A. L. Lehninger, D. L. Nelson, and M. Cox, Principles of Biochemistry, p.1119, 2005.

B. Kauffman, G. B. Jensen, W. H. Jorgensen, K. A. Klixbull, and C. , Ligand, Journal of Chemical Education, vol.60, issue.6, pp.509-510, 1983.
DOI : 10.1021/ed060p509

E. Frieden, New perspectives on the essential trace elements, Journal of Chemical Education, vol.62, issue.11, p.917, 1985.
DOI : 10.1021/ed062p917

W. Eaton, E. Henry, J. Hofrichter, and A. Mozzarelli, Is cooperative oxygen binding by hemoglobin really understood?, Rendiconti Lincei, vol.37, issue.1-2, pp.351-358, 1999.
DOI : 10.1007/BF02904506

J. Monod, J. Wyman, C. , and J. , On the nature of allosteric transitions: A plausible model, Journal of Molecular Biology, vol.12, issue.1, pp.88-118, 1965.
DOI : 10.1016/S0022-2836(65)80285-6

M. F. Perutz, A. J. Wilkinson, M. Paoli, and G. G. Dodson, THE STEREOCHEMICAL MECHANISM OF THE COOPERATIVE EFFECTS IN HEMOGLOBIN REVISITED, Annual Review of Biophysics and Biomolecular Structure, vol.27, issue.1, pp.1-34, 1998.
DOI : 10.1146/annurev.biophys.27.1.1

A. Ghosh, The smallest biomolecules: diatomics and their interactions with heme proteins, p.603, 2008.

K. R. Rodgers, Heme-based sensors in biological systems, Current Opinion in Chemical Biology, vol.3, issue.2, pp.158-67, 1999.
DOI : 10.1016/S1367-5931(99)80028-3

M. K. Chan, Recent advances in heme-protein sensors, Current Opinion in Chemical Biology, vol.5, issue.2, pp.216-238, 2001.
DOI : 10.1016/S1367-5931(00)00193-9

T. Uchida and T. Kitagawa, Mechanism for transduction of the ligand-binding signal in heme-based gas sensory proteins revealed by resonance raman spectroscopy, 2005.

T. G. Traylor and V. S. Sharma, Why nitric oxide?, Biochemistry, vol.31, issue.11, pp.2847-2856, 1992.
DOI : 10.1021/bi00126a001

R. F. Furchgott and P. M. Vanhoutte, Endothelium-derived relaxing and contracting factors, FASEB J, vol.3, pp.2007-2025, 1989.

C. Hartsfield, Cross Talk Between Carbon Monoxide and Nitric Oxide, Antioxidants & Redox Signaling, vol.4, issue.2, pp.301-308, 2002.
DOI : 10.1089/152308602753666352

J. R. Lancaster, Nitric oxide: principles and actions, p.355, 1996.

H. H. Schmidt, F. Hofmann, and J. Stasch, cGMP: Generators, Effectors and Therapeutic Implications, p.583, 2008.
DOI : 10.1007/978-3-540-68964-5

H. Kim, S. Ryter, and A. Choi, CO AS A CELLULAR SIGNALING MOLECULE, Annual Review of Pharmacology and Toxicology, vol.46, issue.1, pp.411-449, 2006.
DOI : 10.1146/annurev.pharmtox.46.120604.141053

L. J. Ignarro, B. Ballot, and K. S. Wood, Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins, Journal of Biological Chemistry, vol.259, pp.6201-6208, 1984.

Y. Zhao, P. E. Brandish, D. P. Ballou, and M. A. Marletta, A molecular basis for nitric oxide sensing by soluble guanylate cyclase, Proceedings of the National Academy of Sciences, vol.96, issue.26, pp.14753-14761, 1999.
DOI : 10.1073/pnas.96.26.14753

F. Siebert and P. Hildebrandt, Vibrational spectroscopy in life science, p.310, 2008.
DOI : 10.1002/9783527621347

M. Négrerie, L. Bouzhir, J. L. Martin, and U. Liebl, Control of Nitric Oxide Dynamics by Guanylate Cyclase in Its Activated State, Journal of Biological Chemistry, vol.276, issue.50, pp.46815-46836, 2001.
DOI : 10.1074/jbc.M102224200

D. S. Bredt and S. H. Snyder, Nitric Oxide: A Physiologic Messenger Molecule, Annual Review of Biochemistry, vol.63, issue.1, pp.175-95, 1994.
DOI : 10.1146/annurev.bi.63.070194.001135

C. M. Schonhoff, B. Gaston, and J. B. Mannick, Nitrosylation of Cytochrome c during Apoptosis, Journal of Biological Chemistry, vol.278, issue.20, pp.18265-70, 2003.
DOI : 10.1074/jbc.M212459200

M. Fraser, S. L. Chan, S. S. Chan, R. R. Fiscus, and B. K. Tsang, Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells, Oncogene, vol.3, issue.15, pp.2203-2215, 2006.
DOI : 10.1038/sj.onc.1209251

G. A. Blaise, D. Gauvin, M. Gangal, and S. Authier, Nitric oxide, cell signaling and cell death, Toxicology, vol.208, issue.2, pp.177-92, 2005.
DOI : 10.1016/j.tox.2004.11.032

O. V. Evgenov, P. Pacher, P. M. Schmidt, G. Haskó, H. H. Schmidt et al., NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential, Nature Reviews Drug Discovery, vol.10, issue.9, pp.755-68, 2006.
DOI : 10.1038/nrd2038

P. Nioche, V. Berka, J. Vipond, N. Minton, A. Tsai et al., Femtomolar Sensitivity of a NO Sensor from Clostridium botulinum, Science, vol.306, issue.5701, pp.1550-1553, 2004.
DOI : 10.1126/science.1103596

E. R. Derbyshire and M. A. Marletta, Biochemistry of Soluble Guanylate Cyclase, Handb Exp Pharmacol, pp.17-31, 2009.
DOI : 10.1007/978-3-540-68964-5_2

E. Eswar, D. Webb, B. Shen, M. Sali, and A. , Protein Structure Modeling with MODELLER, Methods in Molecular Biology, vol.426, pp.145-159, 2008.
DOI : 10.1007/978-1-60327-058-8_8

T. C. Bellamy and J. Garthwaite, Sub-second Kinetics of the Nitric Oxide Receptor, Soluble Guanylyl Cyclase, in Intact Cerebellar Cells, Journal of Biological Chemistry, vol.276, issue.6, pp.4287-92, 2001.
DOI : 10.1074/jbc.M006677200

B. Yoo, J. Martin, C. Andrew, and M. Negrerie, Rebinding of Proximal Histidine in the Cytochrome c' from Alcaligenes xylosoxidans Acts as a Molecular Trap for Nitric Oxide, pp.556-558, 2009.
DOI : 10.1007/978-3-540-95946-5_180

URL : https://hal.archives-ouvertes.fr/hal-00324265

R. Makino, E. Obayashi, N. Homma, Y. Shiro, and H. Hori, YC-1 Facilitates Release of the Proximal His Residue in the NO and CO Complexes of Soluble Guanylate Cyclase, Journal of Biological Chemistry, vol.278, issue.13, pp.11130-11137, 2003.
DOI : 10.1074/jbc.M209026200

J. P. Stasch, E. M. Becker, C. Alonso-alija, H. Apeler, K. Dembowsky et al., NO-independent regulatory site on soluble guanylate cyclase, Nature, vol.9, issue.6825, pp.212-217, 2001.
DOI : 10.1038/35065611

J. R. Stone and M. A. Marletta, Soluble Guanylate Cyclase from Bovine Lung: Activation with Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States, Biochemistry, vol.33, issue.18, pp.5636-5676, 1994.
DOI : 10.1021/bi00184a036

M. Russwurm and D. Koesling, Purification and Characterization of NO???Sensitive Guanylyl Cyclase, Methods in Enzymology, vol.396, pp.492-501, 2005.
DOI : 10.1016/S0076-6879(05)96041-2

K. Mathis, T. Emmons, D. Curran, J. Day, and A. Tomasselli, High yield purification of soluble guanylate cyclase from bovine lung, Protein Expression and Purification, vol.60, issue.1, pp.58-63, 2008.
DOI : 10.1016/j.pep.2008.03.004

M. Koglin and S. Behrends, Native human nitric oxide sensitive guanylyl cyclase: purification and characterization, Biochemical Pharmacology, vol.67, issue.8, pp.1579-85, 2004.
DOI : 10.1016/j.bcp.2004.01.007

T. Tomita, S. Tsuyama, Y. Imai, and T. Kitagawa, Purification of Bovine Soluble Guanylate Cyclase and ADP-Ribosylation on its Small Subunit by Bacterial Toxins, Journal of Biochemistry, vol.122, issue.3, pp.531-536, 1997.
DOI : 10.1093/oxfordjournals.jbchem.a021785

Y. C. Lee, E. Martin, and F. Murad, Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation, Proceedings of the National Academy of Sciences, vol.97, issue.20, pp.10763-10771, 2000.
DOI : 10.1073/pnas.190333697

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC27097

M. Hoenicka, E. M. Becker, H. Apeler, T. Sirichoke, H. Schröder et al., Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide, Journal of Molecular Medicine, vol.77, issue.1, pp.14-23, 1999.
DOI : 10.1007/s001090050292

E. Martin, V. Berka, A. Tsai, and F. Murad, Soluble Guanylyl Cyclase: The Nitric Oxide Receptor, Methods in Enzymology, vol.396, pp.478-492, 2005.
DOI : 10.1016/S0076-6879(05)96040-0

T. L. Emmons, K. J. Mathis, M. E. Shuck, B. A. Reitz, D. F. Curran et al., Purification and characterization of recombinant human soluble guanylate cyclase produced from baculovirus-infected insect cells, Protein Expression and Purification, vol.65, issue.2, pp.133-142, 2009.
DOI : 10.1016/j.pep.2009.01.001

U. Zabel, M. Weeger, M. La, and H. Schmidt, Human soluble guanylate cyclase: functional expression and revised isoenzyme family, Biochemical Journal, vol.335, issue.1, pp.51-57, 1998.
DOI : 10.1042/bj3350051

S. Shah and D. Hyde, Two Drosophila Genes That Encode the ?? and ?? Subunits of the Brain Soluble Guanylyl Cyclase, Journal of Biological Chemistry, vol.270, issue.25, pp.15368-15376, 1995.
DOI : 10.1074/jbc.270.25.15368

C. Harteneck, D. Koesling, A. Söling, G. Schultz, and E. Böhme, Expression of soluble guanylyl cyclase, FEBS Letters, vol.1013, issue.1-2, pp.221-224, 1990.
DOI : 10.1016/0014-5793(90)80489-6

F. N. Ko, C. C. Wu, S. C. Kuo, F. Y. Lee, and C. M. Teng, YC-1, a novel activator of platelet guanylate cyclase, Blood, vol.84, pp.4226-4259, 1994.

A. J. Hobbs, Soluble guanylate cyclase: an old therapeutic target re-visited, British Journal of Pharmacology, vol.11, issue.5, pp.637-677, 2002.
DOI : 10.1038/sj.bjp.0704779

L. N. Miller, M. Nakane, G. C. Hsieh, R. Chang, T. Kolasa et al., A-350619: A novel activator of soluble guanylyl cyclase, Life Sciences, vol.72, issue.9, pp.1015-1040, 2003.
DOI : 10.1016/S0024-3205(02)02361-5

H. H. Schmidt, F. Hofmann, J. Stasch, and A. J. Hobbs, NO- Independent, Haem-Dependent Soluble Guanylate Cyclase Stimulators, pp.277-308, 2009.

B. Pal, K. Tanaka, S. Takenaka, and T. Kitagawa, Resonance Raman spectroscopic investigation of structural changes of CO-heme in soluble guanylate cyclase generated by effectors and substrate, Journal of Raman Spectroscopy, vol.28, issue.10, pp.1178-1184, 2010.
DOI : 10.1002/jrs.2578

B. Pal and T. Kitagawa, Interactions of soluble guanylate cyclase with diatomics as probed by resonance Raman spectroscopy, Journal of Inorganic Biochemistry, vol.99, issue.1, pp.267-79, 2005.
DOI : 10.1016/j.jinorgbio.2004.09.027

D. Beal, F. Rappaport, and P. Joliot, analysis of the photosynthetic apparatus, Review of Scientific Instruments, vol.70, issue.1, pp.202-207, 1999.
DOI : 10.1063/1.1149566

X. Hu, C. Feng, J. T. Hazzard, G. Tollin, and W. R. Montfort, Binding of YC-1 or BAY 41-2272 to Soluble Guanylyl Cyclase Induces a Geminate Phase in CO Photolysis, Journal of the American Chemical Society, vol.130, issue.47, pp.15748-15757, 2008.
DOI : 10.1021/ja804103y

M. Russwurm, E. Mergia, F. Mullershausen, and D. Koesling, Inhibition of Deactivation of NO-sensitive Guanylyl Cyclase Accounts for the Sensitizing Effect of YC-1, Journal of Biological Chemistry, vol.277, issue.28, pp.24883-24891, 2002.
DOI : 10.1074/jbc.M110570200

T. C. Bellamy and J. Garthwaite, Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells, British Journal of Pharmacology, vol.39, issue.1, pp.95-103, 2002.
DOI : 10.1038/sj.bjp.0704687

G. Silkstone, S. M. Kapetanaki, I. Husu, M. H. Vos, and M. T. Wilson, Nitric Oxide Binds to the Proximal Heme Coordination Site of the Ferrocytochrome c/Cardiolipin Complex: FORMATION MECHANISM AND DYNAMICS, Journal of Biological Chemistry, vol.285, issue.26, pp.19785-92, 2010.
DOI : 10.1074/jbc.M109.067736

URL : https://hal.archives-ouvertes.fr/hal-00805074

C. R. Andrew, K. R. Rodgers, and R. R. Eady, ???:?? A Possible Mechanism for NO Release from Activated Soluble Guanylate Cyclase, Journal of the American Chemical Society, vol.125, issue.32, pp.9548-9557, 2003.
DOI : 10.1021/ja035105r

S. G. Kruglik, J. Lambry, S. Cianetti, J. Martin, R. R. Eady et al., Molecular Basis for Nitric Oxide Dynamics and Affinity with Alcaligenes xylosoxidans Cytochrome c, Journal of Biological Chemistry, vol.282, issue.7, pp.5053-62, 2007.
DOI : 10.1074/jbc.M604327200

URL : https://hal.archives-ouvertes.fr/hal-00324357

B. Roy and J. Garthwaite, Nitric oxide activation of guanylyl cyclase in cells revisited, Proceedings of the National Academy of Sciences, vol.103, issue.32, pp.12185-90, 2006.
DOI : 10.1073/pnas.0602544103

D. M. Lawson, C. E. Stevenson, C. R. Andrew, and R. R. Eady, Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase, The EMBO Journal, vol.19, issue.21, pp.5661-71, 2000.
DOI : 10.1093/emboj/19.21.5661

M. Russwurm and D. Koesling, NO activation of guanylyl cyclase, The EMBO Journal, vol.91, issue.22, pp.4443-50, 2004.
DOI : 10.1021/bi972686m

T. L. Poulos, Soluble guanylate cyclase, Current Opinion in Structural Biology, vol.16, issue.6, pp.736-779, 2006.
DOI : 10.1016/j.sbi.2006.09.006

X. Ma, N. Sayed, A. Beuve, and F. Van-den-akker, NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism, The EMBO Journal, vol.386, issue.2, pp.578-88, 2007.
DOI : 10.1038/sj.emboj.7601521

J. Garthwaite, New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications, Molecular and Cellular Biochemistry, vol.3, issue.1-2, pp.221-253, 2010.
DOI : 10.1007/s11010-009-0318-8

D. A. Pixton, C. A. Petersen, A. Franke, R. Van-eldik, E. M. Garton et al., ???: The Putative Dinitrosyl Intermediate Forms via a Dissociative Mechanism, Journal of the American Chemical Society, vol.131, issue.13, pp.4846-53, 2009.
DOI : 10.1021/ja809587q

B. B. Wayland and L. W. Olson, Spectroscopic studies and bonding model for nitric oxide complexes of iron porphyrins, Journal of the American Chemical Society, vol.96, issue.19, pp.6037-6078, 1974.
DOI : 10.1021/ja00826a013

I. Lorkovic and P. Ford, in Low-Temperature Solutions, Journal of the American Chemical Society, vol.122, issue.27, pp.6516-6517, 2000.
DOI : 10.1021/ja000308q

M. D. Lim, I. M. Lorkovic, and P. C. Ford, NO and NO interactions with group 8 metalloporphyrins, Journal of Inorganic Biochemistry, vol.99, issue.1, pp.151-65, 2005.
DOI : 10.1016/j.jinorgbio.2004.10.002

T. C. Bellamy, J. Wood, and J. Garthwaite, On the activation of soluble guanylyl cyclase by nitric oxide, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.507-517, 2002.
DOI : 10.1073/pnas.012368499

S. P. Cary, J. A. Winger, E. R. Derbyshire, and M. A. Marletta, Nitric oxide signaling: no longer simply on or off, Trends in Biochemical Sciences, vol.31, issue.4, pp.231-240, 2006.
DOI : 10.1016/j.tibs.2006.02.003

E. J. Halvey, J. Vernon, B. Roy, and J. Garthwaite, Mechanisms of Activity-dependent Plasticity in Cellular Nitric Oxide-cGMP Signaling, Journal of Biological Chemistry, vol.284, issue.38, pp.25630-25671, 2009.
DOI : 10.1074/jbc.M109.030338

J. Hofrichter, J. Sommer, E. Henry, and W. Eaton, Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity., Proceedings of the National Academy of Sciences, vol.80, issue.8, 1983.
DOI : 10.1073/pnas.80.8.2235

M. Cammarata, M. Levantino, M. Wulff, and A. Cupane, Unveiling the Timescale of the R???T Transition in Human Hemoglobin, Journal of Molecular Biology, vol.400, issue.5, pp.951-962, 2010.
DOI : 10.1016/j.jmb.2010.05.057

M. F. Perutz, Stereochemistry of Cooperative Effects in Haemoglobin: Haem???Haem Interaction and the Problem of Allostery, Nature, vol.165, issue.5273, pp.726-765, 1970.
DOI : 10.1038/228726a0

M. Paoli, G. Dodson, R. C. Liddington, and A. J. Wilkinson, Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state, Journal of Molecular Biology, vol.271, issue.2, pp.161-168, 1997.
DOI : 10.1006/jmbi.1997.1180

T. D. Kim and J. N. Burstyn, Identification and partial purification of an endogenous inhibitor of soluble guanylyl cyclase from bovine lung, Journal of Biological Chemistry, vol.269, pp.15540-15545, 1994.

K. S. Murthy, Modulation of soluble guanylate cyclase activity by phosphorylation, Neurochemistry International, vol.45, issue.6, pp.845-51, 2004.
DOI : 10.1016/j.neuint.2004.03.014

J. C. Louis, M. O. Revel, and J. Zwiller, Activation of soluble guanylate cyclase through phosphorylation by protein kinase C in intact PC12 cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1177, issue.3, pp.299-306, 1993.
DOI : 10.1016/0167-4889(93)90126-A

N. Sayed, P. Baskaran, X. Ma, F. Van-den-akker, and A. Beuve, Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation, Proceedings of the National Academy of Sciences, vol.104, issue.30, pp.12312-12319, 2007.
DOI : 10.1073/pnas.0703944104

B. Mayer, A. L. Kleschyov, H. Stessel, M. Russwurm, T. Münzel et al., Inactivation of Soluble Guanylate Cyclase by Stoichiometric S-Nitrosation, Molecular Pharmacology, vol.75, issue.4, pp.886-91, 2009.
DOI : 10.1124/mol.108.052142

F. Flamigni, A. Facchini, I. Stanic, B. Tantini, F. Bonavita et al., Control of survival of proliferating L1210 cells by soluble guanylate cyclase and p44/42 mitogen-activated protein kinase modulators11Abbreviations: L-NMMA, NG-monomethyl-l-arginine; MAPK, mitogen-activated protein kinase; NO, nitric oxide; NOS, nitric oxide synthase; ODQ, 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one; PI3K, phosphoinositide 3-kinase; PKA, cyclic AMP-dependent protein kinase; PMA, phorbol myristate acetate; sGC, soluble guanylate cyclase; and SNAP, S-nitroso-N-acetyl-d,l-penicillamine., Biochemical Pharmacology, vol.62, issue.3, pp.319-347, 2001.
DOI : 10.1016/S0006-2952(01)00646-3

S. L. Chan and R. R. Fiscus, Guanylyl cyclase inhibitors NS2028 and ODQ and protein kinase G (PKG) inhibitor KT5823 trigger apoptotic DNA fragmentation in Bibliography 189, 2003.

G. Haramis, Z. Zhou, A. Pyriochou, M. Koutsilieris, C. Roussos et al., cGMP-independent anti-tumour actions of the inhibitor of soluble guanylyl cyclase, ODQ, in prostate cancer cell lines, British Journal of Pharmacology, vol.99, issue.6, pp.804-817, 2008.
DOI : 10.1038/bjp.2008.312

K. Mujoo, V. G. Sharin, E. Martin, B. Choi, C. Sloan et al., Role of soluble guanylyl cyclase???cyclic GMP signaling in tumor cell proliferation, Nitric Oxide, vol.22, issue.1, pp.43-50, 2010.
DOI : 10.1016/j.niox.2009.11.007

T. Punathil, T. Tollefsbol, and S. Katiyar, EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase, Biochemical and Biophysical Research Communications, vol.375, issue.1, pp.162-167, 2008.
DOI : 10.1016/j.bbrc.2008.07.157

M. Sauviat, A. Colas, M. Chauveau, J. Drapier, and M. Négrerie, Channels in Cardiac Myocytes, Journal of Natural Products, vol.70, issue.4, pp.510-514, 2007.
DOI : 10.1021/np060309h

URL : https://hal.archives-ouvertes.fr/hal-00166644

J. Hölzl and E. Ostrowski, Analysis of the Essential Compounds of Hypericum perforatum, Planta Medica, vol.52, issue.06, p.531, 1986.
DOI : 10.1055/s-2007-969321

P. Miskovsky, Hypericin - A New Antiviral and Antitumor Photosensitizer: Mechanism of Action and Interaction with Biological Macromolecules, Current Drug Targets, vol.3, issue.1, pp.55-84, 2002.
DOI : 10.2174/1389450023348091

B. Foster, E. Sockovie, S. Vandenhoek, N. Bellefeuille, C. Drouin et al., Activity of St. John's Wort Against Cytochrome P450 Isozymes and P-Glycoprotein, Pharmaceutical Biology, vol.1, issue.2, pp.159-169, 2004.
DOI : 10.1080/13880200490512034

F. Pajonk, J. Scholber, and B. Fiebich, Hypericin?an inhibitor of proteasome function, Cancer Chemotherapy and Pharmacology, vol.276, issue.27, pp.439-485, 2005.
DOI : 10.1007/s00280-004-0933-8

P. Pellicena, D. Karow, E. Boon, M. Marletta, and J. Kuriyan, Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases, Proceedings of the National Academy of Sciences, vol.101, issue.35, pp.12854-12859, 2004.
DOI : 10.1073/pnas.0405188101

E. M. Boon, J. H. Davis, R. Tran, D. S. Karow, S. H. Huang et al., Nitric Oxide Binding to Prokaryotic Homologs of the Soluble Guanylate Cyclase beta1 H-NOX Domain, Journal of Biological Chemistry, vol.281, issue.31, pp.21892-902, 2006.
DOI : 10.1074/jbc.M600557200

E. M. Boon, S. H. Huang, and M. A. Marletta, A molecular basis for NO selectivity in soluble guanylate cyclase, Nature Chemical Biology, vol.36, issue.1, pp.53-62, 2005.
DOI : 10.1038/nchembio704

A. Tsai, V. Berka, F. Martin, X. Ma, F. Van-den-akker et al., H-NOX a NO Sensor or Redox Switch?, Biochemistry, vol.49, issue.31, pp.6587-99, 2010.
DOI : 10.1021/bi1002234

U. Liebl, L. Bouzhir-sima, M. Negrerie, J. Martin, and M. H. Vos, Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: General regulatory implications for heme-based sensors, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.12771-12777, 2002.
DOI : 10.1073/pnas.192311699

URL : https://hal.archives-ouvertes.fr/hal-00845092

C. Donald, M. Hughes, J. Thompson, and F. Bonner, Photolysis of the nitrogen-nitrogen double bond in trioxodinitrate: reaction between triplet oxonitrate(1-) and molecular oxygen to form peroxonitrite, Inorganic Chemistry, vol.25, issue.16, pp.2676-2677, 1986.
DOI : 10.1021/ic00236a004

A. J. Gow and J. S. Stamler, Reactions between nitric oxide and haemoglobin under physiological conditions, Nature, vol.391, pp.169-73, 1998.

A. Fago, A. L. Crumbliss, J. Peterson, L. L. Pearce, and C. Bonaventura, The case of the missing NO- hemoglobin: Spectral changes suggestive of heme redox reactions reflect changes in NO- heme geometry, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.12087-92, 2003.
DOI : 10.1073/pnas.2032603100

S. Kumazaki, H. Nakajima, T. Sakaguchi, E. Nakagawa, H. Shinohara et al., Dissociation and Recombination between Ligands and Heme in a CO-sensing Transcriptional Activator CooA. A FLASH PHOTOLYSIS STUDY, Journal of Biological Chemistry, vol.275, issue.49, pp.38378-83, 2000.
DOI : 10.1074/jbc.M005533200

R. W. Castenholz and J. B. Waterbury, ) Group I. cyanobacteria. Bergey's manual of systematic bacteriology 3, pp.1710-1728, 1989.

R. Clark, N. Lanz, A. Lee, R. Kerby, G. Roberts et al., Unexpected NO-dependent DNA binding by the CooA homolog from Carboxydothermus hydrogenoformans, Proceedings of the National Academy of Sciences, vol.103, issue.4, pp.891-896, 2006.
DOI : 10.1073/pnas.0505919103

A. Benabbas, X. Ye, M. Kubo, Z. Zhang, E. M. Maes et al., Ultrafast Dynamics of Diatomic Ligand Binding to Nitrophorin 4, Journal of the American Chemical Society, vol.132, issue.8, pp.2811-2831, 2010.
DOI : 10.1021/ja910005b

X. Ma, N. Sayed, P. Baskaran, A. Beuve, and F. Van-den-akker, PAS-mediated Dimerization of Soluble Guanylyl Cyclase Revealed by Signal Transduction Histidine Kinase Domain Crystal Structure, Journal of Biological Chemistry, vol.283, issue.2, pp.1167-78, 2008.
DOI : 10.1074/jbc.M706218200

Z. Li, B. Pal, S. Takenaka, S. Tsuyama, and T. Kitagawa, Resonance Raman Evidence for the Presence of Two Heme Pocket Conformations with Varied Activities in CO-Bound Bovine Soluble Guanylate Cyclase and Their Conversion, Biochemistry, vol.44, issue.3, pp.939-985, 2005.
DOI : 10.1021/bi0489208

M. Negrerie, V. Berka, M. Vos, U. Liebl, J. Lambry et al., Geminate Recombination of Nitric Oxide to Endothelial Nitric-oxide Synthase and Mechanistic Implications, Journal of Biological Chemistry, vol.274, issue.35, pp.24694-24702, 1999.
DOI : 10.1074/jbc.274.35.24694

S. G. Kruglik, B. Yoo, S. Franzen, M. H. Vos, J. Martin et al., Picosecond primary structural transition of the heme is retarded after nitric oxide binding to heme proteins, Proceedings of the National Academy of Sciences, vol.107, issue.31, pp.13678-13683, 2010.
DOI : 10.1073/pnas.0912938107

URL : https://hal.archives-ouvertes.fr/hal-00807876

T. Sugimoto, M. Unno, Y. Shiro, Y. Dou, and M. Ikeda-saito, Myoglobin Mutants Giving the Largest Geminate Yield in CO Rebinding in the Nanosecond Time Domain, Biophysical Journal, vol.75, issue.5, pp.2188-2194, 1998.
DOI : 10.1016/S0006-3495(98)77662-3

C. Rothkegel, P. M. Schmidt, F. Stoll, H. Schröder, H. H. Schmidt et al., Identification of residues crucially involved in soluble guanylate cyclase activation, FEBS Letters, vol.77, issue.17, pp.4205-4218, 2006.
DOI : 10.1016/j.febslet.2006.06.079

T. Yoshimura, S. Fujii, H. Kamada, K. Yamaguchi, S. Suzuki et al., Spectroscopic characterization of nitrosylheme in nitric oxide complexes of ferric and ferrous cytochrome c??? from photosynthetic bacteria, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1292, issue.1, pp.39-46, 1996.
DOI : 10.1016/0167-4838(95)00187-5

R. Cross, J. Aish, S. J. Paston, R. K. Poole, and J. W. Moir, Cytochrome c' from Rhodobacter capsulatus Confers Increased Resistance to Nitric Oxide, Journal of Bacteriology, vol.182, issue.5, pp.1442-1449, 2000.
DOI : 10.1128/JB.182.5.1442-1447.2000

R. Cross, D. Lloyd, R. K. Poole, and J. W. Moir, Enzymatic Removal of Nitric Oxide Catalyzed by Cytochrome c' in Rhodobacter capsulatus, Journal of Bacteriology, vol.183, issue.10, pp.3050-3054, 2001.
DOI : 10.1128/JB.183.10.3050-3054.2001

M. F. Anjum, T. M. Stevanin, R. C. Read, and J. W. Moir, Nitric Oxide Metabolism in Neisseria meningitidis, Journal of Bacteriology, vol.184, issue.11, pp.2987-93, 2002.
DOI : 10.1128/JB.184.11.2987-2993.2002

T. E. Meyer, G. Cheddar, R. G. Bartsch, E. D. Getzoff, M. A. Cusanovich et al., Kinetics of electron transfer between cytochromes c' and the semiquinones of free flavin and clostridial flavodoxin, Biochemistry, vol.25, issue.6, pp.1383-90, 1986.
DOI : 10.1021/bi00354a029

T. H. Tahirov, S. Misaki, T. E. Meyer, M. A. Cusanovich, Y. Higuchi et al., High-resolution crystal structures of two polymorphs of cytochrome c' Bibliography 193, 1996.

S. George, C. Andrew, D. Lawson, R. Thorneley, and R. Eady, ???, Journal of the American Chemical Society, vol.123, issue.39, pp.9683-9684, 2001.
DOI : 10.1021/ja0158307

M. A. Martí, L. Capece, A. Crespo, F. Doctorovich, and D. A. Estrin, ??? and Its Relevance to Guanylate Cyclase. Why Does the Iron Histidine Bond Break?, Journal of the American Chemical Society, vol.127, issue.21, pp.7721-7729, 2005.
DOI : 10.1021/ja042870c

M. Fang, S. R. Wilson, and K. S. Suslick, A Four-Coordinate Fe(III) Porphyrin Cation, Journal of the American Chemical Society, vol.130, issue.4, pp.1134-1139, 2008.
DOI : 10.1021/ja078061l

D. P. Ballou, Y. Zhao, P. E. Brandish, and M. A. Marletta, Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect, Proceedings of the National Academy of Sciences, vol.99, issue.19, pp.12097-101, 2002.
DOI : 10.1073/pnas.192209799

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1617, 2004.
DOI : 10.1002/jcc.20084

P. Choi, V. Grigoryants, and H. Abruna, Regulation and Function of Cytochrome c' in Rhodobacter sphaeroides 2.4.3, Journal of Bacteriology, vol.187, issue.12, pp.4077-4085, 2005.
DOI : 10.1128/JB.187.12.4077-4085.2005

A. E. Yu, S. Hu, T. G. Spiro, and J. N. Burstyn, Resonance Raman Spectroscopy of Soluble Guanylyl Cyclase Reveals Displacement of Distal and Proximal Heme Ligands by NO, Journal of the American Chemical Society, vol.116, issue.9, pp.4117-4118, 1994.
DOI : 10.1021/ja00088a073

D. Hildebrand, J. Ferrer, H. Tang, M. Smith, and A. Mauk, Trans Effects on Cysteine Ligation in the Proximal His93Cys Variant of Horse Heart Myoglobin, Biochemistry, vol.34, issue.36, pp.11598-11605, 1995.
DOI : 10.1021/bi00036a036

C. S. Raman, H. Li, P. Martásek, V. Král, B. S. Masters et al., Crystal Structure of Constitutive Endothelial Nitric Oxide Synthase, Cell, vol.95, issue.7, pp.939-50, 1998.
DOI : 10.1016/S0092-8674(00)81718-3

M. Sundaramoorthy, J. Terner, and T. L. Poulos, Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies, Chemistry & Biology, vol.5, issue.9, pp.461-73, 1998.
DOI : 10.1016/S1074-5521(98)90003-5

S. Adachi, S. Nagano, K. Ishimori, Y. Watanabe, I. Morishima et al., Roles of proximal ligand in heme proteins: replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase, Biochemistry, vol.32, issue.1, pp.241-52, 1993.
DOI : 10.1021/bi00052a031

C. E. Cooper, Nitric oxide and iron proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1411, issue.2-3, pp.290-309, 1999.
DOI : 10.1016/S0005-2728(99)00021-3

M. Hoshino, M. Maeda, R. Konishi, H. Seki, and P. Ford, Studies on the Reaction Mechanism for Reductive Nitrosylation of Ferrihemoproteins in Buffer Solutions, Journal of the American Chemical Society, vol.118, issue.24, 1996.
DOI : 10.1021/ja953311w

M. Hoshino, K. Ozawa, H. Seki, and P. C. Ford, Photochemistry of nitric oxide adducts of water-soluble iron(III) porphyrin and ferrihemoproteins studied by nanosecond laser photolysis, Journal of the American Chemical Society, vol.115, issue.21, p.9568, 1993.
DOI : 10.1021/ja00074a023

J. W. Denninger and M. A. Marletta, Guanylate cyclase and the ???NO/cGMP signaling pathway, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1411, issue.2-3, pp.334-50, 1999.
DOI : 10.1016/S0005-2728(99)00024-9

M. Negrerie, S. G. Kruglik, J. Lambry, M. H. Vos, J. Martin et al., Role of Heme Iron Coordination and Protein Structure in the Dynamics and Geminate Rebinding of Nitric Oxide to the H93G Myoglobin Mutant: IMPLICATIONS FOR NITRIC OXIDE SENSORS, Journal of Biological Chemistry, vol.281, issue.15, pp.10389-10398, 2006.
DOI : 10.1074/jbc.M513375200

URL : https://hal.archives-ouvertes.fr/hal-00827918

S. Franzen, Spin-dependent mechanism for diatomic ligand binding to heme, Proceedings of the National Academy of Sciences, vol.99, issue.26, 2002.
DOI : 10.1073/pnas.252590999

F. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman et al., Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography, Science, vol.300, issue.5627, pp.1944-1951, 2003.
DOI : 10.1126/science.1078797

D. Ionascu, F. Gruia, X. Ye, A. Yu, F. Rosca et al., Temperature-Dependent Studies of NO Recombination to Heme and Heme Proteins, Journal of the American Chemical Society, vol.127, issue.48, pp.16921-16955, 2005.
DOI : 10.1021/ja054249y

G. Silkstone, A. Jasaitis, M. T. Wilson, and M. H. Vos, Ligand Dynamics in an Electron Transfer Protein: PICOSECOND GEMINATE RECOMBINATION OF CARBON MONOXIDE TO HEME IN MUTANT FORMS OF CYTOCHROME c, Journal of Biological Chemistry, vol.282, issue.3, pp.1638-1687, 2007.
DOI : 10.1074/jbc.M605760200

URL : https://hal.archives-ouvertes.fr/hal-00097190

S. Kim and M. Lim, Picosecond Dynamics of Ligand Interconversion in the Primary Docking Site of Heme Proteins, Journal of the American Chemical Society, vol.127, issue.16, pp.5786-5793, 2005.
DOI : 10.1021/ja050734h

J. Petrich, J. Lambry, C. Balasubramanian, D. Lambright, S. Boxer et al., Ultrafast Measurements of Geminate Recombination of NO with Site-specific Mutants of Human Myoglobin, Journal of Molecular Biology, vol.238, issue.3, pp.437-444, 1994.
DOI : 10.1006/jmbi.1994.1302

M. Brunori, F. Cutruzzola, C. Savino, C. Travaglini-allocatelli, B. Vallone et al., Structural Dynamics of Ligand Diffusion in the Protein Matrix: A Study on a New Myoglobin Mutant Y(B10) Q(E7) R(E10), B10) Q(E7) R(E10), pp.1259-1269, 1999.
DOI : 10.1016/S0006-3495(99)77289-9

T. O. Fischmann, A. Hruza, X. D. Niu, J. D. Fossetta, C. A. Lunn et al., Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation, Nature Structural Biology, vol.6, issue.3, pp.233-275, 1999.
DOI : 10.1038/6675

J. Santolini, The molecular mechanism of mammalian NO-synthases: A story of electrons and protons, Journal of Inorganic Biochemistry, vol.105, issue.2, pp.127-141, 2011.
DOI : 10.1016/j.jinorgbio.2010.10.011

URL : https://hal.archives-ouvertes.fr/hal-00721814

N. M. Olken and M. A. Marletta, NG-Methyl-L-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase, Biochemistry, vol.32, issue.37, pp.9677-85, 1993.
DOI : 10.1021/bi00088a020

N. M. Olken, Y. Osawa, and M. A. Marletta, Characterization of the Inactivation of Nitric Oxide Synthase by NG-Methyl-L-arginine: Evidence for Heme Loss, Biochemistry, vol.33, issue.49, pp.14784-91, 1994.
DOI : 10.1021/bi00253a017

B. R. Crane, A. S. Arvai, D. K. Ghosh, C. Wu, E. D. Getzoff et al., Structure of Nitric Oxide Synthase Oxygenase Dimer with Pterin and Substrate, Science, vol.279, issue.5359, pp.2121-2127, 1998.
DOI : 10.1126/science.279.5359.2121

J. W. Petrich, J. C. Lambry, K. Kuczera, M. Karplus, C. Poyart et al., Ligand binding and protein relaxation in heme proteins: a room temperature analysis of nitric oxide geminate recombination, Biochemistry, vol.30, issue.16, pp.3975-87, 1991.
DOI : 10.1021/bi00230a025

S. Franzen, J. C. Lambry, B. Bohn, C. Poyart, M. et al., Direct evidence for the role of haem doming as the primary event in the cooperative transition of haemoglobin, Nature Structural Biology, vol.106, issue.4, pp.230-233, 1994.
DOI : 10.1146/annurev.bi.48.070179.001551

M. Lim, T. A. Jackson, and P. A. Anfinrud, Nonexponential protein relaxation: dynamics of conformational change in myoglobin., Proceedings of the National Academy of Sciences, vol.90, issue.12, pp.5801-5805, 1993.
DOI : 10.1073/pnas.90.12.5801

S. S. Stavrov, The effect of iron displacement out of the porphyrin plane on the resonance Raman spectra of heme proteins and iron porphyrins, Biophysical Journal, vol.65, issue.5, pp.1942-50, 1993.
DOI : 10.1016/S0006-3495(93)81265-7

S. S. Stavrov, Optical absorption band III of deoxyheme proteins as a probe of their structure and dynamics, Chemical Physics, vol.271, issue.1-2, pp.145-154, 2001.
DOI : 10.1016/S0301-0104(01)00412-8

J. Petrich, C. Poyart, M. , and J. , Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme, Biochemistry, vol.27, issue.11, pp.4049-4060, 1988.
DOI : 10.1021/bi00411a022

P. Li, J. Sage, and P. Champion, Probing picosecond processes with nanosecond lasers: Electronic and vibrational relaxation dynamics of heme proteins, The Journal of Chemical Physics, vol.97, issue.5, p.3214, 1992.
DOI : 10.1063/1.463008

W. Eaton, L. Hanson, P. Stephens, J. Sutherland, and J. Dunn, Optical spectra of oxy- and deoxyhemoglobin, Journal of the American Chemical Society, vol.100, issue.16, pp.4991-5003, 2001.
DOI : 10.1021/ja00484a013

S. Stavrov, Correct interpretation of heme protein spectra allows distinguishing between the heme and the protein dynamics, Biopolymers, vol.90, issue.1-2, pp.37-40, 2004.
DOI : 10.1002/bip.20039

J. T. Sage, D. Morikis, and P. M. Champion, Spectroscopic studies of myoglobin at low pH: heme structure and ligation, Biochemistry, vol.30, issue.5, pp.1227-1237, 1991.
DOI : 10.1021/bi00219a010

T. Dartigalongue and F. Hache, Observation of sub-100ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism, Chemical Physics Letters, vol.415, issue.4-6, pp.313-316, 2005.
DOI : 10.1016/j.cplett.2005.09.022

URL : https://hal.archives-ouvertes.fr/hal-00098233

A. Sato, Y. Gao, T. Kitagawa, and Y. Mizutani, Primary protein response after ligand photodissociation in carbonmonoxy myoglobin, Proceedings of the National Academy of Sciences, vol.104, issue.23, pp.9627-9659, 2007.
DOI : 10.1073/pnas.0611560104

P. Kukura, D. W. Mccamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman, Science, vol.310, issue.5750, pp.1006-1015, 2005.
DOI : 10.1126/science.1118379

C. Aubert, M. H. Vos, P. Mathis, A. P. Eker, and K. Brettel, Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, vol.405, pp.586-90, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00837017

J. Martin and M. Vos, [19] Femtosecond measurements of geminate recombination in heme proteins, Methods in Enzymology, vol.232, pp.416-430, 1994.
DOI : 10.1016/0076-6879(94)32057-8

J. Martin and M. Vos, Femtosecond Biology, Annual Review of Biophysics and Biomolecular Structure, vol.21, issue.1, pp.199-222, 1992.
DOI : 10.1146/annurev.bb.21.060192.001215

J. A. Mccammon, B. R. Gelin, and M. Karplus, Dynamics of folded proteins, Nature, vol.58, issue.5612, pp.585-90, 1977.
DOI : 10.1038/267585a0

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.I, issue.2, pp.187-217, 1983.
DOI : 10.1002/jcc.540040211

B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella et al., CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13, pp.1545-614, 2009.
DOI : 10.1002/jcc.21287

A. Fiser and A. Sali, Modeller: Generation and Refinement of Homology-Based Protein Structure Models, Meth Enzymol, vol.374, pp.461-91, 2003.
DOI : 10.1016/S0076-6879(03)74020-8

A. Mülsch and R. Gerzer, [34] Purification of heme-containing soluble guanylyl cyclase, Meth Enzymol, vol.195, pp.377-83, 1991.
DOI : 10.1016/0076-6879(91)95183-K

B. Mayer and D. Koesling, cGMP signalling beyond nitric oxide, Trends in Pharmacological Sciences, vol.22, issue.11, pp.546-548, 2001.
DOI : 10.1016/S0165-6147(00)01889-7

G. E. Norris, B. F. Anderson, E. N. Baker, and S. V. Rumball, Purification and preliminary crystallographic studies on azurin and cytochrome c??? from Alcaligenes denitrificans and Alcaligenes sp. NCIB 11015, Journal of Molecular Biology, vol.135, issue.1, pp.309-321, 1979.
DOI : 10.1016/0022-2836(79)90357-7

J. Guillemette, Y. Matsushimahibiya, T. Atkinson, and M. Smith, of a synthetic gene coding for horse heart myoglobin, "Protein Engineering, Design and Selection", vol.4, issue.5, pp.585-592, 1991.
DOI : 10.1093/protein/4.5.585

K. D. Vandegriff and R. I. Shrager, [22] Hemoglobin-oxygen equilibrium binding: Rapid-scanning spectrophotometry and singular value decomposition, Meth Enzymol, vol.232, pp.460-85, 1994.
DOI : 10.1016/0076-6879(94)32060-8

E. Antonini and M. Brunori, Hemoglobin, Annual Review of Biochemistry, vol.39, issue.1, pp.977-1042, 1970.
DOI : 10.1146/annurev.bi.39.070170.004553

S. Cianetti, S. Kruglik, M. Vos, P. Turpin, J. Martin et al., Interaction of cytochrome c with NO studied by time-resolved Raman and absorption spectroscopy, Biochimica et Biophysica Acta-Bioenergetics, vol.1658, pp.219-219, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00845030

M. Negrerie, S. Cianetti, M. H. Vos, J. Martin, and S. G. Kruglik, Studied by Time-Resolved Resonance Raman and Transient Absorption Spectroscopy, The Journal of Physical Chemistry B, vol.110, issue.25, pp.12766-81, 2006.
DOI : 10.1021/jp0559377

URL : https://hal.archives-ouvertes.fr/hal-00094254

M. Ikeda-saito, H. Hori, L. A. Andersson, R. C. Prince, I. J. Pickering et al., Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants, Journal of Biological Chemistry, vol.267, pp.22843-52, 1992.