G. E. Moore, Cramming more components onto integrated circuits. Electronics, avril 1965

E. C. Jones and E. Ishida, Shallow junction doping technologies for ULSI, Materials Science and Engineering: R: Reports, vol.24, issue.1-2, 1998.
DOI : 10.1016/S0927-796X(98)00013-8

V. Vervisch, Etude et réalisation de jonctions ultra fines P + /N par la technique d'implantation d'ions par immersion plasma. Application aux cellules photovoltaïques, 2007.

G. Masetti, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983.
DOI : 10.1109/T-ED.1983.21207

M. Hernandez, Procédé laser de réalisation de jonctions ultra-minces pour la microélectronique silicium : étude expérimentale, modélisation et tests de faisabilité, 2005.

S. Heo and H. Hwang, Ultrashallow (<10nm) p+???n junction formed by B18H22 cluster ion implantation and excimer laser annealing, Applied Physics Letters, vol.89, issue.24, p.243516, 2006.
DOI : 10.1063/1.2405863

R. C. Jaeger, Introduction to Microelectronic Fabrication, 1993.

G. Hobler and G. Otto, Amorphous pocket model for silicon based on molecular dynamics simulations, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.206, pp.81-84, 2003.
DOI : 10.1016/S0168-583X(03)00682-7

M. Minondo, Préamorphisation du silicium par l'ion germanium et formation de jonctions ultra-fines P +, 1994.

M. Minondo, The impact of the substrate preamorphisation on the electrical performances of p+/n silicon junction diodes, Microelectronics Reliability, vol.37, issue.1, pp.53-60, 1997.
DOI : 10.1016/0026-2714(96)00238-7

H. C. Webber, Computer sumulation of high speed melting of amorphous silicon

R. N. Ghoshtagore, Low concentration diffusion in silicon under sealed tube conditions, Solid-State Electronics, vol.15, issue.10, p.1113, 1972.
DOI : 10.1016/0038-1101(72)90171-2

R. N. Ghoshtagore, Dopant Diffusion in Silicon. III. Acceptors, Physical Review B, vol.3, issue.8, p.2507, 1971.
DOI : 10.1103/PhysRevB.3.2507

R. S. Fair, The Diffusion of Ion-Implanted Arsenic in Silicon, Journal of The Electrochemical Society, vol.122, issue.12, p.1689, 1975.
DOI : 10.1149/1.2134111

R. N. Ghoshtagore, Donor Diffusion Dynamics in Silicon, Physical Review B, vol.3, issue.2, p.397, 1971.
DOI : 10.1103/PhysRevB.3.397

A. T. Fiory, Recent developments in rapid thermal processing, Journal of Electronic Materials, vol.146, issue.10, p.31981, 2002.
DOI : 10.1007/s11664-002-0031-9

J. Foggiato and W. S. Yoo, Millisecond flash annealing: Applications for USJ formation and optimization of device electrical characteristics, Materials Science and Engineering: B, vol.124, issue.125, pp.124-125219, 2005.
DOI : 10.1016/j.mseb.2005.08.077

A. Agarwal, Ultra-shallow junction formation by spike annealing in a lamp-based or hot-walled rapid thermal annealing system: effect of ramp-up rate, Materials Science in Semiconductor Processing, vol.1, issue.3-4, pp.237-241, 1998.
DOI : 10.1016/S1369-8001(98)00030-4

G. Mannino, Effect of heating ramp rates on transient enhanced diffusion in ion-implanted silicon, Applied Physics Letters, vol.78, issue.7, p.889, 2001.
DOI : 10.1063/1.1347397

W. Skorupa, Advanced thermal processing of semiconductor materials in the millisecond range, Vacuum, vol.78, issue.2-4, pp.673-677, 2005.
DOI : 10.1016/j.vacuum.2005.01.105

W. Lerch, Advanced activation of ultra-shallow junctions using flash-assisted RTP, Materials Science and Engineering: B, vol.124, issue.125, pp.124-12524, 2005.
DOI : 10.1016/j.mseb.2005.08.047

K. R. Mok, Experimental and simulation study of the flash lamp annealing for boron ultra-shallow junction formation and its stability, Materials Science and Engineering: B, vol.154, issue.155, pp.154-15514, 2008.
DOI : 10.1016/j.mseb.2008.10.013

W. Lerch, Advanced activation trends for boron and arsenic by combinations of single, multiple flash anneals and spike rapid thermal annealing, Materials Science and Engineering: B, vol.154, issue.155, pp.154-1553, 2008.
DOI : 10.1016/j.mseb.2008.08.017

D. Alquier, Jonctions Ultra-Minces P + /N : modélisation, réalisation et caractérisation, 1998.

F. Cristiano, Thermal stability of boron electrical activation in preamorphised ultrashallow junctions, Materials Science and Engineering B, pp.114-15174, 2004.

M. Aboy, Boron activation and redistribution during thermal treatments after solid phase epitaxial regrowth, Materials Science and Engineering: B, vol.124, issue.125, pp.124-125205, 2005.
DOI : 10.1016/j.mseb.2005.08.067

D. Angelo, Amorphous-crystalline interface evolution during Solid Phase Epitaxy Regrowth of SiGe films amorphized by ion implantation, Nucl. Instr. and Meth. in Phys

F. Severac, Jonctions ultra-minces P + /N pour MOS « ultime » : étude de l'impact des défauts cristallins sur la mobilité et l'activation du bore, 2009.

D. Alquier, ) Junctions, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 4A, pp.1999-2003, 1997.
DOI : 10.1143/JJAP.36.1999

M. D. Matthews, The dynamic observation of the formation of defects in silicon under electron and proton irradiation, Philosophical Magazine, vol.17, issue.6, p.1313, 1973.
DOI : 10.1080/14786437308226889

F. Cristiano, Defects evolution and dopant activation anomalies in ion implanted silicon. Nuclear Instruments and Methods in, Physics Research B, vol.253, pp.68-79, 2006.

A. E. Michel, Rapid annealing and the anomalous diffusion of ion implanted boron into silicon, Applied Physics Letters, vol.50, issue.7, p.416, 1987.
DOI : 10.1063/1.98160

F. Boucard, Modélisation de la diffusion des dopants dans le silicium pour la réalisation de jonctions fines, 2003.

A. Claverie, Nucleation, growth and dissolution of extended defects in implanted Si: impact on dopant diffusion, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.147, issue.1-4, pp.1-12, 1999.
DOI : 10.1016/S0168-583X(98)00617-X

E. V. Monakhov, Boron-enhanced diffusion in excimer laser annealed Si, 42] W. Hofker et al. Influence of annealing on the concentration profile of boron implantation in silicon. Appl. Phys. A : Materials Science and Processing, pp.114-115114, 1973.
DOI : 10.1016/j.mseb.2004.07.015

M. Strobel, A kinetic lattice monte-carlo approach to the evolution of boron in silicon. Nuclear Instruments and Methods in, Physics Research B, vol.186, pp.339-343, 2002.

D. and D. Salvador, Experimental investigations of boron diffusion mechanisms in crystalline and amorphous silicon, Materials Science and Engineering B, pp.154-155240, 2008.

F. Cristiano, Clusters formation in ultralow-energy high-dose boron-implanted silicon, Applied Physics Letters, vol.83, issue.26
DOI : 10.1063/1.1637440

D. and D. Salvador, Dissolution kinetics of B clusters in crystalline Si, Materials Science and Engineering B, pp.124-12532, 2005.

M. Aboy, Evolution of boron-interstitial clusters in preamorphized silicon without the contribution of end-of-range defects, Materials Science and Engineering: B, vol.154, issue.155, pp.154-155247, 2008.
DOI : 10.1016/j.mseb.2008.09.034

S. Boninelli, Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy, Applied Physics Letters, vol.91, issue.3, p.31905, 2007.
DOI : 10.1063/1.2757145

P. G. Carey and T. W. Sigmon, In-situ doping of silicon using the gas immersion laser doping (GILD) process, Applied Surface Science, vol.43, issue.1-4, pp.325-332, 1989.
DOI : 10.1016/0169-4332(89)90234-1

G. Kerrien, Gas immersion laser doping (GILD) for ultra-shallow junction formation, Thin Solid Films, vol.453, issue.454, pp.453-454106, 2004.
DOI : 10.1016/j.tsf.2003.11.151

D. Cammilleri, Highly doped Si and Ge formed by GILD (gas immersion laser doping); from GILD to superconducting silicon, Thin Solid Films, vol.517, issue.1, pp.75-79, 2008.
DOI : 10.1016/j.tsf.2008.08.073

URL : https://hal.archives-ouvertes.fr/hal-00761044

L. C. Feldmann and J. W. Mayer, Laser Processing of Thin Films and Microstructures, Materials Science, vol.3, 1987.

M. and V. Allen, Laser-Beam Interraction with materials, Physical Principles and Applications, Materials Science, vol.2, 1987.

F. Torregrosa, Ultra shallow P + /N junctions using plasma immersion ion implantation and laser annealing for sub 0.1 µm CMOS devices. Nuclear Instruments and Methods in, Physics Research B, vol.237, pp.18-24, 2005.

M. Hernandez, Laser thermal processing for ultra shallow junction formation: numerical simulation and comparison with experiments, Applied Surface Science, vol.208, issue.209, pp.208-209345, 2003.
DOI : 10.1016/S0169-4332(02)01395-8

G. Fortunato, Ultra-shallow junction formation by excimer laser annealing and low energy (<1 keV) B implantation : A two-dimensional analysis. Nuclear Instruments and Methods in, Physics Research B, vol.186, pp.401-408, 2002.

A. Florakis, Laser annealing of plasma implanted boron for ultra-shallow junctions in silicon. Nuclear Instruments and Methods in, Physics Research B, vol.253, pp.13-17, 2006.

J. Venturini, Excimer laser thermal processing of ultra-shallow junction: laser pulse duration, Thin Solid Films, vol.453, issue.454, pp.453-454145, 2004.
DOI : 10.1016/j.tsf.2003.11.087

M. Hernandez, Laser thermal processing using an optical coating for ultra shallow junction formation, Materials Science and Engineering: B, vol.114, issue.115, pp.114-115105, 2004.
DOI : 10.1016/j.mseb.2004.07.092

T. Sarnet, Laser doping for microelectronics and microtechnology, Applied Surface Science, vol.247, issue.1-4, pp.537-544, 2005.
DOI : 10.1016/j.apsusc.2005.01.172

E. V. Monakhov, The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon, Applied Physics Letters, vol.87, issue.19, 2005.
DOI : 10.1063/1.2126144

L. Mariucci, Mechanisms of Dopant Redistribution and Retention in Silicon Following Ultra-low Energy Boron Implantation and Excimer Laser Annealing, 32nd European Solid-State Device Research Conference, 2002.
DOI : 10.1109/ESSDERC.2002.195001

S. Coutanson, Mechanisms and application of the Excimer laser doping from spin-on glass sources for USJ fabrication, Applied Surface Science, vol.252, issue.13, pp.4502-4505, 2006.
DOI : 10.1016/j.apsusc.2005.07.163

URL : https://hal.archives-ouvertes.fr/hal-00089369

E. V. Monakhov, Boron distribution in silicon after excimer laser annealing with multiple pulses, Materials Science and Engineering B, pp.124-125228, 2005.

G. Kerrien, Optical characterization of laser processed ultra-shallow junctions, Applied Surface Science, vol.208, issue.209, pp.208-209277, 2003.
DOI : 10.1016/S0169-4332(02)01354-5

V. Vervisch, Laser activation of Ultra Shallow Junctions (USJ) doped by Plasma Immersion Ion Implantation (PIII), Applied Surface Science, vol.255, issue.10, pp.5647-5650, 2009.
DOI : 10.1016/j.apsusc.2008.11.010

K. K. Ong, Dopant activation in subamorphized silicon upon laser annealing, Applied Physics Letters, vol.89, issue.8, p.82101, 2006.
DOI : 10.1063/1.2335950

S. K. Earles, Nonmelt Laser Annealing of 1 Kev Boron Implanted Silicon, MRS Proceedings, vol.669, 2002.
DOI : 10.1063/1.127041

A. Florakis, Advanced front-end processes for the 45 nm cmos technology node, Materials Science and Engineering B, pp.154-15539, 2008.

E. J. Collart, Advanced front-end processes for the 45 nm cmos technology node, Materials Science and Engineering B, pp.114-115118, 2004.

A. Colin, Simulation of the sub-melt laser anneal process in 45 cmos technologyapplication to the thermal pattern effects, Materials Science and Engineering B, pp.154-15531, 2008.

Y. Clarysse, On the analysis of the activation mechanisms of sub-melt laser anneals, Materials Science and Engineering: B, vol.154, issue.155, pp.154-15524, 2008.
DOI : 10.1016/j.mseb.2008.09.038

J. Borland, 22 nm node p + usj using xe-pai and laser annealing, INSIGHT, 2009.

C. Hatem, Advanced usj and Si-C formation through damage engineering and msanneal, INSIGHT, 2009.

S. A. Akhamanov, Non linear diagnostics of laser-excited surfaces, 1989.

H. Bracht, Silicon Self-Diffusion in Isotope Heterostructures, Physical Review Letters, vol.81, issue.2, p.392, 1998.
DOI : 10.1103/PhysRevLett.81.393

R. F. Wood, Macroscopic theory of pulsed-laser annealing. III. Nonequilibrium segregation effects, Physical Review B, vol.25, issue.4, pp.154-1552786, 1982.
DOI : 10.1103/PhysRevB.25.2786

R. F. Wood, Modeling of nonequilibrium melting and solidification in laser-irradiated materials, Physical Review B, vol.34, issue.4, p.2606, 1986.
DOI : 10.1103/PhysRevB.34.2606

J. J. Bruines, Time???resolved reflectivity measurements during explosive crystallization of amorphous silicon, Applied Physics Letters, vol.49, issue.18, p.1160, 1986.
DOI : 10.1063/1.97453

J. Y. Tsao, Crystallization instability at the amorphous-silicon/liquid-silicon interface, Physical Review Letters, vol.58, issue.26
DOI : 10.1103/PhysRevLett.58.2782

P. S. Peercy, Explosive crystallization in amorphous Si initiated by long pulse width laser irradiation, Applied Physics Letters, vol.52, issue.3, p.203, 1988.
DOI : 10.1063/1.99519

V. Vervisch, Realization of ultrashallow junctions by plasma immersion ion implantation and laser annealing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.1, pp.286-292, 2008.
DOI : 10.1116/1.2834555

. Palik, Handbook of Optical, Constants and Solids, volume 4 of L'électronique ultime, 1998.

R. F. Adamsky, Synthesis and crystallography of the wurtzite form of silicon carbide, Zeitschrift f??r Kristallographie, vol.111, issue.1-6, pp.350-356, 1959.
DOI : 10.1524/zkri.1959.111.1-6.350

M. Shadt, Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide, Applied Physics Letters, vol.65, issue.24
DOI : 10.1063/1.112455

O. Eryu, Impurity Activation in N+ Ion-Implanted 6H-SiC with Pulsed Laser Annealing Method, MRS Proceedings, vol.74, 2001.
DOI : 10.1063/1.102735

S. G. Sridhara, Absorption coefficient of 4H silicon carbide from 3900 to 3250 ? A, J

R. I. Scace, Solubility of Carbon in Silicon and Germanium, The Journal of Chemical Physics, vol.30, issue.6, p.1551, 1959.
DOI : 10.1063/1.1730236

E. Wendler, Ion-beam induced damage and annealing behaviour in SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.141, issue.1-4, p.105, 1998.
DOI : 10.1016/S0168-583X(98)00083-4

W. J. Weber, The irradiation-induced crystalline-to-amorphous phase transition in ??-SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.116, issue.1-4, p.322, 1996.
DOI : 10.1016/0168-583X(96)00066-3

T. Troffer, Doping of SiC by Implantation of Boron and Aluminum, physica status solidi (a), vol.53, issue.1, p.277, 1997.
DOI : 10.1002/1521-396X(199707)162:1<277::AID-PSSA277>3.0.CO;2-C

E. M. Handy, Al, B, and Ga ion-implantation doping of SiC, Journal of Electronic Materials, vol.264, issue.268, p.1340, 2000.
DOI : 10.1007/s11664-000-0135-z

C. Dutto, Formation et caracterisation de jonctions PN dans du SiC-4H par implantation ionique et recuit laser, 2003.

S. Y. Chou, Annealing of implantation damage and redistribution of impurities in SiC using a pulsed excimer laser, Applied Physics Letters, vol.56, issue.6, pp.530-532, 1990.
DOI : 10.1063/1.102735

C. Dutto, Numerical and experimental analysis of pulsed excimer laser processing of silicon carbide, Applied Surface Science, vol.184, issue.1-4, pp.362-366, 2001.
DOI : 10.1016/S0169-4332(01)00518-9

C. Boutopoulos, Laser annealing of Al implanted silicon carbide: Structural and optical characterization, Applied Surface Science, vol.253, issue.19, pp.7912-7916, 2007.
DOI : 10.1016/j.apsusc.2007.02.070

Z. Tian, Effects of different laser sources and doping methods used to dope silicon carbide, Acta Materialia, vol.53, issue.9, pp.2835-2844, 2005.
DOI : 10.1016/j.actamat.2005.02.043

C. Dutto, Long-pulse duration excimer laser annealing of Al+ ion implanted 4H-SiC for pn junction formation, Applied Surface Science, vol.208, issue.209, pp.208-209292, 2003.
DOI : 10.1016/S0169-4332(02)01357-0

J. Martan, Nanosecond pulse laser melting investigation by IR radiometry and reflection-based methods, Applied Surface Science, vol.253, issue.3, pp.1170-1177, 2006.
DOI : 10.1016/j.apsusc.2006.01.077

URL : https://hal.archives-ouvertes.fr/hal-00443062

C. Kuo, Effects of Si film thickness and substrate temperature on melt duration observed in excimer laser-induced crystallization of amorphous Si thin films using in-situ transient reflectivity measurements, Thin Solid Films, vol.515, issue.20-21, pp.8094-8100, 2007.
DOI : 10.1016/j.tsf.2007.04.124

G. E. Jellison, Measurements of the optical properties of liquid silicon and germanium using nanosecond time???resolved ellipsometry, Applied Physics Letters, vol.51, issue.5, pp.352-354, 1987.
DOI : 10.1063/1.98438

G. E. Jellison, Time???resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation, Applied Physics Letters, vol.47, issue.7, pp.718-720, 1985.
DOI : 10.1063/1.96014

W. E. Beadle, Quick Reference Manual for Silicon Integrated Circuit Technology, 1985.

J. Deplace, Mesure de résistivité par la méthode d'induction en courant continu, 1964.

A. P. Schuetze, A laboratory on the four-point probe technique, American Journal of Physics, vol.72, issue.2, pp.149-153, 2004.
DOI : 10.1119/1.1629085

T. Clarysse, Impact of probe penetration on the electrical characterization of sub-50 nm profiles, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.1, pp.459-466, 2001.
DOI : 10.1116/1.1432965

E. Landi, Electrical characterization of p+/n shallow junctions obtained by boron implantation into preamorphized silicon, Solid-State Electronics, vol.29, issue.11, pp.1181-187, 1986.
DOI : 10.1016/0038-1101(86)90062-6

V. N. Faifer, Non-contact Electrical Measurements of Sheet Resistance and Leakage Current Density for Ultra-shallow (and other) Junctions, MRS Symp. C Proc. 810 C11.9, 2004.
DOI : 10.1557/PROC-810-C11.9

V. N. Faifer, Characterization of ultrashallow junctions using frequency-dependent junction photovoltage and its lateral attenuation, Applied Physics Letters, vol.89, issue.15, p.151123, 2006.
DOI : 10.1063/1.2362596

E. Fogarassy, Excimer laser induced melting of heavily doped silicon: A contribution to the optimization of the laser doping process, Applied Surface Science, vol.43, issue.1-4, pp.316-320, 1989.
DOI : 10.1016/0169-4332(89)90232-8

S. De-unamuno, A thermal description of the melting of c- and a-silicon under pulsed excimer lasers, Applied Surface Science, vol.36, issue.1-4, pp.1-11, 1989.
DOI : 10.1016/0169-4332(89)90894-5

URL : https://hal.archives-ouvertes.fr/in2p3-00016182

M. O. Thompson, Silicon Melt, Regrowth, and Amorphization Velocities During Pulsed Laser Irradiation, Physical Review Letters, vol.50, issue.12, p.896, 1983.
DOI : 10.1103/PhysRevLett.50.896

O. P. Uteza, Laser beam quality of high pulse repetition frequency excimer lasers, Optics Communications, vol.102, issue.5-6, pp.523-531, 1993.
DOI : 10.1016/0030-4018(93)90432-5

URL : https://hal.archives-ouvertes.fr/hal-00195520

O. P. Uteza, Improvement of average laser power and beam divergence of a high pulse repetition frequency excimer laser, Applied Physics B: Lasers and Optics, vol.66, issue.1, pp.31-37, 1998.
DOI : 10.1007/s003400050353

URL : https://hal.archives-ouvertes.fr/hal-00195561

I. Périchaud, LBIC investigation of impurity-dislocation interaction in FZ silicon wafers, Materials Science and Engineering: B, vol.42, issue.1-3, pp.265-269, 1996.
DOI : 10.1016/S0921-5107(96)01719-9

N. M. Thantsha, Opto-electronic analysis of silicon solar cells by LBIC investigations and current???voltage characterization, Physica B: Condensed Matter, vol.404, issue.22, pp.4445-4448, 2009.
DOI : 10.1016/j.physb.2009.09.010

V. Sirotkin, Multi-electrode LBIC method for characterization of 1D ???hidden??? defects, Materials Science and Engineering: B, vol.91, issue.92, pp.91-92260, 2002.
DOI : 10.1016/S0921-5107(01)01024-8

P. Vorasayan, Multi-laser LBIC system for thin film PV module characterisation, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.917-921, 2009.
DOI : 10.1016/j.solmat.2008.10.019

L. Vivet, Etude de la pulvérisation laser douce des semi-conducteurs III-V GaAs et Ga1-x Alx As et de leurs heterostructures, 1996.

X. R. Zhang, Finite Element Analysis of Pulsed Laser Bending: The Effect of Melting and Solidification, Journal of Applied Mechanics, vol.71, issue.3, p.321, 2004.
DOI : 10.1115/1.1753268

X. R. Zhang, Numerical Simulation of Pulsed Laser Bending, Journal of Applied Mechanics, vol.69, issue.3, pp.254-260, 2004.
DOI : 10.1115/1.1459070