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Preface

Reconstructing an object from its sections with a set of planes has intrigued computer
science researchers for the last decades. The need for such reconstructions is a result of
the advances in medical imaging technology. From data obtained by CT, MRI, or other
systematic scanning devices, contours representing the boundaries of the organs may be
extracted on slices, and then interpolated in order to reconstruct and visualize human
organs. 3D reconstructions of organs are widely considered to be an important diagnostic
aid in the medical world. However, the actual simulation results, namely in 3D ultrasonic
simulation, are not reliable to be used in diagnosis. In fact, there is a lack of research
examining the quality of the simulation with respect to the original shape (organ).

The purpose of my doctoral thesis was to provide a method to reconstruct three di-
mensional shapes from cross-sections, and to analyze the theoretical guarantees related to
such a reconstruction. A geometric reconstruction method with theoretical guarantees was
performed during this thesis. This work is the first geometric analysis of the reliability and
validity of reconstruction methods from cross-sectional data.

The theoretical studies of this thesis have consistently shown that if the sample of
cutting planes is sufficiently dense, an accurate approximation of the unknown object can
be provided. These studies provide the way to guide the sampling process to achieve
the purposed density of cutting planes, or more formally, to verify the provided sampling
conditions on the sections. The hope is that this thesis will be a first step to provide solid
foundations and theoretical guarantees for medical diagnostic software. Of course, further
research and investment is needed to apply these theoretical guidelines in developments of
medical imaging softwares.

Organization of the Thesis

We start with a general introduction of the reconstruction problem and its applications.
A section is devoted to cite briefly the existing methods for some restricted cases of the
problem, where the planes that cut the shape have a fixed orientation and are all parallel
to each other. Then, the few existing methods for the general case of arbitrarily oriented
planes are presented. Then we provide an overview of the content and the contributions of
the thesis. We start with a formal description of the problem, and introduce the partition
(arrangement) of the space by the cutting planes. Using this partition, the reconstruction
problem is replaced by some subproblems (corresponding to the reconstruction in each cell
of the partition). Also a general reconstruction methodology in each cell is presented which
is based on a distance function from the boundary of the cell. The method corresponding
to the Euclidean distance coincides with the method presented by Liu et al. in [LBDT08].
Chapter 1 of this manuscript is devoted to analyzing this method. We prove that under
appropriate sampling conditions this reconstruction method preserves the homotopy type
of the original shape. Using the homotopy equivalence, we also show that the reconstructed
object is homeomorphic (and isotopic) to the original object. This is the first time that 3D
shape reconstruction from cross-sections comes with such theoretical guarantees. These
theoretical guarantees have been also presented in [ABMO09).

v



In the second chapter of this thesis, we present a different reconstruction method which
performs more connections between the sections compared to the first method and is
motivated by applications in reconstruction of tree-like structures from sparse data. This
method is based on the Voronoi diagram of the sections. A detailed description of the
reconstruction procedure in each cell of the partition, as well as theoretical guarantees are
given in Sections 2 and 3. Then, in Section 4, we introduce the dual structure which has a
better geometrical shape and has the same topological guarantees. We will see that in the
discrete case of the problem, the dual structure is a subcomplex of the Delaunay complex
of the sample points of the sections.

Indeed, the Delaunay-Voronoi duality leads us to a third method, presented in Chap-
ter 3, which is the generalization of Boissonnat and Geiger’s method [BG93| that was
restricted to the case of parallel sections. In that method, in order to improve the branch-
ing procedure between the sections, the authors consider some additional points on the
orthogonal projection of the medial axis of the sections of one cutting plane onto the ad-
jacent plane. This strategy of approximating the branching locus have been followed since
then in several methods. We justify this strategy by characterizing the branching locus
of the Delaunay structure in the general case of arbitrarily oriented cutting planes. This
work has been published in the proceedings of the Symposium on Geometry Processing
2007, |BMO7]. Experimental results for each proposed algorithm are provided at the end of
the corresponding sections. (Note that an efficient adaptation of this algorithm for the 2D
variant of the problem with theoretical guarantees has been published in 2008 in Computer
Graphics Forum, see [MBO08].) The last section contains a conclusion and directions for
future work.
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Introduction

One of the main problems in computational geometry is to reconstruct a shape O from
a sparse sample of O (partial data). This problem is mainly motivated by the need for
development of methods for 3D simulations in computer aided design, medical imaging
and industrial modeling. Due to the finite amount of memory, only discretized versions of
data can be represented by a computer. The choice of data representation depends highly
on the application considered. The most classical data acquisition is done by scanners that
provide a finite set of points sampled from the object. The problem of reconstructing an
object from a set of sample points, known also as reconstruction from point clouds, has
been widely considered and studied by different authors. We refer the reader to [Dey07]
and [CGY04] for a comprehensive survey.

Another data representation is considered in Geometric tomography which consists of
reconstructing a 3-dimensional object from 2-dimensional information such as projections
or sections. In this thesis, we are interested in the reconstruction of a 3D object from its in-
tersections with a set of planes, called cross-sections. Many solutions to the reconstruction
problem from parallel cross-sections have been proposed, see Section 2 of this introduction.
However, this thesis focuses on the harder and more general case of arbitrarily oriented
(multi-axial) planes, which has received much less attention.

1 Applications

Let us first present some applications of reconstruction from cross-sections.

Biological Morphology

In many tasks, we have to extract object information from a sparse sample. Particularly,
in medical applications, parts of human body are represented by an image sequence of
parallel slices. These slices can be acquired by magnetic resonance imaging (MRI), com-
puter tomography (CT), or by mechanical slicing and digitization. Reconstructions from
slices obtained by CT and MRI are exploited for surgery and radiation therapy plan-
ning [Gei93]. They have also already been used for volumetry in ultrasound [HDM™96]
and in the microscopy of cells [MLP88|, [MLB05|. Figure 1 show a reconstruction example
from [MLBO05|.
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Figure 1: Figure from [MLBO05| (with permission): Images from an Electron microscopy (a
and b), and 3D reconstruction (¢ and d) based on 48 consecutive sections.

One of the limitations of classical microscopic technologies is related to the fact that
to provide the sectional data we should cut the specimen we are studying. In particular,
as the cuts are destructive, living specimens cannot be studied. Moreover, one can only
provide non intersecting slices. In other words the reconstruction problem corresponds to
the case of serial sequence of planes. A very novel microscopic technology called Single
Plane Illumination Microscope provides slices by illuminating the specimen along a plane
(a light sheet). This allows us to study living specimens and having non parallel slices of
the specimen.’

SPIM Microscopy

The SPIM (Single Plane Tllumination Microscope) is an original microscope which was de-
veloped by the European Molecular Biology Laboratory in Germany around 2004 [HSDT04].
It allows us to study functional aspects of living specimens and raises several challenges
in different fields such as optics, image processing, mathematical modelling and scientific
computing. Contrarily to more mature imaging technologies like confocal or multi-photon
microscopes, SPIM does not rely on scanning a single focal point throughout the sample:
a light sheet is produced and is used to illuminate a slice of the whole sample. This light
sheet is positioned in the focal plane of a microscope objective. The (cutting) plane can
be translated and rotated. This furnishes a stack of images as shown in Figure 2.

SPIM seems to be the current state-of-the-art for studies of cancer development. How-

!Special thanks to Pierre Weiss (Institut de Mathématiques de Toulouse) for providing information
about the SPIM technology.
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Figure 2: An example of cross-sections (of gills of a fish embryo), generated by the SPIM
developed in the LBCMCP laboratory in Toulouse (UMR5088).

ever, it still requires heavy developments in order to be used at its fullest. Since the slices
provided by SPIM have different orientations and positions, the reconstruction of 3D struc-
tures using these data is a difficult inverse problem that is still open. In order to apply
reconstruction methods from cross-sections, a first step would be to develop techniques
that detect efficiently the contours of the biological structures in each slice.

We caution that this image segmentation step, a requirement of the methods we
consider in this thesis, is a major issue. Typical image-segmentation approaches used for
medical images are thresholding, manual editing, and region growing. Figure 3 shows an
example. The difficulty of the segmentation procedure is directly related to how noisy
the images are. This is a major issue specially for ultrasound images, in which the noise
level is extremely high. However, in spite of noisy data, we believe that the theoretical
guarantees provided in this thesis may help to provide solid foundations in order to improve
simulations by freehand 3D ultrasound.

Freehand 3D-Ultrasound

For more than 40 years, ultrasound has been extensively used in medical imaging, which
has proved helpful for the diagnosis and staging of disease. Although three-dimensional
ultrasound (3DUS) is available for more than 10 years, it was only through the develop-
ment of the most recent computer technologies and its adjustment to ultrasound systems
that 3DUS attained the high level of sensitivity and performance required to be seriously
considered in clinical practice. This ability of providing data in any plane and in any
direction has enormous potential for medical ultrasound diagnosis.

Conventional freehand 3D ultrasound is performed with a hand-held probe which trans-
mites ultrasound pulses into the body and receives the echos. The magnitude and timing
of the echos are used to create a 2D gray scale image of a cross-section of the body in
the scan plane. A position sensor is attached to the probe that is used to determine the
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Figure 3: In order to apply the reconstruction methods provided in this thesis, a segmen-
tation step is required to extract the contours of each slice.

positions and the orientation of the cross-sections (cutting planes). Since the motion of the
probe is unconstrained, the cutting planes are arbitrarily oriented. The goal of freehand
3D ultrasound techniques is to construct a 3D approximation of the organ from a series of
2D ultrasonic images.

3D ultrasound has the potential to be a revolutionary powerful tool of perinatal medical
sonography, see Figure 4. This is a very active research area, and a comprehensive survey
of the actual techniques can be found in [KMA107]. Figure 5 (extracted from this survey)
shows some examples of 3D reconstruction of fetal facial expression.

Figure 4: A figure from Web: an example of 3D reconstruction of a fetal using the newest
technologies.

Due to the lack of resarch examinning the quality of the simulations, 3D ultrasound
is not yet widely used in prenatal diagnosis. Additional research is needed to provide
diagnostic tools to determine the clinical role of 3D ultrasound for the diagnosis of dis-
ease, anomalies and detection of abnormal behavior in high-risk fetuses. The hope is that
the theoretical guarantees we present in this thesis help to provide solid foundations for
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ultrasound diagnostic software.

Figure 5: A figure from [KMAT07] (with permission): 3D reconstruction of fetal facial
expression.

Particle Image Velocimetry

Another potential application is particle image velocimetry (PIV) which is an optical
method of fluid visualization. It is used to obtain instantaneous velocity measurements and
related properties in fluids. The fluid is seeded with tracer particles which follow the flow
dynamics. It is the motion of these seeding particles that is used to calculate velocity infor-
mation of the flow being studied. In general, the particles are illuminated by pulsed sheets
of light at precise time intervals to produce images that are recorded on photographic film
or on a video camera array (see for example [Pra00] for more details). Other techniques
used to measure flows are Laser Doppler velocimetry and Hot-wire anemometry. The main
difference between PIV and those techniques is that PIV produces two dimensional vector
fields, while the other techniques measure the velocity at a point.

In general, PIV system requires four basic components:

1. An optically transparent test-section containing the flow seeded with tracer particles;

2. A light source (laser) to illuminate the region of interest (plane or volume);
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Figure 6: Particle Image Velocimetry System.

3. Recording hardware consisting of either a CCD camera, or film, or holographic plates;

4. A computer with a reconstruction software to process the recorded images and extract
the 3D velocity information from the tracer particle positions.

The reconstruction procedure consists of approximating the 3-dimensional velocity informa-
tion from a set of 2-dimensional sections. Many types of algorithms for PIV reconstruction
have been developed from simple cross-correlation method to binary image cross-correlation
method, Delaunay tessellation method [SYIM99], velocity gradient tensor method, varia-
tional approach [RGPS05] and recursive cross-correlation method [IM06], etc.

Geology/Geography

Applications have been made in the reconstruction of terrain from topographic eleva-
tion data [HSS03], [SJ05] (Figure 7), and of invertebrate fossils from serial grinding data
[HJT95], [Nul98]. Such reconstruction methods are also useful in sedimentology and seis-
mology. Figure 7 shows an example of terrain reconstruction from topographic contours
proposed in [HSS03]. This corresponds to a particular case of the general reconstruc-
tion problem we are considering, since the orthogonal projection of elevation contours are
supposed to be nested (and never intersect eachother).

Reconstruction of Coronary Arterial Tree

Let us distinguish some particular anatomical entities such as coronary arterial tree, which
consist of thin branching structures distributed over a large volume. The reconstruction
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Figure 7: Figure from [HSS03| (with permission), an example of terrain reconstruction
from topographic contours.

of such a structure from a sparse sample is a very challenging problem. Most of existing
reconstruction methods fail in such complex cross-sectional branching situations. Coronary
artery disease is a major cause of death and disability in the world. Investigation of three-
dimensional simulation tools in human arteries is an important issue in vascular disease
characterization and assessment.

Angiography is the common medical imaging technique used to visualize the arteries,
veins and the heart chambers. This is done by injecting a radio-opaque contrast agent into
the blood vessel and imaging using X-ray based techniques such as fluoroscopy. The result
is a 3D view (image) of vascular structures. The common use of 3D angiography images for
the diagnosis of vascular abnormalities provides a natural motivation for three dimensional
reconstruction from slices. Indeed, a potential strategy to extract the biological structures
from a 3D image is the following:

1. Consider some 2-dimensional cuts (slices) of the 3D-image.
2. Perform a segmentation process on each slice.

3. Reconstruct the 3D structure from the two dimensional extracted contours.
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(a) Original Object (b) Data Acquisition

(¢) Input of the Algorithm (d) Output of the Algorithm

Figure 8: Reconstruction example of our method presented in [MBO0S|.

The reconstruction step is usually based on some interpolation methods, some classical
references can be found in [HMR93]. Considerable improvements have been achieved by
more recent works, such as [CMO03| by Chen and Molloi which performs complex sequential
procedures of 3D image formation, preprocessing, segmentation, thinning, skeleton pruning
and tree construction. Note that there exist other techniques that make use of the 3D
image directly, and extract the biological structure by variants of classical methods such
as Marching-cube or Level-sets, see [AEIR03] for an example. However, to the best of our
knowledge, no formal analysis and guarantees have been obtained for existing methods until
now. The hope is that the reconstruction algorithm for tree-like structures, that we present
in Section 2 of Chapter 3, and its theoretical guarantees help to develop reconstruction
software that work satisfactorily in such complex branching situations. The reconstruction
example from a set of 14 sections, illustrated in Figure 8, shows how the 2-dimensional
variant of our algorithm performs well in such cases.
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Geometrical Point of View

Another motivation for the reconstruction from cross-sections is from a proper geometrical
point of view. The d-dimensional framework of the problem consists of reconstructing a
d-dimensional shape from its intersections with hyperplanes, of dimension (d —1). Finding
efficient methods for this reconstruction problem may be used in topological coding of
objects or in dimension reduction strategies. Adding time as the fourth dimension to three-
dimensional space, the fourth dimensional variant of the reconstruction problem can be
applied to moving objects (for example the beating heart). In the sense that the movement
of the object can be reconstructed knowing the position of the object at some constant
values of time.

While the reconstruction from cross-sections is of utmost importance in many fields,
no reconstruction method from cross-sections came with theoretical guarantees before this
thesis. Even in the case of parallel cross-sections, no formal analysis and guarantees have
been obtained. This contrasts with the problem of reconstructing a shape from unorga-
nized point sets, which is now well understood both theoretically and practically. To give
more intuition, let us analyze the topological guarantees that have been developed for the
reconstruction problem from point sets. The proofs of correctness of these methods rely
on sampling conditions that control the local density of the sample points (the input).

Closed Ball Property The first sampling condition for reconstruction from point sets
was introduced by Edelsbrunner and Shah [ES97| and is called the Closed Ball Property.
Let O denote the original shape and S be a set of sample points. The closed ball property
states that every d-face of the Voronoi diagram of the sample points .S has an intersection
with O that is either empty or topologically equivalent to a d-ball. Edelsbrunner and Shah
proved that, under this condition, some subcomplex of the Delaunay triangulation of S,
called Del|(5), has the same homotopy type as O.

e-samples Amenta and Bern [AB99] proposed the e-sampling condition for reconstruct-
ing smooth surfaces. A finite set S of sample points of O forms an e-sample of O if every
point p of O is closer to S than ed(p, MA(Q)), where MA(QO) is the medial axis of O (de-
fined in Section 4 of this introduction). Amenta and Bern proved that, if S is a e-sample
of O, for a sufficiently small €, then the Closed Ball Property of Edelsbrunner and Shah
is satisfied. Hence, Deljp(S) has the same homotopy type as O. They also proved that
Del|o(S) lies at Hausdorff distance ec(0) from O, where the constant ¢(O) depends only
on O.

Sectional Data Compared to Point Cloud Data

Suppose that we are given a set of cross-sections of an unknown shape . Counsider a
sample S of the given cross-sections or their boundaries (contours). A natural idea is to
apply provably good reconstruction methods from point clouds to these sample points. For
example, Del|(S) that is homotopy equivalent to O, if the closed ball property is verified.
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Let us study the closed ball property in this case by considering the Voronoi diagram of
the sample points. As the 2D example of Figure 9 shows, the Voronoi cell of a point b
on a plane P forms a thin quadrilateral orthogonal to P. To ensure the closed ball prop-
erty, the intersection of such a thin quadrilateral with O should be contractible. Clearly,
even the connectivity of this intersection is a very strong condition and is unverifiable in
practice. Therefore, the closed ball property is not an appropriate sampling condition for
reconstruction from cross-sections. In this thesis, we present a similar Delaunay-based
algorithm for the case of cross-sections, with appropriate sampling conditions. These con-
ditions are better adapted to the problem of reconstruction from cross-sections, and make
use of the additional given information (with respect to point clouds) which is the planes
orientations.

Figure 9: A 2D shape O (in blue) is cut by two lines (in black). Take a sample of the
two sections of O and consider the Voronoi diagram of the sample points (restricted to the
region between the two cutting lines). The Voronoi cells of points a, b and ¢ intersect O
in non-connected sets.

It is difficult to compare the conditions that we will propose with e—sample condition.
Indeed, these conditions imply that the sample is a 2-sample, and the converse is not true.

2 Previous Work

The reconstruction problem from unorganized cross-sections has been considered in 2D
and 3D. Few methods exist for reconstructing 2D shapes from line cross sections. The
incremental algorithm proposed by Coll and Sellares in [CS01] processes the cutting lines
sequentially. At each step, a new line is added and the reconstruction is updated. The
time complexity of each step is logarithmic in the total number of cutting lines.

The work by Sidlesky, Barequet and Gotsman [SBGO6| studies the topological proper-
ties of the possible solutions of the 2D reconstruction problem from cross-sections. The
authors make use of the arrangement of the cutting lines and consider the portions of one-
dimensional cross-sections lying on the boundary of each cell of the arrangement. Then,

10
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using some inter-cell relations, they enumerate all possible classes of homotopy equiva-
lent reconstructions that conform to the given cross-sections, see Fig 10 for an example.
However, as it is mentioned in [SBGO06|, the related question of finding conditions for

Figure 10: Four reconstructions from a same input, presented in [SBGO06] (figure taken
with permission).

uniqueness of the reconstructed object with consistent topology remained open. In Sec-
tion 3 of Chapter 1, we also provide an answer to this question by giving appropriate
sampling conditions for reconstruction from line cross-sections. To the best of our knowl-
edge, this is the only work that guarantees a topologically correct solution for the 2D
reconstruction problem from cross-sections.

Let us now study the 3-dimensional existing methods. In 3D, different configurations
can be considered for the cutting planes, as it is illustrated in Figure 11. A so-called serial
sequence of planes partitions the space into several slices, each bounded by a pair of cutting
planes. The classical case, that has been considered widely in the previous work, is the
case of parallel cutting planes. The reconstruction of a shape cut by a serial sequence of
planes can be done in the slices bounded by two consecutive planes, independently. This
technique has been employed in most of reconstruction methods from parallel (or serial)
cross-sections, that we will survey in the next section.

In the general case, the cutting planes may be arbitrarily oriented. The purpose of
this thesis is reconstructing a 3D shape from its sections with arbitrarily oriented cutting
planes. In the literature, this problem is also known as reconstruction from unorganized
or multiazial or non-parallel cross-sections. The few existing methods on this area will be
studied in Section 2.2 of this introduction.

(a) Parallel serial se- (b) Non-parallel serial sequence (¢) Unorganized cut-
quence of planes ting planes

Figure 11: Different cross-sections configurations in 3D case of the problem.

11
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2.1 Parallel Sections

The existing techniques for reconstruction from parallel sections may be roughly classified
into two main groups: the surface extraction and the tiling approaches.

Functional Approach

In a functional approach, the surface is indirectly extracted from a volume generated by the
sections. The surface can be obtained as the zero-set of a scalar function with 3D argument
(implicit surfaces) or as mappings from a pair of parameters to 3D space (parametric
surfaces).

Implicit Surfaces : In surface reconstruction from cross-sections, the surface may
be the zero-set of a generalized distance function to the given section-contours. For
example, we refer the reader to [COL96|, [Da02], [Bra05] and [MBMBO06].

Parametric Surfaces : B-splines are the most widely used parametric surfaces. B-
splines have been used for reconstruction from parallel cross-sections by [PK96] and
[PT96], as well as the hybrid approach proposed in [Par05] which uses B-spline surface
approximation. We can also cite the recent work [GGKO06| of Gabrielides et al. that
can create smooth branching between the contours.

The wvozel-reconstruction techniques can also be classified as isosurfacing methods. These
techniques are currently used in most of existing 3D medical imaging softwares. We can
cite Marching Cubes (introduced in [LC87|, and (corrected and) completed in [NH91]),
that is widely used in softwares, but no theoretical guarantees are available to make the
resulting reconstruction appropriate for diagnosis.

Tiling Approach (Correspondence, Interpolation and Branching)

In a tiling approach, the surface is directly constructed by interpolating the section-contours.
Most of tiling methods assume that the contours are sampled and are given as polygons.
The surface itself is made up of triangle-strips to be constructed between the points that
belong to each couple of consecutive contours.

In Meyers’ Ph.D-thesis [Mey94], on reconstruction from parallel sections, the problems
related to tiling approaches are divided into three main groups: correspondence problem,
interpolation problem and branching problem.

Correspondence Problem The correspondence problem consists of defining the topo-
logical adjacency relationships between the contours and the holes of consecutive sections.
A commun technique to solve this problem, used in most of previous work as [EPO91]
and |[CP94], is to superpose the contours of two adjacent cross-sections, and to consider
them as connected if they overlap.
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In Chapter 1 of this thesis, a generalization of this overlapping criterion for the case
of unorganized cross-sections, proposed by Liu et al. in [LBD108], is analyzed. Moreover,
we show that under appropriate sampling conditions, the resulting adjacency relationships
between the contours preserves the topology of the original object.

Interpolation Problem Having defined the connectivity between the contours, the cen-
tral problem consists in finding the best interpolating surface between two adjacent con-
tours. Since Keppel’s work [Kep75] on interpolation between parallel polygonal contours,
numerous algorithms were introduced for parallel inter-slice interpolation. The problem
is considered to be quite difficult because the topology of the contours may change be-
tween slices. Most of former methods can not handle branching between the contours
and assume that there is a one-to-one correspondence between the contours. Using this
correspondence, the interpolating surface (triangulation) is determined by constrained op-
timization of various costs. The earliest solution [Kep75| by Keppel maximized the volume
of the reconstruction for convex contour segments and minimized it for concave segments.
This was soon followed by Fuchs et al. in [FKU77|, with a minimal surface area solution.
Other criteria have included minimal length of the next edge in [CS78], optimal verticality
of the edges in [GD82|, minimal radii of circumscribed circles of triangles (a variant of
Delaunay triangulation of the contours) in Meyers’ Ph.D thesis [Mey94|, and minimal sum
of absolute value of angle between the contour edge parts of successive triangles [WW94].
More criteria are provided in [DP97] and [Zse05].

Most of these interpolation techniques will fail when confronted with contours which
cannot be interpolated without the addition of extra vertices. In such branching cases,
these methods may lead to self-intersecting surfaces.

Branching Problem In the earliest branching method [CS78|, Christiansen and Seder-
berg proposed to concatenate all contours in one cutting plane into a single contour using
new edges called bridges. In [EPO91], in order to simplify the branching, each contour is
decomposed into elementary convex subcontours. [CP94] reduces branching problems to a
series of one-to-one cases by generating new slices between the input slices.

Some significant progress was made with the introduction of the Delaunay-based tech-
nique of Boissonnat [Boi88|, and the method of Bajaj et al. [BCL96]. Both approaches
attempt to handle the most general case, in which the geometries and topologies of the
contours in every slice are totally unrestricted. Subsequently, Barequet and Sharir [BS96]
suggested an interpolation method based on geometric hashing.

The necessary addition of extra vertices within a contour to provide suitable splitting
points for branching was addressed for the first time by Shantz in [Sha81|. In this method
the additional points are obtained by projection of the medial axis of the sections of one
cutting plane onto the adjacent plane. This method of approximating the branching locus
have been followed since then in several methods as [CP94|, [BG93]. (In Section 4.1
of Chapter 2 of this thesis, we will generalize and justify this branching locus.) Later,
Barequet et al. [BGLSS04| suggested another interpolation algorithm that uses the medial
axis of the superposition of the two slices.
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A commun interpolation technique that can handle the branching between neighboring
sections consists of defining a parametric domain using the superposition of the contours
of the two adjacent sections. The mapping is implicitly defined through some form of
interpolation of the Z coordinates of the neighboring sections. In many approaches, the
parametric domain is triangulated and then the resulting triangulation is mapped to three

dimension. As examples of methods based on parametric domain triangulation we can
cite [OPC96], [CP01], [WHMWO06].

Delaunay-Based Approach

The 3D reconstruction method that we will present in this thesis is based on Delaunay
triangulation. Delaunay-based reconstruction from parallel cross-sections has been investi-
gated by Boissonnat in [Boi88]. This approach simultaneously handles the correspondence,
interpolation and branching problems. Using the properties of Delaunay triangulations,
this method produces the largest volume of the triangulation consistent with the contours.
An improvement on the branching between dissimilar sections was performed by Bois-
sonnat and Geiger in [BG93|, by adding vertices inside the contours. These additional
points lie on the projection of the medial axis of the adjacent contour, as had been pro-
posed in [Sha81]. However, Boissonnat and Geiger indicated how these points could be
efficiently obtained from the Delaunay triangulations of the sections. Figure 12 illustrates
a reconstruction result of this method. Some variants of this method for the case of serial
cross-sections have been studied and implemented, for example [TCC94] and [CD99]. Some
implementations, as [DVAT96|, are currently used in some medical imaging labs.

In [BCDT96], the authors provide an efficient output sensitive algorithm to compute the
Delaunay triangulation of a set of n points that lie on two planes, in O(nlog(n) + t)
time, where ¢ is the size of the output (number of tetrahedra in the triangulation). This
result allows an efficient computation of the Delaunay triangulation for Delaunay-based
reconstruction methods from serial cross-sections.

Figure 12: A reconstruction example of [BG93| Delaunay-based method.

In 1997 in a technical report [DP97], Dance and Prager have presented a generalization
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of Boissonnat and Geiger’s method for the case of unorganized cross-sections. In [BMO07],
we presented a more complete generalization of [BG93] method for the case of unorganized
cross-sections. This work is presented in Section 2 of Chapter 3 of this thesis.

2.2 Unorganized Sections

We now consider the more difficult problem of 3D reconstruction from arbitrarily oriented
(unorganized) cross-sections (see Figure 11-¢). The need for such reconstructions is a result
of the advances in medical imaging technology, as we mentioned in the previous section.

While the reconstruction from unorganized cross-sections is of utmost importance in
many fields, it is only very recently that this reconstruction problem has been considered:
A very first work [PT94| by Payne and Toga was restricted to easy cases of reconstruction
that do not require branching between the sections. In [BG93|, Boissonnat and Geiger
proposed a Delaunay-based algorithm for the case of serial planes, that has been generalized
to arbitrarily oriented planes in [DP97| and [BM07]. Some more recent work [LBD10§]
and [BV09] can handle the case of multilabel sections (multiple materials). Barequet and
Vaxman’s work [BV09| extends the work of [LBD"08] and can handle the case where
the sections are only partially known. This method makes use of straight skeletons of
polyhedra, can be cited as the most recent work that appeared in this area. Most of

(a) (h)

(c) (n (2) (h)

Figure 13: A projection-based method proposed in [LBD108]: In each cell of the arrange-
ment of the cutting lines, the medial axis of the cell is computed. The sections are lifted
orthogonally onto this medial axis. Two sections are connected in the reconstruction if
their lifts on the medial axis of the cell intersect.

existing methods for the case of parallel cross-sections are based on the simple idea of
connecting two sections if their orthogonal projections overlap. In a recent paper, Liu
et al. [LBD'08] proposed a generalization of this overlapping criterion to the case of
unorganized cross-sections. (Indeed, this method is based on an approach for the case of
parallel cross-sections proposed in [JWC105].) Following the divide-and-conquer step we
proposed in [BMO07], the arrangement of the cutting planes is first constructed, then the
reconstruction problem is solved in each cell independently. To reconstruct the portion of
the object that lies in a given cell of the arrangement, this method makes use of the medial
axis of the cell (also called the Voronoi Skeleton of the cell). Two sections are connected in

15



INTRODUCTION

the reconstruction if their lifts on the medial axis of the cell intersect. Figure 13 describes
this criterion that is a generalization of the overlapping criterion for the case of parallel
sections. (In the first chapter of this thesis, we analyze this method and prove that under
some appropriate provided sampling conditions, the reconstructed object is homeomorphic
to the original shape.)

3 Overview of the Thesis

Let us summarize the content and the contributions of this thesis. Here is the problem we
consider.

3.1 Statement of the problem

Let O C R? be a compact 3-manifold with boundary (denoted by 90O) of class C?. The
manifold O is cut by a set P of so-called cutting planes that are supposed to be in general
position in the sense that none of these cutting planes are tangent to 00. For any cutting
plane P € P, we are given the intersection O N P. There is no assumption on the geom-
etry or the topology of these intersections. The goal is to reconstruct O from the given
intersections. The problem being ill-posed, we are interested in finding an approximation
R of O such that R is homotopy equivalent to O and the intersections of R with all the
cutting planes in P coincide with the given sections (this is called the conformity of the
reconstructed object with the given sections).

3.2 Arrangement of the Cutting Planes

We can decompose the problem into several subproblems as follows. Consider the arrange-
ment of the cutting planes, i.e., the subdivision of R? into convex polyhedral cells induced
by the cutting planes. Without loss of generality, we can restrict our attention to a cell of
this arrangement and reduce the reconstruction of O to the reconstruction of O¢ := ONC
for all cells C of the arrangement. Since the various reconstructed pieces will conform
to the given sections, it will be easy to glue them together in the end to get the overall
reconstructed object R.

We note that the computation of the arrangement of k planes can be done in O(k3)
time, according to [Ede87|. However, in Section 5 of Chapter 2, we will present an easy
way to find the groups of sections that are on the same cell of the arrangement of the
cutting planes. This allows us to avoid the computation of the entire arrangement of the
cutting planes.

Sections: Input of the Reconstruction Algorithm. We now focus on a cell C of the
arrangement and describe how the reconstructed object R¢ is defined in C. On each face
f of C, the intersection of the object O with f is given and consists of a set of connected
regions called sections, see Figure 14.
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Figure 14: A section is a connected component of the intersection of O with a face of a
cell of the arrangement. This cell has 14 sections.

By definition, the sections of a face of C are disjoint. However, two sections (on two
neighbor faces of C) may intersect along the intersection between their two corresponding
faces. The boundary of a section S is denoted by 95 and is a set of closed curves, called
section-contours, that may be nested. In the sequel, S¢ denotes the union of sections of all
the faces of C, and a point of S¢ is called a section-point.

3.3 Methodology

We know that a point on the boundary of C is in O if it lies in S¢c. The goal is now to
determine whether a point = inside C belongs to O or not. The reconstruction method
that we will present is based on the notion of distance from 9C (the boundary of C):

A point z € C is in the reconstructed object if one of its nearest points in dC is in S¢.

Different distance functions (from the boundary of C) may be used in order to satisfy
properties of interest for different applications. For example, to impose a favorite direction
to connect the sections, or to promote the connection between sections in the case of sparse
data (as we will see in Chapter 2). A natural idea is to use the Euclidean distance as the
distance function from 9C. In this case, the reconstructed object coincides with the method
introduced by Liu et al. in [LBD108].

Consider the medial axis of the cell (also called the Voronoi Skeleton of the cell). For each
point @ in a section A, the locus of all the points z € C that have a as their nearest point
in OC is the line segment joining a to its lift on the Voronoi Skeleton of the cell. Therefore,
the reconstructed object R¢ is the union of all the line-segments [a, lift(a)] for a point a
in a section A € S¢. By this definition, two sections are connected in the reconstructed
object if their lifts on the medial axis of the cell intersect. See Figure 15-middle.

This method is symmetric with respect to the sections and their complementary in each
cutting plane, in the sense that the points on the boundary of C that are in or not in Sc
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play a symmetric role in the reconstruction procedure. This is due to the fact that the
definition of the nearest point in dC to a point « € C, does not depend on the object and
its sections.

In the first chapter of this thesis we will analyze this method and present appropriate
sampling conditions providing topological guarantees for the resulting reconstructed ob-
ject. This is the first time that reconstruction from cross-sections comes with theoretical
guarantees.

In the second chapter, we propose a method with a different distance function from the
boundary of C which depends on O and is based on the Voronoi diagram of the sections.
Consider the 2-Skeleton of the Voronoi diagram of the sections, called the Voronoi Skeleton
of the sections. For each point x € C and in the Voronoi cell of a section A, the nearest
point to x in the boundary of C is the projection of x onto the boundary of C in the direction
orthogonal to A. A point z € C is in the reconstructed object Ry if one of its nearest
points in 0C is in S¢. By this definition, two sections are connected in the reconstruction
if their lifts on the Voronoi Skeleton of the sections intersect. See Figure 15-right.

Figure 15: Reconstruction example in a cell of the arrangement: Left) Unknown Object
in blue. Middle) First Reconstructed Object in green, Voronoi Skeleton of the cell in red.
Right) Second Reconstructed Object in green, Voronoi Skeleton of the sections in red.

The main idea is that with this new distance function we increase the influence zone of each
section compared to the first method. Such an asymmetric function allows us to perform
more connections between the sections, and is motivated by reconstruction of tree-like
structures which consist of thin branching structures distributed over a large volume.

Another motivation for presenting this Voronoi-based method is its dual Delaunay-
based approach. Indeed, the Delaunay-Voronoi duality, leads us to a third method which is
presented in Chapter 3. This method can be seen as the generalization of Boissonnat and
Geiger’s method [BG93| to the case of unorganized sections. Unlike the two first methods,
this method cannot be presented with a distance function to OC and a lifting procedure.
However, as we will see, we can compare the connectivity between the sections induced by
these three methods as follows:

Let G, G’ and G” be the connectivity graph between the sections induced by Methods
1, 2 and 3 respectively. Then G is a subgraph of G/, and G’ itself is a subgraph of G”,
ie., G C G' C G". Figure 16 compares the connectivities between a set of four sections
performed by the three methods.
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In other words, if two sections are connected by the two first methods, then they are con-
nected in the resulting reconstruction of the third method as well, and moreover additional
connection may be performed. Increasing the connectivity between the sections is moti-
vated by reconstructing tree-like structures from sparse sectional data. The preliminary
experimental results of the third method, presented in Chapter 3, are quite promising, re-
garding the practicality of the approach to reconstruct complex cross-sectional branching
situations such as the coronary arterial tree. See Figure 8 for a 2D example.

bo el

) First reconstruction method ) G: Connectivity graph of the
ﬁrst method

oo

(¢) Second reconstruction d) G’: Connectivity graph of the
method second method
) Third reconstruction method ) G Connect1v1ty graph of

the third method

Figure 16: The connectivity performed by the three methods presented in this thesis.
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3.4 Contributions

We list the main contributions of this thesis below:

First Method

A theoretical analysis of the method proposed by Liu et al. in [LBD'08] is carried out.
We prove that under appropriate sampling conditions, the connection between the sections
provided by this method is coherent with the connectivity structure of the object, and the
proposed reconstructed object is homotopy equivalent to the object. Moreover, under
these conditions, we provide a homeomorphism between the reconstructed object R and
the original shape O, and prove that they are indeed isotopic. Here is a summery of the
topological guarantees presented in the first chapter of this thesis:

Let O denote the original shape we want to reconstruct. Consider the boundary of O,
denoted by 90, as a 2-manifold without boundary embedded in R3. Let MA(OO) be the
medial axis of 0. It contains two different parts (see Figure 17) : the so-called internal
part, denoted by MA;(90), which lies in O and the so-called external part, denoted by
MA,(90O), which lies in R?\ O. In particular, if O is convex then MA.(9O) is empty.

The key idea is to make use of MA;(00O) which has the same homotopy type as O,
which is trivial due to the fact that the boundary of O is supposed to be of class C2. 2

)
MAe(80)

Figure 17: Internal and external parts of the medial axis of 00.

Given a cell C of the arrangement, let us define reach¢(O) as the distance of the boundary
of O from (the union of the two parts of) its medial axis, in a neighborhood of C (see
Section 2.3 of Chapter 1 for a formal definition). We also define the height of the cell C,

2This double-smoothness assumption is to simplify a technical part of the homotopy equivalence proof.
Indeed, the same topological guarantees hold for a more general case where 90 is of class C1'! (i.e., it
is continuously differentiable and its normal satisfies a Lipschitz condition). The proof is generally the
same, except the retraction from O to MA;(900) which is more sophisticated and makes use of Lieutier’s
work [Lie04].
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denoted by h¢, as the maximum distance of a point x € C to the boundary of C (which is
less than half the diameter of C).

We will propose two sampling conditions for the set of cutting planes, that will be called
the Separation Condition and the Intersection Condition.

e Separation Condition : The first sampling condition we consider for the set of cutting
planes is called the Separation Condition: This condition requires that the part of the
medial axis of 9O which lies inside O lies inside R, and symmetrically, the part of the medial
axis of 0O which lies outside O lies entirely outside R. In other words, R separates the
internal and the external parts of the medial axis of d0. We will show that the Separation
Condition is verified if the set of cutting planes is sufficiently dense so that we have:

(C1) Density Condition : for any cell C of the arrangement, he < reache(O).

Connectivity Guarantees : We show that under the Separation Condition, the connec-
tivity between the sections in the reconstructed object R coincides with the connectivity
in the original unknown shape O.

This implies the homotopy equivalence between R and O for the two following particular
cases:

Case I) Reconstructing Union of Convex Bodies with Topological Guarantees:
An efficient adaptation of the algorithm to the case of reconstructing a union of con-
vex bodies is proposed. In Section 3 of Chapter 1, we prove that under the Separation
Condition, the resulting reconstructed object is homeomorphic to the original shape.

Case IT) 2D Reconstruction from Line-Sections with Topological Guarantees :
The Separation Condition offers the same topological guarantees for the 2D variant
of the problem (see Section 3 of Chapter 1), and R is homeomorphic (and isotopic)
to O.

However, the Separation Condition does not ensure in general the homotopy equivalence
between R and O. We need to impose a second condition called Intersection Condition.

e Intersection Condition : For the sake of simplifying the presentation in this intro-
duction, we only give a sufficient condition and refer to Section 4.4 of Chapter 1 for the
formal definition of the Intersection Condition. We will show that the Intersection Condi-
tion is verified if the cutting planes are sufficiently transversal to the boundary of O. More
formally, if the following condition is verified:

(C2) Transversality Condition : for any cell C of the arrangement,

he < % (1 — sin(a)) reache(O),

where « is an upper bound on the angle between the cutting planes and the normals to
the boundary of O along the sections.
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Remark: As it can be seen, the Transversality Condition is stronger than the Density
Condition. However, such a condition based on transversality seems to be reasonable in
practice, especially for applications in 3D ultrasound. Since from a technical point of view,
if a cutis not sufficiently transversal to the organ, the quality of the resulting 2D ultrasonic
image is not acceptable for diagnosis (see |[Rou03| for more technical details).

Main theorem of Chapter 1 : Under the Separation and the Intersection Conditions,
the reconstructed object R is homeomorphic (and isotopic) to the unknown original shape

0.

This is the first time that 3D shape reconstruction from cross-sections comes with such
theoretical guarantees. Even in the case of parallel cross-sections, no formal analysis and
guarantees have been obtained before this thesis.

Second Method

Using the Voronoi diagram of the sections, we present a second method which performs
more connections between the sections compared to the first method. In the sense that
the new reconstructed object, denoted by R’ contains the reconstructed object of the first
method R. Increasing the connectivity between the sections is motivated by constructing
tree-like structures from sparse sectional data. Most of existing reconstruction methods
fail in such complex cross-sectional branching situations. We prove that the resulting
reconstructed object R’ is homeomorphic to the original shape O under appropriate sam-
pling conditions. The provided sampling conditions, leading to topological guarantees, are
well-suited to tree-like structures. In this introduction, we briefly present these sampling
conditions and refer to Section 3 of Chapter 2 for formal definitions.

In this context the height of a cell C, denoted by hy,, is defined as the maximum distance
of a point z € C to the cutting plane of the section A whose Voronoi cell contains z. We
define two new quantities that correspond to the distance of the boundary of the object
from the internal and external parts of the medial axis:

reach;(O) := min  d(m,00) and reach.(O) := min d(m,00).
meMA; (80) meMA. (90)
The key idea is that usually in thin branching structures reach;(O) is much smaller than
reach.(O). The Density Condition of the first method depends on both reach;(O) and
reach.(Q), and may be too restrictive for thin branching structures. Instead, we suggest a
Weak Density Condition which bounds the height of the cells from above only by reach,(QO).

(C'1) Weak Density Condition : For any cell C of the arrangement h{, < reach.(Oc¢).
Nevertheless, to ensure good connectivities between the sections, we would need an addi-

tional condition, called Weak Transversality Condition defined as follows:

(C'2) Weak Transversality Condition : For any cell C of the arrangement and for
any section A of C, the orthogonal projection of dO¢ N V(A) onto the plane of A is at
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distance less than reach;(O¢) from the boundary of A. More intuitively, the orthogonal
projection of the boundary of the object restricted to the Voronoi cell of A, onto the plane
of A, moves of at most reach;(O¢). This is based on how the cutting planes are transversal
to 00. As we will see in Section 3.2 of Chapter 2, this condition seems reasonable for tree-
like structures that are composed of quasi-linear features (branches). Indeed, for piecewise
linear shapes, the Weak Transversality Condition implies h; < cot(a) reache(O).

Connectivity Guarantees : If the sample of cutting planes verifies the two above
sampling conditions, then R}, induces the same connectivity between the sections as Oc.

Approximation Guarantees : If the sample of cutting planes verifies the Weak Density
Condition and the Weak Transversality Condition then we have dy(O,R’) < maxc hg,
where « is an upper bound on the angle between the cutting planes and the normals to
the boundary of O along the sections.

However, these conditions do not ensure in general the homotopy equivalence between
R’ and O. Similarly to the first method, we need to impose a stronger condition :

(C’3) Transversality Condition : For any cell C of the arrangement, :

(1 — sin(e)) reache(O)

N | =

he <

where « is an upper bound on the angle between the cutting planes and the normals to
the boundary of O along the sections. (Note that since cot(ar) > 3 (1 —sin(a)) for o < Z,
the Transversality Condition is stronger than the Weak Transversality Condition.)

Topological Guarantees (Main theorem of Chapter 2):  If the cutting planes verify
the Weak Density Condition and the Transversality Condition, then the reconstructed
object R’ is homeomorphic (and isotopic) to the unknown original shape O.

Therefore, we obtain the same topological guarantees as the ones we obtained for the
first method, under sampling conditions that are better adapted to be satisfied for tree-like
structures.

Voronoi-Delaunay Duality : The advantage of considering the Voronoi diagram of the
sections, instead of the Voronoi diagram of the cell, is that a dual structure can be defined.
The dual structure, that will be called the spine, is composed of Delaunay simplices between
the points of the sections. We will show that the spine has the same homotopy type as
R’. As a consequence, the topological guarantees for R’ are valid for the spine as well.
We will see that considering the dual structure allows us to improve the appearance of the
reconstructed object R’ and leads to a discrete reconstruction algorithm which provides a
triangulated surface.

We consider the discrete case of the problem where we are given a set of polygonal
contours on the cutting planes. We present an easy way to find the groups of sections

23



INTRODUCTION

that are on the same cell of the arrangement of the cutting planes. This allows us to
avoid the computation of the entire arrangement of the cutting planes. (In particular,
we do not need to compute empty cells in which no portion of O is reconstructed.) We
then present a Delaunay-based reconstruction method which characterizes the singularities
in the Delaunay structure in each cell of the arrangement, and provide an incremental
algorithm to remove them. This algorithm can be seen as a generalization of Boissonnat
and Geiger’s method [BG93] that was restricted to the case of parallel sections. In that
method, in order to improve the branching procedure between the sections, the authors
consider some additional points on the orthogonal projection of the medial axis of the
sections of one cutting plane onto the adjacent plane. This strategy of approximating the
branching locus have been followed since then in several methods. We justify this strategy
by characterizing the branching locus of the Delaunay structure in the general case of
arbitrarily oriented cutting planes:

We show that in each cell C of the arrangement, the branching locus of a face f of C lies
on a 2-dimensional Moebius diagram (a generalized Voronoi diagram) of the orthogonal
projection of the points of the sections on the other faces of C onto f. (We will see that
in the case of parallel planes, this diagram coincides with the projection of the medial axis
of the sections of one cutting plane onto the adjacent plane.) Using these diagrams, we
provide an efficient algorithm to find the connectivity between the sections induced by the
Delaunay simplices, without computing the whole 3D Delaunay triangulation.

This efficient algorithm for the correspondence problem between the sections may be used
independently of the Delaunay structure. As we mentioned before, there are methods which
consider the correspondence and the interpolation problems independently. So one can use
our algorithm to obtain the connectivity and then interpolate the corresponding sections
with a different method, depending on the properties of interest for the reconstructed
surface in each application.

Third Method

In Chapter 3 of this thesis, we present another Delaunay-based reconstruction. This
method is a generalization of Boissonnat and Geiger’s method [BG93| to the case of un-
organized sections, and performs more connections between the sections compared to the
two first methods. Increasing the connectivity between the sections is motivated by re-
constructing tree-like structures from sparse sectional data. We have implemented this
algorithm in C++, using the CGAL library [CGA]. The preliminary experimental results
are promising, regarding the practicality of the approach to reconstruct complex cross-
sectional branching situations. The hope is that this thesis will be a first step in providing
solid foundations and theoretical guarantees for more sophisticated reconstruction software.
A nice extension of our work would be to combine the theoretical guidelines of this thesis
with existing image processing techniques for development of medical diagnostic software.
We refer to the last section of this thesis which provides some future research directions in
order to make a bridge from geometry to medical applications.

24



INTRODUCTION

4 Preliminaries

4.1 Notations and Terminology

In this section, we state the notations and recall some basic concepts used in this thesis.

Notation Given asubset X of R?, int(X), X, and X, stand respectively for the interior,
closure, and boundary of X.

Definition 1 (Set Difference) For two sets A and B, the set difference A\ B is defined
as:
A\B= {z: zc€Aandz ¢ B }.

Definition 2 (Distances between subsets of R™) Given a point p and a subset X of
R™, the distance from p to X is denoted d(p, X) and defined as follows:

d(p, X) = inf{d(p,q),q € X}

If X =0, then d(p, X) is infinite. Otherwise, d(p, X) is finite and non-negative. Moreover,
d(p, X) = 0 iff (if and only if) p belongs to the closure X of X.

Given two subsets X and Y of R”, the Hausdorff distance between X and Y is

di(X,Y) = max{sup d(p,Y), supd(q, X)}
peX qeyY

Note that dg(X,Y)=0iff X =Y.
We now present several objects that will be used throughout the thesis.

Definition 3 (Medial Axis, Medial Balls) Let S be a compact subset of R™. For all
point & € R™, §(x) is defined as the set of the nearest points in S to z, i.e,

5(1') = {y €S, d($>y) = d(l’,S)}

The medial azis of S, noted MA(S), is the topological closure of the set of points of R™
that have more than one nearest point in .9, i.e.,

MA(S) = {z € R", |5(z)| > 2}

For a point m € MA(S), the medial ball of m is the open ball centered at m passing
through the point(s) of 6(m). Since §(m) is defined as the set of the nearest points in S
to m, the medial ball of m is empty of points of S.

We now consider a particular case, where S is the finite union of closed connected

subsets of R™. In such a case, the medial axis of S coincides with a well-known geometrical
diagram, called the Voronoi diagram of S, defined as follows.
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Definition 4 (Voronoi diagrams and Delaunay triangulations) Let S be a collec-
tion of finite closed connected subsets of R™, i.e. S = {s;}iecr, where I is finite and s; is a
closed connected subset of R™, for all ¢ € I.

The Voronoi cell of s; is the set of all points of R™ that are closer to s; than to any other
sj, j € I. The Voronoi diagram of S is the partition of R" formed by the Voronoi cells of
S, 1€ 1.

Definition 5 (Reach) For a point p € R", we call distance to the medial axis at p, and
write dyia(g)(p), the Euclidean distance from p to the medial axis of S. The reach of S is
the infimum over S of the distance to MA(S):

reach(S) = inf{dnia(s)(p), p € S}

As proved in [Fed59a|, reach(S) is positive when S is C''!-continuous, i.e. continuously
differentiable and its normal satisfies a Lipschitz condition.

4.2 Topology Preliminaries

In this section, we briefly recall some definitions that are used in this thesis.

Definition 6 (Homotopy) A homotopy between two continuous functions f and g from
a topological space X to a topological space Y is defined to be a continuous function
H: X x[0,1] — Y such that for all points z € X, H(z,0) = f(z) and H(z,1) = g(x). f
is said to be homotopic to g if there exists a homotopy between f and g.

Definition 7 (Homotopy Equivalence) Two topological spaces X and Y are homotopy
equivalent or of the same homotopy type if there exist continuous maps f : X — Y and
g :Y — X such that go f is homotopic to the identity map idx and f o g is homotopic to
idy.

Definition 8 (Homotopy Groups, Fundamental Group) Let X be a space with a
base point z9 € X. Let S° denote the i-sphere for a given i > 1, in which we fixed a
base point b. The i-dimensional homotopy group of X at the base point x(, denoted by
7;(X, ), is defined to be the set of homotopy classes of maps f : S — X that map the
base point b to the base point xg.

Thus if X is path-connected, the group m;(X,z) is, up to isomorphism, independent
of the choice of base point xg. In this case the notation m;(X, xg) is often abbreviated to
mi(X).

Let X be a path-connected space. The first homotopy group of X, 7m1(X), is called the
fundamental group of X.

Definition 9 (Simply-Connected Spaces) The path-connected space X is called simply-
connected if its fundamental group is trivial.

26



INTRODUCTION

Definition 10 (Weak Homotopy Equivalence) A map f : X — Y is called a weak
homotopy equivalence if the group homomorphisms induced by f on the corresponding
homotopy groups, f. : mi(X) — m(Y), for ¢ > 0, are all isomorphisms. It is easy to see
that any homotopy equivalence is a weak homotopy equivalence, but the inverse is not
necessarily true. However, Whitehead’s Theorem states that the inverse is true for maps
between CW-complexes.

Theorem 1 (Whitehead’s Theorem) If a map f : X — Y between connected CW-
complexes induces isomorphisms f, : m;(X) — m;(Y) for all ¢ > 0, then f is a homotopy
equivalence.

Definition 11 ((Strong) Deformation Retract) Let X be a subspace of Y. A homo-
topy H : Y x [0,1] — Y is said to be a (strong) deformation retract of Y to X if:

e ForallyeY, H(y,0) =y and H(y,1) € X.
e Forallz € X,H(x,1) = x.

o (and for all z € X, H(z,t) = x.)

Definition 12 (Homeomorphism) Two topological spaces X and Y are homeomorphic
if there exists a continuous and bijective map h : X — Y such that h~! is continuous. the
map h is called a homeomorphism from X to Y.

Definition 13 (Isotopy) Two topological spaces X and Y embedded in R? are isotopic
if there exists a continuous map 7 : [0,1] x X — R? such that i(0,.) is the identity over X,
i(1,X) =Y and for any ¢ € [0,1], i(t,.) is a homeomorphism from X onto its image. The
map ¢ is called an isotopy from X to Y.

Let us recall the definition of the universal cover, and refer to classical books in topology
for more details.

Definition 14 (Universal Cover) Let X be a topological space. A covering space of X
is a space C together with a continuous surjective map ¢ : C — X such that for every
r € X, there exists an open neighborhood U of x, such that ¢~!(U) is a disjoint union
of open sets in C, each of which is mapped homeomorphically onto U by ¢. A connected
covering space is called a universal cover if it is simply connected.

The universal cover exists and is unique up to homeomorphism.

Lemma 1 (Lifting Property of the Universal Cover) Let X be a (path-) connected
topological space and X be its universal cover, and ¢ : X — X be the map given by the
covering. Let Y be any simply connected space, and f : ¥ — X be a continuous map.
Given two points Z € X and y € Y with ¢(Z) = f(y), there exists a unique continuous
map g:Y — X so that ¢og= f and ¢(y) = . This is called the lifting property of X.

Since all the spheres S; of dimensions ¢ > 2 are simply connected, we may easily deduce.
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Corollary 1 For any (path-) connected space X with universal cover X, we have m;(X) =
i (X) for all 4 > 2.

We now recall the definition of the Hurewicz map h; : m;(X) — H;(X). For an element
[a] € m;i(X) presented by o : S* — X, hi([a]) is defined as the image of the fundamental
class of S in H;(S%) under the map o : H;(S*) — H;(X), i.e., hi([a]) = a.(1).

Theorem 2 (Hurewicz Isomorphism Theorem) The first non-trivial homotopy and
homology groups of a simply-connected space occur in the same dimension and are iso-
morphic. In other words, for X simply connected, the Hurewicz map h; : m;(X) — H;(X)
is an isomorphism for the first ¢ with m; (or equivalently H;) non-trivial.
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Chapter 1

First Method and Related
Topological Guarantees

In this chapter of the thesis, we consider the problem of reconstructing a compact 3-
manifold (with boundary) embedded in R? from its cross-sections S with a given set of
cutting planes P having arbitrary orientations. Using the fact that a point z € P belongs
to the original object if and only if it belongs to S, we follow a very natural reconstruction
strategy: we say that a point 2 € R3 belongs to the reconstructed object if (at least one of)
its nearest point(s) in P belongs to S. This coincides with the algorithm presented by Liu
et al. in [LBDT08]. We will characterize the resulting reconstructed object and present
appropriate sampling conditions providing topological guarantees for the reconstructed
object.

1 Reconstructed Object Definition

Let us first give a definition of the reconstructed object in a cell C of the arrangement of
the cutting planes, which is related to the Voronoi diagram of C defined as follows.

Voronoi Diagram of a Cell. For a face f of C, the Voronoi cell of f, denoted by Ve (f),
is defined as the set of all points in C that have f as the nearest face of C, i.e.,

Ve(f)={zeC|d,f) <d(z,f), Vface f' of C }.

Where d(.,.) is the Euclidean distance. The collection of all V¢ (f) of the faces of C forms
a tiling of C, called the Voronoi diagram of C.

We write OVe(f) for the boundary of Ve (f). The union of OVe(f) for all the faces f of C is
called the Voronoi Skeleton of C, and is denoted by VorSkel(C). VorSkel(C) is also called
the medial azxis of the cell, and is the locus of points in C that are at the same distance
from at least two faces of C. To simplify notation, when the cell C is understood from the
context, we simply remove the index C and write V(f), OV(f), etc.
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Figure 1.1: A 2D illustration of the partition of a cell C by the Voronoi Skeleton VorSkel(C).
Left) The original shape O¢. Right) The reconstructed object Re.

Definition 15 (Nearest Point) For any point x in C, the nearest point in 9C to x is
the orthogonal projection of x onto the nearest face f of C. This projection is denoted by
nps(x). The set of all nearest points to z in C is denoted by Np¢(x). Note that for any
x ¢ VorSkel(C), Npg(x) is reduced to a single point. Based on this, and to simplify the
presentation, sometimes we drop the index f, and by np(x) we denote a point of Np,(x).

We can now define the reconstructed object in a given cell C. We first give the formal
definition, and then present a more detailed geometric characterization of the reconstructed
object using the lifting procedure described below.

Definition 16 (Reconstructed Object R¢ in a cell C) The reconstructed object Re is
the set of all points z in C such that a nearest point np(z) lies in Sg, i.e., Npq(z) NSe # 0.
Note that in the case where S¢ is empty, Re will be the empty set as well.

Definition 17 (Lift Function) Let x € C be a point in the Voronoi cell of a face f of C.
The lift of x in C, denoted by lifte(x) (or simply lift(z) if C is trivially implied), is defined
to be the unique point of OVe(f) such that the line defined by the segment [z, lift(x)] is
orthogonal to f. In other words, lift(z) is the unique point in OVe(f) that orthogonally
projects to np(z) on f.

The lift of a set of points X C C, denoted by lift(X), is the set of all the points lift(z) for
z e X, ie, lift(X) = {lift(z) |z € X }.

The function £ : C — VorSkel(C) that maps each point = € C to its lift in VorSkel(C) will
be called the lift function in the sequel. For any Y C VorSkel(C), L~(Y) denotes the set
of points = € C such that lift(z) = y for some y € Y.

Characterization of the Reconstructed Object Re. If S¢ = 0, then as we said
before, for any point z € C, np(x) ¢ S¢, and so R¢ is empty. Otherwise, let A € S¢ be
a section lying on a face of C. For each point a € A, the locus of all the points z € C
that have a as their nearest point in JC is the line segment [a, lift(a)] joining a to its lift.
Therefore, the reconstructed object R¢ is the union of all the line-segments [a, lift(a)] for
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a point a in a section A € Sg, i.e.,

Re= |J U lalift(a)] = £71(1ift(Sc)).

AeSc acA

Note that according to this characterization, if the lifts of two sections intersect in VorSkel(C),
then these two sections are connected in R¢. This is the generalization of the classical over-
lapping criterion for the case of parallel cutting planes. The union of all the pieces R¢ over
all cells C will be the overall reconstructed object R.

Remark We note that the presented reconstruction method can handle the case of mul-
tilabel sections, i.e. multiple materials, see Figure 1.2. We also note that this method can
be considered for higher dimensional variants of the problem. Where the goal is to recon-
struct an n-dimensional shape from its (n — 1)-dimensional intersections with hyperplanes.
This method seems to be the most natural way to tackle high dimensional reconstruction
problem from cross-sections.

Figure 1.2: A figure from [LBD'08] showing multilabel sections example.

In the following sections, we will prove that the connectivity between the sections
induced by this reconstructed object is topologically coherent, under appropriate sampling
conditions. Moreover, it preserves the homotopy type of the original shape. However, due
to the non-continuity of the interpolation between the sections, the reconstructed object
may exhibit a jagged and unnatural appearance. The reconstructed object as it is cannot be
directly used in applications where smooth surfaces are desired. A smoothing step should
be performed to improve the visual appearance of R¢, as it is suggested and applied
in [LBD'08]. The below figure from [LBD*08] shows an example of this improvement.

We also propose another strategy which consists of considering a continuous interpolation
between the sections which induces the same connectivity as the proposed reconstructed
object R. Let us present very briefly an interpolation, defined in the following section,
which is a new joint project in progress with Jean-Daniel Boissonnat and Helio Lopez.

1.1 Interpolation
Let Py,..., Py denote the cutting planes and let Sy, ..., S; be their intersections with O.

The goal is to define an implicit function f(z) defined over R? whose zero-set interpolates
the sections S;, 1 = 1..k.
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Figure 1.3: A figure from [LBDT08] showing the smoothing step for parallel and non-
parallel sections.

The construction is as follows. We first define in each cutting plane P; a continuous
function f; which vanishes on the boundaries of 5;, and is negative inside S; and positive
outside S;.

We then define the restriction fic of f to a cell C of the arrangement of the cutting
planes. For convenience, we relabel the sections so that the cutting planes bounding C are
Py, ..., Py. We further write F; = C N P; for the facet of C supported by P;, i =1,...,m.
Let « be a point of C. We associate to each F;, ¢ = 1..m, the projection x; of = onto P,
and denote by h;(z) = g(||x — z;||), where g is a non decreasing function. We further write
wi(x) = 1/hi(x) and w(z) = Y /", w;(z). We can now define

This interpolant is known as Shepard’s interpolant [She68| and has the following properties.

L. If all f;, i = 1.k, are of class C™° then fi¢ is of class C°°.

2. Assuming that 0 is not a singular value of fic, f‘El(O) is of class C'°.

3. fir = fi and fg'(0) N F; = 00; N F.

From Property 3, we deduce that if x belongs to two cells C and C', fic(z) = fier().
Hence, h is well defined and continuous over R3. According to the first property, f is of
class C* ingide each cell. However, it is only continuous on the boundaries of the sections.

32



CHAPTER 1. FIRST METHOD AND RELATED TOPOLOGICAL GUARANTEES

Similarly, assuming that 0 is not a singular value of f, f~1(0) is of class C* inside each
cell but only continuous on the boundaries of the sections.

In the case where we have two parallel cutting planes and h;(z) = ||z — z;|| (i.e. g is
the identity), we obtain the standard linear interpolation between the distance functions
to the contours.

We have much latitude in defining f; and h;. A natural choice is to take the euclidean
distance to 95; for f; and hi(z) = ||z — ;|| (i.e. g is the identity). But other choices could
be also appropriate, e.g. the square function for g. See Figure 1.4 and Figure 1.5 for some
examples.

Approximation of f~1(0) : We approximate f~1(0) using a surface mesh generator
such as the marching cube or the CGAL Delaunay-based surface mesh generator. We
describe below how to proceed with the CGAL surface mesh generator [BO05| and [RY09].

We first sample the contours 0.5;. More precisely, we first compute the vertices of the
arrangement of the cutting planes that belong to O and then sample 9S;, i = 1..k.! Let
FE be the resulting set of sample points and write F; = E N P;. We store, in each P; the
2-dimensional Voronoi diagram of E;, denoted V(E;).

We initialize the surface mesher with £. We then simply need to be able to evaluate f
at any given point € R3. To do so, we need two procedures. The first one computes the
cutting planes that support a cell C(z) that contains x. It will then be easy to compute
the x; and the w;(x). A simple O(k?)-time algorithm constructs the projections of  onto
the k cutting planes and, for each of them, say z;, checks whether no other cutting plane
P;j, j # i, cuts the line segment [z, z;].

The second procedure computes f;(x;). Using V(E;), it is easy to compute the point
of E; closest to . The exact distance to the polygonal line joining the sample points can
then easily be deduced if more precision is required.

Preliminary results for the analogous 2-dimensional problem are shown in Figures 1.4
and 1.5. The sections are the yellow segments on the edges of a cube [—3,+3] x [—3,+3].
The yellow domain is the reconstructed shape Ry = {z € R3, f(x) < 0}.

Case of h; = ||z — z;||" for a sufficiently large n corresponds to the proposed
reconstructed object R : When h; = ||z — z;||” for a sufficiently large n we have:
fie(w) =~ fj(x;) such that wj(z) = max; w;(x). In this case, [z — x;| = min;(||z — 2;]]),

and x; is the projection of x onto the closest plane. Therefore, the reconstructed object
Ry is close to the reconstructed object R obtained by the algorithm of [LBDT08].

This provides a surface of clags C°° that induces the same connectivity on the sections as
the proposed reconstructed object R. Therefore, the connectivity guarantees for R that
will be presented in the next section, are valid for this new reconstruction as well.

!We refer to Section 5 of the second chapter for more details on this procedure.
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Figure 1.4: The sections are : Sg = [—1,+1]x—3, Sy = [-1,+1]x+3, Sy = —3x[—1,+1],
Sp = +3x[—1,+1]. In all cases, f; is the signed euclidean distance to the closest boundary.

Left : hi(x) = ||z — 2;]|. Middle : h; = ||z — ;. Right : h; = ||z — ;]| *°.

Figure 1.5: In all cases, f; is the signed euclidean distance to the closest boundary. Left
and middle: h;(z) = ||z — x;||%. Right : h; = ||z — 24]|'°. The sections in the middle and

on the right are the same.
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2 Guarantees on the Connectivity between the Sections

The rest of the chapter is devoted to prove that under two appropriate sampling conditions,
R and O are homotopy equivalent, and are indeed homeomorphic (and isotopic). Let us
first infer the following simple observation from the described characterization of Re.

Proposition 1 The lift function L : Re — lift(S¢) is a homotopy equivalence.

Figure 1.6: A 3D reconstruction example from a pair of parallel sections (in blue). The
lift function retracts Re¢ (in green) onto the lift of the sections.

This is inferred trivially from the fact that the lift function retracts each segment
[a, lift(a)] onto lift(a) continuously. See Figure 1.6 for an example.

2.1 First Sampling Condition : Separation Condition

In this section, we provide the first sampling condition, under which the connection between
the sections in the reconstructed object R are the same as in the original object O. Our
discussion will be essentially based on the study of the medial axis, that we define now.

Definition 18 (Medial Axis of 0O, Internal and External Retracts)

- Consider 00 as a 2-manifold without boundary embedded in R3. The medial axis of
00, denoted by MA(90Q), contains two different parts : the so-called internal part,
denoted by MA;(00), which lies in O and the so-called external part, denoted by
MA,(00O), which lies in R3\ O.

- The internal retract m; : 00 — MA;(00) is defined as follows : for a point x € 90O,
m;(x) is the center of the maximum ball entirely included in O which passes through
x. For any x € 00, m;(x) is unique. Symmetrically, we define the external retract
me 1 00 — MA,(00) : for a point z € 00, m.(x) is the center of the maximum
ball entirely included in R3 \ O which passes through z. For any x € 00, m(x)
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is unique but may be at infinity. In the sequel, we may write m(a) for a point in

{mi(a), me(a)}.

The interesting point is that as discussed below if the sample of cutting planes is
sufficiently dense, then the internal part of MA(JO) lies inside the defined reconstructed
object and the external part of this medial axis lies outside the reconstructed object.

Definition 19 (Separation Condition) We say that the set of cutting planes verifies
the Separation Condition if

MA;(00) C R and MA.(00) C R*\R.

In other words, OR separates the internal and the external parts of the medial axis of 00.
(That is where the name comes from.)

We will show that in each cell C, the Separation Condition implies that OR¢ separates
the internal and the external parts of the medial axis of 0O¢. In order to study the
Separation Condition in a cell C, we will need the following definition:

Definition 20 (Medial axes in a cell C of the arrangement) By MA;(00¢) we de-
note the set of all points in O¢ with at least two closest points in 0O, see Figure 1.7.
Note that the two sets MA;(00¢) and MA;(00) N C may be different. Symmetrically,
MA,(0O¢) denotes the medial axis of the closure of C \ Oc¢.

Figure 1.7: 2D example of medial axes in a cell C of the arrangement.

We also consider the internal retract m;c : 00c — MA;(00¢) defined as follows.
For a point z € 00¢, m;c(z) is the center of the maximum ball entirely included in O¢
which passes through . Symmetrically, we can define the external retract mec : 00¢ —
MA.(00O¢): for a point x € dO0¢, mec(x) is the center of the maximum ball entirely
included in C \ O¢ which passes through z. It is easy to see that for any z € 90 N
C, the segments [z, m;c(z)] and [z, mec(z)] are subsegments of [z, m;(z)] and [z, m.(z)]
respectively, and lie on the line defined by the normal to 9O at x.
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Lemma 2 (Separation Condition Restricted to C) If the Separation Condition is ver-
ified, then MA;(00¢) C Re and MA.(00¢) C C\ Re.

Proof We prove the first part, i.e., MA;(00¢) C Re. A similar proof gives the second
part. Let m be a point in MA;(00¢). Let B(m) be the open ball centered at m which
passes through the closest points to m in 0O¢. Two cases can happen:

e Either, the closest points to m in dO0¢ are in 00, see m1 in Figure 1.7. In this case
m is a point in MA;(00). The Separation Condition states that MA;(00) C R, and so
meRe=RNC.

e Otherwise, one of the closest points to m in dO¢ is a point a in some section A € S,
see my in Figure 1.7. If a is on the boundary of A, then since along the section-contours
00¢ is non-smooth, a lies in MA;(00¢) and coincides with m, and m = a is trivially in
Re. Hence, we may assume that a lies in the interior of A. Therefore, the ball B(m) is
tangent to A at a, and the line segment [a, m] is orthogonal to A. Since B(m) N adC = (),
m and a are in the same Voronoi cell of the Voronoi diagram of C. Thus, a € S¢ is the
nearest point in 9C to m. By the definition of R¢, we deduce that m € Re. O

Assume that the Separation Condition is verified. The first idea which comes to mind
is to retract points of 00 to IR by following the normal-directions. A point x € 0O which
lies outside R can move towards m;(z) € R and stop when OR is reached. A point z € 00
which lies inside R, can move toward me(z) and stop when 9R is reached. According to
a theorem by Wolter [Wol92], since JO is assumed to be of class C?, this deformation will
be a continuous retraction if each normal intersects OR at a single point. In such a case,
00 can be deformed to R homeomorphically. But a major problem is that R may have a
complex shape (with cavities), so that a normal to JO intersects OR in several points. In
such a case, such a retraction is not continuous and does not provide a deformation retract
of O onto R. However, we will be essentially following this intuitive idea by looking for a
similar deformation retract of @ onto a subshape of R (the so-called medial shape). See
Section 4.

In the next section we will obtain a set of consequences of the Separation Condition.

2.2 Guarantees on the Connections Between the Sections
We now show that if the sample of cutting planes verifies the Separation Condition, then
in each cell C of the arrangement, the connection between the sections is the same in O¢

and Re.

Theorem 3 If the sample of cutting planes verifies the Separation Condition, R¢ and O¢
induce the same connectivity components on the sections of C.

Proof The proof is given in two parts :

37



CHAPTER 1. FIRST METHOD AND RELATED TOPOLOGICAL GUARANTEES

(I) If two sections are connected in R¢, then they are connected in O¢. Let
A and A’ be two sections connected in Re. Let v be a path in Re that connects
a point a € A to a point @’ € A’. For the sake of a contradiction, suppose that a
and a’ are not in the same connected component of O¢. In this case, as v joins two
points in two different connected components of O¢, it intersects MA.(0O¢). This
is a contradiction with the fact that v C Re, since according to Lemma 2 we have
MA(00¢) N R = 0.

(II) If two sections are connected in O¢, then they are connected in R¢. Let A
and A’ be two sections in a same connected component K of O¢. According to the
non-smoothness of d0¢ at the boundary of the sections, A and 0A’ are contained
in MA;(00¢). Thus, since MA;(00¢) is connected [Lie04], there is a path v in
MA;(00¢) N K that connects a point a € JA to a point a’ € JA’. According to
Lemma 2, MA;(00¢) C Re¢. Thus, « is a path in R¢ that connects A to A’

Let us state the following proposition that will be used later in this section and in
Section 4.

Proposition 2 Under the Separation Condition, any connected component of d0O is cut
by at least one cutting plane.

Proof Suppose that K is a connected component of dO which is not cut by any cutting
plane. There exists a cell C of the arrangement of hyperplanes such that one of the following
two (symmetric) cases can happen: Either, there exists a connected component H of O
which lies in the interior of C such that K C 0H, Or, there exists a connected component
H of the closure of R?\ O which lies in the interior of C such that K C dH. Without
loss of generality, let us suppose the first case, and the other case follows similarly. In
this case, 0H bounds a connected component H of O in C, H is entirely contained in
the interior of C, and K C 0H, see Figure 1.8. Take a point m in the medial axis of H,
ie.,, m € HNMA;(00). According to the Separation Condition, m belongs to R. Thus,
by the definition of R, one of the nearest points of m in 9C, say np(m), belongs to S.
Since H is not cut by any cutting plane, H N 9C is empty and np(m) ¢ H. Therefore, m
and np(m) are in two different connected components of O, and the segment [m,np(m)]
should intersect MA.(0QO) at a point . On the other hand, by the definition of R, the
segment [m,np(m)] C R. This contradicts the assumption of Separation Condition that
RNMAL(00) = 0. 0

2.3 How to Ensure the Separation Condition?

In this section we provide a sufficient condition for ensuring the Separation Condition. For
this, we need first some definitions.
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Figure 1.8: For the proof of Proposition 2.

Definition 21 (Reach) Let O be a connected compact 3-manifold with smooth boundary
90 in R3. For a € 00, we define reach(a) = min(d(a, m;(a)),d(a, me(a))). The quantity
reach(Q) is defined as the minimum distance of 0O from the medial axis of 0O :
reach(O) := min  d(m,90) = min reach(a).
meMA (00) acdO
Note that as O is compact and 9O is of class C?, reach(Q) is strictly positive (see [Fed59b]
for a proof).

Definition 22 (Reach restricted to a cell of the arrangement) Given a cell C of the
arrangement, we define reach¢(O) = mind(a, m(a)), where either a € 9O NC or m(a) €
MA(00) N C. By definition, we have reach(OQ) = min¢ (reach¢(O)).

Definition 23 (Height of a Cell) Let C be a cell of the arrangement of the cutting
planes. The height of C, denoted by h¢, is defined as the maximum distance of a point
x € C to the boundary of C. In other words, he := max,ecc d(x,np(z)).

We remark that the height of any cell C is at most half of the diameter of C. However,
as the example of Figure 1.9 (right figure) shows, it may be much smaller than half of the
diameter. Moreover, in the case of parallel planes, while the cell between two consecutive
planes is unbounded, the height of the cell is the half of the distance between the two
planes. We now show that by bounding from above the height of the cells by a factor
related to the reach of the object, we can ensure the Separation Condition.

Lemma 3 (Sufficient Condition) If for any cell C of the arrangement, h¢ < reache(O)
then the Separation Condition is verified.

Proof
Let m; be any point in MA;(00) in a cell C of the arrangement. We have

d(m;,np(m;)) < he < reache(O) < d(m;, 00).
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N L Ihc
VorSkel(C)  Diameter(TUf*=+=searun..

np(z)

Figure 1.9: Left) Definition of the height of a cell C. Right) Height of a cell C is bounded
from above by half of the diameter of C, but may be much smaller for many configurations
of cutting planes.

Therefore, np(m;) is in O (and so in §), and according to the definition of R, m; is in R.
This proves that MA;(00) C R. For any point m, € MA.(9O), we can similarly show
that np(me) is not in O, and so MA.(00) C R?\ R. Therefore, the Separation Condition
is verified. O

Remark 1 : Higher Dimensional Reconstruction Problem In the d-dimensional
framework of the problem, that consists of reconstructing a d-dimensional shape from its
(d — 1)-dimensional intersections with hyperplanes, the same strategy to perform connec-
tivity between the sections can be considered. The guarantees on the connectivity we
provided in this section remain valid for any dimension d.

Remark 2 : Case of Parallel Cross-Sections Let us consider the particular case of
parallel cross-sections, where the orientation of the cutting planes is fixed and they are all
parallel to each other. In this case, the maximum height of the cells of the arrangement
is the maximum distance between two consecutive cutting planes. According to Lemma 3,
if this maximum distance is less than the reach of O, then the Separation Condition is
verified. As a consequence, using Proposition 3 we deduce :

Corollary 2 If the mazimum distance between two consecutive cutting planes is less than
the reach of O, then the connection between the sections is the same in Re and Oc.

We now present some other consequences of the Separation Condition for some particular
cases of the problem.

3 Separation Condition & Topological Guarantees for Partic-
ular Cases

In the previous section, we showed that by bounding from above the height of the cells by
a factor related to the reach of the object, we can ensure the Separation Condition. We
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also proved that under the Separation condition, the connectivity between the sections of
C induced by the reconstructed object R¢ is coherent with the original shape O¢. This will
imply the homotopy equivalence between R¢ and O¢ for some particular cases of data.

3.1 Guarantees for 2D Shape Reconstruction from Line Cross-Sections

We proved that under the Separation condition, the connectivity between the sections of
C induced by the reconstructed object R¢ is coherent with the original shape O¢. We
presented the proofs for the 3D case of the problem, but the proofs easily show that
result is valid in any dimension. We show in this section that this is strong enough to
imply the homotopy equivalence between R¢ and O¢ for the 2-dimensional variant of the
reconstruction problem.

Consider the 2-dimensional variant of the reconstruction problem, that consists of re-
constructing a 2D-shape from its intersections with arbitrarily oriented cutting lines. In
this case the sections are line-segments.

We can focus on a cell C of the arrangement of the plane by the cutting lines. Similar
definitions for the Voronoi diagram and the Voronoi skeleton of C, the lift function and
the reconstructed object R¢ can be considered. Using the sufficient condition presented in
the last section, if for any cell C of the arrangement, he < reache(Q), then the Separation
Condition is ensured. We deduce the following theorem.

Theorem 4 (Provably Good 2D Reconstruction) If for any cell C of the arrange-
ment of the cutting lines, he < reachc(O), then R is homeomorphic to O.

Proof By the definition of the reconstructed object, it is easy to see that any connected
component of R¢ is a topological disk. On the other hand, according to Proposition 2,
under the Separation Condition, any connected component of d0O is cut by at least one
cutting line. We easily deduce that any connected component of O¢ is a topological disk.
Therefore, all the connected components of O¢ or R¢ are 2-dimensional disks. On the other
hand, according to Theorem 3, under the separation condition, there is a bijection between
the connected components of Re and O¢. Therefore, there is a homotopy equivalence
between each pair of corresponding connected components of O¢ or R¢. This provides a
homotopy equivalence between R¢ and O¢. As we will explain in detail in Section 4.4,
the homotopy equivalences in the different cells of the arrangement can be extended to
a homotopy equivalence between R and . Finally, since R and O are two homotopy
equivalent 2-dimensional submanifolds of R?, we deduce that there is a homeomorphism
between R and O. O

Comparison with our results presented in [MB08] We note that in [MBO08], we pre-
sented a Delaunay-based 2-dimensional reconstruction algorithm from line cross-sections,
and provided a sampling condition under which the same topological guarantees are en-
sured. Rather than using the Voronoi diagram of the cells, in [MBO0§| the nearest point
definition is based on the Voronoi diagram of all the sections. However, the particularity of
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this algorithm is that the reconstruction is performed in a single step, which contrasts with
the divide-and-conquer reconstruction method that is done in each cell of the arrangement
of the cutting lines independently. According to the experimental results of [MB08], this
algorithm performs well for the case of reconstructing tree-like objects from sparse sectional
data. In addition, a sampling condition is provided in [MBO08| for this algorithm, which
can be ensured by bounding from above the equivalent height function of the sections by
a factor related to the reach of the object. Note that since in this case the Voronoi cells
are not restricted to the cells of the arrangement, the equivalent height function of the
sections may be too big and the sampling condition may be more difficult to ensure, i.e.,
more restrictive. Therefore, the sampling condition provided in this thesis seems more
appropriate.

3.2 Reconstruction of a Collection of Convex Bodies

Another interesting particular data is the case of a union of 3D convex bodies. In this
case O¢, which is the intersection of a set of convex bodies with a convex polyhedron C, is
composed of convex components as well.

We claim that the presented reconstruction method can be adapted to the case of union
of convex bodies so that the resulting reconstructed object is homeomorphic to O¢ under
the Separation Condition:

Reconstruction Algorithm Adapted to a Union of Convex Bodies: Consider
the connectivity between the sections induced by the defined reconstructed object R¢.
Consider the connectivity classes of the sections in Rg, i.e., groups of sections that are in
the same connected component of Re. We define the new reconstructed object Conve as
the union of the convex hulls of the connectivity classes of sections in R¢. In other words,
for each group of sections K that are in the same connected component of R¢, we consider
the convex hull of all the sections of K, denoted by conv(K’). The new reconstructed object
is then defined as Conv := |, Conve.

Lemma 4 Under the Separation Condition, the reconstructed object Conv conforms with
the given sections S, and is homeomorphic to O.

Proof Consider any group K of sections in S¢ that are in the same connected component
of R¢. We first show that K has at most one section at each face of C. We use the fact that,
under the Separation Condition, there is a bijection between the connected components
of Re and O¢. According to this bijection, the sections of K are in the same connected
component of O¢ (and so O). Therefore, all the sections of K belong to a convex body
in O. We deduce that each face of C intersects K in at most one connected component
(section). On the other hand, since C is convex, the convex hull of K lies inside C and we
have conv(K) N dC = K for any K. Thus, for any cell C, Conve conforms with Se.

On the other hand, all the connected components of O¢ and Conv¢ are convex and form
3-dimensional topological disks. Thus, the bijection between the connected components of
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Oc¢ and R¢ (and so Conve) provides a homotopy equivalence between the components that
are all 3D topological disks. In Section 4.4, we will see how the homotopy equivalences in
the different cells of the arrangement can be extended to a homotopy equivalence (and a
homeomorphism) between O and Conv. O

Using the sufficient condition that implies the Separation Condition, we deduce the follow-
ing theorem:

Theorem 5 (Reconstruction of a Collection of Convex Bodies) Let O be a union
of convex bodies. We define the new reconstructed object as Conv := |J, Conve, where
Conve is the union of the convex hulls of the connectivity classes of sections in R¢. If for
any cell C of the arrangement of the cutting lines, he < reache(O) then Conv conforms
with the given sections S, and is homeomorphic to O.

Conclusion

In the previous sections, we presented the first sampling condition on the sample of cutting
planes, called the Separation Condition, which is ensured if the height of the cells of the
arrangement of the cutting planes is sufficiently small (with respect to the reach of the
object). We showed that the Separation Condition implies that the connectivity between
the sections is correctly reconstructed. However, it only implies the homotopy equivalence
between the reconstructed object and the original shape for the 2D variant of the problem
or some simple 3D cases as the case of union of convex bodies. In the next section, we will
impose a second sampling condition on the sample of the cutting planes in order to ensure
the homotopy equivalence in the general case.
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4 General Topological Guarantees

This section is devoted to prove that under two appropriate sampling conditions, R and
O are homotopy equivalent, and are in addition homeomorphic. To clarify the connection
between the upcoming sections, let us shortly outline the general strategy employed in
proving the homotopy equivalence between R and O.

4.1 Proof Outline of the Homotopy Equivalence Between R and O

We will provide a homotopy equivalence between R¢ and O¢ in each cell of the arrange-
ment. (And then glue these homotopy equivalences together to form a global homotopy
equivalence between R and O.) In Section 2 we showed that under the first sampling
condition called Separation Condition the connection between the sections in the recon-
structed object R¢ is the same as in O¢, in the sense that there is a bijection between the
connected components of R¢ and the connected components of O¢. This implies that for
proving the homotopy equivalence between R¢ and O, it will be enough to show that the
corresponding connected components have the same homotopy type. In order to extend
these homotopy equivalences to a homotopy equivalence between R and O, we will have
to glue together the homotopy equivalences we obtain in the cells of the arrangement.
This needs some care since the restriction to a section S of the two homotopy equivalences
defined in the two adjacent cells of S may be different. To overcome this problem, we need
to define an intermediate shape M in each cell C, called the medial shape. The medial
shape has the following three properties :

(1) The medial shape contains the sections of C, i.e., S¢ C Me.

(ii) There is a (strong) deformation retract r from O¢ to M. In particular, this map is a
homotopy equivalence between O¢ and M. And its restriction to S is the identity
map.

(747) Under the first sampling condition (Separation Condition), M¢ C Re.

The first two properties will be crucial to guarantee that the homotopy equivalences
conform on each section under the Separation Condition. Indeed, the map O¢ — Mg —
Re, obtained by composing the deformation retract and the inclusion, restricts to the
identity map on each section of Sg. Thus, we can glue all these maps to obtain a global
map from O to R.

Using a generalized version of the nerve theorem (see Section 4.4) and property (i7)
above, we can then reduce the problem to prove that the inclusion i : M¢ <— R¢ forms a
homotopy equivalence in each cell. Using Whitehead’s theorem, it will be enough to show
that the inclusion ¢ induces isomorphisms between the corresponding homotopy groups.
Under the Separation Condition, we prove that ¢ induces an injective map on the first
homotopy groups, and that all higher homotopy groups of M¢ and R¢ are trivial. Unfor-
tunately, the Separation Condition does not ensure in general the surjectivity of ¢ on the
first homotopy groups. To overcome this problem, we need to impose a second condition
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called Intersection Condition. Under the Intersection Condition, the map ¢ will be sur-
jective on the first homotopy groups, leading to a homotopy equivalence between O and
R.

According to the guarantees on the connectivity between the sections (Theorem 3), to
prove the homotopy equivalence between R¢ and O¢ under the Separation Condition, we
may restrict our attention to each of the corresponding connected components.

In the sequel, to simplify the notations and the presentation, we suppose that O¢ and thus
Re are connected, and we show that O¢ and R¢ have the same homotopy type. It is clear
that the same proofs can be applied to each corresponding connected components of O¢
and R¢ to imply the homotopy equivalence in the general case of multiple connected
components.

4.2 Medial Shape

In this section, we define an intermediate shape in each cell C of the arrangement called
the medial shape. The medial shape enjoys a certain number of important properties, dis-
cussed in this section, which makes it playing an important role in obtaining the homotopy
equivalence of the next sections.

Definition 24 (Medial Shape M) Let 2 be a pointin S¢ C 00¢. Let w(z) = [z, m; c(x)]
be the segment in the direction of the normal to 0O¢ at x which connects z to the
point mic(z) € MA;(00¢). We add to MA;(00¢) all the segments w(z) for all the
points x € S¢c. We call the resulting shape Mg, see Figure 1.10-left. More precisely,

Me = MA;(90¢) U (U, es, w())-

Figure 1.10: A 2D illustration of the medial shape M¢ in purple (left) and Me in red
(right).

Proposition 3 The medial shape verifies the following set of properties :

(1) The medial shape contains the sections of C, i.e., S¢ € Me.
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(ii) There is a (strong) deformation retract r from O¢ to M. In particular, this map is a
homotopy equivalence between O¢ and M. And its restriction to S¢ is the identity
map.

(797) Under the Separation Condition, M¢ C Re.
Proof

(7) This property is true by the definition of the medial shape.

(73) This is obtained by deforming O¢ to Mc in the direction of the normals to the
boundary 0O¢. Note that the boundary dO¢ is smooth except on the boundaries of
sections in S¢, and the boundaries of the sections in S¢ are already in Mg, thus, the
deformation retract is well defined. Moreover, since 0O (and so 00¢) is supposed
to be of class C?, according to a theorem by Wolter ( [Wol92|), this deformation is
continuous and is hence a continuous deformation retract from O¢ to Me.

(7i7) Since M¢ = MA;(00¢) U (Uxesc w(z)) and MA;(00¢) C Re, it will be sufficient
to show that for any z in a section A € S¢, w(z) C Re. (Recall that w(x) is
the orthogonal segment to 0O¢ at x that joins = to the corresponding medial point
mic(x) in MA;(00¢).) We will show that w(x) is contained in the segment [z, lift(z)].
The point x is the closest point in 9O¢ to m; ¢(z). Thus, the ball centered at m; ¢(a)
and passing through x is entirely contained in O and its interior is empty of points
of OC. Thus, in the Voronoi diagram of C, m;¢(a) is in the same Voronoi cell as x.
On the other hand, z is the closest point in S¢ C 90¢ to lift(x). It easily follows
that d(z,lift(x)) > d(xz,m;c(x)). It follows that the segment [z, m;¢c(x)] = w(x) is
a subsegment of [z, lift(x)]. Therefore, by the definition of R¢, w(z) C Re.

a

We end this section with the following important remark and proposition which will be
used in the next section. By replacing the shape O¢ with its complementary set we may
define an exterior medial shape Mc. This is more precisely defined as follows. Let O be
the closure of the complementary of O in R3. And let (’)c be the intersection of O with
the cell C. The medial shape of O¢, denoted by /\/lc, is the union of the medial shapes of
the connected components of O¢, see Figure 1.10-right. Similarly, under the Separation
Condition, the following proposition holds.

Proposition 4 Let (52 be the closure of the complementary of O¢ in C and Mvc be the
medial shape of O¢. Under the Separation Condition : (i) There is a strong deformation
retract from C \ M¢ to O¢, and (ii) We have R¢ C C\ Me.

Proof The proof of Property (i) is similar to the proof of Proposition 3 by deforming
along the normal vectors to the boundary of O¢. The second property (i) is equivalent to
Mce CC\ Re. O
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4.3 Topological Guarantees Implied by the Separation Condition

Throughout this section, we suppose that the Separation Condition holds. By the discus-
sion at the end of Section 4.1, and without loss of generality, we may assume that O¢ and
hence R¢ are connected. Thus, O¢ and R¢ are connected compact topological 3-manifolds
embedded in R3.

We showed that the medial shape M¢ is homotopy equivalent to O¢, and under the
Separation Condition, M¢ C R¢. Using these properties, we will show that £ : Mg —
lift(Sc) (the restriction of the lift function to M¢) is a homotopy equivalence. On the
other hand, according to Proposition 1, £ : Re — lift(S¢) is a homotopy equivalence as
well. Hence, using the following comutative diagram, we can infer that ¢ : M¢ — R¢ is a
homotopy equivalence.

MCC—i> 'R,c

RN

lift(Se)

Moreover, since the objects we are manipulating are all CW-complexes, according to White-
head’s theorem homotopy equivalence is equivalent to weak homotopy equivalence. Hence,
it will be enough to show that £ : M¢ — lift(Se¢) induces isomorphism between the
corresponding homotopy groups.

Injectivity on the Level of Homotopy Groups

We first show that under the Separation Condition, £ : M¢ — lift(S¢) induces injections
on the level of homotopy groups.

Theorem 6 (Injectivity) Under the Separation Condition, the homomorphisms between
the homotopy groups of Mc and lift(S¢), induced by the lift function L, are injective.

Proof Under the Separation Condition, we have M¢ C Re. Let /\A/l/c be the medial
shape of the closure of the complementary set of O¢ in C. We refer to the discussion at
the end of the previous section for more details. Recall that by Proposition 4, we have
Re C C\ Mc, and there exists a deformation retract from C\ M¢ to O¢ (in particular O¢
and C\ Mvc are homotopy equivalent). We have now the following commutative diagram
in which every map (except the lift function £) is an injection (or an isomorphism) on the
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level of homotopy groups.

TS
e |

C

C\Mvc

C
C
lift (Se)

Using this diagram, the injectivity on the level of homotopy groups is clear: For any
integer j > 1, consider the induced homomorphism £, : m;(M¢) — m;(lift(Sc)). Let
x € mj(Mc) be so that L,(z) is the identity element of 7;(lift(S¢)). Tt is sufficient to show
that z is the identity element of 7;(M¢). Following the maps of the diagram, and using
the homotopy equivalence between lift(S¢) and R¢, we have that i.(x) is mapped to the
identity element of m;(R¢). Then, by the inclusion R¢ — C\ ﬁ/lvc, it goes to the identity
element of C \ ﬁ/lvc, and by the two retractions, it will be mapped to the identity element
of mj(Mc). As this diagram is commutative, we infer that x is the identity element of
mj(Mec). Thus, L, : mj(Mc) — m;(lift(Se)) is injective for all j > 1. The injectivity for
j =0 is already proved in Theorem 3. a

We have shown that under the Separation Condition, the lift function £ : Mg —
lift(S¢) induces injective morphisms between the homotopy groups of M and lift(S¢). If
these induced morphisms were surjective, then £ would be a homotopy equivalence (by
Whitehead’s theorem). We will show below that the Separation Condition implies the
surjectivity for all the homotopy groups except for dimension one (fundamental groups).
Indeed, we will show that under the Separation Condition, all the i-dimensional homotopy
groups of M and lift(S¢) for ¢ > 2 are trivial. Once this is proved, it will be sufficient to
study the surjectivity of Ly : m (M) — w1 (lift(Se)).

Remark : Note that the injectivity in the general form above remains valid for the
corresponding reconstruction problems in dimensions greater than three. However, the
vanishing results on higher homotopy groups of O¢ and R¢ are only valid in dimensions
two and three.

The topological structures of R¢ and O¢ are determined by their fundamental
groups.

In this section, we show that if the Separation Condition is verified, then the topological
structure of the portion of @ in a cell C (i.e., O¢) is simple enough, in the sense that for
all 4 > 2, the i-dimensional homotopy group of O¢ is trivial. We can easily show that R¢
has the same property.? As a consequence, the topological structures of O¢ and R¢ are

2Recall that for simplifying the presentation, we assume that O¢ and so R¢ are connected. The same
proof shows that in the general case, the same property holds for each connected component of O¢ or Rec.

48



CHAPTER 1. FIRST METHOD AND RELATED TOPOLOGICAL GUARANTEES

determined by their fundamental group, m (O¢) and m1(Re).

We first state the following general theorem for an arbitrary embedded 3-manifold with
connected boundary.

Theorem 7 Let K be a connected 3-manifold in R? with a (non-empty) connected bound-
ary. Then for all i > 2, m;(K) = {0}.

We will provide a proof of this theorem in the following. This theorem can be also
obtained from Corollary 3.9 of [Hat02]3. From this theorem, we infer the two following
theorems.

Theorem 8 Under the Separation Condition, m;(O¢) = {0}, for all ¢ > 2.

Proof We only make use of the fact that under the Separation Condition, any connected
component of O is cut by at least one cutting plane. In this case, every connected
component of O¢ is a 3-manifold with connected boundary. The theorem follows as a
corollary of Theorem 7. O

Theorem 9 7;(R¢) = {0}, for all ¢ > 2.

Proof Using Theorem 7, it will be sufficient to show that the boundary of any connected
component K of R¢ is connected. Let z and y be two points on the boundary of K, and
let S and S” be two sections so that z € [a,lift(a)] for some a € S and y € [b, lift(b)] for
some b € S’. By the definition of R¢, x is connected to S in OR¢, and y is connected to S’
in OR¢. On the other hand, since S and S’ are two sections in the connected component
K of R¢, they lie on 0K and are connected to each other in 0K (and so in OR¢). Thus,
x is connected to y in IR¢. O

Proof of Theorem 7

We will prove that for any connected 3-manifold K in R? with a (non-empty) connected
boundary, we have m;(K) = {0}, for all i« > 2. We use the continuity of the boundary of
K to show that the two dimensional homotopy group of K is trivial. To this end, we need
the following theorem called the Sphere Theorem (for 3-manifolds), see [Bat71] for a proof.

Theorem 10 (Sphere Theorem) Let K be an orientable 3-manifold such that m(K)
is not the trivial group. Then there exists an embedding e : S*> — K which represents a
non-zero element of o (K).

Using the Sphere theorem, we prove Theorem 7 in two parts.

e We claim that if K is a connected 3-manifold in R3 with (non-empty) connected
boundary, then my(K) = {0}.

3Thanks to Frederic Chazal for providing this reference.
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For the sake of a contradiction, suppose that mo(K) is non-trivial. According to the
Sphere theorem, there exists an embedding e : S? — K which represents a non-zero
element of 7 (K). The closed surface e(S?) separates R? into two connected compo-
nents, one bounded (the interior of ¢(S?)) and the other unbounded (the exterior of
e(S8?)). Since the boundary of K is connected, the complementary of K, denoted by
K¢, is connected. K¢ being connected and disjoint from e(S?), lies in the exterior
of e(S?). Hence, the interior of ¢(S?) is contained in K; and e can be extended to
the interior of e(S?) (which is a 2-disk). This contradicts the fact that e represents
a non-zero element of my(K).

e We now prove that the i-dimensional homotopy groups of K, for ¢ > 3, are all
trivial. Using the dimension of the manifold K, we will be able to prove that the
corresponding homology groups are trivial. Then, in order to relate the homology
and homotopy groups, one may think of applying Hurewicz Theorem. However,
Hurewicz Theorem holds only for simply-connected spaces. Thus, we consider the
universal cover of K, and apply Hurewicz Theorem to it. Afterwards, we make use
of the relation between K and its universal cover to prove the purposed statement
for K.

Let K be the universal cover of K. By Corollary 1, it will be enough to show that
m(K) = {0} for all i (since K is simply connected, so we have 7, (K) = {0}). W
already now that mo(K) = my(K) = {0}.

The three dimensional homology group of any connected non-compact 3-manifold
is trivial. As K\OK (the interior of K) is a non-compact 3-manifold, its three-
dimensional homology group is trivial. On the other hand, the homology groups
of K and its interior are the same. Thus, we have Hy(K) = Hs(K\0K) = {0}.
By Hurewicz Theorem, we infer that m3(K) = {0} as well. Also, K being a 3-
manifold, all the higher homology groups H; (K) are trivial, for all ¢ > 4. Reasoning
by induction, again by Hurewicz Theorem, we obtain m(f( ) = {0}, for all ¢ > 4.
And the theorem follows.

4.4 Second Condition: Intersection Condition

In the previous section, we saw that under the Separation Condition, the topological struc-
tures of O¢ and R¢ are determined by their fundamental group m1(O¢) and 71(R¢), re-
spectively. The goal of this section is to find a way to ensure an isomorphism between the
fundamental groups of R¢ and O¢. We recall that as O¢ and M are homotopy equiva-
lent, 71(O¢) is isomorphic to 71 (Mec). On the other hand, R¢ and lift(S¢) are homotopy
equivalent, and 71 (R¢) is isomorphic to 71 (lift(S¢)) (c.f. last diagram). Thus, it will be
sufficient to compare 7 (M¢) and 1 (lift(S¢)).

We consider L, : m(M¢) — mi(lift(Se)), the map induced by the lift function from M¢
to lift(S¢) on fundamental groups . We showed that L, is injective. A natural condition
to ensure that £, is an isomorphism is to impose that lift(S¢) is contractible (or more
generally, each connected component of lift(S¢) is contractible). This is very common in

50



CHAPTER 1. FIRST METHOD AND RELATED TOPOLOGICAL GUARANTEES

practice, where the sections are contractible and sufficiently close to each other. In this
case, all the homotopy groups m;(lift(S¢)) are trivial and by injectivity of £, proved in the
previous section, £, becomes an isomorphism in each dimension. Hence, the homotopy
equivalence between R¢ and O¢ can be deduced.

Figure 1.11: Left) Original shape. Right) Reconstructed shape. 3D example of the case
where the lift function from Me to lift(S¢) fails to be surjective: x; and z2 are two points
with the same lift in 1ift(S¢). The lift of any curve 7 connecting z1 and z2 in M provides a
non-zero element of 7 (lift(S¢), x). The reconstructed shape is a torus and is not homotopy
equivalent to the original shape which is a twisted cylinder.

However, the map L, : m1 (M) — m1(lift(Se)) fails to be surjective in general (where
the connected components of lift(S¢) are not necessarily contractible). Figure 1.11 shows
two shapes with different topologies, a torus and a (fwisted) cylinder, that have the same
(inter)sections with a set of (two) cutting planes. Hence, whatever is the reconstructed
object from these sections, it would not be topologically consistent for at least one of
these objects. In particular, the proposed reconstructed object (R) is a torus which is not
homotopy equivalent to the (twisted) cylinder (O). In addition, we note that the Separation
Condition may be verified for such a situation. Indeed, such a situation is exactly the case
when the injective morphism between the fundamental groups of O and R is not surjective.
This situation can be explained as follows: let x1 and 9 be two points in the sections S;
and Se with the same lift x in lift(S¢). The lift of any curve 7 connecting 1 and x3 in
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M provides a non-identity element of 7 (lift(S¢), #) which is not in the image of £.. We
may avoid this situation with the following condition.

Definition 25 (Intersection Condition) We say that the set of cutting planes verifies
the Intersection Condition if for any pair of sections \S; and Sj in S¢, and for any connected
component X of lift(S;) N lift(S;) (see Figure 1.12), the following holds: there is a path
v C M¢ from a point a € S; to a point b € S; with lift(a) = lift(b) = € X so that L.(v)
is the identity element of m(lift(S¢), z), i.e., is contractible in lift(S¢) with a homotopy
respecting the base point x.

Figure 1.12: Intersection Condition.

In Section 4.5, we will show how to verify the Intersection Condition. Let us first prove
the surjectivity of the map £, which is deduced directly from the Intersection Condition.

Theorem 11 (Surjectivity) Under the Intersection Condition, the induced map L, :
m(Me) — m(lift(Se)) is surjective.

Proof Let yg be a fixed point of M¢ and z¢g = L(yo). We show that L, : m (/\/lc,yo) —
1 (1ift(Se), o) is surjective. Let v be a closed curve in lift(S¢) which represents an element
of my (lift(Sc), xo). We show the existence of an element 3 € m (./\/lc, yo) such that L.(8) =
[a], where [a] denotes the homotopy class of a in 7y (lift(S¢), zo). We can divide a into
subcurves ay, ..., oy, such that a; joins two points x;_; and z;, and is entirely in the lift
of one of the sections Sj, for j = 1,...,m. We may assume yo € S1 = S,,. For each
j=1,...,m,let 3; be the curve in S; joining two points z; to w; which is mapped to «;
under L. Note that w; and zj11 (possibly) live in two different sections, but have the same
image (z;) under the lift map £. Let X; be the connected component of 1ift(S;) Nlift(S;41)
which contains x;, see Figure 1.13. According to the Intersection Condition, there is a
path 7; C M connecting a point a; € S; to a point bjy; € Sjy1 such that lift(a;) =
lift(bj+1) = 2; € X; and the image of 7; under £ is the identity element of m (lift(Sc), 27)
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:"_.l+ l

Figure 1.13: For the proof of Theorem 11.

(i.e., is contractible with a homotopy respecting the base point x;) Since X is connected,
there is a path from x; to l’; in Xj, so lifting back this path to two paths from w; to a;
in S; and from b;y; to zj11 and taking the union of these two paths with v;, we infer the
existence of a path 7; C Mc connecting w; to zj4+1, such that the image of 7/ under L is
contractible in lift(S¢) with a homotopy respecting the base point z;.

Let 3 be the path from x to x¢ obtained by concatenating 3; and 'y} alternatively, i.e.,
B = Biv102Ys - - Bn—1YiBm Vi We claim that L£.([5]) = [«]. This is now easy to show:
we have L.(3) = a1L.(71)az2 ... L«(Vp,)am, and all the paths L.(v}) are contractible to
the constant path [z;] by a homotopy fixing x; all the time. We deduce that under a
homotopy fixing zg, a1 L«(7]) - - . Lx(7},)m is homotopic to ajag. .., = @, and this is
exactly saying that £.([3]) = [@]. The surjectivity follows. O

Putting together all the materials we have obtained, we infer the main theorem of this
section.

Theorem 12 (Main Theorem-Part I) Under the Separation and the Intersection Con-
ditions, R¢ is homotopy equivalent to O¢.
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Generalized Nerve Theorem and Homotopy Equivalence of R and O

In this section, we extend the homotopy equivalence between R¢ and Og¢, in each cell
C, to a global homotopy equivalence between R and O. To this end, we make use of a
generalization of the nerve theorem. This is a folklore theorem and has been observed and
used by different authors. For a modern proof of a still more general result, we refer to
Segal’s paper [Seg68]. (See also [May03|, for a survey of similar results.)

Theorem 13 (Generalized Nerve Theorem) Let H : X — Y be a continuous map.
Suppose that Y has an open cover IC with the following two properties :

e Finite intersections of sets in K are in /.

e For each U € K, the restriction H : H~1(U) — U is a weak homotopy equivalence.
Then H is a weak homotopy equivalence.

Let He : O¢ — Re be the homotopy equivalence obtained in the previous sections
between O¢ and R¢. (So He is the composition of the retraction O¢ — M and the
inclusion M¢ < R¢.) Let H : O — R be the map defined by H(x) = He(z) if x € O¢
for a cell C of the arrangement of the cutting planes. Note that H is well-defined since
He|s, = ids,, for all C. In addition, since for any cell C, H is continuous, H is continuous
as well.

We can now apply the generalized nerve theorem by the following simple trick. Let e be
an infinitesimal positive value. For any cell C of the arrangement of the cutting planes, we
define Of = {z € R3, d(z,0¢) < € }. Let us now consider the open covering K of O by
these open sets and all their finite intersections. It is straightforward to check that for e
small enough, the restriction of H to each element of I is a weak homotopy equivalence.
Therefore, according to the generalized nerve theorem, H is a weak homotopy equivalence
between R and O. And by Whitehead’s theorem, H is a homotopy equivalence between
R and O. Thus, we have proved :

Theorem 14 (Main Theorem-Part IT) Under the Separation and the Intersection Con-
ditions, the reconstructed object R is homotopy equivalent to the unknown original shape

0.

4.5 How to Ensure the Intersection Condition?

In Section 2, we showed that the Separation Condition can be ensured with a sufficiently
dense sample of cutting planes. In this section we provide a sufficient condition that implies
the Intersection Condition.

We showed that by bounding from above the height of the cells by the reach of the
object, we can ensure the Separation Condition. In order to ensure the Intersection Condi-
tion, we need a stronger condition on the height of the cells. As we will see, this condition is
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a transversality condition on the cutting planes that can be measured by the angle between
the cutting planes and the normal to 0O at contour-points.

Definition 26 (Angle a,) Let a be a point on the boundary of a section A € S¢ on the
plane P4. We consider m;(a), that may be outside the cell C. We define o, as the angle
between P4 and the normal to 0O at a, i.e. a, := angle(Py, [a, m;(a)]), see Figure 1.14-left.
We define a¢ = max,eps, -

MA;(80)

(a) Definition of aq (b) For the proof of Lemma 5

Figure 1.14: Definitions

Sufficient Conditions We now define the sampling conditions on the cutting planes.
(See Section 2.3 for the definitions of he and reache(O).)

(C1) Density Condition For any cell C of the arrangement, he < reache(O).

(C2) Transversality Condition For any cell C,

1
he < 5 (1 — sin(ac)) reache(0).

The Density Condition is based on the density of the sections. The Transversality
Condition is defined in a way that the transversality of the cutting planes to 0O and the
distance between the sections are controlled simultaneously. (Indeed, sin(cy) is to control
the transversality, and bounding from above h¢ allows us to control the distance between
the sections.)

Remark on the Transversality : The transversality of the cutting planes to 9O seems
to be a reasonable condition in practice, specially for applications in 3D ultrasound. Indeed,
according to [Rou03| Section 1.2.1, from a technical point of view if a cut is not sufficiently
transversal to the organ, the quality of the resulting 2D ultrasonic image is not acceptable
for diagnosis. Therefore, assuming an upper bound « for the angle between the cutting
planes and the normals to the surface of the organ along the cuts seems reasonable. In
this case, VC, h¢ < 1 (1 —sin(a)) reache(O) implies the Transversality Condition.

95



CHAPTER 1. FIRST METHOD AND RELATED TOPOLOGICAL GUARANTEES

According to Lemma 3 in Section 2, the Density Condition implies the Separation Con-
dition. We will show that under the Transversality Condition, the Intersection Condition is
verified. Therefore, by increasing the density of the sections of O, with preferably transver-
sal cutting planes, we can ensure the required sampling conditions, and as a consequence,
provide a topologically consistent reconstruction of (0. This is one of the main results of
this chapter :

Theorem 15 (Main Theorem-Part IIT) If the cutting planes verify the Density and
the Transversality Conditions, then the Separation and the Intersection Conditions are
verified. Therefore, the proposed reconstructed object R is homotopy equivalent to the
unknown original shape O.

To prove this theorem, we need the following notations.

Notation (K;(S¢) and K.(S¢)) : Recall that VorSkel(C) is the locus of the points with
more than one nearest point in 9C. We write K;(S¢) (resp. K.(S¢)) for the set of points
x € VorSkel(C) such that all the nearest points of x in OC lie inside (resp. outside) the
sections.

Notation (m;(a) and mc(a)) : Let a be a point on the boundary of a section A € S¢ on
the plane P4. We write m;(a) (resp. me(a)) for the orthogonal projection of m;(a) (resp.
me(a)) onto Py. See Figure 1.14-right. We have d(m;(a), mi(a)) = sin(a,) d(a, mi(a))
and d(me(a), me(a)) = sin(ag) d(a, me(a)).

Lemma 5 If the Transversality Condition is verified, for any a € 0S¢, we have lift(m;(a)) €
K;(S¢) and lift(me(a)) € K¢(Sc). In addition, the two segments that join lift(m;(a)) to its
nearest points in dC both lie entirely in Me.

Proof We first show that lift(m;(a)) € K;(S¢). The symmetric property for lift(me(a))
can be proved similarly. Let us simplify the notation by writing m; for m;(a), and m; for
mi(a). Let us also write B(m;) for the ball centered at m; of radius d(m;,a). We have
d(m;,m;) < d(my,a). Thus, m; lies in B(m;). As this ball is contained in O, m; is in
O. Consider now lift(m;) on VorSkel(C), and call y the point distinct from m; such that
lift(m;) = lift(y), see Figure 1.14-right. To have lift(m;) € K;(S¢), we need to show that
y is in 0. We have

d(mg,y) < d(mi,m;) + d(mg, lift(m;)) + d(lift(y), y)

< sin(ag)d(a, m;) + 2 he < d(a, m;).

Thus, y belongs to B(m;), and we can deduce that y € O and lift(m;) € K;(S¢). In
addition, the ball B centered at lift(m;) which passes through m; and y is entirely contained
in B(m;) C O. Thus, the interior of B is empty of points of 0O¢ and B is a medial ball
of O¢, and its center lift(m;) belongs to MA;(0O¢). Since m; and y are in S¢, according
to the definition of Mc, the line-segments [lift(m;), m;| and [lift(m;), y] lie entirely in Me.

O
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Lemma 6 Under the Transversality Condition, the Intersection Condition is verified.

Proof Let S, and S, be two sections in S¢ such that lift(S,) N 1ift(Sp) is non-empty.
We recall that £, denotes the homomorphism L, : mj(Mc) — 7;(lift(Sc)) induced by the
lift function £ : M¢ — lift(S¢). We will show that for any two points a € 9S,,b € 95y
such that lift(a) = lift(b), there exists a path v C M¢ between a and b so that L£.(7) is
contractible in £, (m(Mc)). Let P, and P, be the cutting-planes of S, and Sy, respectively.
One of the two following cases happen :

o If the segment [a,m;(a)] (i.e., the projection of the segment [a,m;(a)] onto P,) is not
cut by any other cutting plane, then we claim that lift(a) is connected to lift(m;(a)) in
Ki(Se)-

Consider the 2 dimensional ball B in the plane P, centered at m;(a) and passing through
a. This ball is contained in the 3D ball centered at m;(a) and passing through a, which
lies entirely inside O. Considering the intersection of this 3D ball with P,, we infer that
B lies in the section S,. Therefore, lift(B) is entirely contained in lift(S,). In Figure 1.15
lift(B) is colored in green.

Figure 1.15: For the proof of Lemma 6: the lift of two sections S, and S on VorSkel(C) is
illustrated. We prove that the lift of the segment [a, m;(a)] lies in 1ift(S,) N 1ift(Sy).

Since lift(a) = lift(b), we have lift(a) € lift(S,) N lift(Sp). On the other hand, according
to Lemma 5, lift(m;(a)) lies in lift(S,) N 1ift(S,). For the sake of contradiction, suppose
that lift(a) is not connected to lift(m;(a)) in K;(S¢). In this case, lift(B) intersects (at
least) two different connected components of lift(S,) N lift(S,), see Figure 1.15. Since
lift(B) C lift(S,), we deduce that lift(B) intersects lift(Sp) in (at least) two different
connected components. Then, consider the maximal open ball contained in lift(B) which
is empty of points of 1ift(Sy). Such a ball consists of the lift of a 2D ball B’ in the
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plane P, which is tangent to 95, at two points x and z/. B’ is the intersection of the
3D medial ball of the complementary set of O passing through x and z’. Thus me(x),
which is the projection of the center of this 3D ball (me(x)) onto Py, lies in B’. We have
lift(me(z)) € lift(B") C lift(B) C lift(S,). Thus, one of the nearest points of lift(m.(z)) in
dC lies in S, C S¢. This contradicts lift(m.(a)) € K.(S¢) (Lemma 5).

Therefore, lift(a) is connected to lift(m;(a)) in K;(Sc). Let us call ¢’ and b’ the nearest
points of lift(m;(a)) in S, and S respectively, see Figure 1.16-left. According to Lemma 5,
the line-segments [a’, lift(m;(a))] and [V, lift(m;(a))] lie inside M¢. We now define a path
7, colored in red in Figure 1.16-left, as the concatenation of four line-segments : [a,a’] C
Sa, [d 1ift(m;(a))], [b,1ift(m;(a))] and [b',b] C Sp. We know that [d/,lift(m;(a))] and
[0/, lift(m;(a))] are mapped to a single point lift(m;(a)) by the lift function. Thus, the
image of v under the lift function is the line-segment [lift(a), lift(/m;(a))], which is trivially
contractible in lift(S¢).

Figure 1.16: A 2D illustration of the cases considered in the proof of Lemma 6 : in red a
path between a and b in Me.

e We now consider the case where the segment [a,m;(a)] is cut by a cutting plane P
(colored in blue in Figure 1.16- middle and -right). If C is the cell which contains a and
b, the path v = [aa’b'b] (defined above) does not entirely lie in C. Let us consider the
intersection of OC with the plane of v denoted by Py (the plane of Figure 1.16). Two cases
may happen:

e If JC does not intersect [a/,lift(m;(a))] and [V/,1ift(m;(a))], we define v/ := dC N Py
which is a path that connects a to b. See Figure 1.16-middle. Note that 7 is a path
in Mg, since it lies in 9C N O = S¢.

e Otherwise, let x be an intersection point (the closest to a) between dC and [a’, lift (m;(a))]U

[0, lift(m;(a))], see Figure 1.16-right. Let 2’ be so that lift(x) = lift(z’). We now
define a path 4/ C M¢ which connects a to b along C N Py, while taking a shortcut
from z to 2’ (by [z,lift(z)] and [lift(x), 2’]). This path is colored in red in Figure 1.16-
right. Note that in the case OC N Py is formed of more planes, 7' can be defined in a
similar way by following dC N Py and making a shortcut at each intersection with -,
i.e. x in our example.
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We now claim that (for both cases considered above) the lift of 4/ is contractible in lift(S¢).
Indeed, the lift of the first and the last line-segments of 4/, that lie respectively on P, and
Py, is a line segment. Therefore, it is sufficient to check the contractibility of the lift of the
part of 4/ which is between P, and P,. The line-segments of 7/ that connect P, to By, lie
on sections that are all entirely contained in the medial ball centered at m;(a). Therefore,
the lift of these segments is contained in a disk and is contractible in lift(Se).

a

4.6 Deforming the Homotopy Equivalence to a Homeomorphism

Using the homotopy equivalence between R and O, we can show that they are indeed
homeomorphic.

Theorem 16 (Main Theorem-Part IV) Under the Separation and the Intersection Con-
ditions, the two topological manifolds R and O are homeomorphic (in addition, they are
isotopic).

Although this result is stronger than the homotopy equivalence, the way our proof
works makes essentially use of the topological study of the previous sections. And so is
based on the homotopy equivalence of the previous sections.

Proof Again, we first argue in each cell of the arrangement and show the existence of a
homeomorphism between O¢ and R¢ whose restriction to S¢ is the identity map. Gluing
these homeomorphisms together, one obtains a global homeomorphism between R and
O. Let C be a cell of the arrangement of the cutting planes. A similar method used
to prove the homotopy equivalence between Re and O¢ shows that IR NC and 90 NC
are homotopy equivalent 2-manifolds and are therefore homeomorphic, and in addition
there exists a homeomorphism F¢ : 00 N C — OR N C which induces identity on the
boundary of sections in Sc. We showed that the topology of R¢ and O¢ is completely
determined by their fundamental groups, i.e., all the higher homotopy groups of R¢ and
Oc¢ are trivial. Moreover, there is an isomorphism between 71(O¢) and 71 (R¢), and the
induced map (G¢)« : m(0ONC) — w1 (ORNC) on first homotopy groups is consistent with
this isomorphism (in the sense that there exists a commutative diagram of first homotopy
groups). This shows that there is no obstruction in extending f¢ to a map a¢ : O¢ — Re,
inducing the corresponding isomorphism between 71 (O¢) and 71 (R¢), and such that the
restriction of a¢ to S¢ remains identity. Since all the higher homotopy groups of O¢ and
Re are trivial, it follows that ac¢ is a homotopy equivalence. We are now in order to
apply the following theorem due to Waldhausen, which shows that a can be deformed
to homeomorphism between O¢ and R¢, by a deformation which does not change the
homeomorphism «a¢ between the boundaries. A compact 3-manifold M is called irreducible
if mo(M) is trivial. Remark that O¢ and R¢ are irreducible.

Theorem 17 (Waldhausen) Let f : M — M’ be a homotopy equivalence between
orientable irreducible 3-manifolds with boundaries such that f takes the boundary of M
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onto the boundary of M’ homeomorphically. Then f can be deformed to a homeomorphism
M — M’ by a homotopy which is fixed all the time on the boundary of M. (See [Mat03],
page 220, for a proof.)

Applying Waldhausen’s theorem, one obtains a homeomorphism éa¢ from O¢ to Re
which is identity on the sections in S¢. Gluing &, one obtain a global homeomorphism
form O to R. Moreover, according to Chazal and Cohen-Steiner’s work [CCS05] (Corollary
3.1), since R and O are homeomorphic and R contains the medial axis of O, R is isotopic
to O. O

Conclusion

In this chapter, we presented one of the first topological studies in shape reconstruction
from cross-sectional data. We showed that the generalization of the classical overlapping
criterion to solve the correspondence problem between unorganized cross-sections, pro-
posed by Liu et al. in [LBDT08]|, preserves the homotopy type of the shape under some
appropriate sampling conditions. In addition, we proved that in this case, the homotopy
equivalence between the reconstructed object and the original shape can be deformed to a
homeomorphism. Even, more strongly, the two objects are isotopic.
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Chapter 2

Second Method Based on the
Voronoi Diagram of the Sections

In this chapter we present a reconstruction method based on the Voronoi diagram of the
sections. Relating the connectivity of the sections to their Voronoi diagram allows us to
perform topological studies and to compare this method with the first one presented in the
previous chapter. Another advantage of considering the Voronoi diagram of the sections,
instead of the Voronoi diagram of the cell, is that a Delaunay-based dual structure can
be defined. Indeed, the analysis we carry out in this chapter, using the Voronoi-Delaunay
duality, is to connect the methodology presented in the first chapter and the Delaunay-
based methodology of Chapter 3.

1 Motivation

In the previous chapter of this thesis, we studied the reconstruction method introduced by
Liu et al. in [LBD"08|. This method is symmetric with respect to S¢ and dC\S¢, in the
sense that the points of C that are in or not in S¢ play a symmetric role in the reconstruc-
tion procedure. As a result, R3\ O can be reconstructed from the complementary of the
sections on each face of C, and the resulting reconstructed object is the complementary
in C of the reconstructed object from the original sections. This symmetry property makes
the resulting reconstruction highly dependent on the position of the cutting planes. As the
example of Figure 2.1 shows, for a same set of sections the method may produce different
reconstructions if the configuration of the cutting planes changes close to these sections.

Therefore, this method does not perform well to reconstruct a thin object which fits
within a narrow tube. In order to handle the case of tree-like structures which consist of
thin branching structures distributed over a large volume, we may be interested to perform
more connections between the sections. To this end, we propose to make use of the Voronoi
diagram of the sections rather than the Voronoi diagram of the cell. We define the distance
function from the boundary of C, and the reconstructed object R as follows (we refer to
the next section of this chapter for a formal definition):
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i =

Figure 2.1: A 2D example : On the right side, we have two sections and their cutting
lines and, on the left side, we have two additional cutting lines that miss the object. The
associated reconstructed objects are different using the method of [LBD'08].

Let = be a point in C and in the Voronoi cell of a section A € S¢. The nearest point to x
in OC is the projection of  onto AC in the direction orthogonal to A (see Figure 2.4 of
the next section). If this projection lies inside A then z is in the reconstructed object Rp.

In order to compare the new reconstructed object R’ with the previous one R, let us define
the influence zone of a section A € S¢ in each method, as the set of points x € C such that
the nearest point to x in OC lies in A. As Figure 2.2 shows, using the Voronoi diagram
of the sections rather than the Voronoi diagram of the cell, makes the influence zones of
the sections bigger. In the sense that, the new reconstructed object R’ contains R the
reconstructed object of the previous chapter (see Theorem 18).

-

Figure 2.2: A 2D example : On the right side, we have two sections and their cutting
lines and, on the left side, we have two additional cutting lines that miss the object. The
associated reconstructed objects are the same using the new method.

Therefore the second method performs more connections between the sections and is moti-
vated by reconstructing tree-like structures from sparse cross-sections. As Figure 2.2 shows,
this method performs well to reconstruct a thin object which fits within a narrow tube.
Another motivation for presenting this Voronoi-based method is its dual Delaunay-based
approach that will be presented at the end of this chapter.
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2 Reconstructed Object Definition

The reconstruction method, that will be presented in this section, is based on the Voronoi
diagram of the sections of C, defined as follows.

Voronoi diagram of the sections of a given cell. Let C be a cell of the arrangement
of the cutting planes and A be a section in S¢c. The Voronoi cell of A, denoted by Ve (A),
is defined as the set of all points in C that have A as the nearest section in Sg, i.e.,

Ve(A)={zeC|dx,A) <d(z,A"), VA € S }.

Recall that d(.,.) is the Euclidean distance. The collection of V¢ (A) for all sections A € S¢,
called the Voronoi diagram of the sections of C, forms a tiling of C.

S

Ac S

Figure 2.3: A 2D example: Left. The original shape O¢ and its sections are colored in
blue. The Voronoi skeleton of the sections is colored in red. Right. For a section A, the
Voronoi cell V¢(A) (and its height /), and lift’(A) are illustrated.

We write V¢ (A) for the boundary of Ve(A). The union of Ve (A) for all A € S is called
the Voronoi Skeleton of Sc, and is denoted by VorSkel(S¢). To simplify the notation,

when the cell C is understood from the context, we simply remove the index C and write
V(A), 9V (A), etc.

Each point in VorSkel(S¢) is either on the boundary of C, or has at least two nearest
sections in S¢ (see Figure 2.3). When the sections are in general position, which is the
condition we will assume, a point z € C has at most four nearest sections.

The key idea here is that the Voronoi diagram can be used to define the distance of 9C
from a point = € C, taking into account the sections in S¢. Indeed, the nearest point in 0C
to a point z € C will depend on the Voronoi cell that contains . This is the main difference
of the new method we will present with the first method presented in the previous chapter.

Definition 27 (Nearest Point) Let z be a point in C. If S¢ # 0, we consider the
partition of C by the Voronoi cells of the sections in S¢. Let A be a section in S¢ whose
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Figure 2.4: Nearest point definition, based on the Voronoi diagram of the sections.

Voronoi cell contains x, i.e., x € V¢(A). The projection of 2 onto dC in the direction
orthogonal to A is called a nearest point to x in dC and is denoted by np/, (x), see Figure 2.4.

The set of all the nearest points to x in C is denoted by Npg(z). Note that for almost
every point z, Npp(x) is reduced to a single point. Based on this, and to simplify the
presentation, sometimes we drop the index A and by np’(z) we denote a point of Npp(x).

We can now define the reconstructed object in a given cell C. We first give the formal
definition, and then present a more detailed geometric characterization of the reconstructed
object using the lifting procedure described below. This definition is based on the same
methodology as in the first chapter. The only difference, due to the different definition of
nearest point in JC, is that the lifting procedure is defined on the Voronoi skeleton of the
sections rather than the Voronoi skeleton of the cell.

Definition 28 (Reconstructed Object R in a cell C) The reconstructed object Ry, is
the set of all points z in C that have a nearest point np/(z) in S, i.e., Npg(z) NS¢ # 0.
In other words, for a section A € Sg, a point € V¢(A) is in Ry if np/(z) € A. If S¢ is
empty, R is defined to be the empty set as well.

Definition 29 (Lift Function) Let A be a section in S¢ and x € C be a point in the
Voronoi cell V¢(A) of A. The lift of  in C, denoted by lift;(x) (or simply lift'(x) if C is
trivially implied), is defined to be the unique point of 9V¢(A) such that the line defined
by the segment [x,lift'(x)] is orthogonal to the plane of A.

The lift of a set of points X C C, denoted by lift’(X), is the set of all the points lift'(z) for
re X, ie, lift (X) := {lift'(z) |z € X }.

The function £’ : C — VorSkel(S¢) that maps each point x € C to its lift in VorSkel(S¢)
will be called the lift function in the sequel. For any Y C VorSkel(S¢), £~'(Y) denotes
the set of points x € C such that lift’(z) = y for some y € Y.
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Figure 2.5: Left) Given Sections in blue, Reconstructed object Ry in green. Right) Con-
nectivity of the sections: Two sections are connected in R if their lifts intersect.

Characterization of the Reconstructed Object Rj. If S¢ = 0 then by definition
R¢ is empty. Otherwise, let A € S¢ be a section lying on a face of C. For each point a € A,
the locus of all the points « € C that have a as their nearest point in dC is the line segment
a, 1ift(a)] joining a to its lift. Therefore, the reconstructed object Ry is the union of all
the line-segments [a, lift’(a)] for a point @ in a section A € S¢, i.e.,

R = U U [a, 1ift' (a)].

AESe acA

According to this characterization, if the lifts of the sections intersect in VorSkel(S¢), then
these two sections are connected in Rp.

Note that the particularity of this reconstruction method is that the connectivity be-
tween the sections is based on their Voronoi diagram. However, to be conformal with the
given sections, the Voronoi cells are restricted to each cell of the arrangement. In other
words, the sections play the key role to guide the connections in the reconstruction, and
the role of OC \ S¢ is restricted to verify the conformity with the sections. As a result,
the situation illustrated in Figure 2.6 may occur, in which a point x € 9C \ S¢ lies on
the boundary of the reconstructed object Rj. This happens if the defined nearest point
of z € OC \ S¢ is a point of a section. We caution and emphasize that the reconstructed
object R can be seen as an elementary reconstructed object which is suitable for topolog-
ical studies. See Section 3. In Section 4.4, we will present a homotopy equivalent object
in which the non-conformal situation of Figure 2.6 can never arise.

Reconstructed Object R’. According to the above discussion, in order to study the
overall connectivity between the sections induced by the defined reconstructed object,
it is necessary to impose that the reconstructed pieces in two neighboring cells of the
arrangement intersect exclusively along the sections. In other words, during the final
step, when gluing the reconstructed pieces of different cells of the arrangement, we should
avoid the creation of new connections by gluing these pieces. To this end, an infinitesimal
thickening of the cutting planes (with sufficiently small thickness compared to the size of
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the Voronoi cells) will be considered, see Figure 2.6. The union of all the pieces R} over
all cells C with thickened cutting planes will be the overall reconstructed object R’'.

Re

Figure 2.6: We consider a thickening of the cutting planes to make the reconstructed object
R¢ (in green) conformal with the given sections (in blue).

Theorem 18 (Comparison between the two methods) The reconstructed object R
(presented in the previous chapter) is contained in R’.

o oo

Figure 2.7: The reconstructed object R¢ (presented in the previous chapter) is contained
in R.

Proof We will show that for any cell C of the arrangement, R¢ C R, see Figure 2.7 for
an illustration. It will be sufficeint to show that for any point @ in some section A € S¢,
[a,lift(a)] C [a,lift'(a)]. Let z be a point in [a,lift(a)]. a is the nearest point in 9C to =,
i.e.,, a € Npe(x). Thus, the interior of the ball centered at x passing through a, is empty
of the points of dC. In particular, the interior of this ball is empty of the points of S¢.
Therefore, x is a point in the Voronoi cell of the sections A. Moreover, since z € [a, lift(a)],
the orthogonal projection of z onto A is a. Therefore, z lies on [a, lift’(a)] and belongs to
Re- O
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According to the above theorem, the new reconstruction method may perform more
connection between the given sections compared to the first method. As we will see in the
following sections, this property makes this method better adapted to the case of sparse
sectional data.

2.1 Connectivity Induced by the Reconstruction
Let us first study the sections connectivity induced by the proposed reconstruction.

Definition 30 (Connectivity Graph) The connectivity graph between the sections of
Sc, denoted by G/, is defined as follows:

Each vertex in G/ corresponds to a section in S¢, and there is an edge between the corre-
sponding vertices of two sections A and A’ if lift’(A) and lift’(A’) intersect on VorSkel(S¢),
see Figure 2.5-right. According to the definition of Ry, it is easy to see that A and A’ are
connected in G/ if and only if A and A’ are connected in R;,.

According to Theorem 18, we have the following proposition which compares the connectiv-
ity induced by the reconstruction presented in the first chapter to the new reconstruction.

Proposition 5 Let Gc and G/ be the connectivity graphs between the sections of S¢
induced by R¢ (presented in Chapter 1) and R/ respectively. Then Gc is a subgraph of
g,

Remark : In the d-dimensional version of the problem, that consists of reconstructing a
d-dimensional shape from its (d — 1)-dimensional intersections with hyperplanes, the same
strategy to perform connectivity between the sections can be considered. The guarantees
on the connectivity, we provide in Section 3, hold for any dimension.

3 Sampling Conditions and Topological Guarantees

In this section, we will prove that R’ preserves the topology type of the original shape under
appropriate sampling conditions. One can think of extending the topological guarantees
enjoyed by the first method, presented in Sections 2 and 4 of the previous chapter, to this
method. In this section, we will show that we can ensure the same topological guarantees
as the ones we obtained for the first method, under sampling conditions that are better
adapted to tree-like structures.

Instead of the Voronoi diagram of C, the Voronoi diagram of the sections of S¢ should be
considered. Also, the new lift function (denoted by lift’) should be considered with respect
to the Voronoi diagram of the sections. We define :

Definition 31 (Height of a Cell) Let C be a cell of the arrangement of the cutting
planes and A be a section S¢. The height of A in C, denoted by b4, is defined as h/y :=
max,cv,(4) d(z,npy(x)). We then define the height of C as hp := maxaes, by
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Let us also recall the definition of the reach : Let O be a compact 3-manifold with smooth
boundary 90O in R3. The reach of O is defined as:

reach(0) = AI}Ilzixr(ldO) d(m,00).
me ¢

In Chapter 1, to ensure that the sections-connectivity induced by R¢ is correct, we
presented the Separation Condition which is satisfied if the height of the cell is less than
the reach of the shape (the Density Condition). However, such a condition seems too re-
strictive for applications that we considered for the second method:

Because, as said before, the second method is motivated by reconstructing tree-like struc-
tures for which the reach may be small. In the following, we will propose new sampling
conditions that are better adapted to be satisfied for tree-like structures.

To this end, we define two new quantities that correspond to the distance of the boundary
of the object from the internal and external parts of the medial axis:

reach;(O) := min  d(m,00) and reach.(O) := min d(m,00).
meMA,;(00) mEMA,(00)
Given a cell C of the arrangement, we define reach;(O¢) = mind(a, m;(a)), where

either a € 90NC or m;(a) € MA;(00)NC. Symmetrically, reach.(O¢) = mind(a, m.(a)),
where either a € 90 NC or me(a) € MA.(00) NC.

The key idea is that usually in thin branching structures reach;(O) is much smaller than
reach.(O). The Density Condition of the first method depends on both reach;(O) and
reach.(Q), and may be too restrictive for thin branching structures. Instead, we sug-
gest a Weak Density Condition which bounds from above the height of the cells only by
reach.(O). Nevertheless, to ensure good connectivities between the sections, we would
need an additional condition, called Weak Transversality Condition defined as follows:

(C'1) Weak Density Condition : For any cell C of the arrangement hj, < €, for some
e < reach.(O¢).

(C'2) Weak Transversality Condition : For any cell C of the arrangement and any
point z € 90¢, we have d(np'(z), dA) < reach;(O¢), where A € S¢ is such that z € V(A).
See Figure 2.8. More intuitively, the orthogonal projection of the boundary of the object
restricted to the Voronoi cell of A, onto the plane of A, moves by at most reach;(O¢). This
is based on how the cutting planes are transversal to 0O.

We now show that these two sampling conditions lead to guarantees on the connection
between the sections induced by the new reconstructed method. The proof, being different
from the one presented in the previous chapter, will be detailed in the following.

Lemma 7 Under the Weak Transversality Condition, we have MA;(00¢) C R;..
Proof Let x be a point in MA;(00O¢) and A be the section whose Voronoi cell contains .

Consider the intersection between the plane parallel to the plane of A which passes through
x and the medial ball centered at x; this intersection is an open disk that we denote by D.
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d(04, np'(z))

Figure 2.8: For the definition of the Weak Transversality Condition.

According to the Weak Transversality Condition, the orthogonal projection of the
boundary of the object restricted to the Voronoi cell of A, onto the plane of A, moves
by at most reach;(Oc¢). Since the radius of D is at least reach;(O¢), and D is empty of
points of 0¢, the projection of its center x to A should belong to A. By the definition of
R¢, we deduce that = belongs to Ry,. O

Theorem 19 (Guarantees on the Connection Between the Sections) If the sam-
ple of cutting planes verifies the two above sampling conditions, then R}, and O¢ induce
the same connectivity between the sections of C. As a consequence, there is a bijection
between the connected components of R}, and the connected components of Oc.

Proof The proof is given in two parts:

e From MA;(00¢) C R; we trivially conclude that if the Weak Transversality Con-
dition is verified then two sections are connected in Ry if they are connected in
Oc.

e We now show that the Weak Density Condition gives the converse implication : If
the Weak Density Condition is verified, then two sections are connected in O if they
are connected in R.

Let A and A’ be two sections connected in Rj. According to the construction of R/,
and since the connectivity between sections is obtained locally, we may suppose that
lift’(A) N1ift’(A’) is non-empty. Let = € VorSkel(S¢) be a point in lift’(A) N1ift'(A").
Let B be the ball centered at  and passing through the nearest points np’y(z) and
np'y,(z). Remark that since z € lift'(A)Nlift' (A’), the two points np, (z) and np’,, ()
have the same distance to z, which is at most the height of the cell. Therefore,
according to the Weak Density Condition, this distance, which is indeed the radius
of the ball B, is less than reach.(O¢).

We claim that npy(«) and np'y,(x) are connected in O N B. For the sake of con-
tradiction, suppose that np’y(m) and np’y,(m) belong to two different connected
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3.1

components of O N B, denoted by K and K’, respectively. Consider the pencil of
balls centered at x. Let By be the smallest ball centered at x which intersects both K
and K’ see Figure 2.9. Bj is tangent to 0K or OK', say (without loss of generality)
OK and at a point p € K. We now consider the pencil of balls tangent to K at
p. Let By be the maximal ball in this pencil which does not contain a point of K’ in
its interior. By is tangent to K’ at a point p/. Thus Bs is a ball tangent to 0O in
two points p and p’, and therefore its center o lies on the external part of the medial
axis of 00. Therefore, the radius of By is at least reach.(O¢). This contradicts the
fact that By is contained in B, and the radius of B is less than reach.(O¢).

According to this contradiction, np’y (m) and np’y,(m) belong to the same connected
component K of O N B. Since the interior of B is empty of points of S¢, K cannot
be cut by any cutting plane. Thus, K lies inside C and we have K C O NC. Hence,
A and A’ are connected in Op.

Figure 2.9: For the proof of Theorem 19.

Approximation Guarantees

We now show that the presented sampling conditions allow us to control the Hausdorff
distance between O and its approximation R'. Let us emphasize that this property is
related to the Voronoi diagram of the sections and is not necessarily true for the first
method based on the Voronoi diagram of the cell. The proof is based on the following
lemma.

Lemma 8 Let y be a point in OR[;, there exists a point a € OS¢ such that d(y,a) < h.

Proof By the definition of Rp, there are two cases for a point y € OR:
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e Either y belongs to the segment |[a, lift'(a)] for some a € 0S¢: Then we have trivially
d(y,a) < d(a,lift'(a)) < hi.

e or y is the lift of a point @’ in the interior of a section A’: In this case, we have
y € VorSkel(S¢) and there exists a point a in another section A such that d(y,a) =
d(y,a’). Tf a is in the interior of A, then y is in the interior of the lift of the two
sections and cannot be in OR;. Therefore, a is a point in 0S¢c. Moreover, we have
d(y,a) = d(y,d") = d(lift'(a'), a") < hp.

|

Theorem 20 (Approximation Guarantees) If the set of cutting planes verifies the
Weak Density and the Weak Transversality Conditions, then we have

dy(O,R) < méxxhé < €.

Figure 2.10: For (the second case considered in) the proof of Theorem 20.

Proof We claim that for any cell C of the arrangement dg(Oc, R;) < hp. The proof is
given in two parts:

1. Let x be a point in R;;. According to the characterization of R, there exists a point
a € Sc such that = belongs to the segment [a,lift'(a)]. Since a € S¢ C O¢, we have
d(z,0c) < d(z,a) < d(a,lift'(a)) < hi.

2. Let = be a point in O¢. If x € R, d(z, R;) = 0 and there is nothing to prove. Thus,
we can suppose that x is not in Rj,. Let 2’ be the closest point in 9O¢ to x. Therefore,
x belongs to the segment [z, m; ¢(2')], see Figure 2.10. According to Corollary 7 and
the Weak Transversality Condition, we have m;¢(2") € MA;(00¢) € R(;. Moreover,
we have x ¢ R[. Thus the segment joining x to m;c(x') intersects OR,. Let y be
a point in [z, m;c(x")] N OR}. According to Lemma 8, there exists a point a € 0S¢
such that d(y,a) < hg.

We claim that d(y,z") < d(y,a). If d(y,z") > d(y, a) then d(a’, m; c(z"))
d(y, mic(2')) > d(y,a) + d(y,mic(z’)) = d(a,mic(z’)). But d(a’,

= d(y, .CU/) +
mic(x)) >
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d(a,m;c(x")) contradicts the fact that 2’ is the nearest point of 9O0¢ to m;,c(z’).
Thus, d(y,z’) < d(y,a). On the other hand, since y € [z, m;c(2')] C [2/,m;c(z)],
d(z,y) < d(2',y) and we have:

d(z,Re) < d(z,y) < d(x',y) < d(y,a) < hg.

Therefore, dg(Oc, R;;) < hp < € for any cell C of the arrangement. O

3.2 Proof Outline of the Homotopy Equivalence Between R’ and O

Following the strategy employed in Section 4 of the previous chapter, for each cell C of
the arrangement, we will show that O¢ and R}, have the same homotopy type. We will
just highlight the differences between the two cases and refer to the previous chapter for
detailed proofs.

Similarly to Proposition 1 of Chapter 1, we can prove that by the definition of R,
the lift function £’ : R, — lift'(S¢) is a homotopy equivalence. On the other hand, the
medial shape Mg is homotopy equivalent to O¢ (Proposition 3, Chapter 1). Thus, it will
be sufficient to show that lift'(S¢) is homotopy equivalent to M.

From MA;(00¢) C R/ and the definition of the medial shape we conclude M¢ C R..
Following the same strategy as Section 4 of the first chapter, we will show that the lift
function £’ : M¢ — 1ift’(S¢) is a weak homotopy equivalence.

The only difference here is that Ry, is not defined in a symmetric way for the sections of
Sc and their complementary set in 9C. As a consequence, Ry is not necessarily contained in
C \Mc However, the new sampling conditions leads us to define another object (homotopy
equivalent to O¢) that will replace C \ M in the proofs:

We consider O = {z € R3,d(z,0¢) < €}. Since e < reach.(O¢), Of is homotopy
equivalent to Og¢.

Lemma 9 If the Weak Density Condition is verified then R, C Of.

Proof By the definition of R, for any point « € R there is a point a in S¢ such that
z € [a,lift’(a)]. Thus, d(z,a) < d(a,lift’(a)) < h{ < e. We conclude that R} is a subset of
S& = {x € R®,d(z,S¢) < €} which is itself a subset of O. O

We will use Of instead of C \Mvc in the homotopy proof of the first method and we consider
the following diagram:
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Oc
M ¢ : RL o5
\ \tv
lift,(Sc)

Using this diagram, the injectivity of £ : M¢ — lift’(S¢) on the level of homotopy
groups, under the Weak Density Condition and the Weak Transversality Condition, is
deduced (see the Section 4 of Chapter 1 for more details). Therefore, to prove the homotopy
equivalence between M and lift'(S¢), it will be sufficient to prove the surjectivity of
the induced maps £* : m;(Mc) — m;(lift'(S¢)) on the corresponding homotopy groups.
Similarly to the first chapter, we will show that under the Weak Density Condition and
the Weak Transversality Condition, the higher dimensional homotopy groups of O¢ and
Ry, are trivial.

Theorem 21 If the Weak Density Condition is verified then m;(O¢) = {0}, for all ¢ > 2..

Proof We only make use of the fact that under the Weak Density Condition, any con-
nected component of 9O is cut by at least one cutting plane. In this case, every connected
component of O¢ is a 3-manifold with connected boundary. The theorem follows as a
corollary of Theorem 7. O

Theorem 22 7;(R) = {0}, for all : > 2.

Proof Using Theorem 7, it will be sufficient to show that the boundary of any connected
component of R, is connected. Let « and y be two points on this boundary, and let S and
S’ be two sections so that z € V(S) and y € V(S5’). By the definition of R, « is connected
to S in R, and y is connected to S" in OR[. On the other hand, S and S’ are connected
in ORp. Thus, x is connected to y in ORp. O

Consequently, under the Weak Density Condition, the topological structures of O¢ and
R are determined by their fundamental group 71 (O¢) and 71 (R;;), respectively. According
to the homotopy equivalences between O¢ and Mc, and between R, and lift’(S¢), it will
be sufficient to show that m(M¢) and 7 (lift'(S¢)) are isomorphic. As the injectivity of
the map L™ : w1 (M¢) — m1(lift'(S¢)) is already proved, we need to prove the surjectivity.

A natural condition to ensure that £’ is surjective is to imply that any connected
component of lift'(S¢) is contractible. This is very common in practice, where the sections
are contractible and sufficiently close to each other. In this case, since m(lift'(Sc)) is
trivial and £, is surjective. Therefore, the homotopy equivalence between R/, and O¢ can
be deduced.
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Also, we can consider the more general condition we proposed in Chapter 1 based again
on the transversality of the sections. We recall the definition of «, :

Definition 32 (Angle a,) Let a be a point on the boundary of a section A € S¢ on the
plane P4. We consider m;(a), that may be outside the cell C. We define o, as the angle
between P4 and the normal to 0O at a, see Figure 2.11 : «, := angle(P4y, [a, m;(a)]).

(C'3) Transversality Condition For any cell C of the arrangement,

he < % (1 — sin(ay)) reach(a),Va € 8Sc.

xr < a0

Figure 2.11: Weak Transversality Condition for piecewise linear shapes: the length of the
red segment ([np/(z),a]) should be less than e.

Remark on the Transversality Condition :  Let us compare the Weak Transversality
and the Transversality Conditions for piecewise linear shapes:

Let O be a piecewise linear shape. Consider a point a on the boundary of a section A of O on
the plane P4. As Figure 2.11 shows in this case, the angle between the boundary of O and
Py is equal to § — ag. Therefore, the Weak Transversality Condition implies the following
inequality : h; < cot(ag) reach(a). From 0 < a, < § we can easily deduce cot(a,) >
1 (1 — sin(aa)). Therefore, the inequality required by the Transversality Condition is more

2
restrictive.

A similar proof as the one presented in the previous chapter, shows that this condition
implies the surjectivity of £L* : m1(M¢) — w1 (lift'(S¢)). Therefore, Mc and lift'(S¢), and
so O¢ and R are homotopy equivalent. Using the generalized nerve theorem we deduce
the following theorem:
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Theorem 23 (Topological Guarantees) If the cutting planes verify the Weak Density
and the Transversality Conditions, then the proposed reconstructed object R’ is homotopy
equivalent to the unknown original shape O.

Using the same strategy as the one employed in Section 4.6 of Chapter 1, we can deform
the homotopy equivalence to a homeomorphism. Moreover, since MA;(00) C R', R’ is
isotopic to O (according to Corollary 3.1 of [CCS05]) and we have the following theorem :

Theorem 24 (Homeomorphism) If the cutting planes verify the Weak Density and the
Transversality Conditions, the two topological manifolds R’ and O are homeomorphic (in
addition, they are isotopic).

Therefore, we obtain the same topological guarantees as the ones we obtained for the
first method, under sampling conditions that are better adapted to be satisfied for tree-
like structures. Let us note that if we consider the new sampling conditions for the first
method, the same topological guarantees will be ensured. However, these new conditions
may be more restrictive than the previous sampling conditions for shapes different from
thin branching structures.

4 Dual Delaunay-Based Approach

In the previous section, we showed that the connectivity induced by R’ is topologically
correct if the sample of cutting planes is sufficiently dense. As discussed in Section 2.1,
R’ may exhibit a jagged and unnatural appearance, and can be seen as an intermediate
shape that captures the good connectivity between the sections. This reconstructed object
as it is cannot be directly used in applications where smooth surfaces are desired. The
idea is to use the dual Delaunay-based structure to connect the corresponding sections
in G’ so that the resulting object is homotopy equivalent to R’. The Delaunay structure,
with its interesting geometrical properties, has been widely used in different reconstruction
methods.

4.1 Delaunay Simplices

The dual structure of the Voronoi diagram of the section is composed of so-called Delaunay
simplices defined as follows.

Definition 33 (Delaunay Simplices) To any point m € VorSkel(S¢), we associate the
maximal ball centered at m such that its interior is empty of points of S¢c. This ball is
called a medial ball or a Delaunay ball and is denoted by o(m). As o(m) is the maximal
ball such that its interior is empty of points of S¢, it passes through at least two points a
and o’ in S, called the contact points of o(m). In general, a medial ball has two contact
points. The segment that joins these two contact points is called a Delaunay fiber or a
Delaunay 1-simplex. It is easy to see that two Delaunay fibers do not intersect except
possibly at one of their endpoints. See examples illustrated in Figure 2.12. More generally,
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a medial ball with k& contact points in S¢ circumscribes a Delaunay (k — 1)—simplex which
is defined as the convex hull of the contact points of the medial ball. Since any set of
four points defines a sphere (ball), if the cutting planes are in general position (which is
supposed in this thesis), any medial ball has at most four contact points, i.e., k € {2,3,4}.

Figure 2.12: 2D and 3D examples: Delaunay Simplices between two sections (in blue) and
a Delaunay fiber in red.

Voronoi-Delaunay Duality : For any m € VorSkel(S¢), the dual of m (denoted by
m*) is the Delaunay simplex circumscribed by the ball o(m).

We now introduce the tangent Delaunay simplices that play a central role in our approach.
This set of Delaunay simplices is indeed the dual of lift'(S¢) the lift of the sections:

Definition 34 (Tangent Delaunay Simplices) Let A be a section in S¢, and m =
lift'(a) for some point @ in the interior of A. The corresponding Delaunay ball o(m) being
empty of points of Sg, is tangent to the supporting cutting plane of A at a. Conversely,
the center of any Delaunay ball tangent to the supporting cutting plane of A at a point a
in the interior of A, is on the lift of A. The dual of such a point m € lift'(A) is called a
tangent Delaunay simplez. In particular, let a’ be one of the contact points of o(m) in S
distinct to a. The line segment [a,d’] is called a tangent Delaunay fiber of a.

Definition 35 (Labeling ¢) We define a labeling ¢ that to each point a in a section in
Sc associates a set of points in S¢ such that: o’ is said to be in ¢(a) if [a,d’] is a tangent
Delaunay fiber of a.

Generically, ¢(a) consists of a single point. An important situation occurs when for
some a, ¢(a) contains more than one point. This defines the branching locus of the union
of the tangent Delaunay fibers.

Definition 36 (Branching Diagram, and Branching Subsections of a Section) We
define the branching diagram of a face f of C as the partition of f by the orthogonal pro-
jection of the 1-skeleton of VorSkel(S¢) onto f. See Figure 2.31-left. Given a section A
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contained in a face f, the branching diagram of f subdivides A into so-called branching
subsections.

4.2 Branching Diagram

We defined the branching diagram of a face f of C as the orthogonal projection of the
1-skeleton of VorSkel(S¢) onto f. The skeleton of VorSkel(Se) is the locus of points in C
that have at least three nearest points in the sections of S¢. A point a in a section of f has
a unique tangent Delaunay ball in C that is centered on lift'(a). If lift’(a) is the skeleton
of VorSkel(S¢) then this Delaunay ball has at least three contact points in S¢, and bounds
more than one Delaunay fiber. In this case, a is called a branching point and lies on the
branching diagram defined previously.

Let A be a section in S¢. The branching diagram on the face of A forms a partition of A
into so-called branching subsections of A. For a subsection E of A, lift’(E) lies on a unique
Voronoi 2-dimensional face. We define ®(E) as the unique section A’ such that lift'(E)
intersects OV (A’). We also define ®(A) as the set of all @(E) for all branching subsections
E of A. The subsection F is the locus of points a in A such that ¢(a) € ®(E) Indeed, ¢(.)
defines a continuous function everywhere in S¢ except on the branching diagram. As it can
be seen in Figure 2.13, the branching diagram is on the branching Locus of the tangent
Delaunay fibers. (That is where the name comes from.) In Section 5, we will provide an
efficient algorithm to compute the branching diagram without computing the 3D Voronoi
diagram of the sections. It plays a key role to determine the connectivity between sections
induced by R'.

(a) A Delaunay fiber with an (b) The branching diagram of f. (c) The set of Delaunay fibers
endpoint on a face f (in blue) (in green) with an endpoint on
of C. f-

Figure 2.13: Branching diagram of a face of C.

As we will see in Section 5, in the case of parallel cutting planes, the branching diagram
on a face is the orthogonal projection onto this face of the 2D-Voronoi diagram (external
part of the medial axis) of the sections of the adjacent plane. See Figure 2.14-right. This
justifies the improvement on the branching between dissimilar sections that was performed
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by Boissonnat and Geiger in [BG93|, by adding vertices (colored in green in Figure 2.14)
on the projection of the medial axis of the adjacent contours, as had also been proposed
in [Sha81].

Figure 2.14: In the case of parallel cutting planes, the branching locus of the union of the
Delaunay fibers lies on the orthogonal projection of (the external part of) the medial axis
of the sections of the adjacent plane.

4.3 Singularities : Branching along the Boundary of Sections.

In the previous section, we saw that in the union of the tangent Delaunay fibers, branching
may happen along the branching diagram. Moreover, as Figure 2.15-right shows, branching
may also appear along the boundary of a section. Such a situation creates a singularity in
the structure:

- J'1

Figure 2.15: Branching along the boundary of a section creates a singularity (in red).

Definition 37 (Singularity) To any section-point p € S¢, we associate the normal cone
of C at p, i.e. the set of rays issued from p, lying outside C and directed along the normals
to the supporting planes of C at p. The extended S¢ is the union of all such rays, denoted
by Sc. Let D be a set of Delaunay fibers between the sections in S¢. Points that do not
have ball or half-ball neighborhoods in D Ugc are called singular. In this case, we say that
D has a singularity at such a point, see Figure 2.16.
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(a) (b) (c)

Figure 2.16: Singularities: (a) Se (colored in blue) is the union of the normal cones. (b)
For this reconstruction D (in green), D U S¢ is a 3-manifold (with boundary). (c¢) The
reconstruction of this example has a singularity at point a.

Two Types of Singularity

Two types of singularity can be observed in the union of the Delaunay fibers. The first one
corresponds to the case where all Delaunay fibers between two subsections intersect one of
them along its boundary. See Figure 2.17-left for an example. As we will see, this kind of
singularity is easy to detect using the Moebius diagram and labeling ®. The second type
of singularities in the union of the Delaunay fibers corresponds to singularities that are
created by some part of the Delaunay fibers between two sections, and intersect a section
along a one dimensional feature, see Figure 2.17-right. Such singularities are more difficult
to detect. In Chapter 3, we will provide a method to remove such singularities from a
union of Delaunay simplices. Clearly, this type of singularity does not exist for the two
dimensional version of the problem, where the sections are line-segments.

3’|

Figure 2.17: Two Types of Singularity.

We now show that the first type of singularity is easy to detect using the Moebius
diagram and labeling ®. Such a singularity corresponds to the case where all Delaunay
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fibers between two subsections A and A’ intersect one of them, say A, along its boundary.
In this case, there is no point a € A such that ¢(a) € A’. Consequently, A" ¢ ®(A).
According to the following proposition, the converse is true as well.

Proposition 6 Let A and A’ be two sections in S¢ such that A € ®(A’) and A" ¢ P(A).
The tangent Delaunay fibers between A and A’ create a singularity at A.

Proof Let[d',a],a € Aand d’ € A, be a tangent Delaunay fiber at a’. We claim that a is
on the boundary of A. Suppose that a is in the interior of A. By definition, the interior of
the circumscribing ball B of [, a] is empty of points of S¢ (and in particular A). Therefore,
B is tangent to A at a, and we have A" € ¢(a). We deduce that A’ € ®(a) which is a
contradiction. Therefore, any tangent Delaunay fibers between A and A’ intersect A at a
point on its boundary. We deduce that the union of the tangent Delaunay fibers between
A and A’ intersects A along a zero or one dimensional feature. |

The above proposition leads to the following definition:

Definition 38 (Symmetric Labeling) The labeling between A and A’ is said to be
symmetric if and only if A € ®(A’) and A’ € D(A).

lift(A)

Figure 2.18: Symmetric labeling strategy, that consists of connecting two sections A and A’
if Ae ®(A’) and A’ € ®(A), allows us to perform connections between the sections by the
Delaunay fibers as far as they do not create singularities in the structure. The reconstructed
object we present in Chapter 3 (in blue) is based on pruning the singularities and performs
more connections than the reconstructed object of the second method R}, (in green).
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According to Proposition 6 and as can be seen in Figure 2.19(b)-right-down, the non-
symmetric labellings corresponds to singularities in the union of the Delaunay fibers. We
note that this proposition leads us to define a connectivity graph called G”¢ which will be
used to efficiently compute the graph G/.

Definition 39 (Definition of the Graph G”¢) For each S¢, the graph G”¢ on the set
of vertices S¢ is defined as follows: there is an edge between two sections A1 and As in S¢
if and only if the labeling between A and A’ is symmetric.

Remark : This proposition justifies the symmetric labeling strategy which led to a
method which induces G”¢ as the connectivity graph between the sections. The third
reconstruction method we present in the next chapter has this property and performs
connections between the sections by the Delaunay fibers as far as they do not create sin-
gularities in the structure.

By the definition of the connectivity graph Gf, a given section A € S¢ is connected to
A’ in G if lift'(A) intersects lift'(A"). We have lift'(A) C V¢(A) and lift'(A") C Ve(4').
Therefore, if lift'(A) intersects lift’(A’) then both the intersections OV (A') Nlift'(A) and
OVe(A) Nlift’(A’) are non-empty. On the other hand, by the definition of the labeling, if
lift(A) intersects Ve (A’) then A’ € ®(A) . Therefore, if A is connected to A’ in G/, then
the labeling between A and A’ is symmetric. We conclude that interestingly, the dual of
R does not contain singularities of the first type. However, it may contain singularities
of the second type that are more difficult to detect.

According to Proposition 6 and the above discussion, the union of the Delaunay fibers
between the sections connected in the graph G/, does not contain any singularity of type
1. Thus, using the Delaunay fibers to connect the corresponding sections in G seems
promising to improve the geometrical shape of Rj,.
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A A
A A
A" An A' Aff
A

| ¥ |

A

(a) Tangent Delaunay fibers between the sections.

A / ) A

(b) Corresponding labeling between the sections: A’ € ®(A) if there exists a € A such that
¢(a) is a point in A’. The point b is an example of a branching point for which ¢(b) is not
unique.

Figure 2.19: In all cases, the labeling between A and A’ is symmetric, except in the last
case where A € ®(A’) and A’ ¢ ®(A). As the last figure shows, in this case the tangent
Delaunay fibers between A and A’ (in red) create a singularity at A. See Proposition 6.
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4.4 Two Dual Objects : Kernel and Spine

In this section, we will use the Voronoi-Delaunay duality to present a set of Delaunay
fibers, called the spine that has the same homotopy type as R’. As a consequence, the
topological guarantees for the reconstructed object R;, hold for the spine as well.

We have seen that the intersections of the lifts of the sections on VorSkel(S¢) play a key
role in the sections connectivity. This leads us to define a subset of VorSkel(S¢) called the
All-Lift Part that will be used later.

Definition 40 (All-Lift Part all —1ift(S¢)) A point m € VorSkel(Sc) is said to be in
all — lift(S¢) if and only if m is on the lift of all its nearest points in Sg, i.e., all the
orthogonal projections of m onto its nearest sections lie in S¢. See Figure 2.20-left. In
particular, on a Voronoi 2-face of VorSkel(S¢), the intersection of the lifts of the two
corresponding sections is in all — lift(S¢).

Proposition 7 The all-lift part of VorSkel(S¢) is piecewise planar, i.e., is composed of
planar patches.

Proof Let S; and S5 be two sections on the cutting planes P; and P», such that lift’(S;)
and lift'(Sy) intersect. This intersection is the locus of points in C that are at the same
distance from P; and P». Thus, lift’(S;) and lift’(S3) lies on the bisector plane of P; and
P,. Therefore, the intersection of all — lift(S¢) with each Voronoi 2-face of VorSkel(S¢) is
planar. a

Using the all-lift part of VorSkel(S¢), we first present a subset of R, called the Kernel,
that as we will see, has the same homotopy type as R/, and is easily computable.

Figure 2.20: 2D example: Left) all — lift(S¢) in purple. Right) The kernel K¢ = S¢ U
L'71(all — 1ift(S¢)) in green, that captures the connectivity between the sections induced
by Re.

Definition 41 (Kernel) The kernel of C is defined as K¢ = S¢ U L'71(all — lift(S¢))
which is the union of the sections in S¢ and the segments that link each m € all — lift(S¢)
to its orthogonal projections onto the nearest sections. The Kernel is then defined as
K = Ke, see Figure 2.20-right.
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Conformity of the kernel with the given sections : Let us note that I conforms to
the given sections. This is due to the fact that the all-lift part of VorSkel(S¢) may intersect
OC only along the sections. Therefore, £'~1(all — lift(S¢)) does not intersect OC \ S¢. This
is the principal geometrical advantage of the kernel with respect to the intermediate defined
reconstructed object R’. (No need to thicken the cutting planes.)

We now prove that the kernel captures the topology of the reconstructed object R’.

Theorem 25 K is homotopy equivalent to the reconstructed object R'.

(a) : Se U (b) Re
£ all—hft

) An intermediate shape ho- ) Deformation of R to the
motopy equivalent to Kc. mtermedlate shape (in red).

Figure 2.21: Homotopy equivalence between K¢ and R.

Proof For any cell C of the arrangement, we present a homotopy equivalence between K¢
and R; whose restriction to S¢ is the identical map. According to the generalized nerve
theorem, presented in the first chapter, these homotopy equivalences provide a homotopy
equivalence between K and R'.

Consider the union of the sections in S¢ and an infinitesimal thickening of £/~ (all — lift(S¢))
at each section, see Figure 2.21-c. This intermediate shape, denoted by IEC, is homotopy
equivalent to K¢. The key idea is that R, can be retracted to this intermediate shape as fol-
lows (see Figure 2.21-d) : the deformation moves the points in £'~1(lift’(S¢)\ all — lift(S¢))
in the direction orthogonal to the sections until a point in IEC is reached. This deformation
gives a homotopy equivalence between R} and IEC, which is itself homotopy equivalent to
Ke. Od

In Section 2.1, we defined the all-lift part of VorSkel(S¢) (denoted by all — lift(S¢)) as
the locus of points m € VorSkel(S¢) such that m is on the lift of all its nearest points in
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Sc. Using the Voronoi-Delaunay duality, we define a new object, called the spine, that is
homotopy equivalent to the kernel with some geometrical advantages.

Definition 42 (Spine) Consider the dual of the all-lift part, denoted by all — lift*(Se).
It is the union of the Delaunay simplices circumscribed by a ball o(m) so that m is on the
lift of all the contact points of o(m) in S¢. In other words, all — lift*(S¢) is the union of
the Delaunay simplices [a1, ..., ax] with vertices aq,...,ax € S¢, for k € {2,3,4}, so that
its circumscribing Delaunay ball is tangent to the supporting cutting planes of a;, for all
1 <4 < k. We now define the spine as the union of all — lift*(S¢) and the sections of Sg,

see Figures 2.22and 2.23.

(a) A Delaunay fiber in the ) A part of VorSkel(Sc) col- ) The Spine in purple. Other
spine (in purple) dual to a point ored in red, all — hft(Sc) is the Delaunay fibers in blue.
m € all — lift(S¢). bold part. R'c in green and the

kernel in dark green.

Figure 2.22: 2D Example of Voronoi-Delaunay Duality.

- 8

(a) A Delaunay simplex in the (b) The spine in purple. (c) Inflating the spine.
spine (in purple) dual to a point
m € all — lift(Se).

N

Figure 2.23: 2D Example of the spine.

Theorem 26 (Duality) The spine is homotopy equivalent to the kernel (and so to the
reconstructed object).

Proof We recall that the spine is defined as S¢ U all — lift*(S¢) and the kernel is defined
as Se U £/~1(all — lift(S¢)). Thus, it will be sufficient to show that all — lift*(Sc) and
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L'=1(all — 1ift(S¢)) are homotopy equivalent. Consider £'~!(all —lift(S¢)) which is the
union of the segments that link each m € all — lift(S¢) to its orthogonal projections onto
the nearest sections. As illustrated in Figure 2.24, the dual of such point m* = [a, d'] can
be deformed to the union of the two segments [a,m] and [m,a’]. Around the Delaunay
simplices with three or four vertices of the spine, defining the deformation needs more
care. Figure 2.25 shows the deformation in such a case in two steps. Consider a thickening
(colored in green in Fig.2.25-a) of the three segments that connect the dual of the Delaunay
triangle to its vertices. The triangle is easily deformable to this green object. On the other
hand, Figure 2.25-b shows the deformation of each group of the Delaunay fibers (in blue)
to the corresponding part of the kernel.

It is well-known that the Delaunay fibers do not intersect each other except on their
endpoints. Moreover, the segments of £'~1(all — lift(S¢)) have trivially the same property.
Therefore, the above deformation is well-defined and one-to-one continuous function and
forms a homotopy equivalence (even a homeomorphism) between the spine and the kernel

in each cell of the arrangement. O
(a) The Delaunay fiber aa’ can ) The kernel in dark green. ) The spine in purple.

be deformed to the union of the
two segments am and ma’.

Figure 2.24: The spine and the kernel are homotopy equivalent.

@%@ .

(a) The Delaunay tri- ) Each group of the Delaunay fibers (in blue) is ) The kernel.
angle is deformed to deformable to the corresponding part of the kernel.
the green part.

Figure 2.25: Deformation of the spine to the kernel around a Delaunay triangle.
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4.5 Inflating the Spine

In the previous sections, we defined the spine Spine(S¢) as the union of S¢ and the set of
Delaunay simplices T' such that the circumscribing Delaunay ball of T" is tangent to the
supporting cutting planes at all its contact points in S¢. According to Theorem 25 and
Theorem 26 of the previous section, the spine has the same homotopy type as the recon-
structed object Ri. As a consequence, the topological guarantees for the reconstructed
object R hold for Spine(S¢) as well. As Figure 2.24 shows, using the spine as the connect-
ing object between the sections provides a better appearance for the reconstructed object.
Moeover, a natural idea is to inflate the spine by adding other Delaunay fibers, in order to
obtain a well shaped object:

Definition 43 (Inflated Spine D) We define D¢ as the union of S¢ and all tangent De-
launay fibers between the sections that are connected by some Delaunay fibers in Spine(Se).
We define D as the union of D¢ for all C. In particular, D contains the spine. See Fig-
ure 2.26.

(a) The spine in purple. (b) The Spine in purple. Other
Delaunay fibers in blue.

Figure 2.26: Left) The spine of a cell. Right) Inflated Spine.

2D Case

Consider the 2-dimensional variant of the reconstruction problem, that consists of con-
structing a 2D-shape from its intersections with arbitrarily oriented cutting lines in gen-
eral position. In this case, the sections (and the branching subsections) are line-segments.
The Delaunay fibers between two subsections (subsegments) forms the convex hull of the
two subsegments. We now show that D is homeomorphic to R'. As a consequence, the
topological guarantees for the reconstructed object R’ hold for D as well.

Proposition 8 D is a topological manifold with boundary that conforms to the given
sections.

Proof We will show that the inflated spine has no singularity. A singularity in the 2-
dimensional variant of the reconstruction consists of connections between sections along
zero dimensional features.
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As Figure 2.26-right shows, the set of all tangent Delaunay fibers between two correspond-
ing branching subsections in the spine coincides with their convex-hull. As any cell C of
the arrangement of the cutting lines is convex, the Delaunay fibers between S¢ lie entirely
inside C and conform to the given sections. Moreover, each group of tangent Delaunay
fibers between two subsections intersects the cutting planes along these subsections that
are one-dimensional. We can eagily infer that for each cell C of the arrangement, D¢ has
no singularity. When we glue the various D¢ together, a singularity may be created only
in the following degenerate case:

Consider a face f of the arrangement and the two incident cells C and C’. If the branching
diagrams of C and C’ intersect in f then intersection points are singular, see the singularity
at point b in Figure 2.27. In 2D, as the cutting lines are supposed in general position such
a case cannot happen, and D is a topological manifold with boundary. O

Figure 2.27: A degenerate case: A singularity at point b which is on the intersection of the
two branching diagrams, corresponding to the two adjacent cells.

Proposition 9 (Provably Good 2D Reconstruction) D is homeomorphic to R’.

Proof By the definition of the spine and D¢, there is a bijection between the connected
components of D¢ and Rj. On the other hand, all the connected components of D¢ or R,
are 2-dimensional disks. Therefore, there is a homotopy equivalence between each pair of
corresponding connected components of D¢ or R;;. This provides a homotopy equivalence
between D¢ and Rp. As we explained in detail in Section 4.4 of the first chapter, using
the generalized nerve theorem, the homotopy equivalences in the different cells of the
arrangement can be extended to a homotopy equivalence between D and R’. Finally, since
D and R’ are two homotopy equivalent 2-dimensional topological manifolds, we conclude
that they are indeed homeomorphic. O

3D Case

However, in the 3D case, the problem is that there may be some singularities in De. Fig-
ure 2.28 shows an example. These singularities should be detected and removed. Pruning
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(a) Two parallel sections. (b) The spine. (¢) All tangent Delaunay
fibers between them (Dc¢).

Figure 2.28: The two (blue) sections are connected to each other in the spine (in purple).
However, the set of all tangent Delaunay fibers between them (D¢) may have singularities,
i.e., connections along zero or one dimensional features (in red).

De until there are no singularities in the structure is the last step of the 3D reconstruction
algorithm that will be presented in the following.
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5 Discrete Algorithm

We consider the discrete case of the problem: We are given some polygonal contours in the
cutting planes. We suppose that the contours are oriented in such a way that O is always
on the left side of an oriented edge of a contour. For each cutting plane P, a connected
component of ON P is called a section, and is bounded by some of the given contours (and
may be nested). The vertices of these polygonal contours are called the section-vertices.
The section-vertices and the equation of their planes form the input of our algorithm. (We
will assume that at the intersection between the cutting planes, the corresponding sections
conform with each other.) The Delaunay-based algorithm that we propose contains the
following main steps:

1. Compute the sections of the cells of the arrangement.

In each cell C:

2. Compute the connectivity graph G/ between the sections induced by R, in two
steps:

e First find a graph G”¢ such that G/ is a subgraph of G”¢c (see below for the
definition).

e Extract G/ from G"¢.
3. Compute D¢ the set of all Delaunay simplices between the sections connected in G
4. Prune D¢ to reach a subcomplex without singularities.

5. Glue the portions of the reconstructed object together.

In this section, we explain in detail the three first steps of this algorithm and present
an efficient way to compute the connectivity between the sections. The last step which
corresponds to the pruning procedure of D¢ is very similar to the pruning procedure we
will present in Chapter 3. We refer to this chapter for more details on this procedure.

5.1 Step 1: Computing the Sections in Each Cell of the Arrangement.

In this step, we apply a fast and easy method to cluster the sections into groups: each
group consists of all the sections that appear on the boundary of a cell of the arrangement.
The algorithm does not compute the arrangement of the cutting planes directly. (As we
are not interested in the cells without sections, there is no need to compute them.) The
method works as follows:

Let P = {Py,..., P} be the family of all the given cutting planes. Each P; bounds two
half spaces that we call H(P;) and H_(F;). Each section-vertex a is either on the plane
P; or belongs to exactly one of the two half spaces Hy (F;) or H_(F;). If a is on a cutting
plane P;, a is on the boundary of two cells of the arrangement, one contained in H (F;)
and one contained in H_(P;).
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In order to find groups of section-vertices that are on the boundary of the same
cell of the arrangement, to each section-vertex a we will associate two binary signature-
vectors of size k which encodes the position of a with respect to the k cutting planes.
The signature-vectors of a, denoted by S_(a) = (S—1(a),...,5_k(a)) and Si(a) =
(Sta(a),..., S+ k(a)), are defined as follows.

If a € H (P;), we define S_;(a) = S4i(a) = 1. Symmetrically, if a € H_(F;), we
define S_ ;(a) = 54 i(a) = 0. If @ € P; then we define S_ ;(a) = 0 and Sy ;(a) = 1. Indeed,
this definition can be seen as a duplication of the section-vertex a € F; to two vertices, one
on the boundary of the adjacent cell which is contained in H, (P;) and one on the boundary
of the cell which is contained in H_(FP;). This strategy allows us to distinguish between
these two copies of a that correspond to the two different signatures of a. We note that,
knowing the equation of P;, S ;(a) is easily computable by the sign of a determinant. All
the section-vertices on the boundary of a cell of the arrangement have the same signature
and vice versa. To identify them, it is sufficient to sort the set of signatures of the section-
vertices. Any group of identical signatures corresponds to the group of all section-vertices
on the boundary of a cell of the arrangement.

It may happen that the vertices of a section do not have the same signature: Figure 2.29-
left shows an example of two sections that intersect along the intersection between their
supporting cutting planes. Each of these sections should be divided into subsections that
will appear on the boundary of different cells of the arrangement. This subdivision is
determined by the signature of their vertices. A cluster of vertices with the same signature
corresponds to a subsection. Using the signatures of these clusters, we characterize the
cutting planes that intersect the section, and add some additional contour-points along the
intersection between the cutting planes. After this first refinement obtained by subdividing
the original sections into some new connected regions bounded by polygonal contours
(called sections again), we can assume that each section is shared by two cells of the
arrangement of the cutting planes.

5.2 Step 2 : Computing the Connectivity Graph between the Sections.

Let S¢ be the set of all the sections that appear on the boundary of a cell C of the
arrangement. We note that S¢ is given by the clustering algorithm of the first step. We
recall the definition of the connectivity graph between the sections of S¢, denoted by G/
(see Section 2.1):

Each vertex in G/ corresponds to a section in S¢, and there is an edge between the
corresponding vertices of two sections A; and As if lift’(A;) and lift'(As) intersect on
VorSkel(Se).

We describe below how the connectivity graph G/, can be computed without computing
the 3D Voronoi diagram of the sections.

By the definition of the connectivity graph, for a given section A; € S¢, the goal will be to
find all the sections As in S¢ such that lift’(A1) intersects lift’(As). We use the fact that
by definition lift' (A1) C Ve(A7) and lift' (A2) C Ve(Az). Therefore, if lift'(A;) intersects
lift’(As) then both the intersections Ve (Az) N1ift’ (A1) and OVe(Ar) Nift' (As) are non-
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empty. We will use this property to construct the connectivity graph G/. Note that as
Figure 2.29-right shows the converse is not necessarily true.

Figure 2.29: Left) An example of two sections that intersect along the intersection between
their supporting cutting planes. Right) An example where both dV¢(A’) N lift'(A) and
OVe(A) Nlift'(A’) are non-empty, but lift'(A) N1ift’(A’) is empty.

Definition 44 (Definition of the Graph G”¢) For each S¢, the graph G”¢ on the set
of vertices S¢ is defined as follows: there is an edge between two sections Ay and As in S¢
if and only if OV (Ag) N1ift' (A1) # 0 and OVe(Ar) NLift'(As) # 0.

Proposition 10 G/ is a subgraph of G”¢.

Proof Two sections A; and Ay are connected in G} if and only if lift'(A;) N1ift'(Ag) # 0.
Since lift' (A1) C Ve(Ar) and lift’ (A2) C Ve(As), both the intersections OV (Az) Nlift’ (Aq)
and OV (Ap)Nlift' (As) are non-empty. Therefore, A; and As are connected in G”¢. O

The advantage of defining the graph G”¢ is that it is easily computable, and using the
edges of G”¢, we can find G;. We first explain how G/ can be extracted from G”¢. Then
we provide an algorithm to compute G”¢

How to extract G/ from G"¢?

Let A; and As be two different sections in S¢, on cutting planes P; and Ps, respectively,
that are connected in G”¢. The intersection lift'(A;) N1ift'(A2) is the locus of points in C
that are at the same distance from P; and P,. Thus, if lift’(A;) N1ift'(A2) # 0, then this
intersection should lie on the bisector plane of P; and P, denoted by Pjs. This gives an
easy way to extract G/ from G”¢:

For each pair of sections connected in G”¢, we compute the bisector plane of the
supporting cutting plane. We consider the lift of each section on this bisector plane. The
two sections are connected in gg, if and only if the two lifts intersect.
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A

Figure 2.30: The role of G”¢ is crucial in this strategy: in this example, the lifts of two
sections A and A’ on the bisector plane P intersect, while the intersection of their lifts on
VorSkel(Se) is empty. In this case, A and A" are not connected in G”¢.

Remark : One can think of applying this test on every pairs of sections, in order to
compute G directly (without computing G”¢). Figure 2.30 shows an example where the
lifts of two sections on the bisector plane intersect, but the intersection of their lifts on
VorSkel(S¢) is empty.

How to compute G"¢?

We now present an algorithm to construct G”¢ without computing the 3D Voronoi diagram
of the sections. For a given section A, the goal is to find all the sections A’ so that the
lift of A on VorSkel(S¢) intersects the Voronoi cell of A, i.e., OVc(A") N lift'(A) # 0.
Consider the skeleton of VorSkel(S¢), which is the locus of points in C that have at least
three nearest points in the sections of S¢. More intuitively, this is the part of VorSkel(S¢)
which separates the 2-dimensional Voronoi faces. We now orthogonally project the skeleton
of VorSkel(S¢) onto the cutting plane of A. This projection separates the projection of
OVe(A') for A’ € S¢ distinet to A. The key idea is that in order to check the intersection
OVe(A) N1ift’(A) on VorSkel(S¢), we can verify the intersection of A with the projection
of OV¢(A"). Using this idea, the graph G”¢ can be computed in tree steps:

e Compute the orthogonal projection of the skeleton of VorSkel(S¢) onto each face of
C, called the branching diagram.

e Perform a labeling ®(A) for each section A such that:
A section A’ is in ®(A) if OVe(A") N1ift'(A) is non-empty.

e Extract pairs [A4, A’] of sections such that A" € ®(A) and A € ®(A") (symmetric
labeling).

93



CHAPTER 2. SECOND METHOD BASED ON THE VORONOI DIAGRAM OF THE
SECTIONS

The branching diagram, defined in Section 4.1, plays a key role here. Let us recall the
definition.

Definition 45 (Branching Diagram, and Branching Subsections of a Section) The
branching diagram of a face f of C is defined as the partition of f by the orthogonal pro-
jection of the 1-skeleton of VorSkel(S¢) onto f. See Figure 2.31-left. Given a section A
contained in a face f, the branching diagram of f subdivides A into so-called branching
subsections.

Labeling Definition : Let A be a section in S¢ and let E be a branching subsection
of A. lift'(E) lies on a Voronoi 2-dimensional face. We define ®(E) as the unique section
A’ such that lift'(F) intersects V¢ (A’). We also define ®(A) as the set of all ®(E) for
all branching subsections E of A. See Figure 2.31-right. By the definition, A’ € ®(A) if
lift’(A) intersects OVe(A’). Thus, A is connected to A’ in G”¢ if and only if A € ®(4’)
and A’ € ®(A). In this case, we say that the labeling between A and A’ is symmetric.

Therefore, knowing the partition of the sections by the branching diagram, we can
easily construct the graph G”¢. We will see that the branching diagram can be computed
by a 2-dimensional geometric diagram, known as Moebius diagram, at each face of C.

(a) The branching diagram of a face (b) The partition of a section of f
f of C (in blue). into branching subsections.

Figure 2.31: Labeling definition using the branching diagram: ®(8) = {3,4,6,7}.

Branching Diagram Computation

In the case where all the cutting planes are parallel, any cell C of the arrangement is
bounded by two parallel planes, say P and P’. It is easy to see that the branching diagram
on the face P is the orthogonal projection onto P of the 2D-Voronoi diagram of the sections
of P'. See Figure 2.32-1eft. In the general case, the computation of the branching diagram
of a face of C can be done in the following way. Let P be the supporting plane of this face.
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We show that the branching diagram on P can be computed by a 2D generalized Voronoi
diagram called Moebius diagram.

Figure 2.32: For a cell bounded by two parallel planes P and P’, the branching diagram on
a plane P is the orthogonal projection onto P of the 2D-Voronoi diagram of the sections of
P’. In general case, the branching diagram is a 2D Moebius diagram with circular edges.
The two sections colored in blue have symmetric labellings and are connected in G”¢.

Definition 46 (Moebius Diagram) Let U = {Uy,..., U} be a set of doubly weighted
points of RY, where U; = (pi, Miy j1s), i 15 a point of RS and A\, p; are real numbers. For a
point x € RY, the distance from x to the doubly weighted point U; is defined as

A (z,U3) = Nd(x,pi)® — i

We can then assign each point x to the doubly weighted point U; that is closest to x with
respect to the distance dps(.,.). The subdivision induced by this assignment is called the
Moebius diagram of U. The Moebius diagram is a generalization of both the power diagram
and the multiplicatively weighted Voronoi diagram, and has circular edges. See [BK03] for
more delails.

To compute the branching diagram, we proceed as follows:

We know that a point on the branching diagram is the projection of a point x on the
skeleton of VorSkel(S¢). Such a point x has the same distance from P and two section-
points b and o'. We denote by 7 (b), 7(V') and w(x), the projection of b, ' and x onto
P, respectively. According to the definition, m(z) is on the branching diagram of P. As
Figure 2.33-left shows, we have:

d(z, P)* = d(z,b)* = d(n(x), 7 (b))* + (d(b, P) — d(z, P))?

So
d(n(z),7(b))*
d(b, P)
Since we have a similar equality for ', the branching diagram on P is the locus of the
points 7(x) such that:

+d(b, P) = 2d(z, P).

d(r(z), m(b))*

d(b P) +d(V, P)
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.b/

L
- 7(3,5)

;
T(2,4)

.-' T(4,5)

Figure 2.33: Right) To prove that the branching diagram is a 2D Moebius diagram. Left)
An example of the partition of the sections with the branching diagram. Each branching
subsection of Section 1 corresponds to a section in {2,3,4,5}.

for some points b and ¥’ in the sections of S¢. Thus, to compute the branching diagram
of P, we project all the sections in S¢ (except the ones that lie on P) orthogonally to
P. For each vertex b; of a polygonal contour, m(b;) is weighted by (m, —d(b;, P)).
The branching diagram of P is then included in the 2D Moebius diagram of the projected
vertices of the sections. More precisely, it is on the intersection of the Moebius cells of the
pairs of vertices that are not both in the same section.

Steps 3 and 4 : Delaunay Computation and Removal of Singularities.

According to discussions in Section 4, the branching locus of the union of the Delaunay
fibers is on the branching diagram. In order to improve the branching between dissim-
ilar sections, we propose to add a sample of the branching diagram (colored in green in
Figure 2.34) to the given sample of contours. This strategy has been also employed by Bois-
sonnat and Geiger in [BG93], by adding vertices on the projection of the medial axis of the
adjacent contours for the case of parallel sections, as had been proposed in [Sha81]. The re-
sults provided in Figure 2.33-right and Figure 2.34 (generated using a CGAL-based( [CGA])
prototype implementation of Moebius diagram by Christophe Delage [Del07]) show some
examples of the branching diagram’s computation.

We can now consider the Delaunay triangulation of the union of the contour points
and the branching points. Using the branching diagram and the corresponding labeling
P, we can find the set of all Delaunay simplices between the sections connected in Gf,
denoted by D¢. As said before, D¢ may contain singularities that should be detected and
removed. We will present an algorithm to prune D¢ until there are no singularities in
the structure. Nevertheless, one can think of pruning the whole Delaunay triangulation
to reach a subcomplex without singularities. This is what will be presented in the next
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Figure 2.35: Some examples of the automatic computation of the connectivity graph: the
input is a sample of the contours of the sections (points in red). In the input, a connectivity
between two sections is illustrated by some thin red line segments.

chapter (which will be referred as Method 3). The pruning procedure of D¢ is identical
to the pruning procedure that we will apply to the whole Delaunay complex, in the next
chapter. Therefore, let us refer to Chapter 3 for the details of the pruning procedure. We
end this chapter with presenting some preliminary experimental results of the algorithm,
implemented in C++ using the CGAL library [CGA].

Complexity Analysis

We end this section by analyzing the complexity of the above algorithm. Suppose that
we have k cutting planes and n points on the boundary of s sections. Let C; be a cell
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in the arrangement of the cutting planes. We write n; for the number of points in Cj,
and s; for the number of sections in C;. Assuming that the cutting planes are in general
position, each point is on the boundary of O(1) cells, and we have )", n; = O(n). For the
first step of the algorithm, we have n.k orientation tests in order to define the signature of
each point with respect to each cutting plane. There are n.k signatures that are sorted in
time n.klog(n.k). The subdivision of the sections is done in linear time. For the second
step that concerns the computation of the connectivity graph, for each cell C;, we need to
compute the 2D Moebius diagram of at most n; points in each face of C;. As we know,
we can compute 2D Moebius diagrams of n points in Mob2(n) = O(n?) time (see [BK03]
and [Del03]). Finally, to find the connectivity between the sections, we have a test for
each pair of the corresponding sections in G”¢ to check if their lifts intersect. This can be
done in constant time for each pair of corresponding sections. Therefore, as each cell has
at most k facets, the complexity of computing the connectivity between the sections (the
two first steps of the algorithm) is at most:

n.k + n.klog(n.k) + Z(k.Molﬂ(ni) + 81(812_1))
C;
< n.k+n.klog(n.k) + Z(kO(n?) + n,(n;—l)) < k.O(n?).

C;

As will be discussed in the next chapter, the two last steps of the algorithm can be done
in O(n?) time.

Conclusion

In this chapter, motivated by reconstructing tree-like structures from sparse sectional data,
we presented a Voronoi-based algorithm which performs more connections between the
sections compared to the first method. We proved that the resulting reconstructed object
R’ is homeomorphic to the original shape O under appropriate sampling conditions. The
particularity of the new sampling conditions, compared to the sampling conditions we
proposed for the first method, is that they are easier to be satisfied for tree-like structures.

In order to improve the jagged and unnatural appearance of R’, specially along the
Voronoi diagram of the sections, we defined a Delaunay-based dual for the reconstructed
object, called the spine. We proved that the spine is homotopy equivalent to R'. Finally,
we provided a discrete algorithm to reconstruct the spine.

From an algorithmic point of view, we showed that the computation of the whole
arrangement of the cutting planes can be avoided, and the sections of each cell of the ar-
rangement can be determined by some orientation tests with respect to the cutting planes.
We also presented an efficient way to compute the connectivity between the sections, with-
out computing the Voronoi diagram of the sections, using a 2-dimensional generalized
Voronoi diagram on each face of the cell. According to the presented guarantees for the
sections-connectivity induced by R(, this algorithm provides a provably good solution for
the correspondence problem between the sections, and may be used independently of the
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Delaunay structure. As we mentioned before, there are methods which consider the cor-
respondence and the interpolation problems independently. So using this algorithm, one
can obtain the provably good connectivity and then the interpolation between the corre-
sponding sections can be performed by different methods, depending on the properties of
interest for the reconstructed surface in each application.

Moreover, we characterized the branching locus of the union of the Delaunay simplices
and presented an efficient algorithm to compute it. For the particular case of parallel
sections, this result justifies the improvement on the branching between dissimilar sections
that was performed by Boissonnat and Geiger in [BG93|, by adding vertices on the projec-
tion of the medial axis of the adjacent contours. In the following chapter, we will present
a generalization of their method to the case of arbitrarily oriented sections, and provide
some experimental results.
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(a) The input is a sample of the contours of the sections
(each slice in a different color).

(b) Output.

-, o
s TP L

(c) Output (another view).

100 Figure 2.36: Reconstruction Example.



Chapter 3

Third Method: Generalization of
Boissonnat and Geiger’s Method

In the previous chapter, we presented a method based on the Voronoi diagram of the
sections. Relating the sections connectivity to this Voronoi diagram, allowed us to obtain
topological guarantees for the resulting reconstruction. Also, using the Voronoi-Delaunay
duality, we obtained topological justifications for the dual Delaunay-based approach. The
Delaunay-based algorithm we present in this chapter is somewhat different from the dual
of the previous method, in the sense that it may perform more connections between the
sections. Figure 3.1 shows a configuration of sections for which the resulting connectivity
by the two methods is different.

A’ A’

A A

Figure 3.1: The reconstructed object R”¢ of the third method (left) performs more con-
nections than the reconstructed object R, of the second method (right).

Increasing the connectivity between the sections is motivated by reconstructing tree-like
structures from sparse sectional data. Our preliminary experimental results presented at
the end of this chapter, are quite promising, regarding the practicality of this approach to
reconstruct complex cross-sectional branching situations such as the coronary arterial tree.
This method can be seen as a generalization of Boissonnat and Geiger’s method [BG93]
that was restricted to the case of parallel (or serial) cutting planes.
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(c) Removal of the external tetrahedra (d) The resulting sub-complex contains singu-
larities

(e) Removal of the singularities (f) Final reconstructed object without singu-
larities

Figure 3.2: Different steps of the algorithm.
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1 Discrete Delaunay Structure

In Section 5 of the previous chapter, we showed how the computation of the whole arrange-
ment of the cutting planes can be avoided, and the sections of each cell of the arrangement
can be determined by some orientation tests with respect to the cutting planes. Moreover,
in Section 4 of the previous chapter, for each cell of the arrangement, we characterized
the branching locus of the Delaunay structure which is on the branching diagram, and
we presented an algorithm to compute it from a set of sample points on the contours of
the sections. To consider the discrete Delaunay structure, instead of sampling the whole
sections of the cell, we propose to consider a sample of the contours of the sections, called
the contour-vertices, and a sample of the branching diagram, called the branching points.
Let B¢ be a sample of the branching points of C and V¢ be the set of contour-vertices. We
consider now DT'(V¢ U Be¢), the 3D Delaunay triangulation of the union of the contour-
vertices and these added points. This triangulation, called Dy in the sequel, contains the
reconstructed object R”¢ as a subcomplex. All the considered vertices are in the sections
and called section-vertices.

We will assume the following condition to be satisfied, which can always be ensured by
adding finitely many new vertices on the section contours and on the branching diagram.
More details are provided in [ET93].

Delaunay Conformity Condition on V; and Bz : We assume that the edges of the
section-contours are edges of Dg. Similarly, we assume that any two branching vertices
that are consecutive along B¢ are joined by an edge in Dy.

Let us fix some notations for the simplices of Dy.

Grounded simplex is a simplex whose vertices all lie in a same cutting plane. We
distinguish three types of grounded edges depending on the relative position of the
edge with the corresponding section

1. Contour-edge A grounded edge which is an edge of the section-contour.

2. Internal-edge A grounded edge which lies inside the section (but not on its
contour).

3. External-edge A grounded edge which lies outside the section.
We distinguish two types of grounded triangles :

1. Internal-triangle A grounded triangle which lies inside the section.
2. External-triangle A grounded triangle which lies outside the section.
Ground of an edge To each grounded edge e, we associate the two grounded trian-
gles t.(e) and t;(e) that are incident to e. The ground of e is the intersection of

{t,(e), t;(e)} with the sections. For example, if e is a contour-edge then the ground
of e contains a single triangle.
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Ground of a section-vertex To each section-vertex v, we associate G(v) the set of
grounded triangles incident to v. The ground of v is the intersection of G(v) with
the section.

Types of tetrahedra The tetrahedra of Dy are of four types, see Figure 3.3. A tetrahe-
dron of the first type, 5, has a grounded face (triangle) on a cutting plane. The
tetrahedra of type T, have two grounded edges on two different cutting planes. The
tetrahedra of type Tey, have a single grounded edge and intersects two other cutting
planes at a single vertex. The tetrahedra of type T}, have a vertex on four different
cutting planes.

(a) T’Uf (C) TE}’UU (d) ﬂivuv

Figure 3.3: Types of tetrahedra.

According to the Delaunay conformity condition, any grounded edge is either a contour-
edge, an internal-edge, or an external-edge, and any grounded triangle is either internal or
external.

Definition 47 (External Tetrahedron) A tetrahedron of Dy with an external grounded
edge or triangle will be called external, see Figure 3.2c.

2 Pruning of the Delaunay Complex

Figure 3.2b shows an example of the 3-dimensional Delaunay triangulation. We will prune
the 3-dimensional Delaunay triangulation Dy, to obtain a complex which (i) conforms to
the given sections and (ii) has no singularities, i.e., connections between sections along
zero or one dimensional features. In the sequel, the latter condition is called the solidity
condition. The pruning of Dy is done in three steps. We call the resulting subcomplexes
Dy, Dy and D3 respectively. D; is the maximal subset of Dg that conforms to the given
sections. D; may not satisfy the solidity condition and further tetrahedra have to be
removed until the solidity condition is verified. This procedure is done in two steps : in
Step 2, we compute the maximal set of tetrahedra of types T;,¢ and Te. (each linking two
cutting planes), which verifies the solidity condition, see Section 2. Then in Step 3, we
add to Do, as many tetrahedra of type Tey, and Ty as possible while maintaining the
solidity condition.
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Step 1 : Removal of the external tetrahedra We remove from Dy all the external
tetrahedra. The resulting subcomplex of Dg is noted D;.

Step 2 : Solidity check around grounded edges Let us make precise the solidity
condition in this context. For this, we need the following definitions.

Definition 48 (Shell of a grounded edge (section-vertex)) For D' C Dy, the shell
of a grounded edge (section-vertex) e is defined as the tetrahedra of D’ which contain e.
In the sequel, we write Shp/(e) for the shell of e in D’. When the context is unambiguous,
we may occasionally drop D’ and write Sh(e).

Definition 49 (Face-to-face connectivity) Two tetrahedra T and T’, are said to be
face-to-face connected in D', if there exists a sequence of tetrahedra T' =Ty, ..., T, =T
such that for all 4, T; € D’, and T;_1 and T} share a face.

Definition 50 (Solidity at a grounded edge (section-vertex)) D’issolid at a grounded
edge or section-vertex e, if any tetrahedron in Sh(e) is face-to-face connected (in D’) to at
least one tetrahedron containing a grounded triangle incident to e. Such a shell is called
solad.

The goal of this step is to prune D; to obtain a solid complex, whose tetrahedra are
all incident to a pair of cutting planes. To consider the connections between the pairs of
planes, we remove the tetrahedra of type Tey, and Tyyyy- The goal is now to prune around
the grounded edges. We prune the incident tetrahedra of a grounded edge until we obtain
a solid shell. Figure 3.4b shows all the possible configurations of a solid shell, resulting

from Step 2.
e e e

(a) Disconnected tetrahedra from the ground are colored in red. They form
a singularity at e.

(b) Configurations of a solid shell.

Figure 3.4: A 2D view of the shell of a grounded edge e. e is perpendicular to the figure
plane.
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Shell Pruning Description Let 7" and T’ be two tetrahedra incident to a grounded
edge e. A pivot from T to T” around e is a sequence of face-to-face connected tetrahedra
incident to e joining T to T”, see Figure 3.5.

Figure 3.5: A pivot from T to T around e, that contains four tetrahedra. A 2D view of
these tetrahedra is shown on the right.

Figure 3.6: A disconnected tetrahedron from the ground of e is between two eliminated
tetrahedra. A 2D view of Sh(e) is shown on the right.

During the pruning process, a tetrahedron t € Sh(e) is disconnected from the ground of
e if and only if it lies between two eliminated tetrahedra incident to e, see Figure 3.4a. We
compute these tetrahedra as follows. For an eliminated tetrahedron T' € Sh(e), we start
pivoting at 1" around e until we find another eliminated tetrahedron or a T, tetrahedron
incident to e, called T”. The pivot sequence consists of T,. tetrahedra all sharing edge e.
To any such T, tetrahedron, we can associate a direction corresponding to the direction
of the pivot. In our algorithm, we store this orientation as an orientation on the other
grounded edge of the tetrahedron (distinct from e).

We apply the same procedure to all the eliminated tetrahedra of Sh(e). A T¢, tetrahe-
dron incident to e is disconnected from the ground of e if it is visited twice with different
directions, Figure 3.6. Note that if during a pivot we reach a tetrahedron already oriented
with the same orientation as the pivot, we can stop the propagation.

We are now in a position to describe Step 2 of the algorithm :
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1. We put all the eliminated tetrahedra in a list E'L.
2. While EL # () do

(a) For a tetrahedron 7' € E'L do
(b) For any grounded edge e of T' do

e Start pivoting at T around e and orient the visited tetrahedra until an
eliminated or T, tetrahedron is reached.

e If a tetrahedron t receives two opposite orientations, mark t as eliminated
and add it to E'L.

(c) Remove T from the list (EL = EL\T).

3. Eliminate the face-to-face connected subsets of T,y which share no face with the
non-eliminated T, tetrahedra.

4. Do is the set of non-eliminated tetrahedra.

Complexity of Step 2 Let s be the total number of tetrahedra in Dy. We claim that
Step 2 can be performed in O(s) time. Indeed, a tetrahedron of type T¢. has at most two
pivoting edges and can receive at most two (opposite) orientations for each edge before
being eliminated.

Solidity of Dy Dy is a set of tetrahedra of type T, and T, which satisfies the following
properties.

Property 1 (Solidity at grounded edges) Let e be a grounded edge. Any tetrahedron
t € Shp,(e) is face-to-face connected (in Ds) to the ground of e.

Proof Iftis a T, tetrahedron in Dy, it is not external and is itself in the ground of e.
Let t be a T, tetrahedron disconnected from the ground of e. Hence, t is between two
eliminated tetrahedra and has been visited with two opposite directions. Thus, £ does not
belong to Ds. O

Property 2 (Solidity at section-vertices) Let v be a section-vertex. Any tetrahedron
t € Shp,(v) is face-to-face connected (in D3) to the ground of v.

Proof Let t be a T¢, tetrahedron in Dy which passes through an incident grounded edge
of v. Thus, t is face-to-face connected to the ground of e and in particular to the ground
of v.

Let ¢t be a T,y tetrahedron in Dy, with v as the fourth vertex (not in the plane of the
grounded triangle of t). According to the algorithm, ¢ is in a connected set of T}, tetrahedra
(with v as the fourth vertex), which share a face with a T, tetrahedron in Dy. This T
tetrahedron is thus incident to a grounded edge e on the ground of v. Thus, ¢ is face-to-face
connected to the ground of e and in particular to the ground of v. O
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Maximality of D, The following lemma shows that the order of elimination of the
tetrahedra is not important.

Lemma 10 Let D’ be subsel of Do. If T is a tetrahedron that creates a singularity in D',
then T creates a singularity in any subset of D' containing T.

Proof If ¢ is disconnected from the ground of one of its grounded edges e, in D', then it
is also disconnected from this ground in any subset of D’ O

In Step 2, the algorithm eliminates all the tetrahedra which create a singularity. Ac-
cording to the previous lemma, the elimination of some tetrahedron does not make dis-
appear any other singularity, and so the order of elimination is not important. However,
this elimination may make appear some other singularities in the resulting subset. Then,
the algorithm removes these new singularities and so on until obtaining some subset of
Dy without singularity. Note that the number of the tetrahedra is finite and this process
finishes. As at each step the order of the elimination is not important the resulting subset
is maximal.

Proposition 11 Dy is the mazimal subset of T,. and T, tetrahedra which has no singu-
larity along the sections.

Step 3 : Connecting more than two planes Assaid before, D5 consists of Delaunay
tetrahedra of type T¢. and T, exclusively. In this step, we add to Dy as many tetrahedra
of type Teyy and Ty as possible provided that the only tetrahedra that can be added
are those with exactly four, three or two faces in the current reconstruction. Clearly, as
the intersection of such a tetrahedron with the current reconstruction is a topological disk
or sphere, its insertion does not create singularities in the overall complex. Figure 3.7
provides some examples.

VPN £+ )

Figure 3.7: Step 3 examples : T and T” do not create singularity and can be added to the
reconstruction. A 2D view is also given.

The algorithm maintains a list L of the tetrahedra of types Tyypy and Tpy, with such

an intersection with the current reconstructed object. As long as this list is not empty, we
add its first element to the current reconstructed object and update L. We call D3 the
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resulting complex which is , by construction, solid at any section-point and any grounded
edge.

D3 constitutes the reconstructed object (portion) R”¢, corresponding to the cell of the
arrangement C. The overall reconstructed object is the union of these portions for all the
cells of the arrangement.

Complexity Analysis Let k be the number of cutting planes and n the total number of
vertices, including the vertices of the section contours and the points on the branching dia-
gram. In the previous chapter, we showed that the sections of the cells of the arrangement
and the branching diagrams can be computed in k.O(n?) time.

Let C; be a cell in the arrangement of the cutting planes. We write n; for the number
of points in C;. Assuming that the cutting planes are in general position, each point is
on the boundary of O(1) cells, and we have ), n; = O(n). We need to compute the 3D
Delaunay tetrahedrization of the points in C;. Although the complexity of computing the
3D Delaunay tetrahedrization of points in R may be quadratic in the worst case, Attali
and Boissonnat showed in [AB04] that it is only linear when the points are distributed
on the planar facets of a polyhedral cell in R3. According to this result, the Delaunay
tetrahedrization of the points in C; can be computed in O(n?) time. Once the Delaunay
tetrahedrization is computed, we eliminate the external tetrahedra. In this step, we have
to visit each tetrahedron to decide if it is inside or outside the section-contours. Since the
size of the 3D Delaunay triangulation is quadratic in the number of points, Steps 2 and 3
can be done in O(n?) time for the cell C;. Thus, the overall complexity of the algorithm
in time is at most k.O(n?) + >.c O(n?) < k.O(n?), and for k = O(1), the complexity is
O(n?).

Properties of the Reconstruction

Generality There is no assumption on the position and orientation of the cutting planes
neither on the geometry and topology of the sections. Complex section-contours with
multiple branching and holes can be handled, see Section 3 for some experimental examples.

Solidity and Topological Correctness By the shell pruning step we removed all the
singularities in the sections. Therefore, the reconstructed object R”¢ in each cell C of the
arrangement has no singularity. As said before, the boundary of the R”¢ contains the
section-contours, the branching diagram, and some flat regions. When we glue the various
R”¢ together, some singularity may appear on the boundary.

Consider a face f of the arrangement and the two incident cells C and C’. If the branching
diagrams of C and C’ intersect in f then the intersection points are singular, see the singu-
larity at point b in Figure 3.8a. In general position, the intersection points of the branching
diagrams are isolated. The overall object is therefore locally a manifold except at some
isolated points. Note that this problem can be handled by displacing the branching points
slightly inside the corresponding cells, or by thickening the cutting planes, Figure 3.8b.
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(a) (b)

Figure 3.8: (a) A singularity at point b which is on the intersection of the two branching
diagrams, corresponding to the two adjacent cells. (b) This singularity disappears after
thickening the cutting planes.(c¢) The flat region A is also thickened by this procedure.
However, this thickening procedure does not make disappear the singularity at a.

()

Conformity With the Given Sections By definition, the reconstructed object does
not intersect the cutting planes outside the given sections. Conversely, it should be ob-
served that R”¢ does not necessarily contain all the grounded triangles of the sections.
This particular situation occurs when a region of a section is flat in the two adjacent re-
constructed portions corresponding to the two cells. According to the presented topological
guarantees, this only happens when the set of cutting planes is very sparse, Figure 3.10.

\

\

\

Figure 3.9: A sufficiently dense sampling (right) of the cutting planes can guarantee that
there is no isolated portion (left) of sections in the overall reconstruction.
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Figure 3.10: A reconstruction example: different colors correspond to different types of
tetrahedra. We use Medit [Med| to visualize the input points and the output mesh.
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3 Experimental Results

A preliminary version of the algorithm has been implemented in C+-, using the CGAL
library [CGA|. The input of the algorithm consists of a cell of the arrangement (a convex
polyhedron), and a set of polygonal contours lying on the boundary of this polyhedron.
The contours are assumed to be Delaunay-conform and non self-intersecting, some possibly
lying inside others. The contours are oriented in such a way that the interior of the section
they bound is on the righthand side.

We present the results of the algorithm applied to a variety of input models. To gain
more intuition, in addition to the 3D results, some figures of 2D reconstructions are also
given. Figure 3.11 illustrates the reconstruction of a sphere cut by the faces of a cube. In
this case, the reconstructed object is the convex hull of the contours.

Figures 3.13 and 3.12 show how the method eliminates successfully the singularities of

/ g A
\ \\\ /’/ \\ \‘ ’//
N7 \\‘\ \ d
\/ Y/
(a) Input points. (b) The reconstructed object.

Figure 3.11: The reconstructed object corresponding to a sphere, cut by the faces of a
cube.

the Delaunay triangulation to guarantee the topological correctness of the reconstructed
object.

Some examples of branching between the sections are presented in Figures 3.14 and 3.15.
These examples illustrate perfectly the role of the points added on the branching diagram,
to obtain an identified branching locus of the object. As we can see in Figure 3.14(a),
the branching diagram corresponds to the projection of the external medial axis of the
sections. In the non-parallel case of planes, the branching is handled as well as the parallel
case, see Figure 3.15.

The algorithm handles the complex branching of non-convex sections possibly with
holes. The last figures provide some examples of these complex cases.
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d) Input points. e) Delaunay simplices of input f) Reconstructed object
y

points.

Figure 3.12: Elimination of a singularity during the reconstruction. A single contour
disappears in the reconstructed object.
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(a) 2D view of Delaunay sim- (b) 2D view of reconstructed
plices of sections. object.

(c) Delaunay simplices of input points. (d) Reconstructed object

Figure 3.13: Elimination of the singularities during the reconstruction.
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(c) (d)

Figure 3.14: (a) The single circle is at the same distance from all the other circles (b) There
is a multiple branching between these four circles without any singularity. (¢) As the circle
is shifted, there is no branching anymore in the reconstructed object (d).
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(a) Input points. (b) Reconstructed object

Figure 3.15: An example with two non-parallel cutting planes.
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(b) The reconstructed object (view 1).

(d) The reconstructed object (view 3)

(c) The reconstructed object (view 2).

Figure 3.16: A complex branching of a section with a hole.
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(b) The reconstructed object.

(a) Input points.

Figure 3.17: A result for non-convex sections. There is no singularity in the reconstructed

object.
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(b) Output (view 1). (c) Output (view 2).

Figure 3.18: An example with nested section-contours.
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()

Figure 3.19: Multiple branching between the sections:(a) Input points. (b) Input points in
red and the added branching points in green. (¢) Reconstructed object
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(a) Original Object (b) Data Acquisition

(c) Input of the Algorithm (d) Algorithm based on the Voronoi Di-
agram of the Sections

(e) Output of the Algorithm (f) Superposition of the original object and its
approximation

Figure 3.20: 2D Reconstruction Example
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Conclusion and Future Work

In this thesis, we made the first geometric analysis of the reliability and validity of re-
construction methods from cross-sectional data. In the first chapter, we studied the most
natural way to connect the sections, which is a generalization of the classical overlapping
criterion between the orthogonal projections of the sections for the case of parallel cutting
planes. We provided two sampling conditions for the set of cutting planes, called the Sep-
aration and the Intersection Conditions, under which the reconstructed object is isotopic
to the original unknown object. In the second chapter, motivated by reconstructing tree-
like structures from sectional data, we presented a reconstruction method, based on the
Voronoi diagram of the sections, which is well suited for connecting sparse set of sections
distributed over a large volume. According to the presented sampling conditions, as far
as the cutting planes are sufficiently transversal to the boundary of the original shape,
the method preserves the homotopy type of the original unknown shape. The Voronoi-
Delaunay duality links this method to a Delaunay based method which is presented in the
third chapter. According to our preliminary experimental results, the third method can
handle complex cross-sectional branching situations such as the coronary arterial tree.

From Geometry to Medical Imaging : The reconstruction problem from cross-
sections is particularly motivated by medical imaging technology where organs need to
be simulated from a set of sectional data obtained by CT, MRI or other scanning de-
vices. The hope is that this thesis will be a first step to provide solid foundations for
medical diagnostic software and to help remedy this lack of research examining the qual-
ity of simulations with respect to the original shape (organ). Of course, further research
and investment is needed to apply these theoretical guidelines in developments of medical
imaging softwares in practice.

According to the theoretical analysis presented in this thesis, the transversality of the
cutting planes to the boundary (surface) of the shape (organ) leads to a better resulting
reconstruction. Interestingly, the transversality of the cutting planes is also crucial in
practice for the data acquisition by ultrasound devices. Indeed, from a technical point of
view if a cut is not sufficiently transversal to the organ, the quality of the resulting 2D
ultrasonic image is not acceptable for diagnosis. Using such theoretical properties may
allow us to define a pertinent guideline for radiologists in order to improve the quality of
simulations. Perhaps, for instance, such an alternative interactive method may be a more
appropriate method of examining the obtained theoretical criteria in practice.
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Another extension that needs further investment is the case of multilabel sections, i.e.,
multiple materials. The two first methods presented in this thesis are easily extendable to
this case. And the provided topological guarantees remain valid for the case of multiple
materials. However, the Delaunay-based method dual to the second method needs more
care to be generalized. The generalization should be consistent in the sense that the
endpoints of each Delaunay simplex should be of the same label (material). A natural
idea would be to compute the connectivity between the sections by the second method,
and then interpolate the corresponding sections using the Delaunay triangulation of each
material independently. Let us note that Barequet and Vaxman’s work [BV09], that makes
use of straight skeletons of polyhedra, is the most recent work that can handle the case of
multilabel sections.

Noisy Data : We consider a noise-free model, where every point of the sample of the
section-contours lies precisely on the boundary of the original shape, and the given sections
conform along the intersection of the cutting planes. Due to data acquisition error, such a
free-noise model is not pertinent in practice. Two different frameworks may be considered.
1) Given a set of noisy images, each noisy image should be segmented in order to extract
the corresponding section-contours. Classical image segmentation methods, that make use
of level-set methods introduced by Osher and Sethian in [OS88] or active contour models
(Snakes) introduced in [KWT88] may be applied. One can also use wavelet based methods,
such as [Shi05] which is specifically developed for extracting contours from an image. 2) The
second framework corresponds to the case where we are given a noisy sample of sections-
contours rather than the images. Reconstruction from a noisy set of sample points has
been studied by different authors, such as in [CL05| and [DGO06]. A nice extension of our
work would be to adapt these ideas to the case of sectional data.

Higher Dimensions : We can consider higher dimensional variants of this reconstruc-
tion problem. Where the goal is to reconstruct an n-dimensional shape from its (n — 1)-
dimensional intersections with hyperplanes. The method [LBDT08] studied in the first
chapter, seems to be the most natural way to tackle this high dimensional reconstruction
problem.

In the first chapter, we presented topological guarantees for the three-dimensional problem
and proved the homotopy equivalence between the original shape O¢ and the reconstructed
object R¢. Similar analysis can be carried out for the resulting n-dimensional reconstruc-
tion: The Separation Condition can be defined in any dimension. Under this condition, the
guarantees on the connectivity between the sections remain valid. The proof is straight-
forward. In dimension 3, using the lift function, we proved that under the Separation
Condition, there is a function between O¢ and R¢ that induces injective morphisms be-
tween the homotopy groups of O¢ and R¢. Moreover, we showed that under the Separation
Condition, all the i-dimensional homotopy groups of O¢ and R¢ for ¢ > 2 are trivial. Using
that, it was sufficient to have the surjectivity of the function for the fundamental groups :
71(O¢) — 71 (Re). This is verified under the second sampling condition, called Intersection
Condition. This led to a homotopy equivalence between O¢ and R¢ under the Separation
and the Intersection Conditions.
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For the corresponding reconstruction problem in higher dimensions, the injectivity of
the function on the level of homotopy groups remains valid. However, the vanishing results
on higher homotopy groups of O¢ and R¢ are only valid in dimensions two and three. A
new sampling condition is needed to impose these vanishing results or a different strategy
should be performed to prove the surjectivity of the function for homotopy groups of any
dimension. If this surjectivity is imposed under some sampling conditions on the cutting
planes, there is a homotopy equivalence between O¢ and Re.

Considering time as the fourth dimension, the four dimensional version of this problem
corresponds to reconstructing a moving shape (for example the beating heart). In the
sense that the movement of the object can be reconstructed knowing the position of the
object at some constant values of time. This is one of the motivations to perform further
research on higher dimensional variants of reconstruction from cross-sections.

3D Reconstruction from 1-Sections : Another possible variant of this reconstruction
problem corresponds to reconstructing a 3D shape from its intersections with a set of lines,
i.e., one dimensional sections. This problem is motivated by measurement of volume and
surface area of an object from a one dimensional sampling (see [KJ01]). The hope is that
a framework similar to the one presented in this thesis provides a good strategy for this
variant of the problem, where the influence zone of each 1-dimensional section is its Voronoi
cell with respect to the other sections.
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Abstract

The purpose of this doctoral thesis was to provide a method to reconstruct three dimen-
sional shapes from cross-sections. The principal motivation is 3D reconstructions of organs
that are widely considered to be an important diagnostic aid in the medical world. How-
ever, the actual simulation results, namely in 3D ultrasonic simulation, are not reliable
to be used in diagnosis. This thesis is the first geometric analysis of the reliability and
validity of reconstruction methods from cross-sectional data.

We consider the problem of reconstructing a compact 3-manifold (with boundary) em-
bedded in R? from its cross-sections S with a given set of cutting planes P having arbitrary
orientations. Using the fact that a point x € P belongs to the original object if and only
if it belongs to S, we follow a very natural reconstruction strategy: we say that a point
z € R3 belongs to the reconstructed object if (at least one of) its nearest point(s) in P
belongs to S. This coincides with the algorithm presented by Liu et al. in [LBDT08].
The first Chapter of this manuscript is devoted to analyzing this method. We prove that
under appropriate sampling conditions that are satisfied when the set of cutting planes
is dense enough, this reconstruction method preserves the homotopy type of the original
shape. Using the homotopy equivalence, we also show that the reconstructed object is
homeomorphic (and isotopic) to the original object.

In the second chapter of this thesis, we present a second reconstruction method that makes
use of the Voronoi diagram of the sections. This method performs more connections be-
tween the sections comparing to the method [LBD108|. Increasing the connectivity be-
tween the sections is motivated by reconstructing tree-like structures from sparse sectional
data. The provided sampling conditions, leading to topological guarantees, are adapted to
tree-like structures: Indeed, we show that if the cutting planes are sufficiently transversal
to the surface we want to reconstruct, then the method can handle complex branching
structures from sparse sectional data distributed over a large volume. These theoretical
analysis also provide topological justifications for the dual Delaunay-based approach.

The Voronoi-Delaunay duality leads us to a third reconstruction method that can be seen
as a generalization of Boissonnat and Geiger’s method [BG93] to the case of unorganized
sections. This method performs still more connections between the sections comparing to
the two first methods. The preliminary experimental results are quite promising, regarding
the practicality of the approach to reconstruct complex cross-sectional branching situations
such as the coronary arterial tree.

The theoretical studies of this thesis have consistently shown that if the sample of
cutting planes is sufficiently dense, an accurate approximation of the unknown object can
be provided. These studies provide the way to guide the sampling process to achieve
the purposed density of cutting planes, or more formally, to verify the provided sampling
conditions on the sections. The hope is that this thesis will be a first step to provide solid
foundations and theoretical guarantees for medical diagnostic software. Of course, further
research and investment is needed to apply these theoretical guidelines in developments of
medical imaging softwares. Perhaps, for instance, an alternative interactive method may
be a more appropriate method of examining the obtained theoretical criteria in practice.



