Cramming more components onto integrated circuits. Electronics, avril 1965 ,
Shallow junction doping technologies for ULSI, Materials Science and Engineering: R: Reports, vol.24, issue.1-2, 1998. ,
DOI : 10.1016/S0927-796X(98)00013-8
Etude et réalisation de jonctions ultra fines P + /N par la technique d'implantation d'ions par immersion plasma. Application aux cellules photovoltaïques, 2007. ,
Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983. ,
DOI : 10.1109/T-ED.1983.21207
Procédé laser de réalisation de jonctions ultra-minces pour la microélectronique silicium : étude expérimentale, modélisation et tests de faisabilité, 2005. ,
Ultrashallow (<10nm) p+???n junction formed by B18H22 cluster ion implantation and excimer laser annealing, Applied Physics Letters, vol.89, issue.24, p.243516, 2006. ,
DOI : 10.1063/1.2405863
Introduction to Microelectronic Fabrication, 1993. ,
Amorphous pocket model for silicon based on molecular dynamics simulations, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.206, pp.81-84, 2003. ,
DOI : 10.1016/S0168-583X(03)00682-7
Préamorphisation du silicium par l'ion germanium et formation de jonctions ultra-fines P +, 1994. ,
The impact of the substrate preamorphisation on the electrical performances of p+/n silicon junction diodes, Microelectronics Reliability, vol.37, issue.1, pp.53-60, 1997. ,
DOI : 10.1016/0026-2714(96)00238-7
Computer sumulation of high speed melting of amorphous silicon ,
Low concentration diffusion in silicon under sealed tube conditions, Solid-State Electronics, vol.15, issue.10, p.1113, 1972. ,
DOI : 10.1016/0038-1101(72)90171-2
Dopant Diffusion in Silicon. III. Acceptors, Physical Review B, vol.3, issue.8, p.2507, 1971. ,
DOI : 10.1103/PhysRevB.3.2507
The Diffusion of Ion-Implanted Arsenic in Silicon, Journal of The Electrochemical Society, vol.122, issue.12, p.1689, 1975. ,
DOI : 10.1149/1.2134111
Donor Diffusion Dynamics in Silicon, Physical Review B, vol.3, issue.2, p.397, 1971. ,
DOI : 10.1103/PhysRevB.3.397
Recent developments in rapid thermal processing, Journal of Electronic Materials, vol.146, issue.10, p.31981, 2002. ,
DOI : 10.1007/s11664-002-0031-9
Millisecond flash annealing: Applications for USJ formation and optimization of device electrical characteristics, Materials Science and Engineering: B, vol.124, issue.125, pp.124-125219, 2005. ,
DOI : 10.1016/j.mseb.2005.08.077
Ultra-shallow junction formation by spike annealing in a lamp-based or hot-walled rapid thermal annealing system: effect of ramp-up rate, Materials Science in Semiconductor Processing, vol.1, issue.3-4, pp.237-241, 1998. ,
DOI : 10.1016/S1369-8001(98)00030-4
Effect of heating ramp rates on transient enhanced diffusion in ion-implanted silicon, Applied Physics Letters, vol.78, issue.7, p.889, 2001. ,
DOI : 10.1063/1.1347397
Advanced thermal processing of semiconductor materials in the millisecond range, Vacuum, vol.78, issue.2-4, pp.673-677, 2005. ,
DOI : 10.1016/j.vacuum.2005.01.105
Advanced activation of ultra-shallow junctions using flash-assisted RTP, Materials Science and Engineering: B, vol.124, issue.125, pp.124-12524, 2005. ,
DOI : 10.1016/j.mseb.2005.08.047
Experimental and simulation study of the flash lamp annealing for boron ultra-shallow junction formation and its stability, Materials Science and Engineering: B, vol.154, issue.155, pp.154-15514, 2008. ,
DOI : 10.1016/j.mseb.2008.10.013
Advanced activation trends for boron and arsenic by combinations of single, multiple flash anneals and spike rapid thermal annealing, Materials Science and Engineering: B, vol.154, issue.155, pp.154-1553, 2008. ,
DOI : 10.1016/j.mseb.2008.08.017
Jonctions Ultra-Minces P + /N : modélisation, réalisation et caractérisation, 1998. ,
Thermal stability of boron electrical activation in preamorphised ultrashallow junctions, Materials Science and Engineering B, pp.114-15174, 2004. ,
Boron activation and redistribution during thermal treatments after solid phase epitaxial regrowth, Materials Science and Engineering: B, vol.124, issue.125, pp.124-125205, 2005. ,
DOI : 10.1016/j.mseb.2005.08.067
Amorphous-crystalline interface evolution during Solid Phase Epitaxy Regrowth of SiGe films amorphized by ion implantation, Nucl. Instr. and Meth. in Phys ,
Jonctions ultra-minces P + /N pour MOS « ultime » : étude de l'impact des défauts cristallins sur la mobilité et l'activation du bore, 2009. ,
) Junctions, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 4A, pp.1999-2003, 1997. ,
DOI : 10.1143/JJAP.36.1999
The dynamic observation of the formation of defects in silicon under electron and proton irradiation, Philosophical Magazine, vol.17, issue.6, p.1313, 1973. ,
DOI : 10.1080/14786437308226889
Defects evolution and dopant activation anomalies in ion implanted silicon. Nuclear Instruments and Methods in, Physics Research B, vol.253, pp.68-79, 2006. ,
Rapid annealing and the anomalous diffusion of ion implanted boron into silicon, Applied Physics Letters, vol.50, issue.7, p.416, 1987. ,
DOI : 10.1063/1.98160
Modélisation de la diffusion des dopants dans le silicium pour la réalisation de jonctions fines, 2003. ,
Nucleation, growth and dissolution of extended defects in implanted Si: impact on dopant diffusion, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.147, issue.1-4, pp.1-12, 1999. ,
DOI : 10.1016/S0168-583X(98)00617-X
Boron-enhanced diffusion in excimer laser annealed Si, 42] W. Hofker et al. Influence of annealing on the concentration profile of boron implantation in silicon. Appl. Phys. A : Materials Science and Processing, pp.114-115114, 1973. ,
DOI : 10.1016/j.mseb.2004.07.015
A kinetic lattice monte-carlo approach to the evolution of boron in silicon. Nuclear Instruments and Methods in, Physics Research B, vol.186, pp.339-343, 2002. ,
Experimental investigations of boron diffusion mechanisms in crystalline and amorphous silicon, Materials Science and Engineering B, pp.154-155240, 2008. ,
Clusters formation in ultralow-energy high-dose boron-implanted silicon, Applied Physics Letters, vol.83, issue.26 ,
DOI : 10.1063/1.1637440
Dissolution kinetics of B clusters in crystalline Si, Materials Science and Engineering B, pp.124-12532, 2005. ,
Evolution of boron-interstitial clusters in preamorphized silicon without the contribution of end-of-range defects, Materials Science and Engineering: B, vol.154, issue.155, pp.154-155247, 2008. ,
DOI : 10.1016/j.mseb.2008.09.034
Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy, Applied Physics Letters, vol.91, issue.3, p.31905, 2007. ,
DOI : 10.1063/1.2757145
In-situ doping of silicon using the gas immersion laser doping (GILD) process, Applied Surface Science, vol.43, issue.1-4, pp.325-332, 1989. ,
DOI : 10.1016/0169-4332(89)90234-1
Gas immersion laser doping (GILD) for ultra-shallow junction formation, Thin Solid Films, vol.453, issue.454, pp.453-454106, 2004. ,
DOI : 10.1016/j.tsf.2003.11.151
Highly doped Si and Ge formed by GILD (gas immersion laser doping); from GILD to superconducting silicon, Thin Solid Films, vol.517, issue.1, pp.75-79, 2008. ,
DOI : 10.1016/j.tsf.2008.08.073
URL : https://hal.archives-ouvertes.fr/hal-00761044
Laser Processing of Thin Films and Microstructures, Materials Science, vol.3, 1987. ,
Laser-Beam Interraction with materials, Physical Principles and Applications, Materials Science, vol.2, 1987. ,
Ultra shallow P + /N junctions using plasma immersion ion implantation and laser annealing for sub 0.1 µm CMOS devices. Nuclear Instruments and Methods in, Physics Research B, vol.237, pp.18-24, 2005. ,
Laser thermal processing for ultra shallow junction formation: numerical simulation and comparison with experiments, Applied Surface Science, vol.208, issue.209, pp.208-209345, 2003. ,
DOI : 10.1016/S0169-4332(02)01395-8
Ultra-shallow junction formation by excimer laser annealing and low energy (<1 keV) B implantation : A two-dimensional analysis. Nuclear Instruments and Methods in, Physics Research B, vol.186, pp.401-408, 2002. ,
Laser annealing of plasma implanted boron for ultra-shallow junctions in silicon. Nuclear Instruments and Methods in, Physics Research B, vol.253, pp.13-17, 2006. ,
Excimer laser thermal processing of ultra-shallow junction: laser pulse duration, Thin Solid Films, vol.453, issue.454, pp.453-454145, 2004. ,
DOI : 10.1016/j.tsf.2003.11.087
Laser thermal processing using an optical coating for ultra shallow junction formation, Materials Science and Engineering: B, vol.114, issue.115, pp.114-115105, 2004. ,
DOI : 10.1016/j.mseb.2004.07.092
Laser doping for microelectronics and microtechnology, Applied Surface Science, vol.247, issue.1-4, pp.537-544, 2005. ,
DOI : 10.1016/j.apsusc.2005.01.172
The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon, Applied Physics Letters, vol.87, issue.19, 2005. ,
DOI : 10.1063/1.2126144
Mechanisms of Dopant Redistribution and Retention in Silicon Following Ultra-low Energy Boron Implantation and Excimer Laser Annealing, 32nd European Solid-State Device Research Conference, 2002. ,
DOI : 10.1109/ESSDERC.2002.195001
Mechanisms and application of the Excimer laser doping from spin-on glass sources for USJ fabrication, Applied Surface Science, vol.252, issue.13, pp.4502-4505, 2006. ,
DOI : 10.1016/j.apsusc.2005.07.163
URL : https://hal.archives-ouvertes.fr/hal-00089369
Boron distribution in silicon after excimer laser annealing with multiple pulses, Materials Science and Engineering B, pp.124-125228, 2005. ,
Optical characterization of laser processed ultra-shallow junctions, Applied Surface Science, vol.208, issue.209, pp.208-209277, 2003. ,
DOI : 10.1016/S0169-4332(02)01354-5
Laser activation of Ultra Shallow Junctions (USJ) doped by Plasma Immersion Ion Implantation (PIII), Applied Surface Science, vol.255, issue.10, pp.5647-5650, 2009. ,
DOI : 10.1016/j.apsusc.2008.11.010
Dopant activation in subamorphized silicon upon laser annealing, Applied Physics Letters, vol.89, issue.8, p.82101, 2006. ,
DOI : 10.1063/1.2335950
Nonmelt Laser Annealing of 1 Kev Boron Implanted Silicon, MRS Proceedings, vol.669, 2002. ,
DOI : 10.1063/1.127041
Advanced front-end processes for the 45 nm cmos technology node, Materials Science and Engineering B, pp.154-15539, 2008. ,
Advanced front-end processes for the 45 nm cmos technology node, Materials Science and Engineering B, pp.114-115118, 2004. ,
Simulation of the sub-melt laser anneal process in 45 cmos technologyapplication to the thermal pattern effects, Materials Science and Engineering B, pp.154-15531, 2008. ,
On the analysis of the activation mechanisms of sub-melt laser anneals, Materials Science and Engineering: B, vol.154, issue.155, pp.154-15524, 2008. ,
DOI : 10.1016/j.mseb.2008.09.038
22 nm node p + usj using xe-pai and laser annealing, INSIGHT, 2009. ,
Advanced usj and Si-C formation through damage engineering and msanneal, INSIGHT, 2009. ,
Non linear diagnostics of laser-excited surfaces, 1989. ,
Silicon Self-Diffusion in Isotope Heterostructures, Physical Review Letters, vol.81, issue.2, p.392, 1998. ,
DOI : 10.1103/PhysRevLett.81.393
Macroscopic theory of pulsed-laser annealing. III. Nonequilibrium segregation effects, Physical Review B, vol.25, issue.4, pp.154-1552786, 1982. ,
DOI : 10.1103/PhysRevB.25.2786
Modeling of nonequilibrium melting and solidification in laser-irradiated materials, Physical Review B, vol.34, issue.4, p.2606, 1986. ,
DOI : 10.1103/PhysRevB.34.2606
Time???resolved reflectivity measurements during explosive crystallization of amorphous silicon, Applied Physics Letters, vol.49, issue.18, p.1160, 1986. ,
DOI : 10.1063/1.97453
Crystallization instability at the amorphous-silicon/liquid-silicon interface, Physical Review Letters, vol.58, issue.26 ,
DOI : 10.1103/PhysRevLett.58.2782
Explosive crystallization in amorphous Si initiated by long pulse width laser irradiation, Applied Physics Letters, vol.52, issue.3, p.203, 1988. ,
DOI : 10.1063/1.99519
Realization of ultrashallow junctions by plasma immersion ion implantation and laser annealing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.1, pp.286-292, 2008. ,
DOI : 10.1116/1.2834555
Handbook of Optical, Constants and Solids, volume 4 of L'électronique ultime, 1998. ,
Synthesis and crystallography of the wurtzite form of silicon carbide, Zeitschrift f??r Kristallographie, vol.111, issue.1-6, pp.350-356, 1959. ,
DOI : 10.1524/zkri.1959.111.1-6.350
Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide, Applied Physics Letters, vol.65, issue.24 ,
DOI : 10.1063/1.112455
Impurity Activation in N+ Ion-Implanted 6H-SiC with Pulsed Laser Annealing Method, MRS Proceedings, vol.74, 2001. ,
DOI : 10.1063/1.102735
Absorption coefficient of 4H silicon carbide from 3900 to 3250 ? A, J ,
Solubility of Carbon in Silicon and Germanium, The Journal of Chemical Physics, vol.30, issue.6, p.1551, 1959. ,
DOI : 10.1063/1.1730236
Ion-beam induced damage and annealing behaviour in SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.141, issue.1-4, p.105, 1998. ,
DOI : 10.1016/S0168-583X(98)00083-4
The irradiation-induced crystalline-to-amorphous phase transition in ??-SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.116, issue.1-4, p.322, 1996. ,
DOI : 10.1016/0168-583X(96)00066-3
Doping of SiC by Implantation of Boron and Aluminum, physica status solidi (a), vol.53, issue.1, p.277, 1997. ,
DOI : 10.1002/1521-396X(199707)162:1<277::AID-PSSA277>3.0.CO;2-C
Al, B, and Ga ion-implantation doping of SiC, Journal of Electronic Materials, vol.264, issue.268, p.1340, 2000. ,
DOI : 10.1007/s11664-000-0135-z
Formation et caracterisation de jonctions PN dans du SiC-4H par implantation ionique et recuit laser, 2003. ,
Annealing of implantation damage and redistribution of impurities in SiC using a pulsed excimer laser, Applied Physics Letters, vol.56, issue.6, pp.530-532, 1990. ,
DOI : 10.1063/1.102735
Numerical and experimental analysis of pulsed excimer laser processing of silicon carbide, Applied Surface Science, vol.184, issue.1-4, pp.362-366, 2001. ,
DOI : 10.1016/S0169-4332(01)00518-9
Laser annealing of Al implanted silicon carbide: Structural and optical characterization, Applied Surface Science, vol.253, issue.19, pp.7912-7916, 2007. ,
DOI : 10.1016/j.apsusc.2007.02.070
Effects of different laser sources and doping methods used to dope silicon carbide, Acta Materialia, vol.53, issue.9, pp.2835-2844, 2005. ,
DOI : 10.1016/j.actamat.2005.02.043
Long-pulse duration excimer laser annealing of Al+ ion implanted 4H-SiC for pn junction formation, Applied Surface Science, vol.208, issue.209, pp.208-209292, 2003. ,
DOI : 10.1016/S0169-4332(02)01357-0
Nanosecond pulse laser melting investigation by IR radiometry and reflection-based methods, Applied Surface Science, vol.253, issue.3, pp.1170-1177, 2006. ,
DOI : 10.1016/j.apsusc.2006.01.077
URL : https://hal.archives-ouvertes.fr/hal-00443062
Effects of Si film thickness and substrate temperature on melt duration observed in excimer laser-induced crystallization of amorphous Si thin films using in-situ transient reflectivity measurements, Thin Solid Films, vol.515, issue.20-21, pp.8094-8100, 2007. ,
DOI : 10.1016/j.tsf.2007.04.124
Measurements of the optical properties of liquid silicon and germanium using nanosecond time???resolved ellipsometry, Applied Physics Letters, vol.51, issue.5, pp.352-354, 1987. ,
DOI : 10.1063/1.98438
Time???resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation, Applied Physics Letters, vol.47, issue.7, pp.718-720, 1985. ,
DOI : 10.1063/1.96014
Quick Reference Manual for Silicon Integrated Circuit Technology, 1985. ,
Mesure de résistivité par la méthode d'induction en courant continu, 1964. ,
A laboratory on the four-point probe technique, American Journal of Physics, vol.72, issue.2, pp.149-153, 2004. ,
DOI : 10.1119/1.1629085
Impact of probe penetration on the electrical characterization of sub-50 nm profiles, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.1, pp.459-466, 2001. ,
DOI : 10.1116/1.1432965
Electrical characterization of p+/n shallow junctions obtained by boron implantation into preamorphized silicon, Solid-State Electronics, vol.29, issue.11, pp.1181-187, 1986. ,
DOI : 10.1016/0038-1101(86)90062-6
Non-contact Electrical Measurements of Sheet Resistance and Leakage Current Density for Ultra-shallow (and other) Junctions, MRS Symp. C Proc. 810 C11.9, 2004. ,
DOI : 10.1557/PROC-810-C11.9
Characterization of ultrashallow junctions using frequency-dependent junction photovoltage and its lateral attenuation, Applied Physics Letters, vol.89, issue.15, p.151123, 2006. ,
DOI : 10.1063/1.2362596
Excimer laser induced melting of heavily doped silicon: A contribution to the optimization of the laser doping process, Applied Surface Science, vol.43, issue.1-4, pp.316-320, 1989. ,
DOI : 10.1016/0169-4332(89)90232-8
A thermal description of the melting of c- and a-silicon under pulsed excimer lasers, Applied Surface Science, vol.36, issue.1-4, pp.1-11, 1989. ,
DOI : 10.1016/0169-4332(89)90894-5
URL : https://hal.archives-ouvertes.fr/in2p3-00016182
Silicon Melt, Regrowth, and Amorphization Velocities During Pulsed Laser Irradiation, Physical Review Letters, vol.50, issue.12, p.896, 1983. ,
DOI : 10.1103/PhysRevLett.50.896
Laser beam quality of high pulse repetition frequency excimer lasers, Optics Communications, vol.102, issue.5-6, pp.523-531, 1993. ,
DOI : 10.1016/0030-4018(93)90432-5
URL : https://hal.archives-ouvertes.fr/hal-00195520
Improvement of average laser power and beam divergence of a high pulse repetition frequency excimer laser, Applied Physics B: Lasers and Optics, vol.66, issue.1, pp.31-37, 1998. ,
DOI : 10.1007/s003400050353
URL : https://hal.archives-ouvertes.fr/hal-00195561
LBIC investigation of impurity-dislocation interaction in FZ silicon wafers, Materials Science and Engineering: B, vol.42, issue.1-3, pp.265-269, 1996. ,
DOI : 10.1016/S0921-5107(96)01719-9
Opto-electronic analysis of silicon solar cells by LBIC investigations and current???voltage characterization, Physica B: Condensed Matter, vol.404, issue.22, pp.4445-4448, 2009. ,
DOI : 10.1016/j.physb.2009.09.010
Multi-electrode LBIC method for characterization of 1D ???hidden??? defects, Materials Science and Engineering: B, vol.91, issue.92, pp.91-92260, 2002. ,
DOI : 10.1016/S0921-5107(01)01024-8
Multi-laser LBIC system for thin film PV module characterisation, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.917-921, 2009. ,
DOI : 10.1016/j.solmat.2008.10.019
Etude de la pulvérisation laser douce des semi-conducteurs III-V GaAs et Ga1-x Alx As et de leurs heterostructures, 1996. ,
Finite Element Analysis of Pulsed Laser Bending: The Effect of Melting and Solidification, Journal of Applied Mechanics, vol.71, issue.3, p.321, 2004. ,
DOI : 10.1115/1.1753268
Numerical Simulation of Pulsed Laser Bending, Journal of Applied Mechanics, vol.69, issue.3, pp.254-260, 2004. ,
DOI : 10.1115/1.1459070