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Un des buts de la recherche pharmaceutique est l'inhibition de protéines avec 

l'aide de petites molécules (ligands). L'une des phases clefs de ce procédé est la 

détermination du mode d'interaction entre un ligand et son récepteur. Cette 

tâche peut être entravée par l'absence de structure du complexe protéine-ligand. 

C'est pour répondre à ce besoin que nous présentons dans ce travail de thèse, 

une méthode capable de déterminer la structure de complexes protéine-ligands. 

Dans la méthode INPHARMA (Inter-ligands Nuclear Overhauser Effect for 

Pharmacophore Mapping), les inter-ligands NOEs (INPHARMA NOEs) sont 

utilisés pour déterminer l'orientation relative de deux ligands qui interagissent 

de manière compétitive avec un même récepteur. Cette nouvelle approche 

ouvre la voie à des applications pharmaceutiques, également au stade initial du 

développement, quand l'information structurale via la cristallographie par 

Rayons X est difficile d'accès.  
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In the process of structure-based drug design, the provision of the binding 

mode of ligands to the cellular receptor of interest is essential. This can suffer 

from limited access to protein/ligand structures, especially for the low affinity 

ligands that are commonly obtained from high throughput screening or 

fragment based lead discovery. In a common scenario crystal structures are 

available for one or several ligands but not for all chemical series of actual 

interest. Here, we present a new, NMR-based approach that allows overcoming 

this limitation. In the INPHARMA method interligand NOEs (Nuclear 

Overhauser Enhancement) are utilized to determine relative orientations of 

different chemical fragments binding competitively to a common receptor site. 

This novel methodology opens the way to the application of structure-based 

drug design already in an early stage of drug development, when structural 

information via crystallography is of difficult access.  
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Summary

The goal of pharmaceutical research is to control the activity of targets in
such manner that a therapeutically favorable response is achieved. In many
cases, scientists aim to inhibit proteins with small molecules. The task is
complicated and request tremendous amount of development before a drug
arrives to clinical applications. In the process of structure-based drug design,
the determination of the binding mode of ligands to the cellular receptor of
interest is essential. This can be hampered by limited access to protein-ligand
structures, especially for low affinity ligands that are commonly obtained from
high throughput screening or fragment based lead discovery. In a common
scenario crystal structures are available for one or several ligands but not for
all chemical series of actual interest.

In chapter 2, we present a NMR-based approach that allows overcoming
this limitation. In the INPHARMA method interligand NOEs (INPHARMA
NOEs) are utilized to determine relative orientations of different chemical
fragments binding competitively to a common receptor site. This novel meth-
odology opens the way to the application of structure-based drug design
already in an early stage of drug development, when structural information
via crystallography is of difficult access.

INPHARMA NOEs measured between two ligands binding competitively
to a common macromolecular receptor are interpreted quantitatively to derive
the binding mode of the two ligands. This approach relies on computationally
demanding full relaxation matrix calculations. In chapter 3, we demonstrate
that the INPHARMA NOEs measured in presence of a selectively-protonated
receptor can be interpreted in a semi-quantitative way to discriminate between
binding poses, thus relieving for the need of demanding computations.



2 Summary

In order to successfully apply INPHARMA, the methodology needs ad-
justment of various parameters that depend on the physical constants of the
binding event and on the receptor size. In chapter 4, we present a thorough
theoretical analysis of the INPHARMA interligand NOE effect in depend-
ence of experimental parameters and physical constants. This analysis helps
the experimentalist to choose the correct experimental parameters and con-
sequentially to achieve optimal performance of the methodology.

In chapter 5, we investigate the scenarios in which the structure of the
apo-receptor is not well defined, as it would be the case for low-resolution
models obtained by homology modeling or experimental methods such as
electron microscopy or lowest resolution X-ray crystallography. The method
exhibits high success rates (ranging from 30% to 100%), making INPHARMA
a powerful method to resolve small molecule protein complex structures.



Zusammenfassung

Das Ziel pharmazeutischer Forschung ist die Kontrolle der Aktivität
bestimmter Zielmoleküle, um eine therapeutisch gewünschte Reaktion her-
beizuführen. Oftmals wird versucht, Proteine durch kleine Moleküle zu in-
hibieren. Diese Aufgabe ist kompliziert und es bedarf eines hohen Arbeit-
saufwandes, bevor ein Wirkstoff Marktreife erlangt.

Im Prozess des strukturbasierten Wirkstoffdesigns ist die Aufklärung
des Bindemodus zwischen Liganden und zellulären Rezeptormolekülen von
zentraler Bedeutung. Dies setzt die Verfügbarkeit von Protein-Liganden-
Strukturen voraus, was oftmals schwierig ist, insbesondere für Liganden
geringer Affinität, wie sie häufig in high throughput screening Kam-
pagnen oder fragmentbasierter Wirkstoffentwicklung vorkommen. Häufig sind
Kristallstrukturen für einen einzelnen oder einige wenige Liganden verfügbar,
nicht jedoch für die komplette chemische Serie.

In Kapitel 2 wird eine NMR-Methode vorgestellt, die dabei helfen kann,
diese Limitierung zu überwinden. In der INPHARMA-Methode werden
Inter-Liganden-NOEs genutzt, um die relative Orientierung verschiedener
chemischer Fragmente aufzuklären, die kompetitiv an einen gemeinsamen
Rezeptor binden. Diese neuartige Methode eröffnet die Möglichkeit strukturb-
asierten Wirkstoffdesigns auch in frühen Phasen der Wirkstoffentwicklung,
wenn strukturelle Information kristallographisch nur schwer zugänglich ist.
INPHARMA-NOEs können zwischen zwei kompetitiven Liganden gemessen
werden, die an denselben Rezeptor binden und quantitativ genutzt werden,
um den Bindemodus der beiden Liganden aufzuklären. Dieser Ansatz nutzt
die rechenintensive Auswertung der full relaxation matrix.



4 Zusammenfassung

In Kapitel 3 wird demonstriert, dass INPHARMA-NOEs in Gegenwart
eines selektiv protonierten Rezeptors semi-quantitativ interpretiert werden
können und es ermöglichen, zwischen verschiedenen Bindeposen zu unter-
scheiden; dadurch wird die zeitaufwändige Berechnung vereinfacht. Um die
INPHARMA-Methode erfolgreich anwenden zu können, müssen verschiedene
Parameter angepasst werden, die von physikalischen Konstanten der moleku-
laren Interaktion und der Rezeptorgröße abhängen. In Kapitel 4 wird da-
her detailliert theoretisch die Abhängigkeit der INPHARMA-NOEs von ex-
perimentellen Parametern und physikalischen Konstanten untersucht. Dies
ermöglicht es dem Experimentator, die korrekten experimentellen Parameter
zu wählen und dadurch die bestmögliche Leistung der Methode zu erreichen.

In Kapitel 5 wird die Auswirkung mangelhafter struktureller Information
über den Rezeptor auf die Genauigkeit der INPHARMA-Methode untersucht,
wie sie beispielsweise für Homologiemodelle oder experimentelle Strukturen
aus Elektronenmikroskopie oder gering aufgelöster Röntgen-Kristallographie
vorliegt. Die Methode erzielt hohe Erfolgsraten (30 – 100%) und ist daher ein
wertvolles Werkzeug zur Untersuchung von Liganden-Protein-Komplexen.



Résumé

Introduction

Le but de la recherche pharmaceutique est de contrôler l’activité de
l’organisme de manière à obtenir une réponse thérapeutique. Dans plusieurs
cas, on recherche à inhiber l’action de protéines avec l’aide de petites molécules
(ligands). Elles sont supposées interagir spécifiquement avec la protéine
d’intérêt pour contrôler son activité.
La découverte d’un tel inhibiteur est difficile et demande un développement
de moyens conséquents avant qu’un médicament n’atteigne la phase cli-
nique. L’une des phases clefs de ce procédé est la détermination du mode
d’interaction entre un ligand et son récepteur. Cette tâche peut être entravée
par l’absence de structure du complexe protéine-ligand.
En effet, les inhibiteurs de protéines sont souvent découverts à travers des
tests d’activité à grande échelle ou l’on ne cherche pas à déterminer leurs
représentations en trois dimensions mais plutôt à repérer leur potentiel
d’inhibition. Cependant, même si la structure du complexe (protéine-ligand)
n’est pas accessible pour chaque ligand, certaines peuvent être connues. De
plus, la structure de la protéine seule (Apo structure) peut être répertoriée
dans une banque de donnée telle que la �Protein Data Bank�. C’est pour
répondre à ce besoin que nous présentons dans ce travail de thèse, une
méthode capable de déterminer la structure de complexes protéine-ligands.
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Résultats et Conclusion

Les chapitres 1 et 2 présentent les bases de la RMN qui permettront de
surmonter le problème. Dans la méthode INPHARMA (Inter-ligands Nuclear
Overhauser Effect for Pharmacophore Mapping), les inter-ligands NOEs (IN-
PHARMA NOEs) sont utilisés pour déterminer l’orientation relative de deux
ligands qui interagissent de manière compétitive avec un même récepteur.
Les inter-ligands NOEs sont des mesures de transferts d’aimantations d’une
molécule à une autre à travers l’espace. Etant donné que les ligands sont en
compétition pour un même récepteur, ils se partagent le site d’interaction et
par conséquent occupent le même espace au sein de la protéine à tour de rôle.
Lors de cette cinétique d’échange des ligands, une partie de l’aimantation de
chaque ligand va être transférée vers la protéine. Ce processus se fait par
couplages dipolaires entre les protons de chaque molécule. L’aimantation qui
est à présent sur la protéine va être conservée jusqu’à ce qu’un second lig-
and vienne à son tour dans la même poche d’interaction et récupère cette
aimantation déposée par son compétiteur. Le même transfert s’opère entre la
protéine et la petite molécule si bien qu’au finale tout apparait comme si les
ligands s’étaient transmis l’aimantation de l’un directement à l’autre; Or c’est
bien la protéine qui a relayé ce transfert. Les ligands quand à eux n’étaient
jamais proche l’un de l’autre. Le transfert d’aimantation ne pouvait donc pas
se faire sans la présence de la protéine. Les couplages dipolaires, sources de
ces transferts, dépendent fortement des distances entre les protons de chaque
molécule (ligands et protéine). C’est grâce à cette information que l’on peut
déterminer la manière dont les ligands viennent interagir avec leur récepteur.

Cette nouvelle approche ouvre la voie à des applications pharmaceutiques,
également au stade initial du développement, quand l’information structurale
via la cristallographie par Rayons X est difficile d’accès. Les INPHARMA
NOEs mesurés entre deux ligands en compétition pour un même récepteur
macromoléculaire sont donc évalués quantitativement pour déterminer le
mode d’interaction des deux ligands avec leur récepteur. Cette approche re-
pose sur des calculs complexes qui font intervenir la matrice de relaxation par
couplages dipolaires et échanges chimiques. Ces calculs sont très demandeur
en termes de puissance et de quantité de processeurs. Dans le chapitre 3, nous
démontrons que les INPHARMA NOEs, mesurés en présence de récepteurs
sélectivement protonés, peuvent être interprétés de manière semi quantitative.
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De cette manière, nous nous affranchissons du formalisme qui nécessite des
moyens importants sans que la méthode ne perde sa capacité de prédiction
de structures de complexe protéine-ligands.

Le succès de la mis en pratique de la méthode INPHARMA repose sur le
choix de plusieurs paramètres physiques. Ces paramètres dépendent des ca-
ractéristiques du système étudié, tel que la taille des molécules, leurs poids qui
définiront les temps de corrélations rotationnels, les affinités des ligands pour
leur récepteur, le temps de mélange de l’expérience, etc. Le chapitre 4 présente
une analyse théorique approfondie des INPHARMA NOEs dépendant des
paramètres expérimentaux et des constantes physiques. Cette analyse permet
de choisir les paramètres expérimentaux les mieux adaptés et par conséquent
d’obtenir un résultat optimal.

Le chapitre 5 s’attache à étudier les performances de la méthode dans les
situations où la résolution de la structure du récepteur est faible. C’est le
cas des modèles basses résolutions obtenues par modélisations moléculaire,
par homologie, ou par des méthodes expérimentales comme la microscopie
électronique ou la cristallographie par Rayons X à basse résolution. Dans
ces conditions nos prédictions sont largement correctes (en moyenne de 30
à 100 %) et bien au-delà des alternatives proposées par des méthodes pure-
ment in silico. La méthode INPHARMA apparâıt ainsi comme performante
et nous espérons qu’elle contribuera à résoudre des structures de complexes
moléculaires protéine-ligand.





Chapter 1

Introduction

1.1 Nuclear Magnetic Resonance

1.1.1 Basic concepts

The nuclear Overhauser effect is certainly one the most prominent concepts
in NMR spectroscopy. For structure determination, the NOE tool is excep-
tionally important. From the discovery and the first application to the most
recent findings, the NOE has always played a key role in NMR spectroscopy.
Indeed, the NOE is directly related to the inter-nucleus distance (vide infra).
This relationship is well known in the scientific community. But it appears
that NOEs are richer in content and contain extremely complex information,
such as reporting on motions occurring over a range of time-scales. In order
to catch a glimpse of this tremendously abundant source of information, we
need first to shed light on the origin of the NOE.

Running an NMR experiment consists of first exciting the molecular spins
in an intelligent manner and then waiting for return to the equilibrium state.
Independent of the equilibrium state, the process of reaching this state is
termed relaxation. In other words, relaxation is the process by which, over
time, the spins, and therefore the bulk magnetization, return to the equilib-
rium position. Describing the effect of relaxation is straightforward, while
understanding its origin and its relationship to molecular motions is more
difficult. It is recognized by the NMR community to be one of the most,
if not the most, difficult part of the NMR theory. The goal here is not to
derive rigorously all the key equations, but rather to illuminate the reader
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intuitively about the key concepts. Our discussion will reveal the importance
of the time-scale of molecular motions. Having explained the fundamental
phenomenon of relaxation, we will proceed to describe the origin of NOE.
Subsequently, the essential formalism will be developed.

For simplicity, and without losing generality, we consider henceforth that
the equilibrium state is the thermal equilibrium state. This supposes that
all coherences have vanished and the spin energy level populations are given
by the Boltzmann distribution. Relaxation to this state may be divided into
two processes. First, spin-spin relaxation concerns the decay of coherences.
Second, spin-lattice relaxation refers to the relaxation of the spin state popula-
tions to the Boltzmann distribution values. They are also known as transverse
relaxation and longitudinal relaxation, respectively.

For spin-1
2 nuclei (i.e. 1H , 13C and 15N ), relaxation is caused by fluc-

tuation of the magnetic field at the site of the nuclear spins. This is due
ultimately to molecular motions, both local and global, such as rotational
tumbling in solution. There are many sources of fluctuations of the mag-
netic field. We can consider, as an example, the direct dipole-dipole coupling
between two spins belonging to the same molecule. Each spin is associated
with a small magnetic moment and therefore creates a small magnetic field
around itself. As the molecule tumbles in solution, the direction and the
magnitude of the magnetic field generated by the first spin at the site of the
second spin changes. Another source of local field fluctuations is the so-called
chemical shift anisotropy (CSA). The molecular electron current induced by
an external magnetic field generates local fields. In a similar manner to the
dipole-dipole interaction, molecular tumbling leads to changes in the direction
and the magnitude of these local fields. The small fluctuations of the magnetic
field are responsible for the relaxation of the spin system to its equilibrium
state.

We can distinguish two types of field fluctuations. The first type consists
of the transverse components of the local fields, which contain a compon-
ent oscillating at the Larmor frequency (the resonance frequency of the spin
system). These transverse fields represent the non-secular contribution to re-
laxation and are responsible for the longitudinal relaxation and part of the
transverse relaxation. The second type of field fluctuation is that from the
longitundinal components of the fluctuating local fields, which constitute the
secular contribution and is partially responsible for transverse relaxation. In
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quantum physics, a secular perturbation is one that changes the energy of the
system but not its wavefunction, while a non-secular perturbation changes
both. Above, we cited a few examples of sources of random field fluctuations.
Different sources give rise to fluctuations of different amplitude. In liquid
state NMR and for the majority of the time, the dipole-dipole interaction
is dominant. If several mechanisms are active simultaneously, for example
when the CSA becomes significant at high magnetic fields or when there are
multiple dipole-dipole interactions, there is the possibility of observing cross-
correlated relaxation. Random field relaxation theory derives the transition
probabilities of a spin to change state, from an excited state, ”spin up” to
a low energy state, ”spin down”, and vice versa. For the sake of clarity and
simplicity, we do not show the mathematical derivation of the theory. But we
recall the main results for the case of the principal relaxation mechanism, the
dipole-dipole interaction. This interaction is the origin of the NOE.

1.1.2 Dipole-dipole relaxation and the nuclear Overhauser ef-

fect

The complete form of the dipole-dipole interaction between spins j and k is
represented in the spin Hamiltonian by HDD

jk , equation 1.1, where ejk is the
internuclear unit vector joining spin j to spin k, and Ij and Ik are the nuclear
spin angular momenta of spins j and k, respectively. It is possible to simplify
the spin Hamiltonian HDD

jk , by applying the so-called secular approximation.
It arises because the spin interactions are dominated by the large interaction
with the external magnetic field, which tends to hide some components of the
internal spin interactions. Further simplification of the secular Hamiltonian is
often possible as the result of rapid molecular motion. In isotropic liquids, the
secular dipole-dipole interactions HDD,secular

jk average to zero, 〈3cos2θjk−1〉 =
0. Consequently, this effect cannot be seen in a regular NMR spectrum.
Nevertheless, both the non-secular part of the dipole-dipole coupling and the
motion-averaged secular component can still cause relaxation.


HDD
jk = −µ0

4π
~γjγk
r3
jk

(3(Ij · ejk)(Ik · ejk)− Ij · Ik)

HDD,secular
jk = −µ0

4π
~γjγk
r3
jk

1
2

(3cos2θjk − 1)(3IjzIkz − Ij · Ik)
(1.1)
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We consider a weakly coupled homonuclear spin system, e.g. two isolated
protons with different chemical shifts. There are four eigenstates, |αα〉, |αβ〉,
|βα〉, |ββ〉, and therefore twelve possible transitions between these states.
The energy values are the eigenvalues of the interaction Hamiltonian in the
canonical space of the spin system. There are eight single-quantum trans-
itions. During such a transition, only one of the two spins is changing state,
from ”up” to ”down” or vice versa (Fig. 1.1).

|ββ>

|αβ>
|βα>

|αα>

W-β
W+β

Wβ-
Wβ+

Wα-

Wα+

W-α

W+α

Figure 1.1: Single-quantum transitions in a homonuclear system

There are two double-quantum transitions and two zero-quantum trans-
itions. In the first case, both spins invert their spin state in the same sense.
In the second case, both spins also change state, but in the opposite sense
(Fig. 1.2).

In the case of dipole-dipole interactions and using the results of random-
field fluctuation theory we can determine the probability of the transitions.



Wα+ = W+α = Wβ+ = W+β = W1(1 +
1
2

B)

Wα− = W−α = Wβ− = W−β = W1(1− 1
2

B)

W++ = W2(1 + B)

W−− = W2(1− B)

W+− = W−+ = W0

(1.2)
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|ββ>

|αβ>
|βα>

|αα>

W-+

W+-

W++

W--

Figure 1.2: Double-quantum and zero-quantum transitions in a homonuclear system

W0 =
1
10
b2J(0), W1 =

3
20
b2J(ω0), W2 =

3
5
b2J(2ω0),

J(ω) =
τc

1 + (ωτc)2
, b = −µ0

4π
~γ2

r3

(1.3)

J(ω) is the spectral density function; τc is the correlation time of the ran-
dom field, which also corresponds to the rotational correlation time of the
molecule. It is approximately equal to the time taken for a root-mean-square
rotation of one radian. In general, small molecules have short correlation
times while large molecules have long correlation times. The correlation time
is also influenced by external parameters such as temperature and viscosity.
In the first-order approximation of the Boltzmann distribution, B is a factor
to thermally correct the transition probabilities, B = ~γB0

kbT
. Indeed, the equi-

librium state of the spin system corresponds to a Boltzmann distribution
of populations with the lowest energy state, |αα〉, more populated than the
states |αβ〉, |βα〉, and with |ββ〉 being the least populated state. The terms
B ensure that is the case.
The factor b is a combination of fundamental physical constants and system
parameters, inclduing the vacuum magnetic permeability, µ0, the gyromag-
netic ratio, γ, and the distance between the spins, r. The magnetic permeabil-
ity does not change appreciably and is constant within a homogenous sample.
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The gyromagnetic ratio is dependent on the nucleus considered. If we ex-
cite carbons the transition probabilities and therefore the resulting relaxation
effects will be weaker than if we excite the protons. Indeed, the gyromag-
netic ratio of the proton is four times larger than that of carbon. Finally,
the distances represent the link between the relaxation rates and molecular
structure.

1.1.3 The Solomon equations

Equations describing the rate of change of population for each state can be
derived by taking into account the probabilities of transitions to and from
the other states, according to the diagrams in Fig. 1.1 and in Fig. 1.2. The
kinetic equation for the population of the state |αα〉 is:

d

dt
ραα = −(W−α+W−−+Wα−) ραα+W+α ρβα+W++ ρββ+Wα+ ραβ (1.4)

Considering the relation between the spin-state populations and the longit-
udinal magnetization of the two spins:

〈I1z〉 =
1
2

(ραα − ρβα − ρββ + ραβ)

〈I2z〉 =
1
2

(ραα + ρβα − ρββ − ραβ)
(1.5)

from which, after some algebra, we can derive the Solomon equations for the
longitudinal relaxation of the two-spin system:

d

dt

(
〈I1z〉
〈I2z〉

)
=

(
−Rauto Rcross
Rcross −Rauto

)(
〈I1z〉 − 〈I1z〉eq
〈I2z〉 − 〈I2z〉eq

)
(1.6)

where 〈I1z〉eq and 〈I2z〉eq are the thermal equilibrium values of the angu-
lar momentum operators, given by 〈I1z〉eq = 〈I2z〉eq = 1

4B. Rauto is the
auto-relaxation rate constant, given by Rauto = W0 + 2W1 + W2. The auto-
relaxation rate increases with the rotational correlation time of the molecule,
and therefore becomes faster as the molecule increases in size.
Rcross is the cross-relaxation rate constant, given by Rcross = W0 − W2.
The cross-relaxation rate can be positive or negative depending on the rota-
tional correlation time and is null for τc,null =

√
5

2ω0
. Cross-relaxation leads to
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the nuclear Overhauser effect, whereby the population difference across the
transitions of one spin are affected by the population difference across the
transitions of the other spin. It is therefore possible to cancel the NOE un-
der certain conditions. The NOESY experiment, which exploits the NOE to
transfer longitudinal magnetization between spatially proximal spins, is one
of the most utilized for molecular structure determination.

1.1.4 NOESY

The NOESY pulse sequence is relatively short.

(π/2)φ3
(π/2)φ2

(π/2)φ1

1 2 3 4 5 6

t1 τm t2

0

-1

1

φrec

Figure 1.3: Diagram of the NOESY pulse sequence with the coherence transfer pathways

The Hamiltonian is dominated by the Zeeman interaction. We consider
here that the two spins are sufficiently widely separated in the chemical struc-
ture to preclude any J-coupling (such coupling would only change the shape
of the peak in the spectrum in any case). Furthermore, we saw above that
the secular part of the dipolar interaction averages to zero with molecular
tumbling in solution.

Without neglecting the chemical shift offsets of the two spins, we can
follow the magnetization through the course of the pulse sequence with the
product operator representation of the density matrix.
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Cycle φ1 φ2 φ3 φrec

0 ψ π 0 0
1 ψ + π π 0 π

2 ψ π π/2 π/2
3 ψ + π π π/2 3π/2
4 ψ π π π

5 ψ + π π π 0
6 ψ π 3π/2 3π/2
7 ψ + π π 3π/2 π/2

Table 1.1: Eight-step phase cycles for the NOESY experiment. The angles φ1,2,3 are the

phases of the corresponding pulses in the NOESY pulse sequence and φrec is the receiver

reference phase (Fig. 1.3). ψ = (0;−π/2) changes according to the States procedure in

order to generate pure absorption line-shapes.

ρ(1) = I1z + I2z (1.7)

ρ(2) = −I1y − I2y

ρ(3) = (−I1ycos(Ω1t1) + I1xsin(Ω1t1)− I2ycos(Ω2t1) + I2xsin(Ω2t1)) e
−t1
T2

ρ(4) = (I1zcos(Ω1t1) + I1xsin(Ω1t1) + I2zcos(Ω2t1) + I2xsin(Ω2t1)) e
−t1
T2

The phases of the pulses are taken from table 1.1. The transverse magnet-
ization relaxes during the t1 time with a relaxation time constant T2. As can
be seen from the coherence transfer pathway shown below the pulse sequence
in Fig. 1.1, the desired magnetization between points 4 and 5 is longitudinal.
Therefore, the phase cycle applied acts to suppress the transverse magnetiza-
tion during this period. The remaining longitudinal relaxation evolves during
the mixing time τm according to the Solomon equations (Eq. 1.6). After
solving the equation (vide infra), we observe that the magnetization is mixed
as follows:

ρ(5) = (I1za11(τm)cos(Ω1t1) + I1za21(τm)cos(Ω2t1)) e
−t1
T2 (1.8)

+ (I2za22(τm)cos(Ω2t1) + I2za12(τm)cos(Ω1t1)) e
−t1
T2
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where the amplitudes are given by:

a11(τm) = a22(τm) = cosh(Rcrossτm)e−Rautoτm (1.9)

a12(τm) = a21(τm) = sinh(Rcrossτm)e−Rautoτm (1.10)

Finally, the last pulse gives:

ρ(6) = (−I1ya11(τm)cos(Ω1t1)− I1ya21(τm)cos(Ω2t1)) e
−t1
T2 (1.11)

− (I2ya22(τm)cos(Ω2t1)− I2ya12(τm)cos(Ω1t1)) e
−t1
T2

The signal is therefore:

scos(t1, t2) =a11(τm)cos(Ω1t1)eiΩ1t2e
− t1+t2

T2

+ a21(τm)cos(Ω2t1)eiΩ1t2e
− t1+t2

T2 (1.12)

+ a22(τm)cos(Ω2t1)eiΩ2t2e
− t1+t2

T2

+ a12(τm)cos(Ω1t1)eiΩ2t2e
− t1+t2

T2

The subscript cos denotes a signal with a cosine modulation in t1. We need the
corresponding sine-modulated signal in order to build the complete signal that
will enable generation of pure absorption line-shapes after Fourier transform.
All the product operator calculations were carried out with ψ = 0 as indicated
in table 1.1. Following the ”States” procedure, we should repeat them with
ψ = −π/2. This provides the same signal with sine modulation:

ssin(t1, t2) =a11(τm)sin(Ω1t1)eiΩ1t2e
− t1+t2

T2

+ a21(τm)sin(Ω2t1)eiΩ1t2e
− t1+t2

T2 (1.13)

+ a22(τm)sin(Ω2t1)eiΩ2t2e
− t1+t2

T2

+ a12(τm)sin(Ω1t1)eiΩ2t2e
− t1+t2

T2

Once both modulations are obtained, they can be combined according to
the ”States” procedure in order to generate a signal with pure absorption
lineshapes after Fourier transformation.
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In the following expression, FT1 and FT2 represent Fourier transforms along
the t1 and t2 dimensions, respectively:

S(ω1, ω2) =Re

{
FT1

(
Re
{

FT2 (scos(t1, t2))
}

+ iRe
{

FT2 (ssin(t1, t2))
})}

=a11δ(ω1 − Ω1) ∗ δ(ω2 − Ω1) ∗ LT2(ω1, ω2)

+ a21δ(ω1 − Ω2) ∗ δ(ω2 − Ω1) ∗ LT2(ω1, ω2) (1.14)

+ a22δ(ω1 − Ω2) ∗ δ(ω2 − Ω2) ∗ LT2(ω1, ω2)

+ a12δ(ω1 − Ω1) ∗ δ(ω2 − Ω2) ∗ LT2(ω1, ω2)

LT2(ω1, ω2) =
T−1

2

T−2
2 + ω2

1

T−1
2

T−2
2 + ω2

2

(1.15)

The final signal in the resulting NOESY spectrum is composed of four
peaks for the case of a two-spin system with no chemical exchange. Two of
them are diagonal peaks (Ω1,Ω1), (Ω2, Ω2) and two are cross-peaks (Ω1,Ω2),
(Ω2,Ω1). The sign of the cross-peaks relative to the diagonal peaks depends
on the cross-relaxation rate. If the molecule is large it tumbles slowly, leading
to a long rotational correlation time and positive cross-relaxation rate. This
gives rise to positive cross-peaks (assuming that the diagonal peaks are also
positive). In contrast, if the molecule is small, it will tumble rapidly and hence
have a short correlation time. In this case, the cross-relaxation rate will be
negative, leading to cross-peaks with negative intensity. In the particular
case where the cross-relaxation rate is zero we do not see any cross-peaks in
the NOESY spectrum. This would occur for a molecule having a rotational
correlation time of 360 ps at a field of 500 MHz, for example. The Lorentzian
function describes the peak shape, with the height and width being related
to the transverse relaxation rate T−1

2 .

1.1.5 Chemical exchange

It is common that molecules adopt different conformations over time. If this
is the case, then the spin (a proton, for example) will experience different
electronic environments that may not be magnetically equivalent. We can
describe such a situation using the formalism developed in the previous section
(1.1.4). Now we have a single spin with two distinct magnetic states (with
I1z and I2z characterizing two magnetic states of a single spin) instead of
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two spins in fixed magnetic states (with I1z characterizing the magnetic state
of one spin and I2z characterizing the magnetic state of the second spin).
In this case, the cross-relaxation term can only be positive and is equal to
the chemical exchange rate, and the auto-relaxation term is equal to the
longitudinal relaxation rate. Therefore, the cross-peaks have the same sign
as the diagonal peaks in the NOESY spectrum.

-150 -100 -50 0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fast / intermediate

crossover point

intermediate / slow

kHz

Figure 1.4: Peak line-shape under chemical exchange. The chemical exchange rate, k,

ranges from fast (k >> 100kHz) to slow (k << 100kHz) exchange. The narrow line at 0 kHz

corresponds to a fast chemical exchange rate, while the two lines at ± 100 kHz correspond

to a slow chemical exchange rate, and reveal the two distinct electronic environments of the

spin. The broad middle line corresponds to the crossover point where k ≈ 100kHz.

While the NOE effect is well described by the previous formalism (Eq.
1.14), the signal line-shape will depend on the regime of the chemical ex-
change. Broadly speaking, we consider all motion that is not averaged by the
tumbling of the molecule as chemical exchange. This translates to a time-
scale ranging from sub-microsecond to seconds (or even longer for some spe-
cial processes). This range of time-scales may be divided into three windows.
The first, starting from sub-microsecond time-scales is characterized by fast
and intermediate exchange. It ends at the so-called crossover point, where
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the perturbation of the peak line-shape becomes strongly pronounced. The
second window, at time-scales longer than the cross-over point, correspond
to intermediate and slow exchange regimes. The final time window at very
long time-scales corresponds to exchange-mediated longitudinal magnetiza-
tion transfer observed during the mixing time (typically from ms to second)
of the NOESY experiment.
In the slow exchange regime, the chemical shift (Zeeman) Hamiltonian is not
averaged. Therefore, the two states are still visible as distinct peaks in the
spectrum (Fig. 1.4).

-20 0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3
Fast 

 slow

kHz

Figure 1.5: Peak lineshape under chemical exchange. The two magnetic sites are not

equally populated. The fast exchange peak appears at the barycenter of the slow exchange

peaks positions weighted by their population (2:1).

As the chemical exchange rate increases and reaches the cross-over point,
the two lines merge and become very broad. This occurs at a chemical ex-
change rate approximately equal to half the difference in chemical shift (in
Hz) between the two sites. This phenomenon can be seen as two consecutive
processes. First, the two lines corresponding to the slow exchange regime, ±
100 kHz, start to converge towards the middle position, 0 kHz, and finally
merge. Second, the rate of exchange becomes such that the net NMR signal
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decays very rapidly, which, after Fourier transformation, gives a very broad
signal in the frequency domain. At the cross-over point, the signal becomes
so broad that it is usually lost in the noise (Fig. 1.4).
When the averaging between the environments becomes even faster, the single
line begins to sharpen. Note that integral of the signal intensity is constant,
and therefore as the peak gets sharper, the peak height increases. This is now
the fast exchange regime, sometimes called motional narrowing (Fig. 1.4).

Thus far the populations of the two sites were implicitly assumed to be
equal. If they are not equal, then motional average will be weighted according
to the relative populations. Hence, the single peak in the fast exchange regime
will not appear in the middle of the two slow-exchange peaks, but in the
barycenter of the two positions weighted by the population of each site (Fig.
1.5).

1.1.6 The NOE

The time evolution of peak volumes during the mixing time of a NOESY
experiment is described by the following equation, [1]:

dM(t)
dt

= −(R + K) · (M(t)−Meq) (1.16)

M is the matrix of volumes for the spins that we consider in our system,
with Meq representing the Boltzmann equilibrium magnetization. R is the
relaxation matrix and K is the chemical exchange matrix. The solution of
equation 1.16 provides all the peak volumes found in the NOESY spectrum
acquired with a mixing time τm.

∆M(τm) = exp [−(R + K) · τm] ·∆M(0) (1.17)

Two-state system

In order to gain deeper insight into the underlying theory (called the full
relaxation matrix approach) we develop here the calculations for one spin
undergoing chemical exchange, illustrating aspects from the previous section
about the NOE and chemical exchange. We call the two states experienced
by the spin ‘M’ and ‘N’, and consider the following kinetic equation:

M
kM


kN

N (1.18)
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The chemical exchange matrix K is built from the following equations:

d[M ]
dt

= kN [N ]− kM [M ] (1.19)

d[N ]
dt

= −kN [N ] + kM [M ] (1.20)

Thus the K matrix is

K =

 kM −kN

−kM kN

 (1.21)

The relaxation matrix R is:

R =

(
ρ 0
0 ρ

)
(1.22)

As the system we consider has only one spin, dipole-dipole cross-relaxation is
not relevant. However, dipole-dipole auto-relaxation processes characterised
by the rate constant ρ, are still possible due to interactions with the external
environment.
Thus the complete equation system can be expressed as:

d
dt

(
M

N

)
= −

(
ρ+ kM −kN
−kM ρ+ kN

)(
∆M
∆N

)
(1.23)

Since the solution of the equation is an exponential we will transform the
matrix into a diagonal matrix. We search now for the eigenvalues of this
matrix.

det

(
ρ+ kM − λ −kN
−kM ρ+ kN − λ

)
= 0 (1.24)

which leads to

λ2 − λ(2ρ+ kN + kM ) + ρ2 + (kN + kM )ρ = 0 (1.25)

with
∆ = (kN + kM )2 (1.26)

thus {
λ+ = ρ+ kN + kM

λ− = ρ
(1.27)
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and finally (
∆M
∆N

)
=

(
aMM aMN

aNM aNN

)(
∆M(0)
∆N(0)

)
(1.28)

where aMM , aNN are the volumes of the diagonal peaks and aMN , aNM are
the volumes of the cross-peaks.

8>>>>>>>>>>><>>>>>>>>>>>:

aMM =
1

2

»„
1 +

kM − kN
λ+ − λ−

«
e−λ+t +

„
1− kM − kN

λ+ − λ−

«
e−λ−t

–
aNN =

1

2

»„
1− kM − kN

λ+ − λ−

«
e−λ+t +

„
1 +

kM − kN
λ+ − λ−

«
e−λ−t

–
aMN =

kN
λ+ − λ−

“
e−λ−t − e−λ+t

”
aNM =

kM
λ+ − λ−

“
e−λ−t − e−λ+t

”
(1.29)

In the NOESY experiment, t is τm, the mixing time. A Taylor expansion
of the exponential terms for short mixing times should reveal that the cross-
peak volumes depend directly on the cross relaxation rate, Rcross (similar to
Eq. 1.6 and Eq. 1.10). With ex ≈ 1 + x as the first-order approximation,
aMN ∝ kNτm and aNM ∝ kMτm.

This result is similar to that we introduced previously (Eq. 1.10). The
initial slope of the build-up curve is proportional to Rcrossτm, at short mixing
times. Overall, the NOEs depend on the relaxation constants, the kinetic
constants and the equilibrium populations of the spins involved.

We have described the exchange of longitudinal magnetization by cross-
relaxation and by chemical exchange for a system of two spins or of a single
spin in two magnetically inequivalent sites. What happens if we combine both
aspects and consider a system comprised of many hundreds of spins, as would
be the case for biomacromolecules (proteins, DNAs and RNAs)?

1.1.7 Multi-spin systems and the NOE

Without losing generality, we now consider a system composed of one ligand
(protons C and D) and a receptor (proton T). The ligand is in exchange
between a bound state, Cb and Db, to the receptor target (T) and a free
state, Cf and Df . The transfer of magnetization between C and D when the
ligand is unbound is presumed to be negligible (large inter-proton distances
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and/or small size of the ligand). The nuclear magnetization can exchange
between C, D and T via the following mechanisms:

Cf
k←→ Cb

σ←→ Db (1.30)

Cf
k←→ Cb

σ←→ T (1.31)

Cf
k←→ Cb

σ←→ Db
k←→ Df (1.32)

Cf
k←→ Cb

σ←→ T
σ←→ Db

k←→ Df (1.33)

Where k and σ are the rate constants for magnetization transfer through
the chemical exchange and cross relaxation, respectively. Thus, the spatial
information from the bound state is transferred to the free state protons,
which are more easily monitored. According to the schemes shown above,
the observable cross peaks in the NOESY spectrum include the exchange
peaks between the free and bound ligand resonances, the exchange-relayed
NOE between a free ligand proton and a bound ligand proton, Eq. (1.30), or
between a free ligand proton and protein proton(s) T (protein-ligand trans-
ferred NOEs, Eq. (1.31)), the exchange-relayed NOE between free ligand pro-
tons (intra-ligand transferred NOEs, Eq. (1.32)), and the exchange-relayed
NOE between C and D mediated by protein proton(s) T (protein-ligand spin-
diffusion, Eq. (1.33)). Protein-ligand transferred NOEs carry information
about the contact sites between the ligand and the protein upon complex
formation, while the intra-ligand transferred NOEs can be used to derive the
bound conformation of the ligand. Hence it is possible to probe the bio-active
protein-bound ligand conformation and the protein-ligand contacts.

In addition to the above, we propose here to investigate another type of
NOE effect, based on the observation of inter-ligand tr-NOE. We now take
into consideration two ligands, A and B. The ligands are in fast exchange with
a common receptor, T. During the mixing time of the NOESY experiment,
ligand A binds to the target, T, and transfers some magnetization to the
receptor proton, i.e from HA to HT . Then, during the same mixing time
period, ligand A dissociates from the protein and is replaced by ligand B.
The magnetization that was transferred from HA to HT is now transferred
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from HT to HB, leading to a NOESY cross-peak between HA and HB. This
special cross-peak is called an ”INPHARMA NOE” (vide infra) (Fig. 1.6).

H (ppm)

H
 (p

pm
)NOESY

A B

INPHARMA NOE

INPHARMA NOE

HA

HB

HT

HB

HT

HA

k12

k21

HB

HA

Figure 1.6: Schematic illustrating the principle of INPHARMA NOEs

This effect should not be confused with inter-ligand transferred-NOE
peaks that appear when two ligands bind to the protein simultaneously. In the
case of INPHARMA NOEs, the two ligands are never close to each other as
they bind competitively. Observation of this phenomenon relies on the pres-
ence of spin diffusion. In fact, the ligand magnetization is spread throughout
the protein during the mixing time. While direct NOEs can be observed up
to internuclear distances of 5 Å, spin-diffusion-mediated NOEs can be ob-
served between protons that are as far as 8 Å apart or more. If we take this
information into account it becomes difficult to interpret the volume of the
inter-ligand tr-NOE as direct distance information such as can be achieved
with simple NOEs. We need to interpret the data via theoretical interpret-
ation and calculations using the full relaxation matrix approach, [57, 62, 63].
Based on the experimental data, we seek to derive the relative binding mode
of the two ligands in the binding pocket. This approach is called INPHARMA
(Inter-ligand NOE for Pharmacophore Mapping). We explain below in more
detail this method and the most salient points for understanding the form of
the spectrum and the calculations.
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1.1.8 Spin diffusion and intermolecular NOEs

We recall the equation 1.16, which describes evolution of peak volumes during
the mixing time of a NOESY experiment, [1]:

dM(t)
dx

= −(R + K) · (M(t)−Meq) (1.34)

and its solution:

∆M(τm) = exp [−(R + K) · τm] ·∆M(0) (1.35)

The kinetic model for the protein and the two ligands is assumed to be a
two-state model. We consider four chemical entities, ligand A, ligand B, and
the the ligand-protein complexes TA and TB. The ligands are assumed to
present in a large molar excess, such that the concentration of free protein is
negligible.

TA+B
k12


k21

TB +A (1.36)

The relaxation matrix R contains the auto- and cross-relaxation terms for
protons that belong to the different species, A, B, TA and TB.

R =



RAA

RBB

RTAA RTAA,T

RTAT,A RTAT

RTBB RTBB,T

RTBT,B RTBT


(1.37)

The R matrix is written with the following conventions: RXX contains the
auto-relaxation and cross-relaxation terms between protons of ligand X (A or
B) in the free form; RTXX contains the auto-relaxation and cross-relaxation
terms between protons of ligand X in the bound form TX; RTXT,X , RTXX,T contain
the cross-relaxation terms between the protons of ligand X and the protons of
T in the complex TX; RTXT contains the auto-relaxation and cross-relaxation
terms between protons of the target. The K matrix represents the kinetic
processes of the system at equilibrium. It necessarily has the same dimensions
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as the R matrix; [X] is the concentration of the chemical entities, ki are the
chemical exchange constants and I is the identity matrix. Each part of the
matrix K represents one species of the system and therefore each term is a
diagonal block matrix which has the same size as the corresponding block in
the relaxation matrix R.

K =

0
BBBBBBBBBB@

k21[TB]I −k12[B]I

k12[TA]I −k21[A]I

−k21[TB]I k12[B]I

k12[B]I −k21[A]I

−k12[TA]I k21[A]I

−k12[B]I k21[A]I

1
CCCCCCCCCCA

(1.38)

Spin diffusion

All the transfers of magnetization by chemical exchange and dipole-dipole
relaxation mechanisms are described by the matrices K and R. Therefore, if
in the NOESY spectrum we observe cross-peaks between protons of ligand A
and protons of ligand B, we must also see a connection between them in the
matrix K + R:

0BBBBBBBBBBBB@

k21[TB]I+RA
A −k12[B]I

k12[TA]I+RB
B −k21[A]I

−k21[TB]I k12[B]I+RT A
A RT A

A,T

RT A
T,A k12[B]I+RT A

T −k21[A]I

−k12[TA]I k21[A] + RT B
B I RT B

B,T

−k12[B]I RT B
T,B k21[A]I+RT B

T

1CCCCCCCCCCCCA

There are no terms in the matrix connecting the two block-sub-matrices,
k21[TB]I+RAA and k12[TA]I+RBB , which correspond to the protons of ligands
A and B in their unbound states. Nevertheless, NOESY cross-peaks can arise
between protons A and B in the free state. This is due to the fact that the
magnetization is transferred from unbound A to unbound B via a multi-step
process. We see that diagonal block-sub-matrices are ‘linked’ by chemical
exchange constants. Hence, magnetization initially present on unbound A
is transferred by chemical exchange to bound A (TA), followed by dipole-
dipole mediated-transfer to the protons of the target (T). Another chemical
exchange constant links the complex TA to the complex TB (Fig. 1.7). The
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magnetization on TB is then transferred by dipole-dipole mechanisms to the
protons of bound ligand B (TB). Finally, the last chemical exchange link
allows transfer from bound ligand B to the unbound state (B). The ligand B
then possesses the magnetization acquired while it was in the complex (TB).
Initially, this magnetization arose from ligand A. This explains why cross-
peaks are can appear between the two ligand A and B in their free states
while there is never direct magnetization transfer between them.

18 Chapter 1

The R matrix is displayed with these conventions: RX
X represents the

relaxation for the ligand X (A or B) in the free form ; RTX
X represents the

protons relaxation of the compound X in the bound form TX; RTX
T,X , RTX

X,T

represent the cross-relaxation terms between the protons of the ligand X and
the protons of T in the complex TX; RTX

T represents the relaxation of the
target protons. The K matrix represents the kinetic in equilibrium of the
system. It has necessarily the same dimension of the R matrix; [X] is the
concentration of the chemical entities, ki are the chemical exchange constants
and I is the identity matrix. Each part of the matrix K represents one specie
of the system and therefore each term is a diagonal block matrix which has
the same size of the corresponding block in the relaxation matrix R.

K =

0
BBBBBBBBBB@

k21[TB]I −k12[B]I

k12[TA]I −k21[A]I

−k21[TB]I k12[B]I

k12[B]I −k21[A]I

−k12[TA]I k21[A]I

−k12[B]I k21[A]I

1
CCCCCCCCCCA

(1.38)

Spin diffusion

All the transfers of magnetization by chemical exchange and dipole-dipole
mecanisms are described by the matrices K and R. Therefore, if in the
NOESY spectra we observe cross peaks between protons of the ligand A and
protons of the ligand B, we must see connection between them in the matrix
K + R:

0
BBBBBBBBBBB@

k21[TB]I + RA
A −k12[B]I

k12[TA]I + RB
B −k21[A]I

−k21[TB]I k12[B]I + RTA
A RTA

A,T

RTA
T,A k12[B]I + RTA

T −k21[A]I

−k12[TA]I k21[A] + RTB
B I RTB

B,T

−k12[B]I RTB
T,B k21[A]I + RTB

T

1
CCCCCCCCCCCA

There are no terms in the matrix connecting the two block-sub-matrices,
k21[TB]I + RA

A and k12[TA]I + RB
B , correspoding to the protons of ligands

A and B in the free state. Nevertheless cross peaks can arise between theFigure 1.7: Illustration of the multi-step transfer of magnetization leading to INPHARMA

NOEs.

We have seen that the multi-step transfer of magnetization involves the
free states, the bound states and the intervening chemical exchange processes.
While in the free state the relaxation rates of the ligands are quite slow be-
cause of their short rotational correlation times. In the bound state, however,
the relaxation rates are fast because the ligands then tumble at the same
slow rate as the protein. Thus, it is the bound-form relaxation rates that
dominate the dipole-dipole-mediated transfer of magnetization. This transfer
of magnetization not only reflects the bound conformation of the ligands but
also their orientation in the binding pocket. Depending on the conformation
and the orientation of the two ligands in their bound states, we will observe
cross-peaks between different protons in the ligands (Fig. 1.8). Because the
protons of the protein are crucial to the transfer of magnetization between the
ligands, we must include them in the full relaxation matrix formalism. There-
fore, we use the complete formalism as described by equations 1.34, 1.37 and
1.38 . We can already anticipate that a structural model for the receptor is
required and specific conditions for the chemical and dipole-dipole relaxation
rates are necessary for the success of the method. We will explore the detail
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of the method in a following dedicated chapter.
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Figure 1.8: Qualitative representation showing distinction between two binding modes

with the INPHARMA method. Panels A and C show two different binding modes for one

of the two ligands. Panels B and D represent the expected NOESY spectra for the systems

depicted in A and C, respectively.
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1.2 Aim and scope of the thesis

1.2.1 The context

A considerable number of cellular machineries depend on highly specific in-
teractions between protein receptors and their small-molecule ligands, such
as cofactors, hormones, drugs or metabolites. Small molecules are also prime
candidates for drug development. Knowledge of the interactions involved is
critical for understanding the underlying natural processes and facilitating
their manipulation for therapeutic purposes [21, 94, 109]. The structures of
small-molecule-protein complexes are determined either by X-ray crystallo-
graphy or by NMR spectroscopy [28, 36, 80]. But crystallizing the complex
can be both very expensive and time-consuming. Almost thirty years ago,
an alternative approach to the problem was initiated when the first in silico
geometrical methods to determine structural information between ligand and
protein were developed [50]. Today, dozens of docking and molecular dy-
namics programs are available and have been extensively tested [19, 22, 95].
Molecular modeling has thus become a tool of choice for the structural biolo-
gist and plays a key role in the drug discovery process. Nevertheless, the field
is not yet sufficiently mature to guarantee acceptable success rates. Force-field
imprecision, wide conformational spaces for both ligands and proteins, ignor-
ance of the bioactive conformations, protein plasticity, protein dynamics, and
lack of selectivity due to poor scoring functions are a few of the many problems
that are currently hampering molecular modeling [52, 70, 97, 103]. Although
significant breakthroughs are often made using a single technique (i.e NMR,
X-ray crystallography or molecular modeling), we believe that only by a com-
bination of methods may the quantitative basis of intermolecular interactions
be understood in a rapid and reliable manner. Accordingly, we have de-
veloped a new approach, called INPHARMA, which allows the determination
of the relative orientation of two competitive ligands in the receptor-binding
pocket. The method is based on the observation, in a NOESY NMR experi-
ment, of interligand, spin-diffusion-mediated, transferred NOEs between two
ligands, which binding competitively and weakly to a common macromolecu-
lar receptor. My role in this project is to investigate the physical mechanisms
that form the basis of the observed effec, both from theoretical and practical
standpoints, and also to define the range of applicability of the method.
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1.2.2 The studies

Chapter 2

During the first year of my PhD, I tested the efficacy of the method by apply-
ing it to the de novo derivation of the binding modes of two ligands to Protein
Kinase A. The accuracy of the resulting complex structures was confirmed by
comparison with the available crystal structures. The INPHARMA method
was successful in determining the correct binding mode of the ligands. This
chapter represents the proof-of-principle for the method.

Chapter 3

In the work described in this chapter, I investigated the potential of combin-
ing this new methodology with selective deuteration of the macromolecular
target. Selective deuteration reduces the possible spin diffusion pathways, al-
lowing extraction of more specific structural information. This approach has
been applied, both theoretically and experimentally to the system of Protein
Kinase A in complex with its two ligands. I formulated a new theoretical ex-
pression for the transferred magnetisation under reduced spin diffusion, which
circumvents the computationally-intensive part of the INPHARMA method.
The theoretical part was validated by the experimental results. In this case,
we were also able to reproduce the correct binding modes for the ligands.

Chapter 4

A practical and theoretical guide for the application of the methodology in
relation to both experimental and physicochemical parameters is presented. It
aims to provide the information necessary for practising scientists to realise
the full benefits of the method. Since the phenomenon is quite new and
no detailed formalism has been released, this section sheds light on many
previously unknown points.

Chapter 5

In this chapter, I describe my work to determine the influence of the starting
protein model on the success of the method. First, I analysed the influence of
the protein structure quality independently of the ligand orientation. Second,
I combined both aspects, protein structure quality and ligand docking poses,
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to derive the expected performance of the methodology in different ‘real-case’
scenarios. The method performs well, even when the receptor structure is
not accurate and it is selective enough to identify the correct binding mode
among several million trial modes.

All simulations were computed using a program written in C++, which is
able to run in parallel on very large clusters (≈ 2000 cpus). This program was
written by a Mathematics/Informatics Masters student (Mael Bosson) under
my guidance.

1.2.3 The ambition

The aim of the thesis is to provide a complete overview of the method.
As mentioned above, traditionally, transfer of longitudinal magnetization
between spins was restricted to spatially proximal spins within the same
molecules. The novelty of the INPHARMA phenomenon is the exchange
of magnetization between two competitive binders. The two ligands do not
bind simultaneously to the receptor and therefore magnetization is not trans-
ferred in a ”classical” manner, i.e. directly from proton to proton via spin
diffusion. In reality, the magnetization is stored on the protein after being
deposited by one ligand and marked by that ligand’s characteristic chemical
shifts. The fact that the magnetization remains on the protons of the pro-
tein, even though only for a short duration, is somewhat controversial in the
NMR community. Initial opinions were that the magnetization would not
”survive” long enough on the protein to allow its transfer to the second lig-
and. Chapter 4 unambiguously answers this concern, demonstrating that we
can detect sufficient signal arising from this relayed transferred NOE under
certain conditions. The signal measured is nonetheless rather weak and also
described are recommendations to follow for maximizing the effect.

Having proven the hypothesis, we planned to show the fruitfulness of the
method. Hence, we have chosen a system where the binding modes of the two
ligands are known by a standard method, X-ray crystallography. Chapter
2 explains in detail how the method is able to retrieve the same complex
structures as those determined by X-ray crystallography without needing to
crystallize any complex. It represents a benchmark for the efficacy and utility
of the method. Nevertheless, a structural model of the binding pocket is
employed. The natural arising questions are: How precise is the method?
What is required in terms of resolution for the receptor apo-structure?
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Indeed, in many cases, scientists may be working on a system where the
receptor structure is only poorly defined. How likely is it to be able to obtain a
reliable result from the methodology under such conditions? They may want
to know the accuracy of the outcome from the analysis. These questions are
addressed in Chapter 5.

In some cases, scientists are able to produce protein with a particular
isotopic labeling scheme. In this context, we proposed to use a specific labeling
of the methyl groups of certain residues in a background of otherwise complete
deutaration. This labeling scheme has the advantage of considerably reducing
spin diffusion. The complete formalism developed in the chapter 4 is then
no longer necessary but a new approach can be used, which considerably
simplifies the interpretation and should allow further software development.





Chapter 2

Crystallography-Independent

Determination of Ligand

Binding Modes

Abstract

In the process of structure-based drug design, the provision of the binding
mode of ligands to the cellular receptor of interest is essential. This can suffer
from limited access to protein/ligand structures, especially for the low affin-
ity ligands that are commonly obtained from high throughput screening or
fragment based lead discovery. In a common scenario crystal structures are
available for one or several ligands but not for all chemical series of actual
interest. Here, we present a new, NMR-based approach that allows overcom-
ing this limitation. In the INPHARMA method interligand NOEs (Nuclear
Overhauser Enhancement) are utilized to determine relative orientations of
different chemical fragments binding competitively to a common receptor site.
This novel methodology opens the way to the application of structure-based
drug design already in an early stage of drug development, when structural
information via crystallography is of difficult access.
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2.1 Introduction

Within the last decades structure based drug design (SBDD) has evolved to
a powerful tool that has benefited the optimization of many low molecular
weight lead structures to highly potent drugs targeting proteins of known
three dimensional structure [86]. The principle of SBDD lies in the combina-
tion of different chemical moieties with the aim of obtaining a molecule that,
while possessing the pharmacological properties necessary for a drug, is com-
plementary in shape to the receptor binding pocket. This process requires
knowledge of the exact structure of the protein/ligand complex. At present
structural genomics initiatives provide protein structures of biomedically rel-
evant targets at increasing rates [67] and recent structures of ion channels [3]
and GPCRs [15, 83, 88] bring these protein classes within reach for SBDD.
Despite these successes, the daily work of pharmaceutical discovery is often
limited by the ability to obtain protein/ligand structures for the chemical
series under investigation. Molecular docking is applicable for many proteins
of known structure, but methods to select the correct binding pose amongst
many docking models are often insufficient to deliver an unambiguous an-
swer. High resolution crystal structures do provide an unequivocal solution
for this problem but are often difficult to obtain for the lower affinity ligands
(lead structures) that are commonly identified by high throughput screen-
ing or by fragment based lead discovery [86]. In view of the limited success
rates of co-crystallization experiments in this stage of discovery, SBDD would
benefit from methods providing the relative orientation of different chemical
fragments binding competitively to a receptor site. Such an approach would
provide protein/ligand structures of novel ligands or fragments in relation to
the known co-crystal structure of a reference ligand.

Recently, we reported the observation by NMR of inter-ligand NOE (Nuc-
lear Overhauser Enhancement) peaks occurring between two small ligands
binding weakly and competitively to the same binding pocket of a common
macromolecular receptor Fig. 2.1 [87, 89]. The measured mixture in solu-
tion contained two ligands A and B (LA and LB) in a 10 to 50-fold excess
to a target receptor T. As the ligands were competitive binders that never
occupy the receptor binding pocket simultaneously, such NOEs did not origin-
ate from a direct transfer of magnetization between the two ligands [62]. We
demonstrated that the interligand NOE peaks originate from a spin-diffusion
process mediated by the protons of the receptor binding pocket. We proposed
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that a number of such interligand NOEs can be used to define the relative
orientation of the two ligands in the receptor binding pocket (relative binding
mode) and we termed the novel effect INPHARMA (Internuclear Noes for
PHARmacophore MApping) [89] (Fig. 2.1).

NOESY

H ppm

H
 p

pmT

LA LB
LB

LA

Figure 2.1: Schematic representation of the principle of the INPHARMA NOEs.

Here we demonstrate for the first time that INPHARMA can be applied
in the context of SBDD, where it allows determining the relative, and in
favorable cases even the absolute, binding mode of two low affinity ligands
binding competitively to a common receptor site. In accordance with existing
SBDD workflows, we employ the experimental information derived from the
INPHARMA NOEs and measurable in a series of simple NOESY experiments,
to select the correct binding mode among many possible binding orientations
models [87].

As a test system in this study we selected the core hinge binding frag-
ments of two known ATP competitive kinase inhibitors with affinities of 6
µM (LA) and 16 µM (LB; Fig 2.2) [96]. We performed the study with the
catalytic subunit of the protein kinase A (PKA), an ubiquitous enzyme of
known crystal structure [9, 43, 45], which regulates a large variety of cellular
processes including ion flux, cell death and gene transcription.
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2.2 Results

2.2.1 NMR experiments

NOESY spectra were acquired for the mixture of the catalytic subunit of
the protein PKA (from now on referred to as PKA) and the two ligands
LA (450µM) and LB (150 µM) at a 800 MHz spectrometer for mixing times
τm = 150, 300, 450, 600 and 700 ms. The protein concentration was either
25 or 30 µM, as explained in the Methods section. For τm ≥ 300 ms in-
terligand INPHARMA NOEs were observed. These NOEs do not originate
from aggregation of the ligands, as they are absent in NOESY experiments
performed for the same ligands mixture in absence of PKA or in the presence
of perdeuterated PKA.
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Figure 2.2: Experimental INPHARMA NOEs: (a) Region of the NOESY spectrum re-

corded for a mixture of the protein PKA (30 µM), LA (150 µM) and LB (450 µM) at 800

MHz for a τm = 600 ms. Intra-molecular transfer NOEs of LA are depicted in blue. Inter-

molecular “INPHARMA” NOEs between LA (ω2) and LB (ω1) are shown in red and are

approximately two orders of magnitude less intense than intra-molecular transferred NOEs.

(b) Chemical structures of the PKA inhibitors used in this study LA and LB .

2.2.2 Docking models and calculation of theoretical IN-

PHARMA NOEs

The scope of this work is to demonstrate that the INPHARMA NOEs allow
selecting the correct orientation of a novel ligand of unkown crystal structure
relative to a ligand of known crystal structure. As a basis for this study we
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therefore determined crystal structures for the PKA/LA and PKA/LB com-
plexes at 2.1 Å and 2.0 Å resolution, using described purification and crys-
tallization protocols and standard crystallographic procedures (Fig. 2.3) [32].
The effectiveness of the INPHARMA method is demonstrated if the compar-
ison of the experimental interligand NOEs with the theoretical interligand
NOEs, expected for each pair of docking modes of the two ligands to PKA,
allows the selection of docking modes that are similar to the crystal struc-
tures, either in the relative or in the absolute orientation of LA and LB in the
PKA binding pocket.

For this analysis we generated “wrong” ligand orientations by rotation of
LA and LB within the protein binding pocket around either the z or the y
axis (Fig. 2.3), followed by energy minimization of each obtained complex
structure (see Methods). The geometry of the binding site allowed for four
different main orientations for LA and LB which were combined to give a
total of 16 pairs of structures (Fig. 2.3), one of which reproduces the “cor-
rect” absolute binding mode of both ligands and is very similar to the crystal
structures. In three pairs of structures the relative orientation of the two
ligands is correct, while the absolute orientation of both ligands is wrong. In
the remaining 12 pairs both the relative orientation of the two ligands and
the absolute binding mode of at least one ligand are incorrect.

2.2.3 Calculation of theoretical INPHARMA NOEs

To investigate the effectiveness of the INPHARMA method we calculated
interligand NOEs for each of the 16 pairs of ligand orientations. We then
monitored whether the correlation of the calculated NOEs with the experi-
mental NOEs allows for the selection of a preferred relative or absolute ligand
orientation and whether this result reproduces the crystal structures. In the
following sections, the “relative binding orientation” describes the position of
the functional groups of the two ligands relative to one another, irrespectively
of their orientation within the receptor. The “absolute binding orientation”
indicates the position of the functional group of each ligand relative to the
receptor binding pocket and thereby uniquely defines the intermolecular in-
teractions in the complex.

The INPHARMA NOEs were calculated for the 16 pairs of structure using
the full-relaxation matrix approach [8, 63, 108], as described in the Supple-
mentary Methods, for a static complex structure. Subsequently, the theoret-
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Figure 2.3: Binding orientations for ligands LA and LB . (a) Starting the with the binding

pose of the high resolution crystal structure (pose 1) other possible binding orientations

were generated by (i) rotating the ligands by 180◦ around the y, the z axis or both, followed

by energy minimization of the resulting pose (pose 2-4). Shown are the possible binding

orientations for LA (blue model) and LB (green model) with the protein pocket shown as

exclusion surface. Combination of the possible binding orientations of LA and LB results

in 16 ligand pairs.

ical INPHARMA NOEs calculated for each models’ pair are compared with
the experimentally derived ones to select the best fitting models’ pair.

Internal motions of the ligand in the binding pocket or of the protein side-
chains are ignored in the calculation, due to the lack of a suitable theoretical
model. The influence of internal motion on the measured inter-ligand NOEs
results in a slope of the linear regression between experimental and calculated
INPHARMA NOEs different from 1 at shorter mixing times, while at very
long mixing times the presence of internal motions of variable amplitude at
different sites in the complex are expected to deteriorate the overall quality
of the fit.
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2.2.4 Selection of docking modes

The selection of the correct binding mode of the two ligands is based on three
criteria:

(i) linear correlation coefficient R2 or quality factor Q. At this step all
models’ pairs showing a poor correlation between experimental and theoretical
INPHARMA NOEs are discarded.

(ii) Systematic deviation of INPHARMA NOEs stemming from different
structural moieties of the ligands. At this step models’ pairs are excluded for
which 180◦ rotations of one or both ligands around one (or more) pseudo-
symmetry axis of the correct binding mode lead to binding poses with an
acceptable overall correlation coefficient between experimental and theoret-
ical INPHARMA NOEs but showing systematic deviations (under- or over-
estimation) of groups of INPHARMA NOEs stemming from separate struc-
tural parts of the ligand(s).

(iii) Semi-quantitative use of weak INPHARMA NOEs, which are ob-
servable either in longer experiments at higher magnetic field, or at higher
protein concentration and/or at longer mixing times. At this step, weak, ad-
ditional INPHARMA NOEs are used as a discrimination criterion. However,
the quantitative fitting of weak INPHARMA signals is often deteriorated by
the effect of internal motions in multiple steps of spin diffusion; thus these
NOEs are interpreted in a semi-quantitative manner.

Correlation of the calculated and measured INPHARMA NOEs for all 16
pairs of possible binding orientations are given in Table A.1. We found that
the correlation coefficient for 4 out of 16 pairs differentiates clearly from the
average correlation and therefore selected these 4 models’ pairs with R2 > 0.9
or Q2 < 0.15 to pass the first selection criterion (i) (Fig. 2.4). In all models’
pairs A-D the orientation of LB is uniquely defined (Fig. 2.1), while the orient-
ation of LA is largely undefined. This finding likely results from the different
three-dimensional shape of the two ligands. LB has a rather bent, asymmetric
shape; thus, changes of the orientations of LB in the protein binding pocket
(upon rotations around the y and/or z axis) result in dramatic changes in
the environment of each proton, namely in the distribution of distances to
the protons of the receptor (Supplementary 2.1). Being the INPHARMA
NOEs mediated by the protons of the receptor, the distribution of distances
between the ligand’s and the receptor’s protons determines the efficiency of
the magnetization transfer. On the other hand, the more symmetric, flat
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shape of LA allows for rotation of the ligand in the protein binding pocket
with less dramatic changes in the intermolecular proton-proton distance dis-
tribution (Supplementary Fig. 2.1), which is reflected in the presence of all
orientations of LA in the models’ pairs with good correlation between the
experimental and the theoretical INPHARMA NOEs.

To further differentiate amongst the remaining ligand orientations we ana-
lyzed the fit of the calculated and experimental INPHARMA NOEs of indi-
vidual ring systems in the correlation graphs for the four models’ pairs A-D
(selection criterion (ii)). As seen in Fig. 2.4, pairs A and B perform signific-
antly better than pairs C and D. For these last two pairs the INPHARMA
NOEs stemming from the phenyl ring of LB to the pyridine ring of LA (color
coded in yellow, Supplementary Fig. 2.2) and to the (4-Pyridyl)indazole ring
of LA (color coded in red, Supplementary Fig. 2.2) are consistently over- and
under-estimated, respectively, indicating that in model C/D the orientation
of LA is wrong by a 180◦ rotation around the y axis. Thus, models pairs C
and D can be safely excluded.

The degeneracy of the H1,2 and H3,4 protons of LA and the H1-5 protons
of LB impedes the discriminations between the remaining pairs A and B, in
which LA is rotated around the z axis, by both criterion (i) and (ii). According
to selection criterion (iii), we recorded an additional NOESY spectrum at a
900 MHz spectrometer, with double number of scans and mixing time of
600 ms, with the aim of collecting more experimental data from the non-
degenerated protons. This spectrum showed indeed additional interligand
NOEs between protons H6 and H7 of LB and proton H5, H6 and H8 of
LA. The ratio of 1.4 between the H8(LA)-H6,7(LB) NOE and the H5(LA)-
H6,7(LB) NOE is well reproduced in the back-calculated interligand NOEs
for models’ pair A (1.8), while is dramatically underestimated in models’ pair
B (0.06), thus leading to exclusion of the latter pair.

Application of the selection criteria (i)-(iii) allowed us to identify mod-
els’ pair A as the one uniquely representing the experimental INPHARMA
data. A comparison of the resulting orientation with the crystal structures
of the PKA/LA and PKA/LB complexes furthermore shows that this model
represents the correct relative orientation of the two ligands and the correct
absolute orientation of both ligands with respect to the protein. Although the
main scope of the methodology is to derive the relative binding mode of two
low affinity fragment inhibitors, in the test case shown here the INPHARMA
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approach exceeds the expectations and allows the determination of the ab-
solute binding mode of both ligands. In general, we expect this to occur for
those cases where the structure of the apo-protein closely resembles that of
the protein in the complex.

Further docking models, described in Supplementary Figure A.4 & A.8
and providing a more complete statistics around some of the orientations of
Fig. 2.3 were tested as well, leading to the selection of the same “crystal-
structure-like” relative orientation of the two ligands in the PKA binding
pocket as in models’ pair A.

Finally, we verified that the INPHARMA NOEs calculated for the crystal
structures of the PKA/LA and PKA/LB complexes reproduce the experi-
mental INPHARMA NOEs in a comparable manner as for models’ pair A
(Supplementary Fig. A.4). The fitting of the calculated vs. experimental IN-
PHARMA NOEs is excellent. The residual deviations can be accounted for
invoking the presence of internal motions [46, 76], as proven by the slope of
the linear regression of 0.3 [53,91]. The good quality of the fit further verifies
that the INPHARMA NOEs are suitable experimental data for the ranking
of the docking poses.

2.2.5 Influence of the accuracy of the protein structure

In the case of PKA, the structure of the protein binding pocket in the various
PKA/ligand complexes is largely unchanged and the PKA conformation used
to calculate the different docking models is quite close to the “true” structure
of the protein in the complexes (r.m.s.d of the binding pocket heavy atoms
0.3 Å). However, this might not be the case for other systems, where the
binding pocket might be dynamic or ill-defined in the available structural
models. In order to assess the influence of the quality of the protein structure
on the outcome of the methodology, we used Molecular Dynamics simulations
to generate a series of PKA structures with inaccurate conformations of the
binding pocket. The models exhibit heavy atoms r.m.s deviations of 1.9, 1.7,
1.9, 1.6 and 1.9 Å in respect to the X-ray structure. Ligands LA and LB were
docked in the four different orientations described above and sets of 16 model
pairs were generated for each of the five PKA structures. (Supplementary
Fig. A.5). The calculated INPHARMA NOEs for each of the 16x5 model
pairs were correlated with the experimental interligand NOEs as described
above (Supplementary Table A.1).
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Figure 2.4: (a) Representation of the four models’ pairs (A-D) that show a good correlation

between the theoretical and the experimental INPHARMA NOEs (b) Correlations of the

experimental INPHARMA NOEs, normalized with respect to the diagonal peak of the spin

in ω1, with the back-calculated INPHARMA NOEs, for each models’ pair of panel (a).

The INPHARMA NOEs between the phenyl ring of LB to either the pyridine or the 3-(4-

Pyridyl)indazole ring of LA of model C and D, color-coded in yellow and red, respectively

(Supplementary Fig. A.2), are consistently under or over-estimated for the models’ pairs C

and D.
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We found that the correct absolute orientation of the two ligands was
selected by criteria (i)-(iii) for four of the five inaccurate protein models,
whereas pose 4 (or 2) (Fig. 2.3b) was selected for both ligands in the fifth
PKA model. Still, even for this model the correct relative orientation of
LA and LB is predicted. This test showed that prediction of the relative
binding mode of the two ligands is robust towards inaccuracy of the binding
pocket structure, while the correct prediction of the absolute orientation of
the ligands depends on the accuracy of the protein structural model used
during docking.

2.3 Discussion

We have demonstrated for the first time that INPHARMA NOEs can be
utilized to determine the relative orientation of low molecular weight, low
affinity ligands which bind competitively to the same binding pocket of a
common receptor. INPHARMA is based on the measurement of a series of
NOESY spectra and is generally applicable to all receptor/ligand complexes
with mid to low affinity. The bound ligand structure, easily obtainable from
transferred NOE data [16, 73], and a structural model of the apo-protein,
which are used to generate plausible docking modes, are the only requirements
for the application of the method.

The INPHARMA method allows closing a gap in structure base drug
discovery, where commonly crystal structures of some but not all interesting
chemical lead series are accessible. Here INPHARMA provides an additional
experimental approach to determine the complex structure of novel interesting
lead series relative to a known protein ligand crystal structure.

Our data furthermore indicate that assessment of relative binding orient-
ations is relatively stable against inaccuracies of the applied protein model,
so that INPHARMA NOEs may allow aligning chemically different ligands
as a basis for pharmacophore modeling in the absence of a protein crystal
structure. In the specific case presented, it was possible to select the absolute
orientation of the ligand pair in respect to the protein structure, solely based
on interligand NOE data. Interestingly, this orientational signal in the first
selection step was dominated by LB, whereas LA exhibited no preferential
orientations (Table A.1, Fig 2.3). The “orientational signal” of LB results
from its bent, asymmetric shape.
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The possibility of determining absolute protein-ligand orientations in the
absence of a protein crystal structure suggest novel approaches for structure
based design, where INPHARMA data of an appropriate selection of differ-
ently shaped low molecular weight ligands may provide a surprisingly detailed
ligand based map of a receptor binding site.

2.4 Material and Methods

Protein expression and purification for the NMR experiments.The catalytic
subunit of chinese hamster Cα catalytic subunit of cAMP-dependent of pro-
tein kinase A (PKA) was expressed and purified according to the published
procedure [51]. In specific, the expression plasmid pETPKA, containing the
coding sequence of the cAMP dependent protein kinase, was used for trans-
formation of E. coli strain BL21 (DE3) competent cells. The protein, contain-
ing a Histidine-tag, was purified on a Ni-NTA Fast-Flow column (Quiagen,
Hilden Germany) following the manufactures recommendations. Cleavage of
the His-tag was performed adding 80 µL of Tev-protease (1 mg mL-1) at room
temperature overnight. Further purification was achieved by anion-exchange
chromatography with a SourceQ column. Finally, samples (10-15 mL) were
dialyzed against 1L NMR buffer (PBS-buffer, NaCl 150 mM).

2.4.1 NMR Experiments

Two sets of NOESY experiments were collected for a mixture of LA and
LB and the protein PKA at 800 MHz and 700 MHz spectrometers using a
cryogenetically cooled triple-resonance probe-head. The average measurement
time was about 20 hours per NOESY spectrum. The first set of NOESY
spectra was acquired at a 800 MHz spectrometer and comprised mixing times
τm = 150, 300, 450, 600 and 750 ms. Data were recorded on two different
samples: for τm = 300 and 600 ms the sample contained [LA] = 150 µM
[LB] = 450 µM, [PKA] = 30 µM; for τm =150, 450 and 750 ms [LA] = 150
µM [LB] = 450 µM, [PKA] = 25 µM. The different protein concentration
in the two samples was accounted for in the calculation of the theoretical
INPHARMA NOEs. An additional NOESY spectrum was acquired at a 900
MHz spectrometer with τm = 600 ms. The sample contained: [LA] = 150 µM
[LB] = 450 µM, [PKA] = 25 µM.
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2.4.2 Crystal structures

Recombinant bovine Cα catalytic subunit of cAMP-dependent protein kinase
was crystallized according to Engh et al. [32]. Inhibitor complexes were ob-
tained by soaking the crystals for 24-48 hours in the crystallization solution
with 10 mM LA or LB. The crystals were cryo-protected by the addition of
30% glycerol and frozen in liquid nitrogen. Diffraction data were collected
at ESRF ID14-1. Datasets were processed, the structure solved and initially
refined using APRV [49], XDS [41] and CNX [Accelrys, San Diego]. 7% of
the reflections were set aside for cross-validation. Interactive model building
and refinement was carried out using O [40], COOT [31], CNX and RE-
FMAC5 [72], yielding a final R/Rfree of 21.5%/24.9% for the PKA:LA and
22.0%/26.3% for the PKA:LB complex (Supplementary Table A.2). Coordin-
ates and structure factors are available at the protein data base (PDB) under
entry codes 3DNE.pdb (LA) and 3DND.pdb (LB).

2.4.3 Docking models

Alternative binding poses were generated in order to evaluate whether IN-
PHARMA NOEs can distinguish different ligand orientations in the receptor
binding pocket. Starting with the crystal structure, the ligands were rotated
by 180◦ either around the y or the z axis, or both (Fig. 2.3), followed by
energy minimization with Xplor [92, 93], keeping the ligand rigid and using
the repulsive part of the Van der Waals potential as driving force. Rotation of
90◦ around the y or z axis was prohibited by the shape of the binding pocket.
Additional docking models were generated at Sanofi Aventis and represented
smaller rotations of the ligands around the models of Fig. 2.3 (Supplementary
Fig. A.3).

2.4.4 Calculation of the INPHARMA NOEs

The INPHARMA NOEs were calculated for all pairs of protein/ligand struc-
tures resulting from the obtained relative orientations, using the full relaxa-
tion matrix approach, as described in Supplementary Methods. All protons
at a distance d < 1 nm from any ligand proton were included in the cal-
culations, whereas protons at a distance d > 1 nm are not involved in the
INPHARMA magnetization transfer process, as demonstrated previously [87].
The relative affinity of the two ligands was obtained by competition against
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Y-27632 (ROCK Inhibitor), which delivered a Ki of 6 µM for LA and 16 µM
for LB. Therefore a ratio of 1:3 was used for kAB : kBA (Supplementary 4.4).
The INPHARMA NOEs were calculated at each mixing time and divided
by the diagonal peak with equal Ω1 frequency. This ensures that both the
INPHARMA NOE and the reference diagonal peak originate from the same
spin at the beginning of the NOESY experiment and therefore compensates for
the incomplete longitudinal relaxation during the initial equilibration delay.
Internal motions of both the protein and the ligands in the complex were
neglected, as we lack a satisfactory model to describe them. The correlation
time of the complex was optimized by fitting the experimental intraligand
tr-NOEs to their theoretical values.

2.4.5 MD simulations

A Verlet Molecular Dynamics protocol at 298K for 15 ns in a continuum
matter (dielectric constant = 78.4 Farad.m−1) was used to generate PKA
conformations other than the X-ray one. One structure was saved each 3 ns
for a total of 5 different structures (Supplementary Fig. A.7).
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Abstract

INPHARMA NOEs can be measured between two ligands binding compet-
itively to a common macromolecular receptor and can be interpreted quant-
itatively to derive the binding mode of the two ligands. This approach re-
lies on computationally demanding full relaxation matrix calculations. Here
we demonstrate that the INPHARMA NOEs measured in presence of a
selectively-protonated receptor can be interpreted in a semi-quantitative way
to discriminate between binding poses, thus relieving for the need of demand-
ing computations.
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3.1 Introduction

In the recent decades nuclear magnetic resonance (NMR) spectroscopy has
emerged as a powerful tool in the drug-discovery field. Several NMR-based
methods have proved beneficial for the optimization of low-molecular-weight
lead structures. Among those, thechniques relying on the nuclear Overhauser
effect (NOE) can provide information on pharmacophores at atomic resol-
ution. The transferred-NOEs (tr-NOEs) [73] allow access to the bioactive
conformation of ligands and can also be applied as a screening tool to identify
the interaction of a small molecule with a macromolecular receptor. Recently,
we have reported on the measurement of protein-mediated inter-ligand NOEs
(INPHARMA), which are observed for a mixture of two ligands binding com-
petitively and weakly to the same binding pocket of a common target [87,89].
These inter-ligand NOEs do not result from a direct magnetization transfer
between the protons of the two ligands, since the small compounds, being com-
petitive binders, never occupy the protein binding pocket at the same time.
Rather, a spin diffusion process, mediated by the protons of the receptor-
binding pocket, leads to cross-peaks between the two ligands. We proposed
and demonstrated that these inter-ligand NOEs can be used to determine
the relative binding mode of two drug leads or, in favorable cases, even their
absolute binding pose (INPHARMA approach) [87].

3.2 Principle

The principle underlying the methodology relies on the dependence of the
INPHARMA NOEs on the protein environment and more specifically on the
distances between the protons of each ligand and the protons of the receptor.
Consequently, the size of the INPHARMA NOEs depends on the binding
mode of each ligand to the receptor and a quantitative interpretation of such
effects can be used to derive the binding modes. However, extensive spin dif-
fusion among the receptor protons reduces the specificity of the INPHARMA
NOE signals, and the pharmacophore signature has to be retrieved by theor-
etically simulating the effect of spin diffusion. Thus, the determination of the
ligands’ binding modes relies on computationally intensive calculations based
on the full-relaxation matrix approach in presence of chemical exchange [62],
including the protons of the ligands and all protons of the receptor within a
distance of 8 Å from the binding pocket [73,87].
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In the daily work-flow of drug-discovery, it is desirable to extract inform-
ation from the INPHARMA NOEs without need for the demanding full-
relaxation matrix calculations. We reasoned that a clearer fingerprint of the
binding modes of the two ligands to the receptor would be obtained from the
values of the INPHARMA NOEs if spin-diffusion inside the protein could be
either switched off or considerably reduced. An efficient way to attenuate
intra-molecular spin-diffusion is to reduce the proton density in the receptor,
for example by deuteration. In the past few years, a robust protocol has been
developed for bacterial expression of proteins, in which methyl groups are se-
lectively protonated in a highly deuterated background [99]. Here we employ
this method to investigate the effects on protein-mediated inter-ligand NOEs
of depleting the background protein proton density while maintaining proton-
ated side-chains of specific amino-acids types [99]. Furthermore, we explore
the attractive possibility of employing the INPHARMA method in combin-
ation with selectively protonated receptors to extract structural information
on the relative binding mode of two competitive ligands without need for the
time-consuming full-relaxation matrix calculations.

3.3 Methods

The system under investigation consists of the catalytic subunit of cAMP-
dependent protein kinase A – a monomeric protein of 353 amino acids. The
protein kinase A (PKA) is a ubiquitous enzyme of known crystal structure
[9, 43, 45], which regulates a large variety of cellular processes including ion
flux, cell death and gene transcription. The selected ligands were the core
hinge binding fragments of two known ATP competitive kinase inhibitors LB
and LA, whose binding site has been previously identified (Fig. 3.1).

The catalytic unit of PKA (hereafter referred to as PKA) was expressed
in three different forms: (i) fully protonated (FP), (ii) protonated at specific
amino acid side chains (SP), or (iii) perdeuterated (PD). For the preparation
of the specifically protonated protein, certain α-ketoacids can serve as precurs-
ors for a number of methyl-bearing amino acids for proteins over-expressed in
minimal media [99], In our case, among amino acids containing the aliphatic
side-chain, only valine and leucine are part of the binding pocket (Fig. 3.3);
therefore we chose α-ketoisovaleric acid as the precursor molecule for the pro-
duction of deuterated proteins with protonation restricted to the Leuδ/Valγ
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Figure 3.1: NOESY spectra for the measurement of inter-ligand NOEs. (a) Slices from 2D

NOESY spectra at 3.72 ppm with a mixing time of 600 ms. Protein samples were expressed

in a fully protonated form (upper slice); with the methyl group side chains of Leu and

Val specifically protonated (middle slice); or fully deuterated (lower slice). (b) Chemical

structures of the ligands LB and LA with proton numbering.

positions. Typically, precursors with the desired labeling patterns were ad-
ded to D2O-based growth medium approximately 1 hour prior to induction
of protein over-expression, with expression times kept reasonably short (3-4h
in our case) to maximize the incorporation levels [35]. Three samples were
prepared containing 450 µM of LB and 150 µM of LA. The 1:3 ratio in the
concentration of the two ligands has been chosen to partially compensate for
the different affinity of LB and LA for PKA (Ki,LB/Ki,LA ≈ 0.3). The protein
concentration was 25 µM for samples (ii, SP) and (iii, PD) (containing se-
lectively protonated and perdeuterated protein, respectively), and 45 µM for
sample (i, FP) (containing fully protonated protein). NOESY spectra were
acquired on a 900 MHz spectrometer with a mixing time τm = 600 ms (Fig.
3.1 a)

The protein concentrations were determined by fitting the intensity of
intra-ligand tr-NOEs. The absence of NOEs in the sample containing the
perdeuterated protein confirms that the inter-ligand NOEs do not originate
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from aggregation of the ligands or from simultaneous binding to the protein,
but are indeed mediated by the protein protons.

3.4 Results

Inter-ligand NOEs are observed for samples containing either fully or specific-
ally protonated protein (Fig. 3.1), thus confirming that selective protonation
of the Leuδ/Valγ positions in a perdeuterated background does not hamper
the measurement of protein mediated inter-ligand NOEs. Figure 3.3 shows
the binding pocket of PKA, in which LB and LA occupy alternately the same
space. The short distances (d < 5 Å) of the methyl groups of Leu49, Val57,
Val104, Val123 and Leu173 from both ligands ensure an efficient transfer of
magnetization between the two ligands in the Leuδ/Valγ selectively proton-
ated sample. A comparison of the theoretical values of the INPHARMA NOEs
expected for a sample containing LB (450 µM), LA (150 µM) and either fully
or selectively protonated PKA (25 µM) shows that a much lower intensity is
expected for the inter-ligand NOEs in the presence of selectively protonated
protein, which is in agreement with the paucity of receptor protons available
for the transfer (Fig. 3.3). The data set in the presence of the selectively pro-
tonated protein has been calculated assuming a typical protonation efficiency
of 80%, which, for the five Val and Leu amino acids present in the binding
pocket, results in 16 species with population p > 0.5% (1 species with p =
32%, 10 species with p = 8.2% and 5 species with p =2%). All species with
p < 0.5% were neglected in the calculations. The two theoretical data sets
correlate reasonably well, with the exception of two large outliers: the inter-
ligand NOE between H8 of LB and H1,2 of LA and the NOE between H1,3,5
of LB and H5 of LA (Fig. 3.3). The ratio of the inter-ligand NOEs between
H8-LB and H1,2-LA for the SP vs the FP sample is lower than average;
this reflects the depletion of the protons of Phe327, which are the closest to
both proton H8-LB and protons H1,2-LA and therefore are most responsible
for the corresponding protein-mediated exchange of magnetization between
them (Fig. B.1). On the other hand, the same ratio for the NOE between
H1,3,5-LB and H5-LA is higher than average, reflecting the elimination of
additional spin-diffusion pathways inside the protein. The principal mediat-
ors in the transfer of magnetization between the H1,3,5-LB protons and the
H5-LA proton are the methyl groups of Val57, which are not depleted in the
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selectively protonated protein. In general, it is expected that the ratio of the
inter-ligand NOE peaks observed for the SP sample vs those observed for the
FP sample is high for the ligand protons close to Leuδ/Valγ methyl groups,
due to the absence of dissipating spin-diffusion pathways, while it is lower for
the ligand protons that are distant from the protonated methyl groups. This
should result in a specific fingerprint of the binding mode of the ligands.

Figure 3.2: Correlation of the theoretical INPHARMA NOEs expected for a sample con-

taining fully protonated PKA (FP) versus those expected using selective protonation (SP)

of the Leuδ/Valγ positions. The NOEs are not normalized and are in arbitrary units.

3.4.1 Theoretical formulation

The higher specificity of the pharmacophore signature observable for the SP
sample with respect to that of the FP sample prompted us to investigate the
possibility of interpreting the INPHARMA NOEs in a semi-quantitative way,
namely without considering the effect of spin diffusion inside the protein. For
this purpose we defined the parameter D, as an indicator of the distances of
each ligand proton to the PKA protons:

D =
∑

V al,Leu

∑
i=1,2

d(HA,Meti)−6 ·
∑
i=1,2

d(HB,Meti)−6

 (3.1)

where d(HA/B, HMet) is the distance between proton HA/B of LA/B and
the carbon of one of the two methyl groups of a particular valine or leucine
amino acid. Whenever two or more ligand protons have a degenerate chemical
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shift the sum extends over all degenerate protons and the resulting indicator
DAB is divided by the number of degenerate protons. Only distances d < 5 Å
are considered in the calculations. Our goal is to demonstrate that the inter
ligand-NOEs values correlate well with the indicator DAB for each HA −HB

NOE and that the quality of the fitting can be used to distinguish between
different binding modes of the two ligands.

Figure 3.3: Overlap of the crystal structures of the PKA/LB and PKA/LA complexes

(stereo view). The Val and Leu amino acids are represented with sticks and the. LB is in

green and LA is in blue.

In Figure 3.4 we plot the experimental INPHARMA NOEs between LB
and LA versus the indicator D for five pairs of PKA/LB and PKA/LA com-
plexes. The inter-ligand NOEs were measured for the mixture of LB, LA and
the selectively protonated PKA (SP) and were normalized with respect to the
diagonal peak in ω1. The pair of docking modes in panel (a) corresponds to
the crystal structures of both complexes and represents the “correct” docking
poses. The pairs in panels (b-d) contain one wrong binding mode each and
have been generated by rotating LB or LA by 180◦ around the z or y axis,
as indicated in the figure. The difference in the quality of the correlation is
striking, with the correct pair (a) exhibiting R = 0.83 for the linear correl-
ation of the INPHARMA NOEs with the crude distance indicator D, while
the incorrect pairs show very poor correlations (R < 0.5). From this result we
conclude that a semi-quantitative interpretation of the INPHARMA NOEs
acquired in presence of selectively protonated protein might be sufficient to
discriminate between docking modes. Such interpretation could replace the
lengthy full-relaxation matrix interpretation necessary when the INPHARMA
NOEs are acquired in the presence of fully protonated protein.
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Figure 3.4: Correlation of the INPHARMA NOEs measured for a mixture of LB , LA
and selectively protonated PKA (Leuδ/Valγ) with the distance indicator D calculated for

five model-pairs of the PKA/LB and PKA/LA complexes. The first model-pair (panel (a))

corresponds to the crystal structures of the PKA/LB and PKA/LA complexes. Panels (b-

d) present the correlations for model-pairs where one of the ligand has been rotated to an

incorrect orientation in the binding pocket: (b) LB has been rotated by 180◦ around the y

axis; (c) LA has been rotated by 180◦ around the y axis; (d) LA has been rotated by 180◦

around the z axis; (d) LB has been rotated by 180◦ around the z axis.
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In addition, the specificity of the pharmacophore signature could be fur-
ther improved by enlarging the SP INPHARMA NOE data-set. This can
be achieved by means of multiple complementary schemes of selective pro-
tonation, targeting for example either the methyl groups or the aromatic
side-chains [51].

The possibility of discriminating between binding poses by correlation of
the INPHARMA NOEs with the distance indicator D, or a similar function,
opens the way to easy implementation of the INPHARMA NOEs in struc-
ture calculation programs. While simulation of spin diffusion at each step of
structure calculation and comparison of theoretical and experimental NOEs
is a computationally demanding task, due to the large size of the matrices
involved, the correlation between the INPHARMA NOEs and a distance in-
dicator could be easily translated into an energy term. In this way, the IN-
PHARMA NOEs could be used to actively drive the docking protocol towards
the correct binding poses of the two ligands. Our laboratory is actively explor-
ing this intriguing and promising approach to the determination of receptor-
ligand structures.

3.5 Experimental Section

Protein expression and purification for the NMR experiments. The catalytic
subunit of chinese hamster Cα catalytic subunit of cAMP-dependent of pro-
tein kinase A (PKA) was expressed and purified according to the published
procedure [51]. In detail, the expression plasmid pETPKA, containing the
coding sequence of the cAMP dependent protein kinase, was used for trans-
formation of E. coli strain BL21 (DE3) competent cells. To produce the
deuterated and specifically protonated protein samples, cells were initially
grown on normal M9 media and then transferred to 10 mL expression cul-
tures with increasing percentages of D2O. The main culture in 100% D2O
was then inoculated with the adapted cells. Cells for the fully protonated
protein sample were grown on LA medium. For the specifically protonated
sample, the precursor with the desired labelling pattern (2-keto-3-methyl-
butyrate) was added to the growth medium approximately one hour prior to
induction. The protein, containing a Histidine-tag, was purified on a Ni-NTA
Fast-Flow column (Qiagen, Hilden Germany) following the manufacturer’s
recommendations. Cleavage of the His-tag was performed by adding 80 µL
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of Tev-protease (1 mg.mL−1) and incubating overnight at room temperature.
Further purification was achieved by anion-exchange chromatography with a
SourceQ column. Finally, samples (10-15 mL) were dialyzed against 1L NMR
buffer (PBS-buffer, NaCl 150 mM).
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Abstract

During the process of drug discovery, INPHARMA can be used to derive the
structure of receptor/lead compound complexes binding to each other with
a Kd in the µM to mM range. To be successful, the methodology needs ad-
justment of various parameters that depend on the physical constants of the
binding event and on the receptor size. Here we present a thorough theoretical
analysis of the INPHARMA interligand NOE effect in dependence of exper-
imental parameters and physical constants. This analysis helps the experi-
mentalist to choose the correct experimental parameters and consequentially
to achieve optimal performance of the methodology.
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4.1 Introduction

In structure-based drug design a three-dimensional picture of the binding
mode of known ligands to the target macromolecule is essential to the elabor-
ation of a high affinity drug. When the complex cannot be crystallized, NMR
can be used to obtain structural information in solution. However, the de-
termination of a high resolution structure of the complex by NMR in solution
is often limited by the availability and the physical properties of the target,
which in many cases is either too large to be observed by NMR, too insoluble
or not available with the necessary 13C /15N /2D labeling from expression
systems.

For ligands that bind weakly to the target (Kd in the µM range) detailed
structural information on the ligand bound conformation can be obtained
by transferred-NOEs and transferred-CCR rates [12–14, 16, 59, 75]. This ap-
proach requires small quantities of unlabelled target (1-10 µM solution) and
an excess of ligand, is applicable to any complex independently of the size of
the target macromolecule and does not require any isotope labeling scheme.
However, as the resonances of the target macromolecule are not observed, the
methodology does not provide any structural information on the geometry of
the intermolecular interactions in the complex. Models of the ligand binding
mode can be obtained from the apo structure of the target macromolecule
and the bound structure of the ligand by docking calculations. The docking
models are ranked on the basis of the computed intermolecular interaction en-
ergy or with respect to experimental information, such as the ligand binding
epitope, obtained by the STD or WATER-LOGSY approaches [2, 20, 68, 69].
However, this process mostly results in multiple models for the complex struc-
ture due to the lack of site specific structural information.

To overcome this problem, we developed the INPHARMA methodology
(Interligand Noes for PHARmacophore Mapping) that allows mapping the
structure of the binding pocket of a macromolecule on the NMR resonances
of two competitively binding ligands [78, 79, 87, 89]. The method is based
on the observation of interligand, spin diffusion mediated, transferred-NOE
data, between two ligands L1 and L2, binding competitively and weakly to a
macromolecular receptor T (Fig. 4.1). During the mixing time of the NOESY
experiment, L1 binds to the receptor and its protons (HL1s) transfer their
magnetization to the receptor protons (HTs). During the same mixing time
of the NOESY experiment L1 dissociates from the receptor and L2 binds. The
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magnetization that was transferred from HL1 to HT can now be transferred
from HT to HL2. This leads to an intermolecular peak between HL1 and HL2

although L1 and L2 have never been close in space at any time during the
NMR experiments. The NOE peak between HL1 and HL2 is a spin-diffusion
mediated effect via the receptor proton HT. Clearly this effect can only occur
if HL1 and HL2 are both close to the proton HT in the two complexes TL1

and TL2, respectively. A number of such interligand NOEs define the relative
orientation of the two ligands in the receptor binding pocket.

The INPHARMA methodology belongs to the class of ligand-detected ap-
proaches (where the resonances of the target macromolecule are not seen in
the spectrum), like transferred-NOEs, transferred CCR rates, STD and oth-
ers [2, 6, 13, 14, 59]. The binding pocket of the target macromolecule is here
indirectly mapped on the resonances of the two ligands. Due to the nature
of the magnetization transfer, the information gained in the INPHARMA
spectrum is highly site-specific, in contrast to STD or WATER-LOGSY ex-
periments [20], which can only identify the face of the ligand that is solvent
exposed with respect to that in contact with the receptor. The INPHARMA
NOEs are used to rank and select binding modes of L1 and L2 obtained by
docking the bound conformation of the ligands to a structural model of the
apo-receptor. The direct employment of the INPHARMA NOEs in structure
calculation programs (X-PLOR) is currently under development.

H (ppm)

H
 (p

pm
)NOESY

A B

INPHARMA NOE

INPHARMA NOE

HL1

HL2

HT

HL2

HT

HL1

k12

k21

HL1

HL2

Figure 4.1: A) Schematic representation of the principle of the INPHARMA NOEs. At the

beginning of the NOESY mixing time L1 binds to the receptor and its proton HL1 transfers

magnetization to the proton of the receptor HT. Being L1 a weak binder, it dissociates from

the receptor during the NOESY mixing time and leaves the binding pocket free for L2 to

occupy it. At this point the magnetization deposited on HT from the HL1 proton can be

transferred to the HL2 proton of L2. This process results in a spin-diffusion mediated NOE

peak between HL1 and HL2, depicted in B).
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The method was originally developed to derive the binding mode of L2

when the binding mode of L1 is known. However, we have recently demon-
strated that the INPHARMA approach is much more powerful and allows
in favourable cases the de novo description of the binding mode of both L1

and L2 [78, 79]. In this work we have shown that the methodology is precise
enough to unambiguously select one docking mode per ligand and accurate
enough to select the correct docking mode, as compared to the crystal struc-
tures available for the investigated test cases [79].

Here we present a thorough theoretical analysis of the INPHARMA in-
terligand NOE effects. We use simple model systems to describe the effect
of various parameters, such as receptor proton density, NOESY mixing time,
ligand concentrations, etc. on the size of the observed INPHARMA NOEs.
Furthermore, we present a comprehensive description of the applicability of
the INPHARMA approach. We provide all tools necessary to predict the size
of the INPHARMA NOEs expected for complexes with different Kd and koff
values and to choose the best conditions, in terms of sample composition and
experimental NMR parameters, for the observation of INPHARMA NOEs of
respectable size. The theoretical data presented here are essential to ensure
that the powerful INPHARMA method can be widely applied by non-NMR
experts in the process of drug development.

4.2 Material and Methods

4.2.1 The model systems

The system that can be investigated with the INPHARMA method consists of
a macromolecular receptor, usually a protein, and two competitively binding
ligands. In this theoretical investigation we use simplified model systems to
describe the influence of various structural parameters, such as intermolecular
proton distances, proton densities in the receptor, depth of the binding pocket,
etc., on the expected INPHARMA NOEs. Two simple geometries are used:

i) linear model: the ligands and the receptor consist of protons disposed
in a linear arrangement with a fixed intra-molecular inter-proton distance d.
The ligands contain from one to three protons (Fig. 4.2A);

ii) cubic model: the ligands consist of two or three protons linearly ar-
ranged with an inter-proton distance d; the receptor is a cube of different size
(23 - 73).
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In the receptor/ligand complex the protons are located at the nodes of a three-
dimensional lattice with unit length d in all three dimensions (Fig. 4.2B). In
the free receptor, the nodes of the binding pocket are empty. The ligands
insert perpendicular to one face, in the middle of it, so that the last atom is
part of this face.

H1H3 H2

d

H1H3 H2

H1H3 H2

H1H3 H2 d
L1

L2 Target

Target

L2

L1

A

B

Figure 4.2: Simplified models of the system consisting of one receptor (in black) and two

competitively binding ligands (in gray and white). A) Linear arrangement of the protons

of both the receptor and the ligands; B) Linear arrangement for the protons of the ligands

but cubic arrangement for the protons of the receptor. The ligands bind perpendicular to

one face of the cube such that H3 stands in the middle of this face.
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4.2.2 Theory

Intensities of NOE cross-peaks of a receptor/ligand complex in exchange with
the free forms of both the ligand and the receptor are described by the fol-
lowing equation:

dM(t)
dx

= −(R + K) · (M(t)−Meq) (4.1)

with a solution of the form:

∆M(τm) = exp [−(R + K) · τm] ·∆M(0) (4.2)

where K and R are the kinetic and relaxation matrices, M(0) the initial
magnetization, Meq the equilibrium magnetization and the mixing time. Two
different models have been considered for the chemical exchange. The first is
a three-step model, including the state where both ligands and the receptor
are found also in the free form, as described by:

TL1 + L2

k1off


k1on

L1 + T + L2
k2on


k2off

L1 + TL2 (4.3)

In the second model, we assume that the receptor is never in the unbound
state, due to presence of the two ligands in large excess. This model is de-
scribed by:

TL1 + L2
k12


k21

L1 + TL2 (4.4)

Model 1

The relaxation matrix is a diagonal block matrix, where each sub-matrix
describes the proton-proton relaxation pathway of one species; the species
present in solution are the two ligands in the free state L1, L2, the two com-
plexes TL1 and TL2 of the target macromolecule and L1 or L2, respect-
ively [74], and the free target macromolecule T. The superindex of each Rx

s

indicates the species (either the free ligands or the complexes TL1 and TL2)
and the subindex indicates which protons of the species contribute to that
sub-matrix. Thus, RL1

L1
describes the relaxation of the protons of ligand L1

in the free state and RTL1
L1

the relaxation of the protons of ligand L1 when
bound in the complex TL1. Analogously, RTL1

T describes the relaxation of the
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protein protons in the complex TL1 and RTL1
L1,T

contains the cross-relaxation
terms between the protons of ligand L1 and the protons of protein T in the
complex TL1.

R =



RL1
L1

RL2
L2

RTL1
L1

RTL1
L1,T

RTL1
T,L1

RTL1
T

RTL2
L2

RTL2
L2,T

RTL2
T,L2

RTL2
T

RTT


(4.5)

The kinetic matrix is built according to the equations that rule the chemical
equilibrium:

d[L1]
dt

= −k1on · [T ][L1] + k1off · [TL1]

d[TL1]
dt

= −d[L1]
dt

d[L2]
dt

= −k2on · [T ][L2] + k2off · [TL2] (4.6)

d[TL2]
dt

= −d[L2]
dt

d[T ]
dt

= −d[TL1]
dt

− d[TL2]
dt
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and has the form:

K =

0
BBBBBBBBBBBBBBBBB@

k1on[T ]I −k1off I

k2on[T ]I −k2off I

−k1on[T ]I k1off I

k1off I −k1on[L1]I

−k2on[T ]I k2off I

k2off I −k2on[L2]I

−k1off I −k2off I (k1on[L1] + k2on[L2])I

1
CCCCCCCCCCCCCCCCCA

(4.7)

where I is the identity matrix of the same size as the corresponding block
matrix in R.

Model 2

Compared to the matrix for model 1, the relaxation matrix R for model 2
lacks the last block representing the unbound target macromolecule.

R =



RL1
L1

RL2
L2

RTL1
L1

RTL1
L1,T

RTL1
T,L1

RTL1
T

RTL2
L2

RTL2
L2,T

RTL2
T,L2

RTL2
T


(4.8)
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The kinetics matrix K is derived from the equations:

d[L1]
dt

= k12 · [TL1][L2]− k21 · [TL2][L1]

d[L2]
dt

= −d[L1]
dt

(4.9)

d[TL2]
dt

=
d[L1]
dt

d[TL1]
dt

= −d[L1]
dt

K =



k21[TL2]I −k12[L2]I

k12[TL1]I −k21[L1]I

−k21[TL2]I k12[L2]I

k12[L2]I −k21[L1]I

−k12[TL1]I k21[L1]I

−k12[L2]I k21[L1]I


(4.10)

where I is the identity matrix of the same size as the corresponding block
matrix in R. The elements of the kinetics matrices of the two models are
derived from the binding constants and the equilibrium concentrations. The
last are calculated from the mass conservation laws.

Model 1:

k2on[T ][L2] = k2off [TL2]

k1on[T ][L1] = k1off [TL1]

TL1] + [TL2] + [T ] = [T ]tot (4.11)

[TL1] + [L1] = [L1]tot
[TL2] + [L2] = [L2]tot
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Model 2:

k12[TL1][L2] = k21[TL2][L1]

[TL1] + [TL2] + [T ] = [T ]tot
[TL1] + [L1] = [L1]tot (4.12)

[TL2] + [L2] = [L2]tot

Individual elements of the relaxation matrix have the following form:

Ri,i = ρi =
∑
Hj∈A
j 6=i

b2

d6
ij

· (J(0) + 3J(ω) + 6J(2ω))

Ri,j = σij =
b2

d6
ij

· (6J(2ω)− J(0))

J(ω) =
2
5

(
τc

1 + (ωτc)2

)
(4.13)

b =
1
2
· µ0

4π
~ γ2

H

where ρi is the longitudinal relaxation rate of proton Hi, σij is the cross-
relaxation rate of protons Hi and Hj , dij is the distance between protons Hi

and Hj in the same chemical species (ligand, target macromolecule or com-
plex) and “A” stand for the chemical species. All protons Hj are considered
in the calculation of the relaxation rates ρi and σij , irrespectively of the value
of dij .

4.2.3 Analytical solution for a three spins system

A description of the transferred–NOE effect for a two-spin system has been
given in great detail [54, 59, 60, 65]. In these studies the receptor was not
included in the calculation, namely it was assumed that it does not con-
tribute considerably to the process of magnetization transfer between the
ligand protons. However, it has been reported that the contribution of
the receptor cannot be neglected for an accurate prediction of transferred-
NOEs [4, 5, 63,73,76,108].
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Clearly, for the calculation of the INPHARMA NOEs, the receptor pro-
tons must be taken into account as they mediate the transfer of magnet-
ization between the two ligands. An analytical solution that describes the
INPHARMA NOE transfer cannot be systematically found for a three spin
system, where the two ligands L1 and L2 and the receptor T consist of one
proton each, as this would correspond to searching for an analytical solution of
a polynomial equation of sixth order [30]. However an analytical description
of the INPHARMA transfer can be found by making two crude approxima-
tions: 1. the concentrations of the ligands and the receptor are equal; 2. all
four species L1, L2, TL1 and TL2 have the same auto-relaxation rates ρ and
the cross-correlated relaxation rate σ between the HT and HL protons in TL1

and TL2 are equal. Furthermore, the affinity of the two ligands is also chosen
to be equal.

The first two approximations are clearly not realistic. However, an “easy-
to-read” analytical solution for the three spin-system, even under the two
coarse approximations made above is still useful to describe at a glance the
overall dependence of the INPHARMA magnetization transfer on internal
dynamics and correlation time. In the next section we show results calculated
numerically for realistic scenarios with real physical constants and for multi-
spin systems. Under the approximations mentioned above, the relaxation
matrix and the kinetics matrix simplify to the following form:

R + K =



k + ρ 0 −k 0 0 0

0 k + ρ 0 0 −k 0

−k 0 k + ρ σ 0 0

0 0 σ k + ρ 0 −k

0 −k 0 0 k + ρ σ

0 0 0 −k σ k + ρ


(4.14)

where k = k12 = k21.
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Solving Eq. 4.1 implies finding six eigenvalues for:

det(R + K− λI) = 0 (4.15)

The INPHARMA NOE S(t) between L1 and L2 is defined by:

S(t) = −k3σ2
6∑
i=1

αi · e−λit (4.16)

where λi are coefficients that fulfilled the following equation system:

1 1 1 1 1 1

λ1 λ2 λ3 λ4 λ5 λ6

λ1
2 λ2

2 λ3
2 λ4

2 λ5
2 λ6

2

λ1
3 λ2

3 λ3
3 λ4

3 λ5
3 λ6

3

λ1
4 λ2

4 λ3
4 λ4

4 λ5
4 λ6

4

λ1
5 λ2

5 λ3
5 λ4

5 λ5
5 λ6

5


·



α1

α2

α3

α4

α5

α6


=



0

0

0

0

0

1


(4.17)

as described in [55]. The solution can be calculated from the known determ-
inant of the Vandermonde matrix of Eq. 4.17:

S(t) = −k3σ2
6∑
i=1

Π(λi) · e−λit,

Π(λi) =
6∏
j=1
j 6=i

(λi − λj)−1 = αi

λi=1,3,5 =
1
3

(4k + 3ρ)− 2
3

√
4k2 + 3σ2 cos θi (4.18)

λi=2,4,6 =
1
3

(2k + 3ρ)− 2
3

√
4k2 + 3σ2 cos θi

θi =
1
3

{
tan−1

(
3
√

3(32k4σ2 + 19k2σ4 + 4σ6)
−16k3 + 9kσ2

)
+
π

2
(1− Sign(−16k3 + 9kσ2))− iπ

}

Even with the drastic approximations made for this model system, the
solution turns out to be quite complicated. However, a straightforward for-
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mula is obtained for the asymptotic development of the variable k towards
very high values (Fig. 4.3) and lead to the canonical expression of the IN-
PHARMA NOE:

S(t) ∼
k→∞

1
4
· e−ρt

(
cosh

(
σt√

2

)
− 1
)

(4.19)

This expression is reminiscent of the well known dependence of transferred-
NOEs intensities on the mixing time t of the NOESY experiment:

S(t) ∼
k→∞

1
4
· e−ρt · sinh

(
σt√

2

)
(4.20)

However, while the transferred-NOEs intensities depend on the time t
according to the hyperbolic sine function, which can be approximated to a
linear function at small mixing times, the INPHARMA NOEs show a hyper-
bolic cosine dependence on time, which can be approximated by a parabolic
curve at short mixing times. This behavior reveals the spin-diffusion nature
of the INPHARMA NOEs, which depend quadratically on σt. The formula
in Eq. ?? can be used to visualize the influence of the correlation time and
internal motions on the build-up of the INPHARMA-NOE. The effect of in-
ternal motions is estimated using the Lipari Szabo´s model free approach in
the limit of a very fast internal correlation time.

S(t) ∼
k→∞

1
4
· e−S2ρt

(
cosh

(
S2σt√

2

)
− 1
)

(4.21)

where S is the order parameter varying from 0 to 1 and assuming equal order
parameters for the auto-relaxation rate ρ and the cross-relaxation rate σ.
In Figure 4.3, we show the dependence of the INPHARMA NOEs on the
mixing time t, according to Eq. 4.21, for different correlation times of the
molecule τc and different order parameters S. At short mixing times the curves
have a parabolic shape, according to:

S(t) ∼
k→∞
t→0

1
4
·
(
S2σt√

2

)2

(4.22)

For S2 < 1, the cross-relaxation rate σ is slower resulting in a delayed
build-up of the INPHARMA NOEs. As for the transferred-NOEs, the pres-
ence of an order parameter S 6= 1 has a strong effect on the INPHARMA NOE
at various mixing times. At 1s mixing time the difference is negligible while
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at 400 ms, there is a factor of four between the INPHARMA NOE assuming
S2 = 1 and S2 = 0.5 (full line and dashed-dotted line in Fig. 4.3).
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τ = 5ns ; S2 = 1 
τ = 20ns ; S2 = 0.5 

Figure 4.3: Theoretical dependence of the INPHARMA NOEs on the mixing time τm
under the approximations used to derive the analytical expression of Eqs. 4.19 and 4.21.

The inter proton distances d are equal to 2.5 Å. The full line curve was calculated assuming

τ = 20 ns and S2 = 1. The dashed line curve was calculated assuming τ = 10 ns and S2

= 1. The dotted-dashed line curve was calculated assuming τ = 5 ns and S2 = 1. The last

curve was calculated assuming τ = 20 ns and S2 = 0.5 (overlapped with the dotted-dashed

curve). Other parameters are: field strength = 800 MHz, [T ]tot = 50 µM, [L1]tot = [L2]tot
= 500 µM, koff = 1 kHz.

This difference has to be taken in account in the interpretation of the
INPHARMA NOE peaks that are transferred by highly dynamic parts of the
binding pocket. Efforts to include order parameters in the interpretation of
the data are on-going in our laboratories. Numerical solution for a multi-spin
system. For more than three spins and for systems with realistic parameters,
the equations system becomes too complex to search for an analytical solu-
tion. Therefore a numerical solution is calculated in Matlab for the linear and
cubic model systems assuming both model 1 and model 2 for the chemical ex-
change and in dependence of physical parameters such as τc, τm, koff , species
concentrations and internal dynamics. The results of such simulations, which
are essential to understand the influence of the physical and experimental
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parameters on the size of the observed INPHARMA NOEs, are presented in
the following section.

4.3 Results and Discussion

4.3.1 Choice of the kinetic model

One of the challenges of the INPHARMA method is to handle a large number
of docking models for each of the two ligands, which need to be ranked with
respect to the measured interligand NOEs. Thus, the calculation time needed
to predict the interligand NOEs for one pair of models should be kept to a
minimum. A medium size protein (20 kDa) contains about thousand protons,
which translates into a matrix R+K of ca. nine million elements. The size
of the R+K matrix can be reduced to four millions by choosing the kinetic
model 2, where the presence of the free receptor in solution is neglected. In
order to evaluate the error introduced on the calculated INPHARMA NOEs
by neglecting the presence of the free receptor in solution, we simulated the
interligand NOEs between the two protons H1 of L1 and H1 of L2 in presence
of a common receptor consisting of a cube of 73 protons. In all simulations
shown in this and the following paragraphs, the magnetization originates from
L1 and is transferred to L2; the INPHARMA NOE shown on the y axis is
normalized to the diagnol peak of the proton H1 of L1 in a NOESY experiment
with mixing time τm = 0; a diffusion limited kon of 108 M−1 s−1 is assumed; for
the cubic model system (Fig. 4.2B) the ligand is placed deep in the receptor
cube with the ligand proton H1 at coordinates (4,4,3), unless stated otherwise.
Clearly the error introduced by using the approximated model 2 depends on
the amount of receptor free in solution at equilibrium. For a system consisting
of [L1]tot = [L2]tot = 500 µM, [T ]tot = 50 µM and with Kd = 100 µM for both
ligands, the error made by neglecting the presence of the free receptor (4 µM)
varies with the mixing time of the NOESY experiment and reaches ca. 10%
or 5% at τm = 0.5 s or 1 s respectively (Fig. 4.4A). However, for tighter
binding ligands with Kd = 10 µM or lower the presence of the free receptor
(0.5 µM) can be safely neglected, as the error on the interligand NOE is less
than 3% to 5% over the complete range of mixing time from 0 s to 1 s (Fig.
4.4B). In our experience errors smaller than 5% - 10% are not expected to
influence the outcome of the analysis.
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Figure 4.4: Dependence on the mixing time τmof the intensity of the INPHARMA NOE

between proton H1 of L1 and proton H1 of L2 binding a cubic receptor with 7 protons per

dimension, as shown in Fig. 4.2B. The full line curve was calculated assuming the kinetic

model 1, where the presence of the free receptor was explicitly taken into account as in Eq.

4.3; the dashed curve was calculated assuming the kinetic model 2, where the presence of

the free receptors is neglected, as in Eq. 4.4. Other parameters are: τcT = 20 ns, τcA =

τcB = 0.1 ns, field strength = 800 MHz, d = 2.5 Å, [T ]tot = 50 µM, [L1]tot = [L2]tot = 500

µM. koff = 10 kHz in panel A and koff = 1 kHz in panel B.

4.3.2 Dependence on the koff of the two ligands

In order to observe the INPHARMA NOEs, the two ligands should bind
weakly to the receptor, namely they should exchange a few times between their
free and bound states during the mixing time of a NOESY experiment. Figure
4.5 shows the dependence on the koff of the INPHARMA NOE occurring
between the two protons H1 of L1 and H1 of L2 in presence of a common
receptor consisting of a cube of 73 protons, assuming model 1 for the exchange
and equal affinity for the two ligands. For a mixing time of 500 ms and a koff
of 1 kHz or higher (corresponding to a Kd of 10 µM if one assumes a diffusion
limited kon of 108 M−1 s−1) the INPHARMA NOE has reached its maximum
value, while for a koff of 100 Hz the INPHARMA NOE has an observable
size equal to about two third of its maximum value. These results indicate
that the transfer of magnetization between the two ligands improves with
the number of exchange events in the binding pocket of the receptor. The
condition on the koff is not too stringent and the INPHARMA NOE could
be observed for most weakly binding ligands, typically available in an early
phase of drug development, which we tested.
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Figure 4.5: Dependence on the koff = k1off = k2off of the intensity of the INPHARMA

NOE between proton H1 of L1 and proton H1 of L2 binding a cubic receptor with 7 protons

per dimension, as shown in Fig. 4.2B. The curve was calculated assuming the kinetic model

1; Other parameters are τm = 500 ms, τcT = 20 ns, τcA = τcB = 0.1 ns, field strength =

800 MHz, d = 2.5 Å, [T ]tot = 50 µM, [L1]tot = [L2]tot = 500 µM.

More critical is the relative size of the dissociation rates for L1 and L2,
k1off and k2off . Clearly, the optimal situation for the receptor mediated
transfer of magnetization between the two ligands is when k1off = k2off

and the two ligands spend an equal amount of time in the receptor bound
state. Figure 4.6 shows the efficiency of the INPHARMA NOE transfer when
k1off/k2off 6= 1. A considerable amount of magnetization transfer through
the INPHARMA NOE is obtained for a k1off/k2off value of up to 8, while for
k1off/k2off = 16 the INPHARMA NOE is less than 1% at a mixing time of
1s and has decreased by a factor of 5 at 500 ms with respect to k1off = k2off .
Thus, the method requires that the affinity of the two ligands is of comparable
size.

An obvious way to compensate for the different affinity of the two ligands,
and consequently for the different equilibrium concentrations of the TL1 and
TL2 complexes in solution, might seem that of adjusting the concentration of
the two ligands, as for example using [L1]tot = 10[L2]tot if k1off = 10k2off .
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Figure 4.6: Dependence on the mixing time τm of the intensity of the INPHARMA NOE

between proton H1 of L1 and proton H1 of L2 binding a cubic receptor with 7 protons per

dimension, for different k1off/k2off ratio. The curves were calculated assuming the kinetic

model 1 and k2off = 1 kHz. Other parameters are as in Fig. 4.5.

At small mixing times, for which the two-step transfer dominates the IN-
PHARMA signal, a concentration ratio [L1]tot = 10[L2]tot is optimal (Fig.
4.7). However, at longer mixing times the optimal concentration changes due
to the contribution of additional pathways of magnetization transfer and spin
diffusion inside the receptor. The use of longer mixing times renders the ana-
lysis of the INPHARMA NOE intensity more difficult, due to the contribution
of many spin-diffusion pathways; on the other hand long mixing times are ne-
cessary to increase the intensity of the INPHARMA signal. For a complex
with τc = 20 ns the optimal value is found around [L2]tot/[L1]tot = 0.33 (Fig.
4.7B). On the other hand for a complex with τc = 200 ns (Fig. 4.7C) the op-
timal concentration ratio of the two ligands for long mixing times is found for
similar concentrations of L1 and L2 ([L2]tot/[L1]tot = 0.81) despite the differ-
ences in the koff . In this case it is more important to achieve fast transfer of
magnetization between the two ligands away from the fast relaxing receptor,
in order to avoid the diffusion of the ligands magnetization in the receptor,
rather than to have similar population of the TL1 and TL2 complexes. Figure
4.7A summarizes these results.
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Here the INPHARMA NOE in dependence of the mixing time for ligands
with equal affinity and equal concentration (full line), as compared to ligands
with k1off = 10k2off (dashed line) is shown. Not unexpectedly, the optimal
INPHARMA integrals are observed when the affinities and the concentrations
of the two ligands are equal. Changing the ratio of [L2]tot/[L1]tot from 1 to
0.1 (circles) while keeping the overall concentration of the ligands constant
([L2]tot + [L1]tot= 1 mM) cannot compensate the decrease of the transfer
efficiency due to unequal affinities. This result can be understood considering
that while the koff represents the inverse of the lifetime of the complex,
the concentration of the ligand influences the probability that the complex
is formed. Thus, owing to the spin-diffusion loss between two consecutive
complex formations, binding of the ligand to the receptor for twice as long does
not have the same effect as binding twice as often. At shorter mixing times the
INPHARMA NOE for k1off = 10k2off and [L2]tot/[L1]tot = 0.1 (dashed) is
larger than for k1off = 10k2off and [L2]tot/[L1]tot = 1 (circles), while at longer
mixing times the INPHARMA NOE shows the opposite behavior. The critical
point where the INPHARMA NOE for [L2]tot/[L1]tot = 0.1 becomes worse
than for[L2]tot/[L1]tot = 1 depends on the correlation time of the complex
and shifts to shorter mixing times for larger τc.
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Figure 4.7: A) Dependence on the mixing time τm of the INPHARMA NOE between

proton H1 of L1 and proton H1 of L2 binding a cubic receptor with 7 protons per dimension,

for k1off/k2off = 1 (full line) and k1off/k2off = 10 (circles). The curves were calculated

assuming the kinetic model 1 and k2off = 1 kHz. The concentrations of the species are:

[T ]tot = 50 µM, [L1]tot = [L2]tot = 500µM (full); [T ]tot = 50µM, [L1]tot = [L2]tot = 500µM

(circles); [T ]tot = 50µM, [L1]tot = 910µM,[L2]tot = 90µM (dashed). The dashed curve is

multiplied by [L1]910/[L1]500 with [L1]910 and [L1]500 being the equilibrium concentrations

of [L1] for [L1]tot = 910µM or 500 µM, respectively. This is necessary to compensate for the

higher initial magnetization of L1 by which the INPHARMA NOE intensity is normalized.

Other parameters are as in Fig. 4.5. This panel shows that for short mixing times, the

concentrations that compensate differences in the off rates give the largest INPHARMA

signals. For longer mixing times, in which spin diffusion becomes more important, other

concentrations are optimal. B-C) Contour plots of the INPHARMA NOE intensity in

dependence of the τm (x axis) and of the [L1] tot concentration. (y axis) for and k1off/k2off

= 10. The total concentration of the two ligands [L1]tot + [L2]tot is constant (1 mM). The

INPHARMA NOE intensities are normalized to the initial magnetization of L1 when [L1]tot
= 500 µM for comparison. B) transfer from proton H1 of L1 and proton H1 of L2 ; τcT = 20

ns; C) transfer from proton H1 of L1 and proton H1 of L2 ; τcT = 200 ns; Other parameters

are: τcA = τcB = 0.1 ns, field strength = 800 MHz, d = 2.5 Å, [T ]tot = 50µM.
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4.3.3 Influence of proton density

An important question is how the number of protons of both the ligands and
the receptor influences the INPHARMA NOEs. Clearly, the most efficient
transfer is obtained when the magnetization is not allowed to diffuse away
through undesired spin-diffusion pathways and only the desired spin-diffusion
transfer L1 → receptor → L2 occurs. In a real system, however, this is never
the case, due to the presence of protons in the ligands and in the receptor
that do not belong to the binding epitope or to the binding pocket.
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Figure 4.8: Dependence on the mixing time τm of the intensity of the INPHARMA NOE

between proton H1 of L1 and proton H1 of L2 binding a linear receptor consisting of 7

protons as shown in Fig. 4.2A. The size of the ligands is variable, with the dotted-dashed

curve showing the transfer for ligands containing only proton H1, the dashed curve for

ligands consisting of H1 and H2 and the full curve for ligands consisting of H1, H2 and

H3. The curves were calculated assuming the kinetic model 1 and k1off = k2off = 1 kHz.

The concentrations of the species are: [T ]tot = 50µM, [L1]tot = [L2]tot = 500µM. Curves in

panel A and B were calculated assuming τcT = 20 ns and τcT = 200 ns, respectively.

We first investigate the effect of the ligand proton density by comparing
the INPHARMA NOE in a linear system, as in Fig. 4.2A, for the case when
the two ligands consist of only one, two or three protons (Fig. 4.8). The
presence of protons H2 of L1 and L2 diminishes the efficiency of the transfer
between H1 of L1 and H1 of L2 by a factor of three (Fig. 4.8B), due to the
fact that the ligand protons H2 compete with the receptor protons for the H1
magnetization. However, the presence of additional ligand protons at d > 5
Å (H3 of L1 and L2) does not further affect the efficiency of the INPHARMA



80 Chapter 4

0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

mixing time (s)

IN
PH

AR
M

A 
N

O
E

125 H

512 H, 729 H
343 H

216 H

Figure 4.9: Dependence on the mixing time τm of the intensity of the INPHARMA NOE

between proton H1 of L1 and proton H1 of L2 binding a cubic receptor of variable size:

53 (circles), 63 (doted-dashed), 73 (full), 83 and 93 (dashed, overlapped). The curves were

calculated assuming the kinetic model 1; other parameters are τcT = 20 ns, τcA = τcB =

0.1 ns, field strength = 800 MHz, d = 2.5 Å, [T ]tot = 50µM, [L1]tot = [L2]tot = 500µM.

NOE.

Due to the dependence of spin diffusion on the size of the molecule, proton
density on the large receptor is likely to have a stronger effect on the intensity
of the INPHARMA NOE.

To simulate the dependence of the INPHARMA NOE on the number of
protons of the receptor, while keeping the τcT constant, we used the artificial
cubic system of Fig. 4.2B. Figure 4.9 shows the results of such simulations for
a cube of size ranging from 33 to 93. As expected, the efficiency of magnet-
ization transfer diminishes upon increasing the number of receptor protons,
due to the undesired diffusion of the ligand(s) magnetization from the binding
pocket to the receptor body. Such a loss reaches a maximum for a sphere of
about 8 Å around the ligand binding pocket (size of the cube = 73); spin dif-
fusion processes beyond this sphere do not influence the INPHARMA NOE
to a measurable extent for molecules with a τc similar to that used in the
simulation (20 ns). Clearly, increasing the size of the receptor directly trans-
lates into a higher velocity of the spin diffusion and to a larger radius of the
sphere within which protons contribute to the magnetization transfer process.



The INPHARMA technique for pharmacophore mapping: A theoretical guide to
the method 81

However, also for very large receptors the mixing time of the NOESY exper-
iment can be optimized to obtain the maximum INPHARMA NOE transfer,
while minimizing dilution of the signal throughout the receptor (see next para-
graph). For a receptor with τc = 20 ns, we can conclude that spin-diffusion
inside the receptor competes with the INPHARMA magnetization transfer up
to a distance of 8 Å from the binding pocket and can therefore be considered
as a “local” process.

4.3.4 Optimal choice of τm: dependence on τm

The mixing time that maximizes the intensity of the INPHARMA NOEs
depends on the correlation time of the complex. Figure 4.10 shows the de-
pendence of the INPHARMA NOE on the mixing time τm for receptors with
increasing τc. At short mixing times the INPHARMA NOE shows a parabolic
dependence on τm, which is typical of a second order effect (spin-diffusion)
(see also Eq. 4.21). Increasing the correlation time increases the steepness of
the initial part of the curve.
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Figure 4.10: A.) Dependence on the mixing time τm of the intensity of the INPHARMA

NOE between proton H1 of L1 and proton H1 of L2 binding a cubic receptor of size 73

and variable τc: 10 ns (sky blue), 20 ns (black), 40 ns (red), 80 ns (dark blue), 160 ns

(purple). The curves were calculated assuming the kinetic model 1; B) Contour plot of the

INPHARMA NOE intensity in dependence of the τm (x axis) and of the τc of the receptor

(y axis). Other parameters are: τcA = τcB = 0.1 ns, field strength = 800 MHz, d = 2.5 Å,

[T ]tot = 50µM, [L1]tot = [L2]tot = 500µM.
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As it is seen in Fig. 4.10B, for a receptor of 400 kDa or larger, the max-
imum INPHARMA NOE is obtained for τm < 100 ms, while for a receptor of
ca. 20 kDa, mixing times of the order of 500 ms or higher can be used. In our
experience the best results, in terms of selection of the correct docking mode
by comparison of the theoretical and experimental INPHARMA NOEs, are
obtained when the experimental data are acquired at mixing times for which
the INPHARMA NOE has not yet reached its maximum value. This is due
to the fact that in this regime only ”short“ spin diffusion pathways contribute
to the signal, thus minimizing the errors made by neglecting internal motions
in the calculation of the theoretical NOEs (vide infra). In fact, the more re-
ceptor protons contribute to the spin-diffusion transferred NOEs, the largest
is the error made by neglecting their internal dynamics.

4.3.5 Dependence on receptor concentration

Clearly the size of the INPHARMA NOE depends not only on the τc of the
receptor, the affinity of the ligands to the receptor and the kinetic constants
but also on the concentration of the species in solution.
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Figure 4.11: Contour plot of the dependence of the INPHARMA NOE between proton

H1 of L1 and proton H1 of L2 binding a cubic receptor of size 73 on the τm (x axis) and

on the fraction of bound ligand [TL1]/[L1]0 (y axis). The curves were calculated assuming

the kinetic model 1. Other parameters are τcT = 20 ns, τcA = τcB = 0.1 ns, field strength

= 800 MHz, d = 2.5 Å, [L1]tot = [L2]tot = 500µM.
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In Figure 4.11 we show a contour plot of the intensity of the INPHARMA
NOE in dependence of the mixing time (x axis) and the fraction of bound
ligand (y axis), defined as [TL1]/[L1]tot = [TL2]/[L2]tot. The ligands total
concentration is 500 µM each. At short mixing times the INPHARMA NOE
intensity linearly increases with the fraction of bound ligand. On the other
hand, at long mixing times the intensity of the INPHARMA NOE steeply
depends on the fraction of bound ligand. For τm > 600 ms the optimal value
of the INPHARMA NOE is achieved for a fraction of bound ligand ranging
from 0.02 to 0.06, whereas at 150 ms bound ligand fractions ranging from
0.1 to 0.35 are required for optimal signal. However, the best results can
be obtained at long mixing times using a low fraction of bound ligand (Fig.
4.11).

4.3.6 Effect of internal dynamics

Dynamics plays an important role in the NOE transfer mechanisms. Campbell
and Sykes evaluated the influence of internal motions of the bound and free lig-
and on the transferred-NOE effect neglecting the receptor protons(27). Here,
we analyse the effect of internal motions on the inter-ligand INPHARMA
NOE effect using the model-free approach of Lipari Szabo(28). Clearly in
this analysis we need to consider the receptor protons as well, as they me-
diate the transfer of magnetization between the two ligands. In order to
quantitatively evaluate the error made by neglecting internal dynamics in the
back-calculation of the INPHARMA NOE from a certain docking model, we
performed theoretical simulations of the INPHARMA NOE, using the cubic
system of Fig. 4.2B, in presence of internal dynamics of variable amplitude.
First we assumed the same order parameter for all protons in all species, both
free and bound. Figure 4.12 shows that the efficiency of the INPHARMA
transfer decreases in presence of internal dynamics. At low mixing times the
decrease of the magnetization transfer efficiency is proportional to S4, as it
was found in the analytical solution of Eq. 4.21. Thus the effect of internal
motions at low mixing times corresponds to decreasing the correlation time
of the species by a factor S4 (Fig. 4.12B). The best choice of the mixing time
depends not only on the τc of the complex but also on the presence of internal
motions. The optimal compromise between optimizing the intensities of the
INPHARMA NOEs and minimizing the error generating from neglecting in-
ternal motions is achieved, in our experience, by acquiring the experimental
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data at mixing times for which the INPHARMA NOEs have not reached their
maximum value, yet.
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Figure 4.12: A) Dependence on the mixing time τm of the intensity of the INPHARMA

NOE between proton H1 of L1 and proton H1 of L2 binding a linear receptor consisting of

7 protons as shown in Fig. 4.2A. The dynamic of the protons is variable with an S2 ranging

from 0.1 to 1. The curves were calculated assuming the kinetic model 1 with k1off = k2off =

1 kHz. The concentrations of the species are: [T ]tot = 50µM, [L1]tot = [L2]tot = 500µM,

τcT = 20 ns, τcA = τcB = 0.1 ns, field strength = 800 MHz, d = 2.5 Å. B) Zoom of the

panel A) for the mixing time between 0s to 0.1s.

In a more realistic system, different internal dynamics occurs for each
species. Therefore, we simulated the efficiency of the INPHARMA magnet-
ization transfer using three different order parameters S2

L, S
2
T and S2

TL, for
the free ligands protons, the free receptor protons and the receptor protons
or ligand protons in the complexes, respectively (Fig. 4.13). Our simula-
tions show that the INPHARMA magnetization transfer is not considerably
affected either by the internal dynamics of the free ligands or by that of the
free receptor (provided that the concentration of the free receptor is not too
high). On the other hand, internal dynamics in the complexes measurably
affects the efficiency of the INPHARMA magnetization transfer. For a me-
dium size receptor, the efficiency of magnetization transfer at constant τm
decreases upon increasing the amplitude of internal dynamics either for the
receptor or the ligands protons in the complex, whereby the effect of receptor
protons dynamics is smaller. The reason for this lies in the two counteracting
effects of the internal dynamics of the receptor protons: on the one hand,
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receptor protons dynamics reduces the spin-diffusion rate necessary for the
INPHARMA transfer, thus resulting in smaller INPHARMA NOEs; on the
other hand it reduces the rate of diffusion of the magnetization away from
the binding pocket into the receptor body, thus improving the efficiency of
the INPHARMA magnetization transfer.
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Figure 4.13: Dependence on the mixing time τm of the intensity of the INPHARMA NOE

between proton H1 of L1 and proton H1 of L2 binding a linear receptor consisting of 7

protons as shown in Fig. 4.2A. Different amount of dynamics are taken into account: 1. No

dynamics is present neither for the ligands nor for the receptor: S2 = 1 (full line); 2. The

free ligand is dynamic with an S2
L = 0.5 (dashed line); 3. The free receptor is dynamic with

an S2
T = 0.5 (overlapped with the full line); 4. Both the ligands and the receptor in the

complex show dynamics with S2
TL = 0.5 (full line with circles). The curves were calculated

assuming the kinetic model 1 with k1off = k2off = 1kHz. The concentrations of the species

are: [T ]tot = 50µM, [L1]tot = [L2]tot = 500µM, τcT = 20 ns, τcA = τcB = 0.1 ns, field

strength = 800 MHz, d = 2.5 Å.

4.4 Conclusions

The INPHARMA method is a flexible, rapid and powerful technique to de-
termine the relative, and in some favorable cases even the absolute, orient-
ations of two ligands binding weakly and competitively to the same binding
pocket of a common receptor. This methodology is particularly useful in the
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process of optimizing drug leads as it provides a fast method to determine
the relative orientation of different chemical skeletons in the receptor bind-
ing pocket. Here we provide a theoretical description of the INPHARMA
effect and we describe its dependence on both kinetic and experimental vari-
ables. The equations and the graphs shown here provide an arsenal of tools
to determine the applicability of the method to specific cases and to correctly
choose the experimental parameters. We show that the choice of the exper-
imental parameters, as for example the τm of the NOESY experiments, is
critical and strictly depends on the system under investigation. Furthermore,
we provide an estimation of the errors committed by using approximations, as
for example neglecting the effect of internal motions. The analysis presented
here helps to optimize the results from INPHARMA measurements.
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INPHARMA: Performance of

the method

Abstract

INPHARMA proved its capability to discriminate between binding poses
when the apo-protein structure is available. Here we investigate the scenarios
in which the structure of the apo-receptor is not well defined, as it would be
the case for low resolution models obtained by homology modeling or experi-
mental methods such as electron microscopy or X-ray crystallography (when
only low resolution data are available). The method exhibits high success
rates (ranging from 30% to 100%), making INPHARMA a powerful method
to resolve small molecule protein complex structure.
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5.1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy has emerged as a valuable
tool in drug discovery over the past decades [38,104]. NMR-based techniques
have been developed to identify and subsequently optimize novel binders for a
dedicated protein target. Among the different NMR approaches, those relying
on the transferred Nuclear Overhauser Effect (tr-NOE) are particularly useful
in providing structural information on the bioactive conformation of the ligand
[56, 102]. In addition, we recently showed that protein mediated transferred-
NOEs between two competitively binding ligands could be used to derive the
binding mode of the ligands to their receptor, when the receptor structures
are available [79].

However, it might be hard in the near future to gather sufficient exper-
imental information in order to build accurate 3D models for the complete
set of possible targets. Indeed, the gap between numbers of known pro-
tein sequences and structures has increased. As a comparison, Release of
July, 2009 of UniProtKB/TrEMBL [100] contained 8,926,016 nonredundant
sequences, while there were 59,790 structures (representing 34,480 nonredund-
ant sequences) in Protein Data Bank (PDB) [7] as of August, 2009, two orders
of magnitude fewer. Even if considerable progress has been made in the pro-
tein structure prediction, actual computational methods are still far from
providing accurate models within an acceptable computing time. In general,
for proteins sharing more than 30% sequence identity to their homologous
templates, models are typically comparable to low-resolution experimental
structures. Furthermore, when the sequence identity drops below 30%, the
model accuracy decreases due to alignment errors [42,47,82]. Additionally, the
protein apo-structure would not be a good representative of the bound con-
formation if a conformational rearrangement occurs upon ligand binding. In
order to capture these situations, we evaluate the performance of our method
on a system where accuracy of the protein target is deliberately degraded.

The system we investigate is the catalytic subunit of cAMP-dependent
protein kinase A (PKA) in complex with two inhibitors. The two ligands
target the ATP binding site of the PKA and their complex structure can be
found in the protein data bank (pdb code: 3DNE and 3DND). All experi-
mental protocols and measurements are described in the Chapter 2.
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5.2 Protein structure exploration

The INPHARMA NOEs are built within a double exchange of magnetization
between ligands and their receptor. The transfer process is mediated through
the receptor. Initially, the magnetization is transfered from one ligand to the
receptor, then the second transfer from the receptor to the other ligand. The
bound-conformation of the target is typically unknown. We evaluate here the
influence of the protein receptor conformation on the outcome of the analysis
using molecular dynamics and homology modeling.

5.2.1 Molecular dynamics

We aim to verify that we obtain a good INPHARMA score even if the pro-
tein conformation around the ligands is not well defined. Hence, we sample
the conformation of the protein while the ligand is kept fixed in the bind-
ing pocket. Molecular dynamics (MD) simulation was performed on each
protein-ligand complex starting from the X-ray crystal structure with the
software NAMD and the CHARMM force field [10, 11, 64, 81]. The protein
was solvated in a 5 Å layer of water molecules, then minimized (Fig. 5.1).
The ligands remained rigid during the simulation and fixed as in the X-ray
structures. Langevin dynamics were performed for each complex with a 2
fs time step without coupling the hydrogen to the thermal bath (use of the
SHAKE algorithm) and with a damping coefficient, γ, of 5 per picosecond.
The water sphere was maintained with a spherical harmonic potential.

After minimization we gradually increased the temperature by increments
of 50 K from 300K to 600K. A trajectory with ∼800 structures for each
complex was generated. The models are sorted by the RMSD from the X-ray
structure for the heavy atoms in the binding pocket and spanned the range
of 0 to 5 Å RMSD. Note that the RMSD value of the whole complex is likely
to be higher as the side chains on the surface are more affected compared to
the buried ones present in the interaction site.

5.2.2 Homology modeling

Homology models were generated from 5 different starting structures selected
as template from the MD trajectory. These structures have at minimum 1.4
Å heavy atom RMSD with respect to the X-ray structure. All side chains
were mutated to alanine in a first place. The 3D models were reconstructed
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Figure 5.1: PKA solvated with a layer of water molecules maintained by a harmonic

potential. On the right side of the panel a section of the sphere is shown.

while the ligand was kept in place. In total, 125 models for each complex
were provided by Stefan Bartoschek and Peter Monecke, our collaborators at
Sanofi-Aventis, in the NMR and molecular modeling department, respectively,
in Frankfurt am Main (Fig. C.1). The models are sorted by RMSD values
as, in the previous section (Fig. C.2A and Fig. C.2D).

5.3 Docking

Using the same approach described in the section ”Molecular dynamics”, we
performed molecular dynamics simulations on just the protein. Whereas the
ligands were included in the previous simulations we removed them for this
simulation. In order to sample a larger conformational space of the protein,
we increased the final temperature to 1200 K starting from 0 K. In Fig. 5.2
we follow the RMSD value of the receptor binding pocket with respect to
the starting structure as a function of time dunring the MD simulation. We
clearly see that in the last part of the trajectory the RMSD sharply increases.
We discarded the last ∼ 80 structures, as they were seen to be unfolded.
The first 700 structures were retained, in the set for docking analysis. All
structures were minimized in water. The two ligands were docked rigidly to
each model with the program Surflex [39].

Surflex utilizes an idealized active site ligand (a protomol) as a target to
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because of unfolding. Three structures are depicted on the graph to depict the evolution of

the protein folds along the trajectory.

generate conjectural poses of molecules (Fig. C.3A). These hypothetical poses
are scored using the Hammerhead scoring function. The following describes
the overall procedure. There are two phases in the process.

1. Protomol Generation. An idealized binding site ligand is generated from
the protein structure.

1.1. Input: (a) protein structure including hydrogens, (b) list of residues to
identify the ligand binding site, used solely to identify residues proximal to
the binding site.

1.2. Output: a protomol file that serves as a target to which putative ligands
or ligand fragments are aligned on the basis of molecular similarity.

1.3. Procedure: three different types of molecular fragments are placed into
the ligand binding site in multiple positions and are optimized for interaction
to the protein. High-scoring nonredundant fragments collectively form the
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protomol.
2. Docking. Ligands are docked into the protein to optimize the value of the
scoring function.
2.1. Input: (a) protein structure, (b) protomol, (c) ligands.
2.2. Output: the optimized poses of docked ligands along with corresponding
scores.
2.3. Procedure (for each hypothetical ligand) is the following.
2.3.1. Input ligand is fragmented, resulting in 1 to 10 molecular fragments,
each of which may have some rotatable bonds.
2.3.2. Each fragment is aligned to the protomol to yield poses that maximize
molecular similarity to the protomol.
2.3.3. The aligned fragments are scored and pruned on the basis of the scoring
function and the degree of protein interpenetration.
2.3.4. Procedure used to construct full molecules from the aligned fragments:
An incremental construction approach as in Hammerhead.
2.3.5. The best scoring poses are subjected to gradient-based optimization
alignment, and the top scoring poses are returned along with their scores.

The 10 best scoring poses were kept for each docking trial, resulting in a
total of 7000 poses (700 models · 10 best poses) for each of the two ligands
docked to the 700 receptors models from the MD trajectory (Fig. C.3B). A
filter based on similarity was applied to exclude similar binding mode found
for a single protein model. We assumed that ligands with high similarity (less
than 0.5 Å RMSD) would not add significant information to the analysis.
Therefore, only one representative ligand was selected (Fig. C.4). Note that
similar binding poses in two different protein models are kept as the protein
conformation may play a role. The final sets of complexes consist of ∼ 4600
and ∼ 4700 poses for the two ligands, resulting in more than 21 millions
possible combinations.

5.3.1 Descriptors

The putative binding poses with respect to the X-ray structures is character-
ized by descriptors based on quaternions. Unit quaternions provide a conveni-
ent mathematical tool for representing orientations and rotations of objects
in 3D. Compared to Euler angles they are simpler to use and bypass the prob-
lem of gimbal lock. Compared to rotation matrices they are more numerically
stable and more efficient in computation.
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For each transformation of a rigid body in a 3D space, there exists a unique
corresponding quaternion. Briefly, quaternion can be thought of a vector, an
angle and a shift. The vector represents the axis of rotation, defines the
positive sense of rotation and the direction for the shift. The descriptors are
built with these parameters, see appendix C and Eq. C.1. Quaternions allow
us to describe unambiguously two types of ligand orientations in the binding
pocket: absolute orientation (absolute binding mode) and relative orientation
(relative binding mode). The absolute binding mode characterizes the pose
with respect to the one found in the crystal structures. On the other hand,
the relative binding mode characterizes the accuracy of the orientations of the
ligands with respect to each other in comparison to the X-ray structure. Hence
if the two ligands are turned by 42◦ around the z-axis (in the complex reference
frame) the absolute binding mode will not be correct, but the relative binding
mode will be correct. In other words, if one pose of Li∈[0;4600]

A is characterized
by the same quaternion as one pose for the ligand L

i∈[0;4700]
B , then the pair

formed by these two poses will have the correct relative orientation.

5.4 Results and discussion

5.4.1 Receptor definition : MD and homology modeling

We sampled the protein conformation with molecular dynamics simulations
producing two sets of receptor models, one for each ligand. A histogram of
the binding pocket RMSD for the ensemble of structures is shown in figure
5.3A and 5.3B. We combined each structures from the two sets to form 64000
pairs ( 800 · 800 = 640000 pairs) and evaluated the INPHARMA NOEs. The
pairs that exhibit a correlation coefficient above 0.85 (R > 0.85) between the
experimental data and the calculated values, are considered to be positive
and shown in the 2D-histogram in Fig. 5.3C . We observe positive results for
protein models up to RMSDs of 3-3.5 Å.

Hence, the dependence of the outcome of the analysis appears to be quite
insensitive to the quality of the receptor model within 3 Å RMSD. This result
is quite encouraging, because it opens the horizon to application of the method
to a multitude of poorly defined systems but potentially interesting for drug
discovery. This conclusion is further supported by repeating the same analysis
on the data sets produced by homology modeling (Fig. C.2).
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Figure 5.3: A), resp. B) Histogram of the binding pocket RMSD (models versus X-ray

structure) distribution of the ligand A,resp. B for the models derived by molecular dynamic.

The x axis represents the RMSD values in Å and the y axis is the numbers of structures

having similar RMSD values. C) 2D-histogram of all possible pairs of models that correlated

with R > 85% to the experimental values (INPHARMA NOEs).

5.4.2 Solving a complex structure in a general context

In a real case scenario, the binding mode of the ligands may not be available.
Accordingly, we generated all possible docking modes with poorly defined
receptors structures and completely unknown binding interactions, except for
the binding site. In figure 5.4.2A and 5.4.2B we present the quality of the
docking models generated by Surflex for both complexes. We observe that
the putative docking models are not exceptionally good, especially for ligand
A where almost no native poses are found by the program. Nevertheless,
relative binding modes can be correct in many occurrences. We calculated



INPHARMA: Performance of the method 95

the INPHARMA NOEs for the ≈ 21 000 000 pairs and examined the accuracy
of the method.

0 1000 2000 3000 4000 5000 6000 7000 80000

2

4

6

8

10

12

14

16
RM

SD
 (Å

)

MD trajectory

A

0 1000 2000 3000 4000 5000 6000 7000 80000

2

4

6

8

10

12

14

16

RM
SD

 (Å
)

MD trajectory

B

Figure 5.4: Representation of the quality of the docking poses measured by the RMSD to

the native binding mode found in the crystal structures for ligand A (A) and ligand B (B).

The x-axis represents the docked binding poses created by Surflex on each receptor model

generated by MD simulation. 10 poses per protein model were kept resulting in a total of

7800 complex structures for each ligand. Note that only the first 7000 complex structures

were retained as only the first 700 proteins models were retained in the MD simulation.
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We defined the accuracy as the ratio between true positive binding modes
over the selected binding modes (selected by the method). The true positives
binding modes have a good correlation to the experimental data (R > 0.85)
and fulfill the weak NOEs conditions (chapter 2), they are considered to
represent a correct relative binding mode (Eq. C.1). The selected binding
modes are the one passing the experimental conditions only. Therefore a
pair of complex structures that pass the experimental condition but do not
correspond to a good relative binding mode account for false positive and
decreases the accuracy. In other words, if the predictions of the method
match completely with relevant binding modes (absolute or relative binding
modes) the accuracy is 100%.

Moreover, we present the accuracy of the method as a function of the
quality of the receptor model (Fig. 5.5). As expected, the accuracy is very
good when the receptor structure is reasonably well defined (RMSD ≤ 1 Å)
and score about 90%. For less resolved protein structures, the accuracy drops
to 30% and stays approximately constant over the rest of the RMSD range.
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Figure 5.5: Accuracy of the INPHARMA predictions as a function of the receptor structure

quality. The x axis represents the binding pocket RMSD (receptors models versus X-ray

structure) in Å. The y axis is the Accuracy in % of the INPHARMA method calculated for

the sets of complex structures within a certain receptor RMSD range defined on the x axis.
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This result is very encouraging and has to be compared to the accuracy
of purely in silico method that reaches ≈ 5% in favorable cases. Moreover,
buried binding pockets like the ATP binding pocket are unfavorable cases
for in silico methods [26, 27]. This might explain why the docking software
we used, had difficulties in predicting correct binding poses (Fig. 5.4.2).
Taken altogether, the scores of the method are motivating, being substantially
superior.

The search for protein-binding ligands is a crucial step in the inhibitor
design process. Fragment screening represents an interesting method to rap-
idly find lead molecules, as it enables the exploration of a larger portion of the
chemical space with a smaller number of compounds as compared to screening
based on drug-sized molecules.

It is common in drug design that only one ligand interaction mode is
unknown. This could be the case for lead optimization or fragment screening.
In this particular context, we need to determine only one binding mode and
the difficulty is greatly reduced. Due to the principle of the method, we still
have to measure NOESY experiments with two ligands in presence, but one of
the two ligand-protein complex structure should be known. In this case, that
any of the two ligand binding mode is known, the predictions of the method
are 100% accurate for a well defined receptor, and highly accurate, (66%
and 100%), for a less resolved target structure (Fig.C.5A and Fig.C.5B). The
accuracy of the method in this situation is excellent and ensure the reliability
of the outcomes of the method.

We showed that the success rate of the methodology exceeds the one pro-
posed by computational solutions with the same problematic. In the context
of structure based drug design, INPHARMA appears to be a method of choice.
Its ability to predict the correct binding mode of small molecules to target
receptor with high accuracy and without specific labeling scheme in a short
time, prompt the method among the fast and reliable NMR tools.
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The quality of the fitting between the experimental and the back-calculated
interligand NOEs for different models’ pairs was judged by the linear regres-
sion coefficient R2 and by the quality factor Q2:

Q2 =
∑ (Iexp − a · Icalc)2

I2
exp

(A.1)

where a is the slope of the linear regression y = ax. In the case of PKA,
the first selection criteria chooses those pairs with R2 > 0.9 = R2

min or Q2 <

0.15 = Q2
min out the 16 docking models’ pairs tested in Table A.1. The

values of R2
min and Q2

min should be adjusted for each experimental dataset.
In general, we consider R2

min = 0.9 as a reasonable choice. However, if the
experimental data are recorded using too long mixing times (large effect of
internal motions) or the structure of the apoprotein binding pocket is far
different from the one in the complex, the linear correlation coefficient can
drop below 0.9 also for the correct binding poses. In those cases a lower
threshold for R2

min should be used. A selection of the best model on the basis
of small differences ( ≈ 0.05) in the overall correlation coefficient between
experimental and calculated INPHARMA NOEs is not recommended, as it
could lead to wrong results. Internal motions, which cannot be taken into
account theoretically due to the lack of a suitable model both for the protein
side-chains and for the ligands in the binding pocket, hamper the quality of the
overall fit, thus making it unsafe to rely on fine differences in the correlation
coefficient (∆R2 ≈ 0.05).
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Effect of internal motions on the INPHARMA NOEs

Due to the high non-linearity of the system (Eq. ??), it is difficult to predict
how the interligand NOEs are affected by different kinetic, thermodynamic
and structural parameters. Internal dynamics at specific sites is an import-
ant parameter affecting magnetization transfer. In the case of spindiffusion-
mediated interligand NOEs, the efficiency of magnetization transfer is influ-
enced by the dynamics of both the ligand(s) and the protein side-chains. If
the same order parameter S is assumed for both the protein side-chains and
the ligands protons, the interligand NOEs scale with S4 at very short mixing
times (τm ≈ 1 − 10 ms), while the intra-ligand NOEs scale with S2. Thus
the effect of internal dynamics is larger on the interligand than on the int-
raligand NOEs. At larger mixing times the value of the interligand NOEs
can be predicted only by solving Eq. 4.1 under consideration of the internal
dynamics at each proton site. Due to the lack of a suitable model to describe
internal motions at each proton site in the complex, the effect of internal dy-
namics is neglected in the simulations. As a result of this, the slope of the
linear regression between the experimental and the back-calculated interlig-
and NOEs deviates from 1. In addition to the large divergence of the slope
of the linear correlation from 1, the presence of internal motions can result
in a deviation of the experimental data from the theoretical values (R2 < 1),
due to different amount of internal motions at the various protein and ligand
sites in the complexes. At long mixing times and in presence of large in-
ternal motions, the regression curve will considerably deviate from linearity,
even for the correct binding models. Therefore, it is advisable to record sev-
eral NOESY spectra at different mixing times and to use in the analysis the
experimental data stemming from the shortest mixing times for which a reas-
onable number of interligand NOEs are observed. The presence of internal
motions in the PKA/ligand complexes is confirmed by the value of the slope
of the linear correlation between calculated and experimental INPHARMA
NOEs. In absence of internal motions the slope should be close to 1; however,
we observe a value of 0.3 (Table A.1 and Fig. A.5), indicating a consider-
able amount of internal fluctuations either of the protein sidechains or of the
ligands in the binding pocket, or of both. The influence of internal motions
on the slope of the linear correlation curve between experimental and back-
calculated INPHARMA NOEs depends on the size of the complex, on the
nature of the motions and on the mixing times of the NOESY experiments,
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as indicated by theoretical simulations (Fig. A.6). In Fig. A.6 we show the
value of Irel in dependence of the order parameter S for two mixing times and
two protein sizes. The simulations are run on an artificial system: the ligand
is represented by 3 protons in a line at a distance of 2.5 Å from one another,
while the protein is represented by a cube of dimension 7x7x7 equidistant
protons (2.5 Å). In the complex the ligand is placed in the middle of the cube
(Fig. A.6 a). Interligand NOEs are calculated between the inner proton of LA
(lattice position 3,3,3) and the middle proton of LB (lattice position 2,3,3 ).
A homogeneous order parameter S is assumed at each location on the protein
and the ligand. Irel is defined as:

Irel(S) =
Iinter−NOE(S) · Iintra−NOE(S = 1)
Iinter−NOE(S = 1) · Iintra−NOE(S)

(A.2)

and is a measure of the ratio between the interligand NOE, normalized to the
intraligand NOE value, for an order parameter S 6= 1 and the interligand NOE
expected for S = 1, namely in absence of internal motions. The normalization
to the intraligand NOE is necessary as in the process of correlating theoretical
and experimental data we tune the simulation parameters, such as the protein
τc or the protein concentration, to obtain a slope of 1 for the intraligand
NOEs. If Irel = 1, the NOE transfer is as efficient as in absence of motions.
In this case the slope of the correlation line between the theoretical NOEs,
calculated assuming no internal motions, and the experimental ones, is equal
to 1. On the other hand, if Irel(S) = x, the efficiency of the NOE transfer for
that specific S value is x times that for S=1 and the slope of the correlation
line between the theoretical NOEs, calculated assuming no internal motions,
and the experimental ones, is equal to x. For a protein of the size of PKA
(Fig. A.6b, squared symbols), the Irel value deviates from 1 for all order
parameters < 0.95 at both 200 (green curve) and 600 (blue curve) ms. At
600 ms and for S = 0.6, Irel is equal to 0.3. Thus, the slope of 0.3 observed
in the case of PKA (Fig. A.5 and Table A.1) can be explained assuming
an order parameter S=0.6. This value should be considered as indicative
but not quantitatively correct, as the exact value depends on the geometry
of the binding pocket. Moreover, in this simplified system we assume the
same order parameter for the inter- and intra ligand vectors, while in reality
the two order parameters are likely to be different. For very large proteins
(Fig. A.6b, round symbols ), Irel does not deviate from 1 in a range 0.6 <
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S < 1 at both 200 (green curve) and 600 (blue curve) ms. This reflects the
fact that in extreme spin-diffusion conditions, NOEs reach the same plateau
value, independently of the correlation time or of the internal motions. Such
extreme spin-diffusion conditions can be reached for large systems before the
magnetization relaxes back to equilibrium. This is in accord with the slope
of 1 observed for the linear correlation between experimental and theoretical
NOEs for the tubulin/epothilone and tubulin/baccatin complexes studied in
ref. 7. An order parameter S = 0.6-0.8 (S2 = 0.36-0.64) is not surprising
and falls well in the range of the order parameters for proton-proton vectors
determined before [46, 90]. Low order parameters can be expected for the
INPHARMA NOEs, as the magnetization transfer involves mainly protons
from the protein side-chains, and in particular from the methyl groups, which
are the closest neighbors to the ligand. Schleicher and Wijmenga [90] reported
order parameters S2 < 0.6 for long range NOEs including flexible side-chains.
The order parameter S2 for the NOE between methyl group protons and a
proton of the environment can be as low as 0.6 [46], assuming fast rotation
of the methyl groups. This order parameter can be further decreased by
additional motion of the side-chain bearing the methyl group or of the ligand
proton [91].



Appendix A 105

LA LB INOE
τm=300 ms 450 ms 600 ms 750 ms

H8 H1,H3,H5 - 0,0046 0,0096 0,0091
H3,H4 H1,H3,H5 0,0035 0,0026 0,0082 0,0067
H1,H2 H1,H3,H5 0,0031 0,0016 0,0059 0,0055
H5 H1,H3,H5 0,0029 0,0042 0,0080 0,0075
H3,H4 H6,H7 0,0016 0,0017 0,0061 0,0047
H1,H2 H6,H7 0,0011 0,0012 0,0028 0,0036
H5 H6,H7 - 0,0013 0,0048 0,0045

Table A.1: Normalized INPHARMA NOEs used to calculate the correlation graphs of Fig.

2.4. The INPHARMA NOE intensities INOE were normalized by the diagonal peak with

equal ω2 frequency at the lowest mixing time. The experimental conditions are described

in the Experimental Section.
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LA LB R2 Q2 a

Pose 1 Pose 1 0.93 0.06 0.32
Pose 2 Pose 1 0.91 0.11 0.27
Pose 3 Pose 1 0.96 0.04 0.29
Pose 4 Pose 1 0.91 0.09 0.31
Pose 1 Pose 2 0.64 0.65 0.07
Pose 2 Pose 2 0.73 0.43 0.14
Pose 3 Pose 2 0.58 0.86 0.02
Pose 4 Pose 2 0.70 0.48 0.08
Pose 1 Pose 3 0.82 0.29 0.14
Pose 2 Pose 3 0.59 0.70 0.05
Pose 3 Pose 3 0.26 0.88 0.00
Pose 4 Pose 3 0.34 0.98 0.00
Pose 1 Pose 4 0.72 0.52 0.08
Pose 2 Pose 4 0.71 0.51 0.10
Pose 3 Pose 4 0.59 1.16 -0.02
Pose 4 Pose 4 0.70 0.51 0.07

Table A.2: Evaluation of the back-calculated INPHARMA NOEs for the sixteen combin-

ations of the docking poses of LA and LB , as in Fig. 2.3, with respect to the experimental

data. R2 is the Pearson correlation coefficient calculated for a linear regression to the linear

function y = ax. A value close to 1 represents a good quality fit. Q2 is the quality factor.

It measures the deviation of the data to the best-fit line. A value close to zero reflects a

good quality of the fit. a is the slope of the linear regression between experimental and

back-calculated INPHARMA NOEs.
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LA LB R2 LA LB R2 LA LB R2

MD1 MD3 MD5
Pose 1 Pose 1 0.95 Pose 1 Pose 1 0.83 Pose 2 Pose 2 0.84
Pose 4 Pose 4 0.81 Pose 4 Pose 2 0.81 Pose 4 Pose 4 0.80
Pose 1 Pose 3 0.73 Pose 1 Pose 4 0.77 Pose 2 Pose 4 0.80
Pose 4 Pose 2 0.67 Pose 2 Pose 2 0.66 Pose 1 Pose 4 0.80
Pose 3 Pose 1 0.66 Pose 1 Pose 3 0.65 Pose 4 Pose 2 0.79
Pose 2 Pose 4 0.64 Pose 2 Pose 4 0.57 Pose 1 Pose 1 0.77
Pose 3 Pose 4 0.57 Pose 1 Pose 2 0.56 Pose 3 Pose 4 0.73
Pose 4 Pose 1 0.56 Pose 4 Pose 4 0.54 Pose 2 Pose 1 0.66
Pose 1 Pose 4 0.55 Pose 3 Pose 2 0.52 Pose 1 Pose 2 0.64
Pose 2 Pose 2 0.52 Pose 3 Pose 1 0.50 Pose 3 Pose 2 0.61
Pose 3 Pose 2 0.42 Pose 3 Pose 4 0.49 Pose 1 Pose 3 0.60
Pose 1 Pose 2 0.39 Pose 2 Pose 1 0.43 Pose 3 Pose 1 0.59
Pose 2 Pose 1 0.39 Pose 4 Pose 1 0.30 Pose 4 Pose 1 0.52
Pose 2 Pose 3 0.31 Pose 2 Pose 3 0.26 Pose 2 Pose 3 0.20
Pose 3 Pose 3 0.21 Pose 3 Pose 3 0.18 Pose 3 Pose 3 0.16
Pose 4 Pose 3 0.20 Pose 4 Pose 3 0.16 Pose 4 Pose 3 0.15

MD2 MD4
Pose 1 Pose 1 0.90 Pose 1 Pose 1 0.79
Pose 4 Pose 2 0.72 Pose 4 Pose 2 0.79
Pose 3 Pose 1 0.67 Pose 1 Pose 4 0.74
Pose 1 Pose 4 0.67 Pose 2 Pose 2 0.72
Pose 4 Pose 1 0.63 Pose 1 Pose 3 0.69
Pose 4 Pose 4 0.60 Pose 2 Pose 4 0.62
Pose 1 Pose 3 0.59 Pose 4 Pose 4 0.62
Pose 2 Pose 1 0.58 Pose 3 Pose 4 0.60
Pose 2 Pose 2 0.52 Pose 3 Pose 1 0.59
Pose 3 Pose 4 0.45 Pose 3 Pose 2 0.59
Pose 1 Pose 2 0.43 Pose 2 Pose 1 0.58
Pose 2 Pose 4 0.42 Pose 1 Pose 2 0.58
Pose 3 Pose 2 0.40 Pose 4 Pose 1 0.42
Pose 2 Pose 3 0.38 Pose 2 Pose 3 0.38
Pose 3 Pose 3 0.19 Pose 3 Pose 3 0.22
Pose 4 Pose 3 0.18 Pose 4 Pose 3 0.21

Table A.3: Evaluation of the back-calculated INPHARMA NOEs with respect to the

experimental data for the sixteen combinations of the binding poses of LA and LB docked

to the five different models of the PKA structure (MD1-MD5) generated by molecular

dynamics (Fig. A.7).
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PKA/LA PKA/LB
Data collection

Space group P212121 P212121
Cell dimensions

a, b, c (Å) 72.6, 75,9, 79.9 73.0, 77.6, 80.1
α, β, γ (◦) 90, 90, 90 90, 90, 90

Resolution (Å) 2.01 2.26
Rsym 5.3(33.1) 9.1(40.9)
I/s I 21.6(5.37) 13.1(4.2)

Completeness (%) 99.4(98.9) 99.9(100)
Redundancy 5.4(5.3) 5.4(5.5)
Refinement
Resolution 2.01 2.26

No. reflections (work/free) 27786/2100 202256/1521
Rwork/Rfree 0.215/0.249 0.189/0.253
No. atoms 3325

Protein 2793 2793
Peptide 157 157
Water 314 264
Ligand 15 13

B-factors
Protein 29.6 30.6
Peptide 29.8 27.3
Water 45.8 36.6
Ligand 25.5 49.4

R.m.s deviations
Bond lengths (Å) 0.006 0.021
Bond angles (◦) 1.21 1.85

Ramachandran analysis (%)
favoured regions 96.3 94.5
allowed regions 3.1 4.9

outlier 0.6 0.6

Table A.4: Data collection and refinement statistics for the crystallographic structures.

Highest resolution shell is shown in parenthesis.
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Figure A.1: Schematic representation of the proton environment of docked binding modes

of the ligand LA (panel (a) and LB (panel (b). The binding poses follow the numbering of

Fig. 2.3. The proton environment D is evaluated by:

D =
∑

Hi∈ligand


∑

Hj∈protein
d(Hi,Hj)<5Å

d−1
i,j

 (A.3)

While the coefficient D conspicuously differs in the four docking modes of
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LB, it remains almost constant throughout the four docking models of LA,
indicating that the average proton environment is more independent of the
docking pose for the flat LA than for the bent LB.

Figure A.2: Schematic representation of the color-coding for the INPHARMA NOEs of

panel (c) and (d) of Fig. 2.4. (a) NOEs from the phenyl ring of LB to the pyridine ring of LA
are color-coded in yellow; (b) NOEs from the phenyl ring of LB to the 3-(4-Pyridyl)indazole

ring of LA are colorcoded in red.
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Figure A.3: Regions of a NOESY spectrum, acquired at a 900 MHz spectrometer with

τm = 600 ms. The sample contained: [LA] = 150 mM [LB ] = 450 mM, [PKA] = 25 mM.

NOEs between H6 and H7 of LB and H5 and H8 of LA are visible in this spectrum.
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Figure A.4: Representation of the additional docking modes, generated at Sanofi Aventis,

for which the INPHARMA NOEs were back-calculated and fitted to the experimental ones.

In the central panel the binding modes of LA and LB observed in the crystal structures are

represented. The lower and upper left panels represent the docked orientation of LA, with

the upper ones being close to the crystal structure and the lower ones differing from the

crystal structure by a rotation < 180◦ around the z axis. The conformation of LA differs

from the bioactive one in both panels by a rotation of the 3-(4-Pyridyl)indazole ring with

respect to the pyridine ring < 50◦. The two upper and lower right panels represent the

docked orientation of LB , with the upper ones differing from the crystal structure by a

rotation < 180◦ around the z axis and the lower ones being close to the crystal structure.

The conformation of LB differs from the bioactive one in both panels by a rotation of the

phenyl ring with respect to the thiazole ring < 50◦.
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Figure A.5: Correlation between the experimental INPHARMA NOEs, normalized to the

diagonal of the spin in ω2, and the normalized INPHARMA NOEs calculated for the two

crystal structures of the PKA/LA and PKA/LB complexes.
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Figure S6 (a) Schematic representation of the model system used to investigate the effect of 

internal motions on the INPHARMA NOEs. The protein is represented by a cube of dimensions 

7X7X7 while the ligands LA and LB are linear and contain 3 protons each. All protons of the protein 

and of the ligand are at a distance of 2.5 Å from each other. When LA binds to the protein, H1A is in 

the middle of the protein cube. (b) Irel for the INPHARMA NOE between H1A and H2B normalized 

to the intraligand NOE between H1A and H2A.Green, !m = 200ms; blue, !m = 600 ms; the squared 

symbol are for a model system with parameters equal to the PKA system ([LA] = 150 µM [LB] = 

Figure A.6: (a) Schematic representation of the model system used to investigate the

effect of internal motions on the INPHARMA NOEs. The protein is represented by a cube

of dimensions 7x7x7 while the ligands LA and LB are linear and contain 3 protons each.

All protons of the protein and of the ligand are at a distance of 2.5 Å from each other.

When LA binds to the protein, H1A is in the middle of the protein cube. (b) Irel for

the INPHARMA NOE between H1A and H2B normalized to the intraligand NOE between

H1A and H2A.Green, τm = 200ms; blue, τm = 600 ms; the squared symbol are for a

model system with parameters equal to the PKA system ([LA] = 150 mM [LB ] = 450 mM,

[PKA] = 30 mM, τc(PKA) = 20 ns ), while the round symbols are for a model system with

parameters equal to the tubulin system ([LA] = 500 mM [LB ] = 500 mM, [PKA] = 50 mM,

τc(Tub) = 1300 ns). The red lines indicate a slope of the correlation between theoretical

and experimental INPHARMA NOEs equal to 0.3 for mixing times around 600 ms.
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Figure A.7: In each panel, one snapshot of a Molecular Dynamics simulation of PKA is

shown in green overlapped with the protein X-ray structure in blue. To each of the five

snapshot structures the two ligands were docked in the four orientations of Fig. 2.3, to

generate a total of 16 models pairs per snapshot structure. The r.m.s.d of the binding

pocket heavy atoms to the X-ray structure is 1.9 Å for panel (a), 1.7 Å for panel (b), 1.9

Å for panel (c), 1.6 Å for panel (d) and 1.9 Å for panel (e). The ligand orientations in

the first row correspond to the X-ray like orientations. Comparison of the INPHARMA

NOEs calculated for all 16 models’ pairs for each snapshot structure with the experimental

INPHARMA NOE allowed us selecting the following ligand orientations: panel (a)- (d): LA,

pose 1; LB , pose 1 (X-ray like); panel (e): LA, pose 2; LB , pose 2 (both ligands are turned

180◦ around the y axis). The conformational inaccuracy of the snapshot structure in panel

(e) allows the determination of the relative orientation of the two ligands by INPHARMA,

while the absolute binding modes are not correctly predicted.
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Figure A.8: A) Two Histograms of the docking poses RMSD (models versus Xray struc-

ture) distribution of the ligand A (represented vertically) and B (represented horizontally)

for 200 models. Ligand A and B were docked in the ATP binding site of PKA while the

protein structure was kept rigid. The histograms show the sets of RMSD values (in Å)

between the docking poses (of ligand A and ligand B) and the corresponding native pose

found in the Xray structure. 2D grid of all possible combinations pairs between the two sets

of models (X axis corresponds to the ligand B and Y axis corresponds to the ligand A). B)

Pairs of models from the grid in A) that pass the selection criteria described in chapter 2.
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Figure B.1: Overlap of the crystal structures of the PKA/LA and PKA/LB complexes

(stereoview). The Phe327, which is close to both the H8-LA and protons H1,2-LB , is shown

as well.,
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Figure C.1: Overlap of two homology models created for the complex PKA/ligand A

(pink) and PKA/ligand B (white).
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Figure C.2: A), resp. D) Histogram of the binding pocket RMSD (models versus X-

ray structure) distribution of the ligand A, resp. B for the 125 homolgy models. The

x-axis represents the RMSD values in Å and the y-axis is the numbers of structures having

similar RMSD values. B) 2D grid of all possible combinations pairs between the two sets

of models. C) Pairs of models from the grid in B) that correlated at minimum R > 85% to

the experimental values (INPHARMA NOEs).
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A B

Figure C.3: a) Protomol generated by Surflex for the ATP binding site of PKA. B)

Outcome of the Surflex docking protocol: 10 best poses for the ligand B dock to the ATP

intereaction site of a MD model of PKA
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Figure C.4: 10 best poses for the ligand B docked to the ATP intereaction site of one PKA

model derived from the MD simulation. Three black boxes surround similar docking poses.

Only the pose with the highest score among the redundant ones is kept. In this particular

case six docking models will pass the filter.
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We build two criteria to select the correct relative orientation of the ligand
based on five parameters related to quaternions (θ1, θ2, ~q1, ~q2, shift), where
~qi represents the axis of rotation, θi the angle of rotation and shift is the
distance between the centers of the ligands (center of mass). The two selection
functions are:

{
f1 = (θ1 − sign(~q2 · ~q2) θ2) · (1− 0.7 · cos(~q1 · ~q2)2) mod(360◦)

f2 = (θi=1,2 · (1− cos(~q1 · ~q2)2)
(C.1)

The function f1 allows different degree of freedom of the ligands depending
on the relative position of the quaternion vectors axis. We tolerate a higher
degree of rotation if the two quaternion vectors axis are parallel compared
to the case where the vector axis are perpendicular. The function f2 ensures
that when the axis are perpendicular, cos(~q2 · ~q2) ≈ 0 and (θ1 − θ2) ≈ 0, the
rotation angles, θ1,2, are restricted to reasonable values. For the calculations
we considered pairs as positive when f1 ≤ 17, f2 ≤ 29 and shift ≤ 1 Å (to
ensure that the two ligands do not bind too far on the protein as they are
competitive binders).
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Figure C.5: A), resp. B) Accuracy of the INPHARMA predictions in dependence of the

receptor structure quality when the bioactive binding mode of the ligand A, resp. B is

known. The x-axis represents the binding pocket RMSD (receptors models versus X-ray

structure) in Å. The y-axis is the Accuracy in % of the INPHARMA method calculated for

the set of complexe structures within a certain receptor RMSD range defined on the x-axis.
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RNA dynamics

Introduction

The past years have seen a growing interest in the dynamic behavior of pro-
teins and their correlation with function. Protein dynamics on several times-
cales are studied with state-of-the-art methodology, such as relaxation and
dipolar couplings. However, dynamic investigations of RNA molecules are
still sparse, with the exception of a few seminal studies dealing both with fast
internal motions and slower inter-domain motions [29,37,98]. Much work has
still to be done to understand RNA inter and intra-domain dynamics.

Clearly, understanding how an RNA sequence codes for a particular func-
tion at a molecular level requires both the structural description of its con-
formation(s) and characterization of its dynamics. In addition RNA molecules
have proven to be much more dynamic than proteins and their conforma-
tion(s) can be subtly influenced by the environmental conditions. Thus, de-
veloping techniques to depict the dynamics process underlining activity and
functional regulation of the RNA is one of the biggest challenges in structural
biology. Between several techniques such as X-ray crystallography, fluores-
cence spectroscopy, EPR spectroscopy, and molecular dynamics simulations,
NMR spectroscopy rank among the most promising methods since it provides
atomic resolution for both structure and dynamics over large and relevant
time scale (ps-ms) for biological processes. Part of my Ph.D. work focuses on
characterizing RNA dynamics, first on the ps-ns time scale and later until the
ms time scale. The RNA molecule I am working on is the U4 5’ stem-loop
RNA [77, 101], which intervenes during the splicing cycle and is known to
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assume a kink-turn fold when bound to 15.5K (Fig. D.1) [58, 61]. However,
MD [17, 18, 84, 85], fluorescence and biochemical studies have hypothesized
large inter-domain motions and even the unfolding of stem II for the RNA
free in solution [44].

Here we present the part of the study on the fast dynamics (ps-ns) of the
U4 RNA molecule. We first address the question of the stability of the fold of
stem II. Subsequently, we address the question of decoupled motions between
the stem I and stem II of the U4 RNA.
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Figure D.1: Seondary structure of the U4 RNA construct used in this work. Strand I is

composed of 14 nucleotides and strand II of 19 nucleotides. The region where the protein

15.5K binds the RNA is highlighted in grey and connect stem I, the shorter stem, to stem

II. It countains the three nucleotides that form the kink-turn, A11 A12 and U13. Non

canonical base pairs are represented by a dot, while the canonical ones are depicted by a

line.
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U4 RNA dynamics: local motions faster than the correlation time

We aim at determining the local dynamics of all bases and riboses of the U4
RNA. It would answer the question about the stability of the stem II and
also set the first step towards a better understanding of the recognition of
15.5K by U4. Motions on a time-scale faster than the correlation time can be
detected through the relaxation rates of the individual spin in each nucleotide.
Therefore, we measured relaxation rates constants, R1, R1ρ and the 13C -(1H
) steady-state NOE for the carbons C6, C8 on the nucleobases and C1’ on
the ribose moieties for the 33 nucleotides at 298 K. In order to reduce peaks
overlapping in the spectra only one strand of the U4 construct was 13C ,15N
labeled at a time. Hence, we had to repeat twice the experiments to evaluate
the complete set of parameters (R1, R1ρ and the 13C -(1H ) steadystate NOE).
The samples were prepared by Claudia Schwiegk and Melanie Falb (Ph.D.
student who set up the expression and purification protocol). The assignment
of the 1H , 13C and 15N resonances of the U4 RNA was established by Melanie
Falb.

NMR experiments were carried out on 600 MHz, 700 MHz and 800
MHz Bruker spectrometers. 13C R1 and R1ρ and the 13C -(1H ) steady-
state NOE data were obtained from the pulse sequences hsqct1etf3gpsi3d,
hsqctretf3gpsi3d.2 and invnoef3gpsi included in the Bruker pulse sequence
library [33, 48, 71] and adapted to measure carbon relaxation. The carrier
frequency was set to 138 ppm for the aromatic carbons C6, C8 and 89 ppm
for C1’. The spectral width was 10 ppm for the bases and 6 ppm for the
sugars. About 160 complex points were acquired in the indirect dimension.
Off-resonant carbon IBURP1 pulses were applied during carbon evolution in
order to suppress the J(C5, C6), resp. J(C1’, C2’ ) coupling. Interscans relax-
ation delays of 2 s were used for the R1 and R1ρ measurements, 5 s were used
for the NOE. R1, R1ρ and the NOE data were obtained with 160 scans for each
t1-increment. R1 and R1ρ subspectra with different relaxation delays were ac-
quired in one scan-interleaved pseudo-3D experiment. The NOE experiments
were also recorded scan-interleaved, with alternating proton-presaturated and
non-presaturated spectra. While in the latter case, a relaxation delay of 5 s
was used, proton-presaturation was applied for 3 s subsequent to a 2 s relaxa-
tion delay in the presaturated spectra. The interleaved spectra were separated
by a modified Bruker standard macro. For the acquisition of R1 relaxation
rates, the relaxation delay τ was set to 10 ms, 50 ms, 100 ms, 200 ms, 400
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ms, 700 ms, 1 s and 1.5 s. Spectra with τ=50 ms and 400 ms were measured
twice for error determination. R1ρ rates were acquired as described [48, 71].
Random length proton decoupling pulses were used during the carbon spin-
lock period. Adiabatic Mulder pulses [71] were applied to rotate the carbon
magnetization into the transverse plane. A spin-lock field of 2 kHz with an
offset of 2000 Hz was applied for the variable relaxation delay (τ=12 ms, 24
ms, 36 ms, 48 ms, 64 ms, 80 ms, 104 ms, 128 ms). Duplicate measurements
were recorded for τ=24 ms and 80 ms. Figure D.2 (spectra green and yel-
low) shows plans of the R1 pseudo-3D experiment measured with labeled U4
samples at the 600 Mhz spectrometer.

The data were processed using Topspin and analyzed in Sparky. R1 and
R1ρ relaxation rates were fitted from peak heights to monoexponential func-
tions with two unknown parameters Ae−Rt (Fig. D.3). R1ρ contains the effect
of conformational exchange, the spin-lock field strength and spin-lock offset:

R1ρ = R1cos(θ)2 +R2sin(θ)2 +Rexsin(θ)2 (D.1)

in which θ = arctan(ω1/∆ω) is the inclinaton angle between the static field,
∆ω = ω − ω0, and the effective spin-lock field, ωe = (ω2

1 + ∆ω2)1/2, in the
rotating frame; ω is the spin-lock rf frequency; ω1 is the spin-lock field strength
in units of rad.s−1; ω0 is the population-averaged chemical shift; R1 and R2

are the longitudinal and transverse relaxation rate constants. Rex is the
contribution to the transverse relaxation rate from exchange processes.

Separation of the exchange contribution to the transverse relaxation will
be carried out with the model-free analysis with either Modelfree of A. Palmer
and co-workers [66] or with Relax of E. d’Auvergne [23–25]. Diffusion para-
meters will be obtained from the program Modelfree and Relax and compare
to hydrodynamic calculations performed with the program hydronmr [34].
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Figure D.2: Overlap of the first 2D-plan of three R1 3D-scan-interleaved experiments on

C6-H6 and C8-H8 measured at 600 MHz (three spectra, green, yellow and red). The green

and yellow spectra correspond respectively to U4 samples with the stem I labelled and stem

II labelled only. The red spectrum corresponds to the A-U elongated and C,G labelled

sample (Fig. D.4).
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Figure D.3: Peaks intensities are plotted against the relaxation time delay τ (ms). In

panel A, resp. B, R1ρ, resp. R1 of the C1’ are plotted for different riboses.
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Motions coupling between stem I and stem II of the U4 RNA

We wish to understand the inter-domain dynamics, specifically if one stem
moves with respect to the second stem hinging on the kink-turn motive. Here
we will make use of recently developed NMR techniques by Al-Hashimi [37,
105, 106]. Domain elongation strategy allows to resolve domain motions by
nuclear magnetic resonance spectroscopy. It requires an elongated RNA with
a hydrodynamic shape (rotational diffusion tensor) that is less sensitive to
domain motions. As in the U4 no stem is much longer than the other one,
we designed new constructs, where stem I or stem II is elongated (Fig. D.4).
If the diffusion tensor of the RNA molecule is dominated by a single long
helix, the total diffusion tensor can be calculated and the dynamics of the
second stem relative to the long helix can be determined [105–107]. With
these constructs we will study the dynamics of stem I with respect to stem
II and vice versa. As the length of the elongated stem is greatly superior to
the other one, the correlation time of the shorter stem will be decoupled from
the correlation time of the complete RNA and appears as internal motions.
Again, to reduce spectral overlap upon elongation of one stem, special labeling
scheme are employed. When elongation is done with AU base pairs, C and
G residues are 13C ,15N labeled and therefore observed in the spectra. The
same procedure is applied for labelled A, U residues where GC base pairs
are used for elongation. In this way, number of the peaks overlapping does
not increase. Note that we need few CG base pairs for stabilization of the
elongated stem when the elongation is done with A-U base pairs and a UUCG
tetra loop is added to ensure proper folding (Fig. D.4). With the same
protocol described in the previous section, we measured R1 and R1ρ on the
elongated U4 RNAs (Fig. D.3), (complete data set not shown). Comparison
of the dynamics parameters obtained after the modelfree anaylsis for the short
and elongated constructs will reveal additional dynamics of the stems that is
otherwise masked by the overall reorientation of the molecule. Indeed, by
comparing the dynamics parameters determined for the short U4 RNA with
respect to the corresponding ones calculated for the elongated U4 RNA (on
the stem which was not elongated), we could conclude that the two stems are
either rigid with respect to each other, or move completely independent of
each other.
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Output of sir_graph (®)

by D. Stewart and M. Zuker
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used in this work
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sœur, Nathalie, fait partie intégrante des moments en famille si important
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