E. Audusse, F. Benkhaldoun, J. Sainte-marie, and M. Seaid, Multilayer Saint-Venant Equations over movable beds. Accpeted for publication in Discrete Contin, Dyn. Syst. Ser. B, 2010.
DOI : 10.3934/dcdsb.2011.15.917

URL : https://hal.archives-ouvertes.fr/inria-00551486

E. Audusse, M. Bristeau, M. Pelanti, and J. Sainte-marie, Approximation of the hydrostatic navier-stokes system for density stratified flows by a multilayer model. kinetic interpretation and numerical validation, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654642

E. Audusse, M. Bristeau, B. Perthame, and J. Sainte-marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, issue.1, p.2, 2010.
DOI : 10.1051/m2an/2010036

URL : https://hal.archives-ouvertes.fr/hal-00355730

E. Audusse, M. O. Bristeau, M. Pelanti, and J. Sainte-marie, A Multilayer Saint-Venant System with variable density for Shallow Water flows, J. Sci. Comp, 2010.

M. Bristeau and J. Sainte-marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. B, vol.10, issue.4, pp.733-759, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00232824

D. Chapelle, J. Gerbeau, and J. , Sainte-Marie, and I. Vignon-Clementel. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comp. Mech, vol.46, pp.2010-91

N. Goutal, M. Bristeau, and J. Sainte-marie, Numerical simulations of a non-hydrostatic shallow water model, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00654634

N. Goutal and J. Sainte-marie, A kinetic interpretation of the section-averaged Saint-Venant system for natural river hydraulics, International Journal for Numerical Methods in Fluids, vol.37, issue.2, 2010.
DOI : 10.1002/fld.2401

URL : https://hal.archives-ouvertes.fr/inria-00551487

P. Krejci, J. Sainte-marie, M. Sorine, and J. M. Urquiza, Solutions to muscle fiber equations and their long time behaviour, Nonlinear Analysis: Real World Applications, vol.7, issue.4, pp.535-558, 2006.
DOI : 10.1016/j.nonrwa.2005.03.021

J. Sainte-marie, Vertically averaged models for the free surface Euler system. Derivation and kinetic interpretation. Accepted for publication in M3AS, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00551484

J. Sainte-marie, D. Chapelle, R. Cimrman, and M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Computers & Structures, vol.84, issue.28, pp.1743-1759, 2006.
DOI : 10.1016/j.compstruc.2006.05.003

URL : https://hal.archives-ouvertes.fr/hal-00839206

M. Sermesant, P. Moireau, O. Camara, J. Sainte-marie, R. Andriantsimiavona et al., Cardiac function estimation from MRI using a heart model and data assimilation: Advances and difficulties, Medical Image Analysis, vol.10, issue.4, pp.642-656, 2006.
DOI : 10.1016/j.media.2006.04.002

URL : https://hal.archives-ouvertes.fr/inria-00614997

R. Audusse and M. Bristeau, Transport of pollutant in shallow water flows : A two time steps kinetic method, ESAIM: M2AN, pp.389-416, 2003.

E. Audusse and M. Bristeau, A well-balanced positivity preserving ???second-order??? scheme for shallow water flows on unstructured meshes, Journal of Computational Physics, vol.206, issue.1, pp.311-333, 2005.
DOI : 10.1016/j.jcp.2004.12.016

URL : https://hal.archives-ouvertes.fr/inria-00070738

]. D. Ab05b, J. Auroux, and . Blum, Back and forth nudging algorithm for data assimilation problems, C. R. Acad. Sci. Paris, Ser. I, vol.340, pp.873-878, 2005.

M. [. Audusse and . Bristeau, Finite-Volume Solvers for a Multilayer Saint-Venant System, International Journal of Applied Mathematics and Computer Science, vol.17, issue.3, pp.311-319, 2007.
DOI : 10.2478/v10006-007-0025-0

J. [. Auroux and . Blum, A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm, Nonlinear Processes in Geophysics, vol.15, issue.2, pp.305-319, 2008.
DOI : 10.5194/npg-15-305-2008

URL : https://hal.archives-ouvertes.fr/inria-00327422

F. Audusse, M. Bouchut, R. Bristeau, B. Klein, and . Perthame, A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM Journal on Scientific Computing, vol.25, issue.6
DOI : 10.1137/S1064827503431090

M. [. Audusse, A. Bristeau, and . Decoene, Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model, International Journal for Numerical Methods in Fluids, vol.12, issue.3, pp.331-350, 2008.
DOI : 10.1002/fld.1534

M. [. Audusse, B. Bristeau, and . Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00072657

H. Ashikaga, B. A. Coppola, K. G. Yamazaki, F. J. Villarreal, J. H. Omens et al., Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure, AJP: Heart and Circulatory Physiology, vol.295, issue.2, pp.610-618, 2008.
DOI : 10.1152/ajpheart.00107.2008

J. [. Arnold, V. Douglas, and . Thomée, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Mathematics of Computation, vol.36, issue.153, pp.53-64, 1981.
DOI : 10.1090/S0025-5718-1981-0595041-4

R. [. Almeida and . Spilker, Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues, Computer Methods in Applied Mechanics and Engineering, vol.151, issue.3-4, pp.3-4513, 1998.
DOI : 10.1016/S0045-7825(97)82246-3

]. E. Aud05 and . Audusse, A multilayer Saint-Venant System : Derivation and Numerical Validation, Discrete Contin. Dyn. Syst. Ser. B, vol.5, issue.2, pp.189-214, 2005.

]. E. Bar04 and . Barthelemy, Nonlinear shallow water theories for coastal waves, pp.315-337, 2004.

F. Berthon, R. Coquel, Q. H. Masson, and . Tran, A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math, vol.99, issue.3, pp.411-440, 2005.

. Bbc-+-10-]-p, E. Bonneton, J. D. Barthelemy, F. Carter, R. Chazel et al., Fully nonlinear weakly dispersive modelling of wave transformation, breaking and runup, 2010.

J. Bona, T. Benjamin, and J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London Series A, vol.272, pp.47-78, 1972.

B. [. Bristeau and . Coussin, Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00072305

]. J. Bcs01a, F. Bestel, M. Clément, and . Sorine, A biomechanical model of muscle contraction, In Lectures Notes in Computer ScienceJ. Niessen, M.A. Viergever, vol.2208, 2001.

]. J. Bcs01b, F. Bestel, M. Clément, and . Sorine, A biomechanical model of muscle contraction, In Lectures Notes in Computer ScienceJ. Niessen & M.A. Viergever, vol.2208, 2001.

M. [. Bona, J. Chen, and . Saut, Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory, Journal of Nonlinear Science, vol.12, issue.4, pp.283-318, 2002.
DOI : 10.1007/s00332-002-0466-4

M. [. Bona, J. Chen, and . Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory, Nonlinearity, vol.17, issue.3, pp.925-952, 2004.
DOI : 10.1088/0951-7715/17/3/010

. A. Bddv98, A. Bermudez, J. A. Dervieux, M. E. Desideri, and . Vazquez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. Meth. Appl. Mech. Eng, vol.155, issue.12, pp.49-72, 1998.

]. Bdsv71, Barré de Saint-Venant. Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit, C. R. Acad. Sci. Paris, vol.73, pp.147-154, 1871.

T. [. Buffard, J. Gallouët, and . Hérard, Un sch??ma simple pour les ??quations de Saint-Venant, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.326, issue.3, pp.386-390, 1998.
DOI : 10.1016/S0764-4442(97)83000-5

T. [. Buffard, J. M. Gallouët, and . Hérard, A sequel to a rough Godunov scheme: application to real gases, Computers & Fluids, vol.29, issue.7, pp.813-847, 2000.
DOI : 10.1016/S0045-7930(99)00026-2

]. M. Bio56 and . Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II higher frequency range, J. Acoust. Soc. Am, vol.28, 1956.

]. M. Bio72 and . Biot, Theory of finite deformations of pourous solids, Indiana Univ. Math. J, vol.21, pp.597-620, 1972.

S. [. Balbás and . Karni, A central scheme for shallow water flows along channels with irregular geometry, ESAIM: M2AN, pp.333-351, 2009.
DOI : 10.1051/m2an:2008050

M. [. Berne and . Levy, Cardiovascular Physiology, Annual Review of Physiology, vol.43, issue.1, 2001.
DOI : 10.1146/annurev.ph.43.030181.002041

F. [. Berthon and . Marche, A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes, SIAM Journal on Scientific Computing, vol.30, issue.5, pp.2587-2612, 2008.
DOI : 10.1137/070686147

URL : https://hal.archives-ouvertes.fr/hal-00370486

A. [. Bouchut, B. Mangeney-castelnau, J. Perthame, and . Vilotte, A new model of Saint Venant and Savage???Hutter type for gravity driven shallow water flows, Comptes Rendus Mathematique, vol.336, issue.6, pp.531-536, 2003.
DOI : 10.1016/S1631-073X(03)00117-1

]. F. Bmdl08, T. Bouchut, and L. Morales-de, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment, M2AN Math. Model. Numer. Anal, vol.42, pp.683-698, 2008.

]. R. Bor06a and . Borja, On the mechanical energy and effective stress in saturated and unsaturated porous continua, International Journal of Solids and Structures, vol.43, issue.6, pp.1764-1786, 2006.

]. Bou71a and . Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, vol.72, pp.755-759, 1871.

]. Bou71b and . Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, vol.73, pp.256-260, 1871.

]. Bou72 and . Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl, vol.17, pp.55-108

]. F. Bou99 and . Bouchut, Construction of bgk models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys, vol.95, pp.113-170, 1999.

]. F. Bou03 and . Bouchut, Entropy satisfying flux vector splittings and kinetic bgk models, Numer. Math, vol.94, pp.623-672, 2003.

]. F. Bou04a and . Bouchut, An introduction to finite volume methods for hyperbolic conservation laws, ESAIM Proc, vol.15, pp.107-127, 2004.

]. F. Bou04b and . Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Birkhäuser, 2004.

]. F. Bou04c and . Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws, J. Hyperbolic Differ. Equ, vol.1, issue.1, pp.149-170, 2004.

. S. Bqq, A. Badia, A. Quaini, and . Quarteroni, Coupling Biot and Navier?Stokes equations for modelling fluid?poroelastic media interaction

]. Y. Bre99 and . Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, vol.12, issue.3, pp.495-512, 1999.

M. [. Bermudez and . Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Computers & Fluids, vol.23, issue.8, pp.1049-1071, 1994.
DOI : 10.1016/0045-7930(94)90004-3

M. [. Bouchut and . Westdickenberg, Gravity driven shallow water models for arbitrary topography, Communications in Mathematical Sciences, vol.2, issue.3, pp.359-389, 2004.
DOI : 10.4310/CMS.2004.v2.n3.a2

V. [. Bouchut and . Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations, Discrete Contin. Dyn. Syst. Ser. B, vol.13, pp.739-758, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00538338

L. Caudroncbb06a-]-r, E. Cienfuegos, P. Barthélemy, and . Bonneton, Contribution à l'étude des ondes de Favre Laboratoire National d'Hydraulique A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis, Internat. J. Numer. Methods Fluids, issue.11, pp.511217-1253, 1968.

]. R. Cbb06b, E. Cienfuegos, P. Barthélemy, and . Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: Boundary conditions and validation, Int. J. Numer. Meth. Fluids, issue.9, pp.531423-1455, 2006.

N. [. Calo, Y. Brasher, T. J. Bazilevs, and . Hughes, Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Computational Mechanics, vol.196, issue.29, pp.161-177, 2008.
DOI : 10.1007/s00466-008-0321-z

D. Chapelle, F. Clément, F. Génot, P. L. Tallec, M. Sorine et al., A Physiologically-Based Model for the Active Cardiac Muscle Contraction, In Lectures Notes in Computer Science Eds T. Katila, I.E. Magnin, P. Clarysse, J. Montagnat, J. Nenonen, vol.2230, 2001.
DOI : 10.1007/3-540-45572-8_18

. Ccl-+-09-]-r, D. Chabiniok, P. Chapelle, A. Lesault, J. Rahmouni et al., Validation of a biomechanical heart model using animal data with acute myocardial infarction, CI2BM09 -MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, 2009.

M. Diaz, E. Fernändez-nieto, and A. Ferreiro, Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods, Computers & Fluids, vol.37, issue.3, pp.299-316, 2008.
DOI : 10.1016/j.compfluid.2007.07.017

. Cgp-+-01-]-f, E. Coquel, B. Godlewski, A. Perthame, P. In et al., Some new Godunov and relaxation methods for two-phase flow problems, Godunov methods, pp.179-188, 1999.

M. J. Castro, J. A. García-rodríguez, J. M. González-vida, J. Macías, C. Parés et al., Numerical simulation of two-layer shallow water flows through channels with irregular geometry Hyperbolic conservation laws with stiff relaxation terms and entropy, J. Comput. Phys. Comm. Pure Appl. Math, vol.195, issue.16, pp.202-235, 1994.

D. [. Chazel, F. Lannes, and . Marche, Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green???Naghdi Model, Journal of Scientific Computing, vol.37, issue.3, 2010.
DOI : 10.1007/s10915-010-9395-9

URL : https://hal.archives-ouvertes.fr/hal-00482561

P. [. Chapelle, P. Le-tallec, M. Moireau, and . Sorine, ENERGY-PRESERVING MUSCLE TISSUE MODEL: FORMULATION AND COMPATIBLE DISCRETIZATIONS, International Journal for Multiscale Computational Engineering, vol.10, issue.2, 2011.
DOI : 10.1615/IntJMultCompEng.2011002360

URL : https://hal.archives-ouvertes.fr/hal-00678772

[. Castro, J. Macías, and C. Parés, -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.1, pp.107-127, 2001.
DOI : 10.1051/m2an:2001108

URL : https://hal.archives-ouvertes.fr/hal-00908624

J. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.8, pp.513-554, 2002.
DOI : 10.1051/cocv:2002050

]. O. Cou95 and . Coussy, Mechanics of porous continua, 1995.

C. Cimrman and E. Rohan, Modelling heart tissue using a composite muscle model with blood perfusion, Computational Fluid and Solid Mechanics , 2nd MIT Conference, pp.1642-1646, 2003.
DOI : 10.1016/B978-008044046-0.50400-0

]. T. Crdn03a, A. D. Chacon-rebollo, E. D. Delgado, and . Nieto, An entropy-correction free solver for non homogeneous shallow water equations, ESAIM: M2AN, pp.363-390, 2003.

]. T. Crdn03b, A. D. Chacon-rebollo, E. D. Delgado, and . Nieto, A family of stable numerical solvers for the shallow water equations with source terms, Comput. Meth. Appl. Math. Eng, vol.192, pp.203-225, 2003.

C. [. Chu and . Soong, Numerical simulation of wind-induced entrainment in a stably stratified water basin, Journal of Hydraulic Research, vol.61, issue.8, pp.21-41, 1997.
DOI : 10.1080/00221689709498642

L. [. Decoene, E. Bonaventura, F. Miglio, and . Saleri, ASYMPTOTIC DERIVATION OF THE SECTION-AVERAGED SHALLOW WATER EQUATIONS FOR NATURAL RIVER HYDRAULICS, Mathematical Models and Methods in Applied Sciences, vol.19, issue.03, pp.387-417, 2009.
DOI : 10.1142/S0218202509003474

URL : https://hal.archives-ouvertes.fr/hal-00275460

L. [. Deponti, G. Bonaventura, G. Rosatti, and . Garegnani, An accurate and efficient semi-implicit method for section averaged free surface flow modelling, 2007.

J. [. Decoene and . Gerbeau, Sigma transformation and ALE formulation for three-dimensional free surface flows, International Journal for Numerical Methods in Fluids, vol.61, issue.6, pp.357-386, 2009.
DOI : 10.1029/2004JC002328

URL : https://hal.archives-ouvertes.fr/inria-00541170

]. Din97 and . Dingemans, Wave propagation over uneven bottoms, Advanced Series on Ocean Engineering -World Scientific, 1997.

T. [. Eymard, R. Gallouët, and . Herbin, Finite volume methods, VII, Handb. Numer. Anal., VII, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

S. [. Ern, K. Piperno, and . Djadel, A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying, International Journal for Numerical Methods in Fluids, vol.107, issue.2, pp.1-25, 2008.
DOI : 10.1002/fld.1674

URL : https://hal.archives-ouvertes.fr/hal-00153788

[. Fringer, S. Armfield, R. Formaggia, D. Lamponi, and A. Quarteroni, Reducing numerical diffusion in interfacial gravity wave simulations, International Journal for Numerical Methods in Fluids, vol.32, issue.3, pp.301-329251, 2003.
DOI : 10.1002/fld.993

S. Ferrari and F. Saleri, A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography, ESAIM: Mathematical Modelling and Numerical Analysis, vol.38, issue.2, pp.211-234, 2004.
DOI : 10.1051/m2an:2004010

C. [. Feenstra and . Taylor, Drug transport in artery walls: A sequential porohyperelastic-transport approach, Computer Methods in Biomechanics and Biomedical Engineering, vol.4, issue.3, pp.263-276, 2009.
DOI : 10.1115/1.2895529

]. Y. Fun93 and . Fung, Biomechanics: Mechanical Properties of Living Tissues, 1993.

[. Fronek and B. Zweifach, Microvascular pressure distribution in skeletal muscle and the effect of vasodilation, Am J Physiol, vol.228, issue.3, pp.791-796, 1975.

J. [. Gonzalez and . Bassingthwaighte, Heterogeneities in regional volumes of distribution and flows in rabbit heart, Am J Physiol Heart Circ Physiol, vol.258, issue.4, pp.1012-1024, 1990.

. Gfd-+-91-]-m, A. E. Goto, J. W. Flynn, C. M. Doucette, M. M. Jansen et al., Cardiac contraction affects deep myocardial vessels predominantly, Am J Physiol Heart Circ Physiol, issue.5, pp.261-1417, 1991.

H. [. Gregg and . Green, Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method, Am J Physiol, vol.130, pp.114-125, 1940.

J. [. Gallouët, N. Hérard, and . Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers & Fluids, vol.32, issue.4, pp.479-513, 2003.
DOI : 10.1016/S0045-7930(02)00011-7

A. [. Greenberg and . Leroux, A Well-Balanced Scheme for the Numerical Processing of Source Terms in Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.33, issue.1, pp.1-16, 1996.
DOI : 10.1137/0733001

]. P. Gla05, [. Glaister, Y. Greatbatch, Y. Lu, and . Cai, Conservative upwind difference schemes for open channel flows?theory and applications Relaxing the boussinesq approximation in ocean circulation models, Computers & Mathematics with Applications Journal of Atmospheric and Oceanic Technology, vol.50, issue.1211, pp.57-72, 2001.

F. [. Goutal and . Maurel, A finite volume solver for 1D shallow-water equations applied to an actual river, International Journal for Numerical Methods in Fluids, vol.148, issue.1, pp.1-19, 2002.
DOI : 10.1002/fld.201

P. [. Green and . Naghdi, A derivation of equations for wave propagation in water of variable depth, Journal of Fluid Mechanics, vol.338, issue.02, pp.237-246, 1976.
DOI : 10.1017/S0022112076002425

E. [. Ghista and . Ng, Cardiac Perfusion and Pumping Engineering, World Scientific, 2007.

S. K. Godunovgos00 and ]. Gosse, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Mat. Sb. Comput. Math. Appl, vol.39, issue.89, pp.47271-306135, 1959.

]. L. Gos01 and . Gosse, A well-balanced scheme using nonconservative products designed for hyperbolic systems of conservation laws with source terms, Math. Mod. Meth. Appl. Sci, vol.11, issue.2, pp.339-365, 2001.

[. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation, Discrete Contin. Dyn. Syst. Ser. B, vol.1, issue.1, pp.89-102, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00691701

P. [. Godlewski and . Raviart, Numerical approximations of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.
DOI : 10.1007/978-1-4612-0713-9

]. E. Gre99 and . Grenier, On the derivation of homogeneous hydrostatic equations, ESAIM: M2AN, pp.965-970, 1999.

M. [. Goutal and . Slydowski, Validation d'un schéma volumes finis pour les équations de Saint-Venant bidimensionnelles (in french), 1998.

]. J. Havcr92, T. Huyghe, D. H. Arts, R. S. Van-campen, and . Reneman, Porous medium finite element model of the beating left ventricle, Am J Physiol Heart Circ Physiol, vol.262, issue.4, pp.1256-1267, 1992.

]. D. Hel96 and . Helbing, Gas-kinetic derivation of navier-stokes-like traffic equations, Phys. Rev. E, vol.53, pp.2366-2381, 1996.

]. Her07 and . Hervouet, Hydrodynamics of Free Surface Flows: Modelling with the finite element method, 2007.

]. A. Hil38 and . Hill, The heat of shortening and the dynamic constants in muscle, Proc. Roy. Soc. London (B), vol.126, pp.136-195, 1938.

J. [. Hodges, A. Imberger, K. B. Saggio, and . Winters, Modeling basin-scale internal waves in a stratified lake, Limnology and Oceanography, vol.45, issue.7, pp.1603-1620, 2000.
DOI : 10.4319/lo.2000.45.7.1603

T. [. Hutter, C. Koch, S. B. Plüss, and . Savage, The dynamics of avalanches of granular materials from initiation to runout, II. Experiments. Acta Mech, vol.109, pp.1-4127, 1995.

]. A. Hlvl83, P. D. Harten, B. Lax, and . Van-leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.

M. [. Hunter, G. B. Nash, and . Sands, Computational electromechanics of the heart, Computational Biology of the Heart, pp.345-407, 1997.

G. Holzapfel and R. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.192, issue.Pt 2, pp.3445-3475, 2009.
DOI : 10.1016/0021-9290(87)90279-X

A. [. Heaps and . Ramsbottom, Wind Effects on the Water in a Narrow Two-Layered Lake, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.259, issue.1102, pp.391-430, 1966.
DOI : 10.1098/rsta.1966.0021

]. J. Hum02 and . Humphrey, Continuum biomechanics of soft tissues, Proc. R. Soc. Lond. A, pp.3-46, 2002.

]. A. Hux57 and . Huxley, Muscle structure and theories of contraction, Progress in Biophysics and Biological Chemistry, pp.255-318, 1957.

]. J. Hvc91a, D. H. Huyghe, and . Van-campen, Finite deformation theory of hierarchically arranged porous solids: I. balance of mass and momentum, Int. J. Engng Sci, vol.33, issue.13, pp.1861-1871, 1991.

]. J. Hvc91b, D. H. Huyghe, and . Van-campen, Finite deformation theory of hierarchically arranged porous solids: Ii. constitutive behaviour, Int. J. Engng Sci, vol.33, issue.13, pp.1861-1871, 1991.

J. [. Horssen, M. Wijngaard, J. A. Siebes, and . Spaan, Improved regional myocardial perfusion measurement by means of an imaging cryomicrotome, 4th European Conference of the International Federation for Medical and Biological Engineering, pp.771-774, 2009.
DOI : 10.1007/978-3-540-89208-3_185

]. J. Imb98 and . Imberger, Physical Processes in Lakes and Oceans, 1998.

J. [. Imberger and . Patterson, Physical Limnology, Adv. Applied Mech, vol.27, pp.303-475, 1990.
DOI : 10.1016/S0065-2156(08)70199-6

]. J. Jan99 and . Jankowski, A non-hydrostatic model for free surface flows, Dissertation, JAP97b] F. Jülicher, A. Ajdari, and J. Prost. Modeling molecular motors, 1997.

]. S. Jin01 and . Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.4, pp.631-645, 2001.
DOI : 10.1051/m2an:2001130

[. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics, vol.54, issue.3, pp.235-276, 1995.
DOI : 10.1002/cpa.3160480303

J. [. Koshiba, X. Ando, T. Chen, and . Hisada, Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model, Journal of biomechanical engineering, vol.129, p.374, 2007.

]. M. Kau01 and . Kauer, Inverse finite element characterization of soft tissues with aspiration, 2001.

D. [. Kurganov and . Levy, Central-Upwind Schemes for the Saint-Venant System, ESAIM: M2AN, pp.397-425, 2002.
DOI : 10.1051/m2an:2002019

S. Ghassan, K. N. Kassab, . Le, B. Yuan-cheng, and . Fung, A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data, Am J Physiol Heart Circ Physiol, vol.277, issue.6, pp.2158-2166, 1999.

C. [. Katsaounis and . Makridakis, Relaxation Models and Finite Element Schemes for the Shallow Water Equations, pp.621-631, 2003.
DOI : 10.1007/978-3-642-55711-8_58

]. C. Kra85 and . Kranenburg, Mixed-layer deepening in lakes after wind set-up, J. Hydraul. Div. ASCE, vol.111, pp.334-354, 1985.

E. [. Kurganov and . Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection???Diffusion Equations, Journal of Computational Physics, vol.160, issue.1, pp.214-282, 2000.
DOI : 10.1006/jcph.2000.6459

P. [. Lannes and . Bonneton, Derivation of asymptotic two-dimensional timedependent equations for surface water wave propagation, Physics of Fluids, vol.21, issue.1, 2009.

L. Leveque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm, Journal of Computational Physics, vol.146, issue.1, pp.346-365, 1998.
DOI : 10.1006/jcph.1998.6058

]. Lev02 and . Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.

]. Lio96 and . Lions, Incompressible models, Mathematical Topics in Fluid Mechanics, vol.1, 1996.

[. Métayer, S. Gavrilyuk, and S. Hank, A numerical scheme for the Green???Naghdi model, Journal of Computational Physics, vol.229, issue.6, pp.2034-2045, 2010.
DOI : 10.1016/j.jcp.2009.11.021

M. [. Leveque and . Pelanti, A Class of Approximate Riemann Solvers and Their Relation to Relaxation Schemes, Journal of Computational Physics, vol.172, issue.2, pp.572-591, 2001.
DOI : 10.1006/jcph.2001.6838

URL : https://hal.archives-ouvertes.fr/hal-01342280

B. [. Lions, P. E. Perthame, and . Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Communications on Pure and Applied Mathematics, vol.4, issue.6, pp.599-638, 1996.
DOI : 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5

]. Lpt94a, B. Lions, E. Perthame, and . Tadmor, A kinetic formulation of scalar multidimensional conservation laws, J. AMS, vol.7, pp.169-191, 1994.

]. Lpt94b, B. Lions, E. Perthame, and . Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Commun. Math. Physics, vol.163, pp.415-431, 1994.

[. Tallec, Handbook of Numerical Analysis chapter Numerical Methods for Nonlinear Three-Dimensional Elasticity, pp.465-622, 1994.

F. [. Lin and . Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus, J. Biomech. Eng, vol.120, issue.4, pp.504-517, 1998.

F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, European Journal of Mechanics - B/Fluids, vol.26, issue.1, pp.49-63, 2007.
DOI : 10.1016/j.euromechflu.2006.04.007

]. I. Mbns95a, M. J. Macdonald, N. K. Baines, P. G. Nichols, and . Samuels, Comparisons of some steady state Saint-Venant solvers for some test problems with analytic solutions, 1995.

]. I. Mbns95b, M. J. Macdonald, N. K. Baines, P. G. Nichols, and . Samuels, Steady open channel test problems with analytic solutions, 1995.

R. [. Mcdougall, Y. Greatbatch, and . Lu, On Conservation Equations in Oceanography: How Accurate Are Boussinesq Ocean Models?, Journal of Physical Oceanography, vol.32, issue.5, pp.1574-1584, 2002.
DOI : 10.1175/1520-0485(2002)032<1574:OCEIOH>2.0.CO;2

J. [. Marin and . Monnier, Superposition of local zoom models and simultaneous calibration for 1D???2D shallow water flows, Mathematics and Computers in Simulation, vol.80, issue.3, pp.547-560, 2009.
DOI : 10.1016/j.matcom.2009.09.001

C. [. Monti, M. Médigue, and . Sorine, Short-term modelling of the controlled cardiovascular system, ESAIM: Proceedings, vol.12, pp.115-128, 2002.
DOI : 10.1051/proc:2002019

. D. Mnco-+-01-]-k, C. L. May-newman, R. Chen, R. Oka, A. N. Haslim et al., Evaluation of myocardial perfusion using three-dimensional myocardial contrast echocardiography, Nuclear Science Symposium Conference Record, pp.1691-1694, 2001.

A. [. May-newman and . Mcculloch, Homogenization modeling for the mechanics of perfused myocardium, Progress in Biophysics and Molecular Biology, vol.69, issue.2-3, pp.463-481, 1998.
DOI : 10.1016/S0079-6107(98)00020-0

]. S. Mon85 and . Monismith, Wind-forced motions in stratified lakes and their effect on mixedlayer shear, Limnol. Oceanogr, vol.30, issue.4, pp.771-783, 1985.

]. S. Mon86 and . Monismith, An experimental study of the upwelling response of stratified reservoirs to surface shear stress, J. Fluid Mech, vol.171, pp.407-439, 1986.

]. C. Mor52 and . Mortimer, Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere, Phil. Trans. R. Soc. B, vol.236, pp.255-404, 1952.

]. I. Mp73b, W. W. Mirsky, and . Parmley, Assessment of passive elastic stiffness for isolated heart muscle and the intact heart, Circul. Research, vol.33, pp.233-243, 1973.

O. [. Mohammadi, F. Pironneau, and . Valentin, Rough boundaries and wall laws, International Journal for Numerical Methods in Fluids, vol.318, issue.1-4, pp.1-4169, 1998.
DOI : 10.1002/(SICI)1097-0363(199801)27:1/4<169::AID-FLD657>3.0.CO;2-4

P. J. Mulquiney, N. P. Smith, P. J. Clark, and . Hunter, Mathematical modelling of the ischaemic heart, Nonlinear Analysis: Theory, Methods & Applications, vol.47, issue.1, pp.235-244, 2001.
DOI : 10.1016/S0362-546X(01)00172-9

. [. Nash and . Hunter, Computational Mechanics of the Heart, Journal of Elasticity, vol.61, pp.113-141, 2000.
DOI : 10.1007/0-306-48389-0_4

M. [. Nichols and . O-'rourke, McDonald's blood flow in arteries, 2005.

E. [. Nessyahu and . Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, vol.87, issue.2, pp.408-463, 1990.
DOI : 10.1016/0021-9991(90)90260-8

]. O. Nwo93 and . Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal and Ocean Engineering ASCE, vol.119, issue.6, pp.618-638, 1993.

J. [. Okely and . Imberger, Horizontal transport induced by upwelling in a canyon-shaped reservoir, Hydrobiologia, vol.35, issue.2, pp.343-355, 2007.
DOI : 10.1007/s10750-007-0706-6

]. L. Ovs79 and . Ovsyannikov, Two-layer shallow water models, Prikl. Mekh. Tekh. Fiz, vol.2, pp.3-14, 1979.

F. [. Pelanti, A. Bouchut, and . Mangeney, A Roe-type scheme for two-phase shallow granular flows over variable topography, ESAIM: M2AN, pp.851-885, 2008.
DOI : 10.1051/m2an:2008029

URL : https://hal.archives-ouvertes.fr/hal-01342261

]. D. Per67 and . Peregrine, Long waves on a beach, J. Fluid Mech, vol.27, pp.815-827, 1967.

]. B. Per99 and . Perthame, An Introduction to Kinetic Schemes for Gas Dynamics., chapter An introduction to recent developments in theory and numerics for consevation laws, LNCS, 1999.

]. B. Per02 and . Perthame, Kinetic formulation of conservation laws, 2002.

L. [. Pioletti and . Rakotomanana, Non-linear viscoelastic laws for soft biological tissues, European Journal of Mechanics - A/Solids, vol.19, issue.5, pp.749-759, 2000.
DOI : 10.1016/S0997-7538(00)00202-3

L. [. Pioletti, J. F. Rakotomanana, P. F. Benvenuti, and . Leyvraz, Viscoelastic constitutive law in large deformations, Journal of Biomechanics, vol.31, issue.8, pp.753-757, 1998.
DOI : 10.1016/S0021-9290(98)00077-3

F. [. Perotto and . Saleri, Adaptive finite element methods for Boussinesq equations, Numerical Methods for Partial Differential Equations, vol.39, issue.2, pp.214-236, 2000.
DOI : 10.1002/(SICI)1098-2426(200003)16:2<214::AID-NUM5>3.0.CO;2-9

C. [. Perthame and . Simeoni, A kinetic scheme for the Saint-Venant system??with a source term, Calcolo, vol.38, issue.4, pp.201-231, 2001.
DOI : 10.1007/s10092-001-8181-3

URL : https://hal.archives-ouvertes.fr/hal-00922664

E. [. Perthame and . Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Communications in Mathematical Physics, vol.81, issue.3, pp.501-517, 1991.
DOI : 10.1007/BF02099071

E. Rohan and R. Cimrman, Sensitivity analysis and material identification for activated smooth muscle, Computer Assisted Mechanics and Engineering Science, vol.9, pp.519-541, 2002.

A. [. Reggio, A. Hess, and . Ilinca, 3-D Multiple-level simulation of free surface flows, Journal of Hydraulic Research, vol.113, issue.4, pp.413-423, 2002.
DOI : 10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2

]. Roe97 and . Roe, Approximate riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys, vol.135, issue.2, pp.250-258, 1997.

H. [. Shankar, S. Cheong, and . Sankaranarayanan, Multilevel finite-difference model for three-dimensional hydrodynamic circulation, Ocean Engineering, vol.24, issue.9, pp.785-816, 1997.
DOI : 10.1016/S0029-8018(96)00036-4

Y. [. Soares-frazao, . B. Zechsh91a-]-s, K. Savage, and . Hutter, Undular bores and secondary waves -Experiments and hybrid finite-volume modelling, Journal of Hydraulic Research, vol.31, issue.1, pp.33-431, 1991.
DOI : 10.1080/00221689409498738

]. B. Sh91b, P. J. Smaill, and . Hunter, Structure and function of the diastolic heart: Material properties of passive myocardium, Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, 1991.

C. Stevens and J. Imberger, The initial response of a stratified lake to a surface shear stress, Journal of Fluid Mechanics, vol.286, issue.-1, pp.39-66, 1996.
DOI : 10.1146/annurev.fl.10.010178.001411

G. [. Smith and . Kassab, Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.359, issue.1783, pp.1251-1262, 2001.
DOI : 10.1098/rsta.2001.0829

J. Spaan, C. Kolyva, and M. Siebes, Coronary structure and perfusion in health and disease, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.72, issue.1, pp.3137-3153, 1878.
DOI : 10.1152/physrev.00029.2005

]. N. Smi04 and . Smith, A computational study of the interaction between coronary blood flow and myocardial mechanics, Physiological Measurement, vol.25, issue.4, pp.863-877, 2004.

J. [. Salençon and . Thébault, Simulation model of a mesotrophic reservoir (Lac de Pareloup, France): melodia, an ecosystem reservoir management model, Ecological Modelling, vol.84, issue.1-3, pp.163-187, 1996.
DOI : 10.1016/0304-3800(94)00141-3

]. Sto58 and . Stoker, Water Waves: The Mathematical Theory with Applications, 1958.

B. [. Stergiopulos, N. Westerhof, and . Westerhof, Total arterial inertance as the fourth element of the windkessel model, Am. J. Physiol, vol.276, pp.81-88, 1999.

]. K. Ter43 and . Terzaghi, Theoretical Soil Mechanics, 1943.

]. Tho68 and . Thorpe, On standing internal waves of finite amplitude, J. Fluid Mech, vol.32, pp.299-319, 1968.

R. O. Thomson and J. Imberger, Response of a numerical model of a stratified lake to wind stress, Second International Symposium on Stratified Flows, pp.562-570, 1980.

W. [. Truesdell and . Noll, The non-linear field theories of mechanics, 1992.

]. A. Tre94 and . Treske, Undular bores (favre waves) in open channels -experimental studies, J. Hydr. Research, vol.32, issue.3, pp.355-370, 1994.

J. [. Vankan, J. D. Huyghe, A. Janssen, and . Huson, A FINITE ELEMENT MIXTURE MODEL FOR HIERARCHICAL POROUS MEDIA, International Journal for Numerical Methods in Engineering, vol.96, issue.2, pp.193-210169, 1979.
DOI : 10.1002/(SICI)1097-0207(19970130)40:2<193::AID-NME55>3.0.CO;2-9

R. [. Veronda and . Westmann, Mechanical characterization of skin???Finite deformations, Journal of Biomechanics, vol.3, issue.1, pp.114-124, 1970.
DOI : 10.1016/0021-9290(70)90055-2

]. M. Wal99 and . Walkley, A numerical Method for Extended Boussinesq Shallow-Water Wave Equations, 1999.

F. [. Westerhof, C. J. Bosman, . De, A. Vries, and . Noordegraaf, Analog studies of the human systemic arterial tree, Journal of Biomechanics, vol.2, issue.2, pp.121-143, 1969.
DOI : 10.1016/0021-9290(69)90024-4

[. Westerhof, C. Boer, R. R. Lamberts, and P. Sipkema, Cross-Talk Between Cardiac Muscle and Coronary Vasculature, Physiological Reviews, vol.86, issue.4, pp.1263-1308, 2006.
DOI : 10.1152/physrev.00029.2005

]. E. Wed12 and . Wedderburn, Temperature observations in Loch Earn, with a further contribution to the hydrodynamical theory of the temperature seiche, Trans. R. Soc. Edin, vol.48, pp.629-695, 1912.

W. [. Wu and . Herzog, Modelling concentric contraction of muscle using an improved cross-bridge model, Journal of Biomechanics, vol.32, issue.8, pp.837-848, 1999.
DOI : 10.1016/S0021-9290(99)00057-3

A. [. Ying, S. S. Khan, and . Wang, Upwind Conservative Scheme for the Saint Venant Equations, Journal of Hydraulic Engineering, vol.130, issue.10, pp.977-987, 2004.
DOI : 10.1061/(ASCE)0733-9429(2004)130:10(977)

P. [. Yang and . Smolinski, Dynamic finite element modeling of poroviscoelastic soft tissue, Computer Methods in Biomechanics and Biomedical Engineering, vol.102, issue.1, pp.7-16, 2006.
DOI : 10.1002/nme.1620320704

]. G. Zah81 and . Zahalak, A distribution moment approximation for kinetic theories of muscular contraction, Mathematical Biosciences, vol.55, pp.89-114, 1981.

R. [. Zinemanas, S. Beyar, and . Sideman, An integrated model of LV muscle mechanics , coronary flow, and fluid and mass transport, Am J Physiol Heart Circ Physiol, vol.268, issue.2, pp.633-645, 1995.