J. Alam, C. Wicks, D. Stewart, P. Gong, C. Touchard et al., Mechanism of Heme Oxygenase-1 Gene Activation by Cadmium in MCF-7 Mammary Epithelial Cells. Role of OF p38 Kinase and Nrf2 Transcription Factor, Journal of Biological Chemistry, vol.275, pp.27694-27702, 2000.
DOI : 10.1074/jbc.M004729200

R. Ashino, M. Yamanaka, H. Yamamoto, K. Shimokawa, Y. Sekikawa et al., Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages, Molecular Immunology, vol.45, issue.7, pp.2106-2115, 2008.
DOI : 10.1016/j.molimm.2007.10.011

Y. S. Bae, S. W. Kang, M. S. Seo, I. C. Baines, E. Tekle et al., Epidermal growth factor (EGF)-induced generation of hydrogen peroxide Role in EGF receptor-mediated tyrosine phosphorylation, J Biol Chem, vol.272, pp.217-221, 1997.

W. C. Barrett, J. P. Degnore, S. Konig, H. M. Fales, and Y. F. Keng, Regulation of PTP1B via Glutathionylation of the Active Site Cysteine 215, Biochemistry, vol.38, issue.20, pp.6699-6705, 1999.
DOI : 10.1021/bi990240v

A. M. Benson, R. P. Batzinger, S. Y. Ou, E. Bueding, Y. N. Cha et al., Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants, Cancer Res, vol.38, pp.4486-4495, 1978.

D. S. Biard, Untangling the relationships between DNA repair pathways by silencing more than 20 DNA repair genes in human stable clones, Nucleic Acids Research, vol.35, issue.11, pp.3535-3550, 2007.
DOI : 10.1093/nar/gkm195

A. Bindoli, J. M. Fukuto, and H. J. Forman, Thiol Chemistry in Peroxidase Catalysis and Redox Signaling, Antioxidants & Redox Signaling, vol.10, issue.9, pp.1549-1564, 2008.
DOI : 10.1089/ars.2008.2063

D. A. Bloom and A. K. , Phosphorylation of Nrf2 at Ser40 by Protein Kinase C in Response to Antioxidants Leads to the Release of Nrf2 from INrf2, but Is Not Required for Nrf2 Stabilization/Accumulation in the Nucleus and Transcriptional Activation of Antioxidant Response Element-mediated NAD(P)H:Quinone Oxidoreductase-1 Gene Expression, Journal of Biological Chemistry, vol.278, issue.45, pp.44675-44682, 2003.
DOI : 10.1074/jbc.M307633200

A. A. Bondareva, M. R. Capecchi, S. V. Iverson, Y. Li, N. I. Lopez et al., Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome, Free Radical Biology and Medicine, vol.43, issue.6, pp.911-923, 2007.
DOI : 10.1016/j.freeradbiomed.2007.05.026

S. Braun, C. Hanselmann, M. G. Gassmann, U. Dem-keller, C. Born-berclaz et al., Nrf2 Transcription Factor, a Novel Target of Keratinocyte Growth Factor Action Which Regulates Gene Expression and Inflammation in the Healing Skin Wound, Molecular and Cellular Biology, vol.22, issue.15, pp.5492-5505, 2002.
DOI : 10.1128/MCB.22.15.5492-5505.2002

J. P. Brennan, S. C. Bardswell, J. R. Burgoyne, W. Fuller, E. Schroder et al., Oxidant-induced Activation of Type I Protein Kinase A Is Mediated by RI Subunit Interprotein Disulfide Bond Formation, Journal of Biological Chemistry, vol.281, issue.31, pp.21827-21836, 2006.
DOI : 10.1074/jbc.M603952200

B. J. Buckley, S. Li, and A. R. Whorton, Keap1 modification and nuclear accumulation in response to S-nitrosocysteine, Free Radical Biology and Medicine, vol.44, issue.4, pp.692-698, 2008.
DOI : 10.1016/j.freeradbiomed.2007.10.055

J. R. Burgoyne, M. Madhani, F. Cuello, R. L. Charles, J. P. Brennan et al., Cysteine Redox Sensor in PKGIa Enables Oxidant-Induced Activation, Science, vol.317, issue.5843, pp.1393-1397, 2007.
DOI : 10.1126/science.1144318

M. J. Calkins, R. J. Jakel, D. A. Johnson, K. Chan, Y. W. Kan et al., Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription, Proceedings of the National Academy of Sciences, vol.102, issue.1, pp.244-249, 2005.
DOI : 10.1073/pnas.0408487101

A. Caselli, R. Marzocchini, G. Camici, G. Manao, G. Moneti et al., The Inactivation Mechanism of Low Molecular Weight Phosphotyrosine-protein Phosphatase by H2O2, Journal of Biological Chemistry, vol.273, issue.49, pp.32554-32560, 1998.
DOI : 10.1074/jbc.273.49.32554

K. Chan and Y. W. Kan, Nrf2 is essential for protection against acute pulmonary injury in mice, Proceedings of the National Academy of Sciences, vol.96, issue.22, pp.12731-12736, 1999.
DOI : 10.1073/pnas.96.22.12731

P. Chiarugi, T. Fiaschi, M. L. Taddei, D. Talini, E. Giannoni et al., Two Vicinal Cysteines Confer a Peculiar Redox Regulation to Low Molecular Weight Protein Tyrosine Phosphatase in Response to Platelet-derived Growth Factor Receptor Stimulation, Journal of Biological Chemistry, vol.276, issue.36, pp.33478-33487, 2001.
DOI : 10.1074/jbc.M102302200

H. Y. Cho, A. E. Jedlicka, S. P. Reddy, T. W. Kensler, M. Yamamoto et al., Role of NRF2 in Protection Against Hyperoxic Lung Injury in Mice, American Journal of Respiratory Cell and Molecular Biology, vol.26, issue.2, 2002.
DOI : 10.1165/ajrcmb.26.2.4501

M. H. Choi, I. K. Lee, G. W. Kim, B. U. Kim, Y. H. Han et al., Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II, Nature, vol.279, issue.7040, pp.347-353, 2005.
DOI : 10.1074/jbc.C300428200

M. Conrad, C. Jakupoglu, S. G. Moreno, S. Lippl, A. Banjac et al., Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function, Molecular and Cellular Biology, vol.24, issue.21, pp.9414-9423, 2004.
DOI : 10.1128/MCB.24.21.9414-9423.2004

S. B. Cullinan and J. A. Diehl, PERK-dependent Activation of Nrf2 Contributes to Redox Homeostasis and Cell Survival following Endoplasmic Reticulum Stress, Journal of Biological Chemistry, vol.279, issue.19, pp.20108-20117, 2004.
DOI : 10.1074/jbc.M314219200

S. B. Cullinan, J. D. Gordan, J. Jin, J. W. Harper, and J. A. Diehl, The Keap1-BTB Protein Is an Adaptor That Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase, Molecular and Cellular Biology, vol.24, issue.19, pp.8477-8486, 2004.
DOI : 10.1128/MCB.24.19.8477-8486.2004

S. B. Cullinan, D. Zhang, M. Hannink, E. Arvisais, R. J. Kaufman et al., Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival, Molecular and Cellular Biology, vol.23, issue.20, pp.7198-7209, 2003.
DOI : 10.1128/MCB.23.20.7198-7209.2003

B. D. Autreaux and M. B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nature Reviews Molecular Cell Biology, vol.21, issue.10, pp.813-824, 2007.
DOI : 10.1038/nrm2256

A. Delaunay, D. Pflieger, M. B. Barrault, J. Vinh, and M. B. Toledano, A Thiol Peroxidase Is an H2O2 Receptor and Redox-Transducer in Gene Activation, Cell, vol.111, issue.4, pp.471-481, 2002.
DOI : 10.1016/S0092-8674(02)01048-6

S. Dhakshinamoorthy and A. G. Porter, Nitric oxide-induced transcriptional upregulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells, J Biol Chem, vol.279, 2004.

A. T. Dinkova-kostova, W. D. Holtzclaw, R. N. Cole, K. Itoh, N. Wakabayashi et al., Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants, Proceedings of the National Academy of Sciences, vol.99, issue.18, pp.11908-11913, 2002.
DOI : 10.1073/pnas.172398899

A. T. Dinkova-kostova, K. T. Liby, K. K. Stephenson, W. D. Holtzclaw, X. Gao et al., Extremely potent triterpenoid inducers of the phase 2 response: Correlations of protection against oxidant and inflammatory stress, Proceedings of the National Academy of Sciences, vol.102, issue.12, pp.4584-4589, 2005.
DOI : 10.1073/pnas.0500815102

A. T. Dinkova-kostova, M. A. Massiah, R. E. Bozak, R. J. Hicks, and P. Talalay, Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups, Proceedings of the National Academy of Sciences, vol.98, issue.6, pp.3404-3409, 2001.
DOI : 10.1073/pnas.051632198

A. L. Eggler, G. Liu, J. M. Pezzuto, R. B. Van-breemen, and A. D. Mesecar, Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2, Proceedings of the National Academy of Sciences, vol.102, issue.29, pp.10070-10075, 2005.
DOI : 10.1073/pnas.0502402102

A. Enomoto, K. Itoh, E. Nagayoshi, J. Haruta, T. Kimura et al., High Sensitivity of Nrf2 Knockout Mice to Acetaminophen Hepatotoxicity Associated with Decreased Expression of ARE-Regulated Drug Metabolizing Enzymes and Antioxidant Genes, Toxicological Sciences, vol.59, issue.1, pp.169-177, 2001.
DOI : 10.1093/toxsci/59.1.169

M. A. Essers, S. Weijzen, A. M. De-vries-smits, I. Saarloos, N. D. De-ruiter et al., FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK, The EMBO Journal, vol.270, issue.24, pp.4802-4812, 2004.
DOI : 10.1016/0092-8674(89)90944-6

J. W. Fahey, X. Haristoy, P. M. Dolan, T. W. Kensler, I. Scholtus et al., Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors, Proceedings of the National Academy of Sciences, vol.99, issue.11, pp.7610-7615, 2002.
DOI : 10.1073/pnas.112203099

S. Fourquet, M. E. Huang, B. D. Autreaux, and M. B. Toledano, Scavenging and Signaling, Antioxidants & Redox Signaling, vol.10, issue.9, pp.1565-1576, 2008.
DOI : 10.1089/ars.2008.2049

M. Furukawa and Y. Xiong, BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase, Molecular and Cellular Biology, vol.25, issue.1, pp.162-171, 2005.
DOI : 10.1128/MCB.25.1.162-171.2005

S. Gamou and N. Shimizu, Hydrogen peroxide preferentially enhances the tyrosine phosphorylation of epidermal growth factor receptor, FEBS Letters, vol.263, issue.2, pp.161-164, 1995.
DOI : 10.1016/0014-5793(94)01335-X

E. Giannoni, F. Buricchi, G. Raugei, G. Ramponi, and P. Chiarugi, Intracellular Reactive Oxygen Species Activate Src Tyrosine Kinase during Cell Adhesion and Anchorage-Dependent Cell Growth, Molecular and Cellular Biology, vol.25, issue.15, pp.6391-6403, 2005.
DOI : 10.1128/MCB.25.15.6391-6403.2005

G. I. Giles and C. Jacob, Reactive Sulfur Species: An Emerging Concept in Oxidative Stress, Biological Chemistry, vol.383, issue.3-4, pp.375-388, 2002.
DOI : 10.1515/BC.2002.042

C. E. Goldring, N. R. Kitteringham, R. Elsby, L. E. Randle, Y. N. Clement et al., Activation of hepatic Nrf2in vivo by acetaminophen in CD-1 mice, Hepatology, vol.378, issue.5, pp.1267-1276, 2004.
DOI : 10.1002/hep.20183

J. D. Hayes and M. Mcmahon, The Double-Edged Sword of Nrf2: Subversion of Redox Homeostasis during the Evolution of Cancer, Molecular Cell, vol.21, issue.6, pp.732-734, 2006.
DOI : 10.1016/j.molcel.2006.03.004

A. Hirayama, K. Yoh, S. Nagase, A. Ueda, K. Itoh et al., EPR imaging of reducing activity in Nrf2 transcriptional factor-deficient mice, Free Radical Biology and Medicine, vol.34, issue.10, pp.1236-1242, 2003.
DOI : 10.1016/S0891-5849(03)00073-X

A. Hirota, Y. Kawachi, K. Itoh, Y. Nakamura, X. Xu et al., Ultraviolet A Irradiation Induces NF-E2-Related Factor 2 Activation in Dermal Fibroblasts: Protective Role in UVA-Induced Apoptosis, Journal of Investigative Dermatology, vol.124, issue.4, pp.825-832, 2005.
DOI : 10.1111/j.0022-202X.2005.23670.x

F. Hong, M. L. Freeman, and D. C. Liebler, Identification of Sensor Cysteines in Human Keap1 Modified by the Cancer Chemopreventive Agent Sulforaphane, Chemical Research in Toxicology, vol.18, issue.12, pp.1917-1926, 2005.
DOI : 10.1021/tx0502138

F. Hong, K. R. Sekhar, M. L. Freeman, and D. C. Liebler, Specific Patterns of Electrophile Adduction Trigger Keap1 Ubiquitination and Nrf2 Activation, Journal of Biological Chemistry, vol.280, issue.36, pp.31768-31775, 2005.
DOI : 10.1074/jbc.M503346200

H. Hoshino and K. Igarashi, Expression of the Oxidative Stress-Regulated Transcription Factor Bach2 in Differentiating Neuronal Cells, Journal of Biochemistry, vol.132, issue.3, pp.427-431, 2002.
DOI : 10.1093/oxfordjournals.jbchem.a003239

H. Hoshino, A. Kobayashi, M. Yoshida, N. Kudo, T. Oyake et al., Oxidative Stress Abolishes Leptomycin B-sensitive Nuclear Export of Transcription Repressor Bach2 That Counteracts Activation of Maf Recognition Element, Journal of Biological Chemistry, vol.275, issue.20, pp.15370-15376, 2000.
DOI : 10.1074/jbc.275.20.15370

H. C. Huang, T. Nguyen, and C. B. Pickett, Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2, Proceedings of the National Academy of Sciences, vol.97, issue.23, pp.12475-12480, 2000.
DOI : 10.1073/pnas.220418997

H. C. Huang, T. Nguyen, and C. B. Pickett, Phosphorylation of Nrf2 at Ser-40 by Protein Kinase C Regulates Antioxidant Response Element-mediated Transcription, Journal of Biological Chemistry, vol.277, issue.45, pp.42769-42774, 2002.
DOI : 10.1074/jbc.M206911200

K. Iida, K. Itoh, Y. Kumagai, R. Oyasu, K. Hattori et al., Nrf2 Is Essential for the Chemopreventive Efficacy of Oltipraz against Urinary Bladder Carcinogenesis, Cancer Research, vol.64, issue.18, pp.6424-6431, 2004.
DOI : 10.1158/0008-5472.CAN-04-1906

T. Iizuka, Y. Ishii, K. Itoh, T. Kiwamoto, T. Kimura et al., Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema, Genes to Cells, vol.68, issue.12, pp.1113-1125, 2005.
DOI : 10.1111/j.1365-2443.2005.00905.x

N. G. Innamorato, A. I. Rojo, A. J. Garcia-yague, M. Yamamoto, M. L. De-ceballos et al., The Transcription Factor Nrf2 Is a Therapeutic Target against Brain Inflammation, The Journal of Immunology, vol.181, issue.1, pp.680-689, 2008.
DOI : 10.4049/jimmunol.181.1.680

T. Ishii, K. Itoh, S. Takahashi, H. Sato, T. Yanagawa et al., Transcription Factor Nrf2 Coordinately Regulates a Group of Oxidative Stress-inducible Genes in Macrophages, Journal of Biological Chemistry, vol.275, issue.21, pp.16023-16029, 2000.
DOI : 10.1074/jbc.275.21.16023

M. Ishikawa, S. Numazawa, and T. Yoshida, Redox regulation of the transcriptional repressor Bach1, Free Radical Biology and Medicine, vol.38, issue.10, pp.1344-1352, 2005.
DOI : 10.1016/j.freeradbiomed.2005.01.021

K. Itoh, M. Mochizuki, Y. Ishii, T. Ishii, T. Shibata et al., Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta, Mol Cell Biol, vol.1214, issue.24, pp.36-45, 2004.

K. Itoh, N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi et al., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes & Development, vol.13, issue.1, pp.76-86, 1999.
DOI : 10.1101/gad.13.1.76

K. Itoh, N. Wakabayashi, Y. Katoh, T. Ishii, T. O. Connor et al., Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles, Genes to Cells, vol.11, issue.4, pp.379-391, 2003.
DOI : 10.1016/S0968-0004(97)01122-5

A. K. Jain and A. K. , Phosphorylation of Tyrosine 568 Controls Nuclear Export of Nrf2, Journal of Biological Chemistry, vol.281, issue.17, pp.12132-12142, 2006.
DOI : 10.1074/jbc.M511198200

A. K. Jain and A. K. , GSK-3beta Acts Upstream of Fyn Kinase in Regulation of Nuclear Export and Degradation of NF-E2 Related Factor 2, Journal of Biological Chemistry, vol.282, issue.22, pp.16502-16510, 2007.
DOI : 10.1074/jbc.M611336200

H. Kamata, S. Honda, S. Maeda, L. Chang, H. Hirata et al., Reactive Oxygen Species Promote TNF??-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases, Cell, vol.120, issue.5, pp.649-661, 2005.
DOI : 10.1016/j.cell.2004.12.041

T. Kamio, T. Toki, R. Kanezaki, S. Sasaki, S. Tandai et al., B-cell-specific transcription factor BACH2 modifies the cytotoxic effects of anticancer drugs, Blood, vol.102, issue.9, pp.3317-3322, 2003.
DOI : 10.1182/blood-2002-12-3656

K. W. Kang, J. H. Ryu, and S. G. Kim, The essential role of phosphatidylinositol 3-kinase and of p38 mitogen-activated protein kinase activation in the antioxidant response element-mediated rGSTA2 induction by decreased glutathione in H4IIE hepatoma cells, Mol Pharmacol, vol.58, pp.1017-1025, 2000.

M. I. Kang, A. Kobayashi, N. Wakabayashi, S. G. Kim, and M. Yamamoto, Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.2046-2051, 2004.
DOI : 10.1073/pnas.0308347100

S. W. Kang, H. Z. Chae, M. S. Seo, K. Kim, I. C. Baines et al., Mammalian Peroxiredoxin Isoforms Can Reduce Hydrogen Peroxide Generated in Response to Growth Factors and Tumor Necrosis Factor-alpha, Journal of Biological Chemistry, vol.273, issue.11, pp.6297-6302, 1998.
DOI : 10.1074/jbc.273.11.6297

K. Kataoka, H. Handa, and M. Nishizawa, Induction of Cellular Antioxidative Stress Genes through Heterodimeric Transcription Factor Nrf2/Small Maf by Antirheumatic Gold(I) Compounds, Journal of Biological Chemistry, vol.276, issue.36, pp.34074-34081, 2001.
DOI : 10.1074/jbc.M105383200

Y. Kawamoto, Y. Nakamura, Y. Naito, Y. Torii, T. Kumagai et al., Cyclopentenone Prostaglandins as Potential Inducers of Phase II Detoxification Enzymes. 15-DEOXY-Delta 12,14-PROSTAGLANDIN J2-INDUCED EXPRESSION OF GLUTATHIONE S-TRANSFERASES, Journal of Biological Chemistry, vol.275, issue.15, pp.11291-11299, 2000.
DOI : 10.1074/jbc.275.15.11291

T. W. Kensler, P. A. Egner, P. M. Dolan, J. D. Groopman, and B. D. Roebuck, Mechanism of protection against aflatoxin tumorigenicity in rats fed 5-(2-pyrazinyl)-4-methyl-1,2- dithiol-3-thione (oltipraz) and related 1,2-dithiol-3-thiones and 1,2-dithiol-3-ones, Cancer Res, vol.47, pp.4271-4277, 1987.

T. O. Khor, M. T. Huang, K. H. Kwon, J. Y. Chan, B. S. Reddy et al., Nrf2-Deficient Mice Have an Increased Susceptibility to Dextran Sulfate Sodium-Induced Colitis, Cancer Research, vol.66, issue.24, pp.11580-11584, 2006.
DOI : 10.1158/0008-5472.CAN-06-3562

K. M. Kim, H. O. Pae, M. Zheng, R. Park, Y. M. Kim et al., Carbon Monoxide Induces Heme Oxygenase-1 via Activation of Protein Kinase R Like Endoplasmic Reticulum Kinase and Inhibits Endothelial Cell Apoptosis Triggered by Endoplasmic Reticulum Stress, Circulation Research, vol.101, issue.9, pp.919-927, 2007.
DOI : 10.1161/CIRCRESAHA.107.154781

A. Kobayashi, M. I. Kang, H. Okawa, M. Ohtsuji, Y. Zenke et al., Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2, Molecular and Cellular Biology, vol.24, issue.16, pp.7130-7139, 2004.
DOI : 10.1128/MCB.24.16.7130-7139.2004

A. Kobayashi, M. I. Kang, Y. Watai, K. I. Tong, T. Shibata et al., Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1, Molecular and Cellular Biology, vol.26, issue.1, pp.221-229, 2006.
DOI : 10.1128/MCB.26.1.221-229.2006

M. Kobayashi, K. Itoh, T. Suzuki, H. Osanai, K. Nishikawa et al., Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system, Genes to Cells, vol.17, issue.83, pp.807-820, 2002.
DOI : 10.1046/j.1365-2443.2002.00561.x

M. Kobayashi and M. Yamamoto, Nrf2???Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species, Advances in Enzyme Regulation, vol.46, issue.1, pp.113-140, 2006.
DOI : 10.1016/j.advenzreg.2006.01.007

J. K. Kolls, Oxidative stress in sepsis: a redox redux, Journal of Clinical Investigation, vol.116, issue.4, pp.860-863, 2006.
DOI : 10.1172/JCI28111

A. D. Kraft, D. A. Johnson, and J. A. Johnson, Nuclear Factor E2-Related Factor 2-Dependent Antioxidant Response Element Activation by tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons against Oxidative Insult, Journal of Neuroscience, vol.24, issue.5, pp.1101-1112, 2004.
DOI : 10.1523/JNEUROSCI.3817-03.2004

J. Kwon, S. R. Lee, K. S. Yang, Y. Ahn, Y. J. Kim et al., Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors, Proceedings of the National Academy of Sciences, vol.101, issue.47, pp.16419-16424, 2004.
DOI : 10.1073/pnas.0407396101

J. R. Lancaster and J. , Nitroxidative, Nitrosative, and Nitrative Stress:?? Kinetic Predictions of Reactive Nitrogen Species Chemistry Under Biological Conditions, Chemical Research in Toxicology, vol.19, issue.9, pp.1160-1174, 2006.
DOI : 10.1021/tx060061w

B. Lassegue, D. Sorescu, K. Szocs, Q. Yin, M. Akers et al., Novel gp91phox Homologues in Vascular Smooth Muscle Cells : nox1 Mediates Angiotensin II-Induced Superoxide Formation and Redox-Sensitive Signaling Pathways, Circulation Research, vol.88, issue.9, pp.888-894, 2001.
DOI : 10.1161/hh0901.090299

S. R. Lee, K. S. Kwon, S. R. Kim, and S. G. Rhee, Reversible Inactivation of Protein-tyrosine Phosphatase 1B in A431 Cells Stimulated with Epidermal Growth Factor, Journal of Biological Chemistry, vol.273, issue.25, pp.15366-15372, 1998.
DOI : 10.1074/jbc.273.25.15366

A. L. Levonen, A. Landar, A. Ramachandran, E. K. Ceaser, D. A. Dickinson et al., Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products, Biochemical Journal, vol.378, issue.2, pp.373-382, 2004.
DOI : 10.1042/bj20031049

B. Li, X. Wang, N. Rasheed, Y. Hu, S. Boast et al., Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C ??, Genes & Development, vol.18, issue.15, pp.1824-1837, 2004.
DOI : 10.1101/gad.1223504

L. Li, M. Kobayashi, H. Kaneko, Y. Nakajima-takagi, Y. Nakayama et al., Molecular Evolution of Keap1, Journal of Biological Chemistry, vol.283, issue.6, pp.3248-3255, 2008.
DOI : 10.1074/jbc.M708702200

M. Liu, K. J. Peyton, D. Ensenat, H. Wang, M. Hannink et al., Nitric oxide stimulates heme oxygenase-1 gene transcription via the Nrf2/ARE complex to promote vascular smooth muscle cell survival, Cardiovascular Research, vol.75, issue.2, pp.381-389, 2007.
DOI : 10.1016/j.cardiores.2007.03.004

Y. Liu and W. Min, Thioredoxin Promotes ASK1 Ubiquitination and Degradation to Inhibit ASK1-Mediated Apoptosis in a Redox Activity-Independent Manner, Circulation Research, vol.90, issue.12, pp.1259-1266, 2002.
DOI : 10.1161/01.RES.0000022160.64355.62

S. C. Lo, X. Li, M. T. Henzl, L. J. Beamer, and M. Hannink, Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling, The EMBO Journal, vol.591, issue.15, pp.3605-3617, 2006.
DOI : 10.1074/jbc.M206530200

Y. Luo, A. L. Eggler, D. Liu, G. Liu, A. D. Mesecar et al., Sites of alkylation of human Keap1 by natural chemoprevention agents, Journal of the American Society for Mass Spectrometry, vol.9, issue.4, pp.2226-2232, 2007.
DOI : 10.1016/j.jasms.2007.09.015

Q. Ma, L. Battelli, and A. F. Hubbs, Multiorgan Autoimmune Inflammation, Enhanced Lymphoproliferation, and Impaired Homeostasis of Reactive Oxygen Species in Mice Lacking the Antioxidant-Activated Transcription Factor Nrf2, The American Journal of Pathology, vol.168, issue.6, pp.1960-1974, 2006.
DOI : 10.2353/ajpath.2006.051113

K. Mahadev, A. Zilbering, L. Zhu, and B. J. Goldstein, Insulin-stimulated Hydrogen Peroxide Reversibly Inhibits Protein-tyrosine Phosphatase 1B in Vivo and Enhances the Early Insulin Action Cascade, Journal of Biological Chemistry, vol.276, issue.24, pp.21938-21942, 2001.
DOI : 10.1074/jbc.C100109200

M. Mcmahon, K. Itoh, M. Yamamoto, and J. D. Hayes, Keap1-dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-driven Gene Expression, Journal of Biological Chemistry, vol.278, issue.24, pp.21592-21600, 2003.
DOI : 10.1074/jbc.M300931200

M. Mcmahon, . Thomas, . Itoh, J. Yamamoto, and . Hayes, Dimerization of Substrate Adaptors Can Facilitate Cullin-mediated Ubiquitylation of Proteins by a ???Tethering??? Mechanism, Journal of Biological Chemistry, vol.281, issue.34, pp.24756-24768, 2006.
DOI : 10.1074/jbc.M601119200

C. Meng, T. Fukada, and N. K. Tonks, Reversible Oxidation and Inactivation of Protein Tyrosine Phosphatases In Vivo, Molecular Cell, vol.9, issue.2, pp.387-399, 2002.
DOI : 10.1016/S1097-2765(02)00445-8

P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan, Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region., Proceedings of the National Academy of Sciences, vol.91, issue.21, pp.9926-9930, 1994.
DOI : 10.1073/pnas.91.21.9926

N. Morito, K. Yoh, K. Itoh, A. Hirayama, A. Koyama et al., Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels, Oncogene, vol.22, issue.58, pp.9275-9281, 2003.
DOI : 10.1038/sj.onc.1207024

H. Murata, Y. Ihara, H. Nakamura, J. Yodoi, K. Sumikawa et al., Glutaredoxin Exerts an Antiapoptotic Effect by Regulating the Redox State of Akt, Journal of Biological Chemistry, vol.278, issue.50, pp.50226-50233, 2003.
DOI : 10.1074/jbc.M310171200

A. Muto, S. Tashiro, O. Nakajima, H. Hoshino, S. Takahashi et al., The transcriptional programme of antibody class switching involves the repressor Bach2, Nature, vol.130, issue.6991, pp.566-571, 2004.
DOI : 10.1074/jbc.M112003200

A. Muto, S. Tashiro, H. Tsuchiya, A. Kume, M. Kanno et al., Activation of Maf/AP-1 Repressor Bach2 by Oxidative Stress Promotes Apoptosis and Its Interaction with Promyelocytic Leukemia Nuclear Bodies, Journal of Biological Chemistry, vol.277, issue.23, pp.20724-20733, 2002.
DOI : 10.1074/jbc.M112003200

P. J. Nadeau, S. J. Charette, M. B. Toledano, and J. Landry, Disulfide Bond-mediated Multimerization of Ask1 and Its Reduction by Thioredoxin-1 Regulate H2O2-induced c-Jun NH2-terminal Kinase Activation and Apoptosis, Molecular Biology of the Cell, vol.18, issue.10, pp.3903-3913, 2007.
DOI : 10.1091/mbc.E07-05-0491

P. Nioi and T. Nguyen, A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity, Biochemical and Biophysical Research Communications, vol.362, issue.4, pp.816-821, 2007.
DOI : 10.1016/j.bbrc.2007.08.051

K. Ochiai, Y. Katoh, T. Ikura, Y. Hoshikawa, T. Noda et al., Plasmacytic Transcription Factor Blimp-1 Is Repressed by Bach2 in B Cells, Journal of Biological Chemistry, vol.281, issue.50, pp.38226-38234, 2006.
DOI : 10.1074/jbc.M607592200

T. Ohta, K. Iijima, M. Miyamoto, I. Nakahara, H. Tanaka et al., Loss of Keap1 Function Activates Nrf2 and Provides Advantages for Lung Cancer Cell Growth, Cancer Research, vol.68, issue.5, pp.1303-1309, 2008.
DOI : 10.1158/0008-5472.CAN-07-5003

H. Okawa, H. Motohashi, A. Kobayashi, H. Aburatani, T. W. Kensler et al., Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity, Biochemical and Biophysical Research Communications, vol.339, issue.1, pp.79-88, 2006.
DOI : 10.1016/j.bbrc.2005.10.185

W. O. Osburn, B. Karim, P. M. Dolan, G. Liu, M. Yamamoto et al., Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment, International Journal of Cancer, vol.24, issue.9, pp.1883-1891, 2007.
DOI : 10.1002/ijc.22943

W. O. Osburn and T. W. Kensler, Nrf2 signaling: An adaptive response pathway for protection against environmental toxic insults, Mutation Research/Reviews in Mutation Research, vol.659, issue.1-2, 2007.
DOI : 10.1016/j.mrrev.2007.11.006

K. Oyake, H. Itoh, N. Motohashi, H. Hayashi, M. Hoshino et al., Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site., Molecular and Cellular Biology, vol.16, issue.11, pp.6083-6095, 1996.
DOI : 10.1128/MCB.16.11.6083

B. Padmanabhan, K. I. Tong, T. Ohta, Y. Nakamura, M. Scharlock et al., Structural Basis for Defects of Keap1 Activity Provoked by Its Point Mutations in Lung Cancer, Molecular Cell, vol.21, issue.5, pp.689-700, 2006.
DOI : 10.1016/j.molcel.2006.01.013

C. Persson, T. Sjoblom, A. Groen, K. Kappert, U. Engstrom et al., Preferential oxidation of the second phosphatase domain of receptor-like PTP-?? revealed by an antibody against oxidized protein tyrosine phosphatases, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.1886-1891, 2004.
DOI : 10.1073/pnas.0304403101

G. Rachakonda, Y. Xiong, K. R. Sekhar, S. L. Stamer, D. C. Liebler et al., Covalent Modification at Cys151 Dissociates the Electrophile Sensor Keap1 from the Ubiquitin Ligase CUL3, Chemical Research in Toxicology, vol.21, issue.3, pp.705-710, 2008.
DOI : 10.1021/tx700302s

M. Ramos-gomez, M. K. Kwak, P. M. Dolan, K. Itoh, M. Yamamoto et al., Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice, Proceedings of the National Academy of Sciences, vol.98, issue.6, pp.3410-3415, 2001.
DOI : 10.1073/pnas.051618798

T. Rangasamy, C. Y. Cho, R. K. Thimmulappa, L. Zhen, S. S. Srisuma et al., Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke???induced emphysema in mice, Journal of Clinical Investigation, vol.114, issue.9, pp.1248-1259, 2004.
DOI : 10.1172/JCI21146DS1

S. G. Rhee, CELL SIGNALING: H2O2, a Necessary Evil for Cell Signaling, Science, vol.312, issue.5782, pp.1882-1883, 2006.
DOI : 10.1126/science.1130481

S. G. Rhee, Y. S. Bae, S. R. Lee, and J. Kwon, Hydrogen Peroxide: A Key Messenger That Modulates Protein Phosphorylation Through Cysteine Oxidation, Science Signaling, vol.2000, issue.53, p.1, 2000.
DOI : 10.1126/stke.2000.53.pe1

M. Saitoh, H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume et al., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1, The EMBO Journal, vol.17, issue.9, pp.2596-2606, 1998.
DOI : 10.1093/emboj/17.9.2596

M. Salazar, A. I. Rojo, D. Velasco, R. M. De-sagarra, and A. Cuadrado, Glycogen Synthase Kinase-3beta Inhibits the Xenobiotic and Antioxidant Cell Response by Direct Phosphorylation and Nuclear Exclusion of the Transcription Factor Nrf2, Journal of Biological Chemistry, vol.281, issue.21, pp.14841-14851, 2006.
DOI : 10.1074/jbc.M513737200

A. Salmeen, J. N. Andersen, M. P. Myers, T. C. Meng, J. A. Hinks et al., Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate, Nature, vol.423, issue.6941, pp.769-773, 2003.
DOI : 10.1038/nature01680

E. Sasaki, T. Ito, T. Toki, R. Maekawa, T. Kanezaki et al., Cloning and expression of human B cell-specific transcription factor BACH2 mapped to chromosome 6q15, Oncogene, vol.19, issue.33, pp.3739-3749, 2000.
DOI : 10.1038/sj.onc.1203716

T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto et al., alkylation of targeted cysteines on Keap1, Journal of Neurochemistry, vol.24, issue.4, pp.1116-1131, 2008.
DOI : 10.1111/j.1471-4159.2007.05039.x

P. A. Savitsky and T. Finkel, Redox Regulation of Cdc25C, Journal of Biological Chemistry, vol.277, issue.23, pp.20535-20540, 2002.
DOI : 10.1074/jbc.M201589200

F. D. Schubot, J. E. Tropea, and D. S. Waugh, Structure of the POZ domain of human LRF, a master regulator of oncogenesis, Biochemical and Biophysical Research Communications, vol.351, issue.1, pp.1-6, 2006.
DOI : 10.1016/j.bbrc.2006.09.167

C. S. Sevier and C. A. Kaiser, Ero1 and redox homeostasis in the endoplasmic reticulum, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1783, issue.4, pp.549-556, 2008.
DOI : 10.1016/j.bbamcr.2007.12.011

A. Y. Shih, S. Imbeault, V. Barakauskas, H. Erb, L. Jiang et al., Induction of the Nrf2-driven Antioxidant Response Confers Neuroprotection during Mitochondrial Stress in Vivo, Journal of Biological Chemistry, vol.280, issue.24, pp.22925-22936, 2005.
DOI : 10.1074/jbc.M414635200

A. Singh, V. Misra, R. K. Thimmulappa, H. Lee, S. Ames et al., Dysfunctional KEAP1???NRF2 Interaction in Non-Small-Cell Lung Cancer, PLoS Medicine, vol.31, issue.10, p.420, 2006.
DOI : 10.1371/journal.pmed.0030420.st005

K. Srisook and Y. N. Cha, Super-induction of HO-1 in macrophages stimulated with lipopolysaccharide by prior depletion of glutathione decreases iNOS expression and NO production, Nitric Oxide, vol.12, issue.2, pp.70-79, 2005.
DOI : 10.1016/j.niox.2004.12.002

J. S. Stamler, Redox signaling: Nitrosylation and related target interactions of nitric oxide, Cell, vol.78, issue.6, pp.931-936, 1994.
DOI : 10.1016/0092-8674(94)90269-0

J. S. Stamler and E. J. Toone, The decomposition of thionitrites, Current Opinion in Chemical Biology, vol.6, issue.6, pp.779-785, 2002.
DOI : 10.1016/S1367-5931(02)00383-6

D. Stewart, E. Killeen, R. Naquin, S. Alam, and J. Alam, Degradation of Transcription Factor Nrf2 via the Ubiquitin-Proteasome Pathway and Stabilization by Cadmium, Journal of Biological Chemistry, vol.278, issue.4, pp.2396-2402, 2003.
DOI : 10.1074/jbc.M209195200

P. J. Stogios and G. G. Prive, The BACK domain in BTB-kelch proteins, Trends in Biochemical Sciences, vol.29, issue.12, pp.634-637, 2004.
DOI : 10.1016/j.tibs.2004.10.003

Y. A. Suh, R. S. Arnold, B. Lassegue, J. Shi, X. Xu et al., Cell transformation by the superoxide-generating oxidase Mox1, Nature, vol.401, pp.79-82, 1999.

J. Sun, H. Hoshino, K. Takaku, O. Nakajima, A. Muto et al., Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene, The EMBO Journal, vol.14, issue.19, pp.5216-5224, 2002.
DOI : 10.1093/emboj/cdf516

M. Sundaresan, Z. X. Yu, V. J. Ferrans, K. Irani, and T. Finkel, Requirement for Generation of H(2)O(2) for Platelet-Derived Growth Factor Signal Tran sduction, Science, vol.270, issue.5234, pp.296-299, 1995.
DOI : 10.1126/science.270.5234.296

H. Suzuki, S. Tashiro, S. Hira, J. Sun, C. Yamazaki et al., Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1, The EMBO Journal, vol.14, issue.13, pp.2544-2553, 2004.
DOI : 10.1046/j.1365-2443.1999.00291.x

H. Suzuki, S. Tashiro, J. Sun, H. Doi, S. Satomi et al., Cadmium Induces Nuclear Export of Bach1, a Transcriptional Repressor of Heme Oxygenase-1 Gene, Journal of Biological Chemistry, vol.278, issue.49, pp.49246-49253, 2003.
DOI : 10.1074/jbc.M306764200

G. P. Sykiotis and D. Bohmann, Keap1/Nrf2 Signaling Regulates Oxidative Stress Tolerance and Lifespan in Drosophila, Developmental Cell, vol.14, issue.1, pp.76-85, 2008.
DOI : 10.1016/j.devcel.2007.12.002

S. Tashiro, A. Muto, K. Tanimoto, H. Tsuchiya, H. Suzuki et al., Repression of PML Nuclear Body-Associated Transcription by Oxidative Stress-Activated Bach2, Molecular and Cellular Biology, vol.24, issue.8, pp.3473-3484, 2004.
DOI : 10.1128/MCB.24.8.3473-3484.2004

R. K. Thimmulappa, R. J. Fuchs, D. Malhotra, C. Scollick, K. Traore et al., Preclinical Evaluation of Targeting the Nrf2 Pathway by Triterpenoids (CDDO-Im and CDDO-Me) for Protection from LPS-Induced Inflammatory Response and Reactive Oxygen Species in Human Peripheral Blood Mononuclear Cells and Neutrophils, Antioxidants & Redox Signaling, vol.9, issue.11, 1963.
DOI : 10.1089/ars.2007.1745

R. K. Thimmulappa, H. Lee, T. Rangasamy, S. P. Reddy, M. Yamamoto et al., Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, Journal of Clinical Investigation, vol.116, issue.4, pp.984-995, 2006.
DOI : 10.1172/JCI25790DS1

M. B. Toledano, A. Delaunay, L. Monceau, and F. Tacnet, Microbial H2O2 sensors as archetypical redox signaling modules, Trends in Biochemical Sciences, vol.29, issue.7, pp.351-357, 2004.
DOI : 10.1016/j.tibs.2004.05.005

M. B. Toledano, C. Kumar, N. Le-moan, D. Spector, and F. Tacnet, and yeast: Differential functions in oxidative stress, iron metabolism and DNA synthesis, FEBS Letters, vol.436, issue.235, pp.3598-3607, 2007.
DOI : 10.1016/j.febslet.2007.07.002

K. I. Tong, Y. Katoh, H. Kusunoki, K. Itoh, T. Tanaka et al., Keap1 Recruits Neh2 through Binding to ETGE and DLG Motifs: Characterization of the Two-Site Molecular Recognition Model, Molecular and Cellular Biology, vol.26, issue.8, pp.2887-2900, 2006.
DOI : 10.1128/MCB.26.8.2887-2900.2006

J. M. Tullet, M. Hertweck, J. H. An, J. Baker, J. Y. Hwang et al., Direct Inhibition of the Longevity-Promoting Factor SKN-1 by??Insulin-like Signaling in C. elegans, Cell, vol.132, issue.6, pp.1025-1038, 2008.
DOI : 10.1016/j.cell.2008.01.030

M. Ushio-fukai, R. W. Alexander, M. Akers, Q. Yin, Y. Fujio et al., Reactive Oxygen Species Mediate the Activation of Akt/Protein Kinase B by Angiotensin II in Vascular Smooth Muscle Cells, Journal of Biological Chemistry, vol.274, issue.32, pp.22699-22704, 1999.
DOI : 10.1074/jbc.274.32.22699

T. Van-der-wijk, J. Overvoorde, and J. Hertog, -induced Intermolecular Disulfide Bond Formation between Receptor Protein-tyrosine Phosphatases, Journal of Biological Chemistry, vol.279, issue.43, pp.44355-44361, 2004.
DOI : 10.1074/jbc.M407483200

URL : https://hal.archives-ouvertes.fr/lirmm-00609009

R. L. Van-montfort, M. Congreve, D. Tisi, R. Carr, and H. Jhoti, Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B, Nature, vol.423, issue.6941, pp.773-777, 2003.
DOI : 10.1038/nature01681

A. P. Vivancos, E. A. Castillo, B. Biteau, C. Nicot, J. Ayte et al., A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway, Proceedings of the National Academy of Sciences, vol.102, issue.25, pp.8875-8880, 2005.
DOI : 10.1073/pnas.0503251102

A. T. Wakabayashi, W. D. Dinkova-kostova, M. I. Holtzclaw, A. Kang, M. Kobayashi et al., Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.2040-2045, 2004.
DOI : 10.1073/pnas.0307301101

R. Wang, J. An, F. Ji, H. Jiao, H. Sun et al., Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues, Biochemical and Biophysical Research Communications, vol.373, issue.1, pp.151-154, 2008.
DOI : 10.1016/j.bbrc.2008.06.004

L. A. Wilson, A. Gemin, R. Espiritu, and G. Singh, ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element, The FASEB Journal, vol.19, pp.2085-2087, 2005.
DOI : 10.1096/fj.05-4401fje

C. C. Winterbourn and M. B. Hampton, Thiol chemistry and specificity in redox signaling, Free Radical Biology and Medicine, vol.45, issue.5, 2008.
DOI : 10.1016/j.freeradbiomed.2008.05.004

C. Xu, M. T. Huang, G. Shen, X. Yuan, W. Lin et al., Inhibition of 7,12-Dimethylbenz(a)anthracene-Induced Skin Tumorigenesis in C57BL/6 Mice by Sulforaphane Is Mediated by Nuclear Factor E2-Related Factor 2, Cancer Research, vol.66, issue.16, pp.8293-8296, 2006.
DOI : 10.1158/0008-5472.CAN-06-0300

T. Yamamoto, T. Suzuki, A. Kobayashi, J. Wakabayashi, J. Maher et al., Physiological Significance of Reactive Cysteine Residues of Keap1 in Determining Nrf2 Activity, Molecular and Cellular Biology, vol.28, issue.8, pp.2758-2770, 2008.
DOI : 10.1128/MCB.01704-07

Y. Yano, R. Ozono, Y. Oishi, M. Kambe, M. Yoshizumi et al., Genetic ablation of the transcription repressor Bach1 leads to myocardial protection against ischemia/reperfusion in mice, Genes to Cells, vol.89, issue.7, pp.791-803, 2006.
DOI : 10.1111/j.1365-2443.2006.00979.x

C. Yoshida, F. Yoshida, D. E. Sears, S. M. Hart, D. Ikebe et al., Bcr-Abl signaling through the PI-3/S6 kinase pathway inhibits nuclear translocation of the transcription factor Bach2, which represses the antiapoptotic factor heme oxygenase-1, Blood, vol.109, issue.3, pp.1211-1219, 2007.
DOI : 10.1182/blood-2005-12-040972

R. Yu, W. Lei, S. Mandlekar, M. J. Weber, C. J. Der et al., Role of a Mitogen-activated Protein Kinase Pathway in the Induction of Phase II Detoxifying Enzymes by Chemicals, Journal of Biological Chemistry, vol.274, issue.39, pp.27545-27552, 1999.
DOI : 10.1074/jbc.274.39.27545

R. Yu, S. Mandlekar, W. Lei, W. E. Fahl, T. H. Tan et al., p38 Mitogen-activated Protein Kinase Negatively Regulates the Induction of Phase II Drug-metabolizing Enzymes That Detoxify Carcinogens, Journal of Biological Chemistry, vol.275, issue.4, pp.2322-2327, 2000.
DOI : 10.1074/jbc.275.4.2322

D. D. Zhang and M. Hannink, Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress, Molecular and Cellular Biology, vol.23, issue.22, pp.8137-8151, 2003.
DOI : 10.1128/MCB.23.22.8137-8151.2003

D. D. Zhang, S. C. Lo, J. V. Cross, D. J. Templeton, and M. Hannink, Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex, Molecular and Cellular Biology, vol.24, issue.24, pp.10941-10953, 2004.
DOI : 10.1128/MCB.24.24.10941-10953.2004

D. D. Zhang, S. C. Lo, Z. Sun, G. M. Habib, M. W. Lieberman et al., Ubiquitination of Keap1, a BTB-Kelch Substrate Adaptor Protein for Cul3, Targets Keap1 for Degradation by a Proteasome-independent Pathway, Journal of Biological Chemistry, vol.280, issue.34, pp.30091-30099, 2005.
DOI : 10.1074/jbc.M501279200

Y. Zhang, T. W. Kensler, C. G. Cho, G. H. Posner, and P. Talalay, Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates., Proceedings of the National Academy of Sciences, vol.91, issue.8, pp.3147-3150, 1994.
DOI : 10.1073/pnas.91.8.3147

L. M. Zipper and R. T. Mulcahy, Inhibition of ERK and p38 MAP Kinases Inhibits Binding of Nrf2 and Induction of GCS Genes, Biochemical and Biophysical Research Communications, vol.278, issue.2, pp.484-492, 2000.
DOI : 10.1006/bbrc.2000.3830

L. M. Zipper and R. T. Mulcahy, The Keap1 BTB/POZ Dimerization Function Is Required to Sequester Nrf2 in Cytoplasm, Journal of Biological Chemistry, vol.277, issue.39, pp.36544-36552, 2002.
DOI : 10.1074/jbc.M206530200