J. Abdeljaoued, G. M. Diaz-toca, L. González, and . Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, International Journal of Computer Mathematics, vol.4, issue.10, pp.1223-1238, 2004.
DOI : 10.1006/jsco.1999.0322

L. Alberti and B. Mourrain, Regularity Criteria for the Topology of Algebraic Curves and Surfaces, Mathematics of Surfaces XII LNCS, pp.1-28, 2007.
DOI : 10.1007/978-3-540-73843-5_1

URL : https://hal.archives-ouvertes.fr/inria-00170886

L. Alberti and B. Mourrain, Visualisation of Implicit Algebraic Curves, 15th Pacific Conference on Computer Graphics and Applications (PG'07)
DOI : 10.1109/PG.2007.32

URL : https://hal.archives-ouvertes.fr/inria-00175062

C. L. Bajaj, C. M. Hoffman, R. E. Lynch, and J. E. Hopcroft, Tracing surface intersections, Computer Aided Geometric Design, vol.5, issue.4, pp.285-307, 1988.
DOI : 10.1016/0167-8396(88)90010-6

R. E. Barnhill and S. N. Kersey, A marching method for parametric surface/surface intersection, Computer Aided Geometric Design, vol.7, issue.1-4, pp.257-280, 1990.
DOI : 10.1016/0167-8396(90)90035-P

M. Barton and B. Jüttler, Computing roots of polynomials by quadratic clipping, Computer Aided Geometric Design, vol.24, issue.3, pp.125-141, 2007.
DOI : 10.1016/j.cagd.2007.01.003

]. L. Busé, ´ Etude du résultant sur une variété algébrique, 2001.

L. Busé and C. , Inversion of parameterized hypersurfaces by means of subresultants, Proceedings of the 2004 international symposium on Symbolic and algebraic computation , ISSAC '04, pp.65-71, 2004.
DOI : 10.1145/1005285.1005297

L. Busé, M. Elkadi, and A. Galligo, Intersection and self-intersection of surfaces by means of Bezoutian matrices, Computer Aided Geometric Design, vol.25, issue.2, pp.53-68, 2008.
DOI : 10.1016/j.cagd.2007.07.001

L. Busé and A. Galligo, Using semi-implicit representation of algebraic surfaces, Proceedings Shape Modeling Applications, 2004., pp.342-345, 2004.
DOI : 10.1109/SMI.2004.1314523

L. Busé, B. Mourrain, and . Multires, A maple package, for the manipulation of multivariate polynomials, 2000.

S. Chau, B. Mourrain, and J. Wintz, Axel algebraic geometric modeler

S. Chau, M. Oberneder, A. Galligo, and B. Jüttler, Intersecting Biquadratic B??zier Surface Patches, Computational Methods for Algebraic Spline Surfaces, pp.61-79, 2007.
DOI : 10.1007/978-3-540-72185-7_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.229.3609

D. Cox, J. Little, and D. Shea, Ideals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, 1992.

D. Cox, J. Little, and D. Shea, Using Algebraic Geometry, 1997.
DOI : 10.1007/978-1-4757-6911-1

G. M. Diaz-toca, L. González, and . Vega, Various New Expressions for Subresultants and Their Applications, Applicable Algebra in Engineering, Communication and Computing, vol.29, issue.3-4, pp.3-4233, 2004.
DOI : 10.1007/s00200-004-0158-4

A. Dickenstein, M. J. Rojas, K. Rusekz, and J. Shih, Extremal real algebraic geometry and a-discriminants, 2007.

T. Dokken, The sisl library

T. Dokken, Finding intersections of B-spline represented geometric entities using recursive subdivsion techniques

T. Dokken, Approximate implicitization Mathematical Methods for Curves and Surfaces, pp.81-102, 2000.

T. Dokken, Approximate implicitization for surface intersection and self-intersection, ECITTT Euroconference on CAE Integration tools , Trends and Technologies, 2001.

T. Dokken and J. S. Seland, Real-time algebraic surface visualization, Geometric Modelling, Numerical Simulation, and Optimization, pp.163-183, 2007.

A. Eigenwillig, M. Kerber, and N. Wolpert, Fast and exact geometric analysis of real algebraic plane curves, Proceedings of the 2007 international symposium on Symbolic and algebraic computation , ISSAC '07, pp.151-158, 2007.
DOI : 10.1145/1277548.1277570

G. Elber and M. S. Kim, Geometric constraint solver using multivariate rational spline functions, Proceedings of the sixth ACM symposium on Solid modeling and applications , SMA '01, pp.1-10, 2001.
DOI : 10.1145/376957.376958

M. Elkadi and B. Mourrain, Some applications of bezoutians in effective algebraic geometry, 1998.
URL : https://hal.archives-ouvertes.fr/inria-00073109

M. Elkadi and B. Mourrain, IntroductionàIntroduction`Introductionà la résolution des systèmes polynomiaux, Mathématiques et Applications, vol.59, 2007.

R. T. Farouki and T. N. Goodman, On the optimal stability of the Bernstein basis, Mathematics of Computation, vol.65, issue.216, pp.1553-1566, 1996.
DOI : 10.1090/S0025-5718-96-00759-4

M. Fioravanti, L. González-vega, and I. Necula, Computing the intersection of two ruled surfaces by using a new algebraic approach, Journal of Symbolic Computation, vol.41, issue.11
DOI : 10.1016/j.jsc.2005.02.008

M. Fioravanti, L. Gonzalez-vega, and A. Seidl, Real implicitization of curves and geometric extraneous components, SNC '07 : Proceedings of the 2007 international workshop on Symbolic-numeric computation, pp.87-96, 2007.

R. Fournier, N. Kajler, and B. Mourrain, Visualization of Mathematical Surfaces: the IZIC Server Approach, Journal of Symbolic Computation, vol.19, issue.1-3, pp.159-173, 1994.
DOI : 10.1006/jsco.1995.1010

J. Hoschek, G. Farin, and M. S. Kim, Handbook of Computer Aided Geometric Design, 2002.

A. Galligo and J. Pavone, A sampling algorithm computing selfintersections of parametric surfaces, Algebraic Geometry and Geometric Modeling, pp.185-204, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00182830

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns : elements of reusable object-oriented software, 1995.

L. González-vega and I. Necula, Efficient topology determination of implicitly defined algebraic plane curves, Computer Aided Geometric Design, vol.19, issue.9, pp.719-743, 2002.
DOI : 10.1016/S0167-8396(02)00167-X

L. González-vega and G. Trujillo, Implicitization of parametric curves and surfaces by using symmetric functions, Proceedings of the 1995 international symposium on Symbolic and algebraic computation , ISSAC '95, pp.180-186, 1995.
DOI : 10.1145/220346.220369

T. A. Grandine and F. W. Klein, A new approach to the surface intersection problem, Computer Aided Geometric Design, vol.14, issue.2, pp.111-134, 1997.
DOI : 10.1016/S0167-8396(96)00024-6

G. Greuel and G. Pfister, Singular and applications, Jahresbericht der DMV, vol.108, 2006.

I. Hanniel and G. Elber, Subdivision termination criteria in subdivision multivariate solvers Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme, Proceedings of Geometric Modeling and Processing 2006 (GMP2006), pp.115-128, 2006.

C. M. Hoffman, Implicit curves and surfaces in CAGD, IEEE Computer Graphics and Applications, vol.13, issue.1, 1993.
DOI : 10.1109/38.180121

M. E. Hohmeyer, A surface intersection algorithm based on loop detection, ACM Symposium on Solid Modeling Foundations and CAD/- CAM Applications, pp.197-207

J. Hoschek and D. Lasser, Fundamentals of computer aided geometric design, A. K. Peters, Ltd, 1993.

B. Jüttler, P. Chalmoviansk´ychalmoviansk´y, M. Shalaby, and E. Wurm, Approximate algebraic methods for curves and surfaces and their applications, Proceedings of the 21st spring conference on Computer graphics , SCCG '05, pp.13-18, 2005.
DOI : 10.1145/1090122.1090124

A. Khetan, The resultant of an unmixed bivariate system, Journal of Symbolic Computation, vol.36, issue.3-4, pp.425-442, 2003.
DOI : 10.1016/S0747-7171(03)00089-0

A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen et al., Fast and robust ray tracing of general implicits on the gpu, 2007.

C. Liang, B. Mourrain, and J. Pavone, Subdivision Methods for the Topology of 2d and 3d Implicit Curves, Computational Methods for Algebraic Spline Surfaces, pp.171-186, 2005.
DOI : 10.1007/978-3-540-72185-7_11

URL : https://hal.archives-ouvertes.fr/inria-00130216

R. Morris, A new method for drawing algebraic surfaces, Proceedings of the 5th IMA Conference on the Mathematics of Surfaces, pp.31-47, 1994.

B. Mourrain and J. Pavone, Subdivision methods for solving polynomial equations, Journal of Symbolic Computation, vol.44, issue.3, 2005.
DOI : 10.1016/j.jsc.2008.04.016

URL : https://hal.archives-ouvertes.fr/inria-00070350

B. Mourrain, . Ph, and . Trébuchet, Generalized normal forms and polynomial system solving, Proceedings of the 2005 international symposium on Symbolic and algebraic computation , ISSAC '05, 2000.
DOI : 10.1145/1073884.1073920

URL : https://hal.archives-ouvertes.fr/inria-00070537

B. Mourrain, M. N. Vrahatis, and J. Yakoubsohn, On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree, Journal of Complexity, vol.18, issue.2, pp.612-640, 2002.
DOI : 10.1006/jcom.2001.0636

T. Nishita, T. W. Sederberg, and M. Kakimoto, Ray tracing trimmed rational surface patches, ACM SIGGRAPH Computer Graphics, vol.24, issue.4, pp.337-345, 1990.
DOI : 10.1145/97880.97916

N. M. Patrikalakis, Surface-to-surface intersections, IEEE Computer Graphics and Applications, vol.13, issue.1, pp.89-95, 1993.
DOI : 10.1109/38.180122

J. P. Pavone, Auto-intersection de surfaces pamatrées réelles, 2004.

S. Plantinga and G. Vegter, Isotopic approximation of implicit curves and surfaces, Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing , SGP '04, pp.245-254, 2004.
DOI : 10.1145/1057432.1057465

M. Shalaby, B. Jüttler, and J. Schicho, Approximate implicitization of planar curves by piecewise rational approximation of the distance function, Applicable Algebra in Engineering, Communication and Computing, vol.79, issue.1-2, pp.71-89, 2007.
DOI : 10.1007/s00200-006-0025-6

E. C. Sherbrooke and N. M. Patrikalakis, Computation of the solutions of nonlinear polynomial systems, Computer Aided Geometric Design, vol.10, issue.5, pp.379-405, 1993.
DOI : 10.1016/0167-8396(93)90019-Y

Z. Sír, R. Feichtinger, and B. Jüttler, Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics, Computer-Aided Design, vol.38, issue.6, pp.608-618, 2006.
DOI : 10.1016/j.cad.2006.02.003

Z. Sír, J. Gravesen, and B. Jüttler, Curves and surfaces represented by polynomial support functions, Theoretical Computer Science, vol.392, issue.1-3, pp.141-157, 2008.
DOI : 10.1016/j.tcs.2007.10.009

J. P. Técourt, Sur le calcul effectif de la topologie de courbes et surfaces implicites, 2005.

J. B. Thomassen, Self-Intersection Problems and Approximate Implicitization, pp.155-170, 2005.
DOI : 10.1007/3-540-27157-0_11

J. Van-der-hoeven, G. Lecerf, B. Mourrain, and O. Ruatta, Mathemagix computer algebra system

J. Verschelde, Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Transactions on Mathematical Software, vol.25, issue.2
DOI : 10.1145/317275.317286

J. Wintz, Algebraic methods for geometric modeling, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00347162

J. Wintz and B. Mourrain, A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview, 15th Pacific Conference on Computer Graphics and Applications (PG'07), pp.449-452, 2007.
DOI : 10.1109/PG.2007.18

URL : https://hal.archives-ouvertes.fr/inria-00189560

E. Wurm and B. Jüttler, Approximate implicitization via curve fitting, Symposium on Geometry Processing, pp.240-247, 2003.

J. Yakoubsohn, Finding a Cluster of Zeros of Univariate Polynomials, Journal of Complexity, vol.16, issue.3
DOI : 10.1006/jcom.2000.0555

L. Cependant and . Mise-en-oeuvre-d, une telle stratégie nécessite l'´ elaboration d'outils adaptés. En particulier, pour leprobì eme d'intersection, il faut savoir intersecter efficacement les approximants. Pour cela, une méthode algorithmique permet de se focaliser uniquement sur des configurations d'intersection « pertinentes