at the equilibrium for the system (3.7.1)
with Nζsym. On the contrary, the thrust at the equilibrium is null when a VKF is used.
This implies a significant saving of fuel. The integral of the thrusters response has been
computed as a measurement of the Consumption

Consumption with Nζsym :
n∑

i=1

∫ t

0

T (n)dt = 8 · 10−2 (3.7.6)

Consumption with V KF :
n∑

i=1

∫ t

0

T (n)dt = 2.7 · 10−3 (3.7.7)
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Figure 3.13: First thruster response for different symmetrizing approaches.

Remark 3.17. The benefits of the VKF in comparison to Nζsym are independent on the
anti-windup approach considered. Results on Section 3.6 considers a generic formulation
of the anti-windup synthesis problem. Therefore, the previous analysis on the symmetriz-
ing techniques are not repeated hereafter.

3.7.2 Educational example on dynamic DLAW

The results on the dynamic DLAW computation are applied to the education example
(3.7.1). With some mathematical development, the system (3.7.1) meets formulation
(3.3.8).

The idea is first to apply Proposition 3.2 and from the eigenvalues of the full order
anti-windup compensator, choose the representative ones and then apply Algorithm 3.1.

First, Proposition 3.2 is applied with optimization weights [kγ , kρ] = [1010, 1]. The
stability domain is maximized in the θ direction. The anti-windup compensator matrices
are reconstructed and the obtained eigenvalues of Aaw are presented in Table 3.1.

From all the poles of the computed full order compensator, just the poles of Aaw

sharing the same magnitude order as those of Al are conserved. Table 3.1 shows the full
order anti-windup eigenvalues and the selected ones are marked with ∗. With this choice
the fixed order anti-windup synthesis via Algorithm 3.1 can be implemented.
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Table 3.1: Full order DLAW eigenvalues in the educational example

eig(Aaw)(∗ ≡ selected) eig(Al)
(−1.27± j5.88) · 105 −6.84
(−3.43± j50.76) · 104 −4.63

−1.28 · 103 (−1.04 + j1.24) · 10−1

−9.55 (−3.05 + j1.07) · 10−2

−4.29(∗)
(−1.23± j1.18) · 10−1(∗)
(−3.28± j0.69) · 10−3

−1.46 · 10−2

Remark 3.18. Some of the poles of full order DLAW have an extremely fast dynamics.
Pole p = (−1.27 ± j5.88) · 105 is too fast to be considered in real industrial applications.
Therefore, the selection is mandatory to obtain a realistic anti-windup compensator. In
addition we have decided to choose the poles sharing the same magnitude order as those of
the linear closed-loop. This selection criterion is established to obtain a better conditioning
number of the closed-loop matrices and, consequently, reduced the numerical problems in
the LMI problem resolution [BcPS07].
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Figure 3.14: Attitude responses for a static, a full order and fixed order DLAW.

Figure 3.14 shows the responses of the system (3.7.1) with an initial condition xp(0) =
[−7 · 10−4 0]

′

for the three different DLAW. The responses present a similar time of
response slightly improved in the dynamic anti-windup case, particularly in the fixed
order one. Notice that the dynamic DLAW presents a smoother trajectory than the static
DLAW. The dynamic behavior of the anti-windup allows the compensator to be active
even if the actuator does not saturate, providing this smoother response.
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Figure 3.15: Stability Domain for a static, a full order and fixed order DLAW.

The stability domains are depicted in Figure 3.15. The dynamic anti-windup compen-
sator provides a larger stability domain estimation. This phenomenon could be expected
as the dynamic DLAW provides more degrees of freedom than the static DLAW to the
LMI computation

Conclusions on the stability-performance trade-off are omitted because they are equiva-
lent to those obtained for the static DLAW. Parameters [kγ , kρ] can be modified to improve
either the performance or the stability domain estimation.

3.7.3 Educational example on MRAW

Results for the MRAW approach are illustrated with system (3.7.1). The anti-windup
matrices in the MRAW are characterized by the model of the plant. Hence, Ap, BpM , Cp

and Dp are the matrices5 of system (3.7.1) defining the MRAW dynamics.

In the educational example (3.7.1) the plant is modelled by a double integrator. Then,
the stabilizing feedback v1 (3.4.7) can be used.

The considered non-linear law is limited to a family of systems. Hence the analysis
is not focused on the tuning of the v1 (3.4.7), but on the characteristics of the MRAW
approach.

The tuning of the non-linear law is done by trial and error. Three tunings are presented

5Dp = 0.
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on simulations. The parameters characterizing these tunings are the followings:

• [k = 0.01, ξ = 1] denoted MRAW 1 (solid line);

• [k = 0.005, ξ = 1] denoted MRAW 2 (dot-dashed line);

• [k = 0.01 ξ = 0.5] denoted MRAW 3 (dashed-line).
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Figure 3.16: Attitude responses with several MRAW.

System (3.7.1) is simulated with an initial condition xp(0) = [−7·10−4 0]
′

. Figure 3.16
shows yp = θ and yaw responses for the three tunings. The reference signal yref (dotted-
line) is plotted together with the different yp responses. The MRAW 1 approach presents
the fastest yp response. An explanation to this behavior is found in the MRAW design.
In the MRAW approach only v1 has to be tuned as the matrices are fixed by the plant. v1
stabilizes the anti-windup loop (i.e. the convergence of yaw to the origin). According to
the relation yref = yp − yaw, it can be deduced that the faster yaw convergence, the faster
yref response is attained by yp. The yp signal will then converge to the origin following
yref . The time of response of yp is then either given by:

• yref time of response if yaw converges to zero before yref has attained the origin;

• yaw time of response, if yaw converges to zero after yref has attained the origin.

In Figure 3.16, yaw with MRAW 1 converges sooner to the origin than yref . On the
other hand, yaw with MRAW 2 and 3 converges later to the origin than yref . Therefore,
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the attitude response (yp) of system (3.7.1) is faster with the MRAW 1 than MRAW 2
and 3.

3.7.4 Educational example on EMRAW

The educational example is used to present practical considerations on the EMRAW. The
EMRAW follows the MRAW paradigm. Thus, the anti-windup matrices are characterized
by the plant of the system (3.7.1). Finally, two gains, Faw and Eaw, have to be computed
to complete the EMRAW.

In Section 3.5.3 two algorithms allowing the computation of the EMRAW gains are
presented. Practical issues of these algorithms are presented in the following sections.
First the coordinate-descending algorithm is applied. Then the objective-based algorithm
is described.

3.7.4.a Coordinate-descending algorithm

The main difficulty to apply coordinate-descending algorithm (Algorithm 3.2) lies on the
initialization of the gain Ks. A necessary condition to initialize the gain Ks are given in
Lemma 3.1. The choice of Ks is difficult even if some necessary conditions are available.
Generally there is no insurance of finding a solution to the conditions in Proposition 3.4
for a Ks satisfying (3.5.17). However if we analyze in detail the condition in (3.5.17) some
helps can be extracted in order to hit a good Ks candidate. The goal of Ks is to stabilize
the matrix A + KsCs studied in Lemma 3.1. Moreover, recall that matrix A in system
(3.5.7) is issued from a concatenation of the linear closed-loop matrix6 Al, the plant state
matrix Ap and the ideal dynamics state matrix Aid. Among these three matrices only
Ap presents unstable eigenvalues. Therefore, Ks can be seen as a feedback stabilizing the
anti-windup dynamics.

Given these considerations, we have decided to constraint the placement of (A+KsCs)
poles to steer the initialization of Ks. Then the following conjecture can be stated:

Conjecture 3.1. Constraining the eigenvalues of (A + KsCs) to be in the same region
of the Al eigenvalues (see Figure 3.17), a Ks candidate is obtained. This candidate has
more chances to start Algorithm 3.2, that is to find a solution to Proposition 3.4 .

Conjecture 3.1 is based on several trial and error tests and it is just proposed here
as a possible manner to initialize Ks based on the experience. However, if the poles
of (A + KsCs) are forced to be in the same zone as those of Al, since Al is part of A,

6with Al =

[
Ap +BpDcCp BpCc

BcCp Ac

]
.
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ℑ
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Sector constraining the (A+KsCs) poles.

Region of Al poles

Figure 3.17: Sector definition including closed-loop poles

the conditioning number of the resulting matrix will be better than leaving the poles
placement free.
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Figure 3.18: Region of the complex plane defined by the eigenvalues of Al.
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Therefore, in addition to the necessary condition (3.5.17), constraints delimiting the
complex plane have to be introduced in the computation of Ks to find the ”best suitable
Ks”. The expression of the LMIs defining a region on the complex plane can be found in
[SW05, CG56].

The educational example has been used to test the previous considerations. In Table
3.1 the poles of Al are given for the system (3.7.1). Then, the initialization of Ks is done
by constraining the poles of (A+KsCs) to the region presented in the Figure 3.18

A Ks verifying Lemma 3.1 and the constrained region is computed. For this Ks the
Proposition 3.4 finds a solution, and thus the Algorithm 3.2 may be implemented. Then
two gains Faw and Eaw are found. They are used in a EMRAW structure. The simulation
of the system (3.7.1) with this EMRAW is presented later in Figure 3.22.

3.7.4.b Objective-based algorithm

The objective-based (Algorithm 3.3) proposes an alternative method to find the EMRAW
gains Faw and Eaw. The educational example is used to steer the analysis on Algorithm
3.3. System (3.7.1) is simulated with xp = [−10−2 0]

′

.

First, we compute Faw to assure anti-windup loop stability. Faw can be easily found
through a pole placement. We select a second order behavior with damping ζ and nat-
ural frequency ωn. After system analysis the best choice is ζ = 1 and ωn = 0.1 which
corresponds to a pair of poles p1,2 = −0.1 ± 0j. Figure 3.19 shows system reference yref
(solid line) and the saturated one for three different ωn, ζ = 1 and Eaw = 0. As Eaw = 0,
we have7 yref = yl. When ωn = 10 (line with dots) system response is fast but the os-
cillations are induced. Otherwise, with ωn = 0.01 (dashed line), there is no presence of
oscillations but the response is too slow. When ωn = 0.1 (dot-dashed line) no oscillations
are induced and system response is fast even if an overshoot appears. Therefore we choose
Faw(ωn = 0.1, ζ = 1) as stabilizing gain of the anti-windup loop.

This choice presents an overshoot for the saturated system response. Thus, in order
to improve this response, the reference should be modified. From the analysis (Analysis
part of Algorithm 3.3) one infers that the ideal reference should not present overshoot.
The ideal response with the dynamics (3.5.6) is presented in Figure 3.20 (solid line). The
ideal dynamics matrices are:

Aid =

[
0 1
−0.1 −0.6

]
;Cid = [1 0]. (3.7.8)

Then, in the second part, we tune the ratio kγ/kρ and F ∗
aw to compute a Eaw which

provides a reference as close as possible to the ideal one. First, the ratio has to be chosen

7With Eaw = 0 the EMRAW is indeed a MRAW, then the relation yref = yl holds.
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Figure 3.19: Analysis of the EMRAW filter with Eaw = 0.
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Figure 3.20: References evolution with Eaw.

as large as possible to obtain a reference close to the ideal one. Then we perform a pole
placement of Ap + BpF

∗
aw selecting a pair ζ and ω∗

n defining a second order dynamics.
For simplicity we fix ζ = 1 and only ω∗

n is tuned. Once kγ/kρ and F ∗
aw are set, we apply

Theorem 3.2 to compute Eaw (step 3.3).
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Figure 3.20 presents the reference output for different Eaw. The ratio is fixed to
kγ/kρ = 109 and F ∗

aw is computed through a pole placement for different ω∗
n. In the

legend Eaw(ω
∗
n) means that the gain Eaw has been obtained for a F ∗

aw set with ζ = 1 and
ω∗
n. Solid line stands for the ideal reference while dot-solid line shows the unconstrained

behavior. Dot-dashed line is the reference obtained for ω∗
n = 0.01, in that case the

overshoot has been increased. Differently, when ω∗
n = 1 the overshoot is clearly reduced.

The best choice is Eaw(ω
∗
n = 1).

Finally, combining first and second parts, we verify that the stability criterion is inside
the limits. The combination of Faw(ωn = 0.1, ζ = 1) and Eaw(ω

∗
n = 1) provides an admis-

sible attitude error of θmax(0) =
1
ρ2

= 2.8 · 10−4. The process have been stopped because
this guaranteed stability is close enough to the stability obtained for the static DLAW.
We have tried to obtain a similar guaranteed stability domain for all the anti-windup
compensators to compare their performances. Therefore, the EMRAW compensator is
composed by Faw(ωn = 0.1, ζ = 1) and Eaw(ω

∗
n = 1).
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Figure 3.21: Attitude for different EMRAW compensators.

Figure 3.21 shows the ideal reference (solid line) and the system response for Faw(ωn =
0.1, ζ = 1) with Eaw(ω

∗
n = 1) (dashed line) and the response for Faw(ωn = 0.1, ζ = 1)

and Eaw(ω
∗
n = 0.01) (dash-dotted line). In other words, the figure depicts the system

response for the two modified references presented in Figure 3.20. One can see that the
dash-dotted line presents an overshoot while the dashed line does not. At the same time,
the response for the chosen gains converges faster than the other. Hence the choice of
reference is justified.

Let us summarize the main ideas that can be extracted from the educational example.
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The first Analysis part provides an idea about how the reference yref (with Eaw = 0) has
to be modified. Thus the choice of the ideal reference will be much easier. Then, if we
want Eaw to provide a reference close to the ideal one, kγ/kρ has to be large. Moreover,
F ∗
aw has to be chosen providing a fast dynamics. If the dynamics are fast then computed

Eaw will have more influence on the reference modification.

A large ratio kγ/kρ will provide a Eaw which pushes yref towards yid. Because of the
nature of the system the ideal reference is not achievable. Then if the ratio is too big the
reference could be destabilized because of this physical limitation.

The choice of F ∗
aw is less efficient that the one of the optimization ratio. However, one

can note that, if the anti-windup loop converges faster, the input on Eaw will decrease
sooner. Then the computed Eaw will have more influence to palliate the early lack of
F ∗
awxaw on its input. However, if the anti-windup loop dynamics for F ∗

aw is too fast the
system could diverge.

Remark 3.19. Tuning the anti-windup gains through the analysis is not easy and this
chapter only shows how it has been done for the educational example. However, if there
is a certain knowledge of the system behavior, this can be a better method to find an
anti-windup compensator instead of using the descending algorithm.

3.7.5 Conclusion on the educational example

The educational example has been used to illustrate the different anti-windup techniques.
Finally all the anti-windup compensators are briefly compared.
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Figure 3.22: Attitude responses comparison between several anti-windup compensators.
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Figure 3.23: Stability domain comparison between several anti-windup compensators.

Figure 3.22 presents the response of the system (8) with several anti-windup com-
pensator approaches for an initial condition of xp = [−1 · 10−2 0]

′

. The anti-windup
computation approaches presented in Figure 3.22 are the following:

• A static DLAW compensator (solid line);

• A full order dynamic DLAW compensator (dashed line);

• A fixed order dynamic DLAW compensator (dot-dashed line);

• A MRAW compensator with v1 (3.4.7) (line with dots);

• A EMRAW compensator computed with Algorithm 3.3 (line with stars);

• A EMRAW compensator computed with Algorithm 3.2 (line with circles).

The EMRAW computed with either the coordinate-descending algorithm (Algorithm
3.2) or the objective-based (Algorithm 3.3) permits to reach performances close to those
obtained with a non-linear law v1 (3.4.7).

Figure 3.23 shows the stability domains estimations obtained for the different anti-
windup compensators. Algorithm 3.2 provides a clearly larger estimation than in any
other case (see zoom out in Figure 3.23). This can be related to the nature of the
algorithm, which optimizes at each step the Lyapunov related matrix P . Thus, Algorithm
3.2 optimizes at each step the size of the stability domain.
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3.8 Conclusion

This chapter has presented a possible strategy to handle the saturation introducing an
extra layer to the original controller, called anti-windup compensator.

The anti-windup compensator design has been addressed from three ways: The Di-
rect Linear Anti-Windup (DLAW), the Model Recovery Anti-Windup (MRAW) and the
Extended Model Recovery Anti-Windup (EMRAW).

The DLAW approach is based on the introduction of modifications in the control state
and in the control output. Two possible structures for DLAW have been presented. First
the case where DLAW is reduced to a simple static gain. Then the dynamic DLAW is
tackled. Matrix inequations conditions are given in both cases for the computation of the
DLAW, however, only in the static case these conditions are LMI. Two cases providing
LMI conditions in the dynamics case have been given: when the anti-windup compensator
order is the same of the closed-loop system and when the anti-windup dynamics are set a
priori.

The MRAW has been presented as an alternative to the DLAW. The anti-windup
synthesis between both methods differs on the definition of the anti-windup matrices.
MRAW recovers the dynamics of the plant for the anti-windup compensator design. An
overall vision on the MRAW has been given and some references containing interesting
algorithms to compute a part of the anti-windup compensator have been provided. A
particular attention has been given to the case where the plant is described as double
integrator.

The last anti-windup compensator considered has been the EMRAW. It represents
the main contribution of this manuscript. The EMRAW takes the idea from the MRAW
as it recovers the plant dynamics for the anti-windup matrices design. In addition, a
static DLAW has been added to the initial MRAW. The combination of both approaches
has been called EMRAW. BMI conditions for the synthesis of the EMRAW have been
provided. Consequently, some relaxations have been given to obtain LMI conditions
which can be solved with the current solvers. Two algorithms have been presented as
constructive strategies for the EMRAW approach.

The anti-windup techniques have been presented for systems presenting symmetric sat-
urations. The validity of anti-windup techniques on system with asymmetric saturations
have been analyzed. The results obtained show that the anti-windup synthesis techniques
presented in this chapter can be applied regardless of the saturation symmetrization.

Finally, the educational example has been recalled to illustrate the different anti-
windup compensators presented.
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Formation flying control
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4.1 Introduction

Formation flying control problem has been an important field of research since the 1990’s.
Several possible applications in the space exploration domain make this field very interest-
ing [Gau07, PCU+05, Abs04]. In these kinds of missions one seeks to control the formation
with a fine precision in both attitude and relative position. Consequently, the actuator
is based on a precise propulsive system. However, these kind of actuators have a limited
capacity which can be exceeded. Therefore, the interest of the anti-windup compensator
arises.

For anti-windup study purposes, the flying formation problem can be described by
a block diagram as presented in Figure 4.1. If yp appears as attitude and/or relative
position, the control loop would be illustrative of a flight formation configuration.

Remark 4.1. yr = 0 for consistency reasons without loss of generality.

In this chapter three different formation flying control problems are modelled. These
ones are the relative position, the attitude and relative position and a 16-state formation
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Figure 4.1: Control loop block diagram.

control. The models are simplified in order to enable the application of the anti-windup
methods and study their effect. With more complex modelling numerical problems have
appeared blocking the anti-windup computation.

Initially, Section 4.2 presents the model of the relative position between two satellites.
Only the control of an axis is considered. Then, in Section 4.3 the anti-windup techniques
presented in Chapter 3 are applied to the relative position control.

The attitude and relative position control problem is presented in Section 4.4. In
Section 4.5 the anti-windup compensator is introduced in the attitude and relative position
control loop. Simulations illustrate the benefits provided by the anti-windup compensator.

Finally, Section 4.6 presents a 8-DOF-two satellites formation model. A brief illustra-
tion of the formation with anti-windup compensator is given in Section 4.7.

4.2 Relative position control

4.2.1 Relative position plant model

The first relative dynamics to be described is the relative position between two satellites
along the z-axis. Let us consider two satellites and two frames fixed to each satellite.
Fsat1 is the first satellite associated frame and Fsat2 the second satellite associated frame.
From the third theorem of the rigid body dynamics, the acceleration of a rigid body is
proportional to the sum of external forces:

z̈i = m−1
i

∑
(Fi) (4.2.1)

where zi is the displacement on the z−axis of satellite i. Hence, z̈i denotes the acceleration
on this axis. mi denotes the mass of satellite i and

∑
(Fi) stands for the sum of external

forces on satellite i.

The control objective is to cancel the lateral position error on the z coordinate between
the satellites, (see Figure 4.2). Therefore, the relative dynamics can be described applying
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(4.2.1) to the difference of the zi coordinate with i = 1, 2, that is ∆z = z1−z2. The control
objective is then ∆z = 0. Denoting

∑
(Fi) by Fi for consistency reasons, it yields

∆z̈ = −m−1
2 F2 +m−1

1 F1 (4.2.2)
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Figure 4.2: Relative position control configuration.

The state space representation associated to (4.2.2) reads:




ẋp = Apxp + Bpup =

[
0 1
0 0

] [
∆z
∆ż

]
+

[
0 0

m−1
1 −m−1

2

]
up

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

(4.2.3)

where the state variables included in the state vector xp are the relative position (∆z)
and the relative velocity (∆ż), up = [F1 F2]

′

the control input, yp = ∆z the measured
output and zp = ∆z the regulated output.

4.2.2 Relative position controller

The controller computes the control output yc. A centralized controller is used. This
means that a unique controller takes the measurements from all satellites in the formation
and computes a vector yc which contains the control output of each satellite.

The controller can be described through a state space representation:
{

ẋc = Acxc + Bcuc

yc = Ccxc +Dcuc
(4.2.4)

In the relative position problem, the controller is an 1-input 2-outputs SIMO (Single
Input Multiple Output) linear system with a 5 dimension state vector. The controller
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input is uc = yp = ∆z and its outputs are yc = [yc1 yc2] = [Fc1 Fc2]
′

. Fc1 (resp. Fc2)
stands for the controller output for the first (resp. second) satellite.

4.2.3 Relative position actuator model

The satellite formation is actuated by a propulsive system composed of 4 proportional
thrusters on each of the two satellites. To apply the required control forces (F1 and F2)
using this propulsive system, thruster management functions have to be introduced in
the control loop. These functions are composed by an allocation function that transforms
the required control efforts (Fc1 Fc2) into thrusters forces, and an influence matrix that
transform the thruster outputs into forces applied on the system. Moreover, the actual
forces delivered by each thruster are saturated. The general expression for the actuator
is given as follows:

up = Msat(0,ū)(f(yc)) (4.2.5)

4.2.3.a The influence matrix

The influence matrix describes the geometric distribution of the thrusters. The physical
distribution of the thrusters is presented in Figure 4.2.

The influence matrices are described as follows:

M1 = [1 − 1 − 1 1];M2 = [1 − 1 − 1 1] (4.2.6)

Influence matrices M1 and M2 are associated to satellite 1 and Satellite 2 respectively.

4.2.3.b Thruster saturation

The saturation function is modelled by (2.2.3). The saturation bounds for the relative
position control problem are u = 0 and ū = 1mN .

4.2.3.c Allocation function

In Section 2.4, we have insisted on the non-linear character of allocation function (AF).
The given non-linear AF is based in a switching structure. This non-linear allocation
function lies on the fact that the control output yc is treated component-wise. The AF
computes a set of thrust T for each component of the control output. These are denoted
by yc(k) and the set of thrusts associated is denoted by T k. Finally, the thrust vector
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applied is the sum of all T k with k = 1, ...,mc. The switching structure can be described
by the following expression:

f(yc) =





T k
(i) =

{
0 if sign(M(k,i)) 6= sign(yc(k))

yc(k)

τ(k)M(k,i)
if sign(M(k,i)) = sign(yc(k))

k = 1, ..mc.

T(i) =
∑mc

k=1 T
k
(i), i = 1, ..,m.

T = [T(1) ... T(m)]
′

(4.2.7)

where sign(·) stands for the function sign and τ(k) stands for the number of thrusters
generating an effort of the same sign as yc(k). τ(k) is described as follows:

τ(k) =
m∑

i=1

{
sign(M(k,i)) = sign(yc(k))

}
(4.2.8)

where {sign(M(k,i)) = sign(yc(k)))} is a boolean function that returns 1 if both elements
are equal or 0 if they are not.

The relative position control problem presents m = 4 thrusters and k = 1 control
output. Then the switching AF (4.2.7) has the following form for both satellites:

f(yc) =





T(1) = T(4) =

{
0 if yc < 0
yc
2

if yc ≥ 0

T(2) = T(3) =

{
0 if yc ≥ 0
yc
2

if yc < 0

(4.2.9)

Remark 4.2. AF (4.2.7) inspired the multi-sat AF (2.4.3) presented in Section 2.4.2.

Other AF have been introduced in Section 2.4. In the relative position control the
pseudo-inverse matrix based AF given by (2.4.1) is also considered.

To sum up, the actuator is modelled as follows:

up = Msat(0,ū)(f(yc)) =

[
M1 0
0 M2

]
sat(0,ū)

([
f(yc1)
f(yc2)

])
(4.2.10)

Two possibilities are considered for f(yc): AF (4.2.9) and AF (2.4.1). In this last case
the control input up reads:

up =

[
M1 0
0 M2

]
sat(0,ū)

([
M∗

1 yc1
M∗

2 yc2

])
(4.2.11)
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4.2.4 Relative position closed-loop model

With the previously presented plant (4.2.3), controller (4.2.4) and actuator (4.2.10) the
closed-loop system describing the relative position control reads:





ẋp = Apxp + Bpup =

[
0 1
0 0

] [
∆z
∆ż

]
+

[
0 0

m−1
1 −m−1

2

]
up

ẋc = Acxc + BcCpxp

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

up = Msat(0,ū)(f(yc)) =

[
M1sat(0,ū)(f(yc1))
M2sat(0,ū)(f(yc2))

]

yc = Ccxc +DcCpxp

(4.2.12)

with f(yc) defined by (4.2.9).

System (4.2.12) provides a benchmark for further simulations. However the non-
linearity introduced by the AF (4.2.9) does not allow the computation of the anti-windup
compensator for this system. For this reason another formulation is defined. The closed-
loop system with the actuator (4.2.11) reads:





ẋp = Apxp + Bpup =

[
0 1
0 0

] [
∆z
∆ż

]
+

[
0 0

m−1
1 −m−1

2

]
up

ẋc = Acxc + BcCpxp

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

up = Msat(0,ū)(M
∗yc) =

[
M1sat(0,ū)(M

∗
1 yc1)

M2sat(0,ū)(M
∗
2 yc2)

]

yc = Ccxc +DcCpxp

(4.2.13)

This alternative formulation allows the computation of the anti-windup compensator
presented in Chapter 3. System (4.2.13) is then simulated with the anti-windup compen-
sator. The responses obtained for the system (4.2.13) with anti-windup are compared to
the responses of the system (4.2.12) without anti-windup.

4.3 Anti-windup on the relative position control

The relative position control problem has been modelled. The results from Chapter 3
are applied to synthesize an anti-windup compensator. For anti-windup computation
purposes the closed-loop system (4.2.13) is considered.
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The saturation function in (4.2.13) is asymmetric. Results on anti-windup synthesis
consider symmetric saturations. Thus, before computing the anti-windup compensator
the saturation has to be symmetrized. Therefore results from Section 2.5 results are used.

Influence matrix (4.2.6) satisfies the Lemma 2.4 conditions. Therefore the symmetriz-
ing vector Nζsym = ū/2 can be applied. Additionally, the VKF (2.5.14) is also considered
to symmetrize the saturation while solving the problems of extra consumption exposed in
Section 2.5.3.

With the saturation symmetrized, the closed-loop system (4.2.13) reads:





ẋp = Apxp +Bpup =

[
0 1
0 0

] [
∆z
∆ż

]
+

[
0 0

M−1
1 −M−1

2

]
up

ẋc = Acxc + Bcyp
yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

up = Msat(u0)(M
∗yc) =

[
M1sat(u0)(M

∗
1 yc1)

M2sat(u0)(M
∗
1 yc2)

]

yc = Ccxc +DcCpxp

(4.3.1)

with symmetric bounds u0 =
1
2
1mN

In Chapter 3 anti-windup compensator design has been decomposed in three tech-
niques: the Direct Linear Anti-Windup, the Model Recovery Anti-windup and the Ex-
tended Model Recovery Anti-windup. These techniques are applied hereafter. Let us
notice that the relative position problem is essentially the same as the educational ex-
ample. Hence the analysis about the computation of each technique has been omitted to
avoid redundant comments.

4.3.1 Anti-windup compensator synthesis

First let us first consider the DLAW case. In Section 3.3 the system considered was
described as follows: 




ξ̇ = Aξ + Bφφ(u0)(ν) + Bvvx
ν = Kξ
z = Cξ + Dφφ(u0)(ν)

(4.3.2)

System (4.3.1) can be recognized on (4.3.2) with some mathematical development.
Both the static and dynamic DLAW are tackled
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4.3.1.a Static DLAW synthesis

In the static case the anti-windup compensator is limited to a static feedback gain. Thus,
the anti-windup output is given by vx = Dawφ(u0)(ν).

The DLAW static gain Daw can be easily computed by applying Theorem 3.1. In this
particular case the stability domain optimization is done in the ∆z direction. In that
manner, the term v in LMI (3.3.12) becomes v = [1 0 01×5 01×7]

′

. The performance-
stability weights are [kγ kρ] = [10, 1]. The Daw obtained reads:

Daw =




−0.32 −0.32 0.32 0.32 −1.65 −1.65 1.65 1.65
0.28 0.28 −0.28 −0.28 3.5 3.5 −3.5 −3.5
2.95 2.95 −2.95 −2.95 −6.39 −6.39 6.39 6.39
0.88 0.88 −0.88 −0.88 −1.81 −1.81 1.81 1.81
376.78 376.78 −376.78 −376.78 −665.5 −665.5 665.5 665.5




(4.3.3)

Let us give a brief comment on the structure of the static DLAW (4.3.3). First, observe
the difference between the first four columns and the last four. That is due to the relation
of the first four columns with the first satellite thrusters, and the relation of the last four
with the second satellite thrusters. Finally, notice that in each group of four columns
there are two positive values and two negative. This sign is related to the positive or
negative effort that each thruster performs.

In addition, it is important to remark that there is a row (the fifth one) whose values
outstand in comparison with the others. Actually this line affects the state of the controller
related to the integration. The anti-windup mission is to attenuate the integral state of
the controller which is the more sensible state to the saturation effects. Therefore it is
normal to find a more important effect on this controller state than on the others.

4.3.1.b Dynamic DLAW synthesis

Consider a dynamic DLAW like in (3.3.3). The anti-windup compensator is then described
by:

AW
{

ẋaw = Aawxaw + Bawφ(u0)(yc)
vx = Cawxaw +Dawφ(u0)(yc)

(4.3.4)

Then the results presented in Section 3.3 are applied to system (4.3.1) to compute a
dynamic DLAW.

Proposition 3.2 is used to compute a full order anti-windup compensator, that is
naw = nM . Moreover, this computation provides a guide on the choice of the poles for
the fixed order anti-windup synthesis. The computation is decomposed in two steps. The
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first consist in computing the full order DLAW. From all the poles of the computed full
order compensator, just the poles of Aaw sharing the same magnitude order as those of
Al are conserved. The fix order Algorithm 3.1 is then applied.

The proposition 3.2 is called with the optimization weight [kγ kρ] = [10, 1]. The
stability domain is maximized in the relative position direction ∆z. Table 4.1 shows the
poles of the full order dynamic DLAW and the poles of the linear closed-loop system Al.
The selected poles for the fixed oder DLAW synthesis are marked with ∗.

Table 4.1: Full order DLAW eigenvalues in relative position control

eig(Aaw)(∗ ≡ selected) eig(Al)
−8.28 · 106 (−2.61± j2.88) · 10−1

−6.21 · 106 (−1.62± j2.02) · 10−1

−4.74 · 104 (−8.23± j8.23) · 10−3

−1.93 · 102 −2.73 · 10−3

−1.61
(−9.11± j27.5) · 10−2

−0.13
−4.38 · 10−2(∗)

(−8.97± j5.17) · 10−3(∗)
−8.61 · 10−3(∗)
−7.46 · 10−3(∗)
−4.11 · 10−3

With the proposed choice of poles the Algorithm 3.1 is applied.

4.3.1.c MRAW synthesis

The MRAW approach is characterized by the model of the plant. Hence the plant (4.2.3)
matrices define the anti-windup compensator.

The main difficulty in the MRAW approach is the definition of the stabilizing law v1.
However, the plant (4.2.3) is defined by a double integrator. Therefore, in this particular
case, one may use the non-linear law (3.4.7) as stabilizing feedback v1.

The tuning of the non-linear law (3.4.7) is done by trial and error and finally the
parameters are set to: k = 0.01; ξ = 1.
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4.3.1.d EMRAW synthesis

The EMRAW structure is finally considered. First the coordinate-descending algorithm
(Algorithm 3.2) is applied to system (4.3.1) to compute the EMRAW gains. The weights
performance-stability have been set to [kγ kρ] = [2.5, 1]. The stability domain is maxi-
mized in the relative position direction ∆z. As commented before in Conjecture 3.1 the
initialization of Ks is done by constraining the poles of (A+KsCs) to be in the region of
Al. The ideal dynamics are given by: Aid = −0.01 and Cid = 1.

The computed Faw and Eaw read:

Eaw =




−1.5 −1.5 1.5 1.5 −1.96 −1.96 1.96 1.96
3.12 3.12 −3.12 −3.12 −4 −4 4 4
−1.22 −1.22 1.22 1.22 1.59 1.59 −1.59 −1.59
0.05 0.05 −0.05 −0.05 −0.012 −0.012 0.012 0.012
6.28 6.28 −6.28 −6.28 −3.87 −3.87 3.87 3.87




(4.3.5)

Faw =




−0.0051 −0.67
−0.0051 −0.67
0.0051 0.67
0.0051 0.67
0.0043 0.57
0.0043 0.57
−0.0043 −0.57
−0.0043 −0.57




(4.3.6)

Then the EMRAW gains are tuned following the objective-based algorithm (Algorithm
3.3). The first part of the objective-based algorithm consists in tuning Faw. After some
trial and error iterations, Faw has been set such that the (Ap +BpFaw) dynamics respond
as a second order system with natural frequency wn = 0.1rad/s and damping ζ = 1. The
second part of the algorithm accounts for the computation of Eaw. After several iterations,
the process was stopped with [kγ kρ] = [109, 1] and with F ∗

aw that yields a second order
dynamics in (Ap+BpF

∗
aw) with natural frequency wn = 10rad/s and damping ζ = 1. The

ideal reference taken is the same as used in the coordinate-descending algorithm.

The computed Faw and Eaw read:

Eaw =




−1.08 −1.08 1.08 1.08 2.21 2.21 −2.21 −2.21
2.52 2.52 −2.52 −2.52 −4.48 −4.48 4.48 4.48
−1.11 −1.11 1.11 1.11 2.11 2.11 −2.11 −2.11
0.073 0.073 −0.073 −0.073 −0.16 −0.16 0.16 0.16
1.76 1.76 −1.76 −1.76 −19.27 −19.27 19.27 19.27




(4.3.7)
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Faw =




−0.0053 −0.75
−0.0053 −0.75
0.0053 0.75
0.0053 0.75
0.0065 0.93
0.0065 0.93
−0.0065 −0.93
−0.0065 −0.93




(4.3.8)

4.3.2 Simulations on relative position control

All the strategies on the anti-windup compensation presented in the Chapter 3 have been
applied. System (4.3.1) is simulated with the different anti-windup compensators.

However the closed-loop system (4.2.12) is first simulated without anti-windup. System
(4.2.12) is simulated from an initial condition of xp(0) = [∆z ∆ż]

′

= [−1 0]
′

and1

xc = 01×5. Let us remind that (4.2.12) describes the relative position closed-loop system
with the switching AF (4.2.9).
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Figure 4.3: Responses of the relative position without Anti-windup compensator.

In the Figure 4.3, the solid line presents the ∆z response of the system (4.2.12) (i.e.
non-linear response). The dot-dashed line shows the response of the system without
saturation (i.e. linear response). One can realize the effects of the saturation as oscillations
are induced in the non-linear response of ∆z. The control output and the performed thrust
are also shown in the Figure 4.3. The thrust response is saturated and the control output

1Let us remind that the controller state is considered to be always initialized at the origin.
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oscillates. The remarkable effects of the saturation on the system (4.2.12) justify the
introduction of the anti-windup compensator.

Remark 4.3. From an industrial point of view the response presented in Figure 4.3 is
unacceptable. Thus, the linear controller used in system (4.2.12) would not be applied. In
practice, a non-linear controller is used.

The closed-loop system (4.3.1) is simulated with the following anti-windup compen-
sators:

• static DLAW compensator (solid line);

• full order dynamic DLAW compensator (dashed line);

• fixed order dynamic DLAW compensator (dot-dashed line);

• MRAW compensator with v1 (3.4.7) (line with dots);

• EMRAW compensator computed with Algorithm2 3.3 (line with stars);

• EMRAW compensator computed with Algorithm3 3.2 (line with circles).

Figure 4.4 shows the response of the relative position with the different anti-windup
compensators in the control loop. The ∆z responses have been split in two small figures
for clarity purposes.

From a general overview of the Figure 4.4 one can conclude that the oscillation observed
in Figure 4.3 has disappeared with the introduction of the anti-windup compensator.

Let us start analyzing the response with DLAW. In Figure 4.4 the response with a
dynamic DLAW is smoother than in the static DLAW case which presents a drop on its
slope. The anti-windup action, in the static case, ends as soon as there is no saturation.
Therefore the drop appears. On the contrary, the dynamic DLAW keeps modifying the
controller action even without actuator saturation. In Figure 4.5 the thrust response
suddenly falls with the static DLAW case while it decreases progressively with the dynamic
one. The advantage of a dynamic DLAW is then proven.

Also in Figure 4.5, the thrust response with a full order DLAW is noisy. The fast
dynamics in the full order case induces the high frequency oscillation. The presence
of fast and slow modes in the full order DLAW generates numerical problems for both
LMI computation step (bad conditioning effects) and simulation step (numerical precision
effects). On the contrary, the fixed order DLAW does not present this oscillation because

2Objective-based algorithm.
3Coordinate-descending algorithm.
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Figure 4.4: Response of the relative position with several Anti-windup compensators.
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Figure 4.5: Response of the first Thruster with several Anti-windup compensators.

the fast dynamics were not chosen in the synthesis process. Therefore, the fixed order
provides a smooth response without high frequency oscillations.

Let us go back again to Figure 4.4 to analyze the ∆z response with a MRAW/EMRAW.
The responses show that fast responses are attained with the MRAW/EMRAW. Moreover
the response ∆z of the system (4.3.1) is faster with the EMRAW. An explanation to this
behavior is find in Figures 4.6 and 4.7 where the anti-windup output yaw and the reference
signal yref are compared. The MRAW anti-windup output yaw converges faster due to
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the stabilizing law v1 (3.4.7) which is more performant than the static feedback (3.5.4).
Thus, the system response with the MRAW attain the reference, that is, yp = yref , before
the response with the EMRAW. However the reference yref for the MRAW is slower than
the one for the EMRAW. Therefore, the actual response yp = ∆z of the system (4.3.1) is
faster with the EMRAW.
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Figure 4.6: Anti-windup output response for MRAW/EMRAW approaches.

Remark 4.4. Let us remind that the mission of v1 is to stabilize the anti-windup loop
(i.e. yaw → 0). The optimality of this process does not ensure a fast response for the
system output yp, but a fast convergence of yp towards yref . If the reference yref is slow,
one will obtain a slow response for the output yp even if the convergence of yaw is fast.
The extra degree of freedom introduced in the EMRAW approach (gain Eaw) allows us to
get faster references with a small modification of the control dynamics. Therefore, the
EMRAW may provide faster ∆z responses even with a non-optimal v1.

Another comment on the MRAW approach can be done by the analysis of the thrust
response. In Figure 4.5 a strong oscillations on the MRAW approach can be noticed. The
used v1 is based on a bang-bang law which works efficiently far from the origin. However
the closer it gets to the origin the higher the bang-bang frequency and hence the stronger
the noise induced into the thrust action.

Finally, Figure 4.8 presents the stability domain estimation for the different anti-
windup compensators. The MRAW case has been omitted. LMI conditions cannot be
provided with the non-linear v1. However for this specific v1, global asymptotic stability
can be obtained [FGZ10, TK97a].
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Figure 4.8: Stability domain with several Anti-windup compensators.

The EMRAW computed with the Algorithm 3.2 provides a larger estimation4. Despite
slight differences, all the compensators ensure (more or less) the same estimated maximal

4Let us recall that the stability domain is optimized at each step of Algorithm 3.2.
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admissible ∆zmax(0) (cutting point with ∆ż = 0 axis). However, the estimation obtained
with the full order DLAW is smaller than the one obtained with the other compensators.
This is due to some numerical problems. The difference between the maximum and the
minimum eigenvalue of Aaw results on a bad conditioning of the LMIs conditions. As a
consequence, the stability domain analysis for the full order DLAW is unfeasible.

Two final remarks on the stability domain estimation. First notice that the size of
the stability domain without anti-windup (dots line) is clearly smaller. The second point
is the conservatism of the estimation. Simulations show that the system is stable (even
without anti-windup) for an initial condition xp(0) = [−1 0]

′

. However, considering the
estimated domain the maximal admissible initial condition is around xp(0) = [−0.15 0]

′

.

Table 4.2: Summary values on the relative position control

Static DLAW full order DLAW fixed order DLAW
γ 5.127 5.122 5.125

∆zmax(0) =
1√
ρ
[m] 0.14 0.130.15

Time of response [s] 1570 1160 1390
Consumption [Ns] 2.017 1.829 1.82

AW Order 0 14 5
MRAW EMRAW Alg. 3.2 EMRAW Alg. 3.3

γ ? 0.622 0.624
∆zmax(0) =

1√
ρ
[m] ? 0.17 0.16

Time of response [s] 750 580 630
Consumption [Ns] 1.679 1.894 1.8192

AW Order 2 2 2

Table 4.2 summarizes the main values characterizing the anti-windup compensators.
These values are:

• the performance criterium γ;

• the maximal admissible initial condition for the relative position ∆zmax(0);

• the time of response for ∆z in seconds;

• the integral of the thrust response (value related to the consumption);

• the order of the anti-windup (AW) compensator.

The time of response appears as a remarkable value for the comparison. It has been
defined as the time when the ∆z response has reached the 99% of the gap between its initial
condition and the origin. In these simulations the initial relative position is ∆z = −1m.
Thus, the time of response is read when ∆z = ±0.01m.
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Note the important gap between the time of response of the system with a DLAW or
with a MRAW/EMRAW. With these last approaches the responses are certainly faster.
In addition, this improvement does not come with an undesirable increase of the con-
sumption.

Let us remind that the value representing the consumption is just the integral of the
thrusters response with relation to the time, and not the actual consumption. These values
are however proportional. Finally, it is important to understand that the performance
criterium γ has not the same meaning in the DLAW case as in the EMRAW case. Hence
the comparison is not relevant.

Remark 4.5. Because of its simplicity, its efficiency in terms of time of response and its
guaranteed stability domain the EMRAW structure arises as an interesting architecture
for the anti-windup computation. However the initialization process for the associated
algorithms is not trivial. In addition, the anti-windup compensator order is restricted to
the order of the plant.

Remark 4.6. The full order DLAW presents fast and slow modes. These modes generate
numerical problems for both LMI computation step (bad conditioning effects) and simula-
tion step (numerical precision effects). Therefore, the fixed order DLAW is an interesting
alternative to the full order one. Although some strategies are proposed in the literature,
the choice of the Aaw poles is not strictly formalized.

Remark 4.7. Let us say a word on the static DLAW. Even if in Table 4.2 the static
DLAW presents the worst values of all compensators, these values are not too much far
from those obtained with other approaches. On the other hand, the static DLAW is easy
to compute because of the associated LMIs simplicity. It is also easy to implement because
it is simply a static gain. Therefore, a systematic procedure can be designed for the static
DLAW computation.

4.4 Attitude and relative position control

4.4.1 Attitude and relative position plant

The next relative control study case consists in a two satellites framework where the
relative position in the z-axis is controlled like in Section 4.2, together with the attitude
of one of the satellites (Satellite 2 in this model). The other satellite (Satellite 1) only
presents a displacement in the linear z-axis and remains steady in its angular behavior.

The attitude dynamics, under the assumption of small angles, are described by the
classical double integrator modelling [CNE05, Hug04]:

θ̈ = J−1
Gi Ci (4.4.1)
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where JGi denotes the inertia matrix of satellite i at the center of mass and Ci the sum
of the external torques applied on satellite i.

Relative position dynamics were described as a double integrator in Section 4.2.1.
However, when the attitude is considered, the modelling (4.2.2) is modified. Because
of the particular characterization of relative position sensors, the angular dynamics of
Satellite 2 are coupled with the relative position dynamics [Gau07, PCU+05, WPK05].

The sensor providing the relative position is on-board of Satellite 2. This sensor
measures the lateral distance with respect to Satellite 1 in Satellite 2 frame. This is the
distance between the x2-axis of Satellite 2 and its parallel intersecting the center of mass
of Satellite 1 . This measurement is affected by the attitude5 θy. Figure 4.9 illustrates the
error on the relative measured position. Thus, the measured relative position error can
be modelled by:

∆zm = ∆z +D sin θy (4.4.2)

where the constant D is the intersatellite distance in the x-axis. D = 250m in further
simulations.

Remark 4.8. The control of the relative position in the x-axis is performed by another
control loop which is supposed to be perfect.

Then, under the assumption of small angles, relation (4.4.2) becomes:

∆zm = ∆z +Dθy (4.4.3)

Derivating twice (4.4.3) and using relationships (4.4.1) and (4.2.2), the measured rel-
ative position dynamics are described as follows:

∆z̈m = ∆z̈ +Dθ̈y = −m−1
2 F2 +m−1

1 F1 +DJ−1
G2

C2 (4.4.4)

Finally, (4.4.1) and (4.4.4) have to be concatenated to describe the angular and relative
position dynamics:





ẋp = Apxp + Bpup =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







θy
θ̇y
∆z
∆ż


+




0 0 0
0 0 J−1

G2

0 0 0
m−1

1 −m−1
2 0


 up

yp = Cpxp =

[
1 0 0 0
D 0 1 0

]
xp =

[
θy

∆zm

]

zp = Czxp = Cpxp = yp

(4.4.5)

5No satellite marker subindex is inserted on the attitude as only Satellite 2 is controlled in attitude.
However, rigorously, the correct notation should be θy2

.
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Figure 4.9: Relative position error generated by an attitude error.

where xp is composed by the attitude θy, the angular velocity θ̇y, the relative position ∆z
and the relative velocity ∆ż. The control input is up = [F1 C2 F2]

′

. The measured output
yp is composed by the attitude θy and the measured relative position ∆zm of Satellite 2.
The regulated output zp is indeed the measured output yp.

4.4.2 Attitude and relative position controller

The controller computes the control output yc. A centralized controller is used. A unique
controller takes the measurements from all satellites in the formation and computes a
vector yc which contains the control output of each satellite.

The controller can be described through the state space representation given in (4.2.4).

In the relative position problem, the controller is a 2-input 3-outputs MIMO (Multi-
ple Input Multiple Output) linear system whose state vector dimension is 6. The con-
troller input is uc = yp = [θy ∆zm]

′

and the computed outputs are yc = [yc1 y
′

c2]
′

=
[Fc1 [Cc2 Fc2]]

′

. yc1 = Fc1 (respectively yc2 = [Cc2 Fc2]
′

) stands for the control output
for Satellite 1 (respectively 2).

4.4.3 Attitude and relative position actuator model

The satellite formation is actuated by a propulsive system composed of 4 proportional
thrusters on each of the two satellites. To apply the required control forces (F1, C2 and
F2) using this propulsive system, thrusters management functions have to be introduced in
the control loop. These functions are composed by an allocation function that transforms
the required control efforts yc = [Fc1 [Cc2 Fc2]]

′

into thrusters forces, and an influence
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matrix that transform the thrusters outputs into forces applied on the system. Moreover,
the actual forces delivered by each thruster are saturated. The general expression for the
actuator is given by (4.2.5).

4.4.3.a The influence matrix

The influence matrix describes the geometric distribution of the thrusters. The physical
distribution of the thrusters is presented in Figure 4.9. M1 ∈ ℜ1×4 and M2 ∈ ℜ2×4 are the
influence matrices associated to Satellite 1 and Satellite 2 respectively. They are stated
as follows:

M1 = [1 − 1 − 1 1];M2 =

[
1 −1 −1 1
−1 1 −1 1

]
(4.4.6)

4.4.3.b Thruster saturation

The saturation function is modelled by (2.2.3). Saturation bounds for the attitude and
relative position control problem are u = 0 and ū = 5mN .

4.4.3.c Allocation function

Satellite 1 only controls its displacement. Thus, Satellite 1 control yc1 is single dimensional.
The switching AF (4.2.7) takes the particular formulation given by (4.2.9) for Satellite 1.

On the other hand, Satellite 2 is able to control its displacement in the z-axis as well as
its attitude in the y-axis. Then two control outputs are needed. In the switching AF (4.2.7)
strategy the two components of the control output (yc2(1) and yc2(2)) are treated piece-wise
to compute two thrust vectors (T 1 and T 2). The final applied thrust is computed as the
sum of these two. Therefore, the switching AF (4.2.7) takes the following formulation for
Satellite 2:

f(yc) =





T k
2(1) = T k

2(4) =

{
0 if yc < 0
yc
2

if yc ≥ 0

T k
2(2) = T k

2(3) =

{
0 if yc ≥ 0
yc
2

if yc < 0

T2(i) =
∑2

k=1 T
k
2(i) ∀i = 1, ..., 4.

(4.4.7)

Let us recall the notation used for T k
j(i) where i stands for the component index in the

thrust vector, k for the considered control output component and j for the associated
satellite.
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Therefore, the actuator in the relative position control is modelled as follows:

up = Msat(0,ū)(f(yc)) =

[
M1 0
0 M2

]
sat(0,ū)

([
f1(yc1)
f2(yc2)

])
(4.4.8)

where f1(·) (resp. f2(·)) is the allocation function of Satellite 1 (resp. 2).

Some other AF from those introduced in Section 2.4 are considered in the attitude
and relative position problem. Satellite 1 presents a 1-dimension control output, thus
only pseudo-inverse matrix based AF, given by (2.4.1), is considered. However, Satellite 2
presents a 2-dimension control output. Then AF (2.4.1) and AF (2.4.3) are not equivalent.
Hence, these two additional AF are considered for Satellite 2.

Two possible alternative combinations are then considered for the pair f1(yc1)-f2(yc2):

1. Both f1(yc1) and f2(yc2) are described by AF (2.4.1);

2. f1(yc1) is described by pseudo-inverse matrix AF (2.4.1) and f2(yc2) by the multi-sat
AF (2.4.3).

In the first case the control input up takes the following expression:

up =

[
M1 0
0 M2

]
sat(0,ū)

([
M∗

1 yc1
M∗

2 yc1

])
(4.4.9)

With the second combination the control input up reads:

up =

[
M1sat(u0)(M

∗
1 yc1)

M2sat(u0)

(
sat(u0)(M

∗
2(:,1)yc2(1)) + sat(u0)(M

∗
2(:,2)yc2(2))

)
]

(4.4.10)

4.4.4 Attitude and relative position closed-loop model

With the plant (4.4.5), controller (4.2.4) and actuator (4.4.8) the closed-loop system
describing the attitude and relative position control reads:
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



ẋp = Apxp + Bpup =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







θy
θ̇y
∆z
∆ż


+




0 0 0
0 0 J−1

G2

0 0 0
m−1

1 −m−1
2 0


 up

yp = Cpxp =

[
1 0 0 0
D 0 1 0

]
xp =

[
θy

∆zm

]

ẋc = Acxc + BcCpxpzp = Czxp = Cpxp = yp

up = Msat(0,ū)(f(yc)) =

[
M1sat(0,ū)(f1(yc1))
M2sat(0,ū)(f2(yc2))

]

yc = Ccxc +DcCpxp

(4.4.11)

with f1(yc) given by (4.2.9) and f2(yc) by (4.4.7).

System (4.4.11) provides a benchmark for further simulations. However the non-
linearities introduced by the AF (4.2.9) and (4.4.7) do not allow the computation of the
anti-windup compensator for this system. This is why it is necessary to define another
formulation for the system (4.4.11).

Two alternatives are proposed: taking up like in (4.4.9) and taking up like in (4.4.10).
With up in (4.4.9) the attitude and relative position control loop reads:





ẋp = Apxp + Bpupẋc = Acxc + BcCpxp

yp = Cpxp

zp = Czxp

up = Msat(0,ū)(M
∗yc) =

[
M1sat(0,ū)(M

∗
1 yc1)

M2sat(0,ū)(M
∗
2 yc2)

]

yc = Ccxc +DcCpxp

(4.4.12)

With up in (4.4.9) the closed-loop system reads:





ẋp = Apxp + Bpupẋc = Acxc +BcCpxp

yp = Cpxp

zp = Czxp

up =

[
M1sat(u0)(M

∗
1 yc1)

M2sat(u0)

(
sat(u0)(M

∗
2(:,1)yc2(1)) + sat(u0)(M

∗
2(:,2)yc2(2))

)
]

yc = Ccxc +DcCpxp

(4.4.13)

These alternative formulations allow the computation of the anti-windup compensator.
All the anti-windups presented in Chapter 3 are computed for the system (4.4.12).
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The presence of the multi-sat AF (2.4.3) in system (4.4.13) introduces nested satu-
rations that change the stability conditions. An extension of Theorem 3.1 for the static
DLAW computation adapted to the AF (2.4.3) is introduced in Appendix 3.1. Only the
static DLAW is tested on system (4.4.13).

The responses obtained for the system (4.4.12) and system (4.4.13), together with their
related anti-windup compensators, are compared to the response of the system (4.4.11)
without anti-windup.

4.5 Anti-windup on the attitude and relative position

control

The attitude and relative position control problem has been modelled. Then, the results
from Chapter 3 are applied to synthesize an anti-windup compensator. For anti-windup
computation purposes the closed-loop system (4.4.12) is considered. System (4.4.13) ap-
plies only to the static DLAW case.

Like in Section 4.3 the saturation function is asymmetric and influence matrix (4.2.6)
satisfies the Lemma 2.4 conditions. Then the symmetrizing vector Nζsym = ū/2 and the
VKF (2.5.14) are considered to symmetrize the saturation.

Influence matrix (4.4.6) satisfies the Lemma 2.4 conditions. Like in the relative position
case the symmetrizing vector Nζsym = ū/2 is a suitable option for our study case. The
VKF (2.5.14) is also considered to symmetrize the saturation while solving the problem
of extra consumption (exposed in Section 2.5.3). Moreover, the function (2.5.15), for the
influence matrix (4.4.6), verifies the VKF Definition 2.4 (proven in Section 2.5.5). Hence,
function (2.5.15) is used in the simulations presented hereafter.

Being the saturation symmetrized, the closed-loop system (4.4.12) reads:





ẋp = Apxp + Bpupẋc = Acxc +BcCpxp

yp = Cpxp

zp = Czxp

up = Msat(u0)(M
∗yc) =

[
M1sat(0,ū)(M

∗
1 yc1)

M2sat(u0)(M
∗
2 yc2)

]

yc = Ccxc +DcCpxp

(4.5.1)

with u0 =
1
2
5mN .

Applying the symmetrizing techniques on the system (4.4.13) we obtain:
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



ẋp = Apxp +Bpupẋc = Acxc + BcCpxp

yp = Cpxp

zp = Czxp

up =

[
M1sat(u0)(M

∗
1 yc1)

M2sat(u0)

(
sat(u0)(M

∗
2(:,1)yc2(1)) + sat(u0)(M

∗
2(:,2)yc2(2))

)
]

yc = Ccxc +DcCpxp

(4.5.2)

4.5.1 Anti-windup compensator synthesis

4.5.1.a Static DLAW synthesis

Given the expressions (4.5.1) and (4.5.2) Theorem 3.1, and its extension6 to compute the
static DLAW in both cases, may be applied. The theorem uses the optimization weights
[kγ kρ] = [3 1]. The stability domain is maximized in the attitude direction θy, that is,
v = [1 0 0 0 01×6 01×10]

′

. The Daw obtained for the system (4.5.1) is given by:

Daw =




−50.76 −50.76 50.76 50.76 0.96 0.69 −0.96 −0.69
6.2 6.2 −6.2 −6.2 −0.29 0.1 0.29 0.1
−71.87 −71.87 71.87 71.87 −0.19 2.56 0.19 −2.56
0.62 0.62 −0.62 −0.62 −89.39 −105.12 89.39 105.12
222.68 222.68 −222.68 −222.68 7.01 −16.37 7.01 16.37

a a −a −a −b −c b c




(4.5.3)
where a = 8.14 · 104; b = 1.48 · 103; c = 1.07 · 103. The Daw obtained for the system (4.5.2)
is given in Appendix A.4.1.

Note the difference between the first four columns and the last four columns in Daw

(4.5.3). The first four are related to Satellite 1 thrusters and the second set of columns
are related to Satellite 2 thrusters. Observe that the first four values of each row are the
same, while the last four are different. This is due to the fact that the second satellite
thrusters have to generate two control outputs.

Remark 4.9. Only the static DLAW has been considered when the multi-sat allocation
function is used (system (4.5.2)) because the LMI complexity is increased by the introduc-
tion of extra saturation. The associated numerical problems only allow the consideration
of this allocation function for the static case. Therefore no extensions for the dynamic
DLAW have been given.

6An extension of Theorem 3.1 for the static DLAW computation adapted for the multi-sat AF (2.4.3)
is introduced in Appendix A.3.2.
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4.5.1.b Dynamic DLAW synthesis

The next step is to increase the complexity of the anti-windup compensator by considering
a dynamic system. The anti-windup compensator is then described by (3.3.3). Applying
the results presented in Section 3.3 the dynamic DLAW is computed for the system (4.5.1).

Proposition 3.2 is used to compute a full order anti-windup compensator, that is naw =
nM . The computation is decomposed in two steps. The first consist in computing the full
order DLAW. Using some of the poles calculated in this step the fix order Algorithm 3.1
is then applied.

The proposition 3.2 is applied with the optimization weight [kγ kρ] = [3, 1]. The
stability domain is maximized in the attitude direction θy. Table 4.3 shows the poles of
the full order dynamic DLAW, the poles of the linear closed-loop system Al. The final
selected poles for the fixed DLAW are marked with ∗. With the proposed choice of poles

Table 4.3: Full order DLAW eigenvalues in attitude and relative position control

eig(Aaw)(∗ ≡ selected) eig(Al)
−3.8 · 102 (−3.54± j4.85) · 10−1

−77.4 (−2.63± j4.26) · 10−1

−22.4 (−1.06± j9.86) · 10−2

−6.59± j4.54 (−2.14± j2.14) · 10−2

1.08± j4.32 −1.48 · 10−2

−1.63 −3.71 · 10−3

−0.99
−0.16± j0.45

(−8.82± j11.8) · 10−2(∗)
−1.90± j2.52 · 10−2(∗)
−2.88 · 10−2(∗)
−2.02 · 10−2(∗)
−1.03 · 10−2

−4.55 · 10−3

−2.92 · 10−4

Algorithm 3.1 is implemented. This time, the constraint forcing Aaw chosen eigenvalues
to share the same order of magnitude of Al eigenvalues is not applied. This is because a
large order on the fixed order DLAW is not desired. Choosing too many poles can lead to
numerical problems. Therefore 6 poles of Aaw, all centered in the range of Al dynamics,
were chosen.
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4.5.1.c MRAW synthesis

The MRAW approach is characterized by the model of the plant. Hence the plant (4.4.5)
matrices define the anti-windup compensator. On the other hand, the main difficulty
in the MRAW synthesis is the definition of the stabilizing law v1. The v1 law (3.4.7)
cannot be applied because the system is not modelled as a double integrator. A simple
alternative consists in taking v1 as a static feedback. However, this approach does not
ensure global asymptotic stability but a local one. Nevertheless, it presents the advantages
of not restricting the v1 to a particular type of system. With these considerations v1 is
stated as follows:

v1 = Fawxaw (4.5.4)

The same notation as the EMRAW approach has been used because, indeed, the
EMRAW approach is a MRAW with v1 as a static feedback plus a static DLAW. Then
the proposed MRAW is just the first part of the EMRAW.

The Faw gain is tuned by trial and error like in the first part of Algorithm 3.3 (objective-
based algorithm) in the EMRAW computation. After some iterations the best Faw is
attained. Faw places the poles of (Ap+BpFaw) to pi = −0.04 ∀i = 1, .., 4. This corresponds
to a second order dynamics with natural frequency wn = 0.04rad/s and damping ζ = 1.
Finally, the obtained gain Faw is:

Faw =




13.2 661 −0.05 −2.64
13.2 661 −0.05 −2.64
−13.2 −661 0.05 2.64
−13.2 −661 0.05 2.64
−10.7 −536 0.04 2.16
−10.8 −541 0.04 2.16
10.7 536 −0.04 −2.16
10.8 541 −0.04 −2.16




(4.5.5)

Given Faw (4.5.5) and setting Eaw = 0 the Theorem 3.2 is applied to compute an
estimation of the stability domain.

4.5.1.d EMRAW synthesis

Finally, the EMRAW is the last anti-windup compensator to be considered. The coordinate-
descending algorithm (Algorithm 3.2) is initially applied to system (4.5.1) to compute the
EMRAW gains. The performance-stability weights are set to [kγ kρ] = [3, 1]. The stabil-
ity domain is maximized in the attitude direction θy. The initialization of Ks is done by
constraining the poles of (A + KsCs) to be in the region of Al. The ideal dynamics are
given by: Aid = diag(−0.05,−0.05) and Cid = I2.
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The computed gain Eaw and Faw reads:

Eaw =




−0.58 −2.16 2.16 2.16 31.93 644.98 −31.93 −644.98
0.04 0.26 −0.26 −0.26 −4.75 −74.2 4.75 74.2
0.5 2.38 −2.38 −2.38 −86.9 −425.4 86.9 425.4
89.23 376.7 −376.7 −376.7 −6890 −105 6890 105

−13.22 −57.3 5.73 5.73 1390 1370 −1390 −1370
a b −b −b −c −d c d




(4.5.6)
where a = 1.75 · 103; b = 7.68 · 103; c = 1.52 · 105; d = 1.99 · 106

Faw =




8.5 3.46 · 103 −0.75 −17.3
17.2 −373.9 −0.05 1.56
−17.2 373.9 0.05 −1.56
−17.2 373.9 0.05 −1.56
−18.5 −240 0.17 1.04
−17.6 −202.5 0.05 0.66
18.5 536 −0.17 −1.04
17.6 541 −0.05 −0.66




(4.5.7)

Then the EMRAW gains are tuned following the objective-based algorithm (Algorithm
3.3). The first part of Algorithm 3.3 consists in tuning Faw. The best Faw (4.5.5) has
already been found in the MRAW approach. On the other hand, the second part of
Algorithm 3.3) accounts for the computation of Eaw. After several iterations, the process
is stopped with [kγ kρ] = [109, 1] and with a F ∗

aw that yields a second order dynamics in
to Ap + BpF

∗
aw natural frequency wn = 4rad/s and damping ζ = 1. The ideal reference

taken is the same as used in the coordinate-descending algorithm. The computed Faw is
given by (4.5.5) and Eaw is presented in Appendix A.4.2.

Remark 4.10. When the Algorithm 3.2 is applied to compute the EMRAW the order
of magnitude of the obtained gain Eaw is significantly high. Let us remind that the EM-
RAW structure is composed by a MRAW and a static DLAW. With this value of Eaw the
DLAW part becomes dominant. For that reason the EMRAW computed with Algorithm
3.2 is essentially a static DLAW. These results are due to the difficulty in the algorithm
initialization. With Conjecture 3.1 an initial Ks can be obtained which helps to find a
feasible solution for the LMI problem. However we have observed an important sensitivity
of the final result towards the initialization [PA01]. Further research is still needed to
improve the initializing process.

4.5.2 Simulations on the attitude and relative position control

The attitude and relative position control can now be simulated with the computed anti-
windup compensators. However, as done previously for relative position control, a first
simulation for the system (4.4.11) without anti-windup compensator is done.
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Figure 4.10: Temporal responses without anti-windup and different allocation functions.

Figure 4.10 presents the simulations of the attitude θy and the relative position ∆z for
an initial condition xp(0) = [θy θ̇y ∆z ∆ż]

′

=[8.72 · 10−3 0 0.5 0]
′

and xc = 01×6.
Given this intial conditions the initial mesured relative position is ∆zm = 0.5 + 250 ∗
8.72 · 10−3 = 2.68m. Four responses are presented in Figure 4.10: the solid line describes
the behavior of the system7 (4.4.11), the dashed line presents system (4.4.11) response
without saturation (i.e. the linear behavior), the dot-dashed line depicts the response of
the system8 (4.5.1) and finally the line of dots shows the system9 (4.5.2) response.

Figure 4.10 illustrates the degradation of the system (4.4.11) response induced by
the saturation. Observe that system (4.5.1) (with pseudo-inverse matrix AF (2.4.1)) is
unstable. In Section 2.4.2, some simulations showed that the use of the AF (2.4.1) can
destabilize a multi-variable system. On the other hand, system (4.5.2) (with multi-sat AF
(2.4.3)) manages to recover the response obtained for the system (4.4.11) (with switching
AF (4.4.7)).

Remark 4.11. If one analyzes the matrix Cp in (4.4.5), one realizes that the θy dynamics
influence the ∆z measurement. As explained in Section 4.4.1, this is due to the sensor
measurement characteristics. Consequently, the relative position is coupled with the atti-
tude. On the contrary, the attitude is not influenced by ∆z dynamics. Hence, the control
strategy used in the synthesis of the linear controller consists in stabilizing first the at-
titude and then, once its influence is eliminated, in stabilizing the relative position as a
decoupled variable.

7Attitude and position control model considering the switching AF (4.4.7).
8Attitude and position control model considering the pseudo-inverse matrix AF (2.4.1).
9Attitude and position control model considering the multi-sat AF (2.4.3).
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This control strategy can be observed in Figure 4.10. As in the non-linear response,
the attitude converges before (around 200 seconds) the relative position (around 1000
seconds).

We recall that even if both systems do not have anti-windup compensators, their
behaviors are strictly different. System (4.5.1), which uses a simple AF (the pseudo-
inverse matrix AF), is unstable. On the other hand, system (4.5.2), which uses a complex
but more efficient AF (the multi-sat AF), is stable. Therefore, one of the interests of this
subsection is to analyze how these two systems react in the presence of an anti-windup
compensator. Results depicting the different performances are given in Figure 4.11 and
Figure 4.12.
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Figure 4.11: Temporal responses with DLAW and different allocation functions.

Figure 4.11 presents the attitude and the relative position for an initial condition
xp(0) = [8.72 · 10−3 0 0.5 0]

′

. Both (4.5.1) and (4.5.2) systems have equivalent behav-
iors. The introduction of an anti-windup compensator in the control loop has compensated
the limitation of the AF. On the other hand, stability domain results are given in Figure
4.12. Observe that system (4.5.1) has the largest stability domain. The non-linearities
introduced by use of the multi-sat AF in system (4.5.2) add extra conservatism affecting
the stability domain estimation.

Remark 4.12. • Considering the aforementioned results the analysis of system (4.5.2)
will be set aside. At the beginning of our researches the use of the multi-sat AF
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Figure 4.12: Stability domain with static DLAW and different allocation functions.

(2.4.3) in the attitude and relative position control problem appeared to have a po-
tential interest. However simulations show that with the anti-windup compensator
in the loop no remarkable enhancements were obtained. Moreover, the LMI problem
complexity is increased as well as the conservatism induced on the stability domain
estimation.

• Then the question of the necessity of a complex and non-linear allocation function
arises. It can suggest that in the presence of the anti-windup the difficult task of
designing the allocation function may be avoided. Therefore, two options appear:
to design an optimal allocation function that ensures the constrains for all the op-
erational domain or to use a simple allocation function along with an anti-windup
compensator. The optimal allocation functions have the disadvantage of presenting
convergence problems in iterative approaches [NW99, Dur94a]. On the other hand,
the anti-windup computation can be complicated for high order systems because of
LMI solvers limitations [BcPS07].

From now on only the closed-loop system10 (4.5.1) is considered. For this system
all the anti-windup compensators presented in Chapter 3 are simulated and compared.
Figures given hereafter present simulations of system (4.5.1) with the following different
anti-windup:

• static DLAW compensator (solid line);

• full order dynamic DLAW compensator (dashed line);

10System (4.5.1) is the closed-loop using the pseudo-inverse matrix AF (2.4.1).
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• fixed order dynamic DLAW compensator (dot-dashed line);

• MRAW compensator with v1 (4.5.4) (line with dots);

• EMRAW compensator computed with Algorithm11 3.3 (line with stars);

• EMRAW compensator computed with Algorithm12 3.2 (line with circles).
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Figure 4.13: Attitude and relative position with several Anti-windup compensators.

Figure 4.13 presents the attitude and the relative position responses. An important
characteristic stands out: The nature of the response in DLAW approach is completely
different from the MRAW/EMRAW one.

In the DLAW case the attitude is the first state to converge followed by the relative
position. This is the control strategy commented in Remark 4.11. Also notice that,
as it has already advanced in the Eaw (4.5.6) gain analysis, as the EMRAW approach
(computed with Algorithm 3.2) behaves like a DLAW.

Nevertheless, when the MRAW and the EMRAW (computed with Algorithm 3.3) are
applied, the control stategy is changed: attitude and relative position converge simulta-
neously. This phenomenon sensitively reduces the time of response of the system as the
relative position does not have to wait for the attitude to be controlled.

11Objective based algorithm.
12Coordinate-descending algorithm.
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To undestand why the control strategy is changed with a MRAW/EMRAW several
considerations have to be taken into account:

• the same thruster generates the torque and the force to control both θy and ∆z;

• the stabilizing feedback v1 introduces modifications in the thrusters;

• from MRAW/EMRAW state matrix definition, the signal v1 is related to θy and ∆z
dynamics.
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(a) yaw response for MRAW/EMRAW approaches
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Figure 4.14: yaw and yref responses for MRAW/EMRAW approaches

A signal v1 depending on θy and ∆z is added to the thrusters . Additionally, thrusters
control simultaneously both θy and ∆z. Then, a coupling attitude over relative position
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Figure 4.15: Stability domain with several anti-windup compensators.

is introduced and viceversa. Finally, v1 exploits thrusters control capacity to steer θy and
∆z simultaneouly.

Remark 4.13. In conclusion, the feedback v1 generates a coupling relative position over
the attitude in addition to the existent coupling attitude over relative position. This in-
duced coupling allows us to exploit the thrusters capacity to simultaneously control the
plant states. Therefore, the system response is significantly improved.

In Figure 4.13 the response obtained with the MRAW is slightly faster than the one
obtained with EMRAW (EMRAW from Algorithm 3.3). An explanation to this behavior
is found in Figure 4.14 where the anti-windup output yaw and the reference signal yref are
compared for the different anti-windup compensators. Before drawing any conclusion it
is important to understand that even if the system performance is a trade-off between the
convergence time and reference quality, the contribution of the last variable will have a
stronger importance in the final system performance. With this in mind MRAW appears
as a best solution in Figure 4.13 because it has a slightly slower convergence time of yaw,
but faster reference signal yref .

The EMRAW has extra degrees of freedom thanks to the Eaw gain which may improve
yref response. However, this time the reference presented for the MRAW was the best
reference we can obtain. Therefore, there is not actual necessity of the Eaw gain. The only
advantage of the EMRAW with respect the MRAW is the enhancement of the stability
domain estimation presented in Figure 4.15.
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Table 4.4: Summary values on the attitude and relative position control

Static DLAW full order DLAW fixed order DLAW
θymax

(0) [rad] 1.73 · 10−3 1.85 · 10−3 1.62 · 10−3
∆zmax(0) [m] 0.93 0.98 0.84

θy Time of response [s] 300 330 290
∆ Time of response [s] 980 970 990

Consumption with (2.5.14)[Ns] 3.93 3.11 3.22
Consumption with (2.5.15)[Ns] 3.80 3.08 3.21

AW Order 0 20 6
MRAW EMRAW Alg. 3.2 EMRAW Alg. 3.3

θymax
(0) [rad] 1.21 · 10−3 1.55 · 10−3 1.55 · 10−3

∆zmax(0) [m] 0.63 0.82 0.81
θy Time of response [s] 290 330 320
∆ Time of response [s] 290 980 300

Consumption with (2.5.14)[Ns] 3.51 3.96 3.43
Consumption with (2.5.15)[Ns] 3.50 3.94 3.41

AW Order 4 4 4

Table 4.4 summarizes the main values characterizing the previously tested anti-windup
compensators. The presented values are listed as follows:

• the maximal admissible initial condition for the attitude θymax
(0);

• the maximal admissible initial condition for the relative position ∆zmax(0);

• the time of response for θy in seconds;

• the time of response for ∆z in seconds;

• the integral of the thrust response as related value to the consumption with (2.5.14)
as VKF;

• the integral of the thrust response as related value to the consumption with (2.5.15)
as VKF;

• the order of the anti-windup (AW) compensator.

The time of response is an interesting value for comparison purposes. It has been
defined as the time when the response reaches the 99% of the gap between the initial
condition and the origin. In these simulation θy = ±8.72 · 10−5rad and ∆z = ±0.027m.

There is an important difference between the time of response of the system with a
DLAW and the one with a MRAW/EMRAW. With these last approaches the response of
the relative position is certainly faster. Moreover this improvement does not come with
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an increase on the consumption. Let us notice that the difference on the consumption
when (2.5.14) or (2.5.15) are applied it is not as important as we expected (related to
comparison done in Section 2.5.5).

Remark 4.14. Both MRAW and EMRAW approaches present the interesting capacity to
converge the states of the plant at the same time. Their structure exploits the capacity for
the thrusters as unique control of both attitude and relative position. Consequently, these
methods arise as an interesting anti-windup structure to control MIMO systems under
thrusters saturation.

4.6 16 state formation control

4.6.1 16 state formation plant

The final plant model consists in a 8-DOF two satellites formation. Two satellites are
controlled in three possible rotations plus two relative positions.

The full plant is a sixteen state model with a state vector xp composed by as follows:

• Three inertial attitudes θx1 , θy1 , θz1 and their derivatives for Satellite 1.

• Three inertial attitudes θx2 , θy2 , θz2 and their derivatives for Satellite 2.

• Two relative positions, the first one in the z-axis ∆z and the second one in the
y-axis ∆y, and their derivatives.

Remark 4.15. The control of the relative position in the x-axis ∆x is performed by
another control loop which is supposed to be perfect.

Showing the 3-D figure representing all the states would be more confusing than help-
ful. Refer to Figures 4.2 and 4.9 for a geometric representation of the states variables.

All these states are controlled with eight control inputs up. Those are:

• Two lateral forces Fy1 and Fz1 on the y-axis (resp. z-axis) performed by Satellite 1.

• Three torques, Cx1 , Cy1 and Cz1 performed by Satellite 1.

• Three torques, Cx2 , Cy2 and Cz2 performed by Satellite 2.

Finally the measured output yp, which is in feedback with the controller, consists of
eight signals which are:
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• The two relative positions, ∆y and ∆z;

• The three inertial attitudes, θx1 , θy1 and θz1 , of Satellite 1;

• The three relative attitudes of Satellite 2 with respect to Satellite 1, that is, θx12 ,
θy12 and θz12 .

The 16-state plant representation can be described by the following equations:

{
ẋp = Apxp + Bpup

yp = Cpxp

where matrices Ap, Bp and Cp are given in Appendix A.5.1.

4.6.2 16-state formation controller

In the 16-state formation control the state space representation (4.2.4) holds. The con-
troller is a 8-input 8-output MIMO linear system whose state vector dimension is 32.

4.6.3 16-state formation actuator

The forces controlling the satellite formation are performed by an actuator that is based
on a propulsive system. The general expression for the actuator is given by (4.2.5).

4.6.3.a The influence matrix

The 16-state formation is controlled with an 8-thruster configuration for each satellite.
However, the influence matrices for each satellite do not have the same dimension. Satellite
1 controls its rotations and its longitudinal motion while Satellite 2 only controls its
rotations. Influence matrices M1 ∈ ℜ5×8 and M2 ∈ ℜ3×8 are associated to Satellite 1
and Satellite 2 respectively. The physical distribution of the thrusters on a satellite is
presented in Figure 4.9. Their numerical values are given in Appendix A.5.2

4.6.3.b Thruster saturation

The saturation function is modelled by (2.2.3). The saturation bounds for the relative
position control problem are u = 0 and ū = 150µN .
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Figure 4.16: Geometric distribution of the thrusters for a 8-DOF control configuration.

4.6.3.c Allocation function

The 16-state formation presents two satellites whose AF is given by (4.2.7). The imple-
mented AF is similar to the one used in example (4.4.7). Only the index values of T k

j(i)

are given for both satellites. The values are j = 2 (two satellites), i = 8 (8 thrusters by
satellite) and k = 5 for Satellite 1 and k = 3 for Satellite 2.

In the 16-state formation control the pseudo-inverse matrix based AF given by (2.4.1)
is also considered as allocation function for both satellites.

4.6.4 16-state formation closed-loop

The 16-state closed-loop system can be described with a generic state space formulation:




ẋp = Apxp + Bpup

ẋc = Acxc + BcCpxp

yp = Cpxp

up = Msat(0,ū)(f(yc))
yc = Ccxc +DcCpxp

(4.6.1)

Two formulations of system (4.6.1) will be simulated. The first one considers the
switching based AF given in (4.2.7). This system formulation is tested without anti-
windup compensator. The second one considers the pseudo-inverse matrix based AF
given in (2.4.1). This system formulation is tested with anti-windup compensator.
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4.7 Anti-windup on a 16 states formation control

In this section, the computation of the anti-windup compensator for the system (4.6.1)
have been pretended. However, because of the dimension of the problem no solution for
the LMI problem has been obtained. Therefore, both DLAW and EMRAW have not been
computed. According to the messages13 obtained from the LMI solver we suppose that
the LMI could be solved using a different LMI solver or a more powerful computer, at
least the static DLAW.

Despite the numerical problems the MRAW approach could be tested. As previously
done for the attitude and relative position problem v1 has been set as a static feedback:

v1 = Fawxaw (4.7.1)

The gain has been tuned in order to place the 16 poles of (Ap +BpFaw) at pi = −0.04
∀i = 1, .., 16. This implies that the modes of the anti-windup loop have been set at a
natural frequency ωn = −0.04 and damping ζ = 1. This tuning can be obviously improved
but we just want to show the potential of the technique through a quick and simple tuning.

4.7.1 Simulations on the 16 state formation

Two formulations of system (4.6.1) are tested. First, the switching AF (4.2.7) is considered
without anti-windup compensator. Second, the pseudo-inverse matrix AF (2.4.1) is taken
with anti-windup compensator. The plant (4.6.1) (with AF (2.4.1)) has been simulated
with the MRAW.

Figure 4.17 shows the time of response of the relative positions (∆z, ∆y), Satellite
1 attitudes (θx1 , θy1 , θz1) and the relative attitudes (θx12

= θx1 − θx2 , θy12 = θy1 − θy2 ,
θz12 = θz1 − θz2) for the following initial condition:

∆y = ∆z = 0.01m
θx1 = θy1 = θz1 = 4.85 · 10−5rad = 10′′

θx12 = θy12 = θz12 = 4.85 · 10−5rad = 10′′
(4.7.2)

Remark 4.16. All the initial time-derivative are set to zero.

Three kinds of behaviors are shown in Figure 4.17: the linear one in solid line (i.e.
system (4.6.1) without saturation), the non-linear one without anti-windup compensator
and the non-linear one with the MRAW.

In Figure 4.17a the relative position responses are presented. The relative position
responses with the MRAW are faster than the responses obtained without anti-windup.

13Matlab run out of memory.
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However Figures 4.17b and 4.17c depicts a loss of performance on the attitude when the
MRAW is used with respect the non-linear response without anti-windup. The MRAW
introduces a coupling between the different state variables like in the attitude and relative
position control case. With the MRAW all the states converge to the origin simultaneously.
Previously a loss of performance on the attitude responses when the MRAW is applied
has been commented. With a more judicious tuning of Faw this problem could be avoided.

The 16 state plant system has been simulated again but this time the initial conditions
given in (4.7.2) is three times larger, that is: Figure 4.18 shows how the system remains
stable for the initial conditions (4.7.3) when the MRAW is in the control loop while
it diverges without it. Therefore, the MRAW guarantees the stability for larger initial
conditions than the system without anti-windup.

∆y = ∆z = 0.03m
θx1 = θy1 = θz1 = 14.54 · 10−5rad = 30′′

θx12 = θy12 = θz12 = 14.54 · 10−5rad = 30′′
(4.7.3)

In conclusion, despite of the numerical problems that prevented us from computing the
majority of the anti-windup compensators, the MRAW has allowed us to show, in a high
order problem, the advantage of the anti-windup compensator. Moreover, the MRAW
has appeared again as an interesting approach to control MIMO systems under thruster
saturation.

4.8 Conclusion

Anti-windup compensator design represents the core of this manuscript. In this chapter
the different anti-windup compensators have been tested into several study cases.

Initially the relative position control system has been taken as a study case. The
closed-loop system modelling this control problem is initially provided. The simplicity
of the system has allowed the characterization of the main features of the anti-windup
compensators. The simulation have arisen the interest of the EMRAW approach.

Then the attitude and relative position control system has been tackled as a study
case. Again, first the modelling of the control loop has been given. This application
presents the particularity of being a multi-variable system with a coupling of the attitude
over the relative position. First one has realized that the presence of an anti-windup
compensator may save the allocation function definition phase. Then, the MRAW and
the EMRAW approaches have been appeared as a performing approaches to control both
attitude and relative position as the states converges simultaneously.

Finally, a high order system controlling relative position and attitudes (absolute and



4.8. Conclusion 145

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.02

−0.01

0

0.01

Time [s]

∆ 
y[

m
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.01

0

0.01

0.02

Time [s]

∆ 
z[

m
]

 

 Non−linear response with MRAW

Non−linear response without AW

Linear response without AW

(a) Relative position responses

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10
x 10

−5

Time [s]

φ 1 [r
ad

]

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5
x 10

−5

Time [s]

θ 1 [r
ad

]

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10
x 10

−5

Time [s]

ψ
1 [r

ad
]

 

 

Non−linear response with MRAW
Non−linear response without AW
Linear response without AW

(b) Satellite 1 attitudes responses
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Figure 4.17: 16-state formation outputs responses
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Figure 4.18: 16-state formation outputs with an unstable initial condition.
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relative) of two satellites have been considered. Unfortunately, the LMI complexity has
not allow us to compute the DLAW and EMRAW compensators. However, the MRAW
has been tested and interesting results, even with a poor tuning, have been shown.
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Chapter 5

Drag-free control
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5.1 Introduction

A particular case of continuous short range thrusters use is in drag-free control[PHS06],
where one controls directly the acceleration and the attitude instead of the relative po-
sition plus the attitude. Drag-free missions may be composed of a satellite formation
[PHS06] or by a unique satellite [PPT+05]. This chapter is focused on a one-satellite
linear acceleration control (the attitude control is similar to the formation flying issue
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tackled in Chapter 4). The benchmark of the chapter is the CNES 1 mission Microscope
[PPT+05].

First in Section 5.2 a modelling of the linear acceleration control problem is given.
A particular attention has to be paid to the modelled plant. Only the control of the
acceleration is considered. Then the plant presents a characteristic model that may be
exploited for anti-windup purposes.

In the second part of this chapter, constructive methods for the anti-windup com-
putation are given. In Section 5.3, LMI conditions are given on the static DLAW case.
These results are similar to those presented in Chapter 3. The main contribution on
the drag-free control is the definition of the trivial anti-windup compensator presented.
The formulation of this anti-windup providing global asymptotic stability is presented in
Section 5.3.2.

Finally, in Section 5.4, the control of one-axis one-satellite acceleration is simulated
with the trivial anti-windup compensator. Results are compared to the system without
anti-windup.

5.2 Drag-free modelling

Drag-free control consists of controlling both attitude and acceleration. In this simplified
case only the acceleration control is considered. For this particular control problem some
particular characteristics can be exploited for anti-windup synthesis purposes.

The control objective is to reject the external disturbances in order to keep a null
acceleration. Although the mission consists of a satellite formation or of a simple satel-
lite, the common point is that this type of missions have to perform an action on the
longitudinal axis. Hence a propulsive system is used as actuator. Therefore, the actuator
modelled by the asymmetric saturation, the influence matrix and the allocation function
presented in Chapter 2 applies.

Similarly to the other problems considered in this thesis, a linear controller is given
satisfying the stability of the linear closed-loop system.

5.2.1 Drag-free plant model

Let us consider a satellite and a frame fixed to it. Fsat is the satellite associated frame.
From the third theorem of the rigid body dynamics, the acceleration of a rigid body is

1Centre National d’Etudes Spatiales.
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x

Figure 5.1: Drag-free control configuration.

proportional to the sum of external forces:

ẍ = m−1
∑

G

(F ) (5.2.1)

where ẍ is the acceleration in the x-axis, m is the mass of the satellite and
∑

G(F ) is the
sum of the external forces at the center of mass.

The interesting point of this system is that the variable to regulate zp = ẍ is propor-
tional to the control input up =

∑
G(F ). Then the plant is simply a direct transmission

between the control input and the regulated output. The system can be described by
space state representation where the state vector xp is empty, Ap = [], Bp = [] and Cp = []
are empty matrices:

yp = Dpup = m−1F (5.2.2)

where F =
∑

G(F ) and m = 191.1kg (data taken from [PPT+05]).

Therefore the plant (5.2.2) is exponentially stable, even more, no dynamics are associ-
ated as it is simply a static gain. This situation can be exploited in terms of anti-windup
design as it will be described later.

5.2.2 Drag-free controller

The drag-free problem controller is described as a 4-dimension SISO linear system. Then
the generic state space representation applies:

{
ẋc = Acxc + Bcuc

yc = Ccxc +Dcuc
(5.2.3)
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The matrices numerical values are omitted but given in [PPT+05]. The controller
input is uc = yp and computes the force to control the acceleration yc = Fc.

5.2.3 Drag-free actuator model

The actuator is composed by a two thrusters propulsive system. The physical distribution
of the thrusters is presented in Figure 5.2.2. This information is contained in the influence
matrix M = [1 − 1].

The thrusters limitation is modelled by the saturation function (2.2.3). The saturation
bounds for the drag-free control problem are u = 0 and ū = 150µN .

The allocation function given by (2.4.1), based on the pseudo-inverse matrix is con-
sidered for the drag-free problem.

Summing up, the actuator in the relative position control is modelled as follows:

up = Msat(0,ū)(M
∗yc) (5.2.4)

5.2.4 Drag-free closed-loop

The closed-loop system representing the drag-free control problem is easily written with
the plant model (5.2.2), the controller (5.2.3) and the actuator (5.2.4):





yp = Dpup

ẋc = Acxc + Bcyp
yc = Ccxc +Dcyp
up = Msat(0,ū)(M

∗yc)

(5.2.5)

Replacing the saturation function by the dead-zone function (1.3.4), the closed-loop
system (5.2.5), with some mathematical work, can be expressed as follows:

{
ξ̇ = Aξ + Bφ(0,ū)(ν)
ν = Cξ + Dφ(0,ū)(ν)

(5.2.6)

where ξ = xc, A = Ac + BcDp∆
−1Cc, B = −BcDp∆

−1M , C = M∗∆−1Cc, D =
−M∗∆−1DcDpM and ∆ = (I −DcDp).

Remark 5.1. The plant is a direct transmission and, as consequence, there are nested
saturations.
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Remark 5.2. Notice that the only element of the control-loop which participates in the
closed-loop dynamics is the controller. Indeed, if one changes the roles of the elements in
the closed-loop, then the system can be seen as a dynamic system (the controller) which
is controlled with a static feedback (the plant) with a sensor (the actuator) saturation.

In any case this problem cannot be considered as a general sensor saturation problem
[TT06] because the measure (the controller output) is known.

5.3 Anti-windup Computation for a drag-free prob-

lem

yp

xc

Ac Bc

M∗CcM
∗Dc

vx

vy

yc

±u0

φ(u0)

xp

1
m
M

+

+

+

+

+

−

Daw

xaw

sat(u0)(yc) yp
yr

Figure 5.2: Anti-windup structure for a drag-free configuration

The next section deals with the anti-windup problem on a drag-free configuration.
The block diagram describing the problem tackled is presented in Figure 5.2.

Remark 5.3. The control objective is set up with yr = 0 in Figure 5.2.

Only the static Direct Linear Anti-Windup (DLAW) is considered. The static DLAW
is enough to show the particularities of the anti-windup compensator on this application
case.

First, LMI conditions are recalled for the computation of the static DLAW. Then, the
existence of a trivial anti-windup compensator is shown.

5.3.1 Anti-windup synthesis

A static Direct Linear Anti-Windup (DLAW) is introduced in the system (5.2.6). However,
the anti-windup computation process applies on symmetric saturation, therefore, we first
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apply the techniques on Chapter 2. u0 denotes the symmetric saturation bound obtained
from the symmetrizing process. In the drag-free problem case u0 = ū/2 = 75µN . Finally,
the resultant closed-loop system with the anti-windup compensator reads:





ξ̇ = Aξ + Bφ(u0)(ν) + vx
ν = Cξ + Dφ(u0)(ν)
vx = BvDawφ(u0)(ν)

(5.3.1)

where Bv = Inc
.

Let us recall the notation n = np + nc + naw where np = 0, nc = 4 and naw = 0 are
the order of the plant, the controller and the anti-windup compensator respectively. The
number of thruster is denoted m = 2.

Finally, a proposition with respect to the system (5.3.1) can be stated:

Proposition 5.1. If there exists a symmetric positive-definite matrix W ∈ ℜn×n, a di-
agonal positive-definite matrix S ∈ ℜm×m, a matrix Y ∈ ℜm×n and a matrix Z ∈ ℜnc×m

satisfying min ρ s.t.
[
WA

′

+ AW BS + BvZ + Y
′

∗ −2S + DS + SD
′

]
< 0 (5.3.2)

[
W WC

′

(i) − Y
′

(i)

⋆ u2
0(i)

]
≥ 0, ∀i = 1, ...,m (5.3.3)

[
W In
∗ ρIn

]
≥ 0 (5.3.4)

then the static DLAW Daw = ZS−1 stabilizes the system (5.3.1) for any initial condition
in the ellipsoid

E(P ) =
{
ξ ∈ ℜn; ξ

′

Pξ ≤ 1
}

with P = W−1

Proof of Proposition 5.1: The proof follows the same process of Theorem 3.1 proof
presented in Appendix A.3.1. The only difference lies on the application of Lemma 1.1.
Lemma 1.1 for the drag-free system (5.3.1) applies with ω = −Gξ − Dφu0(ν) due to the
presence of nested saturations.

End of Proof.

Remark 5.4. Relation 5.3.4 allows the maximization of the stability domain E(P ). Unlike
the formation flying problem, no direction is favored in the stability domain optimization.
The reason lies on the fact that there is no plant state towards which one can optimize
the stability domain. Thus, instead of choosing a random state of the controller we have
decided to apply the maximization of the whole stability domain.
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5.3.1.a Global stability

The plant on the drag-free control problem is exponentially stable. Then one may be
interested on finding an anti-windup controller which ensures the global stability for the
system (5.3.1).

Finally, the following proposition can be stated:

Proposition 5.2. The satisfaction of relations (5.3.2) and (5.3.4) ensures the global
asymptotic stability of system (5.3.1) with the static DLAW Daw = ZS−1

Proof of Proposition 5.2: The global stability conditions are obtained by applying
on Proposition 5.1 the Lemma 1.1 with ω = −Cξ −Dφu0(ν). Then relation (5.3.3) reads:

[
W 0
0 u2

0(i)

]
≥ 0, ∀i = 1, ...,m (5.3.5)

Relation (5.3.5) is equivalent to W ≥ 0 and u0 ≥ 0. Then, as W is positive definite
and u0 is positive, the condition (5.3.5) can be removed from Theorem 5.1 leading to
Proposition 5.2.

End of Proof.

5.3.2 The trivial static anti-windup

The Proposition 5.1 gives constructive conditions to find a static DLAW ensuring a certain
domain of stability E(P ). However in the drag-free control problem there exists a trivial
static DLAW satisfying global asymptotic stability.

Proposition 5.3. The system (5.3.1) is globally asymptotically stable with a static DLAW
defined by:

DawT = −B (5.3.6)

Proof of Proposition 5.3: Let us consider system (5.3.1) dynamics.

ξ̇ = Aξ + Bφ(u0)(ν) + BvDawφ(u0)(ν) (5.3.7)

Considering the matrix Bv = Inc
, the relation (5.3.7) becomes:

ξ̇ = Aξ + (B+Daw)φ(u0)(ν) (5.3.8)
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Then imposing Daw = −B, the dead-zone function multiplier on relation (5.3.8) is
cancelled and hence, the system (5.3.1) is simplified to a linear system:

ξ̇ = Aξ (5.3.9)

where A is Hurwitz.

Therefore, with Daw = −B, the system (5.3.1) becomes a globally asymptotically
stable linear system.

End of Proof.

Remark 5.5. A is Hurwitz from anti-windup preliminary assumptions. In any anti-
windup problem the linear closed-loop is assumed to be asymptotically stable.

Remark 5.6. The existence of the trivial static DLAW is due to the lack of plant dynam-
ics. Thus, only the controller dynamics are affected by the saturation non-linearity. On
the other hand we can modify the controller dynamics with the anti-windup compensator.
A logical choice is to use the anti-windup compensator to delete the non-linearity from the
system dynamics. Therefore, the controller state (i.e. the system state for the drag-free
control problem) evolves like it was a linear system.

The trivial anti-windup can be easily related to the IMC approach [MZ89] as the IMC
anti-windup compensator is exactly the same as the trivial anti-windup when Dc = 0.
With Dc 6= 0 the relationship is not exactly the same as the IMC approach modifies the
controller output. This could be reproduced by a static anti-windup with two outputs, a
feedback and a feedforward.

5.4 Anti-windup application on a drag-free problem

The trivial static DLAW is computed for system (5.3.1). Then the system (5.3.1) is
simulated with the trivial anti-windup compensator and the results are compared with
the linear system and with the non-linear system without anti-windup (5.2.6)

5.4.1 Anti-windup design results

The trivial static DLAW for system (5.3.1) has the following numerical expression:
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DawT =




−6.1 · 10−7 6.1 · 10−7

−8.95 · 10−8 8.95 · 10−8

9.05 · 10−8 −9.05 · 10−8

−1.15 · 10−2 1.15 · 10−2


 (5.4.1)

On the other hand, applying Proposition 5.2 for synthesis purposes the following static
DLAW is obtained:

Daw =




1.32 · 10−4 1.32 · 10−4

5.94 · 10−4 5.94 · 10−4

1.46 · 10−3 −1.14 · 10−3

1.94 · 10−3 −1.94 · 10−3


 (5.4.2)

Trivial anti-windup (5.4.1) is not equal to the anti-windup gain (5.4.2) issued from the
LMI computation. The LMI solvers do not guarantee unity of solution [BcPS07]. Then it
is possible to find different anti-windups satisfying global asymptotic stability conditions.

5.4.2 Simulations on drag-free control

Finally the system (5.2.6) is simulated without anti-windup and with the trivial anti-
windup (5.4.1) (i.e. system. (5.3.1)). Figure 5.3 shows the response of the drag-free
system (the acceleration dynamics). A decreasing step has been introduced in the system
through the signal yr. This step has an initial amplitude of 10−2m/s2 and lasts 10 seconds.
No initial condition can be imposed to the acceleration, only the controller initial condition
can be predefined. However, the controller initial condition has always been considered
as null. Then, a decreasing step has been chosen as suitable manner to excite the system
and observe the system behavior.

The linear response (solid line), the non-linear response without anti-windup (dashed
line) and the non-linear response with the trivial anti-windup (dot-dashed line) are plotted
in Figure 5.3. Actually the figure is a zoom of the actual simulation. The whole simulation
is plotted in a superposed window. Regarding this window, one can realize that the
non-linear response without anti-windup has entered a limit cycle, switching from the
maximum acceleration to the minimum acceleration. On the contrary, with the trivial
anti-windup, the acceleration converges to the origin following the linear response.

Finally, a simulation of the thrust of the system (5.3.1) is presented in Figure 5.4. Pre-
viously we have remarked that the saturation had to be symmetrized to apply anti-windup
synthesis techniques. Two approaches has been considered for the symmetrization: the
symmetrizing vector (2.5.6) (Nζsym = ū

2
in solid line) and the VKF (2.5.14)2 (dashed line).

2Given M in Section 5.2.3 Proposition 2.1 holds and function (2.5.14) is a VKF.
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Figure 5.3: Acceleration response with and without anti-windup.
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Figure 5.4 illustrates again the advantage of applying a VKF instead of a symmetrizing
vector as the extra-consumption problem is avoided. Let us recall that the response of
the system (5.3.1) in Figure 5.3 is unchanged by the symmetrizing technique.

5.5 Conclusion

Initially a modelling of the drag-free control problem has been given. Only the control
of the linear acceleration has been considered, then the plant has been modelled as a
static gain. Therefore, the plant is exponentially stable and this characteristic has been
exploited for anti-windup purposes.

Constructive methods for the anti-windup computation have been given. In Section 5.3
LMI conditions have been stated on the static DLAW case. However the main contribution
on the drag-free control has been the definition of the trivial anti-windup compensator.
We have shown that there exists a particular expression for the static DLAW which deletes
the influence of the saturation on the controller and, by drag-free modelling, on the whole
system. Hence, this particular anti-windup provides global asymptotic stability.

The trivial static DLAW has been computed for the considered simplified model of the
Microscope satellite. The control of one-axis one-satellite acceleration has been simulated
with the trivial anti-windup compensator. Results have been compared to the system
without anti-windup showing the improvement obtained with this technique.
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Conclusion

This manuscript is organized into two parts. The first one is dedicated to the theoreti-
cal concepts and the main results of the thesis. On the other hand, the second part is
completely focused on the application of the previous results to different satellite config-
urations.

Chapter 1 has presented the basic definitions for the stability analysis of the systems
presenting a saturation non-linearity. Concepts like Lyapunov stability, non-linear sector
condition and dead-zone functions have been reminded.

The main issue of the manuscript is the anti-windup compensator design. However,
first, in Chapter 2 the problem of the saturation symmetrization has been tackled. The
chapters have introduced the context in which the anti-windup problem has been solved.
Symmetrizing techniques have been given and tested on the educational example.

Chapter 3 has been dedicated to the anti-windup compensator design. Two main
approaches in anti-windup design, the DLAW and the MRAW, has been fully described.
Constructive techniques for each approach have been given. In addition a third new
approach has been introduced. Finally the validity of the anti-windup results when the
system is symmetrized has been proven.

The last two chapters have presented the anti-windup techniques which have been
tested. First, Chapter 4 has presented three formation flying scenarios. Simulations have
illustrated the advantages of the anti-windup compensator as well as the differences be-
tween the anti-windup compensators. Second, Chapter 5 has treated the drag-free control
problem. A model of drag-free configuration has been tested with an anti-windup compen-
sator in the loop. Simulations have shown the benefits of the anti-windup compensator.

Personal contributions

The first contribution presented in this manuscript consists in some solutions allowing
the symmetrization of the saturations. In Chapter 2 the particularity of the systems
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presenting thrusters as actuator has been exploited to develop symmetrizing techniques
for the saturation function. From a theoretic point of view, we have given necessary and
sufficient conditions to find a symmetrizing vector candidate. Then one may apply con-
servative techniques existing in the literature which obtain a symmetric bound by keeping
the smaller of both bounds in absolute value. A particular vector which modifies the
saturation such as the upper and the lower bounds have the same absolute value has been
introduced. Sufficient conditions where the symmetrizing vector is a symmetrizing one
have been provided [BPT+09]. Then, regarding the application behind these methods, a
variable kernel function have been defined in order to avoid the problem of over consump-
tion. More precisely, we has presented sufficient conditions for an example of a variable
kernel function along with some numerical tests.

The symmetrization has been arisen as a crucial step in order to apply the anti-windup
techniques. The current anti-windup compensators that one can find in the literature con-
sider the saturation to be symmetric. Then, in asymmetric cases one have first to apply
the symmetrization techniques. The second contribution of this manuscript is presented
in Chapter 3 and deals with the relationship between the anti-windup synthesis and the
saturation symmetrization. We have proven that the introduction of a symmetrizing vec-
tor does not effect the results of the anti-windup synthesis process whether one considers
the stability domain estimation or the anti-windup compensator [BPT+09]. Like with the
symmetrizing vector, it has been proven that the anti-windup results are not affected by
the variable kernel function.

The third contribution of this manuscript consists in proposing a new structure on the
dynamic anti-windup compensator. This new approach has been denoted as Extended
Model Recovery Anti-Windup (EMRAW) [BPT+10b]. The main idea has been to recover
the synthesis procedure of the Model Recovery Anti-Windup (MRAW) and extend the
method applying the Direct Linear Anti-Windup (DLAW). The combination of both ap-
proaches leads to non-convex conditions. Hence, two algorithms have been presented in
order to find a solution to the anti-windup problem. The first one is an iterative algorithm,
based on a coordinate-descending process. The second one is an heuristic algorithm, based
on the objective of the elements composing the anti-windup compensator. In the context
of the first algorithm, conditions on the initialization have been given.

Finally, the last contributions are given in the methodological field. First, some guide-
lines on how to improve the initialization of the first algorithm have been proposed. Then,
the judicious application of the EMRAW synthesis techniques has permitted us to show
the advantage of this structure on a coupled formation flying application. Finally, an-
other important result has arisen in the context of the relationship between the allocation
function and the anti-windup compensator design. Simulations have shown that the in-
troduction of an anti-windup compensator can compensate the limitations of a simple
allocation function and provide the same performance as a system with a more complex
and efficient allocation function. Therefore we have opened the discussion regarding the
necessity of an optimal complex non-linear allocation function if one want to obtain similar
results with an anti-windup compensator [BPT+10a].
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Perspectives

The anti-windup compensator has been shown as a useful tool to handle the actuator
saturation. Particularly, the EMRAW has presented good results on the formation flying
control problem. In this manuscript we have observed that the anti-windup compen-
sator based on the model recovery approach assumes the perfect knowledge of the plant.
However this is not generally the case. The presence of modelling errors like parametric
uncertainty, flexible modes simplification or neglected non-linearities makes the perfect
knowledge of the plant impossible in practice. Therefore, a first field for future research is
the analysis of the validity of the anti-windup compensator applied to uncertain systems.
Similarly, the synthesis of the anti-windup compensator for uncertain systems represents
a potential research field for the future. Some works have already treated that issue
[THP04, MTBP06, FB07] but the conservatism of these approaches is still important
[KTP10].

Concerning this subject and related to the missions looking for both linear and angular
dynamics, a particular uncertainty arises: the misalignment of the thrusters plus uncer-
tainty in thrust amplitude and direction. This kind of modelling error is described by
an uncertain influence matrix. Basically this problem is equivalent to consider an uncer-
tainty on the system input matrix Bp. However, if one considers the physical meaning of
the influence matrix some simplifications to the general problem might be done reducing,
eventually, the conservatism.

Another interesting point for further research, regarding the EMRAW, concerns on
the anti-windup order reduction. As remarked in this thesis, one main drawback of the
EMRAW is that the plant and the anti-windup compensator are forced to have the same
order. In large order models, this constraint is unacceptable for future physical imple-
mentations. Therefore, it would be interesting to develop constructive methods to reduce
the anti-windup order, for example, eliminating secondary dynamics of the considered
plant. In this scenario, the results could be related with the anti-windup synthesis on an
uncertain system.

Finally, a last direction toward which the next studies may be steered is the definition
of a different methodology for the anti-windup synthesis. The anti-windup compensators
based on the model recovery approach have the particular property of recovering the
linear behavior of the system. Let us remind the relationship yl = yp − yaw. Then there
is a stabilizing feedback v1 which brings yaw to zero and consequently yp to yl. The
whole MRAW plus non-linear plant block could be considered as an observer of the linear
system. Then the research objective would be to reformulate the anti-windup problem like
an observation/estimation problem. Once the problem is rewritten under this alternative
form, the idea would consist in applying the existing techniques on observers/estimators
design to compute the anti-windup compensator.
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A.1 Linear Matrix Inequalities (LMI)

A.1.1 Historical background

The origins of Lyapunov equation for stable linear systems go back to the end of the
nineteenth century, when Lyapunov published his works on the stability of dynamics sys-
tems [Lya92]. Particularly, he shows that a system described by the differential equation
ẋ = Ax is stable if and only if there exist a matrix P = P

′

> 0 such as A
′

P + PA < 0,
and this inequality can be solved analytically. In 1940, Lur’e and Postnikov are the first
to apply this theory to practical problems of control. They propose a stability criterium
presented through a LMI formulation, moreover, this formulation allows the study of the
systems with an actuator presenting a non-linearity [LP44]. The obtained inequalities
are solved manually which restricts its application to small order problems. However,
their works have shown that the Lyapunov theory had a great potential [Lur57]. Re-
markable improvements are performed in the 1960’s, particularly with the works done by
Yakubovich:

• Real positive lemma, also called Kalman-Yakubovich-Popov [Kal63, Pop62, Yak62]
leads to graphical techniques for the resolution of systems presenting a unique non-
linearity (circle criterium, Popov criterium, Tsypkin criterim).

• The LMI problem related to this lemma was solved several years later from sym-
metric solutions of a Riccati equation [Wil71].

These works have allowed the consideration of larger order problems. However these
problems are restricted to a specific family of LMI. The possibility to solve a general
expression of LMI problems by convex optimization techniques comes up at the beginning
of the 1980’s. The development of the efficient technique of the interior-point [NN94] and
the improvement of the computational capacity have motivated the formulation of several
problems under a LMI formulation, becoming one of the main tools for the automatic
control theory [BEGFB01, SW05, BS04].

A.1.2 LMI definition

The following defintions have been extracted from Scherer and Weiland’s works [SW05].

Definition A.1. (Linear Matrix Inequality) A Linear Matrix Inequality is described by
any equation described as follows:

F (z) > 0 (A.1.1)

where F : V → SN stands for an affine function defined on a vectorial space V towards
the set SN =

{
M ∈ ℜN×N : M = M

′
}
.
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Remark A.1. Inequality F (z) > 0 means that the symmetric matrix F (z) > 0 is positive
definite, i.e. u

′

F (z)u > 0 ∀u ∈ ℜN\{0}. Equivalently, the smaller eigenvalue of F (z) is
positive.

Remark A.2. A set of LMI can be considered as a unique structured LMI. The two
expressions below are equivalent:

1. Fi(z) > 0 ∀i = 1, ...,m

2. diag(F1(z), ..., Fm(z)) > 0

Remark A.3. In practice, the decision variables z are generally stacked in a matrix
variable. Then, there exist two positive scalars p and q such as V = ℜp×q.

A.1.3 LMI problems and resolution methods

Being F,G : V → SN1 and H : V → SN2 affine functions. Being f : S → ℜ a convex
function, where S = {z ∈ V : F (z) > 0}. There exist three generic problems presenting
LMI:

• The feasibility problem consist on finding a value of z ∈ V such as F (z) > 0.
Actually, one looks for a vector z minimizing the scalar t ∈ ℜ constrained to
−F (z) < tIN1 . If the minimum value obtained for t is negative, the problem is
feasible.

• The eigenvalues problem is designed as computing the value of z ∈ V which mini-
mizes f(z) constrained to F (z).

• The generalized eigenvalues problem is defined as finding the scalar λ ∈ ℜ under
the constraints: 




λF (z)−G(z) > 0
F (z) > 0
H(z) > 0

(A.1.2)

Remark A.4. Let us denote that in all the previously presented problems the inequali-
ties are strict. However this is not restrictive as numerically any non-strict LMI can be
expressed as a strict one [BEGFB01].

Mostly all the optimization problems present in the control field, the identification
field and in the signal analysis field can be expressed with an LMI formulation under the
previous presented problems framework. For example, the stability of an linear system
ẋ = Ax with A ∈ ℜn×n can be described as finding a matrix P ∈ Sn such as F (P ) =
diag(P,−A′

P − PA) ∈ S2n. The stability problem is, indeed, a LMI feasibility problem.
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Remark A.5. The three first problems described previously are convex or almost-convex,
thus there exists a global optimum. Nevertheless, they are not differentiable. There are
two principal families of methods which allow the resolution of LMI problems:

• The cutting plane methods. They were introduced in the convex optimization frame-
work in the 1970’s [EM75] and then were applied several years later in the robust
control framework [GPB91]

• The interior-point methods. They were developed for the LMI resolution [NN94].

These methods allow the computation of the global optimum in a polynomial time. How-
ever, the interior-point methods present the advantage of being faster and being able to
handle problems of bigger size composed by thousand of variables. In fact, they have been
implemented in the Robust Control Toolbox for Matlab [BcPS07].

A.1.4 Schur’s complement

Schur’s complement is a practical mathematical tool to express under an LMI formulation
certain non-linear matrix inequalities.

Lemma A.1. Consider symmetric matrices R ∈ ℜn×n, S ∈ ℜm×m and a matrix M ∈
ℜn×m. The following conditions are equivalent:

1.

[
R M
M

′

S

]
> 0

2.

{
R > 0
S −M

′

R−1M > 0

3.

{
S > 0
R−MS−1M

′

> 0

A.1.5 Elimination lemma

The elimination lemma was presented in [GA94] and it was also applied under the name
of Finsler lemma in [OS01, SIG97]. The lemma may transform BMI in LMI by the
elimination of some variables.

Lemma A.2. Consider a symmetric matrix Φ ∈ ℜm×m and matrices P ∈ ℜp×m, Q ∈
ℜq×m. There exists a matrix Θ ∈ ℜm×m such as:

Φ + P
′

Θ
′

Q+Q
′

ΘP < 0 (A.1.3)
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if and only if: {
N

′

pΦNp < 0

N
′

QΦNQ < 0
(A.1.4)

where NP and NQ describe matrices where the columns constitute the basis of the kernels
of P and Q.

The idea is to stack all the variables to eliminate in Θ and then apply the elimination
lemma. Once the problem (A.1.4) solved one may reconstruct the matrix Θ through the
completion lemma presented in [PZPB94].

Lemma A.3. Consider symmetric Hermitian matrices X, Y ∈ Cn×n and a positive in-
teger m. There exist a matrix X2 ∈ Cn×m and a Hermitian matrix X3 ∈ Cm×m such
as: [

X X2

X∗
2 X3

]
> 0 and

[
X X2

X∗
2 X3

]−1

=

[
Y ?
? ?

]
(A.1.5)

where ? denotes undefined elements, if and only if:

X − Y −1 ≥ 0 and rank(X − Y −1) ≤ m (A.1.6)

Remark A.6. Another possible technique in order to transform BMI to LMI consist in
applying the variable change introduced by [SGC97]. This technique becomes interesting
as it allows the separation between the Lyapunov related matrices and the state matrices
of the sought controller.

A.1.6 S-Procedure

The S-Procedure which was first denote like that by [AG64] is applied by the control
theory to study the stability and the performance of the non-linear systems. The technique
allows the transformation of a non-convex condition to a sufficient condition and, hence
conservative, but convex. A similar procedure was implicitly used in the 1950’s, but the
first remarkable results were provided by Yakubovich in the 1970’s.

The idea of the S-procedure is based on the next statement. Considering functions
f : V → ℜ and hi : V → ℜ, i = 1, ...,m, the following equations are contemplated:

f(x) > 0 ∀x ∈ V \{0} such as hi(x) ≥ 0, i = 1, ...,m (A.1.7)

∃τi ∈ ℜ+, i = 1, ...,m such as f(x)−
m∑

i=1

τihi(x) > 0 (A.1.8)

These two conditions are not equivalent in general, however it is evident that (A.1.8)
always implies (A.1.7). The reverse is true under certain hypothesis. The S-procedure is
then called lossless. Proposition A.1 presents practical results.
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Definition A.2. The constraint hi(x) ≥ 0, for a i = 1, ...,m is called regular if exists
x0 ∈ V such as hi(x0) > 0, i = 1, ...,m.

Proposition A.1. Let us suppose the constraints hi(x) ≥ 0, for all i = 1, ...,m to be
regular.

• If functions f : ℜn → ℜ and hi : ℜn → ℜ are linear, the S-procedure is lossless for
any m.

• If functions f : ℜn → ℜ and hi : ℜn → ℜ are quadratic, the S-procedure is lossless
for m = 1 [Yak71, Yak73].

• If functions f : Cn → ℜ and hi : Cn → ℜ are quadratic, the S-procedure is lossless
for any m ≤ 2 [FY79].

Remark A.7. The quadratic function case becomes interesting when it is related with the
stability problem with the Lyapunov theory.

Several extensions have been proposed by [Yak92], and more recently by [IH05] who
proposes the following result in the case of complex quadratic functions.

Definition A.3. Being Q a set of Hermitian matrices of n× n dimension is called non-
conservative if the following properties are satisfied:

1. Q is convex

2. Q ∈ Q ⇒ τQ ∈ Q ∀τ > 0

3. for all non-null matrix H ∈ Cn×n such as H = H∗ ≥ 0 and trace(QH) ≤ 0 ∀Q ∈ Q,
there exist vectors xi ∈ C, i = 1, ..., r such as H =

∑r

i=1 xix
∗
i and x∗

iQxi ≤ 0
∀Q ∈ Q.

Proposition A.2. Consider a Hermitian matrix P and Q a non-conservative set of
Hermitian matrices. The following statements are then equivalent:

1. x∗Px > 0 ∀x ∈ Cn\{0} such as x∗Qx ≥ 0 ∀Q ∈ Q

2. ∃Q ∈ Q such as P −Q > 0

Therefore, the lossless character of the S-procedure is not longer linked to the number
of constraints m which is unlimited as long as matrices Q satisfy definition A.3.
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A.2 Bilinear Matrix Inequalities (BMI)

Several optimization problems found in control theory are presented under a BMI for-
mulation, but they can be transformed with some of the techniques presented before into
LMI. For instance, two algorithms have been proposed in Section 3.5.3 transforming BMIs
from Theorem 3.2 into LMIs. However, because the conservatism derived from the refor-
mulation is too important, or just because the transformation is not possible (and one
does not desire to apply iterative methods which do not present any kind of convergence),
the possibility of the direct resolution of BMI should be considered. Nevertheless the
generalization brings the problem to the loss of convexity with the numerical problems
that can be derived.

Nowadays there exist BMI solvers. Unfortunately, the resolution techniques are far
from being matures and they do not allow the consideration of problems where an im-
portant number of variables are involved. For instance, when the Lyapunov functions
optimization are sought, it is not judicious to apply these techniques.

A.3 Complements of Chapter 3

A.3.1 Proof of Theorem 3.1

Let us consider the following candidate quadratic Lyapunov function defined by V (ξ) =
ξ
′

Pξ, P = P
′

> 0 for all ξ ∈ ℜn. Then a sufficient condition of stability in the ellipsoid
domain E(P ) with the constraint ‖z‖22 =

∫∞
0

z′zdt ≤ γ is given by V̇ (ξ) + γ−1z′z < 0, for
any ξ ∈ E(P ) [BT09].

The expression of the time-derivative V̇ (ξ) along the trajectories of system (3.3.8)
reads

V̇ (ξ) = ξ̇
′

Pξ + ξ
′

P ξ̇

= ξ
′

(
A

′

P + PA

)
ξ + 2ξ′P (Bφ + BvDaw)φ(u0)(Kξ))

By using Lemma 1.1, it follows that

for any ξ ∈ S(u0) =
{
ξ ∈ ℜn;

∣∣(K(i) −G(i))ξ
∣∣ ≤ u0(i), i = 1, ...,m

}

one gets: −2φ′

(u0)
(Kξ)S−1(φ(u0)(Kξ)+Gξ) ≥ 0. Hence by setting W = P−1 and Y = GW ,

the satisfaction of relation (3.3.11) guarantees that E(P ) ⊆ S(u0).

Thus, for any ξ ∈ E(P ) ⊆ S(u0) one gets:
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V̇ (ξ) + γ−1z′z ≤V̇ (ξ) + γ−1ξ
′

C
′
Cξ + 2γ−1ξC′

Dφφ(u0)

+ γ−1φ
′

(u0)
D

′

φDφφ(u0) − 2φ
′

(u0)
S−1

(
φ(u0) −Gξ

)

(A.3.1)

The right-hand term writes:

L =

[
W−1ξ
S−1φu0

]′

M

[
W−1ξ
S−1φu0

]

with M =

[
WA

′

+ AW + γ−1WC
′

CW BφS + BvZ + Y
′

+ γ−1WC
′

DφS
∗ −2S + γ−1SD

′

φDφS

]
and Z =

DawS.

Finally, applying Schur complement one gets inequality (3.3.10). Therefore, the sat-
isfaction of relation (3.3.10) ensures that L < 0 or equivalently V̇ (ξ) + γ−1z

′

z ≤ L < 0
for any ξ ∈ E(P ). In other words, for any ξ ∈ E(P ) one gets V̇ (ξ) < −γ−1z

′

z < 0
and therefore E(P ) is a region of asymptotic stability for system (3.3.8). Furthermore by
integrating the expression V̇ (ξ) + γ−1z

′

z < 0 it follows:

V (∞)− V (ξ(0)) + γ−1

∫ ∞

0

z
′

zdt < 0

or equivalently since V (∞) > 0:
∫ ∞

0

z
′

zdt < γV (ξ(0)) ≤ γ

for any ξ(0) ∈ E(P ).

A.3.2 Extension of Theorem 3.1

Let us consider the following closed-loop system :




ξ̇ = Aξ + BφMφ(u0)(f(yc)) + BvDawφ(u0)(f(yc))
yc = Kξ
z = zp − zl = Cξ
vx = Dawφ(u0)(f(yc))

(A.3.2)

where ξ = [x
′

p x
′

c x
′

d x
′

l]
′ ∈ ℜnM with nM = np+nc+nd+nl is the closed-loop state vector,

yc ∈ ℜmc is the control output and vx ∈ ℜnc the anti-windup output. The matrices in
(A.3.2) are defined by state matrices presented in Chapter 3 as follows:

A =




Ap +BpDcCp BpCc BdCd 0
BcCp Ac 0 0
0 0 Ad 0
0 0 0 Acl



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Bφ = [B
′

φ 0 0]
′

, Bv = [0 Inc
0 0]

′

, K = [DcCp Cc 0 0] and C = [Cz 0 0 − Cl].

An extension of Theorem 3.1 can be stated for the system (A.3.2) where f(yc) is the
multi-sat AF (2.4.3). The formulation of the multi-sat AF expressed with the dead zone
function (1.3.4) reads:

f(yc) = M∗yc −
mc∑

i=1

φi(u0)(M
∗
(:,i)yc(i)) (A.3.3)

Given (A.3.3), system (A.3.2) is rewritten as follows:





ξ̇ = Aξ + BφMφ(u0)

(
Kξ −

mc∑

i=1

φi(u0)(Kiξ)

)
+ BφM

mc∑

i=1

φi(u0)(Kiξ) + Bvvx

vx = Daw[φ
′

φ
′

1 φ
′

2 · · · φ
′

mc
]
′

(A.3.4)

where K = M∗K and Ki = M∗
(:,i)K(i,;). Figure A.1 shows the anti-windup synthesis block

diagram for the multi-sat case.

Daw

φi(u0)

φ
(u0)

+

+

+

+

+

+

+

−

−

−

−
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(:,mc)

C sat
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sat2

satmc

M
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P
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zl
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z
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L(s)

linear closed-loop plant

Non-linear system

Figure A.1: Control Loop with multi-saturation Anti-windup

Then the following theorem for the system (A.3.4) can be stated:

Theorem A.1. (Static anti-windup design 2). Given v ∈ ℜn, kγ and kρ two positive
values, if there exist a symmetric positive-definite matrix W ∈ ℜn×n, a matrix Y ∈ ℜm×n,
mc matrices Yi ∈ ℜm×n, a matrix Z ∈ ℜnc×m, mc matrices Zi ∈ ℜnc×m, a diagonal
positive-definite matrix S ∈ ℜm×m, and mc diagonal positive-definite matrices Si ∈ ℜm×m

satisfying
min kγγ + kρρ
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


He J J1 J2 · · · Jmc
WC

′

∗ −2S −S1 −S2 · · · −Smc
0

∗ ∗ −2S1 0 · · · 0 0
∗ ∗ ∗ −2S2 0 · · · 0
...

...
. . . · · · . . .

...
...

∗ ∗ · · · ∗ ∗ −2Smc
0

∗ ∗ · · · · · · ∗ ∗ −γI




< 0 (A.3.5)

[
W WK

′

(j,:) − Y
′

(j,:)

⋆ u2
0(j)

]
≥ 0, ∀j = 1, ...,m (A.3.6)

[
W WK

′

i(j,:) − Y
′

i(j,:)

⋆ u2
0(j)

]
≥ 0, j = 1, ...,m; i = 1, ...,mc (A.3.7)

[
W ξ

′

0

⋆ ρI

]
≥ 0 (A.3.8)

with He = WA
′

+ AW , J = BMS + BvZ + Y
′

, Ji = BMSi + BvZi + Y
′

i ,..., i = 1, ...,mc

then the static anti-windup gain Daw = [ZS−1 Z1S
−1
1 · · · Zmc

S−1
mc

] is such that∫∞
0

z(t)
′

z(t)dt ≤ γ and the system (A.3.4) is locally asymptotically stable for any ini-

tial condition in the ellipsoid E(P ) =
{
ξ ∈ ℜn; ξ

′

Pξ ≤ 1
}
, with P = W−1. Furthermore,

E(P ) is maximized in the direction of v with the weight kρ, and the performance 1/γ is
maximized with the weight kγ.

Proof of Theorem A.1: Consider a quadratic Lyapunov function V (ξ) = ξ
′

Pξ,
P = P

′

> 0. A sufficient condition for the stability of the system (A.3.4) in the ellipsoid
domain E(P ) with the performance constraint is given by V̇ (ξ) + γ−1z′z < 0.

Writing Daw = [Ec Ec1 Ec2 · · · Ecmc
], one gets vx = Ecφ +

∑mc

i=1 Eciφi. The
expression of the time-derivative of V (ξ) along the trajectories of system (A.3.4) gives

V̇ (ξ) = ξ
′

(
A

′

P + PA

)
ξ + 2ξ′P (BM + REc)φ(u0)(Kξ −

mc∑

i=1

φi(u0))

+ 2ξ′P
mc∑

i=1

(BM + REci)φi(u0)(Kiξ)

Let us emphasize that the non-linearities present different sector conditions as φi is
nested in φ. Thus, using Lemma 1.1 in [GdSJT05], we can verify that

−2φ′
(u0)

S−1(φ(u0) −Gξ +
mc∑

i=1

φi(u0)) ≥ 0

with S a diagonal positive-definite matrix, provided that

ξ ∈ S(u0) =
{
ξ ∈ ℜn;

∣∣(K(j) −G(j))ξ
∣∣ ≤ u0(j) , j = 1, ...,m

}
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By the same way, Lemma 1.1 can be used mc times to verify that

−2
mc∑

i=1

φ′
i(u0)

S−1
i (φi(u0) −Giξ) ≥ 0

with Si a positive diagonal matrix, provided that

ξ ∈ Si(u0) =
{
ξ ∈ ℜn;

∣∣(Ki(j,:) −Gi(j,:))ξ
∣∣ ≤ u0(j) , j = 1, ...,m

}
∀ i = 1, ...,mc

Hence by setting W = P−1, Y = GW and Yi = GiW the satisfaction of relations
(A.3.6), (A.3.7) guarantees that E(P ) ⊆ (S(u0) ∩ (

⋂mc

i=1 Si(u0))).

Thus, for any ξ ∈ E(P ), one gets:

V̇ (ξ) + γ−1z′z ≤ V̇ (ξ)− 2φ
′

(u0)
S−1

(
φ(u0) −Gξ −

mc∑

i=1

φi(u0)

)

− 2
mc∑

i=1

φ
′

i(u0)
S−1
i

(
φi(u0) −Giξ

)
+ γ−1ξ

′

C
′

Cξ

Then the right hand term writes: L = X
′

MX with

X
′

=
[
ξ
′

W−1 φ
′

(u0)
S−1 φ

′

1(u0)
S−1
1 φ

′

2(u0)
S−1
2 · · ·φ

′

mc(u0)
S−1
mc

]

and

M =




He +
WC

′

CW
γ

J J1 J2 · · · Jmc

⋆ −2S −S1 −S2 · · · −Smc

⋆ ⋆ −2S1 0 · · · 0
⋆ ⋆ ⋆ −2S2 0 · · ·
...

...
. . . · · · . . .

...
⋆ ⋆ · · · ⋆ ⋆ −2Smc




with He = WA
′

+ AW , J = BMS + RZ + Y
′

, Z = EcS, Ji = BMSi + RZi + Y
′

i , and
Zi = EciSi i = 1, ...,mc. Finally, using Schur complement on γ−1WC

′

CW , one gets LMI
(A.3.5). Therefore, the satisfaction of relation (A.3.5) ensures that L < 0 or equivalently,
V̇ (ξ) + γ−1z

′

z ≤ L < 0 for any ξ ∈ E(P ). In other words, E(P ) is a region of asymptotic
stability for system (A.3.4) with ‖z‖22 ≤ γ.

End of Proof
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A.3.3 Proof of Proposition 3.2

First, matrices W and P = W−1 introduced in Proposition 3.1 have to be decomposed as
follows1:

W =

[
Y N

′

N F

]
;P =

[
X−1 M

′

M E

]
(A.3.10)

withX, Y ∈ ℜnM×nM . If anti-windup matrices are stocked in matrix Ωaw =

[
Aaw Baw

Caw Daw

]
,

then Z is decomposed in Z = [V Ũ ], with V, Ũ ∈ ℜm×nM , inequality (3.3.14) can be
written like:

Θ + U ′

ΩawV + V ′

ΩU < 0 (A.3.11)

where:

Θ =




A
′

Y + Y A ∗ ∗ ∗
NA

′

Y 2λF ∗ ∗
SB

′

φ + V Ũ −2S ∗
CY CN

′

DφS −γIp


 (A.3.12)

U =

[
0 InM

0 0
B

′

v 0 0 0

]
(A.3.13)

V =

[
0 InM

0 0
0 InM

0 0

]
diag(W,S, I) (A.3.14)

Then by applying the elimination lemma [OS01, GA94, SIG97], inequality (A.3.11) has a
solution Ωaw if and only if:

N
′

UΘNU < 0 (A.3.15)

N
′

VΘNV < 0 (A.3.16)

where NU and NV stands for the matrices of the basis of the kernels Ker(U) and Ker(V),
respectively. That is:

NU =




Nv 0 0
0 0 0
0 Im 0
0 0 Ip


 where Nv = Ker(B

′

v) (A.3.17)

1Inequality (3.3.21) implies

[
X−1 InM

InM
Y

]
> 0, i.e. X−1 > 0, Y > 0 and X−1Y > InM

, which

means that condition of the lemma of matrix completion [PZPB94] is satisfied. Therefore decomposition
(A.3.10) is valid and one may reconstruct W matrix from X and Y by the relationship

W =

[
Y InM

N 0

] [
InM

X−1

0 M

]
−1

(A.3.9)

where non-singular matrices M,N ∈ ℜnM×nM satisfy M
′

N = InM
−X−1Y < 0.
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NV = diag(W−1, S−1, Ip)




InM
0

0 0
0 0
0 Ip


 (A.3.18)

For this choice of NU , one shows that inequality (A.3.15) is equivalent to (3.3.19). On the
other hand, inequality (A.3.16) reads:

[
X−1A+ A

′

X−1 + 2λM
′

FM C
′

C −γI

]
< 0 (A.3.19)

From decomposition (A.3.10), one getsM
′

FM = −X−1+X−1Y X−1. Then, the inequality
(A.3.19) by applying the Schur complement and pre- and post-multiplying by diag(X,Y)
one gets: 


AX +XA

′ − 2λX 2λY XC
′

∗ −2λY 0
∗ ∗ −γI


 (A.3.20)

which coincides with (3.3.20).

Let us define the matrix Ψ =

[
I I

MX 0

]
. Pre- and post-multiplying (3.3.15) by

diag(Ψ
′

, I) and diag(Ψ, I) one gets:




X X XC
′

φ(i) −XM
′

Ũ(i)
′ − V

′

(i)

∗ Y Y C
′

φ(i) − V
′

(i)

∗ ∗ u2
0(i)


 ≥ 0 (A.3.21)

By the change of variables U = (Cφ− ŨM)X −V one recovers equation (3.3.21) showing
that it is equivalent to (3.3.15).

Finally condition (3.3.22) is obtained by pre- and post-multiplying by diag(Ψ
′

, 1) and
diag(Ψ, 1) the relation (3.3.16).

A.3.4 Proof of Proposition 3.3

Let S a positive definite matrix, and consequently non-singular, one has only to impose
the variables change B̃aw = BawS and D̃aw = DawS. With this change of variables the
relation (3.3.14) becomes LMI and the Proposition 3.1 can be checked by the standard
LMI solvers.
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A.4 Results of the anti-windup synthesis

In Chapter 4 some matrices issued from the anti-windup synthesis have been omitted.
Thus, they are given in the sequel.

A.4.1 Static DLAW gain for system (4.5.2)

The following static DLAW has been computed in the context of the attitude and relative
position control:

Daw =




−0.93 −0.93 −0.07 −0.07 6.44 8.76
0.11 0.11 0.01 0.01 −0.96 −0.77
0.07 0.07 0.003 0.003 −6.03 4.79
126.7 126.7 106.02 106.02 −956.25 −1109
−10.7 −10.7 −10.2 −10.2 128.6 51.2

2.38 · 103 2.38 · 103 189.9 189.9 −1.94 · 104 −1.93 · 104

−6.44 −8.76 −0.05 −0.002 −0.05 −0.002
−0.96 −0.77 −0.16 0.15 0.16 −0.15
6.03 −4.79 −2.14 1.77 2.14 −1.77
956.25 1109 7.1 −2.1 −7.1 2.1
−128.6 −51.2 18.4 −17.1 −18.5 17.1
1.94 · 104 1.93 · 104 −285 188 285 −188

5.2 4.84 −5.2 −4.84
−0.7 −0.4 0.7 0.4
−1.38 0.15 1.38 −0.15
−654 −723 654 723
65.4 56.8 −65.4 −56.8

−1.24 · 104 −1.35 · 104 1.24 · 104 1.35 · 104




(A.4.1)

A.4.2 EMRAW gain for system (4.5.1)

An EMRAW has been computed in Section 4.5.1 has been computed using the objective-
based algorithm. The gain Eaw obtained reads:

Eaw =




−0.03 −0.03 0.03 0.03 1.38 1.87 −1.38 −1.87
−0.001 −0.001 0.001 0.001 0.03 0.07 −0.03 −0.07
−0.21 −0.21 0.21 0.21 8.98 10.7 −8.98 −10.7
19.05 19.05 −19.05 −19.05 −85.1 −91.7 85.1 91.7
0.82 0.82 −0.82 −0.82 −36.1 −42.3 36.1 42.3
−39.6 −39.6 39.6 39.6 156 210 −156 −210




(A.4.2)



A.5. 16-state formation numerical values 179

A.5 16-state formation numerical values

A.5.1 16-states formation state matrices

The 16-state plant representation can be described by the following equations:

ẋp = Apxp + Bpup (A.5.1)

yp = Cpxp

where:

xp =
[
θx1 θy1 θz1 θ̇x1 θ̇y1 θ̇z1 θx2 θy2 θz2 θ̇x2 θ̇y2 θ̇z2 ∆y ∆z ∆ẏ ∆ż

]′

yp = [θx1 θy1 θz1 (θx2 − θx1) (θy2 − θy1) (θz2 − θz1) ∆y ∆z]
′

up = [Fy1 Fz1 Cx1 Cy1 Cz1 Cx2 Cy2 Cz2 ]
′

Ap =




0(3×3) I3
0(3×3) 0(3×3)

0(3×3) I3
0(3×3) 0(3×3)

0(2×2) I2
0(2×2) 0(2×2)




Bp =




0(3×2) · · · 0(3×3)

0(3×2) J−1
G1

0(3×3)

0(3×2) · · · 0(3×3)

0(3×2) 0(3×3) J−1
G2

0(2×2) 0(2×3) 0(2×3)

M−1
1 0 0(1×3) ∆xJ−1

G2(3,:)

0 M−1
1 0(1×3) ∆xJ−1

G2(2,:)




Cp =




I3 0(3×3) 0(3×3) · · · · · · 0(3×2)

−I3 0(3×3) I3 0(3×3) · · · 0(3×2)

0(2×3) · · · · · · 0(2×3) I2 0(2×2)




with JGi
is the inertia matrix of the satellite i = 1, 2 at the center of mass and J−1

Gi(j,:)

stands for the jth line of the inverse of the inertia matrix.
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A.5.2 16-states formation influence matrices

The influence matrices for the two satellites in the 16-state formation are described as
follows:

M1 =




[1 − 1 − 1 1 − 1 1 1 − 1] cosα
[−1 − 1 − 1 − 1 1 1 1 1] cosα
[−c c c − c − c c c − c] cosα
[−a − a a a a a − a − a] cosα
[−a a − a a a − a a − a] cosα




(A.5.2)

M2 =




[−c c c − c − c c c − c] cosα
[−a − a a a a a − a − a] cosα
[−a a − a a a − a a − a] cosα


 (A.5.3)

where a and c are dimensions associated to the distance of the thrusters to the satellite
frame axes. α = π

4
stands for the angle of the thrusters with respect to the satellite frame

axes. Figure A.2 shows physical distribution of the thrusters for both satellites, as well
as, the geometrical meaning of a, c and α.

a

c

T(1)
T(1) T(2)

T(3)

T(4)

T(4) T(5)
T(6)

T(7)
T(8)

Z

Z Y

Y

X

X

π
4

Figure A.2: Geometric distribution of the thrusters for a 8-DOF control configuration.
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tionneurs limités en amplitude et en dynamique. PhD thesis, Université Paul
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Dr. Christophe Prieur Co-directeur de thèse
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Preparé au LAAS-CNRS

7, Avenue Colonel Roche − 31077 Toulouse Cedex 4, France.





1

Résumé étendu

I.1 Introduction générale

La théorie de la commande a evolué de façon significative dans le domaine de l’automatique
non-linéaire. Dernièrement, des méthodes d’analyse et de synthèse sont apparues en pro-
posant des outils de résolution pour des problèmes de commande non-linéaire [TGGE07,
KGE02, KA01, Val10]. Cependant, les méthodes utilisées actuellement dans l’industrie
aérospatiale sont le plus souvent basée sur des techniques de commande linéaire. Les
spécifications, toujours plus exigeantes en termes de fiabilité et performance, demandent
l’utilisation de techniques de plus en plus complexes [PCU+05, PDTP08, KTP08]. Ainsi,
l’industrie cherche des solutions dans les nouvelles techniques de la théorie de la commande
non-linéaire dont le potentiel est encore inexploré lors de son application sur des systèmes
réelles. Ces méthodes améliorent la synthèse des lois de commande et la modélisation des
phénomènes non-linéaires auparavant négligés. Enfin, la mis en oeuvre des outils d’analyse
non-linéaire peut se traduire par une réduction du temps de validation due au fait que
la distance entre le modèle considéré et le vrai système serait réduite. Ces améliorations
pourraient aussi se traduire par une réduction du coût total des ressources utilisées pour
la validation des lois de pilotage. Par conséquent, il y a un vrai besoin d’application de
d’adaptation des outils de commande non-linéaire aux problèmes de l’industrie.

En particulier, la limitation de la commande due aux contraintes de capacité des ac-
tionneurs répresente un phénomène non-linéaire commun dans la plupart des systèmes
physiques. Une solution classique dans l’industrie consiste à imposer des marges impor-
tantes afin d’empêcher que les actionneurs ne dépassent leur limite, c’est-à-dire, qu’ils
saturent. De cette manière, on essaye d’assurer la linéarité du système sur tout son do-
maine de fonctionnement. Toutefois, la validation a posteriori peut apparâıtre comme
insuffissante car, des perturbations non-nominales, des transitions entre différents modes
de mission et la présence de pannes peuvent amener les actionneurs à la limite de leurs
capacités. Des actionneurs saturés peuvent engendrer la dégradation des performance,
l’apparition de cycles limites ou d’états d’équilibre non désirés et même l’instabilité du
système bouclé [AR89, HL01, KGE02, Ste89].

Les techniques de commande non-linéaire concernant la saturation peuvent être classées
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selon deux lignes de recherche. La première vise la synthèse d’un unique correcteur qui
tient compte de la saturation [GdSJ97, GT91, GH85]. La seconde, ajoute une boucle
additionnelle à la boucle de commande linéaire déjà existante. Cette deuxième boucle
de commande est dédiée à la gestion de la saturation. Dans un contexte où l’accent est
mis sur le coté applicatif, on retiendra la deuxième stratégie. Cette approche, nommée
commande anti-windup, permet à l’automaticien de garder les méthodes de commande
linéaire qui ont déjà été validées puisqu’il s’agit seulement d’ajouter un contrôleur addi-
tionnel, actif seulement lorsque la saturation apparâıt. De cette manière, le processus de
synthèse du contrôleur n’est pas complètement changé comme cela aurait été le cas avec la
première approche. Par conséquent, le développement de méthodes constructives pour la
synthèse de l’anti-windup pour les non-linéarités dues aux saturations est complètement
justifié. Pour une vision plus complète, les articles [GTTZ09, TT09] et leurs références
pourront être consultées.

Le but de la thèse est d’adapter et de développer les techniques de synthèse anti-windup
à la commande de haute précision des axes angulaires et linéaires de satellites. Dans le
domaine spatial, cet objectif se retrouve dans les missions de commande en accélération
et aussi dans celle de vol en formation. Ces missions utilisent des propulseurs de haute
précision comme actionneur. Cependant, leur capacité maximale est très baisse. Ces
actionneurs ont aussi pour fonction d’assurer la transition entre les modes de la mission,
la robustesse face aux perturbations externes et, dans certains cas, la survie de la mission.
L’introduction de l’anti-windup est donc une technique d’intérêt afin d’assurer les besoins
de la mission et sa fiabilité.

Les missions qui utilisent des systèmes propulsifs comme actionneur présentent une
modélisation particulière. En effet, les variables de contrôle ne correspondent pas à la
véritable action des propulseurs. Une fonction de répartition est incluse dans la modéli-
sation des actionneurs afin de répartir les commandes du contrôleur parmi les propulseurs
[Dur93, NW99, BHSB96]. Dans l’approche linéaire classique cette fonction peut être nég-
ligée. Cependant, lorsqu’il y a saturation des propulseurs, son comportement doit être
pris en compte pour la synthèse [BHSB96]. Des fonctions de répartition adaptées à la
synthèse anti-windup ont été étudiées. De plus, la présence de propulseurs introduit une
modélisation particulière de la saturation. La saturation présente des bornes asymétriques
dont la valeur minimum est égale à zéro. Tenant compte de l’état de l’art de la synthèse
anti-windup, il y a un vrai besoin d’utiliser des techniques de symétrisation pour la satu-
ration.

La procédure de symétrisation ainsi que la définition de la fonction de répartition sont
introduites lors de la synthèse de l’anti-windup afin de pouvoir utiliser ce contrôleur dans
le cadre d’une mission de vol en formation. Le contrôle simultané de l’attitude et de la
position relative constitue un cadre intéressant pour tester les techniques proposées. Le
caractère multi-objectifs des missions de vol en formation introduit des couplages parmi les
dynamiques angulaires et linéaires. En outre, la transition depuis un mode de basse pré-
cision vers un autre de haute précision peut amener à la saturation des actionneurs. Pour
ces situations où la commande linéaire n’est pas suffisante, l’utilisation d’un correcteur
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anti-windup constitue une voie d’amélioration poténtielle.

Le manuscrit de cette thèse s’organisse de la manière suivante :

• Le chapitre 1 rappelle les outils de base nécessaires à l’analyse de la stabilité pour
les systèmes soumis à des non-linéarités de type saturation. Ces outils sont la base
des résultats présentés dans le chapitre 3.

• Le problème de la symétrisation de la saturation, abordée dans le chapitre 2, est
un préalable à la compréhension du sujet principal de la thèse : la commande anti-
windup. Ce chapitre présente la famille des systèmes auxquels ce travail s’intéresse.
Des techniques de symétrisation sont proposées avec des exemples pratiques [BPT+09].
Elles permettent d’écrire le problème dans un contexte général où les techniques
anti-windup peuvent s’appliquer.

• Le chapitre 3 est dédié au dévéloppement de méthodes anti-windup. Une vision
générale du problème est proposée à travers l’analyse de l’état de l’art. En parti-
culier, la description des deux principales approches dans la synthèse anti-windup
est donnée. Des outils pour chacune d’elles sont apportés. En plus, une troisième
approche est proposée comme alternative aux deux précédentes [BPT+10b]. Le
chapitre se conclut par l’analyse de la validité des résultats précédents sur des sys-
tèmes présentant des saturations asymétriques. Une illustration de ces approches
permet au lecteur d’avoir une vision des avantages et inconvénients de chaque tech-
nique.

• Les deux derniers chapitres sont dédiés à la présentation des exemples d’application
sur lesquels l’anti-windup est testé. D’abord, le chapitre 4 présente trois configura-
tions de missions en vol en formation. La modélisation de ces cas d’études est présen-
tée. Ensuite, les simulations illustrent les avantages de l’anti-windup [BPT+10a].
Finalement, le chapitre 5 est dédié à l’étude d’une mission en contrôle d’accélération.
Le modèle du cas d’étude est présenté ainsi que des simulations. Les résultats met-
tent en évidence le potentiel du correcteur anti-windup.

Nous présentons ici un résumé des travaux de cette thèse. Chaque chapitre est résumé
pour mettre en évidence les différents problèmes abordés. Nous prenons aussi le temps de
présenter les théoremes ou propositions qui représentent la contribution de cette thèse. En
même temps une application numérique est proposée comme illustration de ces résultats.

I.2 Concepts généraux sur la stabilité de systèmes

saturés

Ce chapitre est dédié à la présentation des outils de base pour l’analyse des systèmes
non-linéaires soumis à des saturations. La présentation des définitions et résutats n’est
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pas exhaustive, mais elle rappelle quelques points clés pour la compréhension des résultats
développés dans ce manuscrit. Les résultats sont classiques dans la littérature et peuvent
se retrouver, par exemple, dans les travaux de Khalil [Kha92], Slotine et Li [SL91] et
Vidyasagar [Vid92].

D’abord, une définition génerale de la stabilité des systèmes autonomes est donnée.
Cette définition est concrétisée par la théorie de Lyapunov et la seconde méthode de
Lyapunov est détaillée.

I.2.1 Stabilité au sens de Lyapunov

La stabilité au sens de Lyapunov est mise en pratique par ce qu’on appelle la seconde
méthode de Lyapunov. Cette méthode vise à caractériser la stabilité du système autour
d’un point d’équilibre sans connâıtre explicitement les trajectoires autour de ce point. La
seconde méthode de Lyapunov est définie de la façon suivante :

Définition I.1. Une fonction de Lyapunov candidate est une fonction V : X ⊆ ℜn → ℜ+

telle que V est continue, de même que ses dérivés partielles, et V est définie positive (i.e
V > 0 ∀x 6= 0 et V (0) = 0).

Le théorème suivant donne des conditions suffisantes pour la stabilité des systèmes
autonomes.

Théorème I.1. Etant donné un ensemble X ⊂ ℜn qui contient l’origine et V : X → ℜ+

une fonction Lyapunov candidate.

1. Si V̇ (x) ≤ 0 ∀x ∈ X , alors l’origine est localement stable.

2. Si V̇ (x) < 0 ∀x ∈ X , x 6= 0 , alors l’origine est localement asymptotiquement
stable.

où V̇ est la dérivée temporelle de V

I.2.2 Fonctions de saturation et zones mortes

La saturation est le type de non-linéarité considérée dans ce manuscrit. Une modélisation
pour la fonction de saturation est proposée par la suite. Considerons u ∈ ℜm le vecteur
de commande, la fonction de saturation se défini comme :

Ψ(u,ū) :

{
ℜm → ℜm

u → Ψ(u,ū)(u) = sat(u,ū)(u)
(I.2.1)
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où u(i) < 0 et ū(i) > 0, ∀i = 1, ...,m, sont les bornes inférieures et supérieures de la
saturation. En général, seule la fonction de saturation décentralisée est considérée pour
chaque composante i = 1, ...,m :

sat(u,ū)(u(t))(i) = sat(u,ū)(u(i)(t)) =





ū(i) if u(i)(t) > ū(i)

u(i)(t) if u(i) ≤ u(i)(t) ≤ ū(i)

u(i) if u(i)(t) < u(i)

(I.2.2)

Normalement, afin de simplifier le problème, la saturation est considérée symétrique de
telle sorte que ū = −u. Quand les deux bornes sont égales en valeur absolue la notation
est simplifiée. Les bornes sont remplacées par u0 = |ū| = |u|. Les saturations symétriques
sont designées avec la notation suivante : sat(u0)(u).

Une autre répresentation possible de la limitation des actionneurs est donnée par la
fonction zone morte qui est définie par :

φ(u0)(u) = u− sat(u0)(u) (I.2.3)

φ(u0)(u(i)) =





u− u0(i) if u(i) > u0(i)

0 if −u0(i) ≤ u(i) ≤ u0(i)

u+ u0(i) if u(i) < −u0(i)

I.2.3 Condition de secteur

Les conditions de stabilité convexes, pour des systèmes soumis à des saturations, peuvent
être obtenues en utilisant des non-linéarités de secteur modélisant les fonctions de satura-
tion et les zones mortes. Une approche a été développée par [GdSJT05, TPGdSJ06] afin
d’inclure la saturation dans une non-linéarité de secteur. Considerons la fonction zone
morte φ(u0)(·), definie par (I.2.3). Considerons l’ensemble polyédral suivant :

S(u0) =
{
(u, ω) ∈ ℜm ×ℜm;

∣∣u(i) + ω(i)

∣∣ ≤ u0(i) , i = 1, ...,m
}

(I.2.4)

Alors le lemme suivant peut être établi.

Lemme I.1. [GdSJT06] Considerons la fonction φ(u0)(u) définie par (I.2.3). Si u et ω
appartiennent à S(u0) la relation suivante est satisfaisante :

φ(u0)(u)
′T [φ(u0)(u) + ω] ≤ 0 (I.2.5)

pour toute matrice T ∈ ℜm×m diagonale et définie positive.
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Cette dernière caractérisation constitue une importante avancée car elle permet d’obtenir
une formulation convexe du problème de synthèse anti-windup, autant dans le cas de la
synthèse d’un correcteur statique [GdSJT05, BT09] que dynamique [BRT07].

De plus ce résultat comporte des corollaires pour l’estimation du domaine de stabilité
des systèmes soumis à des saturations. Il s’agit d’un résultat classique mis sous forme des
LMIs [Kha92, SL91, Vid92, SW05].

I.3 La fonction saturation asymmétrique

D’habitude, le contrôle de satellites est limité au contrôle d’attitude (sans se préoccuper de
la position relative). Il s’agit d’assurer la bonne orientation du satellite afin de satisfaire
aux exigences de la mission. Les actionneurs utilisés pour ce type de commande sont
des roues à réaction [CNE05]. Le principe est de corriger les couples perturbateurs par
une boucle de contrôle impliquant les actionneurs précédents. Cependant, les futures
missions spatiales exigeront la commande de l’accélération ou de la position relative. Ces
spécifications impliquent l’utilisation d’actionneurs capable de réaliser un effort sur l’axe
linéaire. Par conséquent, des systèmes propulsifs doivent être utilisés.

Ce genre de systèmes propulsifs présente souvent une fonction de répartition [Dur93].
Les systèmes dynamiques comme les satellites sont modélisés par les équations classiques
de la dynamique. Dans ces équations, les accélérations linéaires et angulaires sont définies
comme une fonction dépendant d’un vecteur de forces et de couples externes. Pourtant,
l’action qui contrôle le satellite est réalisée par un système propulsif qui génère une im-
pulsion continue unidirectionelle. Une fonction déterminant la façon dont on génère le
torseur de commande (forces et couples) avec un ensemble redondant d’actionneurs est
donc nécessaire. Les fonctions de distribution sont chargées de ce transfert. Dans le
chapitre 2, une introduction générale sur la fonction de repartition est proposée. Nor-
malement ces fonctions sont très non-linéaires ce qui empêche les techniques classiques de
l’anti-windup de s’appliquer. C’est pourquoi certaines fonctions permettant la synthèse
anti-windup ont été preséntées.

Les propulseurs à haute précision ont une capacité limitée. Il faut donc inclure des
fonctions de saturation lors de leur modélisation. De plus, c’est la saturation qui nous
oblige à devoir tenir compte de la fonction de distribution. L’autre problème lié aux
propulseurs est que leurs limites de fonctionnement sont asymétriques et donc la fonction
saturation l’est également. En fait, ce genre d’actionneur génère seulement une propulsion
positive. Normalement dans la littérature, aussi bien pour l’analyse de la stabilité des
systèmes saturés que pour la synthèse anti-windup, seulles les saturations symétriques sont
traitées. Quelques travaux ont symétrisé la saturation avec une approche conservative
qui consiste à prendre la borne minimale en valeur absolue comme unique borne de la
saturation [Lan03]. Cette technique n’est pas valable pour la saturation des propulseurs.
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En revanche, dans le chapitre 2 des techniques de symétrisation ont été présentées.

Le système en boucle fermée considéré dans cette thèse est décrit par le schéma bloc
de la figure I.3 et est défini par la représentation dans l’espace d’état suivante:

yc
fC

T ū

0

sat(0,ū)(T )
M P

ypup

Figure I.3: Système en boucle fermée étudié.





ẋp = Apxp + Bpup

ẋc = Acxc + BcCpxp

up = Msat(0,ū)(f(yc))
yc = Ccxc +DcCpxp

(I.3.1)

où xp ∈ ℜnp est l’état du système, yp ∈ ℜq la sortie mesurée et up ∈ ℜmc la commande.
xc ∈ ℜnc est l’état du contrôleur et yc ∈ ℜmc la sortie de contrôleur.

Le lien entre la sortie du contrôleur yc et la commande up est assuré par le système
propulsif. Une fonction de répartition notée f lie yc au vecteur propulsif T ∈ ℜm. Ensuite
T est lié à up à travers la matrice d’influence M ∈ ℜmc×m. Entre les deux on retrouve la
limitation de capacité décrite par la fonction de saturation décentralisée : sat(0,ū)(T(i))

I.3.1 Introduction à la fonction de distribution

Une fonction de répartition (AF) est un algorithme nécessaire pour distribuer la sortie du
contrôleur parmi les différents propulseurs. Sans tenir compte de la boucle de contrôle,
l’algorithme de répartition calcule la solution optimale pour les propulseurs à partir du
torseur de commande issu du contrôleur.

En général, trouver une AF est un problème d’optimisation dynamique non-linéaire
étant donné qu’il y a des contraintes à considérer comme la capacité des actionneurs. Le
problème peut être résolu en utilisant des techniques d’optimisation non-linéaire [NW99],
e.g., programmation quadratique. La communauté aérospatiale a traité ce problème
depuis longtemps. Les techniques les plus utilisées sont basées sur les travaux de Durham
[Dur93, Dur94b, Dur94a] et des stratégies par châıne d’actionneurs [BHSB96]. D’autres
AF sont établies à partir d’un modèle linéaire qui décrit le rapport entre les propulseurs
et le torseur de commande. Celui-ci permet l’application des solutions explicites par
moindres carrés. Dans ce dernier cas, l’AF peut être mis en oeuvre à travers de simples
opérations matricielles comme l’inverse généralisé [Sor97].
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Deux fonctions de répartition sont proposées. Une est linéaire et l’autre est non-linéaire
mais avec des non-linéarités traitables avec les techniques présentées dans le chapitre 1.
Elles sont présentés ci-dessous :

T = f(yc) = M∗yc (I.3.2)

oùM∗ est la matrice pseudo-inverese de la matrice d’influence, c’est-à-dire,M∗ = M
′

(MM
′

)−1.
L’autre fonction de répartition est donnée par :

T = f(yc) =sat1(0,ū)(M
∗
(:,1)yc(1)) + sat2(0,ū)(M

∗
(:,2)yc(2)) + · · ·

+ satmc(0,ū)(M
∗
(:,mc)yc(mc)) (I.3.3)

I.3.2 Symétrisation de la fonction de saturation

Les saturations considérées étant, elles, asymétriques, on présente des méthodes de symétri-
sation. Dans [Lan03] il est proposé de garder la valeur de la plus petite de ces deux bornes,
supérieure et inférieure, en valeur absolue. Le lemme suivant formalise cette technique:

Lemme I.2. Soit sat(u,ū)(·) une saturation asymétrique où u < ū. La saturation peut se
symétriser comme suit sat(−u0,u0)(·) avec u0

u0 = min(|u|, |ū|) (I.3.4)

Le lemme I.2 néglige une partie de la capacité, ce qui introduit du conservatisme. De
plus dans le cas où l’on travaille avec des propulseurs, pour lesquels la borne minimale
u = 0, on ne peut pas utiliser cette technique car la borne symétrique résultant est u0 = 0.

I.3.3 Symétrisation basée sur le noyau

Il est clair que l’introduction d’un vecteur constant dans la saturation modifie ses bornes.
Plus précisèment:

Propriété I.1. Condidérons u et Nζ appartenant à ℜm, Nζ un vecteur constant. La
propriété suivante est vérifiée:

sat(0,ū)(u+Nζ) = sat(−Nζ,ū−Nζ)(u) +Nζ (I.3.5)

sous la contrainte que
0 < Nζ(i) < ū(i), i = 1, ...,m. (I.3.6)
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Pourtant, des contraintes supplémentaires doivent être prises en compte si on veut que
l’introduction du vecteur Nζ ne modifie pas la dynamique du système linéaire en boucle
fermée :

Lemme I.3. Soient Nζ ∈ Ker(M), c’est-à-dire, MNζ = 0. Alors:

1. pendant la zone linéaire (sans saturation), up n’est pas modifié car up = MT =
M(f(yc) +Nζ) = Mf(yc) = yc.

2. pendant la zone non-linéaire (avec saturation), up est légèrement modifié car up =
Msat(0,ū)(f(yc) +Nζ) = Msat(−Nζ,ū−Nζ)(f(yc)).

Avec la Propriété I.1 et le Lemme I.3 on peut définir le vecteur symétrisant candidat.

Définition I.2. S’il existe Nζ satisfaisant 0 < Nζ(i) < ū(i), i = 1, ...,m, et MNζ = 0
(i.e. Nζ appartient à Ker(M)), alors Nζ est nommé vecteur symétrisant candidat.

L’existence de Nζ modifie les bornes de la saturation, mais si on égalise ces dernières,
alors on pourrait appliquer la relation (I.3.4) sans introduire de conservatisme. Cela est
possible avec un certain Nζ nommé vecteur symétrisant :

Définition I.3. Un vecteur symétrisant candidat Nζ est un vecteur symétrisant Nζsym
quand les valeurs absolues des deux bornes, supérieure et inférieure, sont égales :

| −Nζsym(i)| = |ū(i) −Nζsym(i)|, i = 1, ...,m. (I.3.7)

Alors

Nζsym =
ū(i)

2
, i = 1, ...,m. (I.3.8)

Si un tel vecteur existe alors la saturation est symétrisée sans conservatisme :

Lemme I.4. [BPT+09] S’il existe un vecteur symétrisant donné par la Définition I.3, une
fonction de saturation asymétrique sat(0,ū)(·), peut se symétriser sous la forme sat(−u0,u0)(·) =
sat(u0)(·) où u0 est défini comme

u0 =
ū

2
. (I.3.9)

Selon la Définition I.2, le vecteur symétrisant Nζsym = ū
2
doit vérifier l’appartenance

au noyau de M , c’est-à-dire, ū
2
∈ Ker(M) (i.e. M ū

2
= 0 ). Ceci est vrai si le lemme

suivant est vérifié :

Lemme I.5. Nζsym = ū
2
est un vecteur symétrisant candidat si

∑m

i=1 M(j,i) = 0 et ū(i) =
ū(k) pour j = 1, ...,mc, i = 1, ...,m, k = 1, ...,m et i 6= k.
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I.3.4 Symétrisation par fonction variable du noyau

Lorsque la fonction de saturation est symétrisée, le terme Nζsym est ajouté à f . En
l’absence de perturbation, le point d’équilibre est xeq = 0 et la sortie du contrôleur est
nulle yceq = 0. Cependant la poussée T n’est pas égale à zéro :

Teq = f(yceq) +Nζsym = f(0)︸︷︷︸
0

+
ū

2
=

ū

2
(I.3.10)

Cette poussée à l’équilibre est totament inutile et, de surcrôıt, diminue le temps de vie
de la mission de part la consommation de carburant qu’elle implique. La prochaine étape
est de proposer une fonction Nζvar qui évolue avec yc de telle sorte qu’elle symétrise la
saturation quand l’actionneur sature, et qui amène la poussée à zéro à l’équilibre.

Définition I.4. [BPT+09] Une fonction vecteur Nζvar(yc) : ℜmc → ℜm est une fonction
variable du noyau (VKF) si :

1. Nζvar(i) =
ū(i)
2

= Nζsym(i) si

(
f(i)(yc) +Nζvar(i)

)
< 0 où

(
f(i)(yc) +Nζvar(i)

)
> ū(i)

Autrement dit, la fonction variable du noyau est égale au vecteur symétrisant quand
le système est saturé : |f(i)(yc)| > ū(i)

2
.

2. A la surface de commutation, |f(i)(yc)| = ū(i)

2
, Nζvar(i) est continue avec Nζsym(i),

c’est-à-dire, Nζvar(i) = Nζsym(i) =
ū(i)

2
.

3. Dans la zone linéaire, |f(i)(yc)| < ū(i)

2
, Nζvar(i) est tel que

0 ≤ f(i)(yc) +Nζvar(i) ≤ ū(i)

4. Nζvar(i) ∈ Ker(M), c’est-à-dire, MNζvar = 0.

Dans le chapitre 2 deux exemples possibles de fonctions variables du noyau ont été
décrits et testés. Une comparaison a été faite entre le vecteur symétrisant et les VKF
selon le niveau de la consomation.

Ces techniques permettent de considérer, pour la synthèse du correcteur anti-windup,
un système avec saturation asymétrique comme un système avec des saturation symétriques.
En se basant sur cela, la synthèse anti-windup a été présentée dans le chapitre 3 pour les
systèmes avec saturation symétrique.
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I.4 Méthodes de synthèse anti-windup

Le windup est un phénomène qui se manifeste par un important dépassement du signal
de commande et un excessif temps de réaction à cause de la saturation des actionneurs.
Le phénomène du windup fut detecté à la moitié du 20eme siècle [Loz56]. Il apparâıt le
plus souvent dans le cas des systèmes qui utilisent des actionneurs de capacité limitée et
qui présentent une boucle de contrôle avec un contrôleur composé par des intégrateurs,
comme par exemple un PID [FR67, AR89]. Quand la saturation est active, l’erreur
continue est intégrée, déformant le signal de commande. Négliger ces limitations peut
engendrer des phénomènes indésirables (comme la dégradation de la performance) ou
même catastophiques (comme la perte de la stabilité) [BHSB96].

Les saturations étant présentes dans la plupart des applications indutrielles, au vu
des conséquences éventuelles présentées dans le paragraphe précédent, le calcul de lois de
commande tenant compte de ces saturations constitue un défi de la plus grande impor-
tance. Plusieurs travaux ont étudié ce sujet dans la littérature et plusieurs techniques ont
été développées vers cette direction.

Dans la littérature, les techniques permettant de faire face aux problèmes de la satu-
ration peuvent globalement être répartie selon deux approches [TT09]. La première sera
nommée comme l’approche par une étape. Le but est de trouver un unique contrôleur
qui prend en compte les besoins en termes de performances ainsi que la présence de sat-
urations. Ce contrôleur, qui peut être non-linéaire, essaie de satisfaire les spécifications
nominales, tout en prenant en compte les contraintes de capacité. Cette approche a été
étudiée par plusieurs travaux dans la littérature. D’abord quelques recherches ont mon-
tré différentes manières de calculer l’ensemble maximal de conditions initiales telles que
la saturation est évitée et que le système résultant en boucle fermée suit le comporte-
ment linéaire [GT91, DS91]. D’une certaine manière, on pourrait dire que ces travaux
essayent de savoir jusqu’à quel point le contrôleur peut traiter linéairement les limitations
de l’entrée. Cependant, si la saturation est évitée, la performance et/ou le domaine de
stabilité peuvent être moindre par rapport à ce qu’il pourrait être en réalité. Alors, pour
ce type d’approche, un pas en avant est fait. Il s’agit de calculer une loi de commande
qui maximise le domaine de stabilité tout en permettant la saturation de l’actionneur
[GH85, HL01, KGE02, PTH07, TGGE07, SSY94, Tee95]. Même si cette méthode est en
principe satisfaisante et qu’une importante portion de la littérature lui est consacrée, elle a
été souvent critiquée en raison de son conservatisme, de son manque d’appel à l’intuition,
notamment lors de l’étape de réglage, et de sa difficile application à des problèmes pra-
tiques.

De l’autre côté, un deuxième approche consiste à séparer la synthèse du contrôleur en
deux étapes. Par conséquent, on l’appellera l’approche à deux étapes. D’abord le con-
trôleur dédiée à la performance nominale est calculé. En fait, le contrôleur est déterminé
en considerant un système linéaire. La deuxième partie est dédiée à la gestion de la sat-
uration. Une des principales approches à deux étapes est connue comme l’anti-windup.
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La présence de ce correcteur cherche à faire face à la saturation et à prévenir, autant que
possible, l’apparition de ses effets. Une idée classique d’anti-windup est d’introduire des
modifications au contrôleur quand la saturation est active. C’est uniquement quand la
saturation est active que le correcteur anti-windup commence à agir pour modifier le com-
portement du système en boucle fermée. Le but est de trouver un correcteur anti-windup
qui garantisse la stabilité pour une région de l’espace d’état aussi grande que possible,
tout en dégradant le moins possible la performance du système. Il parâıt évident qu’un
compromis doit se faire entre la taille du domaine de stabilité et la performance assurée.
Ce type d’approche est très attractif car la boucle anti-windup peut travailler avec une loi
de commande donnée a priori. En fait, elle représente une technique intéressante puisque
les concepteurs de contrôleurs peuvent utiliser des techniques linéaires qui leur sont famil-
ières et intuitives puis simplement ajouter une couche additionnelle afin de tenir compte
du comportament non-linéaire. A l’origine, la synthèse anti-windup reposait sur des méth-
odes ad-hoc pensées pour des contrôleurs PID [FR67, AR89], qui sont les plus courants
dans les applications industrielles. L’anti-windup a été proposé pour plusieurs applica-
tions dans différents domaines comme l’aéronautique [QTG06, RBTP07], l’aérospatial
[PDTP08, BPT+09], la mécanique [TZM06] et même la fusion nucléaire [SWHK05].

Deux architectures principales peuvent être distinguées pour la synthèse de l’anti-
windup [GTTZ09]. La première est appelée Anti-Windup Linéarisé Direct (DLAW) et la
deuxième nommée Anti-Windup par Récupération de Modèle (MRAW).

Le DLAW appartient à une large famille de correcteurs anti-windup décrite dans une
étude récente [KCMN94]. L’idée de base est d’introduire une boucle directe depuis la
saturation vers le contrôleur à travers l’anti-windup. Au cours de la dernière décen-
nie, l’anti-windup concernant les systèmes exponentiellement instables a été traité. Un
article important dans ce domaine est [KM97, MP96], qui aborde le problème de l’anti-
windup statique. [GdSJT05], [CLW02] représentent les premières applications des LMIs
à la synthèse d’un anti-windup statique assurant la stabilité locale asymptotique. De
plus, [WL03] propose une formulation permettant le calcul d’un anti-windup dynamique.
Récemment, [BRT07, GHP+03] ont presenté des conditions LMI pour le calcul d’un anti-
windup concernant la performance L2. Voir [BT09] pour une approche pratique et aussi
[WP98, TP04, BRT07, TGdSJB06] dans le contexte de la stabilité globale.

Le MRAW suit un paradigme différent. Il est basé sur la sélection d’un correcteur
anti-windup comme un filtre dynamique, qui incorpore un modèle du système. Le but de
ce filtre est d’essayer de récupérer la réponse du système linéaire en boucle fermée. Cette
approche est basée sur les résultats présentés dans [TK97a] et [TK97b] où le MRAW
est nommé comme le problème anti-windup L2. Des illustrations de cette architecture
peuvent être consultées dans [ZT02] pour les systèmes exponentiellement stables, dans
[TZM06] pour les systèmes marginallement stables et dans [Tee99] pour les systèmes
exponentiellement instables.

Ces architectures sont deux manières différentes d’aborder le problème de synthèse
de l’anti-windup. Chacune présente des avantages et des inconvénients. Une troisième
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stratégie possible repose sur le mélange des deux approches. Cette nouvelle architec-
ture est appelée Extension de l’Anti-Windup par Récupération de Modèle (EMRAW).
L’EMRAW est le résultat principal de ce chapitre. Il utilise la technique de filtrage du
MRAW tout en complétant la struture de contrôle par un DLAW statique. Cette exten-
sion apporte des résultats intéressants.

I.4.1 Extension de l’anti-windup par récupération de modèle

Cette section présente l’extension de l’approche MRAW en la combinant avec un cor-
recteur DLAW statique afin de calculer un anti-windup dynamique pour des systèmes
exponentiellement instables. Cette combinaison est appelée Extension de l’Anti-Windup
par Récupération de Modèle (EMRAW). L’EMRAW suit le même schéma que le MRAW.
Par conséquence, le correcteur anti-windup est construit avec les matrices du système.
Pourtant l’EMRAW élargit l’approche MRAW grâce à l’ajout d’un gain statique. Ce
gain peut se concevoir comme un DLAW statique. La Figure I.4 montre la structure de
l’approche EMRAW.

+

+

+

+

−

−

−ve

yref Eaw

Faw

xc

C

yaw

v1

v1

yc

yp

±u0

v1 − φ(u0)(yc + v1)

xp

P

DLAW

MRAW = P
EMRAW

xaw

xaw

sat(yc + v1)
zp

Figure I.4: Schéma bloc de l’EMRAW.

Le modèle du système (P), le contrôleur (C) et le correcteur EMRAW apparaissent
dans les équations de la boucle fermée :
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P :

{
ẋp = Apxp + Bpsat(u0)(yc + v1)
yp = Cpxp

(I.4.1)

C :

{
ẋc = Acxc + Bc(yp − yaw) + ve
yc = Ccxc +Dc(yp − yaw)

(I.4.2)

AW :





ẋaw = (Apxaw + Bpv1) +Bpφ(u0)(yc + v1)
yaw = Cpxaw

v1 = Fawxaw

ve = Eawφ(u0)(yc + v1)

(I.4.3)

où xp ∈ ℜnp est l’état du système et yp ∈ ℜq la sortie mesurée. xc ∈ ℜnc est l’état du
contrôleur et yc ∈ ℜmc sa sortie. xaw ∈ ℜnaw est l’état du correcteur anti-windup avec
naw = np, yaw ∈ ℜq et v1 ∈ ℜm sont les sorties générées par la partie MRAW et ve ∈ ℜnc

est la sortie issue de la partie DLAW statique (gain Eaw) .

Le gain Eaw est un DLAW statique car il introduit une boucle directe entre la zone
morte φ(u0) et l’état du contrôleur xc via le signal ve.

Le EMRAW présente aussi un retour stabilisant v1. Comme dans l’approche MRAW le
défi est de trouver une loi de contrôle pour calculer un retour v1 qui stabilise le correcteur
anti-windup (I.4.3). Si la boucle anti-windup est stable avec le retour v1, alors la sortie
yaw converge vers zéro. Par conséquent, la sortie du système yp converge vers la référence
yref .

Le choix du retour stabilisant v1 n’est pas trivial pour un système exponentiellement
instable. Dans le cadre de ce travail, on cherche uniquement la stabilité locale. Par
conséquent, on définit v1 comme un retour statique

v1 = Fawxaw (I.4.4)

Pour ce choix de v1 le EMRAW est, en fait, un MRAW, pour lequel v1 serait un
retour statique, plus un DLAW statique. Si on considère un v1 comme (I.4.4), la boucle
anti-windup (I.4.3) est reformulée comme suit :

ẋaw = (Ap + BpFaw)xaw −Bpφu0(yc + Fawxaw)
yaw = Cpxaw

(I.4.5)

où Faw est un gain statique garantissant la stabilité asymptotique de la matriceAp+BpFaw,
c’est-à-dire, l’existence d’une matrice Pp = P

′

p > 0 telle que (Ap + BpFaw)
′

Pp + Pp(Ap +
BpFaw) < 0.

D’après [TK97a], si la boucle anti-windup (I.4.3) est locallement stable avec v1 =
Fawxaw, alors le système (I.4.1)-(I.4.3) est aussi locallement stable. Le but consiste alors
à optimiser le domaine de stabilité afin de garantir la fiabilité de la mission. Le calcul du
gain Faw est tel qu’il maximise le domaine de stabilité.
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La stabilité est donc assurée par v1 (I.4.4) et le domaine est maximisé lors du calcul
de Faw. Par conséquence, les degrés de libertés additionnels de l’approche EMRAW, par
rapport au simple MRAW, introduits par le gain Eaw, peuvent être utilisés pour améliorer
la performance du système.

I.4.1.a Introduction d’un critère de performance

Dans l’approche EMRAW, en supposant une boucle anti-windup, la sortie du système yp
converge vers yref . Un système appelé idéal est mis en parallèle du système en boucle
fermée (I.4.1)-(I.4.3). La sortie de ce système idéal yid décrit le comportement désiré
pour la sortie yp. Autrement dit, on voudrait que yp ait le même comportement que yid.
Pourtant, yp converge vers la référence yref . Si yref est au plus près possible de yid, alors la
sortie du système saturé yp va converger vers une meilleure réponse. Par conséquence, la
différence entre les signaux yref et yid doit être minimisée afin d’améliorer la performance
du système.

xc

C

ve

yid

yrefyaw
v1

yc

yp
±u0

φ(u0)(yc)

xp

P

ẋid = Aidxid

xid

+

+

+

+

−

−

−

EMRAW

xaw

sat(u0)(yc + v1)

zp

z

Figure I.5: Strategie d’optimisation de la performance pour le EMRAW.

Dans le contexte du EMRAW, le critère d’optimisation consiste à minimiser la norme
L2 {z} où z = yref − yid. La Figure I.5 présente le schéma bloc qui décrit cette stratégie.

La dynamique du système idéal est exprimée avec la représentation d’état suivante :

ẋid = Aidxid; yid = Cidxid (I.4.6)

où xid ∈ ℜnid et yid ∈ ℜq. Aid est Hurwitz. Les matrices Aid et Cid sont choisies par le
concepteur. Ce choix dépend de la dynamique du système.

Soit le vecteur d’état étendu ξ = [x
′

p x
′

c x
′

aw x
′

id]
′

. Le système en bouclé fermée
(I.4.1), (I.4.2), (I.4.3) et (I.4.6) s’exprime comme indiqué ci-dessous :

ξ̇ = (A+ BφFawCs)ξ + (Bφ + BvDaw)φ(u0)((K+ FawCs)ξ)

z = yref − yid = yp − yaw − yid = Cξ (I.4.7)
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où z ∈ ℜp et

A =




Ap + BpDcCp BpCc BpDcCp 0
BcCp Ac BcCp 0
0 0 Ap 0
0 0 0 Aid


 ;Bφ =




−Bp

0
−Bp

0


 ;Bv =




0
Inc

0
0


 ;

Cs = [0 0 Inaw
0] ;C = [Cp 0 − Cp − Cid] ;K = [DcCp Cc −DcCp 0] .

Remarque I.1. En schématisant, on peut considérer que les deux parties de l’EMRAW
ont différentes fonctions. La première partie, i.e. le MRAW, garantit la convergence de
yp ver yref , alors que la deuxième, i.e. le DLAW statique, modifie yref afin qu’il soit le
plus près possible de yid.

I.4.2 Synthèse du correcteur EMRAW

Soit le système (I.4.7). En définisant n = np + nc + naw + nid et He(A) = A + A
′

, le
théorème suivant est établi :

Théorème I.2. [BPT+10b] Soient v ∈ ℜn, kγ et kρ à valeurs positives, s’il existe des
scalaires positifs γ et ρ, une matrice définie positive W ∈ ℜn×n, un matrice Y ∈ ℜm×n,
une matrice Z ∈ ℜnc×m, une matrice diagonale définie positive S ∈ ℜm×m et une matrice
Faw ∈ ℜm×np satisfaisant min (kγγ + kρρ) sous les contraintes




He [AW + BφFawCsW ] J1 WC
′

∗ −2S 0
∗ ∗ −γIp


 < 0 (I.4.8)

[
W WK

′

(i) − Y
′

(i)

∗ u2
0(i)

]
≥ 0; i = 1, ...,m. (I.4.9)

[
W v
∗ ρ

]
≥ 0 (I.4.10)

où J1 = BφS+BvZ+Y
′

+WC
′

sF
′

aw, alors E(P ) =
{
ξ ∈ ℜn; ξ

′

Pξ < 1
}
avec P = W−1 est

un domaine de stabilité pour le système (I.4.7) avec Daw = ZS−1 et Faw. De plus, E(P )
est maximisé selon la direction v, avec le poids kρ, et la performance 1/γ est maximisée
avec le poids kγ.

Remarque I.2. Si v = xp(0) dans (I.4.10) le domaine de stabilité est maximisé selon la
direction des états du système saturé.

Pourtant, on peut déduire des équations précédentes que Faw et W ne peuvent pas
être calculées en même temps car les inégalités ne sont pas linéaires en ces variables (voir
le produit FawCsW dans (I.4.8)). Une méthode est donc proposée par la suite pour la
synthèse du correcteur anti-windup.
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I.4.3 Calcul du correcteur EMRAW

I.4.3.a Algorithme Coordonnée-descendant

L’inégalité bilinéaire matricielle (BMI) (I.4.8) peut s’exprimer d’une façon plus adaptée à
l’utilisation de l’algorithme coordonnée-descendant présenté par [PA01].

Proposition I.3. Soient kγ et kρ des valeurs positives, il existe des gains anti-windup
Faw et Daw tels que les conditions du Theorème I.2 sont satisfaites s’il existe des scalaires
positifs γ et ρ, une matrice symmétrique définie positive W ∈ ℜn×n, une matrice Y ∈
ℜm×n, une matrice Z ∈ ℜnc×m, une matrice diagonale définie positive S ∈ ℜm×m, des
matrices Ks ∈ ℜn×np, F ∈ ℜnp×np et R ∈ ℜm×np satisfaisant min(kγγ + kρρ) s.t. (I.4.9),
(I.4.10) et




He [AW ] WC
′

s BφS + BvZ + Y
′

WC
′

∗ 0 0 0
∗ ∗ −2S 0
∗ ∗ ∗ −γIp




+He







Ks

−I
0
0



[
R

′

B
′

φ −F R
′

0
]

 < 0 (I.4.11)

De plus E(W−1) =
{
ξ ∈ ℜn; ξ

′

W−1ξ < 1
}

est un domaine de stabilité pour le système

(I.4.7) avec Daw = ZS−1 et Faw = R(F
′

)−1.

Considérant la nouvelle formulation de la proposition I.3, on peut adapter l’algorithme
présenté dans [PA01]. L’algorithme n’évite pas d’introduire des relaxations, mais permet
la recherche de la matrice de Lyapunov à chaque itération. Cet algorithme est décomposé
en quatre opérations présentées ci-dessous :

Algorithme I.1. (Coodonnée-decendant)

1. (Initialisation - k=1) choisir un gain d’initialisation Ks.

2. (Pas k - première partie) pour ce choix de Ks, résoudre le problème de minimisation
LMI :

min(kγγ + kρρ) s.t. (I.4.9), (I.4.10) et (I.4.11)

Garder les valeurs R et F obtenues.

3. (Pas k - deuxième partie), pour ce choix de R et F, on résout le problème de mini-
sation LMI :

Critk = min(kγγ + kρρ) s.t. (I.4.9), (I.4.10) et (I.4.11)
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Garder la valeur de Ks obtenue.

4. (Finalisation) si |Critk+1−Critk| < ǫ, alors arrêter, Faw = R(F
′

)−1, sinon k ← k+1
et aller au pas 2.

Le point délicat de l’algorithme I.1 est l’initialisation de Ks. Pourtant, ce choix peut
être facilité par la prise en compte de quelques propriétés sur Ks liées à la stabilité du
système en boucle fermée (I.4.7).

Lemme I.6. La variable Ks de l’inégalité (I.4.11) est un gain de retour tel que la fonc-
tion de Lyapunov V (ξ) = ξ

′

W−1ξ démontre simultanément la stabilité des deux systèmes
(I.4.7) et ξ̇ = (A+KsCs)ξ.

I.4.3.b Algorithme basé sur les objectifs

Un algorithme alternatif est ensuite proposé. Il est basé sur la connaissance de l’objectif
qu’à chaque gain du EMRAW. Autrement dit, d’un côté on calculera Faw en sachant qu’il
stabilise la boucle anti-windup, et de l’autre, on calculera Daw en minimisant la différence
entre de yref et yid. Cet algorithme se divise en deux parties indépendantes conduisant à
une troisième partie.

Algorithme I.2. [BPT+10b](Basé objectif)

• (Partie analyse - 1) Régler Faw tel que (Ap+BpFaw)
′

Pp+Pp(Ap+BpFaw) < 0 avec
Pp = P

′

p > 0 avec la meilleure réponse possible. Simuler le système et analyser la
réference. Garder Faw.

• (Partie LMI - 2) Choisir un rapport kγ/kρ grand. Ensuite, régler un gain F ∗
aw tel

que (Ap + BpF
∗
aw)

′

Pp + Pp(Ap + BpF
∗
aw) < 0 et la dynamique de (Ap + BpF

∗
aw) soit

plus rapide. La partie analyse (pas 1) donne des directions sur la manière dont
sont choisis les pôles de (Ap + BpF

∗
aw) (normalement dix fois plus rapides que ceux

de (Ap + BpFaw)). Avec F ∗
aw fixé, les relations (I.4.8)-(I.4.10) deviennent LMIs.

Résoudre les LMIS pour calculer Daw.

• (Partie vérification) Avec Faw (Partie analyse - pas 1) fixé, et avec Daw de la partie
LMI (pas 2), résoudre le problème d’analyse (I.4.8)-(I.4.10). Evaluer la stabilité
avec le paramètre ρ. Si ρ < ρdesired arrêter, sinon revenir à la partie LMI (pas 2)
avec un rapport kγ/kρ plus petit et/ou une dynamique plus lente pour les pôles de
(Ap + BpF

∗
aw).

A la différence de l’algorithme I.1, il n’y a pas de preuve de convergence pour l’algorithme
I.2. Cependant pour certaines applications, la connaissance du système peut être utilisée
dans la première partie de l’algorithme I.2 afin d’obtenir ainsi de meilleurs résultats.
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Le chapitre 3 présente aussi deux résultats qui montrent que les différentes techniques
de symétrisation du chapitre 2 peuvent être appliquées sans modifier les méthodes de
synthèse anti-windup.

Enfin, les résultats du chapitre 3 ont été illustrés avec un système simplifié du contrôle
d’attitude de satellite.

I.5 Résultats sur le pilotage des satellites à commande

saturante

Dans cette thèse, trois configurations du contrôle du vol en formation de satellites sont
présentées et simulées, avec et sans anti-windup. Dans ce résumé on ne présente que les
resultats sur le contrôle d’attitude et la position relative d’une formation de deux satellites.
C’est dans ce cas que les résultats plus intéressant apparaissent.

I.5.1 Modélisation du problème d’attitude et de position rela-
tive

Le problème de vol en formation considéré est composé de deux satellites pour lesquels
la position relative selon l’axe z est asservie en même temps que l’attitude du deuxième
satellite (satellite 2). Le premier satellite (satellite 1) réalise seulement des déplacements
dans l’axe z.

La dynamique de l’attitude, sous l’hypothèse de petits angles, est décrite par la mod-
élisation classique du double intégrateur [CNE05, Hug04]:

θ̈ = J−1
Gi Ci (I.5.1)

où JGi est la matrice d’inertie du satellite i par rapport au centre de masse et Ci est la
somme des couples externes appliqués au satellite i.

La dynamique de la position relative est également décrite par un double intégrateur:

z̈i = m−1
i Fi (I.5.2)

où zi est le déplacement selon l’axe z du satellite i et Fi la somme de forces externes de
ce même satellite.

Cependant, lorsque l’attitude est considérée, l’équation (I.5.2) est modifiée. A cause
de la caratérisation particulière du capteur de position relative, la dynamique angulaire
du satellite 2 est couplée avec la position relative [Gau07, PCU+05, WPK05].
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Figure I.6: Erreur de position relative généré par un erreur d’attitude.

La figure I.6 illustre l’erreur de postion relative mesurée. En utilisant les expressions
(I.5.1) et (I.5.2), la dynamique de la position relative mesurée est décrite par :

∆z̈m = ∆z̈ +Dθ̈y = −m−1
2 F2 +m−1

1 F1 +DJ−1
G2

C2 (I.5.3)

où D est une constante.

Avec cette modélisation, dans le cas où l’actionneur est un système propulsif et où
un contrôleur linéaire assure la stabilité de la boucle linéaire, la boucle fermée considérée
peut s’écrire de la façon suivante :





ẋp = Apxp + Bpupẋc = Acxc + BcCpxp

yp = Cpxp

zp = Czxp

up = Msat(u0)(M
∗yc) =

[
M1sat(u0)(M

∗
1 yc1)

M2sat(u0)(M
∗
2 yc2)

]

yc = Ccxc +DcCpxp

(I.5.4)

Remarque I.3. Les bornes de saturation sont asymétriques avec ū comme borne supérieure
et 0 comme borne inférieure. Or l’expression du système (I.5.4) est donnée avec des bornes
symétriques. Une technique de symétrisation par fonction variable de noyau a été utilisée.

I.5.2 Simulations sur le contrôle d’attitude et de position rela-
tive

Le système (I.5.4) est simulé avec les correcteurs anti-windup suivants :

• DLAW statique (ligne pleine);
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• DLAW dynamique d’ordre plein (ligne discontinue);

• DLAW dynamique d’ordre fixé (ligne pointillée et discontinue);

• MRAW avec v1 (I.4.4) (ligne pointillée);

• EMRAW calculé avec l’algorithme2 I.2 (ligne avec les étoiles);

• EMRAW calculé avec l’algorithme3 I.1 (ligne avec les cercles).
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Figure I.7: Attitude et position relative avec plusieurs anti-windup.

La Figure I.7 montre les réponses temporelles de l’attitude et de la position rela-
tive. Une caracteristique importante doit être mise en avant : l’allure des réponses avec
l’approche DLAW est complètement différente de celle obtenue avec le MRAW/EMRAW.
Il faut remarquer aussi que quand l’EMRAW est calculé avec l’algorithme I.1 on obtient un
comportement comme s’il était un correcteur de type DLAW. Ceci est dû à des problèmes
d’initialisation de l’algorithme I.1.

2Algorithme basé objectif.
3Algorithme coordonnée-descendant.
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Dans le cas du DLAW, l’attitude est la première à converger suivie de la position
relative. Comme l’attitude et la position relative sont couplées selon la façon dont la
mesure de la position relative est prise, la statégie suivante de contrôle est mise en oeuvre
: d’abord l’attitude est stabilisée puis la position relative est contrôlée sans que le problème
de couplage n’apparaisse.

Pourtant, lorsque le MRAW et EMRAW (calculé avec l’algorithme I.2) sont utilisés,
la stratégie de contrôle change : l’attitude et position relative convergent simultanément.
Ce phénomène réduit sensiblement le temps de réponse du système car la position relative
n’attend pas que l’attitude soit arrivée à l’équilibre.

Afin de comprendre pourquoi la stratégie de contrôle change avec un correcteur de
type MRAW/EMRAW, on doit prendre en compte les considérations suivantes :

• le même propulseur génère le couple et la force pour contrôler les deux états attitude
et position relative;

• la retour stabilisant v1 modifie les propulseurs;

• dans la définition des matrices d’état pour MRAW/EMRAW, le signal v1 dépend
de la dynamique de l’attitude et de la position relative.

De plus, les propulseurs contrôlent simultanément ces deux dynamiques. Ainsi, un
couplage de l’attitude vers la position et vice-versa est introduit. En conclusion, v1 utilise
la capacité des propulseurs du contrôleur ainsi que l’attitude et la position relative. v1 peut
introduire un couplage parmi les dynamiques afin de les faire converger simultanément.

Le temps de réponse est un critère de comparaison intéressant. Pour le système (I.5.4)
avec un correcteur DLAW, l’attitude converge en 300s environ et la position relative en
1000s environ en fonction du type de DLAW consideré. Ensuite pour le MRAW l’attitude
et la position convergent avec 290s ce qui est clairement inférieur (pour la position rela-
tive). Ensuite pour l’EMRAW (issu de l’algorithme I.2) l’attitude et la position convergent
en 320s et 300s respectivement. Enfin pour l’EMRAW (issu de l’algorithme I.1), l’attitude
et la position convergent en 330s et 980s respectivement, ce qui montre que le EMRAW
se comporte comme un correcteur DLAW.

Remarque I.4. Les deux approches, MRAW et EMRAW présentent la capacité de faire
converger les états du système avec la même rapidité. Leur structure utilise la capacité
des propulseurs comme unique actionneur pour les deux, attitude et position relative. Par
conséquent ces méthodes sont des approches très intéressantes pour la commande des
systèmes MIMO soumis à des saturations de propulseurs.

Finalement, le chapitre 5 montre l’effet de l’anti-windup dans une configuration type
drag-free (contrôle d’accélération). En particulier on démontre l’existence d’un anti-
windup trivial qui annule l’influence de la saturation sur le système.
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I.6 Conclusion générale

I.6.1 Contributions personnelles

La première contribution des travaux de cette thèse est la mise en place de plusieurs solu-
tions permettant la symétrisation de la saturation. Dans le chapitre 2, la particularité des
systèmes utilisant des propulseurs comme actionneurs est mise en avant. Cette structure
a été exploitée afin de pouvoir symétriser la saturation. D’un point de vue théorique, des
conditions nécessaires et suffissantes pour l’obtention d’un vecteur symétrisant candidat
ont été apportées. On peut alors utiliser des approches conservatives existant dans la
littérature et permettant d’obtenir une borne symétrique en prenant le minimum entre la
valeur absolue de la borne supérieure et inférieure. En particulier, un vecteur modifiant la
saturation de telle sorte que la borne supérieure et inférieure sont égales a été présenté. Des
conditions suffisantes pour la validité du vecteur symétrisant ont été apportées [BPT+09].
Ensuite, concernant l’application de ces méthodes, une fonction variable du noyau a été
définie pour éviter la surconsommation à l’équilibre. Plus précisément, on a présenté des
conditions suffisantes pour une fonction variable du noyau particulière.

La symétrisation a été mise en avant comme une étape clé afin de pouvoir utiliser
les méthodes de synthèse anti-windup. Les contrôleurs anti-windup actuels existant dans
la littérature considèrent seulement des saturations symétriques. Dans les cas où elles
sont asymétriques on doit d’abord utiliser des méthodes de symétrisation. La deuxième
contribution de la thèse est présentée dans le chapitre 3 et traite du rapport entre la
synthèse anti-windup et la symétrisation de la saturation. Nous avons démontré que
l’introduction d’un vecteur symétrisant n’affecte pas les résultats du processus de synthèse
de l’anti-windup [BPT+09]. De façon similaire au vecteur symétrisant, il a été prouvé que
le résultat sur l’anti-windup n’est pas affecté par la fonction variable du noyau.

La troisième contribution de cette thèse consiste à proposer une nouvelle structure
pour la synthèse de l’anti-windup dynamique. Cette nouvelle approche a été nommée
Extended Model Recovery Anti-Windup (EMRAW) [BPT+10b]. L’idée principale consiste
à réutiliser la procédure de synthèse du Model Recovery Anti-Windup (MRAW) et à
l’étendre en ajoutant un Direct Linear Anti-Windup (DLAW). La combinaison de ces deux
approches amène à des conditions non-convexes. Deux algorithmes ont été présentés afin
de pouvoir trouver une solution au problème de synthèse. Le premier est un algorithme
itératif, basé sur une procédure coordonnée-descendante. La deuxième est un algorithme
heuristique, basé sur l’objectif de chacun des éléments constituant le correcteur anti-
windup. Dans le contexte du premier algorithme, des conditions sur son initialisation ont
été introduites.

Les principaux résultats du manuscrit ont été évalués et testés dans les chapitres 4 et
5. Ainsi, les dernières contributions apportées sont de type méthodologique. D’abord, un
guide sur la façon d’initialiser le premier algorithme a été proposé. Ensuite, l’application
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de la synthèse de l’EMRAW nous a permis de montrer l’avantage de cette structure
dans une configuration de vol en formation. Finalement, un autre résultat important est
apparu dans le contexte du rapport entre la fonction de répartition et l’anti-windup. Des
simulations ont montré que l’introduction d’un correcteur anti-windup peut corriger la
limitation d’une fonction de répartition simple et apporter les mêmes performances que
celles retrouvées avec une fonction de distribution plus complexe et efficace.

I.6.2 Perspectives

Le correcteur anti-windup a été montré comme un outil intéressant pour la gestion de la
saturation des actionneurs. En particulier, l’EMRAW a présenté de bons résultats sur
un problème de vol en formation. Dans la thèse on a observé que l’anti-windup basé sur
l’approche par récupération de modèle suppose la parfaite connaissance du modèle du
système. Cependant ceci n’est pas vrai en général. La présence d’erreurs de modélisation,
comme des incertitudes paramétriques, la simplification de modes flexibles ou des non-
linearités négligées rendent impossible, en pratique, la connaissance parfaite du modèle.
Par conséquent, un premier domaine de recherche à explorer serait l’analyse de l’anti-
windup soumis à des systèmes incertains. De façon similaire, la synthèse de l’anti-windup
pour des systèmes incertains représente un domaine de recherche potentiel pour l’avenir.
Quelques travaux ont déjà abordé ce sujet [THP04, MTBP06, FB07] mais le conservatisme
de ces approches est encore important [KTP10].

Sur ce sujet et sur le cas d’application traité dans ce manuscrit, une type particulier
d’incertitudes est mis en avant : les erreurs d’alignement des tuyères et les incertitudes
sur la capacité maximale des propulseurs. Ce type d’incertitudes peut être décrit par
une matrice d’influence incertaine. Fondamentalement, ce problème est équivalent à celui
consistant à considérer une matrice Bp incertaine. Pourtant, en s’appuyant sur le sens
physique de la matrice d’influence, il est possible de faire des simplifications qui pourraient
réduire le conservatisme.

Un autre point intéressant pour les futures recherches concerne la réduction de l’ordre
de l’anti-windup. Comme il a été remarqué dans la thèse, un des principaux inconvénients
de l’approche EMRAW est qu’on est forcé d’avoir un correcteur anti-windup du même
ordre que le système. Il serait intéressant de développer des méthodes permettant de
réduire l’ordre de l’anti-windup en éliminant, par exemple, des dynamiques secondaires
du système. Dans ce cadre, les resultats pourraient être liés à la synthèse anti-windup
pour des systèmes incertains.

Finalement, une dernière direction vers laquelle pourraient être dirigées les futures
études est la définition d’une méthodologie différente pour la synthèse anti-windup. Les
correcteurs anti-windup basés sur l’approche par récupération de modèle ont la particular-
ité de reproduire le comportement linéaire du système. Rappelons la relation yl = yp−yaw.
Or, il y a un retour stabilisant v1 qui amène yaw à zéro et donc yp vers yl. L’ensemble
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du MRAW et du système non-linéaire peut se voir comme un observateur du système
linéaire. Ainsi le but des recherches serait de reformuler le problème anti-windup comme
un problème d’estimation/observation. Une fois le problème réécrit sous cette forme
alternative, l’idée consisterait à utiliser les techniques de synthèses definies pour les esti-
mateurs/observateurs afin de calculer un correcteur anti-windup.
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