Inégalités de Markov-Bernstein en L2 : les outils mathématiques d'encadrement de la constante de Markov-Bernstein

Abstract : The aim of this thesis is to find the lower and upper bounds of the constant whichappears in the Markov Bernstein inequalities in L2 norm associated to the Jacobiand generalized Gegenbauer measures. In this work the qd algorithm is studied forobtaining some properties about the asymptotic behavior of some eigenvalues ofband matrices and block band matrices. These eigenvalues are linked to the MarkovBernstein constant. The application of all the tools developed for obtaining lowerand upper bounds of the Markov Bernstein constant in L2 norm associated to thegeneralized Gegenbauer measure is given.
Document type :
Theses
Mathematics [math]. INSA de Rouen, 2010. French. <NNT : 2010ISAM0017>


https://tel.archives-ouvertes.fr/tel-00557914
Contributor : Abes Star <>
Submitted on : Thursday, January 20, 2011 - 11:53:58 AM
Last modification on : Thursday, May 22, 2014 - 1:11:45 PM

File

ThA_se-Sadik.pdf
fileSource_public_star

Identifiers

  • HAL Id : tel-00557914, version 1

Collections

Citation

Mohamed Sadik. Inégalités de Markov-Bernstein en L2 : les outils mathématiques d'encadrement de la constante de Markov-Bernstein. Mathematics [math]. INSA de Rouen, 2010. French. <NNT : 2010ISAM0017>. <tel-00557914>

Export

Share

Metrics

Consultation de
la notice

288

Téléchargement du document

219