Etude des relations structure/fonction d’une bactériocine anti-Listeria, la mésentéricine Y105
Dany Morisset

To cite this version:

HAL Id: tel-00558243
https://tel.archives-ouvertes.fr/tel-00558243
Submitted on 21 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Etude des relations structure/fonction d’une bactériocine anti-Listeria, la mésentéricine Y105

Soutenue le 28 mars 2003 devant la commission d'Examen
Je tiens à exprimer ma reconnaissance au professeur Jacques Frère pour m'avoir fait confiance quand le temps était à l'orage et pour m'avoir guidé durant ces dernières années. Il fallait une certaine dose de patience et de courage pour me supporter dans mes moments creux. Pour tout soutien qu'il m'a apporté, je le remercie sincèrement.

J'exprime ma grande gratitude au professeur Yves Cenatiempo pour ses cours depuis le DEUG, son écoute attentive, sa disponibilité, sa simplicité et sa gentillesse. Autant de qualités qui m'ont permis d'aller jusqu'au bout de mon cursus. Un grand Monsieur.

J'adresse mes remerciements aux professeurs Carlos Blanco et Abderrahman Maftah qui me font l'honneur de juger cette thèse. Mes remerciements vont aussi au professeur François Vovelle et aux docteurs Pons et Revol-Junel qui ont accepté de participer à ce jury.

Un grand MERCi à Yves Cenatiempo (de nouveau), Yann « Yanounou » Héchard et Christian Lacombe pour leur lecture de ce manuscrit : ils évitent au lecteur un grand nombre d'écueils abandonnés sur la voie de la rédaction !

Merci à Jean-Marc Berjeaud de m'avoir appris ce qu'est un biochimiste, à Christian et Yann, encore, pour l'immense aide prodiguée tout au long de la thèse.

Je tiens à exprimer ma reconnaissance au professeur Françoise Vovelle pour sa gentillesse et son accueil au CBM d'Orléans. Mes remerciements les plus chaleureux au docteur Laurence Jouvensal et au professeur Jean-Claude Morizot pour leurs conseils et leur disponibilité. Je remercie également Monsieur Didier Marion, de l'INRA de Nantes, qui m'a permis d'effectuer les manipulations de dichroïsme circulaire et d'extinction de fluorescence au sein de son laboratoire.

Je pense avec plaisir aux bons moments passés à l'IBMIG, je les dois à mes camarades et particulièrement à Marie-Claude (l'âme de l'IBMIG), DADA (le clown chanteur et trop rare patissier), Safia (et son rire), Willy (le DJ) et Monsieur « Chat Noir OOOOOOOOOOOOOOh Yes » Manil, le plus français des sud-africains.

Et puis je ne saurais oublier de remercier ma famille qui était au premier plan pour subir mes sautes d'humeur et mes absences : elle ne m'a jamais laissé tombé.

Spécial dédicace à tous mes potes qui sont loin: Regis, Steph, Celine, Marielle, Clicri, Manu, Laurent, Véro, le Suédols et la Portugaise, Séverine (vous me manquez), et à tous ceux que je ne peux citer (je n'ai plus de place!).
TABLE DES MATIERES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE DES MATIERES</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION GENERALE</td>
<td>7</td>
</tr>
<tr>
<td>LISTE DES ABREVIATIONS</td>
<td>11</td>
</tr>
<tr>
<td>REVUE BIBLIGRAPHIQUE</td>
<td>15</td>
</tr>
<tr>
<td>1 Les peptides antimicrobiens</td>
<td>17</td>
</tr>
<tr>
<td>1.1 Les peptides antimicrobiens d'invertébrés et de vertébrés</td>
<td>17</td>
</tr>
<tr>
<td>1.1.1 Les peptides à hélice α amphiphile</td>
<td>18</td>
</tr>
<tr>
<td>1.1.2 Les autres peptides antimicrobiens de vertébrés et invertébrés</td>
<td>19</td>
</tr>
<tr>
<td>1.2 Les bactériocines</td>
<td>20</td>
</tr>
<tr>
<td>2 Les bactériocines de bactéries lactiques</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Classification</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1 Classe I: Lantibiotiques ou bactériocines modifiées</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2 Classe II: Peptides courts, thermiquement stables et non modifiés</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2.1 sous-classe IIa ou « pediocin-like »</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2.2 sous-classe IIb</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2.3 sous-classe IIc</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Classe III: Protéines de taille importante (> 30kDa) thermosensibles</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4 Classe IV: Bactériocines complexes</td>
<td>26</td>
</tr>
<tr>
<td>2.3 Intérêt des bactériocines de bactéries lactiques</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Bactériocines de sous-classe IIa</td>
<td>27</td>
</tr>
<tr>
<td>2.4.1 Structure</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 Spectre d'activité</td>
<td>31</td>
</tr>
<tr>
<td>2.4.3 Organisation génétique</td>
<td>31</td>
</tr>
<tr>
<td>2.4.4 Immunité</td>
<td>33</td>
</tr>
<tr>
<td>2.4.5 Transport et maturation</td>
<td>35</td>
</tr>
<tr>
<td>2.4.6 Régulation de l'expression génétique</td>
<td>35</td>
</tr>
<tr>
<td>3 Mécanismes d'action et relations structure/fonction</td>
<td>37</td>
</tr>
<tr>
<td>3.1 Les peptides α-amphiphiles de vertébrés et invertébrés</td>
<td>37</td>
</tr>
<tr>
<td>3.1.1 Deux modèles proposés pour le mécanisme d'action</td>
<td>37</td>
</tr>
<tr>
<td>3.1.2 Etudes structure/fonction</td>
<td>39</td>
</tr>
<tr>
<td>3.1.2.1 Charge du peptide</td>
<td>39</td>
</tr>
<tr>
<td>3.1.2.2 Influence de l'hélicité</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2.3 Moment hydrophobe</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2.4 Hydrophobicité</td>
<td>45</td>
</tr>
<tr>
<td>3.1.2.5 Angle du domaine hydrophile/hydrophobe de l'hélice α</td>
<td>46</td>
</tr>
<tr>
<td>3.1.2.6 Composition en lipides</td>
<td>47</td>
</tr>
<tr>
<td>3.1.2.7 Existence d'un récepteur ?</td>
<td>48</td>
</tr>
<tr>
<td>3.2 Les bactériocines de sous-classe IIa</td>
<td>49</td>
</tr>
<tr>
<td>3.2.1 Modèles proposés pour le mécanisme d'action</td>
<td>49</td>
</tr>
<tr>
<td>3.2.1.1 Formation de pores par les bactériocines de sous-classe IIa</td>
<td>49</td>
</tr>
<tr>
<td>3.2.1.2 L'existence controversée d'un récepteur</td>
<td>52</td>
</tr>
<tr>
<td>3.2.2 Etudes des relations structure/fonction</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2.1 La région N-terminale</td>
<td>55</td>
</tr>
<tr>
<td>a Rôle du consensus YGNGV</td>
<td>55</td>
</tr>
</tbody>
</table>
b Rôle du feuillet β et du tour β 56

c Rôle des charges positives 57

d Rôle du premier pont disulfure 58

3.2.2.2 La région C-terminale 59

a Rôle de l’hélice α oblique centrale 59

b Rôle de l’hélice α et de la queue C-terminales 59

c Rôle du second pont disulfure 61

d Rôle des charges positives 62

e Présence d’acides aminés aromatiques et rôle de l’hydrophobicité 62

4 Sécrétion des bactériocines et expression hétérologue 64

4.1 Transport des bactériocines 64

4.2 Expression hétérologue de bactériocines 67

4.2.1 Sécrétion par un système de transport dédié (DTS) 67

4.2.2 Sécrétion par le système général de sécrétion (sec) 70

5 Notre modèle d’étude : la mésentéricine Y105 71

MATERIEL ET METHODES 73

1 Souches bactériennes et plasmides 75

1.1 Escherichia coli 77

1.2 Listeria 77

1.3 Les bactéries lactiques 78

2 Production et purification de la protéine de fusion MBP ::MesY105 78

3 Purification des bactériocines de sous-classe IIa 79

4 Techniques de microbiologie : Activité antagoniste 80

5 Techniques de Biologie Moléculaire 80

5.1 Extraction d’ADN plasmidique 80

5.1.1 Escherichia coli 80

5.1.2 Les bactéries lactiques 81

5.2 Coupures de l’ADN par les endonucléases de restriction 82

5.3 Phosphorylation de fragments d’ADN 82

5.4 Ligature de l’ADN 82

5.5 Purification de fragments linéaires d’ADN 83

5.6 Transformation de bactéries 83

5.6.1 Escherichia coli 83

5.6.1.1 Thermo-compétentes 83

5.6.1.2 Electro-compétentes 84

5.6.2 Leuconostoc 85

5.7 Réaction de polymérisation en chaîne (PCR) 85

5.7.1 PCR traditionnelles 85

5.7.2 PCR « haute fidélité » 87

5.7.3 Mutagenèse aléatoire par PCR 88

5.7.3.1 Mutagenèse sur la portion de gène codant MesY105 mature (premier protocole) 88

5.7.3.2 Mutagenèse de l’opéron mesY1 (deuxième protocole) 89

5.8 Analyse électrophorétique de l’ADN 90

5.9 Tri des fragments d’ADN mutés 91

5.9.1 Single Strand Conformation Polymorphism (SSCP) 91

5.9.2 Identification d’hétéroduplexes 92
5.10 Séquençage d’ADN

6 Techniques d’analyse protéique
 6.1 SDS-Page
 6.2 HPLC : Chromatographie liquide à haute performance
 6.3 Dosage des protéines
 6.4 Spectrométrie de masse

7 Analyse structurale des bactériocines
 7.1 Alignements multiples, prédicitions de structure et calculs d’hydropathie
 7.2 Dichroïsme circulaire
 7.3 Spectrophotométrie de fluorescence des tryptophanes
 7.4 Résonance magnétique nucléaire (RMN)

RESULTATS ET DISCUSSION

1 Production de la mésentéricine Y105
 1.1 Préambule
 1.2 Production sous forme de protéine de fusion MBP ::MesY105
 1.2.1 Construction du plasmide pDMYC01
 1.2.2 Construction du vecteur d’expression pDMYC02
 1.2.3 Production, purification et caractérisation de la protéine de fusion MBP ::MesY105
 1.2.4 Limits de cette stratégie
 1.3 Production par un hôte hétérologue lactique
 1.3.1 Création du plasmide pDMJF01
 1.3.2 Création du plasmide pDMJF ::YI
 1.3.3 Purification de la mésentéricine Y105

2 Production des mésentéricines Y105 modifiées
 2.1 Préambule
 2.2 Mise au point de la mutagenèse aléatoire par PCR
 2.2.1 Première méthode
 2.2.2 Deuxième méthode
 2.2.3 Limites de notre stratégie
 2.2.4 Détection des mutations
 2.3 Obtention des peptides mutés
 2.3.1 Construction des plasmides pDMJF ::YIm
 2.3.2 Construction des plasmides pDMJF ::Ym
 2.4 Obtention des mésentéricines Y105 modifiées
 2.4.1 Production et purification
 2.4.2 Problèmes rencontrés

3 Relations structure/fonction de MesY105 et des bactériocines anti-Listeria
 3.1 Etude des bactériocines de sous-classe IIa
 3.1.1 Structure primaire
 3.1.2 Structure secondaire
 3.1.3 Hydropathie
 3.2 Etude de MesY105 et de ses dérivés
 3.2.1 Activité anti-Listeria
 3.2.2 Rapport entre structure primaire et activité antagoniste
 3.2.3 Rapport entre la structure secondaire et l’activité antagoniste
3.2.3.1 Dichroïsme circulaire en TFE 149
3.2.3.2 Dichroïsme circulaire en micelles de lysophosphatidylcholine 157
3.2.3.3 Interactions avec les micelles : étude de la fluorescence des tryptophanes 162
3.2.4 Implication de la structure tridimensionnelle 169

3.3 Proposition d’un modèle d’interaction MesY105/membrane 172

4 Expression hétérologue de peptides 180

4.1 Sécrétion de la mésentérique B105 180
 4.1.1 Sécrétion de MesB105 seule 180
 4.1.2 (Co-)production de MesB105 et MesY105 181

4.2 Sécrétion de PedPA-1 183
 4.2.1 Construction du plasmide pDMJF:PA-1 183
 4.2.2 Construction du plasmide pDMJF:promY ::PA-1 188

4.3 Amélioration du système de production hétérologue 191
 4.3.1 Modification du plasmide pDMJF01 191
 4.3.1.1 Elimination de mesI 191
 4.3.1.2 Elimination de mes B, mesH et mesF 194
 4.3.1.3 Comparaison des rendements de production 195
 4.3.2 Mise au point d’une stratégie universelle pour la production de peptide 196

CONCLUSION ET PERSPECTIVES 201

ANNEXES 209

REFERENCES BIBLIOGRAPHIQUES 221

POSTFACE Error! Bookmark not defined.
INDEX Error! Bookmark not defined.
INTRODUCTION GENERALE
Les organismes vivants se sont dotés, au cours de l’évolution, de systèmes de défense afin de se protéger des agressions bactériennes. On retrouve des peptides à activité antimicrobienne chez les mammifères (défensines), les amphibiens (magainines, dermaseptines), les insectes (cécropines, cératoxines) et chez les bactéries (bactériocines). Un intérêt pour ces molécules s’est récemment développé, et notamment pour les bactériocines de bactéries lactiques en raison de leur utilisation potentielle en industrie agro-alimentaire.

La compréhension du mode d’action de ces molécules constitue non seulement un intérêt du point de vue fondamental mais également sur le plan appliqué. En effet, il paraît essentiel de déterminer les conditions favorables à une activité optimale des bactériocines afin d’envisager leur utilisation future en industrie agro-alimentaire. De plus, avec le précédent des antibiotiques, l’apparition de souches résistantes suscite des craintes. Afin de définir le mécanisme d’action des bactériocines, de nombreuses études ont été menées. Elles reposent sur la comparaison, entre souches sensibles et souches résistante, de données génétiques ou physiologiques ou encore sur l’étude des relations structure-fonction de ces peptides antimicrobiens.

LISTE DES ABREVIATIONS
ABC : ATP-Binding Cassette
ACN : acétonitrile
B. : Bacillus
BHI : milieu coeur-cervelle (Brain Heart Infusion)
C-terminal(e) : carboxy-terminal(e)
CbnB2 : carnobactériocine B2
Cm : chloramphénicol
CMC : concentration micellaire critique
CMI : concentration minimale inhibitrice
Cn. : Carnobacterium
Da : dalton
DMPC : dmyristoylphosphatidylcholine
DMPG : dmyristoylphosphatidylglycérol
DMSO : diméthylsulfoxide
DPC : dodécylphosphocholine
DTS : système de transport dédié (Dedicated Transport System)
E. : Escherichia
En.: Enterococcus
Em: érythromycine
HPK : protéine Histidine Kinase (Histidine Kinase Protein)
HPLC : chromatographie liquide à haute performance
IPTG : isopropyl β-D-1-thiogalactopyranoside
L. : Listeria
LB : milieu Luria Bertani
Lb. : Lactobacillus
Lc. : Lactococcus
LcMMFII : lactococcine MMFII
LeuA : leucocine A
Ln. : Leuconostoc
LPC : lysophosphatidylcholine
m/v : masse par volume
MBP : Maltose Binding Protein
MCS : site multiple de clonage (Multiple Cloning Site)
MD : domaine membranaire
MesB105 : mésentéricine B105
MesY105 : mésentéricine Y105
MRS : milieu Man, Rogosa et Sharpe
N-terminal(e) : amino-terminal(e)
NOESY : two-dimensional Nuclear Overhauser Effect SpectroscopY
P. : Pediococcus
pb : paire de bases
Pi : point isoélectrique
PedPA-1 : pédiocine PA-1 (identique à la pédiocine AcH)
PEP : phosphoénolpyruvate
PNK : polynucléotide kinase
PTS : système phosphotransférase (PhosphoTransferase System)
q.s.p. : quantité suffisante pour
Ri : rapport de la molarité en lipide vis-à-vis de la molarité en peptide
RMN : résonance magnétique nucléaire
rpm : rotation par minute
RR : régulateur de réponse
SakA : sakacine A
SakG : sakacine G
SakP : sakacine P
SDS: Sodium Dodecyl Sulphate
SSCP: Single Strand Conformation Polymorphism
St. : Streptococcus
TBE: Tris-Borate-EDTA
TFE: trifluoroéthanol
Tris : tris- (hydroxyméthyl)-aminométhane
VIP: peptide vaso-actif intestinal (Vaso-active Intestinal Peptide)
v/v : volume par volume
X-Gal : 5-bromo-4-chloro-3-indolyl-β-D galactoside
REVUE BIBLIOGRAPHIQUE
1 Les peptides antimicrobiens

Les antibiotiques essentiellement produits par les bactéries et les champignons se caractérisent par leur synthèse uniquement enzymatique. Après la découverte du premier antibiotique, la pénicilline (Alexander Fleming, 1929), l’homme a largement développé et utilisé ces molécules pour se prémunir des infections bactériennes. En raison du nombre important d’études portant sur les antibiotiques, je ne développerai pas cette partie mais recommande la lecture de revues récentes comme celle de Poole (Poole, 2002), Weston (Weston, 2002), Hancock et Chapple (Hancock et Chapple, 1999).

L’utilisation intensive de ces molécules a conduit, dès les années 1940, à l’apparition de souches résistantes. Aujourd’hui, on connaît des souches résistantes à toutes les classes d’antibiotiques connues. Ce danger potentiel a amené les scientifiques à revoir la façon d’utiliser les antibiotiques et à chercher d’autres agents antimicrobiens dont la structure et le mode d’action, différents de ceux des antibiotiques, permettraient de pallier ces phénomènes de résistance.

1.1 Les peptides antimicrobiens d’invertébrés et de vertébrés

Contrairement aux antibiotiques, les peptides d’invertébrés et de vertébrés sont synthétisés par la voie ribosomique. Ils sont très largement répandus dans la nature (mammifères, amphibiens, crustacés, insectes, plantes). Ces peptides constituent avec les barrières naturelles que sont les membranes, une première ligne de défense contre les agents infectieux (bactéries, champignons, certains virus) et sont complémentaires de l’action spécifique du système immunitaire (Nissen-Meyer et Nes, 1997). On retrouve ces molécules dans les phagocytes, neutrophiles, cellules épithéliales et leucocytes de mammifères, les glandes de la peau des amphibiens, dans l’hémolymphe des insectes.

Nissen-Meyer et Nes (1997) considèrent que ces peptides constituent la première ligne de défense chez l’animal car leur production est jusqu’à 100 fois plus rapide que celle des protéines du système immunitaire et leur diffusion plus rapide que les protéines ou les cellules de l’immunité. Chez les insectes, la grande diversité de peptides antimicrobiens produits par un même individu, en fonction de l’invasion microbienne, montre que ces
molécules jouent le rôle de système immunitaire chez ces organismes (Hancock et Chapple, 1999).

La totalité de ces petits peptides cationiques et amphiphiles agit en perméabilisant la membrane de la bactérie cible. Cinq classes de peptides antimicrobiens ont été déterminées selon des données structurales (Nissen-Meyer et Nes, 1997).

1.1.1 Les peptides à hélice α amphiphile

C’est probablement la classe de peptides antimicrobiens la plus étudiée. Ces composés sont dépourvus de résidu cystéine et présentent un nombre variable de résidus lysines (Nissen-Meyer et Nes, 1997). Ils n’ont généralement pas de structure ordonnée en milieu aqueux, mais placés dans un milieu apolaire ou au voisinage des membranes, ces peptides adoptent une structure secondaire caractérisée par la présence d’une ou plusieurs hélices α et dans tous les cas d’une hélice amphiphile.

Ces composés sont doués d’activité antimicrobienne mais aussi cytolytique, les peptides les moins cationiques et les plus hydrophobes ayant plutôt une sélectivité contre les cellules de mammifères (Epand et Vogel, 1999).

Parmi les peptides antimicrobiens, cationiques et amphiphiles les plus étudiés, on note les magainines isolées chez le Xénope, petits peptides basiques (21 à 27 résidus) à large spectre d’activité dirigé contre des bactéries à Gram positif et à Gram négatif, des champignons et des protozoaires (Matsuzaki, 1999). Leur structure en hélice amphiphile a été déterminée par résonance magnétique nucléaire (RMN) (Figure 1) (Marion et coll., 1988). La dermaseptine et analogues (produits par diverses espèces de batraciens), les cécropines, isolées chez les insectes et les mammifères sont d’autres exemples de ces peptides cationiques à hélice α amphiphile et activité antimicrobienne (Hancock et Chapple, 1999).
1.1.2 Les autres peptides antimicrobiens de vertébrés et invertébrés

Une autre classe importante parmi ces molécules est celle des peptides à structure en feuillet β. Ils sont amphiphiles, riches en résidus cystéines et ont les retrouve principalement chez les mammifères. Leur structure est généralement en feuillets β antiparallèles et nombre d’entre-eux sont sous forme cyclique. Les défensines forment les principaux représentants de cette classe (Epand et Vogel, 1999).

Les peptides dits « riches en acides aminés particuliers », contrairement à ceux des deux précédentes classes, ne présentent pas de structure tridimensionnelle caractéristique et sont généralement dépourvus de cystéine. On peut citer les apidaecines (17% d’arginine et 29% de proline) (Casteels et coll., 1989) produites par les abeilles. En plus des défensines, les mammifères produisent d’autres peptides antimicrobiens appartenant à cette classe (Hancock et Chapple, 1999).

Les peptaibols sont une classe de peptides contenant une grande proportion de résidus acide α-aminobutyriques, ce type de résidu favorisant la formation d’hélices α (Monaco et coll., 1998). Ce sont des lipopeptides acylés en N-terminal, ce qui favorise l’insertion dans la membrane bactérienne (Epand et Vogel, 1999; Monaco et coll., 1998).
Enfin, les peptides macrocycliques avec motif « cystin knot » sont des peptides cycliques de 30 résidus trouvés chez les plantes de la famille des Rubiaceae. Le motif « cystin knot » (où des ponts disulfures se croisent) est également présent chez des inhibiteurs de protéases et certaines toxines (Epand et Vogel, 1999).

1.2 Les bactériocines

Les bactériocines sont définies comme des molécules sécrétées par les bactéries, de nature protéique ou partiellement protéique et douées d'une activité antagoniste vis-à-vis de souches phylogénétiquement proches des souches productrices. Leur synthèse par voie ribosomique les différencie des antibiotiques de nature peptidique provenant de l'assemblage enzymatique d'acides aminés libres (Cenatiempo et coll., 1996). Deux grands groupes de bactériocines peuvent être distingués avec, d'une part, les bactériocines produites par des bactéries à Gram négatif, principalement représentées par les colicines et les microcinés, et d'autre part, celles produites par les bactéries à Gram positif, et notamment les bactériocines de bactéries lactiques.

Pendant de nombreuses années, le champ des investigations s’est concentré sur les bactéries à Gram négatif, du fait d’applications thérapeutiques potentielles. C’est pourquoi de nombreux travaux se sont portés sur les microcinés, un ensemble de peptides antibactériens produits par des souches d’entérobactéries (Asensio et Perez-Diaz, 1976).

Des substances similaires ont également été identifiées chez les bactéries à Gram positif. La production de substances inhibitrices de type bactériocine a été mise en évidence chez des souches de *Lactococcus (Lc.) lactis* avec la nisine (Rogers, 1928), de *Bacillus (B.) subtilis* avec la subtiline (Bradley, 1967), de *Streptococcus (St.) pyogenes* avec la streptococcine A-FF2 (Tagg et Wannamaker, 1976).
Au cours des dernières décennies, de nombreux travaux ont porté sur les bactériocines produites par les genre *Bacillus* et *Staphylococcus*, et également par des membres de la famille des bactéries lactiques en raison de leur intérêt en industrie agro-alimentaire [voir pour des revues (de Vuyst et Vandamme, 1994; Ennahar et coll., 2000; Jack et coll., 1995; Klaenhammer, 1993; Nes et coll., 1996)]. Les résultats obtenus démontrent l’existence d’une grande diversité parmi les bactériocines (de bactéries lactiques notamment) aux niveaux structural, du mode d'action, de l’organisation génétique…

Par soucis de concision et parce qu’elles semblent être les peptides antimicrobiens au potentiel le plus intéressant, la suite de la discussion sera focalisée sur les bactériocines de bactéries lactiques.

2 Les bactériocines de bactéries lactiques

2.1 Introduction

Les bactéries lactiques regroupent des germes très différents, aussi bien des coques (appartenant aux genres: *Streptococcus*, *Lactococcus*, *Vagococcus*, *Enterococcus*, *Pediococcus*, *Aerococcus*, *Tetragenococcus*, *Leuconostoc* et *Atopobium*) que des bacilles (appartenant aux genres *Lactobacillus* et *Carnobacterium*). Elles ont pour principales caractéristiques d’être à Gram positif, immobiles, asporulées, anaérobies aérotolérantes. Elles ne possèdent pas de catalase, ni de nitrate-réductase, ni de cytochrome oxydase. Elles ont des exigences nutritionnelles complexes en ce qui concerne les acides aminés, les peptides, les vitamines, les sels, les acides gras et les glucides. Elles sont incapables de réaliser une respiration: toute leur énergie provient de la fermentation. Deux types de fermentation sont possibles, la fermentation homolactique avec production d’acide lactique seulement et la fermentation hétérolactique avec production en plus de l’acide lactique, d’acide acétique, d’éthanol et de dioxyde de carbone. Leur habitat est extrêmement varié : lait, végétaux, peaux des animaux, eau de mer, eau douce, poisson, viande, excréments, tractus digestif des vertébrés et insectes (Dellaglio et coll., 1994).
L'intérêt porté à la flore lactique, outre ses propriétés de fermentation et conservation des aliments, réside dans sa capacité à synthétiser des peptides antimicrobiens, les bactériocines.

Ces molécules ne semblent pas toxiques pour le consommateur et sont déjà présentes dans notre alimentation, en raison d'une large utilisation des bactéries lactiques. La nisine est à ce jour, la seule bactériocine autorisée en Europe comme additif alimentaire (n°E234). Par ailleurs, la plupart des bactériocines sont stables à haute température et à bas pH, permettant ainsi de les utiliser en combinaison avec d'autres traitements et de maintenir une activité antibactérienne tout au long des processus de fabrication. Cependant, certains inconvénients limitent leur utilisation, notamment une variabilité de l'activité bactéricide en fonction de certaines conditions environnementales ou un effet antagoniste envers la flore lactique.

La connaissance de l'organisation génétique, de la régulation et des relations structure-fonction des bactériocines pourra permettre de pallier ces problèmes par la mise en place de procédés antibactériens plus efficaces. Finalement, la connaissance du mode d'action des bactériocines est essentielle afin d'optimiser l'effet antagoniste des bactériocines et de limiter l'apparition de souches résistantes (Richard, 1996).

Devant la masse importante de littérature se rapportant aux bactériocines, il est apparu difficile de vouloir donner ici un aperçu complet de l'état d'avancement des recherches concernant ces molécules antagonistes. C'est la raison pour laquelle dans ce chapitre, après une introduction générale portant sur les bactériocines des bactéries lactiques, la suite de la présentation sera centrée autour des bactériocines anti-Listeria.

2.2 Classification

Les particularités des bactériocines de bactéries lactiques sont leur nature souvent cationique et amphiphile et leur mode d’action privilégiant la perméabilisation de la membrane cible, à l’instar des peptides antimicrobiens des vertébrés et invertébrés. Cependant, leur activité est généralement plus spécifique et plus forte que pour ces derniers (Nissen-Meyer et Nes, 1997).

2.2.1 Classe I: Lantibiotiques ou bactériocines modifiées

Il s'agit de peptides de taille réduite (inférieure à 5 kDa) contenant des acides aminés inhabituels obtenus par modification post-traductionnelle. La synthèse de ces résidus est réalisée par déshydratation de la sérine et de la thréonine respectivement en déshydroalanine et déshydrobutyrine, qui peuvent ensuite former une liaison thioéther avec la cystéine afin de générer la lanthionine et la β-méthyl-lanthionine. Pour souligner la présence de ce type d'acides aminés, les bactériocines de classe I ont été nommées lantibiotiques pour "lanthionine containing antibiotics". La structure des lantibiotiques varie essentiellement en fonction de la localisation de ponts établis entre les acides aminés modifiés, ce qui permet de distinguer deux sous-classes: A (lantibiotiques linéaires) et B (lantibiotiques globulaires).

Pour une revue récente sur les lantibiotiques, voir (McAuliffe et coll., 2001).

2.2.2 Classe II: Peptides courts, thermiquement stables et non modifiés

La classe II est constituée de petites bactériocines (<10 kDa) non lantibiotiques, thermostables et sans modification post-traductionnelle. Ces peptides sont le plus souvent produits sous forme de pré-peptides dont le leader N-terminal sera clivé au niveau d'un

Cette catégorie est la plus largement représentée avec plus de 50 bactériocines caractérisées, ce qui a conduit à la création de trois sous-classes. Pour des revues récentes, se conférer à (Jack et coll., 1995; Nes et Holo, 2000; Nes et coll., 2001; Van Belkum et Stiles, 2000).

2.2.2.1 sous-classe IIa ou « pediocin-like »

Les bactériocines de sous-classe IIa présentent une activité anti-
Listeria et sont caractérisées par une séquence N-terminale conservée, surnommée motif anti-

2.2.2.2 sous-classe IIb

Bien que possédant des modifications post-traductionnelles et ne faisant donc pas partie des bactériocines de classe II, il faut rappeler ici les cas particuliers de bactériocines à deux composants de type lantibiotique. Pour revue récente sur ces bactériocines à deux composants, consulter (Garneau et coll., 2002).
2.2.2.3 sous-classe IIc

Les bactériocines de classe II n'appartenant à aucune des sous-classes précédemment décrites seront simplement dites de classe II.

Notons que Van Belkum et Stiles (2000) proposent une nouvelle classification des bactériocines de classe II basée sur des relations structurales et non sur la façon dont elles sont produites et sécrétées. a) les cystibiotiques à deux ponts disulfures, b) les cystibiotiques à un pont disulfure dans la partie N-terminale, c) les cystibiotiques avec un pont disulfure reliant les extrémités aminée et carboxylée, d) les peptides à un ou aucun résidu cystéine, e) les « double peptides », f) les peptides atypiques.

2.2.3 Classe III: Protéines de taille importante (> 30kDa) thermosensibles

Les bactériocines de classe III sont les bactériocines de bactéries lactiques qui se rapprochent le plus des colicines produites par **E. coli**. L'helvéticine J peut être citée comme exemple (Joerger et Klaenhammer, 1990).
2.2.4 Classe IV: Bactériocines complexes

Les bactériocines de classe IV sont des molécules peptidiques portant une (ou plusieurs) composante non protéique, lipidique et/ou oligosaccharidique, nécessaire à leur activité biologique. La plantaricine S, par exemple, possède une activité antibactérienne sensible à des enzymes lipolytiques et glycolytiques (Jimenez-Diaz et coll., 1993). Cette dernière classe présentée par Klaenhammer (1993) est contestée par Nes et collaborateurs (1996) puisque aucun de ces peptides n’a été co-purifié avec sa partie glucidique ou lipidique.

2.3 Intérêt des bactériocines de bactéries lactiques

Dans leur grande majorité, les bactériocines peptidiques de bactéries lactiques sont thermorésistantes (120°C pendant 10 minutes), stables dans des zones de pH de 3 à 8 et sensibles à l’action d’enzymes protéolyltiques (présentes dans le tractus intestinal). De plus, contrairement à certains autres peptides antimicrobiens d’invertébrés et vertébrés, elles ne montrent pas d’activité hémolytique vis à vis des cellules eucaryotes (Nes et Holo, 2000). Ces protéines ne présentent pas de nocivité apparente pour l’homme et les animaux domestiques, ce qui implique une utilisation potentielle dans les domaines agro-alimentaire et thérapeutique. A l’heure actuelle, la nisine est la seule à être agréée par le comité d’experts de la FAO/WHO et à être employée comme agent de conservation (E234) dans l’industrie agro-alimentaire.

Grâce à leurs propriétés biologiques et physico-chimiques, les bactériocines sont généralement compatibles avec les procédés de fabrication et de conservation des aliments ainsi qu’avec leur consommation.

Parmi les applications réelles ou envisagées pour les bactériocines de bactéries lactiques, on peut citer l’utilisation de ferments producteurs de bactériocines dans l’industrie laitière (cependant peu de ferments de ce type sont utilisés) (Cleveland et coll., 2001). La fixation des bactériocines sur des polymères pour l’emballage d’aliments pourrait aussi être un mode de conservation des aliments (Sebti et coll., 2002).

Différentes bactériocines trouvent des applications dans les domaines médical et vétérinaire. Par exemple, la nisine a fait l’objet d’un brevet (Blackburn et Projan, 1994) quant à son utilisation dans la prévention et le traitement d’ulcère causé par Helicobacter pylori. Elle est, de plus, connue pour être un agent thérapeutique potentiel des mastites bovines, et est déjà utilisée comme agent prophylactique. Différentes études ont été réalisées sur l’utilisation de la nisine en solution buccale. Elle a démontré une action préventive contre la plaque dentaire et les inflammations gingivales chez le chien (Howell et coll., 1993).

L’intérêt porté aux bactériocines est multiple. Les travaux effectués actuellement s’orientent majoritairement vers l’optimisation de l’action antagoniste des bactériocines par l’étude (i) de l’apparition de bactéries résistantes, (ii) de la relation structure/activité du peptide antimicrobien, (iii) des possibilités d’export du peptide par une bactérie hétérologue. Une meilleure connaissance de la structure moléculaire, de la biosynthèse, du mécanisme d’action et du transfert génétique de ces composés doit permettre à terme d’utiliser les bactériocines de manière optimale et en toute sécurité (Klaenhammer, 1993).

Les bactériocines présentent un potentiel non négligeable pour les industries de l’agro-alimentaire et de la santé. Cependant, leurs applications se heurtent encore à certaines difficultés techniques et surtout à une législation et une opinion méfiantes envers ces molécules, en raison de la confusion avec les antibiotiques et du rejet des OGM.

2.4 Bactériocines de sous-classe IIa

De toutes les bactériocines, celles qui appartiennent à la sous-classe IIa sont les plus étudiées après la nisine, sans doute du fait de leur forte activité anti-Listeria et des nombreux cas de listériose dont la presse se fait régulièrement l’écho. Ces molécules présentent en effet, soit purifiées soit à travers leur production in situ par une bactérie lactique, un très fort potentiel en protection alimentaire.

Cependant, elles ne sont pas toujours produites par des bactéries lactiques (comme la coaguline produite par un Bacillus et même la listériocine 743A identifiée récemment chez L. innocua).
2.4.1 Structure

Les bactériocines de sous-classe IIa identifiées jusqu'à aujourd'hui sont représentées dans la figure 2. Il s'agit de peptides de taille réduite, comprise entre 37 et 48 résidus, qui possèdent de très fortes homologies de séquence, en particulier dans leur moitié N-terminale. Une séquence consensus, indiquée figure 2, peut en être extraite. Dans cette séquence consensus, à côté du motif YGNGV appelé aussi motif anti-Listeria, se trouvent deux résidus cystéine et une valine.

<table>
<thead>
<tr>
<th>Consensus</th>
<th>YNGY C C V WG A I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mésentérica Y105</td>
<td>KYGYGNVCHTRKSGSVNNGEAASAGHRNLKKGNFW</td>
</tr>
<tr>
<td>Leucocine A</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Leucocine C</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Mundticine</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Mundticine K5</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Sakacine P</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Curvacine A</td>
<td>ARSYGNYCQNYCQPWNLRESTQGGGSGAGLGM</td>
</tr>
<tr>
<td>Piscicoline 126</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Carnobactériocine BM1</td>
<td>AISYGNYVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Carnobactériocine B2</td>
<td>VNYGNVSCSTKCSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Bavaricine MN</td>
<td>TKYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Bactériocine 31</td>
<td>ATEYGNVHCRKCSSVNWRSKGRKQGWAPR</td>
</tr>
<tr>
<td>Entérocine P</td>
<td>ATRSYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Bifidocine B</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Sakacine G</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Pédiciacine PA-1</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Coaguline</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Entérocine A</td>
<td>TTHSKGGYNGYMKTCHKCTKCTNAGWSGFLMAGPK</td>
</tr>
<tr>
<td>Divercine V41</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Plantaricine 423</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Plantaricine C19</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Listériocine 743A</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Sakacine 5X</td>
<td>KYGYGNVCHTRKSGSVNNGEAAGAYHRNLKKGNFW</td>
</tr>
<tr>
<td>Lactococine M1F</td>
<td>TSYGNYCNKCSVWGSASQGFLMTGAGPK</td>
</tr>
</tbody>
</table>

Figure 2: Alignement des séquences des bactériocines de sous-classe IIa connues à ce jour (d’après Finland et coll., 2002a et Dalet, 2000).

La numérotation des résidus est celle de la mésentérica Y105. La piscicoline 126 est identique à la piscicoline V1a, la curvacine A à la sakacine A, la carnobactériocine BM1 à la piscicoline V1b, la pédiacine PA-1 à la pédiacine AcH et à la pédiacine SJ-1. La bavaracine A est sans doute identique à la sakacine P. Les cystéines soulignées sont celles engagées dans un second pont disulfure.

Dans tous les cas analysés, ces deux résidus cystéines forment un pont disulfure dans la molécule native. Cette séquence consensus peut être également élargie aux résidus de tryptophane et d’alanine retrouvés dans plus de 90% des séquences identifiées. Il a été suggéré...
que cette portion conservée pourrait être impliquée dans la reconnaissance par un récepteur protéique (Fleury et coll., 1996; Lozano et coll., 1992).

Cependant, cette hypothèse est remise en cause car il a été montré que la partie C-terminale de ces peptides, beaucoup plus variable, est décisive dans la spécificité de cible (Fimland et coll., 1996). Concernant les molécules possédant quatre cystéines, il a été montré que le pont formé entre les deux résidus situés du côté C-terminal (dont la cystéine C-terminale) était requis pour l'activité anti-Listeria complète (Bhugaloo-Vial et coll., 1999; Eijsink et coll., 1998; Miller et coll., 1998b). Le premier pont disulfure, commun à toutes ces bactériocines, semble moins crucial pour l'activité de ces peptides [JM Berjeaud, communication personnelle, (Eijsink et coll., 1998; Hastings et coll., 1991; Holck et coll., 1992; Quadri et coll., 1994)], même si on peut supposer, étant donnée la structure de ces molécules, que celui-ci puisse se reformer in situ (voir § 3.2).

Dans une revue récente, des regroupements de bactériocines basés sur des homologies dans leurs séquences C-terminales sont suggérés mais ne s'appuient sur aucune donnée expérimentale, activité spécifique et/ou spectre d'inhibition (Ennahar et coll., 2000).

En comparant les activités spécifiques de certaines de ces molécules (Guyonnet et coll., 2000), celles-ci pourraient être séparées en deux sous-groupes. Le premier de ces regroupements correspondrait aux bactériocines avec un pont disulfure dont le représentant est la mésentéricine Y105 (MesY105). Le deuxième sous-groupe à forte activité spécifique, et représenté par PedPA-1, serait constitué des bactériocines à deux ponts disulfures.

La structure spatiale de la leucocine A (LeuA), dont la séquence est très proche de celle de la MesY105 (bactériocine modèle du laboratoire) avec seulement deux changements conservatifs de résidus, a été analysée par RMN et sa structure tridimensionnelle a été caractérisée (Figure 3A) (Fregeau Gallagher et coll., 1997). Les données de dichroïsme circulaire dont nous disposons concernant MesY105 [communication personnelle de JM Berjeaud, (Fleury et coll., 1996), ce travail] sont suffisamment proches de celles obtenues avec LeuA pour envisager que les deux molécules aient des structures spatiales si ce n'est similaires tout au moins très proches. Ces peptides, comme toutes les bactériocines de sous-classe IIa étudiées par dichroïsme circulaire, RMN ou prédiction de structure (Chen et coll., 1997b; Fregeau Gallagher et coll., 1997; Papathanasopoulos et coll., 1998; Wang et coll., 1999a) sont totalement non structurés dans l'eau et n'adoptent une conformation spatiale qu'en
présence d'un milieu mimant les membranes (trifluoroéthanol ou micelles de dipalmitoylcholine).

Les caractéristiques structurales de LeuA sont présentées figure 3A:

- un tour β au niveau du motif consensus YGNGV;
- une zone organisée en feuillet β stabilisée par la formation d'une boucle β grâce au pont disulfure formé entre les cystéines 9 et 14;
- une hélice α amphiphile impliquant la plus grande partie des résidus de la partie C-terminale.

Figure 3: structures tridimensionnelles de la leucocine A (A) (Fregeau-Gallagher et coll., 1997) et de la carnobactériocine B2 (B) (Wang et coll. 1999) déterminées par RMN dans du TFE.

Les structures proposées sont la somme des structures calculées à partir des données RMN.

La seule autre bactériocine dont la structure spatiale a été déterminée est la carnobactériocine B2 (CbnB2) (Fig. 3B) (Wang et coll., 1999a). De façon surprenante, cette bactériocine a une structure très proche de celle de LeuA du côté C-terminal avec une hélice α amphiphile mais ne semble pas présenter de structure secondaire particulière du côté N-
terminal. Des prédictions de structure réalisées sur d'autres bactériocines de sous-classe IIa (Bennik et coll., 1998) indiquent que d'une manière générale les bactériocines de sous-classe IIa ont tendance à adopter une structure hélicoïdale dans leur partie C-terminale. De plus en plus d'études sont menées afin d'identifier les motifs structuraux directement impliqués dans l'activité antagoniste de ces molécules (Finland et coll., 1996; Miller et coll., 1998b; Quadri et coll., 1997a), mais à ce jour aucun modèle général satisfaisant n'a pu être proposé (voir § 3.2.1 pour le mode d'action).

2.4.2 Spectre d'activité

Le spectre d'inhibition des bactériocines de sous-classe IIa peut être plus ou moins étendu selon les cas, tout en restant plus étroit que celui des lantibiotiques. Ce spectre est généralement limité aux espèces phylogénétiquement proches de la souche productrice. Dans tous les cas étudiés, toutes les bactéries du genre Listeria et de l'espèce Enterococcus (En.) faecalis sont sensibles à toutes les bactériocines de sous-classe IIa. Elles agissent également ponctuellement et de manière variée contre certaines espèces, voire seulement contre certaines souches, des genres Lactobacillus, Leuconostoc, Pediococcus, Lactococcus, Carnobacterium, Enterococcus, Micrococcus, Clostridium, Bacillus et Brochothrix. Le spectre d'activité de quelques unes de ces bactériocines comporte aussi les spores de Clostridium (Ennahar et coll., 2000).

2.4.3 Organisation génétique

Les bactériocines sont synthétisées par voie ribosomique à partir de déterminants génétiques localisés généralement sur un plasmide, à l'instar de ceux codant la MesY105 (Fremaux et coll., 1995). Cependant certains d'entre eux peuvent être situés sur le chromosome comme pour la divercine V41 (Metivier et coll., 1998). Les gènes, organisés en un ou plusieurs opérons, codent la pré-bactériocine mais aussi sa protéine d'immunité, des protéines nécessaires à sa maturation, sa sécrétion et, parfois, la régulation de son expression (Figure 4).
Mésentérique Y105 et B105, gènes mes

Leucocine A, gènes lca

Pédiocine AcH, gènes pap

Divercine V41, gènes dvn

Sakacine P, gènes ssp

Sakacine A, gènes sap

Carnobactériocine B2, gènes cbn

Carnobactériocine BM1, gènes cbn

Figure 4: Organisation des déterminants génétiques impliqués dans l’expression des bactériocines de sous-classe IIa (d’après Dalet, 2000).
2.4.4 Immunité

Afin de se prémunir contre l'action bactéricide des bactériocines qu'elles viennent de synthétiser, les cellules productrices synthétisent des protéines dites d'immunité à partir de gènes associés aux gènes de structure (Figure 4).

Ces petites protéines (51 à 150 acides aminés), toutes cationiques, ne présentent qu'une homologie très faible entre elles, alors que les bactériocines de sous-classe IIa possèdent 38 à 97% de résidus identiques. Il est même étonnant de voir que, pour des bactériocines identiques (sakacine A et curvacine A) ou ne possédant qu'un acide aminé de différence (PedPA-1 et coaguline) (Figure 2), les séquences des protéines d'immunité soient si hétérogènes. Ces résultats suggèrent qu'aucune interaction directe, par reconnaissance de motifs peptidiques, n'a lieu entre les bactériocines et leurs protéines d'immunité (Nes et coll., 1996). De plus, ces protéines d'immunité permettent à la cellule qui les produit d'avoir une protection partielle contre d'autres bactériocines de sous-classe IIa. Ce processus, que l'on nomme immunité croisée, pourrait provenir du fait que les bactéries lactiques, produisant des bactériocines de sous-classe IIa, possèdent d'autres gènes d'immunité qui ne sont pas forcément associés au gène de structure de leur bactériocine.

Certaines protéines d'immunité de bactériocines de sous-classe IIa, notamment celles de la curvacine A et de l'acidocine A, présentent des segments transmembranaires potentiels suggérant une interaction directe avec la membrane plasmique (Nes et coll., 1996). Cependant, la plupart des protéines d'immunité de bactériocines de sous-classe IIa sont hydrophiles et dépourvues de segments transmembranaires. De plus, il a été démontré que les protéines d'immunité de la MesY105 (Dayem et coll., 1996) et CbnB2 (Quadri et coll., 1995) sont principalement localisées dans le cytoplasme. CbnB2 n'a que peu d'affinité pour sa protéine d'immunité et des cellules sensibles ne deviennent pas immunes quand la protéine d’immunité est ajoutée depuis l’extérieur ou si bactériocine et protéine d’immunité sont associées avant exposition aux cellules sensibles. Il a donc été envisagé que la protéine d'immunité abolisse l'activité bactéricide en interagissant, depuis l'intérieur de la cellule, avec une protéine membranaire qui pourrait être le récepteur spécifique de la bactériocine (Figure 5) (Quadri et coll., 1995).
Figure 5: La machinerie cellulaire de production des bactériocines de classe II (d’après Ennahar et coll., 2000).
2.4.5 Transport et maturation

Comme indiqué précédemment, la grande majorité des bactériocines de classe II est synthétisée sous forme d'un précurseur, aux exceptions notables de l'entérocine I (Floriano et coll., 1998) et de l'entérocine Q (Cintas et coll., 2000). Le précurseur, appelé aussi pré-bactériocine, possède une extension N-terminale (peptide leader) dont la séquence, comportant de 18 à 27 résidus, est assez bien conservée chez les bactériocines de sous-classe IIa (Figure 5) (Ennahar et coll., 2000). Dans la plupart des cas le clivage du pré-peptide se fait à un site spécifique constitué d'un enchaînement de deux résidus glycine situés à l'extrémité -COOH de la séquence leader. Il a été montré que cette maturation intervient lors de l'export de la bactériocine (Havarstein et coll., 1995). Le peptide leader sert de séquence signal au complexe formé d'un transporteur de type ABC ("ATP Binding Cassette") spécifique et de son facteur accessoire.

Les ABC-transporteurs font l’objet d’un chapitre ultérieur (cf. chapitre 4).

2.4.6 Régulation de l'expression génétique

Dans certains cas, l'expression des bactériocines peut être régulée au niveau transcriptionnel, et les peptides ne peuvent être produits en absence d'un facteur inducteur (IF). Les gènes impliqués dans cette régulation transcriptionnelle de l'expression des bactériocines, lorsqu'ils existent, ont été mis en évidence à proximité immédiate des gènes de structure. Les produits de ces gènes constituerait un système de régulation à trois composantes avec i) le facteur d'induction (IF), qui peut être la bactériocine elle-même, ii) une protéine kinase à histidine (HPK) et iii) un régulateur de réponse (RR) (Axelsson et Holck,

La structure primaire du facteur IF est très proche de celle des bactériocines; IF est synthétisé sous forme d'un pré-peptide avec une séquence leader possédant le motif double glycine. Cependant, le facteur d’induction mature n’a pas d’activité inhibitrice. En raison de cette forte similitude, notamment du peptide leader, ces molécules pourraient être maturées et exportées par le même système de transport (Kleerebezem et Quadri, 2001; Nes et coll., 1996).

La transduction du signal est réalisée par l’HPK composée d’une partie à fonction "sensorielle" et une partie transductrice possédant une activité autokinase avec un résidu histidine comme site de phosphorylation.

Les protéines RR possèdent aussi deux domaines: un récepteur, portant un résidu d'acide aspartique, site de phosphorylation, et un effecteur qui entraîne une réponse adaptative. La communication entre les HPK et les RR implique des phosphorylations/déphosphorylations entraînant une modification intramoléculaire du domaine effecteur du RR qui déclenche la réponse (Nes et coll., 1996). Le régulateur ainsi activé interagirait avec les promoteurs des opérons impliqués dans la machinerie de production de la bactériocine.

Outre ce système d'induction, les bactériocines peuvent aussi autoréguler leur propre synthèse, comme le fait la nisine (Ennahar et coll., 2000). De plus, les sources de carbone, d'azote et de phosphate, la répression catabolique ou des extraits de cellules cibles pourraient également jouer le rôle de régulateur (Parente et Ricciardi, 1999).

Les connaissances récentes sur la régulation de l’expression des bactériocines ont été rassemblées dans les revues suivantes : (Kleerebezem et Quadri, 2001), et (Nes et Eijsink, 1999), pour les bactériocines de classe II.
3 Mécanismes d’action et relations
structure/fonction

3.1 Les peptides α-amphiphiles de vertébrés et invertébrés

3.1.1 Deux modèles proposés pour le mécanisme d’action

Les deux grands mécanismes d’action proposés pour expliquer l’activité inhibitrice de ces peptides sont les modèles « en douve de tonneau » (ou « barrel-stave ») et « en tapis » (« carpet ») (Figure 6).

Le modèle « barrel-stave » et son dérivé « wormhole » consistent en une première étape de fixation des monomères peptidiques, sous leur conformation en hélice α, à la membrane par interactions électrostatiques des peptides cationiques avec les têtes chargées négativement (ou neutres) des phospholipides. Puis, à faible ratio peptide/lipide, il y a oligomérisation des peptides à la surface membranaire, ce mécanisme étant coopératif. Ensuite, les hélices α pénètrent le cœur hydrophobe de la bicouche lipidique et, même à faible concentration en bactériocide, forment des pores qui grossissent, par oligomérisation des peptides (Bechinger, 1999; Shai, 1999).

Le point crucial pour ce modèle est l’assemblage des monomères avant l’insertion dans la membrane car la conformation en hélice α est énergétiquement défavorable pour
qu’une seule molécule puisse pénétrer la bicouche lipidique. Dans ce modèle, les deux types d’interactions (électrostatique et hydrophobe) sont nécessaires et c’est la structure en hélice α amphiphile qui les rend possibles (Shai, 1999).

Figure 6: Modèles d’action proposés pour les peptides antimicrobiens (Bechinger, 1999).

A. Modèle “en douve de tonneau” ou “barrel-stave”.
B. Modèle “en tapis” ou “carpet”.

Le modèle « carpet » a été évoqué pour les peptides ayant le plus d’activité antimicrobienne. Ces peptides sont trop courts pour former un pore transmembranaire (Bechinger, 1999). La charge négative des phospholipides est essentielle dans ce modèle. Il fait aussi intervenir les interactions électrostatiques (d’où l’importance de la nature cationique du peptide) pour la première étape. Mais ici, les peptides couvrent la surface de la membrane parallèlement à celle-ci. C’est seulement quand une grande concentration en peptides est atteinte (localement ou sur toute la surface) que les molécules antimicrobiennes se réorientent avec une rotation de la face hydrophobe contre les chaînes acylées dans le cœur hydrophobe de la membrane. Ce mouvement entraîne alors une désintégration de la membrane (Bechinger, 1999; Shai, 1999).
Ce modèle, présenté comme prédominant, ne fait pas intervenir de pénétration préliminaire dans la membrane, ni d’oligomérisation des peptides. Une structuration particulière ne serait pas nécessaire puisque la première étape ne nécessite que les interactions électrostatiques et qu’aucune oligomérisation ou formation de pore ne sont exigées (Shai, 1999).

3.1.2 Études structure/fonction

De nombreuses études ont été effectuées sur les peptides α-amphiphiles des vertébrés et invertébrés pour déterminer l’influence des paramètres structuraux sur leur activité antimicrobienne (pour une revue, voir Dathe et Wieprecht, 1999).

3.1.2.1 Charge du peptide

Dans de nombreuses études, l’importance des interactions électrostatiques, entre les charges positives du peptide et les têtes chargées négativement des phospholipides, est montrée (Figure 7).

Il est généralement proposé que la première étape, l’ancrage du peptide à la membrane cible, est due à ces interactions (Blondelle et coll., 1999; Chia et coll., 2002; Epand et Vogel, 1999; Hancock et Chapple, 1999; Matsuzaki, 1999; Pott et coll., 2001; Sitaram et Nagaraj, 1999; Talbot et coll., 2001).

Blondelle et collaborateurs (1999) insistent sur le fait que la polarité (positive) et la flexibilité sont importantes pour l’activité et la spécificité d’action des magainines et cécropines. Ainsi, une étude sur deux cécropines analogues (B1 et B3) ayant des charges nettes différentes (respectivement +11 et +3) montre que la cécropine B1, la plus cationique, se fixe mieux sur les membranes cibles (Blondelle et coll., 1999).

La δ-hémolysine est un peptide α-amphiphile neutre. Cette molécule ne présente aucune activité antibactérienne mais possède un pouvoir hémolytique important. En substituant des résidus chargés négativement par des résidus positifs (lysine), une activité antibactérienne est constatée (Dhople et Nagaraj, 1995). De même, l’ajout de 10 résidus lysine à l’extrémité aminée de la magainine-2 permet une augmentation très nette de son...
activité antibactérienne, sans changer son activité hémolytique (Bessalle et coll., 1992). Au contraire, diminuer le nombre de charges positives de la magainine entraîne une baisse de l’activité antimicrobienne tandis que l’activité hémolytique change peu (ou est améliorée) (Matsuzaki et coll., 1997). Cependant, il n’y a pas une simple corrélation entre charge et activité antagoniste, comme d’autres études l’ont montré, car ces substitutions et additions de résidus ne changent pas seulement le paramètre « charge nette ».

Figure 7: Importance de la charge des phospholipides sur l’activité des peptides cationiques en hélice α amphiphile (Matsuzaki, 1999).

La membrane des érythrocytes (à gauche) est globalement plus hydrophobe que celle des bactéries (à droite). L’interaction avec les peptides cationiques amphiphiles sera donc plutôt de nature hydrophobe avec les membranes d’érythrocytes. Les interactions avec les membranes bactériennes seront à la fois de nature cationiques et hydrophobes.

Reprinted from Biochimica et Biophysica Acta, 1462, 1-2, Matsuzaki, K., Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes, Pages 1-10, 1999, with permission from Elsevier.

Ainsi, l’interaction membrane/peptide serait déterminée par un équilibre entre les interactions électrostatiques et hydrophobes (Dathe et Wieprecht, 1999; Hancock et Chapple, 1999). Pour améliorer l’activité antagoniste, Dathe et Wieprecht (1999) suggèrent d’augmenter le nombre de charges positives tout en maintenant une bonne efficacité de perméabilisation par un domaine hydrophobe important dans l’hélice α. Ces même auteurs
ont augmenté le nombre de charges positives chez des analogues de magainines, tout en maintenant les autres paramètres (hélicité, hydrophobicité…) intactes. Ils ont alors constaté une augmentation de l’activité antimicrobienne contre les bactéries à Gram positif et à Gram négatif et une disparition de l’activité hémolytique (Dathe et Wieprecht, 1999). Cependant, au-delà d’un certain seuil de charges positives, l’activité antibactérienne ne croît plus et même diminue. Les auteurs expliquent ce phénomène par un effet de répulsion des charges positives entre elles : la nature cationique permet la fixation des peptides sur la membrane mais des hélices α trop cationiques ne pourraient perméabiliser les membranes car la répulsion existant entre elles empêcherait les pores de se former.

Un autre rôle proposé pour ces charges positives, en plus de la fixation à la membrane, est l’accumulation de ces peptides sur une membrane dans le cas du modèle « carpet ».

3.1.2.2 Influence de l’hélicité

La plupart des peptides ne possédant pas de pont disulfure ont une structure désordonnée dans l’eau et ne se structurent qu’en se fixant à la membrane, dans un environnement anisotrope ou encore en s’agrégant (Hancock et Chapple, 1999; Matsuzaki, 1999). La structure en hélice α, quand elle est amphiphile, permet une interaction optimale des peptides avec la structure amphiphile des membranes bactériennes (Figure 8). Des substitutions de résidus favorisant les structures hélicoïdales (comme sur la mélittine) peuvent permettre d’augmenter l’activité antagoniste (Blondelle et Houghten, 1991a; Blondelle et Houghten, 1991b). Cependant, des substitutions inverses (diminuant ou cassant l’hélicité) n’entraînent pas forcément de diminution du pouvoir antibactérien (Blondelle et Houghten, 1991a; Blondelle et Houghten, 1991b; Dathe et Wieprecht, 1999). Cependant, ces modifications apportent des changements de plusieurs paramètres autres que l’hélicité (longueur de la chaîne, hydrophobicité…).
Figure 8: Importance de l’hélicité et de la répartition des zones hydrophobe et hydrophile dans la structure des peptides antimicrobiens.

A. Structure de la magainine montrant sa nature amphiphile avec les faces hydrophobe (a) et hydrophile (b) distinctes (Epand et Vogel, 1999). Le bleu représente les résidus les moins hydrophobes (chargés) et le rouge est pour les résidus les plus hydrophobes.

Reprinted from Biochimica et Biophysica Acta (BBA) – Biomembranes, 1462, 1-2, Dathe, M. et Wieprecht, T., Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells, Pages 71-87, 1999, with permission from Elsevier.
En substituant un ou deux résidus consécutifs par leur D-énantiomères, un dérangement local de l’hélicité est apporté sans changer la charge globale, la longueur et l’hydrophobicité du peptide. Wieprecht et collaborateurs (1996) ont constaté une baisse significative d’hélicité de la magainine conjointement à une chute du pouvoir perméabilisant de cette molécule sur des vésicules de phospholipides neutres ou légèrement négatifs. En revanche, la perméabilisation n’est pas perturbée sur des vésicules contenant des lipides fortement négatifs. Dans ce cas, il est suggéré que les interactions électrostatiques permettent une accumulation du peptide à la surface de la membrane et que cette accumulation est suffisamment importante pour déstabiliser la bicouche lipidique. En diminuant l’effet des interactions électrostatiques par un abaissement des charges négatives des phospholipides, l’affinité des peptides pour la membrane diminue. Ce sont alors les interactions hydrophobes qui interviennent. Ainsi, un analogue du peptide modèle KLAL possédant une plus faible hélicité que le KLAL (tout en conservant les autres paramètres intacts), agit moins bien sur des vésicules de phospholipides à faible charge négative (Dathe et Wieprecht, 1999).

3.1.2.3 Moment hydrophobe

C’est une mesure quantitative de l’amphiphilie d’un peptide représentant la somme vectorielle des hydrophobicités de chaque résidu. Ce paramètre peut être utilisé pour prévoir l’activité de peptide en hélice α sur des membranes ou modèles de membranes. Cependant, ce paramètre n’est pas toujours exploitable car il ne reflète pas la distribution des résidus hydrophobes autour de l’hélice (Figure 9).
Figure 9: Moment hydrophobe et angle du domaine hydrophile/hydrophobe dans l’hélice des peptides antimicrobiens.

Exemple des hélices amphiphiles de la mélittine, la magainine 2, la cécropine P1 et d’un modèle expérimental KLAL (Dathe et Wieprecht, 1999).
L’angle de la zone de l’hélice composée de résidus chargés est noté Φ. μ est le moment hydrophobe : la somme vectorielle des hydrophobicités de tous les résidus considérés comme formant une hélice α idéale.
Les résidus cationiques sont en noir, les polaires en gris et les résidus apolaires sont en blanc.

De plus, ce moment est conçu dans le cadre d’hélice α idéale, ce qui n’est pas toujours le cas dans la nature. Il permet cependant de moduler l’activité de peptides tels que des analogues de molécules antimicrobiennes ou des modèles synthétiques.

En augmentant le moment hydrophobe d’analogues de la magainine, on observe une augmentation de la fixation à la surface membranaire sûrement en raison d’interactions hydrophobes entre les hélices des peptides et les chaînes acylées des phospholipides (Hancock et Chapple, 1999). D’autres études sur le modèle KLAL montrent que ce paramètre joue un rôle mineur dans la perméabilisation de vésicules fortement chargées négativement mais a une influence non négligeable sur des modèles membranaires à lipides neutres (Dathe et
Les changements de moment hydrophobe influenceraient en fait les interactions hydrophobes peptide/chaînes acylées des lipides.

3.1.2.4 *Hydrophobicité*

Ce paramètre représente la capacité intrinsèque du peptide à se mouvoir depuis une solution aqueuse vers une phase hydrophobe.

Les interactions hydrophobes jouent un rôle majeur dans la partition des peptides (et protéines) à l’interface hydrophile/hydrophobe des bicouches lipidiques. Par conséquent, ce paramètre est important dans la compréhension de l’activité d’une molécule agissant sur une membrane.

Deux paramètres sont requis :
- le peptide doit être suffisamment soluble dans un environnement aqueux, donc hydrophile, pour permettre son transport vers la cible (en particulier dans le cadre des défenses animales contre une agression bactérienne).
- en même temps, le composé doit pouvoir interagir avec la phase hydrophobe du cœur de la membrane pour pouvoir la déstabiliser. Cela exige une hydrophobicité suffisante.

Pour étudier le rôle de l’hydrophobicité, Dathe et Wieprecht (1999) ont fait varier ce paramètre chez des analogues de magainine tout en fixant les autres paramètres (charges, moment hydrophobe…). Ils ont constaté une importante corrélation entre une augmentation de l’hydrophobicité et une croissance du caractère hémolytique. L’activité antibactérienne croît dans une moindre mesure avec ce paramètre. En abaissant l’hydrophobicité chez des analogues du modèle KLAL, les mêmes auteurs ont constaté une chute du pouvoir hémolytique tout en maintenant un antagonisme bactérien constant (Dathe et Wieprecht, 1999).

Ces modifications porteraient principalement sur le pouvoir de perméabilisation des membranes neutres. L’influence sur des phospholipides anioniques est beaucoup moins marquée. Les auteurs l’expliquent en postulant qu’alors, les interactions électrostatiques compensent la diminution des interactions hydrophobes.
Les travaux de Talbot et collaborateurs. (2001) montrent l’importance de ces interactions hydrophobes. Ils ont constaté que la δ-toxine de *Staphylococcus aureus*, peptide amphiphile, fait intervenir ces liaisons entre les faces apolaires des hélices pour une première association qui sera suivie par une oligomérisation des peptides *via* des liaisons ioniques entre les faces polaires quand la concentration en peptide augmente.

De même, les analogues B1 et B3 de cécropine se différencient par leur degré d’hydrophobicité (supérieure pour B3) en plus de la différence de charges. Alors que la cécropine B1, plus cationique, forme plus facilement des pores (suivant le modèle « barrel-stave »), la cécropine B3 perturbe la couche en s’accumulant à plat sur la surface membranaire puis s’enfonce en rompant cette membrane (suivant le modèle « carpet ») (Blondelle et coll., 1999). Des interactions hydrophobes se font dans cette première phase d’accumulation.

3.1.2.5 Angle du domaine hydrophile/hydrophobe de l’hélice α

La fixation des peptides antimicrobiens à la membrane et la perturbation qui en résulte sont théoriquement dépendantes de la taille relative du domaine hydrophile par rapport au domaine hydrophobe dans l’hélice α.

L’angle ϕ représentant le domaine relatif des faces polaires et apolaires, indépendamment de l’hydrophobicité et du moment hydrophobe, influence la localisation du peptide à la surface de la membrane ainsi que la structure du pore.

Il a été proposé une classification des peptides à hélice α amphiphile en fonction de ce paramètre (Brasseur et coll., 1997). Les peptides présentant un petit angle et une hydrophobicité importante auraient tendance à s’associer pour former des pores transmembranaires (modèle « barrel-stave ») tandis que les peptides avec un angle proche de 180° s’orienteraient parallèlement à la surface membranaire (modèle « carpet »). Cependant, de nombreuses données indiqueraient une propension au second modèle quel que soit l’angle ϕ (Dathe et Wieprecht, 1999). Mais, ces derniers auteurs n’excluent pas l’intervention de ces peptides pour former des pores dans un modèle « carpet » modifié.

Les mêmes auteurs ont fait varier les angles ϕ de 80° à 180° chez des analogues de magainines (ϕ = 120°) en maintenant les autres paramètres peu changés. Tous les analogues montrent une activité hémolytique et antimicrobienne améliorée liées à une meilleure affinité.
pour la membrane. En revanche, l’efficacité de perturbation de la membrane par peptide ancré chute avec la taille de l’angle. Les auteurs expliquent ce phénomène par des répulsions entre les faces polaires des hélices dues au grand nombre de charges ce qui se traduirait par une chute de la probabilité de formation des pores ou par leur déstabilisation (Dathe et Wieprecht, 1999).

3.1.2.6 Composition en lipides

La composition en phospholipides de la membrane joue un rôle dans l’étape de fixation à la membrane puisque cette étape repose sur les interactions électrostatiques avec les peptides cationiques (Figure 7). Ainsi, la magainine présente une plus grande activité liée à un meilleur ancrage à la membrane quand cette dernière est composée d’une grande quantité de phospholipides acides (charges négatives). L’insertion de la maculatine 1.1, α-amphiphile, et d’un analogue, non actif et moins amphiphile, a été étudiée dans des vésicules chargées négativement de DMPG (DiMyristoylPhosphatidylGlycérol) et des vésicules neutres de DMPC (DiMyristoylPhosphatidylCholine). Alors que les deux peptides s’insèrent dans le DMPG à plus de 60%, moins de 5% de la molécule pénètrent le DMPC. Ces charges négatives vont interagir avec les charges positives du peptide et lui permettre de se fixer sur la membrane (Matsuzaki, 1999). Le même auteur rapporte que l’hélicité α, inexistante en solution, est la plus élevée quand la magainine se fixe à des bicouches riches en lipides anioniques. Or, la plupart de ces lipides anioniques sont exposés à l’extérieur de la membrane bactérienne alors qu’ils se trouvent préférentiellement du coté cytoplasmique de la membrane, dans les cellules de mammifères (Epand et Vogel, 1999). Ces derniers auteurs remarquent aussi que l’activité de la magainine est plus efficace en présence de phosphatidylglycérol (abondant dans les membranes bactériennes) qu’en présence de phosphatidylsérine (abondante dans les cellules de mammifères) : ils en déduisent que les mécanismes d’action sont différents entre l’activité antibactérienne et l’activité hémolytique de la magainine (Epand et Vogel, 1999).

Un autre élément attestant de l’importance de ces interactions électrostatiques est le fait que, chez les bactéries à Gram positif, des mutations entraînant une augmentation du nombre de charges négatives à la surface du peptidoglycane (par accumulation d’acide...
teichoïque) entraîne une augmentation de la sensibilité aux peptides antimicrobiens (Epand et Vogel, 1999).

La fluidité des membranes semble aussi être un élément important (Pott et coll., 2001).

3.1.2.7 Existence d’un récepteur ?

Pour ces molécules, l’existence de récepteur est en général contestée en raison du spectre très large de l’activité antagoniste (contre les bactéries à Gram positif et à Gram négatif, les champignons, les cellules de vertébrés…) (Epand et Vogel, 1999; Shai, 1999). De plus, des énantiomères de magainine, cécropine et méliittine, synthétisés seulement à partir de D-acide aminés, présentent exactement la même activité que les peptides naturels. Ces résultats excluent l’intervention d’une reconnaissance stéréospécifique de l’antagoniste par un composé de la membrane cible comme un récepteur protéique (Epand et Vogel, 1999; Matsuzaki, 1999). Cependant, Epand et Vogel (1999) font allusion à d’autres travaux montrant des différences entre énantiomères en fonction des espèces bactériennes testées comme cibles. Ils suggèrent que les résultats pourraient être espèce-dépendants i.e. liés à une différence de composition lipidique des membranes, voire à l’existence de récepteur pour certaines bactéries.

Ces différences se retrouveraient aussi au niveau du modèle d’action : la δ-hémolysine s’enfoncerait profondément dans les phospholipides neutres en formant des pores par interactions hydrophobes entre les faces apolaires des hêlices (modèle barrel-stave) (Dathe et Wieprecht, 1999). La magainine suivrait plutôt un modèle inspiré du modèle « carpet » en se fixant à la membrane de façon parallèle à la surface de cette dernière puis désintégrerait la
bicouche lipidique (en formant des pores) après accumulation des peptides pour se retrouver de l’autre coté de la bicouche lipidique (Matsuzaki, 1999; Sitaram et Nagaraj, 1999).

Les auteurs, cependant, ne sont pas tous d’accord sur les mécanismes d’action de ces peptides. De plus, d’autres paramètres peuvent entrer en jeu comme la présence d’un potentiel transmembranaire qui pourrait aider à orienter la dermaseptine et à l’insérer dans la membrane (Sitaram et Nagaraj, 1999).

3.2 Les bactériocines de sous-classe IIa

Il existe beaucoup moins de données concernant les interactions des bactériocines de sous-classe IIa avec les membranes que pour les antimicrobiens de vertébrés et invertébrés. De plus, malgré un flot grandissant d’informations sur les relations structure/fonction de ces bactériocines, aucun modèle de mécanisme d’action avancé n’est satisfaisant. Cependant, il semblerait que certaines informations concernant les mécanismes d’action des antimicrobiens de vertébrés et invertébrés pourraient être utilisées, en plus des données déjà connues, pour comprendre comment agissent les bactériocines de sous-classe IIa.

3.2.1 Modèles proposés pour le mécanisme d’action

3.2.1.1 Formation de pores par les bactériocines de sous-classe IIa

Toutes les bactériocines de sous-classe IIa sont chargées positivement à pH physiologique (pI compris entre 8 et 11) et leur partie conservée N-terminale est hydrophile et cationique. C’est pourquoi, il est suggéré que cette partie amino-terminale jouerait un rôle dans l’interaction initiale et aspécifique des bactériocines avec les têtes chargées négativement des phospholipides membranaires (Jack et coll., 1995; Nes et Holo, 2000).
Figure 10: Modèles de structure et d’insertion membranaire des bactériocines de classe IIa (d’après Ennahar et coll., 2000).

(a): prédiction des domaines structuraux de bactériocines de classe IIa.
(b): interaction de la bactériocine avec la membrane.
(c): formation des pores hydrophiles.
La face hydrophobe de la bactériocine est noircie et la face hydrophile est claire.

La tendance amphiphile et la structure des bactériocines de sous-classe IIa est un facteur déterminant de leur capacité à former des pores selon le modèle en douve de tonneau (Figure 10). Le modèle le plus couramment admis pour l'action des bactériocines propose que,
suite au premier contact membranaire par le biais ou non d'un récepteur (cf. paragraphe suivant), l'hélice α du domaine C-terminal de la bactériocine s'étalait à la surface de la cellule. Toutefois, l'orientation de cette région amphiphile diffère selon les modèles proposés (Abee, 1995; Ennahar et coll., 2000; Kaiser et Montville, 1996). La structure en hélice α oblique de la partie C-terminale serait capable de s'insérer dans l'interface hydrophobe/hydrophile avec un angle de 30-60° et contribuerait à déstabiliser la membrane. La présence de résidus « casseurs d'hélice » situés en milieu de séquence faciliterait la pénétration de la molécule dans la membrane (Moll et coll., 2000). La bactériocine adopterait une orientation énergétiquement plus favorable en s'insérant dans la bicouche lipidique. Les pores seraient ensuite formés par agrégation des monomères, avec à l'intérieur les faces hydrophiles de l'hélice α (Moll et coll., 2000). Il a été démontré que l'insertion membranaire de ces bactériocines n'est pas dépendante du ΔΨ, mais sa présence augmenterait la taille ou le nombre de pores et/ou aiderait à réorienter les bactériocines afin de promouvoir leur insertion (Chen et coll., 1997b; Chikindas et coll., 1993; Kaiser et Montville, 1996).

Un autre mode d'action des bactériocines de sous-classe IIa a été proposé, constituant une alternative au modèle en "douve de tonneau". La sensibilisation membranaire pourrait aussi avoir lieu selon le modèle en "tapis" (Figure 10). Ce modèle reposait sur une orientation des peptides parallèlement à la membrane. Puis, il y aurait déstabilisation membranaire aspécifique due à une augmentation de la concentration en bactériocine au voisinage de la membrane (Ennahar et coll., 2000; Moll et coll., 2000; Moll et coll., 1999).

L'activité antimicrobienne des bactériocines de sous-classe IIa est principalement attribuée à la dissipation de la force protomotrice. Contrairement aux lantibiotiques qui dissipent totalement les deux composants de la force protomotrice, le potentiel de membrane (ΔΨ) et le gradient de pH (ΔpH), de nombreuses bactériocines de sous-classe IIa entraînent une annihilation totale du ΔpH mais seulement une dissipation partielle de ΔΨ. La perméabilisation membranaire déstabilise la balance ionique, provoque une perte de phosphate inorganique, un efflux d'acides aminés et une dissipation de l'ATP intracellulaire (Chen et Montville, 1995; Ennahar et coll., 2000; Maftah et coll., 1993). Cependant, une étude récente a montré que l'entérocine P ne dissipe que le ΔΨ, et non le ΔpH, des cellules d'En. faecium en provoquant l'efflux d'ions potassium seulement (Herranz et coll., 2001). Les mêmes résultats sont obtenus sur L. monocytogenes en utilisant l'entérocine CRL35 (seule
une partie de la séquence N-terminale est connue mais elle commence par KYYGNGV) avec efflux de K+ mais aussi d’ions phosphate (Minahk et al., 2000).

La dissipation de l’ATP intracellulaire ne résulterait pas d'une fuite de ce composé, ni de l’incapacité de la cellule à produire de l'ATP (en raison de la fuite du phosphate inorganique), mais plutôt d'une consommation accrue d'ATP, afin de maintenir ou de restaurer la force protomotrice (Chen et Montville, 1995; Herranz et coll., 2001).

En raison de la dissipation de la force protomotrice par les bactériocines, il a été suggéré que la mort de *L. monocytogenes* résulterait de l'inhibition des activités cellulaires dépendantes de cette force et essentielles à la croissance bactérienne.

Un autre mécanisme pourrait s’ajouter pour expliquer la mort cellulaire : dans certains cas, la conséquence de la formation de pores dans la membrane serait l’activation de système autolytique entraînant une lyse cellulaire (Jack et coll., 1995).

3.2.1.2 L’existence controversée d’un récepteur

La liaison des bactériocines de sous-classe IIa avec la membrane pourrait faire intervenir un récepteur membranaire dont l'existence est matière à controverse (Eijsink et coll., 1998).

MesY105 inhibe la synthèse d'ATP et la respiration stimulée par l'ADP dans des mitochondries de foie de rat, ainsi que l'adénine nucléotide translocase de mitochondries de cœur de bœuf. Ces cellules n'étant pas des cibles naturelles de la bactériocine, il a été suggéré que la présence d'un récepteur membranaire spécifique ne serait pas nécessaire et que MesY105 interagirait avec une organisation phospholipidique et/ou protéique particulière de la membrane (Jack et coll., 1995; Maftah et coll., 1993). De plus, à l'instar de la nisine, la bavaricine MN et la plantaricine C19 sont capables de former des pores dans des membranes liposomales, suggérant que le contact initial entre la bactériocine et la membrane bactérienne n'implique pas de récepteur mais uniquement les phospholipides anioniques (Gonzalez et coll., 1996; Kaiser et Montville, 1996). Cette observation a également été faite à propos de PedPA-1, car elle est active contre des vésicules lipidiques de *L. monocytogenes* (Chen et coll., 1998).

Les travaux récents de Dalet et collaborateurs (Dalet, K., 2000; Dalet, K. et coll., 2001) ont montré qu’un PTS de la famille du mannose de *L. monocytogenes* est impliqué dans sa sensibilité/résistance à MesY105. En effet l'interruption du gène manD2, codant une sous-unité du récepteur membranaire du mannose (EII₄Man), entraîne un phénotype de résistance à MesY105 dans différentes souches de *L. monocytogenes*. Les auteurs proposent que l'enzyme membranaire EII₄Man soit le récepteur des bactériocines de sous-classe IIa (Figure 11). Des résultats similaires chez *En. faecalis* ont été mis en évidence (Hechard et coll., 2001). Un autre travail récent a montré que l'expression d'une protéine ayant 83% d'homologie avec une sous-unité du système PTS de Streptocoque est très fortement diminuée chez un mutant spontané de *L. monocytogenes* résistant à LeuA : cette protéine est similaire à EII₄Man (Ramnath et coll., 2000).

3.2.2 Études des relations structure/fonction

Ces études font intervenir des comparaisons de séquences primaires, de structures secondaires prédites et de spectres d’activité dans le but d’identifier les régions jouant un rôle dans la reconnaissance de la cellule cible et/ou l’action antagoniste des bactériocines.

A priori, il semblerait qu’en général, toutes les parties de la structure de la molécule de même que l’intégralité de la séquence en acides aminés jouent un rôle dans au moins un de ces processus. En effet, des fragments de bactériocines présentent le plus souvent une activité réduite ou inexistante.
Figure 11: Rôle présumé de la sous-unité IID du PTS mannose EH_I^Man en tant que récepteur putative des bactériocines de sous-classe IIa (d’après Héchard et Sahl, 2002).

A : La bactériocine se fixerait sur le récepteur formé par la sous-unité D du PTS mannose.
B : Après ancrage sur le récepteur, les bactériocines s’oligomériseraient pour former un pore permettant l’efflux de métabolite, aboutissant à la mort cellulaire.
En général, on peut distinguer deux parties bien distinctes dans les bactériocines de sous-classe IIa : une extrémité aminée, du premier résidu jusqu’au résidu 18-20 (juste avant un tryptophane relativement bien conservé) et une partie C-terminale (du tryptophane précédemment cité au dernier résidu). Ces deux régions semblent jouer des rôles différents dans le processus d’antagonisme des peptides.

Remarque : dans la suite du document, les acides aminés (ou résidus) seront aussi bien désignés par leur nom entier que par leurs abréviations à une ou trois lettres du système international.

3.2.2.1 La région N-terminale

La structure tridimensionnelle établie pour LeuA (Fregeau Gallagher et coll., 1997) montre du coté N-terminal, une structure en feuillet β stabilisée par un tour β et le pont disulfure. Cette conformation est retrouvée dans des prédictions de structure sur PedPA-1 et les piscicocines VIa et VIb (Bhugaloo-Vial et coll., 1996; Chen et coll., 1997b). En revanche, CbnB2 dont la structure tridimensionnelle a aussi été déterminée par RMN, ne semble pas adopter de structure particulière autre que le pont disulfure dans cette région (Wang et coll., 1999a).

a Rôle du consensus YGNGV

Ce motif, très conservé dans toute la sous-classe IIa, serait intégré dans une structure de type feuillet β (Chen et coll., 1997a; Chen et coll., 1997b; Fregeau Gallagher et coll., 1997; Watson et coll., 2001). Ce type de structure exposerait le motif consensus, lors du contact avec la surface membranaire, et permettrait une bonne reconnaissance par une éventuelle protéine réceptrice spécifique, pour un positionnement correct de la bactériocine en vue de son activité (Fregeau Gallagher et coll., 1997).

Cependant, de nombreux travaux sont venus contester le rôle de ce motif dans la spécificité de l’antagonisme et lui donne une fonction dans la première étape de fixation à la membrane par stabilisation de la structure en feuillet β de la partie N-terminale (Chen et coll., 1997a; Chen et coll., 1997b; Fimland et coll., 1996).

Il est possible que les baisses d’activité rapportées dans la bibliographie à propos de peptides modifiés (mutants de MesY105, PedPA-1, CbnB2) (Chamberland-Chanteloube, 1997; Fleury et coll., 1996; Miller et coll., 1998a; Miller et coll., 1998b; Quadri et coll., 1997b) s’expliquent par une modification trop importante de la structure en feuillet β ce qui affecterait l’activité contre *Listeria* (Ennahar et coll., 2000). On peut supposer que des modifications de ce consensus, respectant la structure β, permettraient de conserver la totalité de l’activité antagoniste.

\[b \textit{ Rôle du feuillet } \beta \textit{ et du tour } \beta \]

Ces structures permettraient de conférer un caractère amphiphile à l’extrémité aminée des bactériocines de sous-classe IIa, ce qui aurait une grande importance pour les interactions électrostatiques initiales avec la membrane (Bhugaloo-Vial et coll., 1996; Chen et coll., 1997b; Fregeau Gallagher et coll., 1997). Chez PedPA-1, ce repliement favoriserait la formation d’un bloc positif rassemblant les lysine 1 et 11 (K1, K11) et histidine 12 (H12) pour favoriser l’ancrage sur les têtes négatives des phospholipides (Chen et coll., 1997a; Chen et coll., 1997b). Un bloc hydrophobe (V7, C9, C14 et V16) serait aussi formé pour favoriser le processus consécutif d’insertion dans la membrane (Chen et coll., 1997b).

Cependant, le rôle de cette structure (et de la partie N-terminale en général) n’est peut-être pas indispensable puisque la pré-MesY105, des dérivés de MesY105 dont la partie N-terminale est allongée, la protéine de fusion Maltose Binding Protein (MBP) ::PedPA-1, la pré-CbnB2 et la pré-PedPA-1 (dont les structures β sont probablement affectées) présentent une activité antagoniste faible (Chamberland-Chanteloube, 1997; Fleury et coll., 1996; Miller et coll., 1998a; Quadri et coll., 1997b; Ray et coll., 1999). Ceci indiquerait que la partie N-terminale ne soit pas impliquée dans le processus d’insertion de la membrane. Il faut
cependant remarquer que l’activité de ces peptides allongés est faible par rapport au peptide naturel, probablement en raison d’un problème de conformation de la bactériocine pour former le pore et/ou pour l’ancrage à la membrane (Miller et coll., 1998a; Ray et coll., 1999).

En définitive, la structure β (tour et feuillots) confèreraient une conformation permettant à l’extrémité aminée d’intervenir dans l’étape d’ancrage à la membrane par des interactions électrostatiques, ce qui serait un mécanisme non spécifique et commun aux bactériocines de sous-classe IIa.

c Rôle des charges positives

La disparition de charges positives du coté N-terminal de PedPA-1 (K1, K11 et H12) et de la sakacine P (SakP) (K1, H8, K11, H12) entraîne toujours une baisse d’activité du peptide (Chen et coll., 1997b; Kazazic et coll., 2002; Miller et coll., 1998b). De même, une substitution H8Y chez MesY105 entraîne une chute de l’antagonisme (Chamberland-Chanteloube, 1997). En ce qui concerne PedPA-1 et SakP, les auteurs ont montré que ce phénomène est dû à une difficulté pour le composé de se fixer à la membrane (Chen et coll., 1997b; Kazazic et coll., 2002). De plus, la protonation des trois résidus histidines de PedPA-1 (dont un se trouve coté N-terminal) entraîne une amélioration de l’ancrage à la membrane (Chen et coll., 1997b). Le fait d’ajouter une charge positive du coté N-terminal n’entraîne pas d’amélioration d’activité chez SakP (Kazazic et coll., 2002).

Il a même été montré que seules les interactions électrostatiques, et pas le motif YGNGV, sont responsables de la fixation de PedPA-1 à la membrane. Le fragment N8-15 comportant les résidus 8 à 15 de la bactériocine (dont les acides aminés cationiques K11 et H12) se fixe à la membrane de la même façon qu’un fragment des 15 premiers résidus et que la bactériocine entière. En revanche, un fragment des 7 premiers résidus (N7, avec le motif consensus) et un analogue de N8-15, où K11 et H12 ont été remplacés par des résidus non chargés, ne se fixent plus sur la membrane (Chen et coll., 1997a).

La charge de la lysine 11 de PedPA-1 jouerait un rôle important dans l’activité de la bactériocine, peut-être en interférant avec la fixation de la bactériocine sur la membrane car la substitution de ce résidu par un acide glutamique entraîne une augmentation de l’activité antagoniste (Miller et coll., 1998b).
De plus, l’ajout d’anions ou de cations, ou le changement de pH, en interférant avec la charge des bactériocines, affectent les interactions des peptides avec la membrane (Nes et Holo, 2000).

Ces résultats montrent le rôle des charges positives dans l’interaction avec la membrane et que le consensus YGNGV n’a pas de lien direct avec l’interaction à la membrane.

d **Rôle du premier pont disulfure**

Un autre rôle attribué au pont disulfure (ainsi qu’au second pont présent du coté C-terminal de certaines bactériocines) est l’augmentation de la rigidité intramoléculaire des peptides leur conférant une meilleure résistance à la chaleur (Ennahar et coll., 2000).
3.2.2.2 La région C-terminale

a Rôle de l’hélice α oblique centrale

Une étude portant sur neuf différentes bactériocines de sous-classe IIa montre que cette hélice serait située entre les résidus 15-16 et 27-28 et serait capable, par son orientation, de s’insérer dans l’interface hydrophile/hydrophobe de la membrane. Cette orientation oblique perturberait la membrane et faciliterait l’insertion de la bactériocine dans la bicouche lipidique (Bennik et coll., 1998). Les auteurs ajoutent, que parmi les bactériocines synthétiques de Finland et collaborateurs (1996), seule Ped-Sak (moitiés N-terminale de PedPA-1 et C-terminale de SakP) a conservé cette conformation en hélice oblique. Or, c’est aussi la seule à préserver toute l’activité par rapport à la bactériocine dont elle a hérité la partie C-terminale (Bennik et coll., 1998). Les hélices obliques des piscicocines VIa et VIb se fixent à l’interface membranaire mais ne sont pas capables de s’insérer, probablement en raison d’une plus faible amphiphilie (Bhugaloo-Vial et coll., 1996).

Les travaux sur ces hélices α-obliques apportent de nouvelles informations sur le processus de pénétration dans la membrane mais ne concernent pas la spécificité bactériocine/cible (Bhugaloo-Vial et coll., 1996; Ennahar et coll., 2000; Finland et coll., 1996).

b Rôle de l’hélice α et de la queue C-terminale

La capacité des bactériocines de sous-classe IIa à former une hélice α amphiphile dans un environnement apolaire est reconnue comme très importante pour son activité, en

Selon Fleury et collaborateurs (1996), la partie C-terminale servirait seulement à moduler l’activité de la bactériocine tandis que la partie N-terminale servirait à la spécificité de cible et à l’ancrage sur la membrane.

Cependant, une propriété notable de la partie C-terminale chez les bactériocines de sous-classe IIa est la grande hétérogénéité de sa séquence, contrastant avec la conservation de la partie N-terminale et en particulier de la séquence consensus. Cette grande hétérogénéité a amené de nombreux auteurs à penser que c’est la partie carboxy-terminale sous forme d’hélice α amphiphile (et non la partie amino-terminale et sa séquence « anti-Listeria ») qui est responsable de la spécificité de cible (Fimland et coll., 1996; Fimland et coll., 1998; Fregeau Gallagher et coll., 1997).

Différents travaux ont conforté cette supposition. Fimland et collaborateurs (1996) ont synthétisé des hybrides de bactériocines avec une partie N-terminale provenant d’une bactériocine et une partie C-terminale provenant d’une autre bactériocine. Dans tous les cas, les auteurs ont constaté que le spectre d’activité est identique à celui de la bactériocine dont la partie C-terminale est originaire. De plus, un 15-mer correspondant à un fragment de la partie C-terminale de PedPA-1 (résidus 20-34) interfère avec l’activité de PedPA-1, probablement en occupant un site d’interaction spécifique, supposé hydrophobe, de la membrane cible (Fimland et coll., 1998). Ce même fragment inhibe dans une moindre mesure l’activité de l’entérocine A, celle-ci partageant une longue séquence homologue avec le fragment (Fimland et coll., 1998).

Un fragment de divercine V41, correspondant à la partie C-terminale de la bactériocine, présente une activité inhibitrice contrairement au fragment correspondant à l’extrémité aminée (Bhugaloo-Vial et coll., 1999). Or, la même expérience sur MesY105 ne montre pas d’activité pour la partie C-terminale (Fleury et coll., 1996): la conformation induite par le second pont disulfure et l’hydrophobicité sont essentielles à l’activité anti-Listeria (Bhugaloo-Vial et coll., 1999).

Ennahar et collaborateurs (2000) ont proposé un classement des bactériocines de sous-classe IIa en fonction des homologies de leur séquence C-terminale. Ils suggèrent que
des peptides de même sous-groupe, dans ce classement, pourraient avoir un spectre d’activité proche. En revanche, l’inverse ne serait pas vrai car les deux piscicocines VIa et VIb partagent un spectre d’activité très proche malgré des séquences primaires relativement éloignées (Bhugaloo-Vial et coll., 1996).

Cependant, dans un article récent, des analogues de PedPA-1 ont été synthétisés en remplaçant la méthionine 31 (sujette à l’oxydation, entraînant une chute d’activité) par une alanine, une leucine ou une isoleucine. Ces analogues, s’ils retrouvent une activité identique contre trois souches testées, présentent des différences d’activité contre trois autres souches témoins (Johnsen et coll., 2000). Ici, une modification relativement faible de la séquence semble avoir des effets sur la spécificité de cible. De même, la coaguline, qui ne diffère de PedPA-1 que par la modification N41T, n’a plus d’activité contre Lactobacillus (Lb.) plantarum et Staphylococcus aureus, cibles de PedPA-1 (Le Marrec et coll., 2000). D’autres auteurs ont aussi obtenu un analogue de PedPA-1 (A34D) avec un spectre légèrement modifié (Miller et coll., 1998b).

c Rôle du second pont disulfure

Les bactériocines possédant un second pont disulfure présentent un spectre plus large que les peptides à un seul pont (Eijsink et coll., 1998; Ennahar et coll., 2000; Jack et coll., 1995). L’introduction d’un second pont disulfure dans SakP entraîne une extension de son spectre d’activité (ainsi que de la résistance de l’activité à la température) tandis que la suppression du second pont disulfure de PedPA-1 entraîne une réduction de son spectre (et une diminution de la résistance de l’activité à la température) (Fimland et coll., 2000).

Une corrélation peut être établie entre spectre/niveau d’activité et présence d’un second pont disulfure, chez les bactériocines de sous-classe IIa (Eijsink et coll., 1998; Ennahar et coll., 2000).

Il a été suggéré que ce second pont, comme celui placé à l’extrémité aminée, permettrait la formation d’un bloc de charges positives favorisant l’interaction initiale avec les phospholipides négatifs des membranes bactériennes (Chen et coll., 1997b). Ce second bloc augmenterait donc l’efficacité de fixation et d’activité de la bactériocine. Cependant, la sakacine G (SakG) présente une activité proche des bactériocines du type MesY105 bien qu’elle possède deux ponts disulfure (Simon et coll., 2002).

d Rôle des charges positives

La dernière remarque sur le second bloc positif pourrait être confirmée par le fait que PedPA-1, quand elle perd une charge positive H42 ou K43 en C-terminal, voit son activité diminuer en raison d’une plus faible fixation à la membrane (Miller et coll., 1998b). De plus, la protonation des trois résidus histidine de PedPA-1 (dont deux se trouvent coté C-terminal) entraîne une amélioration de l’ancrage à la membrane (Chen et coll., 1997b).

Pour SakP, l’ajout d’une charge positive après le dernier résidu permet d’augmenter l’efficacité de fixation de la molécule sur la membrane, mais l’activité reste la même (Kazazic et coll., 2002). En revanche, la substitution du dernier résidu (K43) par une thréonine entraîne une baisse d’activité liée à une diminution du pouvoir de fixation (Kazazic et coll., 2002).

Donc, les charges positives, à l’instar des blocs positifs coté N-terminal, pourraient faciliter un ancrage préliminaire de cette partie C-terminale à la membrane par interactions électrostatiques.

e Présence d’acides aminés aromatiques et rôle de l’hydrophobicité

Les acides aminés aromatiques, et surtout le tryptophane, semblent importants pour l’activité des bactériocines, en particulier du coté carboxy-terminal.

On retrouve un résidu tryptophane au début de la moitié C-terminale, dans la grande majorité des bactériocines (21 cas sur 24). Un autre résidu tryptophane se trouve à l’extrémité
carboxylée ou au milieu de l’hélice α C-terminale dans 20 cas sur 24, et pour 2 des 4 bactériocines sans ce deuxième tryptophane, on trouve une phénylalanine qui est aussi une résidu aromatique avec un fort encombrement stérique (Figure 2) (Ennahar et coll., 2000).

Une étude récente a été effectuée sur le rôle du tryptophane dans l’activité de SakP. Ce peptide présente trois résidus tryptophanes : deux résidus présumés encadrer l’hélice α (positions 18 et 33) et un résidu situé dans la queue N-terminale (position 41). La substitution du tryptophane 33 en leucine (hydrophobe) ou phénylalanine (aromatique) n’entraîne qu’une faible diminution de l’activité du peptide contrairement à la substitution avec un résidu hydrophile (tyrosine ou arginine). En revanche, toute substitution de l’un ou l’autre des tryptophanes 18 et 41 entraîne une chute sévère de l’activité, la substitution la moins délétère étant le remplacement par un résidu aromatique (phénylalanine). Les conséquences de ces substitutions sont partiellement voire complètement annulées par la création d’un second pont disulfure (C24-C44). Ces résultats suggèrent, selon les auteurs, le rôle des tryptophanes 18 et 41 dans la stabilisation d’une structure en épingle à cheveux permettant le rapprochement de ces deux résidus dans l’espace. L’existence du second pont disulfure aurait le même rôle. Ces données montrent aussi l’importance de la présence de ces deux résidus à l’interface milieu extracellulaire/membrane ; ces résidus pouvant intervenir dans la perturbation de la membrane et l’insertion oblique de l’hélice C-terminale. Enfin, le tryptophane 33 interférait avec le cœur hydrophobe de la membrane (Fimland et coll., 2002).

Un autre rôle de ces deux tryptophanes aux extrémités de l’hélice C-terminale des piscicocines VIa et VIb serait la stabilisation et le renforcement de cette hélice ainsi que son orientation dans la membrane cible (Bhugaloo-Vial et coll., 1996). Une substitution de la phénylalanine se trouvant au milieu de l’hélice de CbnB2 entraîne aussi une perte totale d’activité par déstructuration de l’hélice α, peut-être en raison de la modification d’encombrement stérique ou encore par changement de l’hydrophobicité (Quadri et coll., 1997a).
Devant le tryptophane central, se trouve toujours un résidu acide aspartique (15 cas sur 24) ou une asparagine (9 cas sur 24). Or, chez SakP, la substitution de l’acide aspartique 17, chargé négativement, pour une asparagine (neutre mais de même taille) ou un acide glutamique (chargé négativement et relativement similaire) entraîne un chuté de l’activité : la charge négative mais aussi l’orientation de la chaîne latérale de ce résidu semblent essentielles à l’activité de ce peptide (Kazazic et coll., 2002). Il est possible que cet acide aminé (ou l’asparagine) soit crucial comme le tryptophane, au niveau de la charnière entre les moitiés N-terminale et C-terminale.

4 Sécrétion des bactériocines et expression hétérologue

4.1 Transport des bactériocines

Les systèmes de sécrétion de type I sont majoritaires chez les bactéries lactiques. De nombreux peptides antimicrobiens sont transportés par ces systèmes et, très souvent, les domaines membranaires (MD) et ABC sont portés par la même protéine (Kerr, 2002; Young et Holland, 1999). Une particularité des bactériocines de classe I et II est le fait qu’elles sont

Dans le cas du transport des bactériocines de classe II, une protéine dite «accessoire» intervient avec l’ABC-transporteur dans la sécrétion des peptides. Celle-ci, absente pour les lantibiotiques, semble être spécifique du transporteur et de l’allocrite. Le système complet de sécrétion de la plupart des bactériocines de classe II est le suivant : {MD-ABC}2–protéine accessoire (Figure 12) (Young et Holland, 1999). Les gènes codant ABC-transporteur et protéine d’immunité associée sont généralement situés dans le même opéron ou proche de l’opéron contenant les gènes de structure et d’immunité de la pré-bactériocine (Havarstein et coll., 1995).

Assez peu de données existent sur la structure et le fonctionnement exacts des ABC-transporteurs de bactériocines. En raison de nombreuses similitudes avec les transporteurs eucaryotes mieux caractérisés, on peut extrapoler le mode de fonctionnement du transport des bactériocines sur les bases des informations connues pour ces transporteurs (Young et Holland, 1999) et de celui de la lactococcine G (Havarstein et coll., 1995).
Figure 12: Mécanisme de transport et de maturation des pré-bactériocines de sous-classe IIa possédant un peptide leader (D’après Simon, 2001).

Un seul monôme {ABC-transporteur/protéine accessoire} est représenté ici.

4.2 Expression hétérologue de bactériocines

4.2.1 Sécrétion par un système de transport dédié (DTS)

L’intérêt pour les systèmes de sécrétion hétérologue est non négligeable. Introduire les gènes codant une bactériocine et son système de sécrétion dans une souche à potentiel agro-alimentaire permettrait une meilleure protection des produits contre les flores pathogènes ou d’altération en évitant l’utilisation d’additifs. De même, une souche capable de produire différentes bactériocines permettrait d’étendre le spectre d’activité vis à vis des contaminants. Enfin, l’utilisation de souches permettant la production hétérologue en grande quantité de peptides peut s’avérer utile pour l’étude de ces peptides.

Différents éléments semblent influencer l’efficacité de production hétérologue des bactéries :

- Le nombre de copies de gènes est évoqué dans plusieurs travaux : l’utilisation de plasmide à fort nombre de copies semble un avantage (Biet et coll., 1998; Horn et coll., 1998; Horn et coll., 1999; Leer et coll., 1995; Martinez et coll., 2000; van Belkum et coll., 1997).

• Une autre condition de succès de l’expression hétérologue des bactériocines est la possibilité pour une séquence leader N-terminal d’une pré-bactériocine d’être reconnue par un DTS d’une autre bactériocine (Figure 13). Il semble, au moins pour les bactériocines de sous-classe IIa, que l’efficacité de transport (et maturation) d’un DTS pour une bactériocine autre que celle qui lui est naturellement associée est très dépendante des similitudes entre les séquences leaders des peptides (Ennahar et coll., 2000).

Figure 13: Alignement de séquences des peptides leader de diverses bactériocines de classe II en fonction de leur motif double glycine C-terminal.

Les résidus conservés sont inscrits en capitales et surlignés de gris.

4.2.2 Sécrétion par le système général de sécrétion (sec)

Quelques essais de production hétérologue utilisant la voie générale de sécrétion ont été effectués. Ainsi, la phosphatase alcaline a été exportée chez E. coli en utilisant la séquence signal N-terminale de la divergicine (produite par Cn. divergens) (Worobo et coll., 1995). La divergicine a été aussi produite chez Cn. piscicola, Cn. divergens, Lc. lactis et même E. coli.

La production de bactériocines utilisant la voie générale de sécrétion apparaît donc possible. Néanmoins, au regard de son efficacité inférieure à l’utilisation des DTS, elle ne peut susciter ni intérêt industriel, ni un réel intérêt pour des analyses structurales de bactériocines, qui nécessitent des quantités importantes de peptides (Biet et coll., 1998).

5 Notre modèle d’étude : la mésentéricine Y105

C’est au cours de sa thèse, effectuée dans l’équipe de Biologie Moléculaire dirigée par Yves Cenatiempo en collaboration avec François Letellier (Université de La Rochelle), que Yann Héchard a isolé du lait de chèvre la souche Ln. mesenteroides Y105 présentant une activité anti-Listeria. La molécule antibactérienne excrétée par cette souche a ensuite été isolée et caractérisée (Hechard et coll., 1992). Cette bactériocine de sous-classe IIa, composée de 37 résidus d’acides aminés, fut baptisée MesY105 (MesY105). Elle est très proche par sa séquence de LeuA, produite par Ln. gelidum UAL187, souche canadienne isolée de plats cuisinés emballés sous vide (Hastings et coll., 1991). En effet, ces deux molécules, excrétées par deux souches éloignées à la fois par la géographie et le biotope, ne diffèrent que par deux
résidus en position 22 (phénylalanine pour LeuA et alanine pour MesY105) et 26 (valine pour LeuA et isoleucine pour MesY105) (Figure 2).

MATERIEL ET METHODES
1 Souches bactériennes et plasmides

Les souches bactériennes et les plasmides utilisés lors de ce travail sont référencés dans les tableaux 1 et 2.

Les bactéries sont cultivées en milieu liquide ou sur gélose à 15 g/l.

<table>
<thead>
<tr>
<th>Souches</th>
<th>Caractéristiques</th>
<th>Sources ou références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| DH5α | F φ80lacZΔM15 Δ(lacZYA-argF)U169 endA1 recA1
hsdR17(rK-mK+) deoR thi-1 supE44 λ- Invitrogen
gyrA96 relA1 | | |
| **Leuconostoc mesenteroides** | | |
| ssp. *mesenteroides* Y105 | Souche sauvage, mY105⁺, mB105⁺ | (Hechard et coll., 1992) |
| ssp. *dextranicum* DSM 20484 | Souche sauvage, mY105⁺, mB105⁺, ped⁺ | DSM |
| **Listeria ivanovii** | | |
| BUG496 Li4(pVS2) | Souche de laboratoire, mY105⁺, mB105⁺, ped⁺
Souche de laboratoire, mY105⁺, mB105⁺, ped⁺, Cm⁺, Em⁺ | Institut Pasteur
(Axelsson et coll., 1998) |
| **Pediococcus acidilactici** | | |
| 1521 | Souche sauvage industrielle, ped⁺ | Rhodia Food |

Tableau 1: Souches bactériennes utilisées au cours de ce travail.

<table>
<thead>
<tr>
<th>Plasmides</th>
<th>Caractéristiques</th>
<th>Sources ou références</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEM-T</td>
<td>Vecteur de clonage de produits PCR, Ap<sup>r</sup>, 3 kb</td>
<td>Promega</td>
</tr>
<tr>
<td>pGEM-T easy</td>
<td>Vecteur de clonage de produits PCR, Ap<sup>r</sup>, 3 kb</td>
<td>Promega</td>
</tr>
<tr>
<td>pMal-C2</td>
<td>Vecteur d'expression, Ap<sup>r</sup>, 6,7 kb</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>pMK4</td>
<td>Vecteur navette *E. coli/bactéries Gram+, Ap<sup>r</sup>, Cm<sup>r</sup>, 5,6 kb</td>
<td>Sullivan et coll. (1984)</td>
</tr>
<tr>
<td>pCR-Blunt</td>
<td>Vecteur de clonage, Ap<sup>r</sup>, 3,3 kb</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pUCB3522</td>
<td>Vecteur navette *E. coli/bactéries Gram+, Ap<sup>r</sup>, Cm<sup>r</sup>, 7,3 kb</td>
<td>(Frere et coll., 1993)</td>
</tr>
<tr>
<td>pDMYC01*</td>
<td>pGEM-T : mes<sub>Y</sub>part, Ap<sup>r</sup>, 3,1 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMYC02*</td>
<td>pMal-C2 : mes<sub>Y</sub>part, Ap<sup>r</sup>, 6,8 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pFBYC04</td>
<td>mes<sub>Y</sub>1 mesCDE-mesBHF, Em<sup>r</sup>, 13,9 kb</td>
<td>(Biet et coll., 1998)</td>
</tr>
<tr>
<td>pDMJF01</td>
<td>mes<sub>Y</sub>1 mesCDE-mesBHF, Em<sup>r</sup>, 13,8 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF02**</td>
<td>mesCDE-mesBHF, Em<sup>r</sup>, 13,4 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF03</td>
<td>mesCDE, Em<sup>r</sup>, 13,3 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pGEM-T easy : YI*</td>
<td>pGEM-T easy : mes<sub>Y</sub>1, Ap<sup>r</sup>, 4 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pGEM-T easy : PA-1*</td>
<td>pGEM-T easy : pedAB, Ap<sup>r</sup>, 3,9 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pGEM-T easy : BHF*</td>
<td>pGEM-T easy : mes<sub>Y</sub>1, Ap<sup>r</sup>, 5 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF:YI*</td>
<td>pMK4 : mes<sub>Y</sub>1, Ap<sup>r</sup>, Cm<sup>r</sup>, 6,4 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF:Y*</td>
<td>pMK4 : mes<sub>Y</sub>, Ap<sup>r</sup>, Cm<sup>r</sup>, 5,9 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF:BHF</td>
<td>pMK4 : mesB, mesH, mesF, Ap<sup>r</sup>, Cm<sup>r</sup>, 7,4 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF:PA-1</td>
<td>pMK4 : pedA, pedB, Ap<sup>r</sup>, Cm<sup>r</sup>, 6,3 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF:Y::PA-1</td>
<td>pMK4 : mes<sub>Y</sub>::pedA, pedB, Ap<sup>r</sup>, Cm<sup>r</sup>, 6,3 kb</td>
<td>Ce travail</td>
</tr>
<tr>
<td>pDMJF:Y::VIP</td>
<td>pMK4 : mes<sub>Y</sub>::ADN<sub>C</sub> codant VIP, Ap<sup>r</sup>, Cm<sup>r</sup>, 6,3 kb</td>
<td>Ce travail</td>
</tr>
</tbody>
</table>

Tableau 2: Plasmides utilisés au cours de ce travail.

*: dans le cas d’une séquence d’ADN muté, un suffixe correspondant à la substitution est ajouté. Ex : pour la séquence codant le dérivé a₂1v, on notera pDMYC01-a₂1v.

**: pDMJF02 est le nom simplifié de la construction pDMJF02(d). Pour les différentes constructions, voir « Résultats et discussion », § 4.3.1.1.
1.1 *Escherichia coli*

Les souches d'*E. coli* sont cultivées en milieu Luria-Bertani (LB) ou 2TY à 37°C sous agitation (220 rpm).

<table>
<thead>
<tr>
<th>Milieu LB :</th>
<th>Bactotryptone</th>
<th>10 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrait de levure</td>
<td>5 g</td>
<td></td>
</tr>
<tr>
<td>Chlorure de sodium</td>
<td>10 g</td>
<td></td>
</tr>
<tr>
<td>H₂O q.s.p.</td>
<td>1 l</td>
<td></td>
</tr>
<tr>
<td>pH 7 (NaOH)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milieu 2TY glucosé</th>
<th>Tryptone</th>
<th>10 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrait de levure</td>
<td>5 g</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>5 g</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>2 g</td>
<td></td>
</tr>
<tr>
<td>H₂O q.s.p.</td>
<td>1 l</td>
<td></td>
</tr>
<tr>
<td>pH 7 (NaOH)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les milieux de culture sont stérilisés 15 min à 121°C. Lorsque cela s'avère nécessaire, les antibiotiques (ampicilline 75 µg/mL, érythromycine 150 µg/mL) y sont ajoutés.

1.2 *Listeria*

Les cultures des souches *L. ivanovii* (BUG 496 ou Li4 (pVS2)) sont réalisées en milieu coeur-cervelle (Brain Heart Infusion, BHI, DIFCO Laboratories) à 37°C sans agitation. Le milieu BHI est stérilisé 15 min à 121°C. Les cultures de *L. ivanovii* Li4 (pVS2) sont cultivées en présence d’érythromycine 10 µg/mL.
1.3 Les bactéries lactiques

Les cultures de bactéries lactiques (*Leuconostoc* ou *Pediococcus*) sont réalisées en milieu de Man, Rogosa et Sharpe (MRS, DIFCO Laboratories) à 30°C sans agitation. Le milieu MRS subit une stérilisation ménagée de 10 min à 111°C dans un autoclave préchauffé. Lorsque cela s'avère nécessaire de l'érythromycine (15 µg/ml) et/ou du chloramphénicol (10 µg/ml) sont ajoutés au milieu de culture.

2 Production et purification de la protéine de fusion MBP ::MesY105

Les conditions d’induction de la production de la protéine de fusion MBP ::MesY105 sont adaptées à partir des indications du fournisseur du plasmide pMal-C2, New England Biolabs.

Du milieu de culture 2TY glucosé contenant de l’ampicilline (75 µg/ml) est ensemencé à 1% (v/v) avec une pré-culture de la souche *E. coli* contenant le plasmide codant la protéine de fusion. La culture se fait à 37°C sous agitation puis l’expression du gène codant la protéine de fusion est induite à 30°C par l’ajout d’IPTG (0,3 mM final) quand la culture atteint une DO$_{600nm}$=0,5.

Après 2h d’induction à 30°C, les protéines solubles bactériennes sont extraites comme suit : les cultures sont centrifugées pendant 10 min à 4000g, le culot cellulaire est resuspendu dans un tampon « colonne » (20 mM Tris-HCl pH 7,4; 200 mM NaCl; 1 mM EDTA) à raison de 1/40 du volume de culture. Les cellules sont lysées par broyage mécanique grâce à des billes de verre: le culot bactérien est agité au vortex 2 fois 4 min en présence des billes et de tampon colonne), puis centrifugées pendant 20 min à 9000g. Le surnageant (extrait brut) est dilué au 1/5 dans le tampon « colonne » (20 mM Tris-HCl pH 7,4, 200 mM NaCl, 1mM EDTA).
La protéine de fusion est ensuite purifiée, à partir de l’extrait brut contenant les protéines bactériennes, par chromatographie d’affinité sur résine amylose selon le protocole proposé par le fournisseur (New England Biolabs).

Le clivage de la protéine de fusion par le facteur Xa est effectué selon les indications du fournisseur (New England Biolabs).

3 Purification des bactériocines de sous-classe IIa

La méthode utilisée a été développée pour la purification de MesY105, mais est également applicable aux autres bactériocines de sous-classe IIa. Elle a été utilisée pour la purification de PedPA-1 mais aussi pour la purification de la bactériocine de classe II, MesB105. Le protocole de purification utilisé est dérivé de celui de Guyonnet et collaborateurs (2000).

La suspension est partiellement purifiée sur une phase solide échangeuse de cations (carboxy-méthyl-cellulose, Cellufine C-200, Amicon) en tirant profit du caractère cationique à pH acide de la bactériocine. L’éluat obtenu (fraction avec 0,5 M de NaCl), actif contre Listeria, est ensuite partiellement purifié en phase solide sur une silice greffée apolaire C18 (Sep pak plus, Waters). Le caractère hydrophobe de la bactériocine est alors mis à contribution. L’élution effectuée avec des concentrations croissantes en ACN montre une activité anti-Listeria pour les fractions 40% et 80% d’ACN. Finalement, ces deux fractions sont purifiées par HPLC en phase inverse (§ 6.2) puis l’identification de la bactériocine contenue dans le pic actif contre Listeria se fait par spectrométrie de masse (§ 6.4).
4 Techniques de microbiologie : Activité antagoniste

L'action antagoniste des bactéries lactiques envers les bactéries cibles (*Listeria* et *Leuconostoc*) est testée par la méthode de diffusion en puits (Tagg & McGiven, 1971).

Un milieu gélosé à 9 g/l (BHI pour *Listeria* ou MRS pour *Leuconostoc*) estensemencé à 1% (v/v) avec une pré-culture de la souche bactérienne cible en phase stationnaire, avant d'être coulé dans une boîte de Pétri. Après solidification, des puits sont pratiqués dans cette gélose à l'aide d'un emporte-pièce. 50 µl d'un échantillon à tester, ou d'un témoin (si nécessaire dilué séquentiellement au ½), sont déposés dans chaque puit. Les boîtes sont placées à 37°C pendant 24 heures. L'effet antagoniste est responsable d'une zone d'inhibition de croissance de la souche cible autour du puits, dont le rayon est proportionnel à la concentration de bactériocide. Les rayons des halos d'inhibition sont mesurés manuellement.

La taille des rayons des halos d'inhibition obtenus par les dilutions du surnageant de culture témoin permet de tracer une droite par régression linéaire:

\[\text{rayon d'inhibition (mm)} = f [\log(\text{concentration})] \]

5 Techniques de Biologie Moléculaire

5.1 Extraction d'ADN plasmidique

5.1.1 *Escherichia coli*

L'ADN plasmidique d'*E. coli* est préparé selon la méthode de lyse alcaline (Sambrook et Russel, 2001).

Pour la lyse alcaline, 1,5 ml d'une pré-culture de la nuit sont centrifugés (5 min, 15000 g). Le culot cellulaire est repris dans 1 ml de solution de suspension, (Tris-HCl 25 mM pH8, EDTA 10 mM, glucose 50 mM). Les cellules sont lysées par la solution de lyse (SDS 1%, NaOH 0,2N) et les débris cellulaires sont précipités par 150 µl de solution riche en sels.
(acétate de potassium 3 Ml, acide acétique glacial 20 mM). Après 15 min d’incubation sur glace et centrifugation (15 min, 15000 g) la phase liquide est extraite par 400 µl de phénol saturé en NaCl et 400 µl de chloroforme. L’ADN contenu dans la phase aqueuse est précipité par 3 volumes d'éthanol 100%, et récolté par centrifugation (15 min, 15000 g à 4°C). Le culot obtenu est lavé avec de l'éthanol 75% avant d'être séché puis repris dans 50 µl d'H2O contenant de l'ARNase A (1 µg/ml).

5.1.2 Les bactéries lactiques

Deux ml d’une pré-culture de 18 h servent à ensemencer 10 ml de MRS placés 2h à 30°C pour les bactéries Leuconostoc et Pediococcus. Les cellules sont ensuite récoltées par centrifugation (10 min, 4000 g) et le culot est lavé par 5 ml de H2O. Après centrifugation (10 min, 4000 g), les bactéries sont resuspendues dans 1 ml de Tris-HCl 50 mM pH8, EDTA 1 mM, saccharose 8% contenant 10 mg de lysozyme (Sigma), puis incubées à 37°C pendant 30 min pour les autres bactéries.

Les protoplastes obtenus de cette façon sont récoltés par centrifugation 1 min à 15000 g, repris dans 500 µl de "solution de lyse", (Tris-HCl 50 mM pH8, EDTA 5 mM, SDS 3% contenant 35 µl de NaOH 3 N/ml), et agités pendant 30 s.

Après l’addition de 250 µl de "solution saline" (acétate de potassium 3M, acide formique 1,8M) et homogénéisation, les protéines et les débris cellulaires sont extraits par 400 µl de phénol saturé en NaCl et 400 µl de chloroforme ajoutés séquentiellement.

Après centrifugation (5 min à 15000 g), la phase aqueuse est à nouveau extraite par 750 µl de chloroforme / alcool isoamylique (24:1). L’ADN contenu dans la phase aqueuse est précipité par 750 µl d’isopropanol (–20°C, 30 min).

Après centrifugation (15 min, 15000 g) le culot d’ADN est lavé par de l’éthanol 70%, puis séché. L’ADN est repris dans 50 µl d’H2O contenant de l’ARNase A à 1 µg/ml.
5.2 Coupures de l’ADN par les endonucléases de restriction

Les enzymes de restriction (Gibco BRL) sont utilisées dans les tampons appropriés et dans les conditions recommandées par le fournisseur.

Milieu réactionnel:
- Solution d’ADN
 1-2 µg
- Tampon (10X)
 2 µl
- Endonucléase
 20 U
- H₂O
 q.s.p.20 µl

5.3 Phosphorylation de fragments d’ADN

Lorsque cela s'avère nécessaire, les amorces nucléotidiques sont phosphorylées à l’aide de la T4 polynucléotide kinase (PNK, New England Biolabs).

Milieu réactionnel :
- ADN (200 mM initial)
 3 µl
- Tampon T4 DNA ligase (10X)
 3 µl
- T4 PNK Kinase
 4 µl
- H₂O
 q.s.p.30 µl

Le mélange réactionnel est incubé à 37°C pendant 1 h, puis l'enzyme est inactivée par chauffage (15 min, 65°C).

5.4 Ligature de l’ADN

L’ADN ligase du bactériophage T4 (Promega) catalyse la formation de liaisons phosphodiester entre les extrémités 3’hydroxyle et 5’phosphate des ADN double brin.
Milieu réactionnel:

- Solution du fragment d'ADN à cloner: 1-5 µl
- Solution plasmidique: 0.2-0.5 µl
- Tampon de ligature (10X): 2 µl
- T4 DNA ligase (Promega): 1 µl
- H2O q.s.p.: 20 µl

Ce mélange réactionnel est incubé 15 h à 16°C. Une fraction de ce mélange est ensuite analysée sur gel d'agarose.

5.5 Purification de fragments linéaires d’ADN

Les fragments d'ADN issus d’une digestion par endonucléases ou d’une réaction de PCR sont purifiés par le protocole Qiaquick en suivant les indications du fournisseur (Qiagen).

5.6 Transformation de bactéries

5.6.1 Escherichia coli

5.6.1.1 Thermo-compétentes

Les bactéries sont rendues compétentes et transformées selon un protocole modifié de la littérature (Hanahan, 1983).

Du milieu de culture LB contenant 0.2 % de glucose est ensemencé à 1% (v/v) par une pré-culture de E. coli jusqu’à une DO_{600 nm} de 0.5. Les cellules sont placées sur la glace pendant 20 min avant d'être récupérées par centrifugation (5 min, 2000g à 4°C), resuspendues dans 2/5ème du volume de départ dans du tampon I stérile (KOAc 30 mM, MnCl₂ 50 mM, CaCl₂ 10 mM, RbCl₂ 100 mM, glycérol 15% v/v, pH 5.8) et laissées sur glace 5 min avant d’être recentrifugées. Le culot bactérien est repris dans 1/10ème du volume de départ de
tampon II stérile (MOPS 10 mM, RbCl₂ 10 mM, CaCl₂ 75 mM, glycérol 15% v/v, pH 6,5) et incubé 15 min sur glace. Les bactéries sont aliquotees (200 µl) et stockées à −80°C.

Environ 100 ng d'ADN sont mis au contact des cellules compétentes pendant 20 min sur glace avant de placer le mélange 90 s à 42°C. Après 5 min sur glace, 800 µl de milieu 2TY glucosé sont ajoutés et les cellules transformées sont ensuite incubées 1 heure, pour une sélection des clones résistants à l'ampicilline, et 3 heures, pour une sélection des clones érythromycine résistants, à 37°C. Les transformants sont étalés sur un milieu gélosé (BHI additionné d'érythromycine à 150 µg/ml ou LB additionné d'ampicilline à 75 µg/ml) contenant X-Gal (40 µg/ml) et IPTG (1 mM) et incubés à 37°C. L’incubation dure 24 à 48 heures dans le cas d’une sélection à l’érythromycine, 15 h au maximum dans le cas d’une sélection à l’ampicilline.

5.6.1.2 Electro-compétentes

Les bactéries sont rendues compétentes et transformées selon le protocole modifié de Miller et Nickoloff (1995).

Un volume V de milieu de culture LB est ensemencé à 2% (v/v) à l'aide d'une pré-culture, et placé à 37°C sous agitation jusqu'à une DO₆₀₀ₙₐ₅ de 0,8. Les bactéries sont alors centrifugées (10 min, 3300 g), lavées avec de l'H₂O milliQ stérile (1/2V, 1/4V) puis de l'H₂O milliQ glycérolée stérile (10%, 1/4V). Les cellules sont reprises dans 1/250ème V, avant d'être aliquotees (50 µl) et stockées à −80°C.

Environ 25 ng de solution d'ADN sont ajoutés aux cellules décongelées, puis l'électroporation est réalisée dans des cuvettes d’électroporation BioRad 0,2 cm (distance entre électrodes) avec le BioRad Gene Pulser (2,5 kV, 250Ω, 25 µF). Neuf cents µl de milieu 2TY glucosé sont immédiatement ajoutés puis les bactéries sont incubées 1 à 3 h à 37°C (suivant l'antibiotique de sélection) avant d'être étalées sur un milieu de culture gélosé approprié.
5.6.2 *Leuconostoc*

Deux ml d’une pré-culture de *Leuconostoc* en milieu MRS contenant 0,6% de DL-thréonine sont ajoutés à 100 ml du même milieu et placés à 30°C jusqu’à une DO$_{600\text{nm}}$= 0.3-0.5. La suspension bactérienne est centrifugée (10 min, 6500 g à 4°C) et les cellules sont reprises dans 50 ml d’H$_2$O à 4°C. Ce lavage des bactéries est répété avec 25 ml, puis 10 ml, de tampon d’électroporation (Saccharose 0,5 M, MgCl$_2$ 2,5 mM). Le culot est finalement resuspendu dans 250 µl de ce tampon et aliquote (50 µl).

Pour chaque électroporation, 100 ng à 10 µg d’ADN sont ajoutés à 50 µl de suspension bactérienne, et laissés en contact 30s. L’électroporation est réalisée dans des cuvettes d’électroporation BioRad 0,2 cm avec le Bio-Rad Gene Pulser (2,5 kV, 200 Ω, 25 µF), avant d’ajouter 1 ml de MRS (supplémenté en saccharose 0,5 M, MgCl$_2$ 20 mM, CaCl$_2$ 2 mM) et d’incuber les cellules 1 à 3 h à 30°C, suivant la sélection antibiotique utilisée. Le mélange de transformation est étalé sur une gélose de MRS et antibiotique (érythromycine à 15 µg/ml et/ou chloramphénicol à 10 µg/ml) et incubé 48 à 72 h à 30°C.

5.7 **Réaction de polymérisation en chaîne (PCR)**

5.7.1 **PCR traditionnelles**

Les réactions de PCR traditionnelles sont réalisées à l'aide d'une ADN Polymérase *Taq* (Promega). Ces réactions sont réalisées selon les conditions préconisées par le fournisseur. Les amorces utilisées sont répertoriées dans le tableau 3. Les oligonucléotides peuvent comporter des sites de restriction créés afin de faciliter les clonages ultérieurs.
<table>
<thead>
<tr>
<th>Nom</th>
<th>Site de restriction</th>
<th>Séquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-20</td>
<td></td>
<td>GTTGAAAAACGACGGCCAGT</td>
</tr>
<tr>
<td>U-40</td>
<td></td>
<td>GTTTTCCCAGTCACGACGACG</td>
</tr>
<tr>
<td>R-20</td>
<td></td>
<td>GGAACACGCTATGACCAGT</td>
</tr>
<tr>
<td>DMP1</td>
<td></td>
<td>GGTTTTAAAATATTATGGGAATGG</td>
</tr>
<tr>
<td>DMP2</td>
<td></td>
<td>TCCTCTGCAGATTATTACAAAATCC</td>
</tr>
<tr>
<td>mesI-ATG</td>
<td></td>
<td>ATGAAAAAAAAGTTACGGTATTTAGAAG</td>
</tr>
<tr>
<td>mesY-RBS</td>
<td></td>
<td>AATAAATTTCCTCTTTTTCTTC</td>
</tr>
<tr>
<td>mesY-gg</td>
<td></td>
<td>TCCACCAACAAACTTTCTTGAGATTC</td>
</tr>
<tr>
<td>tot13</td>
<td></td>
<td>CACATAACACTTATTTC</td>
</tr>
<tr>
<td>tot14</td>
<td></td>
<td>EcoRI CGGAAAATTCATCATGAGTTTCAT</td>
</tr>
<tr>
<td>ter-mesI3</td>
<td></td>
<td>GGACTTAATGTCAGTATATGG</td>
</tr>
<tr>
<td>ter-mesI4</td>
<td></td>
<td>ATTTATCAATATTTAGTTACTGTTAAG</td>
</tr>
<tr>
<td>pedA-prom</td>
<td></td>
<td>GATCGTTAACCAGTTTTGTGC</td>
</tr>
<tr>
<td>pedA-DraI</td>
<td></td>
<td>DraI TTAAATACTACGTAATGGGG</td>
</tr>
<tr>
<td>PmesY/PA-1</td>
<td></td>
<td>GAAAAAAGGAGAAAAATTATTATGAAAAAAATGAAAAATTAACGT</td>
</tr>
<tr>
<td>PmesY/PA-1comp</td>
<td></td>
<td>CAATTGTTCATTAAATAATTTCCTCTTTTTCTTC</td>
</tr>
<tr>
<td>P59/PmesCDE</td>
<td></td>
<td>TTAGGCAGGAGTAGTATGTTATCTAGTTAAG</td>
</tr>
<tr>
<td>PmesYI/PmesCDE</td>
<td></td>
<td>TTAGATTTAAAATAATTTATGTTATAATAATGAGTGTATAG</td>
</tr>
<tr>
<td>mesF-sup</td>
<td></td>
<td>TATTATGACCAGTACATAGATAATAGTC</td>
</tr>
<tr>
<td>mesF-prom</td>
<td></td>
<td>EcoRI GAGGAATTTCTTTTATAAAGTGATAG</td>
</tr>
<tr>
<td>mesF-fin</td>
<td></td>
<td>EcoRI TCTAGAATTCATATTTTGTATTAAG</td>
</tr>
<tr>
<td>mesH-prom</td>
<td></td>
<td>EcoRI CAACCGAATTTCTCTTGGCTAGC</td>
</tr>
<tr>
<td>mesH-fin</td>
<td></td>
<td>EcoRI CCAAGAAATTCGAATTAAACAAGC</td>
</tr>
<tr>
<td>mesH-mid</td>
<td></td>
<td>GATGAATAAGTACGAACTATACC</td>
</tr>
<tr>
<td>mesB-fin</td>
<td></td>
<td>TTGATTTGGCTAGC</td>
</tr>
<tr>
<td>mesB-prom</td>
<td></td>
<td>EcoRI TTTCCGAATTTCTATTTTATAGTC</td>
</tr>
<tr>
<td>gg-VIP</td>
<td></td>
<td>GAAAGGTGTGTGTGGGACATTCTGTGAGTCCTTACAG</td>
</tr>
<tr>
<td>VIP-stop</td>
<td></td>
<td>CTGCACTAGAATGTACCCAACAAACTTTTTCTTGAGATTC</td>
</tr>
<tr>
<td>gg-VIPcomp</td>
<td></td>
<td>CTGCACTAGAATGTACCCAACAAACTTTTTCTTGAGATTC</td>
</tr>
</tbody>
</table>

Tableau 3: Oligonucléotides utilisés au cours de ce travail.
Les réactions de PCR ont été réalisées dans le milieu réactionnel suivant:

- **ADN matrice**: 1 µl
- **Chaque amorce (solution stock 10 µM)**: 2,5 µl
- **MgCl₂ (25 mM)**: 2 ou 3 µl
- **Mélange de dNTP (2 mM)**: 2,5 µl
- **Taq polymérase (5 U/µl, au dernier moment)**: 0,1 µl
- **Tampon polymérase**: 2,5 µl
- **H₂O q.s.p.**: 25 µl

avec le Mastercycler personal system (Eppendorf).

Le programme utilisé pour les réactions de PCR est le suivant:

- **dénaturation**: 30 s à 96°C
- **30 cycles comprenant**:
 - **dénaturation**: 30 s à 96°C
 - **hybridation des amorces**: 30 s à 50°C
 - **élongation**: 30 s-1 min à 72°C
- **élongation final**: 5 min à 72°C.

5.7.2 PCR « haute fidélité »

Quand un grand fragment d’ADN est amplifié et/ou une haute fidélité de copie est exigée, les réactions de PCR sont réalisées à l’aide d'une ADN Polymérase Pfx (Invitrogen) douée d’une activité 5’-3’ exonucléasique. Ces réactions sont réalisées selon les conditions préconisées par le fournisseur. Les amorces utilisées sont répertoriées dans le tableau 3. Les oligonucléotides peuvent comporter des sites de restriction créés afin de faciliter les clonages ultérieurs.
Les réactions de PCR ont été réalisées dans le milieu réactionnel suivant :

- ADN matrice : 1 µl
- Chaque amorce (solution stock 10 µM) : 2,5 µl
- MgSO₄ (50 mM) : 2 ou 3 µl
- Mélange de dNTP (10 mM) : 2,5 µl
- *Pfx* polymérase (5 U/µl, au dernier moment) : 0,5 µl
- Tampon polymérase : 2,5 µl
- H₂O q.s.p. : 25 µl

avec le Mastercycler personal system (Eppendorf).

Le programme utilisé pour les réactions de PCR est le suivant :

- dénaturation 30 s à 96°C
- 30 cycles comprenant :
 - dénaturation: 30 s à 96°C
 - hybridation des amorces: 30 s à 45-50°C
 - élongation: 1-15 min à 68°C
- élongation final: 1-15 min à 68°C.

5.7.3 Mutagenèse aléatoire par PCR

La mutagenèse aléatoire par PCR consiste en une réaction de PCR dont les conditions sont choisies de façon à perturber la fidélité de copie de l’ADN matrice. Les protocoles sont dérivés de celui de Miller et collaborateurs (1998b).

5.7.3.1 Mutagenèse sur la portion de gène codant MesY105 mature (premier protocole).

Les réactions de PCR sont réalisées à l’aide d'une ADN Polymérase *Taq* (Gibco BRL). Les amorces utilisées, U-20 et R-20, sont répertoriées dans le tableau 3, page 88. Les oligonucléotides comportent des sites de restriction créés afin de faciliter les clonages ultérieurs.
Les réactions de PCR ont été réalisées dans le milieu réactionnel suivant:

- **ADN matrice**: 1 µl (10^6 ng)
- **Chaque amorce (solution stock 10 µM)**: 3 µl
- **MgCl₂ 50 mM**: 2 µl
- **MnCl₂ 10 mM**: 2 µl
- **mélange dNTP**: 20 µl
- **Tampon polymérase**: 5 µl
- **Taq polymérase 5 U/µl**: 0,5 µl
- **DMSO 100%**: 5 µl
- **β-mercaptoéthanol 100 mM**: 5 µl
- **H₂O q.s.p.**: 50 µl

Remarque : Mélange dNTP = dATP, dTTP, dCTP 1 mM final ; dGTP 20 µM final.

avec le Gene Amp PCR system 9700 (Perkin Elmer).

Le programme utilisé pour les réactions de PCR est le suivant:

- **dénaturation**: 30 s à 96°C
- **30 cycles comprenant**:
 - dénaturation: 30 s à 96°C
 - hybridation des amorce: 30 s à 50°C
 - élongation: 30 s à 72°C
- **élongation final**: 1 min à 72°C.

5.7.3.2 Mutagenèse de l’opéron mesYI (deuxième protocole).

Les réactions de PCR sont réalisées à l'aide d'une ADN Polymérase Taq (Promega).

Les amorces utilisées, tot13 et tot14, sont répertoriées dans le tableau 3, page 88.
Les réactions de PCR ont été réalisées dans le milieu réactionnel suivant:

- **ADN matrice**: 1 µl (10⁻¹ ng)
- **Chaque amorce (solution stock 10 µM)**: 1,5 µl
- **MgCl₂ 50 mM**: 2,5 µl
- **MnCl₂ 10 mM**: 2,5 µl
- **mélange dNTP**: 10 µl
- **Tampon polymérase**: 2,5 µl
- **Taq polymérase 5 U/µl**: 0,5 µl
- **H₂O q.s.p.**: 25 µl

Remarque : Mélange dNTP = dATP, dTTP, dCTP 1 mM final ; dGTP 30 µM final).

avec le Mastercycler personal system (Eppendorf).

Le programme utilisé pour les réactions de PCR est le suivant:

- **dénaturation** 30 s à 96°C
- **30 cycles comprenant**:
 - **dénaturation**: 30 s à 96°C
 - **hybridation des amorces**: 1 min à 50°C
 - **élongation**: 30 s à 72°C
- **élongation final**: 5 min à 72°C.

5.8 Analyse électrophorétique de l'ADN

La séparation des fragments d’ADN est réalisée par électrophorèse en gel d’agarose de concentration comprise entre 0,6 % et 1,2 % selon la taille des fragments d'ADN à analyser. L’agarose est dissous dans le tampon de migration TBE (Tris-HCl 50 mM, acide borique 50 mM, EDTA 1 mM, pH 8), puis additionné de bromure d’éthidium (1 µg/ml) pour permettre la visualisation de l'ADN.

Une solution de charge (bleu de bromophénol 0,25% m/v, TBE, glycérol 50% v/v) est ajoutée aux échantillons à raison de 10% (v/v). Après dépôt de l’échantillon, l’électrophorèse est réalisée à 50 ou 100V (cuve Mupid-2, Eurogentec).

Trois marqueurs de taille sont utilisés: le "Smart ladder" (Eurogentec) permet de quantifier des fragments dont la taille varie de 200 pb à 14 kpb. Le "1 kb plus DNA ladder"
(Invitrogen), permet de mesurer la taille de fragments linéaires de 100 pb à 12 kpb. L’échelle "Super coiled" (Invitrogen) est utilisée pour évaluer la taille des ADN surenroulés pour des tailles allant de 2 à 16 kpb.

5.9 Tri des fragments d’ADN mutés

5.9.1 Single Strand Conformation Polymorphism (SSCP)

Ce protocole est dérivé de celui décrit dans la littérature (Michaelides et coll., 1995).

Dans un premier temps, la portion d’ADN à analyser est amplifiée à l’aide des amorces appropriées par une réaction de PCR classique (« matériel et méthodes », § 5.7.1) dans laquelle est ajouté 1 μl de α32P dCTP (10 mCi/ml) (NEN Life Science products).

Les produits PCR sont ensuite dénaturés par la chaleur afin d’obtenir des fragments simple brin. Pour cela, les ADN sont placés 10 min à 96°C puis plongés subitement dans de la glace fondante.

10 μl de produits PCR dénaturés ou non dénaturés sont ensuite mélangés à 15 μl d’un tampon de migration (95% formamide v/v-5% bleu de bromophénol v/v) puis 3 à 6 μl de chaque mélange sont déposés pour migration dans un gel non dénaturant acrylamide-bisacrylamide (39 :1) 4,5% (m/v) en tampon TBE. L’électrophorèse se déroule à 4°C à 40W jusqu’à sortie du témoin de migration (bleu de bromophénol).

Après migration, le gel est fixé par un bain d’acide acétique 10% (v/v) puis transféré sur papier Whatman. Le tout est ensuite séché à 55°C, sous vide pendant 2H30.

L’ADN est finalement visualisé par comptage direct de la radioactivité sur InstantImager© (Packard Bioscience) puis par autoradiographie sur Storm© (Amersham Bioscience).
5.9.2 Identification d’hétéroduplexes

Cette technique est dérivée d’une technique servant à la détection de fibroses (Dodson et Kant, 1991). Dans un premier temps, la portion d’ADN à analyser est amplifiée par une réaction de PCR classique en utilisant les amorces appropriées (« matériel et méthodes », § 5.7.1). Chaque produit PCR à analyser est mélangé avec un volume égal du produit de la même PCR réalisée à partir d’ADN matrice dépourvu de mutation.

Les mélanges de produits PCR sont ensuite dénaturés par la chaleur (96°C pendant 10 min) puis ramenés doucement à 56°C en 30 min de façon à former des duplexes. Les phases de dénaturation et hybridation se font dans le même thermocycleur que pour les réactions de PCR.

15 µl de chaque mélange sont ensuite additionnés de 3 µl d’un tampon de migration (95% formamide v/v-5% bleu de bromophénol v/v) puis 3 à 6 µl de chaque échantillon sont déposés pour migration dans un gel non dénaturant acrylamide-bisacrylamide (19:1) 10% (m/v). L’électrophorèse se déroule à température ambiante sous 250 V (166 mA) pendant 9H.

Après migration, le gel est immergé dans une solution aqueuse de bromure d’éthidium à 0,125 µg/ml pendant 15 min puis l’ADN visualisé sous UV. Alternativement, une coloration du gel au nitrate d’argent est effectuée en suivant les recommandations du fournisseur (DNA silver staining kit, Pharmacia).

5.10 Séquençage d’ADN

Le séquençage est réalisé selon la méthode de Sanger (Sanger et al., 1977) à l’aide de didésoxynucléotides fluorescents. Les réactions de séquençage sont effectuées avec le kit "ABI Prism Dye Terminator Cycle Sequencing Ready Reaction" (Perkin-Elmer) qui utilise l’Ampli Taq ADN polymérase FS. Les réactions de séquençage sont réalisées selon les conditions indiquées par le fournisseur à l’aide de l’amorce adéquate. Les échantillons sont ensuite analysés par le séquenceur ABI PRISM 310 (Perkin Elmer).

La lecture des séquences se fait à l’aide du logiciel Sequencing analysis 3.0 (Perkin Elmer Applied Biosystem) et leur analyse est effectuée à l’aide du logiciel Mac Vector 7.0 (Oxford Molecular).
6 Techniques d’analyse protéique

6.1 SDS-Page

Les extraits protéiques (surnageants de culture, extraits bruts issus du broyage des bactéries, fractions de purification) obtenus au cours de la purification sont dilués 1 fois (v/v) dans du tampon de charge 2X (5% SDS, 12% glycérol, 2% β-mercaptoéthanol, 10% de bleu de Commassie R250, 50 mM Tris-HCl (pH 6,8)).

Les échantillons sont chauffés pendant 10 minutes à 95°C et chargés sur un gel de polyacrylamide 12% (v/v) dans un tampon Tris/Glycine (tampon 10X : Tris 0,025 M pH 8,3 ; Glycine 0,192 M; SDS 0,1 %, m/v). L’électrophorèse s’effectue à un voltage constant de 200V pendant 45 min. Les gels sont fixés dans un mélange méthanol 50% (v/v) - acide acétique 10% (v/v) pendant 20 min.

6.2 HPLC : Chromatographie liquide à haute performance

Les extraits protéiques sont purifiés par HPLC en phase inverse C8 (pompe Perkin-Elmer series 200 LC), la détection des composés se faisant par un détecteur dans les longueurs d’onde de l’UV/Visible (Perkin-Elmer 785A).

6.3 Dosage des protéines

Le dosage des protéines est réalisé par réaction avec l’acide bicinchoninique et le sulfate de cuivre (II) en suivant les indications du fournisseur (procédure Sigma n° TPRO-562).

Alternativement, ce dosage se fait par mesure spectrophotométrique à 280 nm en cuve de quartz en utilisant le coefficient d’extinction molaire de la protéine calculé grâce à l’outil ProtParam (sur le site ExPASy, http://www.expasy.org/tools/protparam.html).
6.4 Spectrométrie de masse

7 Analyse structurale des bactériocines

7.1 Alignements multiples, prédictions de structure et calculs d’hydropathie

7.2 Dichroïsme circulaire

Les manipulations de dichroïsme circulaire en présence de lysophosphatidylcholine C13 (LPC, MM= 495,6) ont été réalisées avec un appareil ISA Jobin Yvon CD6 dans l’Unité de Biochimie et Technologie des Protéines, à l’INRA de Nantes, sous la direction de Didier Marion. L’acquisition des spectres est effectuée à 25°C, dans l’UV (190-250 nm, 1 mesure/nm) avec un trajet optique de 1 mm (pour le témoin sans LPC) ou 3 mm (en présence de LPC) et sous atmosphère d’azote. La concentration en peptide est de 50 mg/l pour les témoins sans LPC et 25 mg/l (environ 6,5.10⁻⁶M) pour les échantillons en présence de LPC. La concentration finale en LPC varie de 250 μM à 300 μM suivant l’échantillon. Les échantillons de bactériocines sont dilués dans une solution eau-acétonitrile (ACN) 50% (v/v), pH 5,5 (tampon Mes) (acide 2-(N-morpholino)éthanesulfonique, Sigma). L’analyse des spectres se fait avec le logiciel CDMax de Jobin Yvon.

Les manipulations de dichroïsme circulaire en présence de trifluoroéthanol (TFE) ont été effectuées avec un appareil Jasco J.810 au Centre de Biophysique Moléculaire, CNRS.
d’Orléans, sous la direction de Jean-Claude Morizot. L’acquisition des spectres est effectuée à 25°C, dans l’UV (185-280 nm, 1 mesure/nm) avec un trajet optique de 1 mm pour tous les échantillons et sous atmosphère d’azote. La concentration en peptide varie de 46 à 86 mg/l pour les témoins sans TFE et de 11 à 27 mg/l pour les échantillons en présence de 75% TFE. Les échantillons de bactériocines sont dilués dans une solution eau-ACN 50% (v/v). L’analyse des spectres est effectuée à l’aide du logiciel Spectra Manager fourni avec l’appareillage.

Dans le premier cas (manipulations en présence ou non de LPC), les spectres sont enregistrés en mode ΔA qui représente la différence d’absorption entre les lumières polarisées circulairement droite et circulairement gauche. Les spectres sont ensuite convertis en ellipticité molaire par résidu d’acide aminé (θ, en deg.cm².dmool⁻¹) ou en différence d’absorbance molaire par résidu (Δε, cm⁻¹.l.mol⁻¹) avec les formules :

θ = 3298.ΔA.MM / C.n.l

θ = 3298 Δε

où MM est la masse moléculaire du peptide (g/mol), n est le nombre de résidus dans le peptide, C est concentration peptidique (g/l) et l est la longueur du trajet optique.

7.3 Spectrophotométrie de fluorescence des tryptophanes

Les mesures en spectrométrie de fluorescence sont réalisées avec un spectrofluorimètre Fluoromax, Spex. Ce dernier est équipé d’un porte-cuve thermostaté et d’un agitateur magnétiques. Les manipulations ont été effectuées dans l’Unité de Biochimie et Technologie des Protéines, à l’INRA de Nantes, sous la direction de Didier Marion.

Le phospholipide utilisé (C13-LPC, MM= 495,6, Sigma) est dilué dans de l’eau jusqu’à une concentration de 5 g/l. Ensuite, 2 ml de cette solution sont graduellement ajoutés à une solution de bactériocine de 25 mg/l. L’excitation du tryptophane se fait à 295 nm, l’acquisition des spectres se fait de 300 à 400 nm avec un incrément d’1 nm.

L’ajout de LPC se fait jusqu’à un Ri (rapport de molarité en lipide vis-à-vis du peptide) de 40 environ.

L’exploitation des résultats se fait par le logiciel Datamax Standard (fourni avec le spectromètre).
7.4 Résonance magnétique nucléaire (RMN)

La détermination de la structure tridimensionnelle de MesY105 est réalisée en présence de TFE 90% et en suivant les indications de Wang et collaborateurs (1999) à part la concentration en peptide (1,6 mM pour MesY105 au lieu de 4,5 mM pour LeuA).

Les mesures sont effectuées sur un spectromètre Varian Inova 600 MHz équipé de gradients z. Les données RMN sont exploitées avec le logiciel XEASY pour l'attribution des signaux (Bartels et coll., 1995) et le logiciel ARIA 1.1 pour la modélisation (Linge et coll., 2001). Les manipulations sont effectuées au Centre de Biophysique Moléculaire, CNRS d’Orléans par Laurence Jouvensal et sous la direction de Françoise Vovelle.
RESULTATS ET DISCUSSION
1 Production de la mésentéricine Y105

1.1 Préambule

Le but de ce travail étant l’étude des relations existant entre la structure et la fonction de MesY105, il a fallu développer un système de production permettant d’obtenir des mutants de ce peptide en quantité et qualité suffisantes pour permettre leur caractérisation.

Différents systèmes sont couramment employés pour produire des peptides ou protéines destinées à être caractérisés. Les systèmes d’expression eucaryotes (levures, cellules d’insectes ou de mammifères) sont plus particulièrement adaptés à la production de grosses protéines mais aussi des peptides nécessitant des modifications post-traductionnelles (amidation, glycosylation…). MesY105 est un petit peptide de 37 résidus qui ne nécessite aucune modification post-traductionnelle. Pour des peptides courts, la synthèse chimique peut être envisagée. Cependant, son coût élevé et les produits secondaires obtenus (peptides tronqués, modifiés), qui rendent nécessaires de nombreuses étapes de purification, n’en font pas le système idéal. Le choix s’est par conséquent orienté vers un système de production bactérien.

Une étude de MesY105 avait déjà été réalisée en produisant cette bactériocine sous forme de protéine d’inclusion dans E. coli (Chamberland-Chanteloube, 1997), mais les difficultés rencontrées pour la purification de la bactériocine et de ses dérivés nous a fait choisir une autre stratégie. La première stratégie choisie a été de fusionner MesY105 à la MBP chez E. coli, elle a été employée pour l’étude des relations structure-fonction de CbnB2 et PedPA-1 (Miller et coll., 1998b; Quadri et coll., 1997b). Cette stratégie comporte de nombreux avantages. La partie MBP et la présence d’un site de clivage au facteur Xa permettent une purification aisée de la protéine de fusion tout en conférant une certaine résistance à l’action des protéases intracellulaires. Nos premiers essais ont montré que la protéine de fusion MBP :=MesY105 n’est pas toxique chez E. coli. De plus, E. coli est une espèce bien connue des expérimentateurs et elle est facile à utiliser pour les clonages. Cette bactérie peut se cultiver à forte densité et sa croissance est très rapide. On peut de ce fait obtenir des rendements de production importants. Un autre avantage du système choisi est qu’il est inductible (et contrôlable) et que les souches manipulées sont facilement repérables grâce au système “blanc/bleu ” basé sur la β-galactosidase. Cette première stratégie s’est
soldée par un échec car la protéine de fusion s’est avérée réfractaire au clivage par le facteur Xa.

Nous avons alors décidé de produire MesY105 et ses dérivés chez un hôte à Gram positif, *Ln. mesenteroides*. Ce système comporte l’avantage de ne pas nécessiter de clivage, contrairement à la protéine de fusion : le peptide est produit directement sous sa forme mature. De plus, la bactériocine est sécrétée dans le milieu extracellulaire où elle est le composant protéique majoritaire ce qui facilite sa purification. Un protocole de purification était déjà étalement et ne demandait pas de nouvelle adaptation. Enfin, la souche hôte est relativement facile à cultiver et à travailler et le système retenu ne demande pas plus de manipulations génétiques que le système “ protéine de fusion ”.

1.2 Production sous forme de protéine de fusion MBP ::MesY105

La séquence codant MesY105 mature doit être fusionnée en phase avec la séquence codant la MBP afin d’obtenir la séquence codant la protéine de fusion MBP::MesY105. La stratégie est présentée en figure 14.

1.2.1 Construction du plasmide pDMYC01

Un fragment d’ADN portant la séquence codant MesY105 mature a été obtenu par PCR avec pour ADN matrice, le plasmide pFBYC04 (Biet et coll., 1998). Les amorces DMP1 et DMP2 (Eurogentec) (Tableau 3, page 88 et annexe 1) sont choisies de façon à amplifier la partie du gène mesY codant la bactériocine mature en apportant des sites de restriction DraI et PstI respectivement aux extrémités 5’ et 3’ du brin sens de cette séquence. Ces deux sites de restriction ont été choisis pour permettre le clonage en phase avec le gène *malE* de pMal-C2 (Annexe 2). Le site de restriction DraI génère une extrémité à bout franc comme XmnI (Figure 14). Le produit de la PCR a ensuite été purifié puis ligaturé dans le vecteur pGEM-T (Annexe 3) pour donner le plasmide pDMYC01.

La double digestion du plasmide par les enzymes de restriction DraI et PstI génère un fragment “ DraI-PstI ” de 132 pb portant la séquence codant MesY105 mature.
Figure 14: Stratégie envisagée pour la construction de la séquence codant la protéine de fusion MBP::Mes Y105 et pour la mutagenèse aléatoire par PCR.

1.2.2 Construction du vecteur d’expression pDMYC02

L’élément de base de ce système “protéine de fusion” est le vecteur d’expression pMal-C2 (New England Biolabs). Ce plasmide comporte le gène *malE*, codant la MBP, fusionné au gène *lacZ*, codant la β-galactosidase. Dans la région de fusion se trouve un site multiple de clonage (MCS). L’expression de ce gène de fusion est sous contrôle du promoteur Ptaq, inducible par l’IPTG, et le produit de ce gène est la protéine de fusion MBP :: β-galactosidase, clivable par le facteur Xa. Le site de clivage de ce facteur, au niveau de la protéine, correspond au site de restriction *Xmn*I au niveau de la séquence nucléotidique (Annexe 2).

Le fragment purifié *Dra*I-*Pst*I, issu du plasmide pDMYC01, a été ligaturé dans pMal-C2 digéré au préalable par les enzymes *Xmn*I et *Pst*I pour obtenir pDMYC02. Un séquençage, utilisant l’amorce universelle –40 de séquençage, a montré que cette ligature s’est faite en phase et en fusion avec *malE*. Le plasmide pDMYC02 porte donc le gène fusionné *malE::mesY*. La protéine de fusion devrait être clivable au niveau de la jonction MBP :: MesY105 par le facteur Xa.

Le risque principal pour cette stratégie de production chez *E. coli* résidait dans l’activité antagoniste possible de la protéine de fusion, comme c’est le cas pour la MBP :: PedPA-1 (Miller et coll., 1998a). En effet, Biet et coll. (1998) ont montré que MesY105 est toxique pour *E.coli* : une activité antagoniste résiduelle de la MBP::MesY105 aurait pu faire échouer nos travaux.

1.2.3 Production, purification et caractérisation de la protéine de fusion MBP :: MesY105

L’expression du gène de fusion *malE::mesY* a été induite à 30°C en suivant les instructions du fournisseur (New England Biolabs), à partir d’une culture de *E. coli* DH5α (pDMYC02). L’induction de production de la protéine de fusion a été vérifiée par analyse du contenu des bactéries sur gels dénaturants SDS-PAGE (non montré).
La MBP ayant une forte affinité pour le maltose, la purification de la protéine de fusion se fait par chromatographie d’affinité sur une résine amylose (polymère de maltose) en suivant les indications du fournisseur (New England Biolabs). Un test d’activité a montré que la protéine de fusion ne présentait pas d’activité antagoniste contre une souche *L. ivanovii* BUG 496 (non montré).

La protéine de fusion créée possède un site de clivage par l’endoprotéase Xa (facteur Xa) au niveau de la jonction MBP::Mes Y105.

Un clivage a été testé dans les conditions préconisées par le fournisseur (New England Biolabs) mais l’analyse d’une fraction du produit de clivage sur un gel SDS-PAGE a montré que la coupure était partielle (il reste une majorité de protéine de fusion) (non montré). C’est pourquoi des essais ont été réalisés en variant la température de réaction (25°C, 30°C, 37°C) et en présence ou non d’agents dénaturant (SDS, urée) (non montré).

Les meilleurs résultats ont été obtenus à 30°C en présence d’urée 1M. Dans ces conditions, après 30h, le clivage semble total.

L’activité de la protéine de fusion et du peptide libéré par clivage a été mesurée par un test en puits contre *L. ivanovii* 496. Un halo d’inhibition montre que la molécule libérée après clivage de la MBP::Mes Y105 a une activité antagoniste contre la souche cible. En revanche, ce test montre que la protéine de fusion ne semble pas avoir d’activité anti-*Listeria* (non montré).

Une HPLC en phase inverse a été effectuée sur l’échantillon de la protéine de fusion après 30h de clivage au facteur Xa : les différentes fractions issues de cette HPLC ont été testées en puits contre *L. ivanovii* BUG 496. Un halo d’inhibition a été observé seulement pour la fraction ayant un temps de rétention de 23 minutes. Cette fraction active contre *Listeria* et dont le temps de rétention correspond à MesY105 a été analysée en spectrométrie de masse mais les résultats n’étaient pas exploitables du fait d’une quantité trop faible en matériel (non montré).
1.2.4 Limites de cette stratégie

Différents problèmes se sont posés lors de la production de MesY105 par la stratégie de la protéine de fusion MBP::MesY105.

Les températures d’induction testées sont 30°C et 37°C mais on s’aperçoit qu’une induction à 37°C, température optimale de croissance bactérienne et de production des peptides, pourrait entraîner une conformation défavorable pour la purification de la protéine de fusion. Il est possible que la bonne conformation de la protéine de fusion nécessite l’intervention de protéines chaperonnes. À 37°C, la production de la MBP::MesY105 serait trop rapide et les protéines chaperonnes n’auraient pas un “turn-over” suffisamment court pour agir sur sa conformation. Nous avons donc du retenir 30°C comme température d’induction.

De plus, les essais à grande échelle ont montré un rendement après purification 4 fois inférieur pour la MBP::MesY105 par rapport à la MBP::β-galactosidase. Cependant, ce rendement en protéine de fusion reste satisfaisant, de l’ordre de 4,3 mg/L de culture (i.e. potentiellement 390 mg de bactériocine par litre de culture).

Enfin, le clivage par le facteur Xa s’est avéré l’étape la plus rédhibitoire. Les résultats sont très variables avec la MBP::MesY105 avec toujours des rendements extrêmement faibles voire nuls (les meilleurs résultats donnent des rendements de l’ordre de 0,8 µg de bactériocine pour un litre de culture) Là encore, nous soupçonnons les contraintes conformationnelles de cette protéine de fusion comme facteur limitant. La “queue” MesY105 pourrait adopter une conformation telle que le site de clivage du facteur Xa ne serait plus disponible. On peut supposer que la partie N-terminale en feuillet β, et plus particulièrement le repliement dû au pont disulfure, pourrait masquer ce site à la jonction MBP::MesY105.

1.3 Production par un hôte hétérologue lactique

Pour palier les difficultés rencontrées avec le système MBP de New England Biolabs, nous nous sommes orientés vers une stratégie de sécrétion de MesY105 sous sa forme mature. En effet, de nombreux travaux ont été publiés sur l’expression hétérologue des
bactériocines et en particulier, les travaux de Biet et collaborateurs (1998) ont montré la possibilité de produire MesY105 chez *Ln. mesenteroides*.

1.3.1 Création du plasmide pDMJF01

Nous avions prévu de construire un dérivé de pFBYC04 sans *mesY*, en plaçant *mesI* sous le RBS de *mesY* en remplaçant le codon d’initiation normal UUG de *mesI* par un codon “start” ATG à l’aide d’une PCR divergente *mesY*-RBS*-*mesI*-ATG (Tableau 3, page 88 et Figure 15, schéma 3). Le produit PCR purifié a été ligaturé mais aucun clone n’a pu être obtenu après transformation de *E. coli* ou *Leuconostoc* (non montré). Nous avons donc décidé de conserver les premiers codons de *mesY*, correspondant au leader de MesY105, et de fusionner cette séquence codant le peptide leader avec *mesI* pour obtenir pDMJF01 (Figure 15, schéma 3bis).

Le plasmide pDMJF01 possédant les origines de réplication p15A et pAMβ1, il est utilisable à la fois chez *E. coli* et les bactéries lactiques. Chez ces dernières, il se réplique à fort nombre de copies. Les bactéries hébergeant ce vecteur sont sélectionnées grâce à leur résistance à l’érythromycine (Annexe 4).

Les souches DSM 20484 (pDMJF01) ne présentent aucune activité antagoniste contre *L. ivanovii* Li4 (pVS2) mais sont immunes à MesY105 alors que DSM 20484 est sensible à la bactériocine. Nous n’avons pas observé de protéine exportée supplémentaire dans cette souche par rapport à DSM 20484 (non montré). La protéine d’immunité fusionnée au peptide leader de MesY105 est produite mais il semble qu’elle ne soit pas sécrétée.
1.3.2 Création du plasmide pDMJF :YI

Pour créer ce vecteur nous avons utilisé le vecteur navette *E. coli/bactéries lactiques* pMK4 (Sullivan et coll., 1984) (Annexe 5). Ce plasmide permet une sélection ampicilline chez *E. coli* et une sélection chloramphénicol chez *Ln. mesenteroides*. Il comporte un MCS dans le gène de la β-galactosidase, permettant une sélection par le système blanc/bleu des bactéries transformées avec un plasmide recombinant.

Nous avons décidé d’introduire, au niveau de ce MCS, l’ensemble de l’opéron *mesYI* afin de conserver son terminator transcriptionnel Rho-indépendant et pour pouvoir introduire ce plasmide dans *Ln. mesenteroides* seul, en raison de la toxicité de la bactériocine pour l’hôte (Franck Biet, résultats non publiés). La stratégie de construction est présentée en figure 16.
Figure 16: Construction du plasmide pDMJF:YI.

L’opéron mesYI est transféré du plasmide pGem-T easy:YI vers le plasmide pMK4 par restriction enzymatique, à l’aide de EcoRI puis ligature.

PmesYI: promoteur de l’opéron mesYI;
RBS: "Ribosome Binding Site" de l’opéron mesYI;
Leader: séquence codant le leader de MesY105;
mesY: séquence codant MesY105 mature;
mesI: gène codant la protéine d’immunité;
Terminateur: terminator de l’opéron mesYI;
Apr= gène de résistance à l’ampicilline;
LacZ= gène codant la β-galactosidase;
orI: origine de réplication chez E. coli.
La séquence et la localisation précise des amorces utilisées sont présentées en annexe 1.
Pour cela, l’opéron mesYI a été amplifié à l’aide des amorces tot 13 et tot 14 (Annexe 1 et Tableau 3, page 88) et cloné dans le vecteur pGEM-T easy. Un fragment EcoRI contenant l’opéron mesYI a ensuite été déplacé vers pMK4 pour créer le vecteur pDMJF :YI (Annexe 6). Ce vecteur introduit dans E. coli DH5α ne présente pas de toxicité apparente et aucune activité antagoniste n’a été détectée.

Des souches DSM 20484 transformées avec le plasmide pDMJF :YI sont insensibles à MesY105 mais ne présentent aucune activité antagoniste contre L. ivanovii Li4 (pVS2). En revanche, une souche DSM 20484 portant à la fois les plasmides pDMJF01 et pDMJF :YI est résistante à MesY105 et est douée d’activité antagoniste contre L. ivanovii Li4 (pVS2). Le surnageant de culture de cette souche recombinante a été purifié par HPLC en phase inverse. Le profil d’éluition correspondant, enregistré à 220 nm, présente un pic à 23 minutes de temps de rétention (Figure 17) dont l’analyse en spectrométrie de masse révèle que c’est MesY105 (masse moléculaire de 3868,3 Da) (non montré).

Les activités de différentes dilutions des cultures de Ln. mesenteroides Y105, DSM 20484 (pFBYC04) et DSM 20484 (pDMJF01/pDMJF:YI) ont été comparées par test en puits. Ces mesures ont montré une production similaire pour Ln. mesenteroides Y105 et DSM 20484 (pDMJF01/pDMJF:YI) et une production quatre fois supérieure pour DSM 20484 (pFBYC04), à densité cellulaire égale (Tableau 4).

Le fait que cette dernière souche produise quatre fois plus de bactériocine que la souche naturelle n’est pas étonnant puisque le plasmide pFBYC04 a été construit à partir d’un vecteur navette E. coli/ bactéries lactiques à fort nombre de copies chez ces dernières. En revanche, on aurait pu attendre le même niveau de production pour la souche contenant pDMJF01 et pDMJF :YI puisque le premier plasmide est construit à partir de pFBYC04.

La construction de pDMJF01 n’est pas satisfaissante d’un point de vue théorique car mesI est fusionné à la partie « peptide leader » de MesY105. La raison pour laquelle nous n’avons pas pu obtenir la délétion totale de mesY provient peut-être de notre stratégie visant à l’introduction d’un codon initiateur ATG au lieu du codon UUG naturel de mesI. Cela a pu conduire à une certaine toxicité de la construction par surexpression de mesI.
Figure 17: Profils d’élution d’HPLC en phase inverse, effectuées sur différents surnageants de culture.

Lignes: 1, *Ln. mesenteroides* Y105; 2, *Ln. mesenteroides* DSM 20484(pFBYC04); 3, *Ln. mesenteroides* DSM 20484(pDMJF01/ pDMJF:YI); 4, *Ln. mesenteroides* DSM 20484(pDMJF01/ pDMJF:BHF); 5, *Ln. mesenteroides* DSM 20484(pDMJF01).

Nous aurions peut-être du reprendre la construction en conservant le codon UUG, toutefois, le rendement de production du système DSM 20484 (pDMJF01/pDMJF :YI) nous est apparu suffisant pour obtenir des quantités de bactériocine compatible avec l’étude structure fonction que nous voulions réaliser. C’est pourquoi nous avons décidé de l’utiliser par la suite et de l’adapter pour la production de bactériocines modifiées.
production de la souche relativement à la souche productrice naturelle *Ln. mesenteroides Y105*.

Tableau 4: Production estimée de MesY105 pour cinq souches bactériennes.

Cette production est estimée par tests en puits en utilisant pour témoin une solution dosée de MesY105. Les mesures ont été effectuées trois fois sur trois clones indépendants de chaque souche.

Le cas des souches DSM 20484 (pDMJF02/pDMJF :YI) et DSM 20484 (pDMJF03/pDMJF :YI) est discuté ultérieurement (§ 4.3).

On peut remarquer ici qu’il semble que la protéine d’immunité à MesY105, MesI, ne soit pas sécrétée par le DTS de MesY105. Cela semble indiquer que ce DTS n’est pas adapté au transport de protéines comme cela a été observé pour le DTS de la lactococcine B, par l’absence de sécrétion du lysozyme du phage T4 (Van Belkum et coll., 1997).

1.3.3 Purification de la mésentéricine Y105

Pour purifier la bactériocine produite, nous avons utilisé une procédure dérivée de celle décrite par Guyonnet et collaborateurs (2000), cette méthode ayant permis de purifier un grand nombre de bactériocines de sous-classe IIa dont MesY105.

A partir du surnageant de culture de la souche DSM 20484 (pDMJF01/pDMJF :YI), la bactériocine est partiellement purifiée selon ce protocole puis les deux fractions actives obtenues sont purifiées par HPLC en phase inverse (C8, Kromasil). Le profil d’élation enregistré à 220 nm (Figure 17) montre un pic majoritaire, à 23 minutes de temps de
rétention. L’analyse par spectrométrie de masse en “ion spray” montre que la fraction contenant ce pic, active contre Listeria, correspond à MesY105 (masse moléculaire de 3868,3 Da).

2 Production des mésentéricines Y105 modifiées

2.1 Préambule

Pour faire une étude des relations entre la structure et la fonction de MesY105, il nous fallait obtenir au préalable une collection de bactériocines modifiées au niveau d’un seul résidu. Pour cela, outre la synthèse chimique dont nous avons évoqué le cas (§1.1), nous pouvions envisager soit une mutagenèse dirigée, soit une mutagenèse aléatoire de la séquence codant MesY105 mature.

La mutagenèse dirigée présente l’avantage de cibler la mutation désirée en fonction du rôle supposé du résidu modifié. En revanche, elle demande de refaire le travail pour chaque mutation désirée et cible spécifiquement des positions pour contraindre la molécule dans une conformation a priori prédéterminée.

La mutagenèse aléatoire permet, en théorie, d’obtenir des mutations sur toute la longueur de la séquence de la bactériocine. De plus, toutes les substitutions pour une position donnée sont théoriquement envisageables. Quand nous avons initié ce travail, relativement peu d’informations existaient sur les relations structure/fonction des bactériocines de sous-classe Ila. D’après les travaux de Fleury et collaborateurs (1996), l’ensemble de la séquence de MesY105 était nécessaire pour son activité. C’est pour ces raisons que nous avons décidé d’utiliser la mutagenèse aléatoire.
2.2 Mise au point de la mutagenèse aléatoire par PCR

2.2.1 Première méthode

La mutagenèse aléatoire a d'abord été développée dans l'optique d'une production par le système MBP::MesY105. Elle consiste donc en l'amplification de la séquence codant MesY105 mature en incorporant une seule substitution d'un codon pour un autre.

La mutagenèse aléatoire a été réalisée en utilisant pour ADN matrice le plasmide pDMYC01 précédemment décrit, par une méthode dite de “PCR empoisonnée”. Les amorces utilisées pour cette PCR sont les amorces universelle −20 et reverse −20, dont les sites d'hybridation encadrent l'insert dans le plasmide pDMYC01 (Annexe 3).

Les produits PCR de 353 pb ont ensuite été purifiés puis clonés dans le vecteur de clonage pGEM-T pour créer les plasmides pDMYC01m (Figure 14). Le séquençage des produits PCR clonés a été réalisé en utilisant l’amorce universelle −40 (la séquence de cette amorce se fixe en amont de la séquence complémentaire de l’amorce universelle −20: site de fixation sur pGEM-T en annexe 3).

La séquence codant la MesY105 étant de 121 pb (codon « stop » non compris), le taux de mutations à atteindre doit être d’un peu plus de 1% pour obtenir un codon muté par séquence. Plusieurs protocoles ont été testés.

Le premier protocole utilisé est celui proposé par Miller et coll. (1998a). Aux conditions classiques de PCR, un cation divalent, le manganèse, est ajouté dans des proportions 1/5 par rapport au magnésium. Le manganèse est supposé gêner l’activité de la polymérase en entrant en compétition avec un autre cation divalent, le magnésium, essentiel à l’activité de l’enzyme. De plus, les nucléotides sont en large excès par rapport au nombre de cycles utilisés (1mM de chaque dXTP) (Miller et coll., 1998b). Cet excès en désoxyribonucléotides est supposé favoriser les erreurs d’incorporation lors de l’élongation de la chaîne d’ADN. L’ADN amplifié a été séquencé et sur plus de 2100 bases analysées, le taux de mutations mesuré est d’environ 0,1%. Ce taux étant insuffisant, nous avons testé un second protocole.

Le deuxième protocole testé consiste en une PCR aux conditions identiques à celles décrites ci-dessus mais dans laquelle la concentration en dGTP est beaucoup plus faible que pour les autres nucléotides dATP, dTTP et dCTP. Ce déséquilibre en désoxyribonucléotides favoriserait l’incorporation de dATP, dCTP ou dTTP en place du dGTP lors de l’élongation
de l’ADN. On observe que pour 1 mM de chaque nucléotide sauf pour le dGTP à 10 μM, il n’y a pas amplification, mais que pour 20 μM de dGTP, le fragment attendu est amplifié : c’est donc la concentration choisie. Pour cette condition, le séquençage d’un peu plus de 2100 bases montre un taux de mutations de 0,2%.

Les résultats de cette méthode n’étant toujours pas satisfaisants, une troisième condition pour augmenter ce taux de mutations a été ajoutée. Aux conditions de PCR décrit dans la deuxième méthode, une dilution critique de l’ADN matrice pDMYC01 est effectuée. Là encore, plusieurs PCR ont été réalisées avec différentes dilution de la matrice (non montré).

La dilution de matrice optimale s’est révélée être une dilution au millionième par rapport aux conditions initiales (10⁻⁶ ng au lieu de 1 ng d’ADN). Dans ces conditions, le taux de mutations observé, pour plus de 700 bases séquencées, est d’environ 1,1%. Les conditions de mutagenèse aléatoire finalement adoptées sont décrites dans le chapitre « matériel et méthodes » (§ 5.7.3.1).

Lors de la mise au point de la mutagenèse aléatoire par PCR, nous avons obtenu trois séquences codant pour des peptides mutés intéressants : MesY105-A24P, MesY105-A21V, MesY105-C14F et MesY105-R28C.

Cependant, la stratégie de production de bactériocine par le système “ protéine de fusion ” s’étant révélée infructueuse, nous avons du rétablir des conditions de mutagenèse dirigée par PCR pour obtenir les peptides mutés par la méthode de la production hétérologue dans *Ln. mesenteroides*.

2.2.2 Deuxième méthode

Dans le cadre de la production par *Ln. mesenteroides* de MesY105 modifiées, nous avons décidé d’adapter les conditions de mutagenèse par PCR définies pour le gène *mesY* à l’ensemble de l’opéron *mesYI*.

Nous avons amplifié cet opéron à l’aide des amorces tot13 et tot14 (Tableau 3, page 88) en utilisant pFBYC04 comme matrice. Le produit PCR obtenu a une taille de 850 pb.

Différentes conditions de mutagenèse ont été testées en faisant varier le déséquilibre des concentrations de dGTP par rapport aux autres désoxy nucléotides. Nous avons aussi modifié le rapport de concentrations de manganèse et de magnésium ainsi que la
concentration en ADN matrice. Les conditions de mutagenèse aléatoire par PCR finalement choisie sont décrites dans le chapitre « matériel et méthodes » (§ 5.7.3.2). Le produit PCR est ensuite cloné dans le vecteur pGEM-T easy.

En suivant cette stratégie, des mutations peuvent être introduites en dehors de la partie qui nous intéresse. Cependant, les risques de toucher la région promotrice et la séquence de Shine-Dalgarno restent faibles en raison de leur pauvreté en dGTP et dCTP. Le risque de modifier la région codant le leader N-terminal est relativement importante (72 paires de bases contre 111 pb pour la partie codant MesY105 mature). Cependant, si cette région est touchée alors que la portion codant la bactériocide mature comporte une mutation intéressante, une stratégie de déplacement du fragment d’intérêt pourra être mise en place (voir § 2.3.2). Quant au gène codant l’immunité, nous espérons qu’une modification de sa séquence ait un impact faible puisqu’un second plasmide portant le gène de l’immunité à la bactériocide, pDMJF01, est utilisé dans le système de production hétérologue (voir § 2.3). Enfin, un autre avantage de cette amplification de l’opéron mesYI entier est que le fragment d’ADN (environ 850 pb) est plus facile à manipuler que le fragment Dral-PstI de 132 pb seulement.

2.2.3 Limites de notre stratégie

La stratégie de mutagenèse aléatoire que nous avons choisie est limitée dans la mesure où toutes les modifications de MesY105 ne sont pas possibles. En ne modifiant qu’une seule base par séquence amplifiée et en limitant seulement l’incorporation des dGTP (ce qui perturbe aussi l’incorporation des dCTP sur le brin complémentaire), il n’est possible d’obtenir théoriquement que 109 variants de MesY105 sur 684 possibles. En effet, certains codons ne peuvent être mutés que par substitution de dATP ou dTTP. Pour augmenter le nombre de variants potentiels de MesY105, il faudrait adapter ce protocole avec une concentration limitante en dATP ou dTTP. Cependant, même dans ces conditions, toutes les substitutions en acides aminés ne sont encore pas possibles. En effet, en général, la troisième position d’un codon est variable et une substitution en cette position n’entraîne que rarement un changement au niveau de l’acide aminé.

L’utilisation de la mutagenèse dirigée pourrait être un bon outil complémentaire à la mutation aléatoire en conditions limitantes en dATP (ou dTTP) et dGTP (ou dCTP) pour
obtenir l’ensemble des mutants possibles de MesY105. Enfin, dans l’état actuel des connaissances des relations structure/fonction des bactériocines de sous-classe IIa, la substitution ciblée de certains résidus est indispensable.

2.2.4 Détection des mutations

Par souci d’économie de temps, nous avons pensé qu’il serait préférable de détecter au préalable d’éventuelles mutations sur la séquence codant MesY105 mature avant une caractérisation de cette séquence plutôt que d’avoir recours au séquençage systématique de cette région dans tous les plasmides pDMYC01m. Pour parvenir à une détection des mutations sur la séquence codant MesY105mature, nous avons appliqué la technique de la SSCP à notre matériel. La mobilité des molécules d’ADN sous forme de simple brin est déterminée, en conditions non dénaturantes, par leur longueur et par leur structure secondaire, ces deux paramètres dépendant eux-mêmes de la séquence nucléotidique (Michaelides et coll., 1995). Un fragment d’ADN adopte plusieurs conformations dans des conditions données d’électrophorèse ce qui permet de visualiser plusieurs bandes. Le changement d’une seule base est supposé être suffisant pour provoquer des variations de migration pour une ou plusieurs de ces bandes.

Cette méthode SSCP consiste en la migration sur un gel de polyacrylamide en conditions non dénaturantes des produits d’une PCR ayant pour matrice pDMYC01m. Ces produits PCR sont obtenus en utilisant les amorces universelle –20 et reverse –20 encadrant la séquence mesY mature. Ces produits PCR sont ensuite dénaturés par la chaleur pour obtenir des ADN simple brin. Si une (ou des) mutation (s) existe (nt) sur la séquence portée par ce brin, celui-ci ne migrera pas exactement de la même façon qu’un brin ne portant pas de mutation.

Les premiers essais ont montré que certaines mutations étaient détectables avec cette technique mais que d’autres passaient inaperçues (c’est le cas de la séquence codant MesY105-A24P). De plus, quelque soient les conditions de migration que nous avons utilisées, la variation de migration n’est pas assez nette pour permettre une bonne sélection des séquences intéressantes (Figure 18).
Figure 18: Analyse par la technique de la SSCP (Single Strand Conformation Polymorphism) de séquences codant des mésentéricines Y105 modifiées.

Remarque : entre parenthèses, codon original/ codon muté.

Une deuxième méthode a été testée pour l’identification rapide de séquences mutées. Cette méthode consiste en la migration d’hétérodimères sur un gel de polyacrylamide en conditions non dénaturantes. Cette fois-ci, les produits de la PCR, effectuée sur les ADN matrices pDMYC01m avec les amorces universelle –20 et reverse –20, sont mélangés de façon équimolaire avec le produit de la même PCR effectuée sur une matrice pDMYC01m non mutée. Après dénaturation des ADN puis refroidissement progressif, des homodimères vont se former entre les brins mutés et les brins non mutés. Les homodimères migreront de la même façon. En revanche, les hétérodimères, en raison du (des) mésappariement(s) entre les brins, présenteront une variation de migration permettant leur identification.

Quelques soient les conditions expérimentales, nous n’avons pas observé de variation significative de migration.

Nous avons supposé que la longueur trop courte de l’échantillon (140 bases ou paires de bases, selon la méthode) et la nature de la séquence étudiée n’étaient pas adaptées à l’analyse des mutations par ces deux méthodes. En effet, celle-ci sont généralement utilisées
sur des fragments d’ADN de taille plus importante (environ 300 bases pour la SSCP ou paires de bases, en général). Par conséquent, nous nous sommes résolus à procéder à un séquençage systématique des fragments clonés obtenus par mutagenèse aléatoire.

2.3 Obtention des peptides mutés

A l’heure actuelle, nous avons obtenus 20 séquences codant des mésentéricines Y105 modifiées.

La plupart des séquences intéressantes ont été obtenues à partir de l’amplification de l’ensemble de l’opéron \textit{mesYI}. Cependant, nous avons aussi adapté le système de production hétérologue de façon à utiliser les séquences mutées obtenues par amplification de la séquence codant la seule MesY105 mature.

2.3.1 Construction des plasmides pDMJF :YIm

Comme pour la construction de pDMJF:YI, la séquence d’intérêt est transférée depuis le plasmide pGEM-T easy:YIm vers le vecteur pMK4 en utilisant les enzymes de restriction \textit{EcoRI} (Figure 16). Des bactéries \textit{E. coli} DH5α sont transformées par les plasmides pDMJF:YIm ligaturés. Un nouveau séquençage permet de vérifier la présence de la séquence d’intérêt dans le vecteur pMK4, pour les clones blancs obtenus.

2.3.2 Construction des plasmides pDMJF :Ym

Ces plasmides ont été construits pour utiliser les fragments codant des MesY105 modifiées obtenues dans la stratégie “protéine de fusion” (voir § 2.2.1). Il faut, dans ce cas, fusionner la séquence codant la MesY105 modifiée mature en phase avec la séquence codant le leader de la bactériocine (Figure 19).
Figure 19: Construction du plasmide pDMJF:Ym.

mesYm: séquence codant une MesY105 mature et modifiée; *Apr*: gène de résistance à l’ampicilline; *LacZ*: gène codant la b-galactosidase; *ori*: origine de réplication chez *E. coli*.

PstI

La fusion des séquences d’ADN est finalement vérifiée par séquençage (à l’aide de l’amorce universelle -40) sur des plasmides extraits de souches E.coli transformées.

2.4 Obtention des mésentéricines Y105 modifiées

2.4.1 Production et purification

Les plasmides pDMJF :YIm et pDMJF :Ym portant des séquences codant des MesY105 modifiées ont été ensuite incorporés dans des souches DSM 20484 (pDMJF01) par électroporation. Les clones obtenus, double-résistants à l’érythromycine et le chloramphénicol, ont été cultivés dans du milieu MRS à 30°C. Après, deux précultures dans ces conditions, une culture d’un litre est effectuée pour chaque souche productrice d’une MesY105 mutante. En raison de l’analogie de leur séquence, nous avons appliqué le protocole de purification utilisé pour MesY105 pour purifier ces dérivés de la bactériociine (« matériel et méthodes », § 2). Nous n’avons pas pu vérifier la présence de bactériociine à chaque étape de purification pour certains des peptides dérivés de MesY105 qui ne semblaient pas présenter d’activité antagoniste contre Listeria.

Après purification par HPLC en phase inverse, un seul pic est observé pour chaque profil d’élution. Chaque pic, dont le temps de rétention varie entre 21 minutes et 25 minutes suivant la structure primaire du peptide, a été analysé en spectrométrie de masse. L’ensemble des bactériocines obtenues est présenté sur la figure 20.
2.4.2 Problèmes rencontrés

Certaines bactériocines n’ont pu être purifiées (aucun pic observé sur le profil d’élation d’HPLC). Ces bactériocines sont des dérivées de MesY105 où un résidu cystéine est remplacé par un autre résidu ou bien se substitue à un autre résidu. (Y3C, C14S, C14Y, C14F, R28C). Nous n’avons pas pu déterminer la raison de ce problème. Une analyse minutieuse de la séquence nucléotidique de l’opéron mesYI correspondant n’a pas révélé de modification autre que la substitution impliquant un résidu cystéine. Plusieurs clones ont été testés pour chacun de ces plasmides pDMJF :YIm mais aucun n’a permis d’obtenir les bactériocines correspondantes.

Il est possible que la disparition ou l’apparition d’un résidu cystéine entraîne une modification de structure de la bactériocine telle qu’elle ne puisse pas être exportée par le DTS de MesY105. Il est aussi envisageable que la bactériocine modifiée soit toxique, malgré la présence de la protéine d’immunité et qu’un réarrangement ait lieu, dans la souche Leuconostoc hôte, excluant une partie de l’opéron mesYI situé sur pDMJF :YIm. Enfin, peut-être que la modification de structure engendrée entraîne un changement des propriétés d’adsorption de la bactériocine sur une des phases solides utilisées pour sa purification.
Cependant Fleury et collaborateurs ont réussi à purifier des MesY105 dont les deux cystéines sont soit modifiées, soit substituées (Fleury et coll., 1996).

Pour d'autres mutants, les profils d'éluion présentent des pics dont l'analyse des fractions correspondantes en spectrométrie de masse ne donne pas les résultats escomptés. Là encore, nous avons analysé l’ensemble de l'opéron mesY1 situé sur les plasmides pDMJF :Ylm correspondants. Nous n'avons cependant pas observé de modification de la séquence nucléotidique au niveau du promoteur, du RBS ou de la portion codant le leader de la bactériocide. Nous avons supposé que la modification de structure engendrée par la substitution pouvait entraîner une toxicité de la molécule pour la bactérie productrice d'où un réarrangement de la séquence codant la bactériocide. Un autre élément de réponse pourrait être une activité anormale de la maturase responsable du clivage de la pré-bactériocide.

3 Relations structure/fonction de MesY105 et des bactériocines anti-Listeria

L'étude des relations existant entre la structure et l’activité antagoniste de MesY105 ne peut se faire sans tenir compte des autres bactériocines de la sous-classe IIa. C'est pourquoi, une partie du travail consiste à positionner MesY105 parmi les autres bactériocines anti-Listeria en ce qui concerne ses séquences primaire et secondaire et les données sur son hydrophobicité.

3.1 Etude des bactériocines de sous-classe IIa

3.1.1 Structure primaire

Pour comprendre l’importance de la séquence de MesY105, il faut pouvoir replacer cette séquence parmi les autres bactériocine anti-Listeria. Récemment, un classement de ces peptides basé sur un alignement multiple a permis de distinguer trois groupes de peptides selon la séquence de leur partie C-terminale (Finland et coll., 2002). Cependant, cet
alignement ne prend pas en compte l’ensemble des bactériocines de sous-classe IIa connues à ce jour et il laisse apparaître une certaine hétérogénéité à l’intérieur des groupes. Par exemple, la lactococcine MMFII (LcMMFII) est rangée avec le groupe de la LeuA et de MesY105 bien qu’elle ne partage aucune similitude, coté C-terminal, avec les peptides de ce groupe.

Nous avons effectué un alignement de l’ensemble des bactériocines connues de la sous-classe IIa en utilisant l’algorithme de Needleman-Wunsch (Needleman et Wunsch, 1970) du package UWGCG (Devereux et coll., 1984) et la matrice de substitution Blosum62. La figure 21 montre le résultat de cet alignement multiple et la figure 22, le dendogramme crée par le programme PileUp du package UWGCG.

Trois groupes de bactériocines se distinguent, en fonction des similitudes entre leurs séquences C-terminales, deux peptides n’entrant dans aucun de ces ensembles : CbnB2 et LeMMFII. Pour chacun de ces groupes, on retrouve des résidus caractéristiques.

Le groupe 1, dont le représentant est PedPA-1, se caractérise par un aspartate en position 17, par une isoleucine en position 25 (également présente dans le groupe 3), par un doublet d’asparagine en 27-28 (l’asparagine en position 28 n’étant jamais observée dans les autres séquences), par la séquence TGG dans laquelle la thréonine 35 est spécifique de ce groupe. Il est à noter que la séquence de la bifidocine B (Yildirim et coll., 1999) apparaît incomplète comparée aux séquences des autres bactériocines de ce groupe.

Le groupe 2, dont MesY105 fait partie, est défini par une asparagine en position 17, par une glycine en 25 (sauf dans la plantaricine 423) en remplacement d’une isoleucine présente dans les deux autres groupes ou d’un aliphatique basique dans CbnB2 et LeMMFII.

On retrouve aussi une arginine ou une histidine en position 28, une alanine en position 30 et une glycine en position 33, toujours absentes du groupe 3 et de CbnB2 et LeMMFII. Finalement, une glycine en position 35 termine l’identification du groupe 2, ce résidu étant absent des séquences du groupe 1. Il faut aussi noter que la séquence de la plantaricine C19 est incomplète : au vu des similitudes de séquences avec SakG et la plantaricine 423, on peut supposer qu’une quatrième cystéine est présente en position 37, formant ainsi un second pont disulfure.

Enfin, le groupe 3 se caractérise par une tyrosine en 8, par une lysine en 13 (également présente dans CbnB2 et LeMMFII), par une asparagine ou un aspartate en 17, par une isoleucine en 25 (également présente dans le groupe 1), et par une glycine en 32 jamais rencontré dans le groupe 1, ni dans les deux bactériocines atypiques (CbnB2 et LeMMFII).
pour chaque groupe, les résidus conservés sont soulignés, et les résidus caractéristiques sont marqués d’un astérisque.

Figure 21: Alignement multiple des bactériocines de sous-classe IIa connues à ce jour.

Pour l’ensemble des bactériocines, une caractéristique générale est la conservation de la moitié N-terminale puisque entre les résidus 1 et 21, seules quatre positions ne sont pas similaires en termes de conservation de propriétés des acides aminés (positions 1, 10, 13 et 19) (Figure 21). Mais seulement quelques positions sont strictement ou quasiment strictement conservées, le consensus YGNGV étant lui-même modifié dans certains cas. Cependant, dans la bifidocine B, un résidu leucine apolaire remplace, en position 11, un résidu polaire et cationique (lysine) qui est présent dans toutes les autres séquences du groupe 1, et dans la carnobactériocine BM1, l’alanine 21, quasiment conservée partout (dans 24 des 26 peptides décrits), est remplacée par une asparagine polaire. Il est à noter que la conservation des propriétés est fondée sur la classification des acides aminés proposée par Zvelebil (Zvelebil et coll., 1987).

De l’analyse de cette partie N-terminale, on peut en déduire le consensus suivant : \(xY(S,N)YGNGV(L)pCxxpxCpV(I)pxpA(L) \). [x correspond à un résidu quelconque et p signifie un résidu polaire. Les résidus entre parenthèses correspondent à ceux que l’on trouve secondairement, le résidu majoritairement retrouvé précédant les parenthèses].

On peut aussi noter que la région 10-13, située entre les deux premiers résidus de cystéine, contient au moins un acide aminé basique: il s'agit d'une lysine sauf dans les cas de la bifidocine B et de SakG dans lesquelles une histidine est présente (en position 12). Dans le groupe 3 ainsi que dans LcMMFII et CbnB2, cette région 10-13 est complètement polaire alors que, dans les groupes 1 et 2, seulement trois positions sont occupées par des acides aminés polaires, la quatrième étant occupée par une glycine soit en position 10, soit en position 13. Le cas de la séquence de la listériocine 743A est surprenant car c’est la seule, parmi les 26 séquences, possédant trois résidus basiques dans cette région 10-13, et la seule, parmi les séquences du groupe 1, ayant un résidu basique en 13.

Le dendogramme permet également de définir des sous-groupes entre peptides d’un même groupe (Figure 22).
Figure 22: Proximités de séquences des bactériocines de sous-classe IIa.

Le groupe 1 est composé de deux bactériocines isolées (leucocine C et SakP) et deux sous-ensembles (PedPA-1, coaguline et bifidocine B d’une part ; les quatre autres bactériocines, d’autre part).

Le groupe 2 montre deux sous-ensembles, l’un formé du couple MesY105–LeuA, l’autre composé des plantaricines 423 et 19C et de SakG.

Enfin, le groupe 3 est composé de deux sous-groupes (un triplet curvacine A, entérocine P et carnobactériocine BM1 ainsi qu’un quatuor bavaricine M, divercine V41, entérocine A et bactériocine 31). Cependant, ce quatuor semble assez hétérogène, les peptides apparaissant relativement éloignés.

3.1.2 Structure secondaire

Les bactériocines de sous-classe IIa sont généralement présentées comme des peptides composés d’une partie N-terminale formée d’un feuillet β et d’une hélice α centrale. La partie C-terminale est soit en forme désordonnée, soit repliée vers la partie centrale en raison de l’existence d’un second pont disulfure (voir « revue bibliographique », §3.2.2.2). Cependant, aucune analyse de prédiction de structure secondaire n’a été publiée pour l’ensemble des bactériocines de cette sous-classe.

Comparaison des méthodes de prédiction de la structure secondaire

Nous avons choisi de tester neuf méthodes de prédiction de structure secondaire (NNSSP, NNPredict, GOR4, DPM, SOPM, PHDsec, Predator, Simpa96, et PsiPred) (Deleage et Roux, 1987; Frishman et Argos, 1996; Garnier et coll., 1996; Geourjon et Deleage, 1994; Kneller et coll., 1990; Levin et coll., 1986; McGuffin et coll., 2000; Rost et coll., 1994; Salamov et Solovyev, 1995) sur les deux bactériocines dont la structure tridimensionnelle a été définie par RMN (LeuA et CbnB2) afin de déterminer la méthode de prédiction la plus fiable dans le cas de ces peptides. Les résultats de prédiction sont comparés aux structures secondaires issues des fichiers PDB (Protein Data Bank) 2Leu, 1CW6 et 1CW5 (Gallagher et
Il apparaît que seule la méthode PsiPred permet d’obtenir des prédicitions de structure satisfaisantes sur ces deux bactériocines. Cette méthode qui semble validée pour une bactériocide du groupe 2 et une bactériocide « atypique », telles que nous les avons définies précédemment a été par la suite utilisée pour prédire la structure secondaire de l’ensemble des bactériocines de sous-classe IIA. Le résultat de cette analyse est présenté sur la figure 23, où le classement en trois groupes a été conservé.

Les prédicitions consensuelles de structure secondaire montrent une structure globalement homogène pour l’ensemble des bactériocines de sous-classe IIA : un feuillet de deux chaînes β aux positions 7 à 9 et 14 à 17, suivi d’une structure en hélice α commençant à la position 19. Cependant, la longueur de cette hélice est variable selon les groupes de séquences : 12 résidus pour le groupe 2, 16 à 17 résidus pour les groupes 1 et 3 et 22 résidus pour CbnB2 (séquence éloignée de celles appartenant aux groupes 1-3). L’extrémité carboxylée des bactériocines se termine par une séquence en boucle de longueur relativement constante puisqu’elle est longue de 9, 7, 8 et 9 résidus respectivement pour les groupes 1, 2, 3 et CbnB2.

Recherche de segments transmembranaires

Figure 23: Prédiction de structure secondaire et de segments transmembranaires des bactériocines de sous-classe IIa.

Structure en fonction du nombre de pont disulfure

Si l’on considère les bactériocines à deux ponts disulfures, il est aisé de constater qu’elles appartiennent aux trois groupes définis dans ce travail ce qui conduit à une interrogation évidente concernant la structure en hélice : la troisième cystéine en position conservée (position 24) et le sixième résidu de l’hélice, qui est de longueur variable et suivie d’une boucle de longueur quasi constante se terminant par la quatrième cystéine. À l’exception de deux séquences (leucocine C et plantaricine 423), au moins un résidu glycine existe dans la région 23-29 indiquant la possibilité d’une structuration en hélice coudée. Le deuxième pont disulfure pourrait alors stabiliser cette conformation.

Dans le groupe 1, les séquences à un pont disulfure possèdent un ou deux résidus glycines dont un en position 26, alors que celles à deux ponts ne possèdent qu’une seule glycine et en position 29. Dans le groupe 2, la glycine est toujours à la position 25, et toutes les séquences du groupe 3 possèdent des résidus glycine aux positions 26 ou 27 et 32. L’hélice des séquences du groupe 3 ainsi que celle des séquences à un pont disulfure du groupe 1, pourrait être doublement coudée.

Structure en épingle à cheveux

L’analyse du rôle des résidus trypophanes dans l’activité de SakP conduit à proposer pour les bactériocines du groupe 1 que le tryptophane en position 41 stabilise le même type de structure en épingle à cheveux que le pont disulfure 24-44 (Fimland et coll., 2002). Une proposition similaire peut être faite pour les bactériocines du groupe 2, pour lesquelles le tryptophane final (W37) aurait le même rôle que le pont disulfure 24-37. Cette similitude entre les deux groupes est renforcée par les observations suivantes : (i) seules les bactériocines sans second pont disulfure possèdent un tryptophane en position 41 (groupe 1) ou 37 (groupe 2). (ii) ce résidu tryptophane est situé, dans les deux groupes, sept résidus après la fin de l’hélice.

De plus, seules les bactériocines à deux ponts disulfures possèdent un résidu histidine quatre résidus après la fin de l’hélice (à la position 38 pour le groupe 1 et à la position 34 pour le groupe 2).

On peut alors proposer que la structure en épingle à cheveux puisse être stabilisée en partie par des liaisons hydrogènes faibles entre le groupement amine de l’histidine et le groupement amide de l’asparagine. Dans les bactériocines du groupe 2, une telle interaction se ferait entre l’histidine 27 ou 28 et l’asparagine 34 (pour les peptides à un pont disulfure) et
entre l’asparagine ou la sérine 27 et l’histidine 34 pour les peptides à deux ponts disulfures. Dans le groupe 1, cette interaction n’existerait que dans les bactériocines à deux ponts disulfures car les autres bactériocines sont dépourvues d’histidine 38 pouvant interagir avec les doublets d’asparagine en 27 et 28. En revanche, pour stabiliser l’épingle à cheveux C-terminale, une interaction entre une des asparagines du doublet en position 27-28 et une histidine ou une lysine (position 42 ou 44) est envisageable pour toutes les bactériocines sauf la bifidocine B. Enfin, parmi les bactériocines du groupe 3, seuls les peptides à deux ponts disulfures peuvent adopter cette structure en épingle (en raison du second pont) ainsi que la bactériocine 31. Cette dernière est le seul peptide du groupe possédant un résidu tryptophane dans la région C-terminale (en 39) et une histidine en 36 pouvant interagir avec le glutamate 24 et la lysine 27 qui stabiliserait une épingle à cheveux. Pour la CbnB2, une stabilisation de la boucle pourrait se faire grâce à une interaction entre une arginine (46 ou 47) et une asparagine en position 30. La glycine en position 31 pourrait permettre l’existence d’un coude et d’une épingle à cheveux C-terminale pour LcMMFII. Il faut cependant noter que ces liaisons hydrogènes sont sûrement trop faibles pour permettre à elles seules la stabilisation de l’épingle à cheveux.

En termes de relation structure-activité, les notions de structure en épingle à cheveux et d’hélice coudée peuvent être discutées de la manière suivante : la structure en épingle à cheveux nécessite l’existence d’un ou deux coudes dans l’hélice (présence de résidus glycine) selon la longueur de l’hélice surtout en l’absence du deuxième pont disulfure, puisque la structure en hélice doit être conservée et que la flexibilité «naturelle» de celle-ci doit permettre les interactions hélice/boucle C-terminale nécessaires à la stabilité de l’épingle à cheveux. En considérant que cette structure en épingle est la plus favorable à l’activité des bactériocines, il devient possible de prévoir l’activité relative de ces différents peptides au moins à l’intérieur de chaque groupe.

Prévision des activités relatives des bactériocines

Pour le groupe 1, on peut penser que les bactériocines à deux ponts disulfures et un Gly29, permettant un coude en fin d’hélice, auront la meilleure activité (PedPA-1, coaguline, bifidocine B). Puis, les bactériocines possédant deux glycines consécutives (G23 et G24) ainsi qu’un tryptophane final (W41) doivent présenter une activité égale ou inférieure : SakP, bavaricine A, mundticine, mundticine KS, piscicoline 126. On peut supposer que la sakacine 5X et la listériocine 743A auront une activité diminuée par rapport au groupe précédent.
puisqu’elles ne possèdent qu’une glycine (en position 26) ainsi qu’un tryptophane final (W41). Enfin, la leucocine C qui ne présente pas de coude en fin d’hélice, mais seulement un tryptophane final (W41) doit être, de loin, la moins active des bactériocines du groupe 1.

En ce qui concerne le groupe 2, SakG et la plantaricine 19C doivent être les bactériocines dont l’activité antagoniste est la plus importante : elles ont deux ponts disulfures (l’analyse du groupe 2 peut nous laisser supposer que la plantaricine 19C possède une cystéine C-terminale ainsi qu’un coude créé par une glycine en position 25). La plantaricine 423, qui est à deux ponts disulfure mais ne semble pas présenter de coude en fin d’hélice, doit avoir une activité intermédiaire. Enfin, les deux peptides à un seul pont disulfure (LeuA et MesY105) doivent être les moins actives (ou du même ordre d’activité que la plantaricine 423) même si elles possèdent une glycine en position 25 et un tryptophane final (W37).

Pour le dernier groupe, la divercine V41 et l’entérocine A possèdent deux ponts disulfures ainsi que deux coudes possibles (G26 ou 27, G31-G32). Leur activité doit être la plus importante. La bactériocine 31 n’a qu’un pont disulfure mais présente deux coudes potentiels dans l’hélice (G26, G32) ainsi qu’un tryptophane coté C-terminal (W39) : elle doit être d’une activité égale ou inférieure aux deux peptides précédents. La curvacine A montre deux coudes putatifs dont un doublet de glycines (G27-G28, G32) mais pas de tryptophane terminal : elle doit être beaucoup moins active que la bactériocine 31 mais plus active que les bactériocines suivantes, entérocine P, carnobactériocine BM1 et bavaricine M, qui ont deux coudes putatifs en fin d’hélice mais pas de doublet de glycine (G26 ou 27, G32), ni de tryptophane terminal.

Il n’est pas possible de faire de prédiction d’activité pour CbnB2 et LeMMFII en raison de leur structure primaire atypique.

Enfin, il faut noter que les études comparatives des activités de bactériocines montrent l’importance du second pont disulfure : les peptides possédant ce pont présentent généralement une activité antagoniste plus importante comparativement aux bactériocines qui n’en comportent qu’un seul (Eijsink et coll., 1998; Ennahar et coll., 2000; Finland et coll., 2000; Guyonnet et coll., 2000), à l’exception de SakG (Simon et coll., 2002). Nous pouvons remarquer que le fait d’avoir classé SakG parmi le groupe de MesY105 est justifié d’un point de vue de la séquence mais aussi de l’activité, SakG ayant un pouvoir antagoniste du même ordre que celui de notre bactériocine modèle (Simon et coll., 2002).

Nous pouvons regretter de n’avoir pas pu faire d’étude exhaustive des activités des bactériocines de sous-classe IIa ; aucune autre bactériocine, ni souche productrice que celles citées par Guyonnet et collaborateurs (2000) et Ferchichi et collaborateurs (2001) n’ayant pu être obtenue auprès des auteurs.

3.1.3 Hydropathie

Les bactériocines de la sous-classe IIa sont des peptides globalement cationiques (en particuliers du coté N-terminal), ce qui suppose un certain caractère hydrophile. Mais pour pouvoir interagir avec les membranes des bactéries cibles, elles doivent aussi posséder un caractère hydrophobe. Leur profil d’hydropathie mais aussi le moment hydrophobe de leur hélice α doivent pouvoir être reliés à leur structure et à leur activité.

L’hydropathie d’une molécule est définie comme un spectre dont les deux extrêmes sont l’hydrophobie et l’hydrophilie. La construction des profils d’hydropathie se fait en utilisant l’échelle d’hydropathie de Kyte et Doolittle (Kyte et Doolittle, 1982) dans laquelle est attribuée à chaque acide aminé une valeur tenant compte de son hydrophilie et de son hydrophobie. Le programme utilisé détermine en continu l’hydropathie moyenne d’un segment mobile (ou fenêtre) se déplaçant sur la séquence à partir de l’extrémité aminée vers l’extrémité carboxylée. On génère de cette façon une représentation graphique du caractère hydropathique de la chaîne peptidique en représentant les régions hydrophiles et hydrophobes par rapport à une ligne de référence universelle. Il est aussi possible, en fonction de la valeur
d’hydropathie moyenne d’un segment peptidique, de déterminer la probabilité que ce segment corresponde à une séquence transmembranaire.

Sur la figure 24, sont représentés les profils hydropathiques moyens des trois groupes de bactériocines anti-Listeria. Une projection de l’axe de l’hélice α a aussi été effectuée afin de déterminer l’amphiphilie de cette hélice. Sur la figure 25, sont représentées les « roues hélicoïdales » d’un représentant de chacun des groupes de bactériocines de sous-classe IIa ainsi que pour MesY105.

Figure 24: Profils hydropathiques moyens des trois groupes de bactériocines de sous-classe IIa.

L’analyse des profils moyens d’hydropathie montre (i) que plus la séquence 10-15 est polaire plus la séquence 30-Cter est hydrophobe (cette observation reste actuellement inexpliquée) (ii) que la moitié N-terminale des hélices des peptides des groupes 1 et 2 est plus hydrophobe que celle des peptides du groupe 3 qui est globalement hydrophile, (iii) que la
moitié C-terminale des hélices est très hydrophobe dans le groupe 3 contrairement à celle des séquences des groupes 1 et 2.

L’hydrophobicité importante de la moitié C-terminale de l’hélice des peptides du groupe 3 est confirmée par la prédiction des segments membranaires qui révèle qu’en plus de CbnB2, seules les bactériocines du groupe 3 (ainsi que la coaguline et PedPA-1) sont prédites comme possédant une partie d’hélice ayant les caractéristiques d’un segment membranaire.

Figure 25: Représentation en roue hélicoïdale des hélices α de quelques bactériocines anti-Listeria.

En rouge sont représentés les résidus polaires, en bleu les résidus hydrophobes, en vert les cystéines, en gris, les glycines.

μ est la valeur du moment hydrophobe : la somme vectorielle des hydrophobicités de tous les résidus considérés comme formant une hélice α idéale. L’angle du moment hydrophobe est noté θ.

Les faces polaires et apolaires de l’hélice de MesY105 sont indiquées sur la figure.
Dans tous les cas, l’hélice des bactériocines de sous-classe IIa est amphiphile, comme le démontre la représentation en roue hélicoïdale (Figure 25), mais la moitié N-terminale est plus hydrophobe que la moitié C-terminale dans les séquences des groupes 1 et 2, alors que pour les séquences du groupe 3 et de CbnB2, la moitié N-terminale est plutôt polaire et la moitié C-terminale est très apolaire. L’homologie marquée, existant entre les profils d’hydropathie des 14 résidus C-terminaux de l’hélice de CbnB2 et des séquences du groupe 3, suggère que la différence de longueur existant entre les hélices puisse être due à l’insertion du tétrapeptide polaire QERY dans la séquence de CbnB2.

3.2 Etude de MesY105 et de ses dérivés

Afin de vérifier les données théoriques, issues de la modélisation effectuée sur les bactériocines anti-Listeria, et de les rapprocher de la réalité, nous avons étudié les relations existant entre structure et fonction de notre bactériocine modèle : MesY105. Pour cela, une investigation de l’activité antagoniste, des structures primaire et secondaire ainsi que de l’interaction avec un modèle membranaire de MesY105 et dix de ses dérivés a été réalisée. Enfin, une étude de la structure tridimensionnelle (actuellement en cours) de MesY105 viendra compléter les données sur les relations structure-activité de ce modèle de bactériocine.

Remarque : par la suite nos dérivés de MesY105 seront nommés en fonction de la substitution par rapport à la bactériocine naturelle. Par exemple, le dérivé présentant une substitution de l’alanine en position 24 par une valine (mutation A21V) sera nommé a21v (en minuscule). La seule exception est pour le dérivé auquel il manque le tryptophane final, nommé mes36.

3.2.1 Activité anti-Listeria

MesY105 et dix de ses dérivés ont été testés pour leur activité anti-Listeria en utilisant la souche L. ivanovii Li4 (pVS2) (Axelsson et coll., 1998) comme souche cible. Les résultats (Figure 26 et tableau 5) montrent, pour tous les dérivés de MesY105, une diminution de l’activité antagoniste.
Figure 26: Concentrations minimales inhibitrices (CMI) de la mésentéricine Y105 et de 10 dérivés.

Données obtenues après trois tests d’activité indépendants menés contre la souche Listeria ivanovii Li4 (pVS2). Les barres d’erreur représentent l’écart-type mesuré sur les trois tests.

Tableau 5: Calculs des CMI de la mésentéricine Y105 et de 10 dérivés.

Données obtenues après trois tests d’activité indépendants menés contre la souche Listeria ivanovii Li4 (pVS2).
La concentration minimale inhibitrice (CMI) de MesY105 est de l’ordre du nanomolaire (1,6 nM). On peut distinguer trois groupes de peptides modifiés en fonction de leur activité antagoniste. Le premier est formé de trois peptides (a24p, r28h et mes36) dont l’activité est très fortement diminuée (d’environ 6000 à 16000 fois moins importante que pour MesY105) avec des CMI de l’ordre de la centaine de millimolaires. Le second groupe, plus important en nombre (w18f, h8y, w37f, a21v, h8l et g13e), comporte des peptides dont l’activité est fortement diminuée (de 13 à 78 fois plus faible que celle de MesY105) : la CMI a des valeurs de l’ordre de la dizaine et de la centaine de micromolaires. Enfin, s15f se distingue des autres bactériocines modifiées par une activité moyennement affectée (diminution d’un facteur 3 par rapport à la bactériocine sauvage), sa CMI étant d’environ 4 nM.

Les CMI que nous avons calculées pour MesY105 et mes36 (1,6 nM et 27 μM, respectivement) sont assez différentes de celles trouvées par Fleury et collaborateurs (1996) (34 nM et 6 μM, respectivement) mais notre test a été effectué sur une souche cible différente (L. ivanovii Li4 (pVS2) et L. ivanovii BUG 496, respectivement). Ce type de différence est rapporté dans la littérature (Fimland et coll., 2002). De plus, la plupart des dérivés de bactériocines anti-Listeria étudiés montrent une activité altérée par rapport au peptide sauvage (Fimland et coll., 2002; Fleury et coll., 1996; Johnsen et coll., 2000; Kazazic et coll., 2002; Miller et coll., 1998b; Quadri et coll., 1997a).

3.2.2 Rapport entre structure primaire et activité antagoniste

Toutes les mutations entraînent une diminution de l’activité antagoniste mais les effets sont variables en amplitude.

Mutations dans le feuillet β

Substitutions du H8

Dans la région N-terminale, globalement cationique, deux substitutions ont été obtenues au niveau de l’histidine en position 8. Le remplacement de ce résidu par une tyrosine entraîne une diminution de l’effet antagoniste d’un facteur 20. En revanche, l’effet de la substitution de H8 par une leucine est 2,5 fois plus important. L’histidine en cette position est retrouvée dans 15% des bactériocines de sous-classe IIa. Elle ne semble donc pas
particulièrement importante dans cette région d’autant plus qu’elle est remplacée par des résidus très différents bien que polaires : soit par une sérine ou une thréonine dans les groupes 1, 2 et CbnB2, soit par une glutamine dans la listériocine 743A. En revanche, il est intéressant de remarquer que toutes les bactériocines du groupe 3 présentent une tyrosine en position 8. Le remplacement de l’histidine par une tyrosine n’est pas conservatif puisqu’il élimine la charge positive du résidu basique mais maintient l’encombrement stérique important (remplacement du noyau imidazole par un noyau benzénique). Dans la littérature, il est souvent proposé que la partie N-terminale intervient dans une phase préliminaire de fixation à la membrane grâce aux interactions électrostatiques entre ses charges positives et les têtes négatives des phospholipides membranaires (Chen et coll., 1997a; Ennahar et coll., 2000; Miller et coll., 1998b). On peut comprendre que la perte d’une charge positive diminue l’efficacité de fixation du peptide à la membrane ce qui entraîne une moindre activité antagoniste. Cet effet sur la fixation de la bactériocine, et non sur directement sur sa fonction, expliquerait le fait que la mutation est l’une de celles qui perturbent le moins l’activité antagoniste de MesY105.

En ce qui concerne le dérivé h8l, l’histidine est remplacée par un résidu apolaire ce qui entraîne non seulement la perte d’une charge positive mais aussi une forte augmentation de l’hydrophobicité dans une partie N-terminale hydrophile. Puisqu’aucune interaction électrostatique n’est possible, on peut émettre l’hypothèse d’une perturbation plus importante de la molécule et de son interaction avec la membrane cible, par rapport au dérivé h8y, se manifestant par une altération plus importante de l’activité antagoniste observée. On peut en conséquence penser que non seulement la charge, mais aussi le degré d’hydropathie interviennent dans le processus d’interaction entre la partie N-terminale et les phosphates des lipides membranaires. En outre, dans un article récent, Kazazic et collaborateurs (2002) ont aussi observé une diminution d’activité de SakP en remplaçant l’histidine en position 8 par une thréonine. Ils ont pu relier cette altération de l’activité à une diminution des interactions entre le peptide et les têtes des phospholipides. Cependant, ils ont suggéré que la charge positive n’est pas l’élément essentiel en soi dans le processus d’interaction avec la membrane : un dérivé h8k (mutation conservative d’un point de vue de la charge) a une activité inférieure au dérivé h8t.
Substitution du G13
La mutation affectant la glycine 13 touche la molécule entre les deux cystéines, dans le feuillet β prédit par le programme PsiPred. La glycine, qui n’a pas de caractère polaire ou apolaire marqué, est remplacée par un acide glutamique nettement hydrophile et porteur d’une charge négative. La conservation du caractère hydrophile est importante pour la partie N-terminale mais on retrouve toujours une zone à charges positives (ou « patch ») dans cette région avec une lysine (et/ou une histidine) en position 11 (et/ou 12) pour les bactériocines des groupes 1 et 2 et une lysine en position 13 (plus, généralement, une seconde lysine, en position 11 ou 12) pour le groupe 3 et les deux bactériocines atypiques. Ce patch positif est, selon plusieurs auteurs, impliqué dans le processus de fixation préliminaire de la bactériocine à la membrane cible (Chen et coll., 1997a; Ennahar et coll., 2000; Miller et coll., 1998b). On peut donc comprendre l’altération importante de l’activité antagoniste du dérivé g13e (80 fois moins actif que MesY105) même si une substitution de la lysine 11 par un acide glutamique entraîne une augmentation d’activité, chez PedPA-1 (Miller et coll., 1998b).

Substitution du S15
La mutation qui affecte le moins l’activité de MesY105 est la substitution de la sérine en position 15 par une phénylalaneine. Cette position se situe en fin du feuillet β établi par l’analyse RMN de LeuA (on peut considérer que ces deux bactériocines ont une structure très proche, compte tenu des deux seuls résidus les différenciant) et proche de la charnière entre la partie N-terminale, globalement cationique et hydrophile, et la partie C-terminale prévue comme plus hydrophobe (Figure 27).

La substitution entraîne un changement important de la polarité puisqu’on passe d’un résidu polaire légèrement hydrophile à un résidu apolaire hydrophob, avec une chaîne latérale aromatique. Cette sérine est relativement bien conservée dans les groupes 1 et 2 des bactériocines anti-Listeria (9 peptides sur 15) et elle est remplacée dans 4 cas sur 6 par une thréonine (avec de nouveau un groupement hydroxyle). On aurait donc pu s’attendre à un effet plus important de cette substitution. De plus, l’analyse d’une fenêtre de 7 résidus autour de cette position montre un caractère légèrement hydrophile (Figure 27).
Figure 27: Profils hydropathiques dérivés de la mésentéricine Y105.

Bien que ce segment voie son caractère hydrophobe renforcé par la mutation S15F, l’activité antagoniste n’est que modérément affectée, ce qui laisserait supposer un rôle moindre de cette région dans la fonction du peptide. Il faut cependant noter que la valine 16 voisine présente une hydrophobicité encore plus marquée selon la table d’hydropathie de Kyte & Doolittle (1982). Il est possible que l’effet de la substitution sur la polarité soit modéré par la présence d’un autre résidu à caractère hydrophobe dans cette région ou que cette région charnière du peptide ne joue qu’un rôle très réduit dans l’activité antagoniste de la bactériocine.

Mutations dans l’hélice α

Substitution du A21

Le remplacement d’une alanine, résidu apolaire (index d’hydropathie de 1,8 selon Kyte et Doolittle, 1982) par la valine (hydropathie de 4,2) renforce le caractère hydrophobe de cette zone. L’activité du dérivé a21v est néanmoins 46 fois inférieure à celle du peptide natif. Pour une telle mutation, on pouvait s’attendre à une variation négligeable de l’activité. En effet, on a une substitution conservative en termes de polarité. De ce point de vue, les substitutions A22F et I26V existant entre LeuA et MesY105 se traduisent par des différences d’activité mineures (Fleury et coll., 1996). Cependant, A21 est présent dans 24 des 26 séquences décrites, ce qui suggèrerait un rôle essentiel de l’alanine en cette position. L’analyse du moment hydrophobe d’une hélice W18-N31, avec la table d’Eisenberg et collaborateurs (Eisenberg et coll., 1984), confirme l’effet peu important de cette substitution (Tableau 6). Il est plus probable que l’alanine 21 joue un rôle structural. En effet, ce résidu très favorable à la structuration en hélice (Prevelige et Fasman, 1989) est situé au voisinage de G25 dans l’hélice (Figure 25) qui est supposé être nécessaire à la formation d’une hélice coudée. La substitution de l’alanine par une valine à chaîne latérale ramifiée encombrante pourrait empêcher la formation de l’hélice coudée favorable à une activité optimale.

Substitution du A24

Le dérivé a24p présente une activité 6000 fois inférieure à celle de la bactériocine native. L’alanine est un résidu hydrophobe tandis que la proline est un résidu considéré comme hydrophile (tendance à être enfoui) par les tables d’Eisenberg et collaborateurs (1984) et de Kyte et Doolittle (1982) malgré les trois groupes méthylènes de sa chaîne latérale. Le calcul du moment hydrophobe pour une hélice W18-N31 montre une augmentation
significative sa valeur (6,14 au lieu de 5,64) (Tableau 6) mais sans variation notable de la valeur de l’angle. Cette variation est plutôt favorable à une orientation correcte dans le plan de la membrane. Par contre, la proline est connue pour être un point de cassure d’hélice en raison de la structure de sa chaîne latérale. De plus, la substitution entraîne l’apparition d’un doublet proline-glycine qui accentue la cassure formée par l’apparition de la proline. On passerait ainsi d’une hélice coudée active à une hélice cassée inactive. L’hélice α est présentée comme un élément déterminant dans la fonction des bactériocines de sous-classe IIa : elle pénétrerait la membrane bactérienne et permettrait la fuite des éléments cytosoliques soit en formant un canal par association multimérique des peptides, soit simplement par perturbation locale de la membrane (Ennahar et coll., 2000; Moll et coll., 2000). On peut penser que la chute très importante d’activité de MesY105 est due à une rupture de l’hélice amphiphile.

<table>
<thead>
<tr>
<th>peptides</th>
<th>mesY</th>
<th>a21v</th>
<th>a24p</th>
<th>r28h</th>
<th>w18f</th>
</tr>
</thead>
<tbody>
<tr>
<td>valeur du moment hydrophobe:</td>
<td>5,64</td>
<td>5,47</td>
<td>6,14</td>
<td>4,46</td>
<td>5,88</td>
</tr>
<tr>
<td>angle du moment hydrophobe:</td>
<td>53,3</td>
<td>48,9</td>
<td>53,8</td>
<td>32,9</td>
<td>50,3</td>
</tr>
</tbody>
</table>

Tableau 6: Valeurs du moment hydrophobe et de son angle calculées pour une hélice α formée par les résidus 18 à 31.

Les calculs ont été effectués, pour MesY105 ainsi que pour les dérivés présentant une substitution dans ce segment 18-31, en utilisant les tables d’Eisenberg et collaborateurs (1984).

Substitution du R28

La mutation R28H, bien que conservative d’un point de vue de la polarité (l’index hydropathique de l’arginine est de -4,5 contre -3,2 pour l’histidine) et du nombre de charges (charge positive), entraîne une très forte chute de l’activité antagoniste puisque la CMI du dérivé est 12000 fois supérieure à celle de MesY105. Cette altération brutale de la fonction est difficilement explicable en ne raisonnant que sur la séquence. En effet, si l’arginine 28 se trouve dans 3 des 5 bactériocines du groupe 2, les deux autres peptides (qui ont deux ponts disulfures) possèdent une histidine en cette position. Cependant, une forte variation de la valeur du moment hydrophobe, de son angle et de l’hydrophobicité moyenne de l’hélice W18-N31 suggère un bouleversement de la structure du peptide (Tableau 6). R28 comme A21 est
localisée sur la face polaire de l’hélice, au voisinage de G25 et au niveau de l’interface eau-lipides (Figure 25). Il faut aussi noter que les structures des deux chaînes latérales sont très différentes : une longue chaîne carbonée pour l’arginine, un noyau imidazole pour l’histidine. Cette différence d’encombrement stérique peut influencer fortement sur la structure hélicoïdale de la bactériocine. Il semblerait donc que cette arginine joue un rôle essentiel pour l’activité de MesY105 : peut-être intervient-elle au niveau de la structuration de l’hélice afin de lui donner ou de stabiliser une conformation correcte, ou bien intervient-elle au niveau d’un récepteur (ou d’une protéine de fixation) membranaire. Le rôle de l’arginine 28 semble spécifique de cette bactériocine (et éventuellement de LeuA) puisque ce résidu n’est pas conservé dans les autres bactériocines anti-Listeria (à part la plantaricine 19C).

Substitution des tryptophanes

Les autres dérivés de MesY105 ont été obtenus par synthèse chimique et la substitution concerne les tryptophanes de la bactériocine.

La substitution W18F est une de celles qui affectent le moins l’activité anti-Listeria (CMI 13 fois supérieure à la normale). Le tryptophane est un résidu légèrement hydrophile (selon la table de Kyte et Doolittle, 1982) mais, en raison de sa structure particulière, il est connu pour interagir avec des molécules hydrophiles et hydrophobes. La phénylalanine, résidu aromatique, est en revanche nettement hydrophobe. Une telle substitution, si elle conserve globalement l’encombrement stérique, déplace le profil hydropathique de la bactériocine vers le domaine hydrophobe, entraînant un bouleversement de la structure de l’hélice amphiphile. Cependant, la valeur du moment hydrophobe et celle de son angle sont modérément modifiées (Tableau 6). Ce tryptophane est très conservé parmi les bactériocines anti-Listeria et semble avoir une importance particulière dans leur activité. Une étude des relations structure-fonction de SakP a montré une diminution d’activité de même ordre pour la mutation W18F. D’autres mutations ont montré que l’aromaticité plutôt que l’hydrophobicité était essentielle à cette position (Fimland et coll., 2002). Par conséquent, on peut comprendre l’effet relativement modéré du remplacement du tryptophane 18, bien qu’il soit très conservé, par une phénylalanine.

La substitution du tryptophane 37 par une phénylalanine se traduit aussi par une diminution modérée d’activité, par rapport à la plupart des autres mutations, bien que deux fois supérieure à la substitution W18F. Là encore, ce tryptophane est relativement bien
conservé en fin de séquence pour la plupart des bactériocines des groupes 1 et 2 à un seul pont disulfure ainsi que chez LcMMFII. Finland et collaborateurs (2002) attribuent un rôle important à ce tryptophane et, comme pour le tryptophane 18, suggèrent que c’est l’aromaticité du résidu qui est plus importante que l’hydrophobicité à cette position. Il semblerait néanmoins que les deux tryptophanes ne remplissent pas le même rôle puisque la même mutation en deux positions dans la séquence entraîne une diminution d’activité antagoniste différente chez MesY105 comme chez SakP (Finland et coll., 2002).

Enfin, l’élimination du tryptophane 37 entraîne une chute extrêmement important de l’activité antibactérienne : le peptide est plus de 16000 fois moins actif que MesY105 native. Cette mutation montre l’importance du tryptophane à cette position. Le tryptophane pouvant interagir à la fois en environnement hydrophobe et hydrophile, on peut supposer que le tryptophane 37, comme le tryptophane 18, peut interagir au niveau de l’interface membrane/eau afin de positionner la molécule.

En complément de nos propres résultats, nous pouvons noter que Fleury et collaborateurs ont obtenu un dérivé t10k de MesY105 (Fleury et coll., 1996). Ce dérivé présente une activité deux fois plus faible que MesY105 contre L. ivanovii BUG 496 (CMI de 64 et 34 nM respectivement). Bien que le caractère cationique soit renforcé (une charge positive supplémentaire), ce peptide est moins actif que la bactériocine naturelle. Ce résultat peut paraître étonnant puisqu’il est souvent reconnu qu’une zone positive dans cette région participe à l’activité des bactériocines (Chen et coll., 1997a; Chen et coll., 1998; Kazazic et coll., 2002). Cependant, nous pouvons remarquer qu’aucune des bactériocines de la sous-classe IIa connues à ce jour ne présente de résidu chargé au voisinage immédiat (coté carboxyl) de la première cystéine (Figure 21). L’ajout de charge du coté amino-terminal ne s’accompagne pas forcément d’une augmentation d’activité, comme cela est déjà montré dans la littérature (Kazazic et coll., 2002).

Quand le pont disulfure ne peut être formé, soit par blocage des cystéines, soit par substitution des cystéines par des sérines, l’activité de la bactériocine est très fortement atteinte, ce qui montre l’importance de cette structure repliée en N-terminale dans l’activité antibactérienne (Fleury et coll., 1996). Toutefois, chez d’autres bactériocines, le pont disulfure ne semble pas avoir un rôle aussi important dans l’activité (Eijsink et coll., 1998; Hastings et coll., 1991; Quadri et coll., 1994).
Tous les dérivés présentant une séquence tronquée par rapport à MesY105 ont une activité dramatiquement réduite, ce qui montre l’importance de l’ensemble de la séquence pour l’activité de MesY105 (Fleury et coll., 1996).

Les travaux de Chamberland-Chanteloube concernant MesY105 sont aussi à prendre en compte.

Cet auteur a obtenu un dérivé n5t présentant une activité réduite par rapport à MesY105 naturelle (1/50 de l’activité normale). L’asparagine polaire est remplacée par une thréonine dont la polarité est comparable. Le changement principal est le remplacement du groupement amide de l’asparagine par un hydroxyle dans la thréonine. Ce résultat est tout à fait attendu puisque le résidu asparagine en position 5 fait partie du consensus YGNGV conservé dans toute la sous-classe IIa : une modification de ce résidu entraîne logiquement une diminution importante de l’activité antagoniste.

Le dérivé h8y obtenue par Chamberland-Chanteloube présente une activité moins réduite par rapport à MesY105 que ce que nous avons mesuré (1/5 de l’activité normale contre 1/20 pour nos résultats). De même, le dérivé a24p est 167 fois moins actif que la bactériocine naturelle pour Chamberland-Chanteloube alors que nous trouvons un rapport de plus de 6000. Ces différences pourraient être attribuées au fait que les souches cibles sont différentes mais l’écart entre ces valeurs paraît trop important pour que ce facteur soit le seul responsable. Il est possible que la différence entre les méthodes de mesure de l’activité soit à prendre en compte: nous avons utilisé le test d’activité en puits alors que Chamberland-Chanteloube a mesuré l’activité sous forme de CI50 (concentration nécessaire à l’inhibition de 50% de la croissance de la souche cible). Cette dernière méthode emploie une mesure de la croissance bactérienne en milieu liquide (DO 600nm). Il est probable qu’on ne puisse pas comparer les deux méthodes qui reposent sur des principes différents.

Nous ne traiterons pas le cas des dérivés à double mutation qui logiquement présentent une activité très faible, compte tenu des activités des dérivés à une simple substitution.

Le dérivé nommé Lys20-Arg30 présente une partie centrale complètement modifiée : la séquence 20-30 est riche en résidus arginines, plus cationique et est prédite comme ne se structurant pas en hélice α. Ce dérivé a une activité 200 fois plus faible que MesY105 alors que des études de fixation de la bactériocine sur la bactérie montrent qu’il a une taux de fixation trois fois inférieur, seulement, à celui du peptide naturel. Ce dernier résultat montre
qu'elle fixation à la membrane n'est pas le rôle prédominant de la partie centrale de la bactériocine mais que la présence d'une hélice α est un pré-requis pour l'activité antagoniste.

Il est assez étrange de constater que selon ces travaux, MesY105 réduite présente une activité très proche de celle de MesY105 oxydée (Chamberland-Chanteloube, 1997), alors que les travaux de Fleury et collaborateurs montrent que si l'on empêche la formation du pont disulfure, l'activité est très fortement réduite (Fleury et coll., 1996). Enfin, l’allongement de la séquence du coté N-terminal comme du coté C-terminal, entraîne une baisse importante de l’activité antagoniste (Chamberland-Chanteloube, 1997) ; cette modification de la séquence entraînant probablement une modification des structures secondaire et tertiaire de la bactériocine.

La seule analyse de la structure primaire et des caractères hydropathiques des mutants, même si elle permet d’avancer quelques hypothèses concernant la diminution d’activité observée pour tous les dérivés, ne suffit pas à comprendre le mécanisme d’insertion des bactériocines dans la membrane, ni de comprendre le rôle de résidus qui semblent particulièrement importants comme R28, A21, W18 et W37.

3.2.3 Rapport entre la structure secondaire et l’activité antagoniste

Comme nous l’avons vu, les données apportées par les profils d’hydropathie, les moments hydrophobes et les alignements de séquences ne nous permettent pas d’élucider de manière définitive la baisse d’activité observée chez les différents dérivés de MesY105. Il semble cependant que quelques mutations touchent des résidus essentiels à l’activité et que les effets au niveau moléculaire ne sont pas les mêmes.

Pour aller plus loin dans la compréhension des relations structure-fonction, nous avons analysé la structure secondaire de MesY105 et de ses dix dérivés par dichroïsme circulaire dans un solvant mimant l’environnement hydrophobe des membranes (le TFE) et dans des micelles de phospholipides (LPC). Cette technique spectrométrique combine le phénomène de polarimétrie et celui de l’absorption de la lumière par la matière. Une mesure en dichroïsme circulaire résulte de la différence d’absorption d’une onde lumineuse incidente polarisée et décomposée en ses composantes droite et gauche, par une substance en fonction des longueurs d’onde. Dans le cas de peptides ou de protéines, le dichroïsme circulaire donne des renseignements sur la structure secondaire de la molécule. Dans l’UV lointain (180-250
149 nm), la structure secondaire de la protéine ou du peptide est évaluée en déterminant le pourcentage d’hélicité et de feuilles β par des mesures d’ellipticité molaire par résidu à 222 nm et 217 nm, respectivement (Taylor et Kaiser, 1987).

3.2.3.1 Dichroïsme circulaire en TFE

Il est possible de calculer les pourcentages d’hélicité et de feuilles β en utilisant les formules suivantes.

\[H_\alpha = 100 \times \left(\frac{\theta_{222\text{nm}} - 3000}{-39000} \right) \]

\[F_\beta = 100 \times \left(\frac{\theta_{217\text{nm}} - 4600}{-23000} \right) \]

où \(H_\alpha \) est le pourcentage en hélice α, \(F_\beta \), le pourcentage en feuilles β et \(\theta \), l’ellipticité molaire par résidu (deg.cm\(^2\).dmol\(^{-1}\)) avec \(\theta = 3298 \Delta \varepsilon \) où \(\Delta \varepsilon \) est la différence d’absorbance molaire.

Structure de MesY105

La structuration de MesY105 a été observée à différents pourcentages de TFE et il apparaît que celle-ci se structure de façon quasi-linéaire en fonction de ce pourcentage (Figures 28 et 29).

On trouve environ 13% d’hélice α dans l’eau, ce qui signifie environ 5 résidus en hélice (ou 1,4 tour d’hélice). On peut donc considérer cette valeur comme non significative. Ce résultat est à approcher des observations faites sur LeuA (Fregeau Gallagher et coll., 1997), PedPA-1 (Watson et coll., 2001) et MesY105 (Fleury et coll., 1996) ne rapportant pas de structure particulière pour ces deux bactériocines dans un environnement aqueux. Il faut noter que les mêmes observations ont été faite pour CbnB2 (RMN) et PedPA-1 (le dichroïsme circulaire a permis d’établir une valeur de 8% d’hélicité dans l’eau) (Wang et coll., 1999a; Watson et coll., 2001). La valeur d’hélicité à 90% TFE (33% i.e. environ 12 résidus ou 3,4 tours d’hélice, tableau 7) est assez cohérente avec les 40% donnés par Fregeau-Gallagher et collaborateurs (1997) pour LeuA dans 90% de TFE : les deux bactériocines différant par deux résidus au niveau de l’hélice, on peut s’attendre à une petite différence d’hélicité.
Figure 28: Dichrogramme de MesY105 en présence de différents pourcentages en TFE.

$\Delta \varepsilon/n$ est la différence d’absorbance molaire par résidu.

Figure 29: Graphique représentant la différence d’absorbance molaire par résidu ($\Delta \varepsilon/n$) mesurée à 193 nm en fonction du pourcentage en TFE.

On constate bien une corrélation linéaire dans l’intervalle 0%-90% TFE.
Tableau 7: Pourcentage d’hélicité (Hα) et de structure β (Fβ) en fonction du pourcentage en TFE.

<table>
<thead>
<tr>
<th>%TFE</th>
<th>Hα</th>
<th>Fβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12,8</td>
<td>35,7</td>
</tr>
<tr>
<td>20</td>
<td>17,8</td>
<td>45,4</td>
</tr>
<tr>
<td>30</td>
<td>18,5</td>
<td>45,0</td>
</tr>
<tr>
<td>40</td>
<td>20,0</td>
<td>47,2</td>
</tr>
<tr>
<td>48</td>
<td>21,9</td>
<td>49,3</td>
</tr>
<tr>
<td>53</td>
<td>23,3</td>
<td>51,0</td>
</tr>
<tr>
<td>60</td>
<td>24,5</td>
<td>51,1</td>
</tr>
<tr>
<td>68</td>
<td>26,0</td>
<td>52,9</td>
</tr>
<tr>
<td>77</td>
<td>27,7</td>
<td>54,6</td>
</tr>
<tr>
<td>80</td>
<td>29,8</td>
<td>58,8</td>
</tr>
<tr>
<td>90</td>
<td>33,3</td>
<td>65,8</td>
</tr>
</tbody>
</table>

Cependant, nos données sont assez éloignées de celles obtenues par Fleury et collaborateurs (1996) : ils trouvent des valeurs d’hélicité de 33% et 40% (pour 25% et 50% TFE, respectivement) contre environ 18% et 22% pour nos tests. Cependant, Fregeau-Gallagher et collaborateurs (1997) notent, comme nous, une progression constante de l’hélicité en fonction du taux de TFE avec une valeur significative à partir de 30% TFE. Cette observation signifierait un taux d’hélice α très important à 90% TFE pour MesY105 si l’on se base sur les données de Fleury et collaborateurs. D’ailleurs, l’observation de leur spectre de dichroïsme circulaire pour la bactériocine à 50% et 75% TFE révèle une progression notable de la valeur Δε/λ à 222nm. Or, l’analyse par RMN de LeuA et les prédictions de structure secondaire pour MesY105 prévoient une hélice de 12 à 15 résidus, suivant la méthode utilisée, c’est-à-dire entre 32% et 40% d’hélicité. Nous pensons que nos valeurs d’hélicité sont plus proches de la réalité.

En revanche, les valeurs trouvées pour les structures β nous semblent invraisemblables. En effet, le pourcentage de cette structure passe de 36% à 66% entre 0% et 90% TFE alors que la structure de LeuA montre un maximum de 40% de structure β (tableau 7). Récemment, une étude par dichroïsme circulaire en TFE de la structure de PedPA-1 a
aussi montré des pourcentages en structure β assez incohérents (variation aléatoire de ce pourcentage en fonction du taux de TFE, nombre incohérent de résidus compris dans cette structure) (Watson et coll., 2001). Il se peut que les méthodes de calculs employées ne soient pas compatibles avec les petits peptides que sont les bactériocines. Par la suite, dans l’étude des dérivés de MesY105, nous ne tiendrons pas compte de ces valeurs mais seulement de leur évolution par rapport à la valeur Fβ de la bactériocine native. De même, pour toute interprétation, nous pensons qu’il est préférable de comparer le pourcentage d’hélice α (Hα) entre plusieurs peptides (ou bien le rapport entre Hα du peptide et Hα de MesY105) plutôt que d’utiliser directement la valeur d’hélicité.

En raison de contraintes techniques, nous avons choisi de faire les mesures de dichroïsme circulaire de MesY105 et ses dérivés pour 75% TFE. Les dichrogrammes présentés en figure 30 permettent de voir que les peptides se comportent de façons très diverses, certains ayant des profils proches de celui de MesY105, d’autres semblant se structurer beaucoup moins bien. Les résultats sont reportés sur le tableau 8. Les données obtenues sur l’hélicité sont assez cohérentes avec les résultats d’activité.

Structures de h8l et h8y

Il est assez surprenant de remarquer un changement du taux d’hélicité pour les peptides h8l et h8y étant donné que cette position se trouve relativement loin de l’hélice et est engagée dans la structure en feuillet β. Ce changement faible de l’hélicité (90% par rapport à la bactériocine native) est accompagné d’une augmentation du taux de structure β. On peut penser que ces deux mutations en renforçant la structuration de type β amène de nouvelles contraintes (énergétique et/ou stérique) réduisant la possibilité de former une hélice dans la partie centrale du peptide. Comme il l’a été précisé dans le chapitre 3.2.1, nous supposons que la diminution d’activité de ces deux peptides est reliée à une moins bonne interaction entre le domaine N-terminal normalement cationique et les têtes négatives des phospholipides. On peut donc penser que le changement de structure observé pour les dérivés h8l et h8y n’a pas d’incidence majeure directe sur l’activité antagoniste.
Structure de g13e

Le cas du peptide g13e est analogue à celui des deux peptides précédents. L’hélicité n’est pas touchée alors qu’on observe une diminution notable de l’activité. Cependant, la structure en feuillet β est renforcée par rapport à MesY105. On peut affirmer que la diminution d’activité n’est pas due à un changement au sein de l’hélice α mais que c’est probablement l’interaction initiale peptide-phosphates des lipides qui est perturbée (§ 3.2.1) puisque la mutation entraîne l’apparition d’une charge négative au sein d’une région.
cationique et au voisinage d’un patch positif, telle que sont décrites les positions 11 et 12 par certains auteurs (Chen et coll., 1998; Miller et coll., 1998b).

<table>
<thead>
<tr>
<th>Peptides</th>
<th>%Hα</th>
<th>%Fβ</th>
<th>%Hα / MesY105</th>
<th>%Fβ / MesY105</th>
<th>CMI / MesY105</th>
</tr>
</thead>
<tbody>
<tr>
<td>MesY105</td>
<td>27,2</td>
<td>45,9</td>
<td>100</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>a21v</td>
<td>21,2</td>
<td>44,9</td>
<td>78</td>
<td>98</td>
<td>46</td>
</tr>
<tr>
<td>a24p</td>
<td>13,7</td>
<td>32,1</td>
<td>50</td>
<td>70</td>
<td>6000</td>
</tr>
<tr>
<td>g13e</td>
<td>26,7</td>
<td>52,4</td>
<td>98</td>
<td>114</td>
<td>78</td>
</tr>
<tr>
<td>h8l</td>
<td>24,2</td>
<td>50,7</td>
<td>89</td>
<td>110</td>
<td>52</td>
</tr>
<tr>
<td>h8y</td>
<td>24,6</td>
<td>51,2</td>
<td>90</td>
<td>112</td>
<td>20</td>
</tr>
<tr>
<td>r28h</td>
<td>18,7</td>
<td>37,3</td>
<td>69</td>
<td>81</td>
<td>12000</td>
</tr>
<tr>
<td>s15f</td>
<td>27,3</td>
<td>52,8</td>
<td>100</td>
<td>115</td>
<td>3</td>
</tr>
<tr>
<td>w18f</td>
<td>20,5</td>
<td>38,1</td>
<td>75</td>
<td>83</td>
<td>13</td>
</tr>
<tr>
<td>w37f</td>
<td>23,9</td>
<td>45,7</td>
<td>88</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td>mes36</td>
<td>19,5</td>
<td>40,8</td>
<td>72</td>
<td>89</td>
<td>16600</td>
</tr>
</tbody>
</table>

Tableau 8: Pourcentage d’hélicité α et feuilles β de MesY105 et ses dérivés dans 75% TFE.

%Hα et %Fβ sont respectivement les pourcentages d’hélice α et de feuillet β.
%Hα / MesY105 et %Fβ / MesY105 sont respectivement les pourcentages relatifs d’hélice α et de feuillet β par rapport aux valeurs de MesY105.
CMI / MesY105 est le rapport des CMI (concentrations minimales inhibitrices) des dérivés par rapport à celle de la bactériocine native.
Structure de s15f

Les cas du peptide s15f est intéressant puisque la mutation entraîne les mêmes conséquences que g13e (ainsi que h8l et h8y, dans une moindre mesure) quant à l’évolution des taux d’hélicité et de structure en feuillets. Cependant, cette substitution se traduit par une baisse d’activité faible par rapport à tous les autres mutants. Ce résultat semble conforter l’hypothèse que cette région charnière a un rôle moins crucial que les autres régions du peptide puisque le changement d’un résidu polaire pour un résidu apolaire ne change que modérément l’activité antibactérienne.

Structure de a21v

La substitution d’une alanine par une valine en position 21 ne bouleverse pas profondément la structure en hélice (près de 80% d’hélicité conservée). En revanche, l’activité du peptide dérivé est plus faible que celle de w18f dont la mutation, proche dans la séquence, se traduit par une diminution légèrement plus importante du pourcentage de structure hélicoïdale. Il n’est pas étonnant que le taux d’hélicité soit conservé puisque l’alanine et la valine ne sont pas très différentes d’un point de vue structural. La valine étant légèrement plus encombrante que l’alanine, il est assez logique que l’hélice soit partiellement modifiée par cette substitution. Comme nous l’avons dit dans le chapitre précédent (§ 3.2.2), ce remplacement pourrait cependant modifier la propriété d’hélice coudée ce qui entraînerait une diminution de l’activité.

Structures de a24p et r28h

Les peptides r28h et a24p dont l’hélicité est la plus durement affectée sont (69% et 50% d’hélicité par rapport à MesY105) sont également les bactériocines dont l’activité est la plus faible.

Cette donnée est assez logique pour a24p, la position 24 étant centrale dans l’hélice et la proline étant connue pour jouer le rôle de casseur d’hélice. On peut penser que la proline en interrompant l’hélice α amphiphile, élimine un élément important pour l’activité de la bactériocide.

En revanche, l’histidine semble perturber la structure hélicoïdale quand elle se substitue à l’arginine en position 28. Ce résultat est plus surprenant si l’on ne tient compte que de la conservation de charge et de polarité entre les deux résidus mais leur structure très différente peut expliquer cette perturbation de l’hélice. L’histidine plus volumineuse pourrait perturber la formation de l’hélice coudée : en effet, la position 28, comme la position 21, se
trouve sur la face polaire de l’hélice, à proximité de G25. De plus, avec un pourcentage
d’hélicité bien supérieur à celui de a24p, le peptide r28h a une activité antagoniste beaucoup
plus faible que ce dernier. Ce résultat suggère que la structuration en hélice amphiphile ne
suffit pas *per se* à expliquer la fonction de la bactériocine pour MesY105 (et sûrement aussi à
LeuA) : la formation d’un coude dans l’hélice pourrait être un facteur déterminant pour
l’activité.

Structure de w18f

Le peptide w18f voit aussi son taux d’hélicité diminuer d’un quart mais son activité
est beaucoup moins touchée que celle de r28h pour une hélicité comparable. Cependant, la
position 18 est probablement la première de l’hélice et nous avons vu que l’aromaticité
semblait être l’élément essentiel à cette position. Il semble donc que le tryptophane ne soit pas
essentiel à la structuration en hélice mais qu’il joue probablement un rôle autre dans l’activité
antagoniste.

Structures de w37f et mes36

Pour le tryptophane 37, quand il est remplacé par une phénylalanine, on ne note pas
de modification importante de l’hélicité (près de 90% du taux initial). Ce résultat est assez
normal compte tenu de la position de ce résidu par rapport à l’hélice α. Cette substitution
entraîne une diminution modérée de l’activité antagoniste (comparativement à d’autres) mais
celle-ci est plus importante que pour le dérivé w18f dont l’hélicité est plus affectée. Ceci
suggère que le tryptophane 37, dont on suppose que le caractère aromatique est essentiel, joue
un rôle important dans l’activité mais n’est pas directement impliqué dans la structuration du
peptide.

Cependant, le peptide mes36, dont l’activité est dramatiquement affectée, montre une
hélicité beaucoup plus faible que celle de w37f. Ce résultat confirme le rôle clé du
tryptophane en cette position. Il semble aussi signifier que ce tryptophane intervient dans la
stabilisation (et non la structuration) de l’hélice α. On peut supposer que la queue C-terminale
se replie vers l’hélice et qu’une interaction a lieu entre le tryptophane 37 et un des résidus de
l’hélice, formant la structure en épingle à cheveux évoquée précédemment (§ 3.1.2). Cette
hypothèse est également soutenue par Fimland et collaborateurs (2002) pour la structure de
SakP et des bactériocines des groupes 1 et 2 dépouvrues de second pont disulfure mais avec
un tryptophane situé dans l’extrémité carboxylée.
Ces résultats permettent d’éclairer une partie des hypothèses émises lors de l’analyse de la séquence de MesY105 et ses dérivés mais des questions restent encore sans réponse. Pour cela nous avons décidé de travailler en se plaçant dans un modèle plus proche des membranes bactériennes.

3.2.3.2 **Dichroïsme circulaire en micelles de lysophosphatidylcholine**

La plupart des peptides amphiphiles adoptent une structure secondaire au contact de phospholipides organisés en micelles ou en bicouches (liposomes). Nous avons observé la structuration de MesY105 et de ses dérivés par dichroïsme circulaire en présence de micelles d’acide 1-tridécanoïque lysophosphatidylcholine (LPC ou lyso-C13), phospholipide zwittéronique. La LPC s’agrège sous forme de micelles au contact de l’eau. La concentration de LPC utilisée a été déterminée en fonction des résultats de l’analyse de l’extinction de fluorescence du tryptophane (voir chapitre suivant). La concentration considérée comme saturante pour cette dernière technique étant celle choisie pour effectuer les analyses de dichroïsme.

Les dichrogrammes de MesY105 et ses dérivés en présence de LPC sont visibles sur la figure 31. Nous avons aussi déterminé les pourcentages d’hélicité et de structure β pour ces différents spectres (Tableau 9) mais les pourcentages en feuillet β nous paraissant aberrants, nous ne les avons pas exploités. De même, nous préférons ne pas donner de sens à la valeur Hα brute mais plutôt comparer l’hélicité des différents peptides.

Structure de MesY105

Pour MesY105, on remarque un taux d’hélicité plus faible que celui mesuré en présence de 75% TFE (23,7 % au lieu de 27,2%). On peut expliquer cette variation par le fait que le TFE est connu pour stabiliser voire exacerber l’hélicité des peptides (Wang et coll., 1999a; Watson et coll., 2001). Ainsi, dans une expérience similaire de dichroïsme circulaire sur PedPA-1 en présence de TFE, DPC (dodécylphosphocholine zwittéronique) et SDS (Sodium Dodécy Sulfate), il a été rapporté ce même phénomène d’exacerbation du caractère hélicoïdal en présence de TFE (jusqu’à 66% d’hélice α. *i.e.* 29 des 44 résidus) alors que les valeurs en présence de DPC ou SDS sont plus vraisemblables (Watson et coll., 2001). Il est aussi possible que la LPC ne soit pas idéale pour la conformation des bactériocines en raison de sa charge globalement neutre alors que les phospholipides du genre *Listeria* sont
majoritairement anioniques et du type phosphatidylglycérol (PG) (Vadyvaloo et coll., 2002), la charge négative de ces lipides favorisant les interactions peptide-membrane.

 Certaines mutations affectent peu ou pas l’hélicité en présence de LPC : les peptides a21v, w18f mais aussi s15f, h8l et w37f ont le même taux d’hélicité (ou quasiment) que MesY105. Or ces bactériocines manifestent une activité anti-Listeria peu ou moyennement diminuée.

<table>
<thead>
<tr>
<th>Peptides</th>
<th>%Hα</th>
<th>%Fβ</th>
<th>%Hα / MesY105</th>
<th>%Fβ / MesY105</th>
<th>CMI / MesY105</th>
</tr>
</thead>
<tbody>
<tr>
<td>MesY105</td>
<td>23,7</td>
<td>50,3</td>
<td>100</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>a21v</td>
<td>23,6</td>
<td>39,0</td>
<td>99</td>
<td>78</td>
<td>46</td>
</tr>
<tr>
<td>a24p</td>
<td>14,8</td>
<td>25,0</td>
<td>63</td>
<td>50</td>
<td>6000</td>
</tr>
<tr>
<td>g13e</td>
<td>18,5</td>
<td>35,4</td>
<td>78</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>h8l</td>
<td>22,3</td>
<td>46,2</td>
<td>94</td>
<td>92</td>
<td>52</td>
</tr>
<tr>
<td>h8y</td>
<td>17,5</td>
<td>23,7</td>
<td>74</td>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>r28h</td>
<td>8,6</td>
<td>18,1</td>
<td>36</td>
<td>36</td>
<td>12000</td>
</tr>
<tr>
<td>s15f</td>
<td>23,1</td>
<td>40,2</td>
<td>97</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>w18f</td>
<td>23,7</td>
<td>49,7</td>
<td>100</td>
<td>99</td>
<td>13</td>
</tr>
<tr>
<td>w37f</td>
<td>21,4</td>
<td>41,8</td>
<td>90</td>
<td>83</td>
<td>29</td>
</tr>
<tr>
<td>mes36</td>
<td>13,9</td>
<td>34,1</td>
<td>59</td>
<td>68</td>
<td>16600</td>
</tr>
</tbody>
</table>

Tableau 9: Pourcentage d’hélicité α et feuilles β de MesY105 et ses dérivés en présence de C13-Lysophosphatidylcholine (Ri = 40).
%Hα et %Fβ sont respectivement les pourcentages d’hélice α et de feuillet β.
%Hα / MesY105 et %Fβ / MesY105 sont respectivement les pourcentages relatifs d’hélice a et de feuillet b par rapport aux valeurs de MesY105.
CMI / MesY105 est le rapport des CMI (concentrations minimales inhibitrices) des dérivés par rapport à celle de la bactériocine native.
Figure 31: Dichroïsme en présence de LPC

$\Delta \varepsilon/n$ est la différence d’absorbance molaire par résidu. La concentration en LPC est comprise entre 124 et 149 mg/l. Pour les peptides, la concentration est d’environ 25 mg/l.

Structures de h8l et s15f

Les mutations H8L et S15F ne touchent pas directement l’hélice donc leur impact sur le taux d’hélicité est logiquement limité. Le rapport entre leur valeur de H_α et celle de MesY105 est du même ordre qu’en présence de TFE. Ce résultat pourrait signifier que ces peptides interagissent avec les têtes des phospholipides LPC de la même manière que MesY105, cette interaction favorisant ensuite la structuration de l’hélice. En effet, l’augmentation d’hydrophobicité de la région N-terminale due aux mutations S15F et H8L ne gêne pas l’interaction entre cette zone et les phospholipides zwittérioniques (LPC). Au contraire, la substitution H8L diminue sûrement les possibilités d’interactions électrostatiques.
avec les phosphatidylglycérols anioniques d’où une structuration de l’hélice plus difficile et une activité réduite en présence d’une membrane cible. Dans le cas de la mutation S15F, la variation d’hydrophobicité aurait moins de conséquence en raison du voisinage hydrophobe de la valine 16 (voir § 3.2.2).

Structure de g13e

Le peptide g13e voit son hélicité plus affectée que pour les deux peptides précédent alors que la mutation se trouve dans la partie N-terminale. Son hélicité est aussi plus affectée que dans le TFE (78% au lieu de 98% par rapport à MesY105). Cette substitution induit un changement de charge (charge négative supplémentaire) et il est vraisemblable que les interactions avec la micelle de LPC soient plus difficiles que pour h8l et s15f en raison du groupement phosphate anionique de la LPC. La conséquence de cette moins bonne interaction serait une moins bonne structuration puisque ces peptides se structurent dans un environnement membranaire ou mimant les membranes. On peut imaginer que l’interaction à la surface membranaire sera d’autant moins bonne entre ce peptide et des phospholipides anioniques (majorité des cas dans les membranes cibles) d’où la très forte diminution d’activité observée (c’est la mutation du coté N-terminal entraînant la diminution la plus forte d’activité).

Structure de h8y

Le peptide h8y présente une hélicité du même ordre que g13e dans la LPC. En revanche, il est moins bien structuré que le peptide h8l, alors que ces deux bactériocines présentent le même taux d’hélicité en présence de TFE. On peut supposer que si h8y se structure moins bien c’est en raison d’une moins bonne interaction avec les têtes de LPC que dans le cas de h8l. Cette moins bonne interaction peut être liée à la structure de la tyrosine dont la chaîne latérale est plus encombrante que celle de l’histidine ou celle de la leucine. Au contraire, dans le cas des PG anionique, l’hydrophilie de la tyrosine favoriserait h8y par rapport à h8l (la leucine étant hydrophobe) pour l’interaction avec les groupements phosphates d’où une meilleure structuration et une meilleure activité prévisibles.

Structure de a21v

Le résultat du dichroïsme semble assez logique pour la mutation A21V dont nous avions prédit des conséquences limitées en raison de la conservation du caractère hydrophobe. Il est possible que la baisse d’activité soit due à une différence d’interaction de l’hélice avec
les chaînes hydrophobes des phospholipides (en raison de la disparition du coude de l’hélice, voir § 3.2.2) plutôt qu’à un changement de conformation de l’hélice, la diminution d’hélicité observée en présence de TFE par rapport à l’hélicité en présence de LPC n’étant pas vraiment significative (21% et 24% d’hélice α, respectivement).

Structure de a24p

Le peptide a24p est beaucoup moins bien structuré que MesY105 dans la LPC de même que dans le TFE (14% et 15% d’hélicité, respectivement). Cette mauvaise structuration de l’hélice semble indépendante de l’environnement et est sûrement due à la propriété de « briseur » d’hélice du résidu proline. Cette hélice étant indispensable à l’activité de la bactériocine, a24p présente un pouvoir antagoniste très faible.

Structure de r28h

r28h est le dérivé qui se structure le moins bien en présence de LPC et cette structuration est beaucoup moins importante dans cet environnement qu’en présence de TFE. Nous avions déjà supposé que l’arginine 28 était un résidu clé dans l’activité anti-Listeria. Cette arginine pourrait jouer un rôle déterminant dans la structuration de l’hélice. En raison de sa longue chaîne carbonée, il est possible que ce résidu interagisse avec les têtes phospholipidiques par le biais de son groupement amine tandis que le reste de la séquence serait enfoncé dans le cœur hydrophobe de la membrane. L’arginine aurait un rôle de maintien de la structure et de positionnement de l’hélice dans la bicouche lipidique. Son remplacement par une histidine plus volumineuse et avec une chaîne latérale moins longue entraînerait deux conséquences : l’impossibilité de former une hélice coudée, d’une part, l’impossibilité d’interagir avec les phosphates des phospholipides, d’autre part. La LPC étant zwittérionique, on pourrait aussi expliquer la moins bonne hélicité de MesY105 dans cet environnement : l’arginine absente, le maintien de la structure en hélice ne pourrait être assuré en raison d’une moins bonne interaction avec les groupements phosphates des LPC.

Structure de w18f

L’hélicité du peptide w18f est meilleure en présence de LPC que dans le solvant TFE (100% par rapport à MesY105 contre 76% en présence de TFE). Ce résultat semble confirmer l’hypothèse émise avec le dichroïsme en TFE : le tryptophane ne semble pas essentiel à la formation de l’hélice, un autre résidu aromatique permettant d’obtenir les mêmes taux d’hélicité. Ce tryptophane doit jouer un autre rôle dans l’activité de MesY105 puisque la
substitution w18f entraîne une baisse d’activité : ce résidu étant régulièrement trouvé au niveau des interfaces membrane-eau (Fimland et coll., 2002; Schibli et coll., 2002), il est possible qu’il intervienne aussi dans le positionnement du début de l’hélice au niveau de cet interface. En effet, son remplacement par une phénylalanine plus hydrophobe provoquerait un enfouissement plus profond de l’hélice entraînant aussi la partie N-terminale. Ce changement de position du peptide pourrait expliquer la modification d’activité constatée chez w18f. Le fait que la structuration semble dépendre du type d’environnement pourrait conforter cette hypothèse.

Structures de w37f et mes36

Pour la mutation W37F, il n’y a pas de différence notable de structuration entre l’environnement micellaire et le TFE. Cette substitution affecte (modérément) l’hélicité de la bactériocine bien que ce résidu ne soit pas dans l’hélice prédite, et les conséquences sur l’activité antagoniste sont également assez modérées. Ce résidu ne semble donc pas essentiel à la structuration en hélice de la bactériocine. En revanche, le peptide mes36 est encore plus affecté dans la LPC que dans le TFE. Cette dépendance vis-à-vis de l’environnement hydrophobe suggère que le tryptophane 37 doit avoir un rôle de stabilisation de l’hélice probablement en interagissant avec un (ou plusieurs) autre(s) résidu(s) de l’hélice et/ou avec l’environnement lipidique de la membrane.

3.2.3.3 **Interactions avec les micelles : étude de la fluorescence des tryptophanes**

Le système micellaire de LPC a aussi été utilisé afin d’étudier l’interaction des tryptophanes de MesY105 et ses dérivés dans la membrane par la spectroscopie de fluorescence grâce à la technique de la fluorescence intrinsèque. Cette technique très sensible permet l’étude des interactions protéine/lipide : elle utilise les propriétés des résidus tryptophane et tyrosine d’émettre une lumière fluorescente lorsqu’ils sont excités par une lumière de longueur d’onde de 295 nm et 275 nm, respectivement. L’excitation des résidus tryptophanes se fait à 295 nm afin de minimiser la contribution de la fluorescence des deux tyrosines en position 2 et 3. Dans l’eau et à pH=7, le tryptophane émet à $\lambda_{\text{max}}=350$ nm alors
que dans un solvant organique apolaire, il émet à un $\lambda_{\text{max}} = 320-330$ nm (toujours à pH=7) (Lakowicz, 1983). Nous avons réalisé notre expérience dans un tampon aqueux Mes (acide 2-(N-morpholino)éthanesulfonique) à pH=5,5 afin de se rapprocher des conditions du milieu de culture des bactéries lactiques.

Le principe consiste en un ajout croissant de LPC dans le tampon aqueux contenant le peptide à étudier. Au fur et à mesure de l’enfouissement du peptide dans la micelle, la longueur d’onde d’émission de fluorescence diminue. La concentration micellaire critique (CMC) de la lyso-13PC est de 7 μM : c’est la concentration en lipides à partir de laquelle les micelles sont formées. Cette CMC correspond à un Ri (rapport de molarité en lipide vis-à-vis du peptide) de 1: les concentrations en lipide utilisées pour les mesures de fluorescence mais aussi de dichroïsme circulaire sont toutes supérieures à cette CMC.

MesY105

Le maximum d’émission de fluorescence des résidus de tryptophane de MesY105 a été observé à 356 nm dans le tampon d’expérimentation (Figure 32).

Il ne faut pas oublier que MesY105 possède deux résidus tryptophanes et que la fluorescence de la bactériocine résulte des propriétés de chacun de ces résidus aromatiques. Il faut aussi retenir que de façon générale, l’intensité de fluorescence des résidus exposés à l’eau est plus faible que celle des résidus enfouis dans une poche hydrophobe (Lakowicz, 1983). Cependant, de nombreux phénomènes de quenching peuvent perturber l’utilisation de cet élément d’analyse.

En présence de LPC, le maximum d’émission est déplacé vers des longueurs d’onde plus courtes et l’intensité d’émission augmente. Le maximum d’émission est à $\lambda_{\text{max}} = 347$ nm soit un déplacement de 9 nm par rapport au peptide en solution aqueuse (Figure 32).

Cette longueur d’onde est éloignée de la λ_{max} attendue si les tryptophanes sont totalement enfouis dans l’environnement apolaire ($\lambda_{\text{max}} = 330-340$ nm). Par conséquent, on peut en déduire que les tryptophanes de MesY105 ont changé d’environnement en passant d’un milieu polaire à un milieu apolaire mais ils ne sont ni totalement exposés au solvent aqueux, ni totalement enfouis dans le micelle. Ces résultats confirment les observations faites en dichroïsme circulaire : MesY105 interagit avec les lipides. Il est généralement impossible de savoir si ce changement de longueur d’onde est du à une interaction directe des résidus
tryptophane avec les chaînes grasses ou s’ils se trouvent dans un domaine protéique hydrophobe formé à la suite de l’interaction micelle-peptide.

Figure 32: Fluorescence intrinsèque de MesY105 en milieu aqueux et en présence de micelles de lyso-13PC (LPC).

Malgré cela, on peut supposer que si le tryptophane 18 sert au positionnement de la bactériocine à l’interface, ses propriétés de fluorescence évolueront en fonction de son enfouissement. Ainsi, s’il est plutôt en surface, la longueur d’onde maximale variera peu mais s’il se trouve enfoui un peu plus profondément dans l’interface, λ_max évoluera (mais n’atteindra pas de valeur proche de 330-340 nm). Si on suppose que le tryptophane 37 se trouve dans une boucle repliée vers l’hélice afin de la stabiliser, son enfouissement dépendra de la profondeur d’enfouissement de l’hélice.
w18f, w37f et mes36

L’analyse des dérivés mes36, w18f et w37f s’est avérée précieuse afin de déterminer le rôle des tryptophanes dans l’interaction de MesY105 avec la membrane.

La comparaison des mutations au niveau du tryptophane permet de montrer que les deux tryptophanes ne sont pas également sensibles à l’interaction (Figure 33).

Figure 33: Variation de la fluorescence intrinsèque de MesY105, mes36, w18f et w37f en fonction du rapport de concentration molaire Ri = [LPC]/[peptide].

La fluorescence du tryptophane en position 18 subit un large déplacement de longueur d’onde vers le bleu (14 nm) mais son intensité n’est pas ou peu affectée (Tableau 10).

<table>
<thead>
<tr>
<th>Peptide</th>
<th>$\Delta\lambda_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MesY105</td>
<td>9 nm</td>
</tr>
<tr>
<td>w18f</td>
<td>9 nm</td>
</tr>
<tr>
<td>mes36</td>
<td>6 nm</td>
</tr>
<tr>
<td>w37f</td>
<td>14 nm</td>
</tr>
</tbody>
</table>

Tableau 10: Variation de la longueur d’onde d’intensité maximale de MesY105, mes36, w18f et w37f en fonction du rapport de concentration molaire Ri = [LPC]/[peptide].
Les résultats de dichroïsme circulaire montrent que w37f et w18f se structurent en hélice en présence de LPC avec cependant une hélicité légèrement plus faible pour w37f (90% d’hélicité par rapport à MesY105) que w18f (100% hélicité par rapport à MesY105).

Les fluorescence de mes36 et de w37f sont comparables en présence de LPC mais le dichroïsme circulaire montre que mes36 se structure mal en hélice en présence de LPC : il n’y a pas ou peu d’interactions entre mes36 et les lipides. Ceci est confirmé par le déplacement de longueur d’onde faible (6nm) pour mes36 comparé à celui de w37f (14nm).

Le fait que le tryptophane 18 subit un large déplacement d’onde (14 nm) montre que ce résidu est enfoui dans un environnement hydrophobe mais il ne se retrouve pas profondément dans les chaînes grasses des phospholipides (une variation de l’ordre de 20 à 30 nm serait observée). En revanche, la faible variation d’intensité de fluorescence peut s’interpréter en termes de dynamique. Des tryptophanes immobilisés ont une probabilité faible de rencontrer des quencheurs naturels (autre peptide ou autre résidu du peptide) d’où une intensité qui augmente. Il semblerait donc que ce tryptophane en position 18 se trouve dans un environnement relativement mobile ou sujet à un assez fort quenching.

Le tryptophane 37 présente une variation importante de l’intensité de fluorescence mais une variation de λ_{max} plus modérée (9 nm). Ce résultat signifierait un enfouissement moins important de ce résidu mais il serait moins mobile ou moins en contact avec d’autres quencheurs que l’autre tryptophane. Enfin, les résultats du peptide mes36 (variation de 6 nm) tendent à montrer qu’en l’absence d’un résidu aromatique en position 37, le tryptophane 18 a du mal à s’enfouir dans l’environnement hydrophobe.

On peut supposer que le tryptophane 18 s’enfonce dans l’interface micelle/eau et se trouve en contact avec d’autres résidus (probalement d’une autre molécule de bactériocine) qui vont diminuer sa fluorescence intrinsèque. Le tryptophane 37 est moins profondément enfoui que le précédent mais il semble jouer important pour aider le tryptophane 18 (et le reste de l’hélice) à s’enfouir dans le micelle. Il ne semble pas non plus être impliqué dans d’autres interactions avec des résidus quencheurs.
Autres dérivés

Les autres dérivés de MesY105 ont aussi été analysés par cette technique (Figure 34 et tableau 11).

<table>
<thead>
<tr>
<th>Peptide</th>
<th>$\Delta \lambda_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MesY105</td>
<td>9 nm</td>
</tr>
<tr>
<td>a21v</td>
<td>13 nm</td>
</tr>
<tr>
<td>a24p</td>
<td>4 nm</td>
</tr>
<tr>
<td>g13e</td>
<td>6 m</td>
</tr>
<tr>
<td>h8l</td>
<td>10 nm</td>
</tr>
<tr>
<td>h8y</td>
<td>11 nm</td>
</tr>
<tr>
<td>r28h</td>
<td>1 nm</td>
</tr>
<tr>
<td>s15f</td>
<td>10 nm</td>
</tr>
</tbody>
</table>

Tableau 11: Variation de la longueur d’onde d’intensité maximale de MesY105, a21v, a24p, g13e, h8l, h8y, r28h et s15f en fonction du rapport de concentration molaire $R_i = [\text{LPC}] / [\text{peptide}]$.

Tous ces mutants sont comparables en termes de composition en tryptophane. Les peptides r28h, a24p et g13e interagissent peu avec la LPC ($\Delta \lambda_{\text{max}} = 1$, 4 et 6 nm, respectivement). Ceci confirme les résultats du dichroïsme circulaire effectué en présence de micelles montrant les deux premiers peptides plutôt mal structurés. Nous avions aussi supposé que le peptide g13e pouvait mal interagir avec la LPC en raison d’une charge négative supplémentaire ce qui entraîne une moins bonne structuration de l’hélice α.

Les bactériocines s15f présentent des courbes de variation d’intensité de fluorescence proches de celle de MesY105 en accord avec le dichroïsme circulaire et un déplacement de longueur d’onde équivalent (10 nm).

Le dérivé h8y présente lui aussi une courbe de variation d’intensité de fluorescence et un déplacement de longueur d’onde (11 nm) proches de ceux de MesY105 alors que sa structure en hélice est plus affectée. Nous ne trouvons pas de corrélation entre son hélicité altérée et cette bonne interaction avec la LPC.

Le peptide le plus intéressant est a21v dont l’hélice se structure aussi bien que celle de MesY105 et qui interagit plus fortement avec la micelle au vu de la courbe de titration (pente plus importante). Le déplacement de longueur d’onde est aussi plus élevé (13 nm contre 9 nm). Cette donnée viendrait confirmer l’hypothèse selon laquelle la baisse d’activité de ce peptide n’est pas due à une mauvaise structuration en hélice mais probablement aux propriétés amphiphatisques de l’hélice.
Pour deux peptides, il a été possible, à partir du graphique de variation de l’intensité de fluorescence en fonction de Ri, de déterminer une courbe de titration à partir de laquelle le nombre de sites n et la constante de dissociation K_d peuvent être déterminés. La courbe de titration est ajustée par une équation répondant à un modèle mathématique. Ce modèle tient compte de l’existence d’un équilibre entre les différentes espèces moléculaire : $P + S \leftrightarrow PS$ où (P) est la forme libre du peptide, (S) un site libre dans le micelle et (PS) le complexe peptide/lipide formé.

La constante de dissociation est déterminée par :

$$K_d = \frac{[P][S]}{[PS]} \quad (1)$$

La fraction du peptide lié, α, est calculée à partir des mesures de l’intensité de fluorescence $F - F_o$ / $F_{max} - F_o$ où F_{max} et F_o sont les intensités de fluorescence du peptide lié et libre, respectivement. A l’équilibre, nous obtenons :

$$[P] = [P]_o (1-\alpha)$$
$$[S] = [S]_o - \alpha[P]_o \quad (2) \text{ et } (3)$$

Si on considère que chaque site est formé de n molécules de lipides, nous obtenons l’équation suivante :

Figure 34: Variation de la fluorescence intrinsèque de MesY105, a21v, a24p, h8l, h8y, g13e, r28h et s15f en fonction du rapport de concentration molaire $Ri = [LPC]/[peptide]$.
\[[S]_o = [L]_o/n \text{ et } [S] = [L]_o/n - \alpha[P]_o \] (4) et (5)

où [P]o est la concentration totale en peptide et [L]o est la concentration totale en lipide. En tenant compte des équations (2), (5) et de Ri, l’équation (1) devient :

\[\alpha^2 - (1 + \frac{R_i}{n} + \frac{K_d}{[P]_o})\alpha + \frac{R_i}{n} = 0 \] (6)

Si \(a < 1 \), alors

\[\alpha = \frac{(1 + \frac{R_i}{n} + \frac{K_d}{[P]_o}) - \sqrt{((1 + \frac{R_i}{n} + \frac{K_d}{[P]_o})^2 - 4(\frac{R_i}{n})}}}{2} \] (7)

A partir de l’ajustement des valeurs \(F - F_o / F_{max} - F_o \) en fonction du Ri et de l’équation (7), les valeurs de \(K_d \) et \(n \) sont définies. Les courbes \(F - F_o / F_{max} - F_o \) des peptides h8l et w18f ont permis de faire ce calcul. On trouve pour h8l, un nombre \(n \) de site de 14 (±/3), c’est-à-dire 14 molécules de LPC pour une de peptide. La constante de dissociation \(K_d \) est égale à 4 (±/3) ce qui signifie une interaction relativement faible mais significative entre peptide et lipide. Pour w18f, les valeurs de \(n \) et \(K_d \) sont respectivement 10 (±/-2) et 13 (±/-4) ce qui implique une interaction beaucoup plus faible que pour le peptide précédent. Les allures des courbes pour les autres peptides ne nous ont pas permis de calculer les valeurs de \(n \) et \(K_d \).

Nous avons aussi voulu faire les mêmes manipulations de dichroïsme circulaire et de mesure de fluorescence en présence d’un autre lipide (DMPG C14) qui forme des liposomes. Ce modèle est plus proche des membranes cibles puisqu’il permet d’obtenir des bicouches de PG anioniques mais les spectres obtenus étaient tous inexploitables et nous n’avons pas pu essayer d’optimiser ces mesures, par manque de temps.

3.2.4 Implication de la structure tridimensionnelle

Une modélisation de la structure tridimensionnelle de MesY105 et de ses dérivés a été effectuée en se basant sur la structure n°5 du fichier PDB 1CW6 de LeuA (voir « matériel et méthodes, § 7.1). Ce travail a été effectué avec l’aide de Christian Lacombe, enseignant-chercheur de notre équipe.

Comme nous l’attendions, cette analyse révèle une structure de MesY105 similaire à celle de LeuA (Figure 35). Pour les dérivés, nous ne n’observons pas de variation notable de la structure à part pour a24p dont l’hélice est plus courte. Ces observations sont relativement conformes à nos données de dichroïsme circulaire en TFE pour lesquelles a24p est la
molécule dont la structure est la plus bouleversée (50% d’hélicité par rapport à MesY105). Les molécules dont la structure en dichroïsme circulaire nous semblait moyennement modifiée (r28h, mes36 et w18f avec environ 70% d’hélicité par rapport à MesY105) n’apparaissent toutefois pas affectées dans nos modèles.

Afin de vérifier les données de modélisation pour MesY105, nous avons débuté l’analyse de sa structure tridimensionnelle par la technique de la RMN au laboratoire de Françoise Vovelle, CNRS d’Orléans. Cette analyse se fait en présence de TFE et en respectant les conditions expérimentales décrites par Wang et collaborateurs (1999) à savoir 90% TFE, 26°C mais la concentration en peptide est plus faible (1,5 mM au lieu de 4,5 mM). Les premières données brutes (spectre 1 D et NOESY) sont similaires à celles de LeuA, les différences pouvant être attribuées aux différences de séquence. Ces premiers résultats signifieraient une structure pour MesY105 très proche de celle de LeuA.

Cependant, l’attribution des pics NOESY est rendue difficile par un dédoublement de signal dans la partie correspondant à l’hélice. Différentes conditions expérimentales ont été testées (température, pourcentage de TFE) mais si la baisse du pourcentage de TFE 50% permet de faire disparaître le dédoublement de signal, elle fait aussi disparaître la structure en feuillet β observée à 90% TFE. Une hypothèse serait que nous sommes en présence d’un mélange de monomères et de dimères de MesY105 à 1,5 mM et que l’on favoriserait la présence de monomères à 50% de TFE.

Au contraire, dans 90% de TFE, LeuA à 4,5 mM serait majoritairement sous forme de dimères. Nous avons décidé de recommencer la RMN en se plaçant exactement dans les conditions décrites par Wang et collaborateurs (1999). Nous sommes actuellement au stade de la synthèse et de la purification de MesY105 afin d’augmenter les quantités de peptides à analyser.

On peut cependant s’attendre à une structure de MesY105 proche à celle de LeuA i.e. un feuillet β formé de trois brins, coté N-terminal puis une hélice α centrale du résidu W18 à N31 et enfin une boucle assez libre (mais probablement repliée en épingle en présence d’une membrane cible) coté C-terminal.
Figure 35: Vues de la mésentérique Y105 obtenues par rotation de 90° autour de l’axe de l’hélice.

Sur la vue latérale sont indiquées les positions où des résidus ont été substitués. Structure obtenue par calcul à partir du fichier pdb 1CW6 de la leucocine A.
3.3 Proposition d’un modèle d’interaction MesY105/membrane

De l’ensemble des informations fournies par nos travaux mais aussi par la bibliographie, nous pouvons proposer un modèle pour l’interaction de MesY105 avec la membrane cible.

La moitié N-terminale

L’hypothèse selon laquelle la moitié N-terminale de MesY105 (et celle des autres bactériocines de cette sous-classe IIa) est responsable de la spécificité anti-Listeria de l’activité, en raison de sa séquence très conservée (notamment le consensus YGNGV) (Fleury et coll., 1996), est souvent remise en question (Chen et coll., 1997a; Chen et coll., 1998; Kazazic et coll., 2002; Wang et coll., 1999a). Selon ces travaux, il semblerait que cette région N-terminale intervienne plutôt dans une phase préliminaire de fixation de la bactériocine à la surface membranaire et non directement dans la spécificité d’action et dans l’activité de formation de pores. Cette fixation se ferait par le biais d’interactions électrostatiques entre les charges positives des résidus cationiques et les charges négatives des phospholipides majoritaires des membranes cibles.

Les premiers résultats que nous avons récoltés avec l’analyse RMN et la prédiction de structure tridimensionnelle de MesY105 montrent que sa région N-terminale est bien structurée en feuillet β comme cela a été démontré expérimentalement pour LeuA.

Nos travaux montrent que toutes les mutations que nous avons obtenues dans cette région entraînent une diminution de l’activité antagoniste mais cette diminution reste modérée par rapport à l’effet de certaines mutations de la partie C-terminale.

Les mutations induisant un changement de charge (H8L, H8Y et G13E) montrent une baisse d’activité d’autant plus importante que ce changement de charge est important par rapport au caractère cationique de cette région. La substitution de la glycine 13, neutre mais située dans une zone généralement considérée comme un bloc positif (Chen et coll., 1997a; Miller et coll., 1998b), par un résidu négatif (acide glutamique), se traduit par la diminution d’activité la plus importante parmi notre collection de peptides mutés du côté N-terminal (d’un facteur 78). Quand la charge et la polarité sont affectées (h8l), la diminution d’activité est elle aussi importante (d’un facteur 52). Enfin, le peptide h8y, où l’histidine chargée est
remplacée par une tyrosine neutre et stériquement plus encombrante, a une activité assez atténuée par rapport à MesY105 (1/20 de l’activité).

Il nous semble que la charge est un des facteurs importants de l’activité antagoniste : même en l’absence d’un éventuel récepteur spécifique, la zone N-terminale pourrait se fixer sur la membrane grâce aux interactions électrostatiques. Il est d’ailleurs intéressant de remarquer que MesY105 peut se fixer et perméabiliser des mitochondries de rat (Maftah et coll., 1993) probablement dépourvues de récepteur pour ce peptide.

Cependant, la baisse d’activité constatée pour le mutant t10k de Fleury et collaborateurs (1996) montre que la présence de charge positive du coté N-terminal n’est pas le seul paramètre guidant l’activité antagoniste. Nous en déduisons que la polarité et l’encombrement stérique des résidus doivent aussi jouer un rôle dans l’interaction entre la moitié N-terminale et les phospholipides.

Les mutations dans cette région N-terminale ne modifient pas directement la structure en hélice α d’après l’estimation du degré de structuration en présence de TFE, obtenu par dichroïsme circulaire. Par contre, l’hélicité en présence de micelles de LPC est plus affectée et nous supposons qu’une moins bonne interaction entre la région N-terminale et les têtes des phospholipides est moins favorable à un moins bon enfouissement de la partie C-terminale dans la couche hydrophobe (visible par spectrométrie de fluorescence des tryptophanes) et aboutit à une moins bonne structuration de l’hélice α (visible par dichroïsme circulaire en LPC). Une telle corrélation n’est visible que pour g13e dans les micelles de LPC mais nous supposons que l’interaction électrostatique pour h8l est encore plus gênée dans une membrane anionique que dans une micelle zwittérionique, la leucine étant apolaire.

Enfin, la substitution s15f, malgré le changement important de résidu d’un point de vue polarité et encombrement stérique, est celle qui affecte le moins le pouvoir antagoniste de MesY105 (1/3 de l’activité) : cette position charnière entre la partie N-terminale cationique et la partie C-terminale amphiphile ne semble pas jouer un rôle majeur dans la fonction de la bactériocine.
La moitié C-terminale

Notre travail montre que cette région est formée d’une hélice α centrale qui devrait être située du tryptophane 18 à l’asparagine 31, suivie d’un coude (au niveau du doublet de glycines 32-33) permettant le repliement de l’extrémité carboxyle en épingle à cheveux. L’hélice pourrait être coulée, en raison de la présence du résidu G25, et elle est essentielle à l’activité puisque son interruption (dans a24p) se conclut par une chute très sévère d’activité (6000 fois inférieure à l’activité naturelle). Cependant, le mutant a21v, dont l’hélicité se conserve assez bien en TFE et très bien en présence de LPC, présente une activité assez faible par rapport à la bactériocine naturelle (1/46), ce qui suggérerait que l’hélicité en elle-même n’est pas suffisante pour l’activité. Dans le cas de ce dérivé, nous suggérons que le remplacement de A21 par une valine plus encombrante serait rédhibitoire à la formation du coude dans l’hélice, essentiel à l’activité optimale du peptide.

Le dérivé r28h (activité réduite plus de 12000 fois) est très intéressant puisqu’il nous apparaît que l’arginine en cette position soit un résidu clé pour l’activité. En effet, la substitution modifie localement la structure du peptide mais pas sa charge et il est étonnant de constater que l’hélicité en présence de TFE soit modérément diminuée alors qu’elle est très altérée en présence de LPC. Ce mutant interagit très peu avec la phase hydrophobe de la micelle et son activité est une des plus faibles parmi les dérivés obtenus. Nous avons émis l’hypothèse que ce résidu cationique, grâce à sa longue chaîne carbonée, pourrait interagir avec les charges des phospholipides pour aider à l’enfouissement de l’hélice et au maintien de cette dernière dans la zone hydrophobe de la membrane. De plus, son remplacement par une histidine plus encombrante empêcherait, comme dans le cas du dérivé a21v, la formation du coude dans l’hélice.

Enfin, les dérivés w18f, w37f et mes36 montrent le rôle majeur des trytophanes dans la fonction du peptide.

Le tryptophane en position 18 est modérément enfoui dans la couche hydrophobe et permet sûrement l’enfouissement et le maintien de l’hélice dans cette zone interfaciale. Nous supposons que l’aromaticité en cette position est suffisante pour maintenir la structuration en hélice comme cela a déjà été montré pour SakP (Fimland et coll., 2002), mais qu’elle ne permet pas de maintenir l’activité biologique intacte (même si w18f est un des dérivés les moins affectés avec 1/13ème de l’activité). La capacité particulière du tryptophane à pouvoir interagir avec des zones hydrophobe et hydrophile explique sûrement la présence de ce résidu
et son rôle dans le positionnement de la bactériocine. D’ailleurs, les données sur l’intensité de fluorescence de ce résidu suggèrent qu’il interagit avec d’autres molécules de son environnement.

Le tryptophane 37 est légèrement moins enfoui que celui en position 18 et son remplacement par un résidu aromatique affecte un peu plus la fonction antagoniste (activité diminuée 29 fois) mais ne change pas l’hélicité de la molécule. En revanche, sa disparition entraîne une chute de l’activité (d’un facteur 16000) ainsi que de l’hélicité en présence de LPC. Ce résidu (aidé de la phénylalanine en position 36) pourrait servir à l’enfouissement de la partie C-terminale dans la bicouche lipidique. Il permettrait aussi de stabiliser le repliement de la boucle C-terminale vers l’hélice pour former une structure en épingle à cheveux. Une suggestion similaire est aussi avancée par Fimland et collaborateurs (2002) pour SakP. Cependant, le tryptophane 37 ne semble pas réellement interagir avec d’autres résidus d’après nos données de fluorescence. D’ailleurs, la boucle n’est pas très stable d’après les données de la RMN de LeuA effectuée en TFE. On peut supposer que ce tryptophane 37 en interagissant avec les lipides maintiendrait la structure en épingle à cheveux ; ce phénomène ne serait pas observable dans l’environnement TFE.

Mécanisme d’action

Les résultats que nous avons obtenus au cours de ce travail, complétés par les données de la littérature, nous permettent de proposer le modèle suivant (Figure 36).

D’abord, MesY105 interagit avec la membrane par des interactions électrostatiques entre ses résidus cationiques, situés coté N-terminal, et les charges négatives des phospholipides membranaires. Cette interaction rapprochant le peptide de la membrane, la structuration de celui-ci peut se faire, notamment la formation de l’hélice coudée. Grâce au tryptophane 18, capable de se situer à l’interface hydrophile-hydrophobe, l’hélice amphiphile s’enfonce dans la bicouche lipidique mais avec un angle assez peu important. En effet, une orientation oblique de 35° a été calculée par modélisation moléculaire pour MesY105 (Bennik et coll., 1998; Fimland et coll., 2002). Dans un premier temps, l’entrée de l’hélice dans la membrane pourrait être facilitée, du coté de l’extrémité carboxylée, par la présence du tryptophane 37 mais aussi de la phénylalanine 36, apolaire. L’arginine en position 28 pourrait aider au positionnement de cette hélice : grâce à sa longue chaîne carbonée, l’extrémité positive de sa chaîne latérale interagirait avec les phosphates de la membrane cible en
enfouissant l’hélice dans les lipides. Nos résultats d’extinction de fluorescence suggèrent que le tryptophane 18 interagit avec d’autres molécules, probablement des résidus d’autres molécules de bactériocines (il ne semble pas qu’il puisse interagir avec d’autre résidu du même peptide). L’angle d’insertion dans la bicouche lipidique et la longueur de cette hélice (14 résidus ou environ 21 Å) ne sont pas compatibles avec un segment transmembranaire traversant le cœur hydrophobe de 30 Å environ : nous ne pensons donc pas qu’un pore puisse ainsi se former. L’action de la bactériocine doit se faire par une concentration locale de bactériocines qui interagissent grâce à leur hélice amphiphile. Quand la concentration en bactériocine est suffisante, elle provoque une perturbation locale de la membrane ce qui se traduit par la fuite de matériel cytoplasmique ou une déplétion de la force protomotrice, suivie de la mort cellulaire.

Toutefois, ces données ne permettent pas de comprendre la différence d’activité observée parmi plusieurs bactériocines testées contre la même souche cible, ni la différence d’activité d’une même bactériocine contre différentes cibles comme il l’est souvent décrit dans la littérature (Eijsink et coll., 1998; Ferchichi et coll., 2001; Fimland et coll., 1996; Fimland et coll., 2002; Guyonnet et coll., 2000; Kazazic et coll., 2002). Une telle différence d’activité pourrait en fait être due, en partie, à la variation de composition en phospholipides membranaires entre ces souches, ce qui peut influer sur l’interaction électrostatique de la partie amino-terminale avec la membrane ou bien sur la fluidité de la membrane comme il l’a été récemment montré (Vadyvaloo et coll., 2002).

Intervention d’un récepteur

Un autre élément d’explication pourrait être l’intervention d’un récepteur avant l’étape préliminaire de fixation à la membrane comme suggéré précédemment (Dalet, K. et coll., 2001; Hechard et Sahl, 2002). En effet, le fait que la partie N-terminale, et en particulier le motif YGNGV, soient très conservés parmi les bactériocines de sous-classe IIa nous semble être un indice pour l’intervention d’une reconnaissance récepteur-peptide.
Figure 36: Modèle proposé pour le mode d’action de la mésentéricine Y105.

A : La bactériocine n’est pas structurée quand elle se trouve dans un environnement aqueux.
B : À l’approche de la membrane, la bactériocine se structure en hélice α amphiphile et se lie au récepteur EII\textsubscript{t}Man.
C : La bactériocine se fixe sur la membrane grâce aux interactions électrostatiques entre les phosphates des lipides et les charges positives de la partie N-terminale. L’hélice pénètre la membrane avec un angle d’incidence d’environ 30°. Une nouvelle bactériocine se fixe au récepteur.
D : Les bactériocines s’agrègent entre elles grâce aux interactions hydrophiles (ou hydrophobes) de leur hélice α amphiphile. La présence du récepteur n’est pas nécessaire.
E : L’agrégation des bactériocines entraîne une perturbation locale de la membrane qui se rompt et entraîne une fuite du matériel cytosolique ou dissipe la force protomotrice, s’ensuit la mort cellulaire.
F : Parallèlement, la fixation de la bactériocine sur la sous-unité réceptrice du PTS EII\textsubscript{t}Man pourrait entraîner un changement d’état de la perméase vers une conformation « ouverte ». Ainsi, la fuite de matériel cytosolique pourrait être majoritairement due à l’ouverture de la perméase. La perméabilisation due aux bactériocines serait secondaire, en présence du récepteur.
En l’absence de récepteur, les étapes C, D et E peuvent se dérouler mais nécessitent probablement une concentration en peptide supérieure à celle en présence de EII\textsubscript{t}Man.
De plus, la perte du PTS au mannose chez *Listeria* la rend insensible à différentes bactériocines de la sous-classe IIa (entérocine A, PedPA-1, MesY105, LeuA) (Dalet, K. et coll., 2001; Gravesen et coll., 2002). Au contraire, l’expression de cette perméase EII[Man] entraîne un phénotype de sensibilité à différentes bactériocines d’une souche *Lactococcus lactis*, naturellement insensible à ces peptides (Ramnath et Héchard, communication personnelle). Nous en déduisons que la partie N-terminale, en raison de sa grande conservation (Figure 21) pourrait être responsable de la spécificité anti-*Listeria* tandis que la partie C-terminale, très peu conservée, jouerait un rôle de modulation de l’interaction. Les travaux de Fimland et collaborateurs (1996 et 1998) pourraient conforter cette dernière hypothèse.

La substitution t10k entraîne une baisse de l’activité malgré l’apport d’une charge positive (Fleury et coll., 1996). Nous supposons que cette position 10, qui n’est jamais occupée par un résidu chargé parmi les bactériocines anti-*Listeria* (Figure 21), pourrait jouer un rôle dans la reconnaissance peptide-récepteur. La séquence YGNGV est sûrement nécessaire à la reconnaissance peptide-récepteur puisqu’un dérivé n5t ne semblant pas bouleverser la structure entraîne une chute de l’activité. Le rôle du pont disulfure pourrait être de stabiliser la structure β du coté N-terminal pour favoriser la reconnaissance de certains résidus par le récepteur.

Notre hypothèse est que, dans une première étape, la moitié N-terminale de MesY105 se fixerait sur ce récepteur, probablement la perméase au mannose, EIIc[Man], puis la partie C-terminale viendrait aussi au contact de ce récepteur. L’affinité de cette dernière partie avec la protéine d’ancrage serait fonction de la séquence de la moitié C-terminale du peptide ; ce qui expliquerait les différences d’activité des bactériocines de sous-classe IIa pour une même cible. Dans une seconde étape, le processus d’antagonisme se déroulerait comme décrit dans le paragraphe précédent. Comme le précisent Héchard et Sahl (2002), il est aussi envisageable que la fixation de la bactériocine au récepteur entraîne le passage de la perméase à une forme ouverte ce qui permettrait une participation de cette perméase à l’activité antagoniste.

Nous proposons que la partie amino-terminale joue un rôle dans la reconnaissance spécifique du récepteur situé sur la membrane de *Listeria* (ou une partie conservée de celui-ci) puis dans la fixation préliminaire du peptide à la surface membranaire. La partie C-terminale
aurait un double rôle de modulation de l’interaction peptide-récepteur puis de perméabilisation de cette membrane.

De cette façon, notre modèle pourrait apporter une autre explication à la faible activité de notre dérivé a21v dont l’hélicité et l’interaction avec le micelle de LPC sont identiques voire supérieures à ce qui est observé chez MesY105. Outre l’empêchement de la formation du coude dans l’hélice, on peut supposer que la différence d’activité entre a21v et MesY105 soit liée à une interaction moins bonne du dérivé avec le récepteur EII^{Man}. l’alanine en position 21 pourrait être un des résidus clés dans l’affinité entre MesY105-récepteur bactérien.

De plus, s15f montre une interaction de qualité identique à celle de MesY105 avec la LPC et une hélicité non changée : la diminution modérée de son antagonisme pourrait être liée à une perturbation minime dans la reconnaissance initiale par la protéine réceptrice. Enfin, le dérivé w37f (où le tryptophane 18 est conservé) interagit très bien avec la micelle de LPC et se structure aussi bien dans cet environnement : la diminution assez faible observée de son activité pourrait être liée à une plus faible reconnaissance de ce peptide par le récepteur.

Il a été démontré pour PedPA-1 qu’un fragment de peptide correspond au segment 20-34 pouvait spécifiquement inhiber l’activité de cette bactériocine : ce fragment pourrait correspondre à la portion de bactériocine reconnue par le récepteur membranaire pour la modulation de l’activité antagoniste (Fimland et coll., 1998). Si les résidus S15 et W18 de MesY105 ne sont pas situés dans le segment 20-34 (il commence deux résidus après le premier tryptophane pour MesY105 et PedPA-1), il nous semble possible qu’une modification de ces deux positions peut modérément influer sur la reconnaissance peptide-récepteur, en particulier pour W18 qui est assez bien conservé dans la sous-classe IIa.

Récemment, des auteurs ont émis l’hypothèse d’une participation des charges du côté N-terminal à la spécificité de cible de SakP contre les souches <i>Lb sakei</i>, <i>En. faecalis</i>, <i>Cn. piscicola</i> et <i>Lb. coryneformis</i> (Kazazic et coll., 2002). On n’a pas encore mis en évidence de protéine d’ancrage pour ces souches, contrairement à <i>L. monocytogenes</i>, mais si elle existe, nous supposons qu’elle peut présenter des variations inter- voire intra-spécifique. Ainsi, la moitié N-terminale d’une bactériocine pourrait agir différemment avec les récepteurs membranaires de ces bactéries.
4 Expression hétérologue de peptides

Nos travaux sur la production de MesY105 et ses dérivés ont montré que le système d’expression hétérologue que nous avions construit était utilisable pour produire ces bactériocines. Cette partie du travail a permis la rédaction d’un article publié dans Biochimie (Morisset et Frere, 2002) (voir annexe).

4.1 Sécrétion de la mésentéricine B105

4.1.1 Sécrétion de MesB105 seule

De façon à déterminer si le DTS de MesY105 est capable d’exporter d’autres bactériocines que MesY105 et ses dérivés, nous avons d’abord testé la sécrétion de MesB105, bactériocine de classe II. En effet, il avait déjà été supposé que cette bactériocine, également produite par Ln. mesenteroides Y105, puisse être sécrétée par le DTS de MesY105 chez son producteur naturel (Hechard et coll., 1999). Il est souvent spéculé que pour être transportées et maturées par le même DTS, deux bactériocines doivent avoir une séquence leader relativement similaire (Allison et coll., 1995a; Allison et coll., 1995b; Axelsson et coll., 1998; Horn et coll., 1998; Horn et coll., 1999). Cependant, les peptides leaders de MesY105 et MesB105 ont des structures primaires différentes malgré quelques résidus conservés (Figure 13, page 72), le leader de MesB105 étant plus proche de celui de la lactococcine A.

mesB et mesH dans pMK4, mais là encore sans succès. En revanche, nous avons pu transférer dans pMK4 un produit PCR (mesF-prom * mesB-prom obtenu à partir du plasmide pHY30 de Ln. mesenteroides Y105) correspondant à la région englobant les trois gènes mesB, mesH et mesF : nous avons obtenu le plasmide pDMJF:BHF. Un surnageant de culture de DSM20484(pDMJF01/pDMJF:BHF) inhibe la croissance de DSM(pUCB3522/pDMJF:YI), la souche cible utilisée pour tester l’activité de MesB105, ce qui n’est pas le cas d’un surnageant de culture de DSM20484(pDMJF:BHF). Nous avons purifié le surnageant de culture de DSM20484(pDMJF01/pDMJF:BHF) pour obtenir la bactériocine produite en suivant le protocole dérivé de celui de Guyonnet et collaborateurs (2000). Le profil d’élution HPLC correspondant, enregistré à 220 nm, est montré en figure 17, ligne 4. L’analyse en spectrométrie de masse a montré que le pic dont le temps de rétention est 27 min correspond à MesB105 (masse moléculaire de 3445,2 Da). Ce résultat montre que le DTS de MesY105 est capable de transporter MesB105. Néanmoins, cela ne signifie pas que les deux bactériocines peuvent être co-sécrétées par le même DTS.

4.1.2 (Co-)production de MesB105 et MesY105

Cette coproduction a été obtenue en introduisant à la fois les plasmides pDMJF :BHF et pFBYC04 dans DSM 20484. Le profil d’élution d’une HPLC, effectuée sur le surnageant de culture de DSM 20484 (pFBYC04/pDMJF :BHF), enregistré à 220 nm, montre deux pics dont les temps de rétention sont 23 min et 27 min. L’analyse en spectrométrie de masse a montré que ces deux pics correspondent à MesY105 (masse moléculaire de 3868,3 Da) et à MesB105 (masse moléculaire de 3445,2 Da), respectivement.

Les niveaux de sécrétion de MesY105 et MesB105 de différentes souches ont été comparés à ceux du producteur naturel (Tableau 12).
La production de MesY105 comparée à celle de MesB105 donne des ratios similaires chez *Ln. mesenteroides* Y105 et DSM20484(pFBYC04/pDMJF:BHF). Ces ratios sont aussi semblables pour DSM20484(pDMJF01/pDMJF:YI) et DSM20484(pDMJF01/pDMJF:BHF). Ces résultats montrent que la sécrétion indépendante ou concomitante de MesY105 et MesB105 se fait selon les mêmes niveaux de production. Ceci indique que, dans les conditions expérimentales utilisées, i) le DTS de MesY105 n’est pas saturé quand une seule bactériocine est sécrétée; ii) il n’y a pas compétition visible entre les sécrétions des deux bactériocines ou le DTS de MesY105 n’est toujours pas saturé quand il sécrète les deux bactériocines; iii) le DTS de MesY105 est suffisant pour la sécrétion des deux bactériocines chez *Ln. mesenteroides* Y105. L’ensemble de ces résultats suggère que MesB105 est sécrétée par le DTS de MesY105 chez son hôte naturel.

De façon intéressante, la production de MesY105 par DSM20484(pFBYC04) est quatre fois plus importante, en quantité, que pour *Ln. mesenteroides* Y105. pFBYC04 est un plasmide à haut nombre de copies chez les bactéries à Gram positif. Ceci pourrait expliquer le fort taux de production de MesY105 chez l’hôte recombinant. Une telle relation entre nombre de copies des gènes et production hétérologue de bactériocine a déjà été évoquée (Horn et coll., 1998; Horn et coll., 1999; Leer et coll., 1995; Martinez et coll., 2000).
La souche DSM20484(pFBYC04/pDMJF:BHF) sécrète environ quatre fois plus de MesY105 et de MesB105 que *Ln. mesenteroides* Y105. Ceci démontre que le niveau maximal de sécrétion par le DTS de MesY105 n’est toujours pas atteint chez DSM20484(pFBYC04) puisque la production de MesB105 est observée chez DSM20484(pFBYC04/pDMJF:BHF) sans diminution de production de MesY105. Ainsi, DSM20484(pFBYC04) pourrait se voir ajouter un gène de structure de bactériocine additionnel pour permettre une meilleure sécrétion sans ajout de nouveau gène codant un DTS. Le facteur limitant pour la production de bactériocine ne serait pas l’efficacité de transport mais le niveau de production de pré-bactériocine.

4.2 Sécrétion de PedPA-1

4.2.1 Construction du plasmide pDMJF:PA-1

Pour tester la capacité de notre système de production à produire d’autres bactériocines, nous avons construit le plasmide pDMJF:PA-1 en utilisant la même stratégie que pour pDMJF:YI et pDMJF:BHF (Figure 37).

Pour cela, l’opéron *pedAB*, codant PedPA-1 et sa protéine d’immunité associée, a été amplifiée par PCR à l’aide des amorces pedA-prom et pedB-stop et en utilisant l’ADN plasmidique de la souche productrice *Pediococcus acidilactici* 1521 (Tableau 3, page 88 et Annexe 8). Ce produit PCR a ensuite été cloné dans le vecteur pGEM-T easy puis transféré dans le vecteur pMK4 à l’aide de l’enzyme de restriction *Eco*RI. Après vérification de l’intégralité de la séquence d’ADN, le plasmide pDMJF:PA-1 a été introduit dans DSM 20484.

Aucune activité antagoniste ni production de bactériocine n’a été détectée dans le surnageant de culture de DSM20484(pDMJF01/pDMJF:PA-1) nous montrant les limites de notre stratégie (non montré). L’absence de sécrétion de PedPA-1 peut provenir d’un défaut de production de la pré-bactériocine, ou d’une incapacité de maturation et/ou de transport du pré-peptide par le DTS de MesY105. Le plasmide pDMJF:PA-1 ne confère pas non plus l’immunité contre PedPA-1 à la souche DSM20484.
Figure 37: Construction du plasmide pDMJF:PA-1.

L’opéron pedAB est transféré du plasmide pGem-T easy:PA-1 vers le plasmide pMK4 par restriction enzymatique, à l’aide de EcoRI puis ligature. **PpedAB**: promoteur de l’opéron pedAB; **RBS**: "Ribosome Binding Site" de l’opéron pedAB; **Leader**: séquence codant le leader de PedPA-1; **pedA**: séquence codant PedPA-1 mature; **pedB**: gène codant la protéine d’immunité; **Apr**: gène de résistance à l’ampicilline; **LacZ**: gène codant la β-galactosidase; **ori**: origine de réplication chez *E. coli*.
Ces résultats suggèrent que l’opéron *pedAB* n’est pas exprimé et que le promoteur nature *ped* n’est probablement pas fonctionnel dans DSM20484. Des résultats similaires ont déjà été observés pour la production hétérologue de PedPA-1. Chez *Lc. lactis*, l’opéron *pedAB* ne permet pas la sécrétion de la bactériocine avec le promoteur *ped* mais cette sécrétion est observé quand l’opéron est sous le contrôle du promoteur lactococcal P32 (Chikindas et coll., 1995). De même, chez une souche *Lb. sakei* possédant le DTS de SakA, la sécrétion de PedPA-1 n’est possible que sous contrôle du promoteur de *sakA* (Axelsson et coll., 1998).

L’autre problème souvent rencontré avec la production hétérologue est la capacité d’un DTS à cliver et sécréter la pré-bactériocine. Une fusion entre les séquences codant le peptide leader de SakA et la sakacine P mature, de même que le gène codant la pré-sakacine P intégrale, ont été utilisés avec succès pour sécréter SakP avec le DTS de SakA (Axelsson et coll., 1998).

Construction du plasmide pDMJF:Y::PA-1

Les peptides leaders de MesY105 et PedPA-1 sont relativement différents (Figure 13, page 72). Par conséquent, placer l’opéron *pedAB* sous contrôle d’un promoteur fonctionnel chez *Leuconostoc* risquait de mener à une production faible voire à une absence de sécrétion. Pour éviter à ces problèmes de reconnaissance du peptide leader et d’activité de promoteur, nous avons suivi une stratégie de fusion de gènes afin d’obtenir le peptide leader de MesY105 fusionné avec PedPA-1 mature. La souche productrice doit être immune à PedPA-1 et donc nous devons conserver le gène d’immunité à cette bactériocine dans notre construction génétique. Le schéma stratégique est décrit sur la figure 38.

Pour cela, la portion du gène *pedA* codant PedPA-1 mature ainsi que le gène d’immunité entier *pedB* ont été amplifiés par PCR en utilisant les amorces pedA-DraI et pedB-stop (Tableau 3, page 88 et Annexe 8) et l’ADN plasmidique de *P. acidilactici* 1521 comme matrice. L’amorce pedA-DraI a été dessinée de façon à introduire un site de restriction pour l’enzyme DraI au niveau du codon AAA correspondant au premier acide aminé (lysine) de PedPA-1 mature. Le fragment de PCR a été cloné dans pCR-Blunt puis sa séquence vérifiée. La portion du gène *pedA* codant PedPA-1 mature et le gène *pedB* ont ensuite été extraits en utilisant les endonucléases de DraI et PstI.
D’autre part, le plasmide pDMJF:YI a été amplifié par PCR en utilisant les amorces mesY-gg et mesI-ATG. Le produit PCR obtenu a été purifié puis digéré par l’enzyme de restriction PstI, dont le site de clivage se situe au niveau du MCS, afin d’éliminer le gène mesI. L’ADN obtenu a été purifié : il correspond à la séquence entière de pMK4 additionnée de la partie de l’opéron mesYI allant du promoteur PmesYI jusqu’à la séquence codant le leader de MesY105. Cet ADN comporte une extrémité à bords francs (juste après le doublet de codons glycine) et une extrémité à bords cohésifs créée par PstI. L’ADN obtenu est alors ligaturé avec le fragment de restriction DraI-PstI portant la séquence codant PedPA-1 mature dont les extrémités sont compatibles. Après ligature puis transformation dans E. coli, le plasmide pDMJF:Y::PA-1 a été extrait et la fusion, en phase, des deux portions de gènes a été confirmée par séquençage.

Par cette stratégie, nous avons obtenu le plasmide pDMJF:Y::PA-1 que nous avons introduit chez Leuconostoc. Une culture de la souche DSM20484(pDMJF01/pDMJF:Y::PA-1) présente une activité anti-Listeria. Nous avons procédé à une purification du composé responsable de cette activité antagoniste en suivant la méthode précédemment décrite (« matériel et méthodes », § 2). L’analyse en spectrométrie de masse de la molécule purifiée révèle une masse moléculaire de 4624,20 Da ce qui correspond à la forme oxydée de PedPA-1 mature (masse théorique 4624 Da). La quantité de bactériocine produite par la souche DSM20484(pDMJF01/pDMJF:Y::PA-1) est similaire à celle de la souche sauvage P. acidilactici 1521, à nombre de cellules égal (Tableau 13).

<table>
<thead>
<tr>
<th></th>
<th>P. acidilactici 1521</th>
<th>Ln. mesenteroides DSM 20484 recombinantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PDMJF01</td>
<td>pDMJF:PA-1</td>
</tr>
<tr>
<td>Pédiocine PA-1</td>
<td>100 ± 22 %</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>pDMJF01</td>
<td>pDMJF:Y::PA-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97± 20 %</td>
</tr>
<tr>
<td></td>
<td>pDMJF01</td>
<td>pDMJF:promY::PA-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97± 20 %</td>
</tr>
</tbody>
</table>

Tableau 13: Productions comparées de la pédiocine PA-1 dans les souches naturelle et recombinantes.

Productions maximales observées à partir d’au moins trois expérimentations effectuées sur au moins deux clones indépendants pour chacune des souches recombinantes.
Tous les niveaux d’expression sont exprimés en pourcentage par rapport à la souche productrice naturelle.
Figure 38: Construction du plasmide pDMJF:Y::PA-1.

pedA: séquence codant PedPA-1 mature; *pedB*: gène d’immunité à PedPA-1; *Apr*: gène de résistance à l’ampicilline; *LacZ*: gène codant la b-galactosidase; *ori*: origine de réplication chez *E. coli*.
4.2.2 Construction du plasmide pDMJF :promY ::PA-1

Pour vérifier si l'échec rencontré avec le plasmide pDMJF :PA-1 était dû à un problème de reconnaissance du leader de PedPA-1 par le DTS de MesY105 ou à un défaut d'activité du promoteur de l'opéron pédiocine, nous avons décidé de construire un troisième plasmide. Dans cette construction, la séquence promotrice de l'opéron mesYI est fusionnée avec les gènes pedA et pedB débarrassés du promoteur pédiocine.

Pour ce faire, nous avons employé une technique de fusion par PCR (Figure 39).

D'une part, le plasmide pDMJF :YI est amplifié à l'aide des amorces ter-mesI3 et PmesY/PA-1 (Tableau 3, page 88). Ce premier produit PCR élimine le gène mesY et une grande partie du gène mesI. Il permet de conserver le promoteur de mesYI et de le fusionner avec une partie de la séquence codant le leader de PedPA-1.

D'autre part, les gènes pedA et pedB ont été amplifiés, sans leur promoteur, à l'aide des amorces PmesY/PA-1comp et pedB-stop (Tableau 3, page 88) et en utilisant l'ADN plasmidique de P. acidilactici 1521 comme matrice. Le produit PCR obtenu correspond aux deux gènes pedA et pedB dépourvus de leur promoteur naturel. pedA est fusionné avec une partie de la séquence promotrice de l'opéron mesYI.

Les deux produits PCR comportent une séquence chevauchante comprenant une partie de la séquence codant le leader de PedPA-1 et une partie du promoteur PmesYI (Figure 39). Ces deux produits PCR purifiés sont mélangés en quantité équimolaire et le mélange est utilisé comme ADN matrice pour une troisième réaction de PCR utilisant les amorces pedB-stop et ter-mesI3. En effet, lors de la phase d'hybridation des brins d'ADN, consécutive à la phase de dénaturation, une partie des produits PCR sous forme simple brin va former des hétérodimères grâce à leur séquence chevauchante et complémentaire. Seuls ces hétérodimères peuvent être amplifiés par les amorces choisies. Il en résulte un produit PCR correspondant à l'ensemble du plasmide pMK4 dans lequel la séquence promotrice de mesYI est fusionnée aux gènes pedA et pedB (Figure 39). Ce produit PCR est finalement ligaturé puis introduit dans E. coli. Après extraction du plasmide pDMJF :promY ::PA-1 correspondant, la fusion est vérifiée par séquençage à l'aide de l'amorce U-20.
Figure 39: Construction du plasmide pDMJF:promY:PA-1.

0 Une PCR divergente effectuée à l’aide des amorces Ter-mesI3 et PmesY/PA-1 permet d’obtenir un dérivé de pDMJF:YI débarrassé des gènes mesI et mesY. Le promoteur PmesYI se trouve fusionné à une partie de la séquence codant le leader de PedPA-1. 0 Une deuxième PCR permet d’amplifier les gène pedB et pedA. Le gène pedA est fusionné avec une partie de la séquence promotrice de l’opéron mesYI. 0 Les deux produits PCR sont mélangés et servent de matrice pour une troisième PCR. 0 Le produit de cette dernière PCR est ligaturé et permet d’obtenir l’opéron pedAB sous contrôle du promoteur PmesYI. pedA: séquence codant PedPA-1 mature; pedB: gène d’immunité à PedPA-1; leader: séquence codant le leader de PedPA-1; Apr = gène de résistance à l’ampicilline; LacZ = gène codant la b-galactosidase; ori: origine de réplication chez E. coli.
Le plasmide pDMJF : promY :: PA-1 est ensuite transféré dans les souches DSM 20484 et DSM 20484 (pDMJF01). Le surnageant de culture de DSM 20484 (pDMJF : promY :: PA-1) a été testé contre *Listeria* : il ne présente pas d’activité antagoniste. En revanche, la souche est immune contre PedPA-1. La souche DSM 20484 (pDMJF01/pDMJF : promY :: PA-1), elle aussi immune contre PedPA-1, présente une activité anti-*Listeria*. Le surnageant d’une culture de cette souche a été purifié en suivant le protocole dérivé de celui de Guyonnet et collaborateurs (2000). Le profil d’élution résultant, enregistré à 220 nm, montre un pic de temps de rétention de 21 min. Ce pic, actif contre *Listeria*, a été analysé en spectrométrie de masse et la molécule correspondante à la même masse que PedPA-1 (4624,20 Da pour une masse théorique de 4624 Da) (Figure 40). Une estimation de la quantité de bactériocine produite a été effectuée : le taux de production est similaire à celui de la construction précédente (utilisant pDMJF : Y :: PA-1) et celui de la souche naturelle.

Figure 40: Spectre de masse de la pédiocine PA-1 purifiée à partir d’un surnageant de culture de DSM 20484 (pDMJF01/pDMJF : Y :: PA-1)

La masse attendue pour PedPA-1 est de 4624 Da.
Il semblerait que les problèmes de production observés avec le plasmide pDMJF:PA-1 soient dus à un défaut d’activité du promoteur de l’opéron pédiochine chez Leuconostoc. Au vu des taux de sécrétion, similaires, observés pour les deux autres constructions, il semble qu’il n’y a pas de problème de reconnaissance du leader de PedPA-1 par le DTS MesY105 (Tableau 13, page 188).

Les résultats obtenus avec MesB105 et PedPA-1 sont encourageants. En effet, dans la plupart des travaux publiés, les taux de production hétérologue de bactériocines sont inférieurs à ceux observés chez la souche naturelle (Ennahar et coll., 2000), excepté quand des plasmides à haut nombre de copies sont utilisés (Biet et coll., 1998) ou quand les gènes sont sous contrôle d’un promoteur fort (Chikindas et coll., 1995).

4.3 Amélioration du système de production hétérologue

4.3.1 Modification du plasmide pDMJF01

4.3.1.1 Elimination de mesI

Bien qu’il ne dérive de pFBYC04 que par la délétion d’une partie de mesY, pDMJF01 ne permet qu’un niveau réduit de sécrétion par rapport à celui de pFBYC04 (quatre fois inférieur, *i.e.* de l’ordre du taux de sécrétion des producteurs naturels). Il se pourrait que cette construction génétique, où le gène mesI est fusionné avec la séquence codant le leader de MesY105, soit responsable de ce faible taux de sécrétion. Dans le but de tester notre système de production pour la sécrétion d’autres peptides, nous avons décidé de construire des dérivés de pDMJF01 donnant de meilleurs rendements de sécrétion et ne portant plus les gènes mesI, mes B, mesH et mes F.

Les deux premiers couples d’amorces entraînent l’élaboration de mesI et aussi de l’ensemble de l’opéron mesYI. L’amorce PmesYI/PmesCDE (Tableau 3, page 88) est une
combinaison de la boîte “-10” du promoteur PmesCDE et de la boîte “-35” de PmesYI. En effet, la boîte “-35” de PmesCDE est assez éloignée du consensus (Figure 41). Le promoteur PmesYI étant fonctionnel chez Leuconostoc et plus proche du consensus, nous espérions obtenir une meilleure efficacité de transcription pour les gènes codant le DTS de mesY105. De même, l’amorçage P59/PmesCDE (Tableau 3, page 88) est une combinaison de la boîte “-10” du promoteur PmesCDE et de la boîte “-35” du promoteur lactococcal fort P59. Là aussi, nous espérions améliorer la transcription des gènes mesCDE.

Figure 41: Séquence des promoteurs de 13 gènes de bactériophages et de bactéries.

Les séquences nucléotidiques ont été disposées de façon à ce que les positions +1, -10 et -35 soient alignées. D’après Simon (2001).

Le couple d’amorces ter-mesI4*mesY-RBS (Tableau 3, page 88) permet d’éliminer mesI et la partie codant le leader de MesY105. En revanche, les oligonucléotides ter-mesI4 et mesY-gg permettent de conserver les codons correspondant au peptide leader. Ces deux PCR ont été effectués dans le cas où une partie régulatrice de l’expression des gènes mesCDE se trouverait dans l’opéron mesYI. En effet, l’impossibilité d’obtenir des clones portant une fusion entre mesI et le promoteur de mesYI (voir § 1.1.1) pourrait être due à la disparition d’une séquence régulatrice importante pour cette région.
Les quatre produits PCR purifiés ont été ligaturés puis introduits dans *E. coli*. Les plasmides correspondant ont été extraits puis séquencés pour vérifier leur construction génétique. Ces plasmides sont nommés pDMJF02a, pDMJF02b, pDMJF02c, et pDMJF02d en fonction des amorces utilisées, respectivement ter-mesI4*P59/PmesCDE, ter-mesI4*PmesYI/PmesCDE, ter-mesI4*mesY-RBS et ter-mesI4*mesY-gg (Figure 42).

![Figure 42: Schéma plaçant les amorces utilisées pour créer pDMJF02.](image)

a, amplification ter-mesI4*P59/PmesCDE créant pDMJF02a; *b*, amplification ter-mesI4*PmesYI/PmesCDE créant pDMJF02b; *c*, amplification ter-mesI4*mesY-RBS créant pDMJF02c; *d*, amplification ter-mesI4*mesY-gg créant pDMJF02d. C’est ce dernier plasmide, rebaptisé pDMJF02 qui a été utilisé par la suite. Seule la zone modifiée de pFBYC04 est représentée.

Après transformation dans DSM 20484 (pDMJF :YI), des clones ont été obtenus pour les plasmides pDMJF02a, pDMJF02c, et pDMJF02d. Ces clones ont été testés pour leur activité antagoniste de *Listeria*. Les trois types de construction présentent une activité antimicrobienne. Des comparaisons d’activité, effectuées sur trois clones indépendants pour chacune des constructions, ont montré que le plasmide pDMJF02d conférait le meilleur rendement de production dans *Leuconostoc*.

C’est ce plasmide qui a finalement été conservé pour les manipulations ultérieures. Il sera nommé pDMJF02 par la suite (Annexe 9).
4.3.1.2 Elimination de mes B, mesH et mesF

L’élimination de ces gènes a été effectuée par PCR divergente en utilisant le plasmide pDMJF02 comme ADN matrice et les amorces mesB-fin et mesF-sup (Tableau 3, page 88). Le produit PCR purifié a été ligaturé puis introduit chez E. coli. Le plasmide pDMJF03 (Annexe 9) correspondant a été ensuite analysé par PCR afin de vérifier la disparition des trois gènes (Figure 43). Cette dernière PCR a été effectuée avec les amorces mesF-prom et U-20 (Tableau 3, page 88). Une souche DSM 20484 (pDMJF :YI) a finalement été transformée avec le plasmide pDMJF03 et les clones obtenus ont tous montré une activité antagoniste contre Listeria.

Figure 43: Schéma plaçant les amorces utilisées pour créer pDMJF03.

La zone hachurée de mesY représente la partie codant le leader de MesY105.
Figure 44: Test d’activité de surnageants de différentes cultures productrices de MesY105.

Ligne 1 : Dilutions du témoin MesY105 dosée.
Ligne 2 : Dilutions du surnageant de culture Leuconostoc mesenteroides Y105.
Ligne 3 : Dilutions du surnageant de culture DSM 20484 (pFBYC04).
Ligne 4 : Dilutions du surnageant de culture DSM 20484 (pDMJF01/pDMJF :YI).
Ligne 5 : Dilutions du surnageant de culture DSM 20484 (pDMJF02/pDMJF :YI).
Ligne 6 : Dilutions du surnageant de culture DSM 20484 (pDMJF03/pDMJF :YI).
Toutes les dilutions se font de ½ en ½ de gauche à droite.

4.3.1.3 Comparaison des rendements de production

Les taux de sécrétions de MesY105 pour la souche _Ln mesenteroides_ Y105 et les souches recombinantes DSM20484(pFBYC04), DSM20484(pDMJF01/pDMJF:YI), DSM20484(pDMJF02/pDMJF:YI) et DSM20484(pDMJF03/pDMJF:YI) ont été quantifiés (en utilisant de la MesY105 dosée comme témoin) et comparés en prenant _Ln. mesenteroides_ Y105 comme référence (Figure 44 et Tableau 4, page 114). Le résultat de ces mesures (réalisées quatre fois à partir de clones indépendants) est déjà discuté précédemment pour les souches DSM20484(pFBYC04) et DSM20484(pDMJF01/pDMJF:YI) (§ 1.3.2). L’élimination de la séquence codant la protéine d’immunité dans pDMJF02 permet d’atteindre un niveau de sécrétion plus important (environ 2,5 fois le niveau de la souche sauvage, à quantité de cellules égale). Ce taux n’est atteint que si l’on conserve la portion de
gène codant le peptide leader, ce qui suggère l’existence d’une séquence régulatrice du promoteur PmesCDE dans cette région de l’opéron mesYI. L’augmentation du taux de sécrétion peut s’expliquer par le fait qu’une partie de la machinerie métabolique de la bactérie n’est plus détournée pour la production et la sécrétion de la protéine d’immunité. Enfin, l’élimination, dans pDMJF03, des gènes mesH, mesF et de la portion de gène mesB permet d’obtenir un niveau de sécrétion de l’ordre de celui de pFBYC04. Là encore, on peut supposer que cette élimination entraîne une meilleure efficacité de production et de sécrétion pour la seule MesY105.

Ainsi, la souche DSM20484(pDMJF03/pDMJF:YI) permet d’atteindre un niveau de sécrétion d’environ 0,77 mg de MesY105 par litre de culture. L’avantage du plasmide pDMJF03 est qu’il ne possède que les gènes codant le système de sécrétion de la bactériocine. Un tel plasmide peut être utilisé par la suite dans une stratégie de sécrétion de bactériocines voire d’autres petits peptides cationiques.

4.3.2 Mise au point d’une stratégie universelle pour la production de peptide

Pour faire face aux éventuels problèmes de reconnaissance du peptide leader par le DTS de MesY105 et d’activité de promoteur “étranger”, nous avons mis au point la construction d’un type de plasmide recombinant. Dans cette construction, on retrouve l’ensemble du plasmide pMK4 ainsi que le promoteur PmesYI et la séquence codant le leader de MesY105. Ce leader est fusionné au gène codant le peptide (bactériocine ou autre) que l’on souhaite produire. La technique utilisée est la fusion de gène par PCR, similaire à celle décrite dans le paragraphe 4.2.3 (Figure 45).

D’autre part, le gène de structure (et éventuellement d’immunité, dans le cas d’une bactériocine) a été amplifié, sans son promoteur naturel. Les amorces utilisées pour la PCR permettent aussi une fusion du gène de structure avec une portion de la séquence codant le peptide leader de MesY105.
Figure 45: Construction du plasmide pDMJF :Y::peptide.

1 Une PCR divergente effectuée à l’aide des amorces Ter-mesI3 et leadY/gène permet d’obtenir un dérivé de pDMJF:YI débarrassé des gènes mesI et de la séquence codant MesY105 mature. La séquence codant le leader de MesY105 est fusionnée avec la portion de gène codant le peptide mature désiré. 2 Une deuxième PCR permet d’amplifier la portion de gène codant le peptide mature désiré en fusion avec une partie de la séquence codant le leader de MesY105. 3 Les deux produits PCR sont mélangés et servent de matrice pour une troisième PCR. 4 Le produit de cette dernière PCR est ligaturé et permet d’obtenir le plasmide pDMJF :Y::peptide.

gène: séquence codant le peptide mature désiré; Apr= gène de résistance à l'ampicilline; LacZ= gène codant la b-galactosidase; ori: origine de réplication chez E. coli.
Les deux produits PCR comportent une séquence chevauchante comprenant une partie de la séquence codant le leader de MesY105 et une partie du gène de structure (Figure 45). Ces deux produits PCR purifiés sont mélangés en quantité équimolaire et le mélange est utilisé comme ADN matrice pour une troisième réaction de PCR. En effet, lors de la phase d’hybridation des brins d’ADN, consécutive à la phase de dénaturation, une partie des produits PCR sous forme simple brin va former des hétérodimères grâce à leur séquence chevauchante et complémentaire. Seuls ces hétérodimères peuvent être amplifiés par les amorces choisies. Il en résulte un produit PCR correspondant à l’ensemble du plasmide pMK4 portant le promoteur PmesY1 et la séquence codant le leader de MesY105 fusionné au gène de structure du peptide à produire (Figure 45). Après ligature et transfert dans E. coli, le plasmide construit est extrait et la fusion de gènes vérifiée par séquençage à l’aide de l’amorce universelle –20. Le plasmide est finalement transféré dans une souche DSM 20484 (pDMJF03) pour ensuite purifier le peptide voulu à partir du surnageant de culture. Cette stratégie à l’avantage d’être très rapide et moins contraignante que le transfert de fragments de restriction.

Ce procédé a été employé pour la construction du plasmide pDMJF :Y ::VIP (Figure 46a) afin de tester la sécrétion du VIP humain (Vasoactive Intestinal Peptide) qui est un petit peptide de 28 résidus. En effet, ce peptide intervenant, entre autres fonctions, dans la dilatation des vaisseaux sanguins, la baisse de la pression artérielle est globalement cationique et composé de deux hélices α amphiphiles (Theriault et coll., 1991) (Figure 46b). Il est à noter que ce peptide est amidé au niveau de l’asparagine C-terminale. Cependant, cette amidation n’est pas nécessaire pour l’activité du VIP. Les amorces employées sont les amorces gg-VIP, gg-VIPcomp et VIP-stop (Tableau 3, page 88) équivalentes des amorces leadY/gène, leadY/gène comp et gène-stop, respectivement, de la figure 45. Nous avons employé un ADNc comme matrice pour amplifier la séquence codant le VIP.

Des bactéries DSM20484(pDMJF :Y ::VIP/ pDMJF03) ont été mises en culture. Les surnageants de culture ont été précipités au sulfate d’ammonium et les fractions protéiques (précipités) ont été testées pour détecter l’activité du VIP non amidé. Les résultats obtenus (non montrés) semblent montrer une production du VIP par l’hôte Leuconostoc. Une purification du surnageant de culture est actuellement en cours afin de vérifier la production du VIP.
Figure 46a: Séquence de l’ARNm déduit par RT-PCR et position des amorces utilisées sur la séquence d’ADN correspondante.

En bleu, séquence codant le VIP mature. En bleu et rose, séquence codant le précurseur du VIP. Le codon de départ est souligné et le codon STOP est ombré.

Ref: NM_003381. Homo sapiens vaso...[gi:4507896]

```
acagaaugg acaccagaaa uaaggcccag cuccuugugc
uccugacucu ucucagugug cucuucucac agacuucggc
auggccucuu uacaggccac cuucugcucu cagguugggu
gacagaauac ccuuugaggg agcaaaugaa ccugaaucaag
uuuccauuaaa agaagacaauu gacauguugc aaaaugcauu
agcugaaaaau gacaaccccu auuaugaugu auccagaaaau
gccaggcaug cugauggagu uuucaccagu gacuucagua
aacucuuggg ucaacuuucu gccaahaagu accuugaguc
ucuuauggga aaacguguua gcaguaacau cucagaagac
ccuguaccag ucaaaacguca cucagaugca gucuuccacug
acaacuaacu ccgccuuaga aacaaauugg cuguaaagaa
auauuugaac ucaauucuga auggaaagag gacagugag
ggagaauucuc ccgacuuucc agaagaguua aaaaaaugau
aaaaagacc uuuggagca
```

1 10 20

HSDAVFDTNYTRLRKQMAVKKYLNSILN

Figure 46b: Séquence primaire du VIP mature.
CONCLUSION ET PERSPECTIVES
Nos travaux ont porté sur l’étude des relations existant entre la structure et la fonction anti-
Listeria de MesY105, bactériocine de la sous-classe IIa. Dans ce but, nous avons choisi de
constituer une banque de peptides dérivés de MesY105 où un résidu est substitué. Les essais
de production de ces bactériocines nous ont amenés à construire un nouvel outil de sécrétion
« universel » de peptides pour Ln. mesenteroides. Une fois cette banque de bactériocines
obtenue, il nous restait à corrélérer les données de leur activité, leur structure et leur interaction
avec un modèle membranaire (micelle de LPC) ainsi que les données bibliographiques pour
des bactériocines proches pour dessiner un modèle de mécanisme d’action de MesY105 sur
Listeria.

Au début de notre étude, nous disposions de seulement trois dérivés de MesY105
obtenus par synthèse chimique. Afin d’obtenir d’autres peptides, nous avons choisi une
méthode de mutagenèse aléatoire par PCR sur la portion de gène codant MesY105 mature
dont les conditions permettent de modifier un seul codon dans la séquence nucléotidique. Des
travaux avaient déjà été publiés sur cette méthode et particulièrement un article publié au
commencement de ce travail traite de la mutagenèse aléatoire par PCR de PedPA-1 (Miller et
coll., 1998b). Nous avons donc naturellement testé les conditions de réaction décrites dans la
littérature mais celles-ci se sont avérées trop éloignées de nos exigences, en particulier celle
utilisée sur PedPA-1. Nous avons testé différents paramètres pour cette réaction jusqu’à
obtenir un pourcentage de mutation satisfaisant : la méthode repose principalement sur un
excès de polymérase, une concentration limitante en dGTP et l’emploi de chlorure de
manganèse combiné à du chlorure de magnésium de façon à diminuer la fidélité de
polymérisation de la PCR.

Afin de ne pas séquencer systématiquement les ADN (méthode fastidieuse et
onéreuse) et pour pré-trier les séquences d’ADN mutées, nous avons testé la méthode de la
SSCP qui permet théoriquement de repérer les fragments modifiés par une différence de
migration dans un gel de polyacrylamide non dénaturant. Cette méthode a permis de repérer
certaines mutations (ensuite identifiées par séquençage) mais elle n’est pas suffisamment
sensible car certains fragments modifiés migrent de la même manière que des fragments
natifs. Une deuxième méthode de tri a été mise à l’épreuve : elle permet d’observer des
différences de migration dans un gel de polyacrylamide en condition dénaturantes pour des
hétérodimères (un brin natif associé à un brin muté) par rapport à des homodimères. Cette
deuxième méthode s’est avérée encore moins sensible que la SSCP et nous avons alors décidé
de procéder à un séquençage systématique de toutes les séquences d’ADN obtenues après
mutagenèse aléatoire par PCR.

Afin d’obtenir des dérivés de MesY105, en utilisant les fragments modifiés obtenus
par mutagenèse aléatoire, nous avions choisi de procéder à la production de protéine de fusion
MBP::MesY105 chez E. coli ; cette méthode ayant été utilisée pour l’étude de dérivés de
Malheureusement, nous nous sommes aussi heurtés à des difficultés techniques, notamment le
manque d’efficacité de clivage de la protéine de fusion par le facteur résultant en un
rendement en MesY105 purifié très faible compte tenu de la durée et du coût de la
manipulation.

Nous avons opté pour une autre méthode de production hétérologue de bactériocide
permettant une sécrétion direct du peptide dans le surnageant de culture d’une souche Ln.
mesenteroides. Ce système de production est basé sur l’utilisation de deux plasmides, l’un
portant l’opéron mesYI entier, l’autre apportant les gènes codant l’immunité à la bactériocide
ainsi que le DTS de MesY105. Les essais effectués pour la sécrétion hétérologue de MesY105
native par Ln. mesenteroides ont montré que cette méthode disposait de nombreux avantages
vis-à-vis de la production sous forme de protéine de fusion : facilité et rapidité de clonage, de
production et purification de la bactériocide et faible coût de production.

Nous avons donc étendu l’utilisation de cet outil à la production des bactériocines
modifiées. Cependant, il a fallut revoir les conditions de mutagenèse aléatoire par PCR afin de
les adapter à ce nouveau système de production. Nous avons aussi du adapter le plasmide
portant normalement l’opéron mesYI de façon à utiliser les fragments d’ADN obtenus avec la
première méthode de mutagenèse aléatoire par PCR.

Par la suite, nous avons montré grâce à ce système de sécrétion que MesB105,
bactériocide de classe II très différente de MesY105, était exportée par le même ABC-
transporteur que MesY105 bien que leurs peptides leaders soient très différents. Nous avons
aussi réussi à secrèter PedPA-1 en utilisant le DTS de MesY105, les peptides leaders des
bactériocines étant pourtant très différents : les taux de sécrétions sont identiques à ceux
observés dans la souche productrice naturelle, à nombre égal de cellules. Nous avons
egalement montré que les problèmes rencontrés précédemment dans la sécrétion de PedPA-1
étaient liés à une mauvaise reconnaissance du promoteur de pédiocoque et non au peptide
leader de la bactériocide.
Le taux de sécrétion de MesY105 par ce système à deux composants est identique à celui de la souche naturelle productrice à nombre de cellules égal (même observation pour MesB105 et PedPA-1) mais inférieur à celui observé pour la souche recombinante DSM 20484(pFBYC04) (Biet et coll., 1998). Nous avons essayé d’améliorer les rendements de sécrétion en éliminant progressivement les gènes nous semblant inutiles à cette tâche. C’est ainsi que nous avons obtenu un système à deux composants présentant les mêmes taux de sécrétion que pour le système pFBYC04.

Finalement, nous avons débuté une dernière étude pour vérifier si nous pouvions adapter notre système de sécrétion à deux composants pour la production de peptides autres que les bactériocines. Nous avons commencé à étudier la production et la sécrétion du VIP par Ln. mesenteroides en utilisant le DTS de MesY105. Les premiers résultats sont prometteurs : une activité VIP est observée dans le surnageant de culture de la souche recombinante.

La dernière étape de ce travail a consisté en l’étude structure-fonction proprement dite de MesY105. Une partie du mode opératoire nous a été inspiré par les travaux réalisées sur les peptides antimicrobiens en hêlice α des vertébrés et invertébrés : étude des charges, de l’hydropathie, de l’hélicité, du moment hydrophobe, de l’amphiphilie.

Nous avons commencé par placer cette bactériocine parmi les autres peptides de la sous-classe IIa à l’aide d’alignements multiples et de prédictions de structure secondaire ; ces deux outils aboutissant au même classement. Une prédiction d’activité antagoniste au sein de chacun des groupes constitués a aussi été faite et, dans la mesure des quelques informations comparatives trouvées dans la littérature, elle semble assez fidèle à la réalité. Enfin, l’observation des profils hydropathiques semble attester les données de structure primaire et secondaire. Le classement de la sous-classe IIa que nous proposons nous semble être le plus réaliste possible (il est d’ailleurs très proche de celui proposé récemment par Fimland et collaborateurs, 2002) si on se base sur la structure primaire et les prédictions de structure secondaire.

L’activité antagoniste des différents dérivés de MesY105 a été mesurée contre une souche Listeria révélant des diminutions du pouvoir antagoniste de différents niveaux. Des études de dichroïsme circulaire en présence de TFE et de micelles de LPC ont permis de relier en partie la diminution du pouvoir antibactérien à une modification de l’hélicité de la molécule. Il semble aussi que le TFE masque une partie de ces modifications qui sont liées au changement de structure de la chaîne latérale du résidu substitué mais aussi au changement
d’interaction avec les lipides. En effet, l’étude de la fluorescence intrinsèque des tryptophanes permet de comprendre l’enfouissement de ce type de résidu mais aussi le degré d’interaction des peptides avec la membrane (ou le modèle membranaire). Il en ressort que certaines mutations semblent modifier de façon important les interactions peptide-lipide.

Des prédictions de structure tridimensionnelle ont été effectuées pour MesY105 et ses dérivés. La bactériocine native adopte probablement une structure très proche de celle de LeuA, ce qui est logique si on se réfère à leur grande similitude de structure primaire. D’ailleurs, les premiers résultats obtenus par RMN en présence de 90% TFE suggèrent les mêmes conclusions.

En se basant sur ces résultats et les informations les plus récentes fournies par la littérature, nous avons avancé un modèle pour le mode d’action de MesY105 avec la bactérie cible _Listeria_. Ce modèle permet de repérer des résidus (et des positions) clés, en particulier les deux tryptophanes, et l’arginine 28. Il fait intervenir un récepteur membranaire EII₁Man, comme cela a été suggéré dernièrement (Dalet, K. et coll., 2001; Hechard et Sahl, 2002), qui sert à une première approche de la bactériocine vis-à-vis de la membrane de _Listeria_, la reconnaissance peptide-récepteur se faisant probablement au niveau de la partie aminoterminale, très conservée, de la bactériocine et étant régulée par la partie carboxy-terminale beaucoup plus variable. Dans le cas de MesY105, cette modulation de l’interaction pourrait faire intervenir l’alanine 21.

Nous proposons qu’ensuite, des interactions électrostatiques entre la partie N-terminale du peptide (sous forme de feuillet β) et les phosphates des lipides membranaires facilitent la structuration de l’hélice α centrale (et probablement de l’épingle à cheveux C-terminale) qui s’insère dans la membrane grâce aux tryptophanes 18 et 37. Cependant cette insertion oblique, probablement stabilisée par l’arginine 28, ne se ferait qu’avec un angle faible ce qui ne permettrait pas la formation de pore transmembranaire, contrairement à ce qui est souvent rapporté dans la littérature. En revanche, nous suggérons que l’association de plusieurs peptides au niveau de l’hélice amphiphile permet une perturbation locale de la membrane suffisant à sa perforation. Une fuite de matériel cytoplasmique ou une déplétion de la force protomotrice en résulterait pour aboutir à la mort cellulaire.

Ce modèle explique le fait que MesY105, en l’absence de récepteur spécifique puisse provoquer la perméabilisation de mitochondries (Maftah et coll., 1993). Enfin, on ne peut pas exclure l’hypothèse d’une ouverture de la perméase au mannose lors de la fixation du peptide au récepteur EII₁Man. Cette ouverture pourrait améliorer l’efficacité de perméabilisation de la
membrane, la fuite de matériel cytoplasmique et la mort cellulaire. Dans ce cas, cette ouverture pourrait même être le facteur majeur de l’antagonisme bactérien, le rôle de la bactériocine dans la perméabilisation elle-même étant secondaire.

Ce modèle est probablement valable, en partie, pour les autres bactériocines de la sous-classe IIa. Il permet de retrouver des éléments communs avec le mode d’action des peptides en hélice α des vertébrés et invertébrés tels que la différence de structuration en fonction de l’environnement (anisotrope ou aqueux), l’importance de l’hélicité sur l’activité, le rôle des charges positives et de la composition en phospholipides de la membrane. En revanche, l’intervention d’une reconnaissance peptide-récepteur est particulière à MesY105 (et probablement aux autres bactériocines). En l’absence de récepteur, la bactériocine agirait comme les peptides de vertébrés et invertébrés. Il est d’ailleurs important de rappeler que MesY105 peut présenter une activité hémolytique (Chamberland-Chanteloube, 1997). Il serait intéressant de comparer les pouvoirs hémolytique et antimicrobien de MesY105 ainsi que ceux de ses dérivés et de chercher les paramètres influençant l’une ou l’autre des activités.

Des travaux supplémentaires pourront apporter des compléments à cette étude des relations existant entre structure et fonction de MesY105.

La détermination de la structure tridimensionnelle par RMN de MesY105 et de certains dérivés (particulièrement mes36) est envisagée. Ces structures permettraient de mieux comprendre les modifications d’activités observées, donc le mécanisme d’action.

Une colocalisation du récepteur et de la bactériocine permettrait de prouver sans équivoque le rôle de la perméase au mannose EII₄Man dans la sensibilité aux bactériocines anti-Listeria.

De plus, nous avons commencé à repérer des positions clés pour la fonction de la bactériocine (A21, R28, W18, W37 notamment). Une série de dérivés en cette position (par mutagénèse dirigée ou une synthèse chimique du peptide modifié) pourrait être très utile afin de mieux comprendre le rôle du résidu en cette position (interaction avec la membrane, le récepteur, un autre résidu, un autre peptide, structuration ?). Il serait intéressant de pouvoir déterminer les autres points-clés de MesY105 afin de déterminer les résidus pouvant permettre d’obtenir une bactériocine plus active ou avec un spectre d’activité différent présentant un intérêt particulier pour les domaines thérapeutique ou agroalimentaire.

De même, une étude, la plus exhaustive possible, des activités de l’ensemble des bactériocines de sous-classe IIa contre un panel large de bactéries cibles est essentiel à la compréhension de l’activité antagoniste de ces peptides.
Nous pensons aussi qu’une étude de dichroïsme circulaire et de fluorescence de tryptophane en présence de phosphatidyglycérol (liposomes voire vésicules extraits de membranes de Listeria) permettrait de mieux s’approcher du modèle membranaire. Enfin, une étude simple de la fixation des dérivés à la membrane peut être envisagée (Kazazic et coll., 2002).

Nous sommes en possession d’autres séquences nucléotidiques codant pour des dérivés potentiellement intéressants. Leur étude mais aussi celle de doubles mutations seront prochainement effectuées.

Nous savons que le protocole de mutagenèse aléatoire par PCR utilisé ne permet pas d’obtenir toutes les mutations possibles. Il faudrait adapter la méthode avec des concentrations limitantes en dATP (ou dTTP). Mais une partie des mutations serait encore inaccessible en raison des positions des amorces qui recouvrent une partie des extrémités 3’-OH et 5’-P de la séquence codant MesY105 mature.

Enfin, le développement de notre système de sécrétion pour produire des peptides autres que les bactériocines pourrait s’avérer intéressant. Ainsi, la sécrétion du VIP ou de petits peptides à intérêt pharmacologique pourrait être envisagée et permettrait d’obtenir ces molécules dans des délais relativement courts et pour des coûts de production très bas.

Pour conclure, il semble important de rappeler que les bactériocines de la sous-classe IIa, même si elles présentent un intérêt non négligeable pour les industries agroalimentaires et de la Santé, ne peuvent être la panacée au problème de la contamination bactérienne. À l’instar des antibiotiques, des bactéries cibles peuvent muter spontanément et devenir résistantes (il suffit qu’elles n’expriment plus le récepteur). Une combinaison de bactériocines ayant des mécanismes d’action différent (association nisine-MesY105, par exemple), couplée à d’autres paramètres (température, pH…) est donc indispensable pour assurer une bonne sécurité à l’encontre des agents infectieux.
ANNEXES
Annexe 1: Séquence des gènes mesY et mesI et position d’une partie des amorces utilisées.

Les séquences consensus promotrices (boîtes -10 et -35) et la séquence de Shine-Dalgarno (SD) sont surlignées en bleu. Les amorces utilisées sont représentées par une flèche noire. Les amorces PmesY/PA-1 et PmesY/PA-1 comp ne sont pas représentés ici par soucis de clarté de la figure.

Les codons de départ sont soulignés et les codons STOP sont ombrés.

Référence: X81803. L.mesenteroides m...[gi:609082]

- **lacIq**: gène codant le répresseur de l’expression basale de Ptac ; **Ptac**: promoteur « lac » inductible à l’IPTG ;
- **malE**: gène codant la MBP ; **lacZa**: gène codant la β-galactosidase ; **ApR**: gène de résistance à l’ampicilline,
- **M13 ori**: origine de réplication du phage M13 ; **ColEl ori**: origine de réplication chez E. coli ; **rop**: gène codant un régulateur de la réplication ColEl.

lacZ : gène codant la β-galactosidase ; Amp' : gène de résistance à l'ampicilline, ori : origine de réplication chez E. coli ; f1 ori : origine de réplication du phage f1.
Référence : Promega
Annexe 4: Cartes génétiques des plasmides pFBYC04 et pDMJF01.

mesI: gène codant la protéine d’immunité associée à MesY105; *mesY*: gène codant MesY105; *mesC*: gène codant une protéine inconnue; *mesD*: gène codant l’ABC-transporteur de MesY105; *mesE*: gène codant la protéine accessoire du DTS de MesY105; *mesF*: gène codant une protéine inconnue; *mesH*: gène codant la protéine d’immunité associée à MesB105; *EryR*: gène de résistance à l’érythromycine; *ori(pAMb1)*: origine de réplication chez les bactéries à Gram positif; *ori(p15A)*: origine de réplication chez E. coli.

lacZ : gène codant la β-galactosidase ; AmR : gène de résistance à l’ampicilline, CmR : gène de résistance au chloramphénicol.
Annexe 6: Carte génétique du plasmide pDMJF :YI.

mesI : gène codant la protéine d’immunité associée à MesY105 ; **mesY** : gène codant MesY105 ; **lacZ** : gène codant la β-galactosidase ; **AmpR** : gène de résistance à l’ampicilline, **CmR** : gène de résistance au chloramphénicol.

Le gène lacZ est interrompu par l’insertion de l’opéron mesYI.
Annexe 7: Carte génétique et détail du MCS du vecteur de clonage pCR-Blunt.

Référence : Invitrogen.
Annexe 8: Séquence des gènes *pedA* et *pedB* et position des amorces utilisées.

Les séquences consensus promotrices (boîtes -10 et -35) sont surlignées en bleu. Les amorces utilisées sont représentées par une flèche noire. Les codons de départ sont soulignés et les codons STOP sont ombrés.

Référence: U02482. Pediococcus acid...[gi:407296]
Annexe 9: Cartes génétiques des plasmides pDMJF02 et pDMJF03.

mesC : gène codant une protéine inconnue, **mesD** : gène codant l’ABC-transporteur de MesY105 ; **mesE** : gène codant la protéine accessoire du DTS de MesY105 ; **mesF** : gène codant une protéine inconnue ; **mesH** : gène codant la protéine d’immunité associée à MesB105 ; **erm** : gène de résistance à l’érythromycine ; **ori(pAMb1)** : origine de réplication chez les bactéries à Gram positif ; **ori(p15A)** : origine de réplication chez E. coli.
REFERENCES BIBLIOGRAPHIQUES

Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene.

Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. *Microbiology.*
147, Pt 3, 643-51.

Horn, N., Martinez, M. I., Martinez, J. M., Hernandez, P. E., Gasson, M. J., Rodriguez,

Horn, N., Martinez, M. I., Martinez, J. M., Hernandez, P. E., Gasson, M. J., Rodriguez,

Howell, T. H., Fiorellini, J. P., Blackburn, P., Projan, S. J., de la Harpe, J. et Williams,
R. C. (1993). The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque

cluster from *Lactobacillus sake* Lb674 and its expression in sakacin-negative *Lb. sake* strains.

Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E., Hillier, A. J.,
chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by

Jacob, F., Lwoff, A., Siminovitch, A. et Wollmann, E. (1953). Définitions de quelques

Résumé

La mésentéricine Y105 est une bactériocine de sous-classe IIa produite par *Leuconostoc mesenteroides* Y105. Pour comprendre le mécanisme de l’activité anti-Listeria de ce peptide et plus généralement des bactériocines de classe IIa, l’étude des relations existant entre la structure et la fonction de ce peptide a été envisagée. Dans ce but, une collection de mésentéricines Y105 modifiées au niveau d’un résidu a été produite.

Afin d’obtenir ces dérivés de bactériocine, une méthode de mutagenèse aléatoire par PCR a été mise en place pour générer des séquences d’ADN, codant la bactériocine mature, modifiées sur un seul codon.

Dans un deuxième temps, une méthode de production hétérologue de ces peptides mutés a été développée en utilisant d’une part un vecteur portant les gènes de structure des bactériocines, et d’autre part, un vecteur permettant l’expression de l’immunité et du transport de ces peptides. Un outil de production universelle de peptide a été élaboré.

L’étude de l’impact des mutations sur l’activité antagoniste, la structure secondaire (analysée par dichroïsme circulaire en présence de trifluoroéthanol ou de micelles de lysophosphatidylcholine), la structure tridimensionnelle (prédite) et l’interaction de la mésentéricine Y105 avec des environnements mimant les membranes cibles (méthode d’extinction de la fluorescence intrinsèque du tryptophane) a été réalisée. Enfin, une analyse par résonance magnétique nucléaire (RMN) a été effectuée sur la bactériocine sauvage pour déterminer sa structure tridimensionnelle.

De l’ensemble de ces données, un modèle d’action est proposé pour la mésentéricine Y105, ce modèle peut être étendu aux bactériocines de structure proche.

Mots-clés : bactérie lactique; antagonisme bactérien; bactériocines; *Listeria*; dichroïsme circulaire; RMN; fluorescence du tryptophane; expression hétérologue; mutagenèse aléatoire.

Discipline: Aspects Moléculaires et Cellulaires de la Biologie

Adresse : Laboratoire de Microbiologie fondamentale et appliquée, IBMIG, 40 avenue du recteur Pineau, 86022 Poitiers Cedex, France

Abstract

Mesentericin Y105 is a sub-class IIa bacteriocin produced by *Leuconostoc mesenteroides* Y105. In an attempt to understand the mechanism of its anti-listerial activity, we investigated the peptides structure-function relationship. For this purpose, a bank of mesentericins Y105 peptide derivatives was created with modifications at single positions of the parent peptide.

Peptide derivatives were generated using, randomly primed PCR mutagenesis to create single mutations in the DNA sequences that encode the mature peptide.

A method for heterologous production based on a two component system with one vector harbouring structural gene, and one other encoding the immunity protein and transport system was optimized .Thus, an universal peptide secretion tool has been established.

The impact of mutations was studied for the mesentericin Y105 derivatives, by accessing there activity, secondary structure (obtained by circular dichroism in trifluoroethanol and lysophosphatidylcholine micelles), predicted tertiary structure and interaction with anisotropic environment (method of tryptophan blue shift). Finally, a nuclear magnetic resonance analysis was used to determine the native bacteriocin structure.

A general model for the mechanism of action of mesentericin Y105 and its related bacteriocins is proposed.

Keywords : lactic acid bacteria; bacterial antagonism; bacteriocins; Listeria; circular dichroism; NMR; tryptophan blue shift; heterologous production; randomly mutagenesis.

Category : Molecular and cellular aspects of Biology
Address: Laboratoire de Microbiologie fondamentale et appliquée, IBMIG, 40 avenue du recteur Pineau, 86022 Poitiers Cedex, France