J. M. Comité-de-lecture, M. C. Crolet, M. Stroe, and . Racila, Decreasing of mechanotransduction process with age, Publications et conférences Publications dans des revues internationales avec, pp.1-43, 2010.

M. Predoi-racila, M. C. Stroe, and J. M. Crolet, Human cortical bone: the SiNuPrOs model. Part II ??? a multi-scale study of permeability, Computer Methods in Biomechanics and Biomedical Engineering, vol.129, issue.1, pp.81-89, 2010.
DOI : 10.1115/1.2834881

URL : https://hal.archives-ouvertes.fr/hal-00485237

M. C. Stroe, M. Racila, and J. M. Crolet, Numerical simulation of fluid flow in the cortical part of a human femur, Computer Methods in Biomechanics and Biomedical Engineering, vol.11, issue.sup1, pp.235-236, 2009.
DOI : 10.1016/j.jbiomech.2007.09.028

URL : https://hal.archives-ouvertes.fr/hal-00485244

W. Conférences, Models and Images for Porous Media, XXXIV-` eme Congrès Annuel de la Société de Biomécanique, pp.31-32, 2009.

J. M. Publication-soumise, M. C. Crolet, M. Stroe, and . Racila, Mechanotransduction in bone. Role of the piezoelectricity. Numerical approach, Journal of Royal Society Interface

E. Aarden, E. Burger, and P. Nijweide, Function of osteocytes in bone, Journal of Cellular Biochemistry, vol.7, issue.3, pp.287-299, 1994.
DOI : 10.1002/jcb.240550304

B. Aoubiza, J. Crolet, and A. Meunier, On the mechanical characterization of compact bone structure using the homogenization theory, Journal of Biomechanics, vol.29, issue.12, pp.12-1539, 1996.
DOI : 10.1016/S0021-9290(96)80005-4

A. Ascenzi, A. Et, and . Benvenuti, Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation, Journal of Biomechanics, vol.19, issue.6, pp.455-463, 1986.
DOI : 10.1016/0021-9290(86)90022-9

A. Ascenzi and E. Bonucci, The shearing properties of single osteons, The Anatomical Record, vol.2, issue.3, pp.499-510, 1972.
DOI : 10.1002/ar.1091720304

R. B. Ashman, S. C. Cowin, W. C. Van-buskirk, and J. C. Rice, A continuous wave technique for the measurement of the elastic properties of cortical bone, Journal of Biomechanics, vol.17, issue.5, pp.349-361, 1984.
DOI : 10.1016/0021-9290(84)90029-0

C. A. Basset and R. O. Becker, Generation of Electric Potentials by Bone in Response to Mechanical Stress, Science, vol.137, issue.3535, pp.1063-1064, 1962.
DOI : 10.1126/science.137.3535.1063

C. A. Bassett, H. Fleisch, and M. Blackwood, Electromechanical factors regulating bone architecture, dans Third European Symposium on Calcified Tissues, pp.78-89, 1966.

H. Bayraktar, E. Morgan, G. Niebur, G. Morris, E. Wong et al., Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue, Journal of Biomechanics, vol.37, issue.1, pp.27-35, 2004.
DOI : 10.1016/S0021-9290(03)00257-4

T. Beno, Y. Yoon, S. C. Cowin, and S. P. Fritton, Estimation of bone permeability using accurate microstructural measurements, Journal of Biomechanics, vol.39, issue.13, pp.13-2378, 2006.
DOI : 10.1016/j.jbiomech.2005.08.005

S. Bensamoun, M. Ho-ba-tho, S. Luu, J. Gherbezza, and J. D. Belleval, Spatial distribution of acoustic and elastic properties of human femoral cortical bone, Journal of Biomechanics, vol.37, issue.4, pp.503-510, 2004.
DOI : 10.1016/j.jbiomech.2003.09.013

URL : https://hal.archives-ouvertes.fr/hal-00023425

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, 1978.

A. Beraudi, S. Stea, M. Montesi, M. Baleani, and M. Viceconti, Collagen orientation in human femur, tibia and fibula shaft by circularly polarized light, Bone, vol.44, p.320, 2009.
DOI : 10.1016/j.bone.2009.03.603

M. Biot, General Theory of Three???Dimensional Consolidation, Journal of Applied Physics, vol.12, issue.2, p.155, 1941.
DOI : 10.1063/1.1712886

URL : https://hal.archives-ouvertes.fr/hal-01368635

E. Bossy, Evaluation ultrasonore de l'os cortical par transmission axiale : modélisation et expérimentation in vitro et in vivo, 2003.

V. Bousson, A. Meunier, C. Bergot, E. Vicaut, M. Rocha et al., Distribution of Intracortical Porosity in Human Midfemoral Cortex by Age and Gender, Journal of Bone and Mineral Research, vol.26, issue.7, pp.1308-1317, 2001.
DOI : 10.1359/jbmr.2001.16.7.1308

C. Brighton, S. Et, and . Albelda, Identification of integrin cell-substratum adhesion receptors on cultured rat bone cells, Journal of Orthopaedic Research, vol.63, issue.6, pp.766-773, 1992.
DOI : 10.1002/jor.1100100604

E. Burger, J. Et, and . Klein-nulend, Mechanotransduction in bone -role of the lacunocanalicular network, FASEB Journal, vol.13, pp.101-112, 1999.

R. Burridge, J. Et, and . Keller, Poroelasticity equations derived from microstructure, The Journal of the Acoustical Society of America, vol.70, issue.4, p.1140, 1981.
DOI : 10.1121/1.386945

M. Carroll, An effective stress law for anisotropic elastic deformation, Journal of Geophysical Research: Solid Earth, vol.76, issue.B13, pp.7510-7512, 1979.
DOI : 10.1029/JB084iB13p07510

E. Cavalcanti-adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger et al., Cell Spreading and Focal Adhesion Dynamics Are Regulated by Spacing of Integrin Ligands, Biophysical Journal, vol.92, issue.8, pp.2964-2974, 2007.
DOI : 10.1529/biophysj.106.089730

Y. Chevalier, D. Pahr, H. Allmer, M. Charlebois, and P. Zysset, Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation, Journal of Biomechanics, vol.40, issue.15, pp.15-3333, 2007.
DOI : 10.1016/j.jbiomech.2007.05.004

M. Coppolino, S. Et, and . Dedhar, Bi-directional signal transduction by integrin receptors, The International Journal of Biochemistry & Cell Biology, vol.32, issue.2, pp.171-188, 2000.
DOI : 10.1016/S1357-2725(99)00043-6

B. Couteau, M. Ho-ba-tho, R. Darmana, J. Brignola, and J. Arlaud, Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties, Journal of Biomechanics, vol.31, issue.4, pp.383-386, 1998.
DOI : 10.1016/S0021-9290(98)00018-9

S. C. Cowin, Bone mechanics handbook, 2001.
DOI : 10.1115/1.1579463

S. C. Cowin, S. Weinbaum, and Y. Zeng, A case for bone canaliculi as the anatomical site of strain generated potentials, Journal of Biomechanics, vol.28, issue.11, pp.1281-1297, 1995.
DOI : 10.1016/0021-9290(95)00058-P

J. Crolet, B. Aoubiza, and A. Meunier, Compact bone: Numerical simulation of mechanical characteristics, Journal of Biomechanics, vol.26, issue.6, pp.677-687, 1993.
DOI : 10.1016/0021-9290(93)90031-9

J. Crolet, M. Et, and . Racila, Collagen fibres effect on the mechanical properties of cortical bone. A numerical approach, Computer Methods in Biomechanics and Biomedical Engineering, vol.11, issue.sup001, pp.69-71, 2008.
DOI : 10.1016/S1350-4533(98)00007-1

URL : https://hal.archives-ouvertes.fr/hal-00484748

J. Crolet, M. Et, and . Racila, Elaboration of assumptions for the fluid problem at microscopic scale in Sinupros, mathematical model of cortical bone, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.11-12, 2009.
DOI : 10.1016/j.mcm.2008.07.027

URL : https://hal.archives-ouvertes.fr/hal-00484746

J. Crolet, M. Racila, R. Mahraoui, and A. Meunier, A new numerical concept for modeling hydroxyapatite in human cortical bone, Computer Methods in Biomechanics and Biomedical Engineering, vol.29, issue.2, pp.139-143, 2005.
DOI : 10.1016/0021-9290(93)90031-9

URL : https://hal.archives-ouvertes.fr/hal-00485272

J. Currey, Strength of Bone, Nature, vol.17, issue.4840, pp.513-514, 1962.
DOI : 10.1038/195513a0

X. Dong, X. Et, and . Guo, Geometric Determinants to Cement Line Debonding and Osteonal Lamellae Failure in Osteon Pushout Tests, Journal of Biomechanical Engineering, vol.126, issue.3, p.387, 2004.
DOI : 10.1115/1.1762901

H. Follet, Caractérisation biomécanique et modélisation 3D par imagerie X et IRM haute résolution de l'os spongieux humain : ´ evaluation du risque fracturaire

H. Frost, Tetracycline-based histological analysis of bone remodeling, Calcified Tissue Research, vol.69, issue.1, pp.211-237, 1969.
DOI : 10.1007/BF02058664

E. Fukada, Piezoelectricity of bone and osteogenesis of piezoelectric films, dans Mechanisms of Growth Control, 1981.

E. Fukada, Ferroelectric polymers : chemistry, physics and applications, Piezoelectricity and Pyroelectricity of Biopolymers, 1995.

E. Fukada, I. Et, and . Yasuda, On the Piezoelectric Effect of Bone, Journal of the Physical Society of Japan, vol.12, issue.10, pp.1158-1162, 1957.
DOI : 10.1143/JPSJ.12.1158

D. Ganta, G. Pastizzo, M. Mccarthy, and G. Gronowicz, Ascorbic acid deficiency inhibts Integrin expression prior to its effect on collagen synthesis in fetal rat parietal bone cultures, J Bone Miner Res, vol.9, p.254, 1994.

C. Gatzka, E. Schneider, M. K. Tate, U. Knothe, and P. Niederer, A novel ex vivo model for investigation of fluid displacements in bone after endoprosthesis implantation, Journal of Materials Science : Materials in Medicine, vol.10, pp.12-801, 1999.

V. R. Girault, Finite Element Methods for Navier?Stokes Equations, Theory and Algorithms, 1986.

J. Goes, S. Figueiro, J. De-paiva, and A. Sombra, Piezoelectric and Dielectric Properties of Collagen Films, physica status solidi (a), vol.16, issue.2, pp.1077-1083, 1999.
DOI : 10.1002/(SICI)1521-396X(199912)176:2<1077::AID-PSSA1077>3.0.CO;2-F

J. Halpin, S. Et, and . Tsai, Environmental factors in composite materials design, 1967.

C. Hellmich, J. Barthélémy, and L. Dormieux, Mineral???collagen interactions in elasticity of bone ultrastructure ??? a continuum micromechanics approach, European Journal of Mechanics - A/Solids, vol.23, issue.5, pp.783-810, 2004.
DOI : 10.1016/j.euromechsol.2004.05.004

M. Ho-ba-tho, J. Rho, and R. Ashman, Atlas of mechanical properties of human cortical and cancellous bone, dans In vivo assessment of bone quality by vibration and wave propagation techniques. Part II, ´ edité par V, pp.7-32, 1991.

D. Hughes, D. Salter, S. Dedhar, and R. Simpson, Integrin expression in human bone, Journal of Bone and Mineral Research, vol.26, issue.5, pp.527-533, 1993.
DOI : 10.1002/jbmr.5650080503

R. Huiskes, H. Weinans, and M. Dalstra, Adaptive bone remodeling and biomechanical design considerations, Orthopedics, vol.12, pp.1255-1267, 1989.

C. Hung, S. Pollack, T. Reilly, and C. Brighton, Real-time calcium response of cultured bone cells to fluid flow, Clinical orthopaedics and related research, vol.313, p.256, 1995.

D. Ingber, Cellular tensegrity : defining new rules of biological design that govern the cytoskeleton, Journal of Cell Science, vol.104, pp.613-613, 1993.

W. Jee, Structure and function of bone tissue, dans Orthopaedics, Principles of Basic and Clinical Science, 1999.

J. Katz, Hard tissue as a composite material???I. Bounds on the elastic behavior, Journal of Biomechanics, vol.4, issue.5, pp.455-473, 1971.
DOI : 10.1016/0021-9290(71)90064-9

J. Katz, Composite material models for cortical bone, dans Mechanical properties of bone, 1981.

R. Keanini, R. Roer, and R. Dillaman, A theoretical model of circulatory interstitial fluid flow and species transport within porous cortical bone, Journal of Biomechanics, vol.28, issue.8, pp.901-914, 1995.
DOI : 10.1016/0021-9290(94)00157-Y

J. Keyak, Y. Et, and . Falkinstein, Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load, Medical Engineering & Physics, vol.25, issue.9, pp.781-787, 2003.
DOI : 10.1016/S1350-4533(03)00081-X

K. Tate and M. , ???Whither flows the fluid in bone???? An osteocyte's perspective, Journal of Biomechanics, vol.36, issue.10, pp.1409-1424, 2003.
DOI : 10.1016/S0021-9290(03)00123-4

K. Tate, M. Et, and U. Knothe, An ex vivo model to study transport processes and fluid flow in loaded bone, Journal of Biomechanics, vol.33, issue.2, p.247, 2000.
DOI : 10.1016/S0021-9290(99)00143-8

K. Tate, M. Et, and P. Niederer, Theoretical FE-based model developed to predict the relative contribution of convective and diffusive transport mechanisms for the maintenance of local equilibria within cortical bone, Adv Heat Mass Trans Biotech (ASME), vol.362, pp.133-142, 1998.

K. Tate, M. , P. Niederer, and U. Knothe, In Vivo Tracer Transport Through the Lacunocanalicular System of Rat Bone in an Environment Devoid of Mechanical Loading, Bone, vol.22, issue.2, pp.107-117, 1998.
DOI : 10.1016/S8756-3282(97)00234-2

S. Lees, J. Heeley, and P. Cleary, A study of some properties of a sample of bovine cortical bone using ultrasound, Calcified Tissue International, vol.4, issue.1, pp.107-117, 1979.
DOI : 10.1007/BF02408065

G. Li, J. Bronk, K. An, and P. Kelly, Permeability of cortical bone of canine tibiae* 1, Microvascular research, pp.302-310, 1987.

E. Malachanne, D. Dureisseix, P. Cañadas, and F. Jourdan, Experimental and numerical identification of cortical bone permeability, Journal of Biomechanics, vol.41, issue.3, pp.721-725, 2008.
DOI : 10.1016/j.jbiomech.2007.09.028

URL : https://hal.archives-ouvertes.fr/hal-00325944

J. Mammone, S. Et, and . Hudson, Micromechanics of bone strength and fracture, Journal of Biomechanics, vol.26, issue.4-5, pp.4-5, 1993.
DOI : 10.1016/0021-9290(93)90007-2

A. Martin, Tribo-electricity in wool and hair, Proceedings of the Physical Society, p.186, 1941.
DOI : 10.1088/0959-5309/53/2/310

P. Mayhew, C. Thomas, J. Clement, N. Loveridge, T. Beck et al., Relation between age, femoral neck cortical stability, and hip fracture risk, The Lancet, vol.366, issue.9480, pp.9480-129, 2005.
DOI : 10.1016/S0140-6736(05)66870-5

S. Mehta, Analysis of the mechanical properties of bone material using nondestructive ultrasound reflectometry, 1995.

I. Melton, L. , E. Chrischilles, C. Cooper, A. Lane et al., Perspective how many women have osteoporosis?, Journal of Bone and Mineral Research, vol.70, issue.2, pp.1005-1010, 1992.
DOI : 10.1002/jbmr.5650070902

A. Meunier, J. Katz, P. Christel, and L. Sedel, A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies, Journal of Orthopaedic Research, vol.9, issue.5, pp.770-775, 1988.
DOI : 10.1002/jor.1100060521

W. Miladi, M. Et, and . Racila, Mathematical model of fluid flow in an osteon: influence of cardiac system, Computer Methods in Biomechanics and Biomedical Engineering, vol.12, issue.sup1, pp.187-188, 2009.
DOI : 10.1080/10255840701479891

URL : https://hal.archives-ouvertes.fr/hal-00486844

M. Moss, Bone as a connected cellular network : modeling and testing, dans Biomédical Engineering, pp.117-119, 1991.

F. Murat, L. Et, and . Tartar, H-convergence, séminaire d'analyse fonctionnelle et numérique de l'université d'alger, Mimeographed notes, English translation : Topics in the Mathematical Modeling of Composite Materials, 1978.

W. Neumann, M. Et, and . Neumann, The chemical dynamics of bone, 1958.

A. Nur and J. Byerlee, An exact effective stress law for elastic deformation of rock with fluids, Journal of Geophysical Research, vol.70, issue.2, pp.6414-6419, 1971.
DOI : 10.1029/JB076i026p06414

J. Nye, Physical Properties of Crystals, 1960.

R. Pidaparti, A. Chandran, Y. Takano, and C. Turner, Bone mineral lies mainly outside collagen fibrils: Predictions of a composite model for osternal bone, Journal of Biomechanics, vol.29, issue.7, pp.909-916, 1996.
DOI : 10.1016/0021-9290(95)00147-6

K. Piekarski, Analysis of bone as a composite material, International Journal of Engineering Science, vol.11, issue.6, pp.557-558, 1973.
DOI : 10.1016/0020-7225(73)90018-9

K. Piekarski, M. Et, and . Munro, Transport mechanism operating between blood supply and osteocytes in long bones, Nature, vol.145, issue.5623, pp.80-82, 1977.
DOI : 10.1038/269080a0

M. Pithioux, P. Lasaygues, and P. Chabrand, An alternative ultrasonic method for measuring the elastic properties of cortical bone, Journal of Biomechanics, vol.35, issue.7, pp.961-968, 2002.
DOI : 10.1016/S0021-9290(02)00027-1

URL : https://hal.archives-ouvertes.fr/hal-00008733

M. Predoi-racila, Elaboration d'une modélisation mathématique du transfert multi-´ echelle des signaux mécaniques dans l'os cortical humain. Aspects théoriques et simulations numériques

M. Predoi-racila, J. Et, and . Crolet, Human cortical bone: the SiNuPrOs model, Computer Methods in Biomechanics and Biomedical Engineering, vol.14, issue.2, pp.169-187, 2008.
DOI : 10.1016/0021-9290(92)90286-A

URL : https://hal.archives-ouvertes.fr/hal-00485237

P. Prendergast, R. Et, and . Huiskes, Microdamage and Osteocyte-Lacuna Strain in Bone: A Microstructural Finite Element Analysis, Journal of Biomechanical Engineering, vol.118, issue.2, p.240, 1996.
DOI : 10.1115/1.2795966

M. Racila, J. Et, and . Crolet, Human cortical bone : Computer method for physical behavior at nano scale constant pressure assumption, Technology and Health Care, vol.14, issue.4, pp.379-392, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00485029

M. Racila, J. Et, and . Crolet, Nano and Macro Structure of Cortical Bone: Numerical Investigations, Mechanics of Advanced Materials and Structures, vol.29, issue.8, pp.655-663, 2007.
DOI : 10.1016/0021-9290(87)90024-8

URL : https://hal.archives-ouvertes.fr/hal-00484747

M. Racila, J. Et, and . Crolet, SiNuPrOs, modéle numérique de l'os cortical. modélisation du fluide et méthode de quantification des champs physiquesàphysiquesà diverseséchellesverseséchelles , dans Reconstruction osseuse et cutanée : biomécanique et techniques de l'ingénieur, 2008.

J. Y. Rho, L. Kuhn-spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone, Medical Engineering & Physics, vol.20, issue.2, pp.92-102, 1998.
DOI : 10.1016/S1350-4533(98)00007-1

J. Rice, M. Et, and . Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics, vol.80, issue.4, pp.227-241, 1976.
DOI : 10.1029/RG014i002p00227

J. Rudnicki, Effect of pore fluid diffusion on deformation and failure of rock, Mechanics of geomaterials : rocks, concretes, soils, p.315, 1985.

J. Sanchez-hubert, Asymptotic study of the macroscopic behaviour of a solid-fluid mixture, Mathematical Methods in the Applied Sciences, vol.272, issue.1, pp.1-11, 1980.
DOI : 10.1002/mma.1670020102

E. Sánchez-palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, vol.127, 1980.

N. Sasaki, T. Ikawa, and A. Fukuda, Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone, Journal of Biomechanics, vol.24, issue.1, pp.57-61, 1991.
DOI : 10.1016/0021-9290(91)90326-I

M. H. Shamos, L. S. Lavine, and S. M. , Piezoelectric Effect in Bone, Nature, vol.37, issue.4862, pp.1978-1981, 1963.
DOI : 10.1038/197081a0

M. Siebers, P. Ter-brugge, X. Walboomers, and J. Jansen, Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review, Biomaterials, vol.26, issue.2, pp.137-146, 2005.
DOI : 10.1016/j.biomaterials.2004.02.021

T. H. Smit, J. M. Huyghe, and S. C. Cowin, Estimation of the poroelastic parameters of cortical bone, Journal of Biomechanics, vol.35, issue.6, pp.829-835, 2002.
DOI : 10.1016/S0021-9290(02)00021-0

R. Steck, P. Niederer, and M. K. Tate, A finite difference model of load-induced fluid displacements within bone under mechanical loading, Medical Engineering & Physics, vol.22, issue.2, pp.117-125, 2000.
DOI : 10.1016/S1350-4533(00)00017-5

A. Sweeney, R. Byers, and R. Kroon, Mechanical characteristics of bone and its constituents, dans ASME Human Factors Conference, American Society of Mechanical Engineers, pp.1-17, 1965.

L. Ho-ba-tho, S. Rakotomanana, and . Clift, Determination of orthotropic bone elastic constants using fea and modal analysis, Journal of Biomechanics, vol.35, issue.6, pp.767-773, 2002.

R. Temam, Navier-Stokes equations, Studies in Mathematics and its Applications, 1979.
DOI : 10.1090/chel/343

M. Thompson, J. Et, and . Willis, A Reformation of the Equations of Anisotropic Poroelasticity, Journal of Applied Mechanics, vol.58, issue.3, p.612, 1991.
DOI : 10.1115/1.2897239

N. Tschoegl, The phenomenological theory of linear viscoelastic behavior : an introduction, 1989.
DOI : 10.1007/978-3-642-73602-5

C. Turner, M. Akhter, D. Raab, D. Kimmel, and R. Recker, A noninvasive, in vivo model for studying strain adaptive bone modeling, Bone, vol.12, issue.2, pp.73-79, 1991.
DOI : 10.1016/8756-3282(91)90003-2

C. Turner, M. Forwood, and M. Otter, Mechanotransduction in bone : do bone cells act as sensors of fluid flow ?, The FASEB Journal, vol.8, issue.11, p.875, 1994.

H. Wagner, S. Et, and . Weiner, On the relationship between the microstructure of bone and its mechanical stiffness, Journal of Biomechanics, vol.25, issue.11, pp.1311-1320, 1992.
DOI : 10.1016/0021-9290(92)90286-A

L. Wang, S. P. Fritton, S. C. Cowin, and S. Weinbaum, Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment, Journal of Biomechanics, vol.32, issue.7, pp.663-672, 1999.
DOI : 10.1016/S0021-9290(99)00059-7

N. Wang, J. Butler, and D. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, p.1124, 1993.
DOI : 10.1126/science.7684161

S. Weinbaum, S. C. Cowin, and Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, Journal of Biomechanics, vol.27, issue.3, pp.339-360, 1994.
DOI : 10.1016/0021-9290(94)90010-8

S. Weiss, M. Zimmerman, and R. Harten, The Acoustic and Structural Properties of the Human Femur, Journal of Biomechanical Engineering, vol.120, issue.1, pp.71-76, 1998.
DOI : 10.1115/1.2834309

J. Williams, J. Iannotti, A. Ham, J. Bleuit, and J. Chen, Effects of fluid shear stress on bone cells, Biorheology, vol.31, issue.2, p.163

Y. Yamato, M. Matsukawa, T. Otani, K. Yamazaki, and A. Nagano, Distribution of longitudinal wave properties in bovine cortical bone in vitro, Ultrasonics, vol.44, pp.233-237, 2006.
DOI : 10.1016/j.ultras.2006.06.055

D. Zhang, S. Weinbaum, and S. C. Cowin, Estimates of the Peak Pressures in Bone Pore Water, Journal of Biomechanical Engineering, vol.120, issue.6, pp.697-703, 1998.
DOI : 10.1115/1.2834881