Skip to Main content Skip to Navigation
Theses

Quelques aspects de la positivité du fibré tangent des variétés projectives complexes

Abstract : In this thesis, we study how the positivity of the tangent bundle of a complex projective variety infl uences the geometry of the underlying variety. In the first part, we study varieties (mostly surfaces) whose tangent bundle is pseudo-effective. In the second part we show that for a positive integer p, if the p-th tensor power of the tangent bundle of a projective variety contains the p-th power of an ample line bundle, then the variety is isomorphic to a projective space or a quadric
Document type :
Theses
Complete list of metadatas

Cited literature [43 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00552308
Contributor : Matthieu Paris <>
Submitted on : Thursday, January 6, 2011 - 1:40:26 AM
Last modification on : Wednesday, November 4, 2020 - 2:19:06 PM
Long-term archiving on: : Thursday, April 7, 2011 - 2:41:57 AM

Identifiers

  • HAL Id : tel-00552308, version 1

Collections

Citation

Matthieu Paris. Quelques aspects de la positivité du fibré tangent des variétés projectives complexes. Mathématiques [math]. Université Joseph-Fourier - Grenoble I, 2010. Français. ⟨tel-00552308⟩

Share

Metrics

Record views

378

Files downloads

293