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Toutes les «etoiles visiblesà
lÕÏil nu doivent leur brillance mo-

mentan«ee aux r«eactions nucl«eaires qui ont
lieu dans leur int«erieur. Ceci en fait des joyaux

dans notre ciel nocturne, mais les am`eneraà une Þn
tragique, dans laquelle elles exploseront pour devenir

soit des naines blanches d«eg«en«er«ees, des «etoiles à neu-
trons ou des trous noirs. Une autre population, plus nom-
breuse, maisà peine visible, a choisi de vivre une vie morne
mais tranquille et quasiment «eternelle: ses individus font
attention à ne pas devenir d«ependant de lÕhydrog`ene pour
briller. Certains, dans leur jeunesse, consumment des
substances moins «energ«etiques telles que le deut«erium et

le lithium, mais «epuisent rapidement leur stock. En
cons«equence, ils se refoidissent et se contractent

progressivement, gardant intacts la plupart
des «el«ements qui les ont form«es.

Ces naines brunes et
planètes g«eantes forment une

nouvelle classe dÕobjets astronomi-
ques. Ils comblent un foss«e entre les

«etoiles et les planètes de notre Système
Solaire. Leur «etude nous informe sur nos
origines, sur la formation des «etoiles et des
planètes. Elle nous aide aussi `a compren-
dre et/ou tester des th«eories allant de la
physiqueà haute pression,à la dynami-

que atmosph«erique, en passant par
les e!ets de mar«ees, la chimie,

la formation de nuages...etc.
Ce cours est focalis«e sur

quelques aspects physiques li«es
à lÕ«etude th«eorique de ces objets sub-

stellaires: Je d«etaille leur «evolution hy-
drostatique et sa mod«elisation, ce que nous

savons de Jupiter, Saturne, Uranus et Nep-
tune, de leur struture interne, comment les
nuages faüconnent leur apparence et contröolent
leur refroidissement, ce que nous pouvons ap-
prendre des observations des naines brunes

et planètes extrasolaires, et les cons«equen-
ces des d«ecouvertes r«ecentes sur notre

vision de la formation plan«etaire.
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Physics of Substellar Objects
Interiors, Atmospheres, Evolution

All stars visible to the naked eye owe their momentary brightness to nuclear reactions occurring
in their interior. While this certainly makes them jewels of the night skies, it will eventually lead
them to a tragic end, in which they will explode to become either degenerate white dwarfs, neutron
stars or black holes. Another, more numerous but barely visible population has chosen to lead a
dull but quiet and almost eternal life: these arecareful not to ever become dependent on hydrogen
to shine. Some, in their youth, do burn less energetic substances as deuterium and lithium, but
they rapidly get short of supply. As a consequence, they steadily cool and contract, retaining intact
most of the elements that made them.

These brown dwarfs and giant planets form an entirely new class of astronomical objects. They
Þll a gap between stars and the planets of our Solar System. Their study informs us on our origins,
the formation of stars and planets. It can also help us to understand or test theories from high
pressure physics, to atmospheric dynamics, tides, condensation and cloud formation...etc.

The course focuses on some physical aspects related to the theoretical study of these substellar
objects: I detail their hydrostatic evolution and how it is modeled, what we can learn from Jupiter,
Saturn, Uranus and Neptune, how the atmospheres of brown dwarfs and giant planets are key to
their appearance and cooling, what we can learnfrom the recent observations of brown dwarfs and
extrasolar planets, and how this a!ects our view of planet formation.
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Chapter 1

ÒOurÓ giant planets as a basis for
the study of substellar objects

1.1 Origins: role of the giant planets for planet formation

The Solar System contains our Sun, which possesses more than 98% of the mass of the system, and
eight planets orbiting around it in the same plane and same direction with quasi-circular orbits.
The planets contain 99.5% of the angular momentum of the system. The four inner planets,
Mercury, Venus, Earth and Mars have the highest densities, but more than 99.5% of the mass of
the planetary system is in its four outer planets, Jupiter, Saturn, Uranus and Neptune. Most of
the planets have moons, or natural satellites. Orbiting around the Sun, one also Þnds asteroids,
Kuiper belt objects (incl uding Pluto) and comets.

A picture emerges naturally from these observations: the formation of the planets in a circum-
stellar disk: the protosolar nebula. Planets formed close to the Sun naturally contain less volatiles
and ices, while the outer planets were favored by the abundant presence of ices and could therefore
grow fast enough to get hold of the surrounding hydrogen and helium of the nebula before its
dissipation. In this picture, asteroids, Kuiper belt objects and comets all represent leftovers from
an ine"cient planet formation mechanism.

By their masses, the giant planets Jupiter, Saturn, Uranus and Neptune played a key role in
this story. While the inner, terrestrial planets took tens of millions of years to reach their present
masses, the giant planets had to form rapidly, before the gas of the protosolar nebula disappeared
onto the star or was swept away from the system. They led to the ejection of numerous material,
preventing the formation of a planet between Mars and Jupiter, and sending planetesimals into
the Oort cloud, from where these remains of planetary formation come back once in a while as
comets.

Their study therefore informs us on our origins. It also allows us to extend our knowledge
beyond the frontiers of the Solar System and to model with conÞdence the other giant planets
that have been found orbiting other stars. Before presenting the theoretical aspects of that un-
derstanding, I will detail here a few of the observations and measurements of signiÞcance for our
purposes.

Most of the measurements at the basis of our understanding of the structure of our giant
planets have been acquired by spacecraft missions: Pioneer 10 & 11,Voyager 1 & 2, Ulysses,
Galileo, Cassini-Huygens.

1
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1.2 Gravity Þeld and global properties

The mass of the giant planets can be obtained with great accuracy from the observation of the
motions of their natural satellites: 317.834, 95.161, 14.538 and17.148 times the mass of the
Earth (1 M ! = 5 .97369! 1027 g) for Jupiter, Saturn, Uranus and Neptune, respectively. More
precise measurements of their gravity Þeld can be obtained through the analysis of the trajectories
of spacecrafts during ßyby, especially when they come close to the planet and preferably in a
near-polar orbit. The gravitational Þeld thus measured departs from a purely spherical function
due to the planetsÕ rapid rotation. The measurements are generally expressed by expanding the
components of the gravity Þeld on Legendre polynomialsPi of progressively higher orders:

Vext (r, ! ) = "
GM

r

!

1 "
""

i =1

#
Req

r

$ i

Ji Pi (cos! )

%

, (1.1)

whereReq is the equatorial radius, andJi are the gravitational moments. Because the giant planets
are very close to hydrostatic equilibrium the coe"cients of even order are the only ones that are
not negligible. We will see how these gravitational moments help us constrain the planetsÕ interior
density proÞles.

Table 1.1: Characteristics of the gravity Þelds and radii
Jupiter Saturn Uranus Neptune

M ! 10! 29 [g] 18.986112(15)a 5.684640(30)b 0.8683205(34)c 1.0243542(31)d

Req ! 10! 9 [cm] 7.1492(4)e 6.0268(4)f 2.5559(4)g 2.4766(15)g

Rpol ! 10! 9 [cm] 6.6854(10)e 5.4364(10)f 2.4973(20)g 2.4342(30)g

J2 ! 102 1.4697(1)a 1.6332(10)b 0.35160(32)c 0.3539(10)d

J4 ! 104 " 5.84(5)a " 9.19(40)b " 0.354(41)c " 0.28(22)d

J6 ! 104 0.31(20)a 1.04(50)b . . . . . .
P! ! 104 [s] 3.57297(41)h 3.83577(47)h 6.2064i 5.7996j

The numbers in parentheses are the uncertainty in the last digits of the given
value. The value of the gravitational constant used to calculate the masses of
Jupiter and Saturn is G = 6 .67259! 10! 8 dyn.cm2.g! 1 (Cohen & Taylor, 1987).
a Campbell & Synott (1985)
b Campbell & Anderson (1989)
c Anderson et al. (1987)
d Tyler et al. (1989)
e Lindal et al. (1981)
f Lindal et al. (1985)
g Lindal (1992)
h Davies et al. (1986)
i Warwick et al. (1986)
j Warwick et al. (1989)

Table 1.1 also indicates the radii obtained with the greatest accuracy by radio-occultation
experiments. By convention, these radii and gravitational moments correspond to the 1 bar pressure
level. The rotation periods show the relatively fast revolution of these planets: about 10 hours
for Jupiter and Saturn, about 17 hours for Uranus and Neptune. The fact that this fast rotation
visibly a!ects the Þgure (shape) of these planetsis seen by the signiÞcant di!erence between the
polar and equatorial radii.
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A Þrst result obtained from the masses and radii indicated in Table 1.1 is the fact that these
planets have low densities: 1.33, 0.688, 1.27, and 1.64 g cm# 3 for Jupiter, Saturn, Uranus and
Neptune, respectively (these values are calculated using the planetsÕmean radii, as deÞned in
section 2.5). Considering the compression that strongly increases with mass, one is led to a sub-
classiÞcation between the hydrogen-helium giant planets Jupiter and Saturn, and the Òice giantsÓ
Uranus and Neptune.

1.3 Magnetic Þelds

As the Earth, the Sun and Mercury, our four giant planets possess their own magnetic Þelds, as
shown by the Voyager 2 measurements. The structures of these magnetic Þelds are very di!erent
from one planet to another and the dynamo mechanism that generates them is believed to be
related to convection in their interior but is otherwise essentially unknown (see Stevenson 1983 for
a review).

The magnetic ÞeldB is generally expressed in form of a development in spherical harmonics of
the scalar potential W , such that B = " ! W :

W = a
""

n =1

&a
r

' n +1 n"

m =0

{ gm
n cos(m" ) + hm

n sin(m" )} Pm
n (cos! ). (1.2)

r is the distance to the planetÕs center,a its radius, ! the colatitude, " the longitude and Pm
n

the associated Legendre polynomials. The coe"cientsgm
n and hm

n are the magnetic moments that
characterize the Þeld. They are expressed in magnetic Þeld units (i.e. the Gauss in c.g.s. units).

One can show that the Þrst coe"cients of relation (1.2) (for n = 0 and n = 1) correspond to
the potential of a magnetic dipole such that W = M ár /r 3 of moment:

M = a3
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1

*2
+
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1
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+

)
h1

1

*2
+1/ 2

. (1.3)

Jupiter and Saturn have magnetic Þelds of essentially dipolar nature, of axis close to the rotation
axis (g0

1 is much larger than the other harmonics); Uranus and Neptune have magnetic Þelds that
are intrinsically much more complex. To provide an idea of the intensity of the magnetic Þelds, the
value of the dipolar moments for the four planets are 4.27 Gauss R3

J, 0.21 Gauss R3
S, 0.23 Gauss R3

U,
0.133 Gauss R3N, respectively (Connerneyet al. 1982; Acu÷na et al. 1983; Nesset al. 1986, 1989).

1.4 Atmospheric composition

The most important components of the atmospheres of our giant planets are also among the most
di"cult to detect: H 2 and He have a zero dipolar moment. Also their rotational lines are either
weak or broad. On the other hand, lines due to electronic transitions correspond to very high
altitudes in the atmosphere, and bear little information on the structure of the deeper levels. The
only robust result concerning the abundance of helium in a giant planet is byin situ measurement
by the Galileo probe in the atmosphere of Jupiter (von Zahn et al. 1998). The helium mole
fraction ( i.e. number of helium atoms over the total number of species in a given volume) is
qHe = 0 .1359± 0.0027. The helium mass mixing ratioY (i.e. mass of helium atoms over total
mass) is constrained by its ratio over hydrogen,X : Y/ (X + Y ) = 0 .238± 0.05. This ratio is by
coincidence that found in the SunÕs atmosphere, but because of helium sedimentation in the SunÕs
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radiative zone, it was larger in the protosolar nebula:Yproto = 0 .275± 0.01 and (X + Y )proto # 0.98.
Less helium is therefore found in the atmosphere of Jupiter than inferred to be present when the
planet formed. We will discuss the consequencesof this measurement later: let us mention that
the explanation invokes helium settling due to a phase separation in the interiors of massive and
cold giant planets.

Helium is also found to be depleted compared to the protosolar value in SaturnÕs atmosphere.
However, in this case the analysis is complicated by the fact that Voyager radio occultations
apparently led to a wrong value. The current adopted value is nowY = 0 .18" 0.25 (Conrath &
Gautier 2000), in agreement with values predictedby interior and evolution models (Guillot 1999;
Hubbard et al. 1999). Finally, Uranus and Neptune are found to have near-protosolar helium
mixing ratios, but with considerable uncertainty.

Table 1.2: Chemical species detected inthe atmospheres of giant planets (cour-
tesy of B. B«ezard)

Jupiter Saturn Uranus Neptune

H 2 0.864 0.86 # 0.90 0.81 # 0.86 0.77 # 0.82
He 0.134 0.10 # 0.14 0.12 # 0.17 0.16 # 0.22
Rare Gases Ne, Ar, Kr, Xe
Species in CH 4 : 2 $ 10! 3 CH 4 : 3# 6$ 10! 3 CH 4 : % 2$ 10! 2 CH 4 : % 2$ 10! 2

thermochemical NH 3 : 5 $ 10! 3 NH 3

equilibrium H 2 O: > 10! 3 H 2 O
H 2 S: 8 $ 10! 5 H 2 S? H2 S?

Species in PH 3 PH 3
thermochemical CO CO CO
disequilibrium GeH 4 GeH 4

AsH 3 AsH 3

Photochemical C 2 H 6 , C 2 H 2 , C 2 H 6 , C 2 H 2 , C 2 H 2 C2 H 6 , C 2 H 2 ,
products C 2 H 4 , CH 3 C2 H, CH 3 C2 H, C 4 H 2 , C 2 H 4 , CH 3 ,

C6 H 6 C6 H 6 , CH 3 HCN
Meteoritic ßux H 2 O, CO H 2 O H 2 O H 2 O

CO 2 (from H 2 O)
SL9 residuals CO, CO 2

CS, HCN

The abundance of other elements (that I will call hereafter Òheavy elementsÓ) bears crucial
information for the understanding of the processes that led to the formation of these planets.
Again, the most precise measurements are for Jupiter, thanks to the Galileo probe. Most of the
heavy elements are enriched by a factor 2 to 4 compared to the solar abundance (Niemannet al.
1998; Owenet al. 1999). One exception is neon, but an explanation is its capture by the falling
helium droplets (Roustlon & Stevenson 1995). Another exception is water, but this molecule is
a!ected by meteorological processes, and the probe was shown to have fallen into a dry region of
JupiterÕs atmosphere. There are strong indications that its abundance is at least solar. Possible
very high interior abundances ($ 10 times the solar value) have also been suggested, either to
explain waves propagation after the Shoemaker-Levy 9 impacts (Ingersollet al. 1994) or as a
scenario to explain the delivery of heavy elements to the planet (Gautier et al. 2001).

Assuming that all elements are enriched by a factor$ 3 in JupiterÕs interior, the total mass
of heavy elements in the planet would be$ 18 M! . In the other planets, the case is considerably
less clear as only the abundance of CH4 can be measured with conÞdence. As shown in Table 1.2
this ratio is consistent with an increased proportion of heavy elements when moving from Jupiter
to Neptune. The problem of how these elements were delivered to these planets will be discussed
later.
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1.5 Energy balance and atmospheric temperature proÞles

Jupiter, Saturn and Neptune are observed to emit signiÞcantly more energy than they receive from
the Sun (see Table 1.3). The case of Uranus is less clear. Its intrinsic heat ßuxFint is signiÞcantly
smaller than that of the other giant planets. Detailed modeling of its atmosphere however indicate
that Fint $> 60 erg cm# 2 s# 1 (Marley & McKay 1999). With this caveat, all four giant planets can
be said to emit more energy than they receive from the Sun. Hubbard (1968) showed in the case of
Jupiter that this can be explained simply by the progressive contraction and cooling of the planets.

Table 1.3: Energy balance as determined from Voyager IRIS dataa.
Jupiter Saturn Uranus Neptune

Absorbed power [1023 erg.s! 1 ] 50.14± 2.48 11.14± 0.50 0.526± 0.037 0.204± 0.019
Emitted power [10 23 erg.s! 1 ] 83.65± 0.84 19.77± 0.32 0.560± 0.011 0.534± 0.029
Intrinsic power [10 23 erg.s! 1 ] 33.5± 2.6 8.63± 0.60 0.034+0 . 038

! 0 . 034 0.330± 0.035
Intrinsic ßux [erg.s ! 1 .cm! 2] 5440± 430 2010± 140 42+47

! 42 433± 46
Bond albedo [] 0.343± 0.032 0.342± 0.030 0.300± 0.049 0.290± 0.067
E!ective temperature [K] 124.4 ± 0.3 95.0± 0.4 59.1± 0.3 59.3± 0.8
1-bar temperatureb [K] 165± 5 135± 5 76± 2 72± 2
a After Pearl & Conrath (1991)
b Lindal (1992)

A crucial consequence of the presence of an intrinsic heat ßux is that it requires high internal
temperatures ($ 10, 000 K or more), and that consequently the giant planets areßuid (not solid)
(Hubbard 1968; see also Hubbardet al. 1995). Another consequence is that they are essentially
convective, and that their interior temperature proÞle are close toadiabats. We will come back to
this in more details.

The deep atmospheres (more accurately tropospheres) of the four giant planets are indeed
observed to be close to adiabats, a result Þrst obtained by Trafton (1967), but veriÞed by radio-
occultation experiments by the Voyager spacecrafts, and by thein situ measurement from the
Galileo probe (Þg. 1.1). The temperature proÞles show a temperature minimum, in a region near
0.2 barcalled the tropopause. At higher altitudes, in the stratosphere, the temperature gradient is
negative (increasing with decreasing pressure). In the regions that we will be mostly concerned
with, in the troposphere and in the deeper interior, the temperature always increases with depth.
It can be noticed that the slope of the temperature proÞle in Þg 1.1 becomes almost constant when
the atmosphere becomes convective, at pressures of a few tens of bars, in the four giant planets.

It should be noted that the 1 bar temperatures listed in table 1.3 and the proÞles shown in
Fig. 1.1 are retrieved from radio-occultation measurements using a helium to hydrogen ratio which,
at least in the case of Jupiter and Saturn, was shown to be incorrect. The new values ofY are
found to lead to increased temperatures by$ 5 K in Jupiter and $ 10 K in Saturn (see Guillot
1999). However, to make things simple (!), theGalileo probe found a 1 bar temperature of 166 K
(Sei! et al. 1998), and generally a good agreement with the Voyager radio-occultation proÞle with
the wrong He/H2 value.

When studied at low spatial resolution, it is found that all four giant planets, in spite of their
inhomogeneous appearances, have a rather uniform brightness temperature, with pole-to-equator
latitudinal variations limited to a few kelvins ( e.g. Ingersoll et al. 1995). However, in the case of
Jupiter, some small regions are known to be very di!erent from the average of the planet. This
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Figure 1.1: Atmospheric temperatures as a function of pressure for Jupiter, Saturn, Uranus and
Neptune, as obtained from Voyager radio-occultation experiments (see Lindal 1992). The dotted
line corresponds to the temperature proÞle retrieved by the Galileo probe, down to 22 barand a
temperature of 428 K (Sei! et al. 1998).

is the case of hot spots, which cover about 1% of the surface of the planet at any given time, but
contribute to most of the emitted ßux at 5 microns, due to their dryness (absence of water vapor)
and their temperature brightness which can, at this wavelength, peak to 260 K. This fact is to be
remembered when analyzinge.g. brown dwarfs spectra.

1.6 Spectra

A spectrum of a jovian hot spot obtained from the Galileo orbiter is shown in Þg. 1.2. It demon-
strates the complex structure of a planet, and the signiÞcant departures from a black-body radi-
ation. At short wavelengths (# $< 3µm, the spectrum is dominated by the directly reßected solar
light. At longer wavelengths, the thermal radiation dominates. The spectrum is dominated by the
absorption bands of methane with some absorption by ammonia; water lines are seen around 5µm,
and a number of less abundant chemical species (e.g. phosphine) contribute to this spectrum.

1.7 Atmospheric dynamics: winds & weather

The atmospheres of all giant planets are evidently complex and turbulent in nature. This can
for example be seen from the mean zonal winds (inferred from cloud tracking), which are very
rapidly varying functions of the latitude (see e.g. Ingersoll et al. 1995): while some of the regions
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Figure 1.2: Flux emitted by a Jupiter hot spot as seen by the Galileo orbiter with NIMS. [From
Carlson et al. 1996; Courtesy of P. Drossart].

rotate at the same speed as the interior magnetic Þelds (Òsystem IIIÓ), most of the atmospheres
do not. Jupiter and Saturn both have superrotating equators (+100 and +400 m s# 1 in system
III, for Jupiter and Saturn, respectively), Uranus and Neptune have subrotating equators, and
superrotating high latitude jets . Neptune, which receives the smallest amount of energy from the
Sun has the largest peak-to-peak latitudinal variations in wind velocity: about 600 m s# 1. It can
be noted that, contrary to the case of the strongly irradiated planets to be discussed later, the
winds of Jupiter, Saturn, Uranus and Neptune, are signiÞcantly smaller than the surface speed due
to the revolution of the planet on itself (from 12.2 km s# 1 for Jupiter to 2.6 km s# 1 for Neptune).

The observed surface winds are believed to be related to motions in the planetsÕ interiors, which,
according to the Taylor-Proudman theorem, should be conÞned by the rapid rotation to the plane
perpendicular to the axis of rotation (e.g. Busse 1978). Unfortunately, no convincing model is yet
capable of modeling with su"cient accuracy both the interior and the surface layers.

Our giant planets also exhibit planetary-scale to small-scale storms with very di!erent temporal
variations. For example, JupiterÕs great red spot is a 12000 km-diameter anticyclone found to have
lasted for at least 300 years. Storms developingover the entire planet have even been observed
on Saturn (Sanchez-Lavegaet al. 1991). NeptuneÕs storm system has been shown to have been
signiÞcantly altered since the Voyager era. On Jupiter, small-scale storms related to cumulus-type
cloud systems has been observed by Galileo, and lightning strikes can be monitored.

It is tempting to extrapolate these observations to the objects outside our Solar System as well.
However, it is important to stress that an important component of the variability in the atmospheres
of our giant planets is the presence of relatively abundant condensing chemical species: ammonia
and water in the case of Jupiter and Saturn, and methane for Uranus and Neptune. These species
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can only condense (and thus provide the necessary latent heat) in very cold atmospheres. Other
phenomena are however possible.

1.8 Moons and rings

A discussion of our giant planets motivated by the opportunity to extrapolate the results to objects
outside our solar system would be incomplete without mentioning the moons and rings that these
planets all possess. First, the satellites/moons can be distinguished from their orbital characteris-
tics as regular or irregular. The Þrst ones have generally circular, prograde orbits. The latter tend
to have eccentric, extended, and/or retrograde orbits.

These satellites are numerous: After the Voyager era, Jupiter was known to possess 16 satellites,
Saturn to have 18, Uranus 20 and Neptune 8. Recent extensive observation programs have seen the
number of satellites increase considerably (see Gladmanet al. 2001). At this date, $ 12 have been
detected around Jupiter, $ 12 around Saturn, and 5 around Uranus. All of these new satellites
are classiÞed as irregular.

The presence of regular and irregular satellites is due in part to the history of planet formation.
It is believed that the regular satellites have mostly been formed in the protoplanetary subnebulae
that surrounded the giant planets (at least Jupiter and Saturn) at the time when they accreted
their envelopes. On the other hand, the irregular satellites are thought to have been captured by
the planet. This is for example believed to be the case of NeptuneÕs largest moon, Triton, which
has a retrograde orbit.

A few satellites stand out by having relatively large masses: it is the case of JupiterÕs Io,
Europa, Ganymede and Callisto, of SaturnÕs Titan, and of NeptuneÕs Triton. Ganymede is the
most massive of them, being about twice the mass of our Moon. However, compared to the mass
of the central planet, these moons and satellites have very small weights: 10# 4 and less for Jupiter,
1/ 4000 for Saturn, 1/ 25000 for Uranus and 1/ 4500 for Neptune. All these satellites orbit relatively
closely to their giant planets. The furthest one, Callisto rotates around Jupiter in about 16 Earth
days.

The four giant planets also have rings, whose material is probably constantly resupplied from
their satellites. The ring of Saturn stands out as the only one directly visible with only binocular.
In this particular case, its enormous area allows it to reßect a sizable fraction of the stellar ßux
arriving at Saturn, and makes this particular ring as bright as the planet itself. The occurrence of
such rings would make the detection of extrasolar planets slightly easier, but it is yet unclear how
frequent they can be, and how close to the stars rings can survive both the increased radiation and
tidal forces.
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1.9 Oscillations

Last but not least, the case for the existence of free oscillations of the giant planets is still unre-
solved. Such a discovery would lead to great leaps in our knowledge of the interior of these planets,
as can be seen from the level of accuracy reached by solar interior models since the discovery of
its oscillations. Observations aimed at detecting modes of Jupiter have shown promising results
(Schmider et al. 1991), but have thus far been limited by instrumental and windowing e!ects. A
recent work by Mosseret al. (2000) puts an upper limit to the amplitude of the modes at 0.6 m s# 1,
and shows an increased energy of the Fourier spectrum in the expected range of frequencies. Ob-
servations from space of through an Earth-based network should be pursued in order to verify
these results.
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Chapter 2

Basic equations, gravitational
moments & interior structures

2.1 Hydrostatic equilibrium

A very pleasing property of giant planets and brown dwarfs is that in spite of more than two
decades of variation in mass, these objects basically obey the same physics: for most of their life,
their interior is ßuid and they are governed by the equilibrium between their internal pressure and
their gravity. Unlike terrestrial planets, the chara cteristic viscosities are extremely small and can
be neglected. The standard hydrostatic equation is thus:

$P
$r

= " %g (2.1)

where P is the pressure,%the density, and g = Gm/r 2 the gravity ( m is the mass,r the radius
and G the gravitational constant).

Another equation is necessary to obtain the temperature as a function of pressure:

$T
$r

=
$P
$r

T
P

%T . (2.2)

While the equation itself is trivial, the calculation of the temperature gradient %T & (d ln T/d ln P)
is not, and depends on the process by which the internal heat is transported. This term will be
analyzed in a following section.

Thirdly, a special case of the mass conservation with zero velocity is:

$M
$r

= 4 &r2%. (2.3)

Again, the physics of this equation is hidden in the dependency of the density%with the pressure,
temperature and composition, something given by the equation of state (see next section).

Finally, a crucial equation is derived from energy conservationconsiderations:

$L
$r

= 4 &r2%
#

ú' " T
$S
$t

$
, (2.4)

11
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whereL is the intrinsic luminosity, t the time, S the speciÞc entropy (per unit mass), and ú' accounts
for the sources of energy due e.g. to radioactivity or more importantly nuclear reactions. Generally
it is a good approximation to assume ú' $ 0 for objects less massive than$ 13 MJ, i.e. too cold to
even burn deuterium (but we will see that in certain conditions this term may be useful, even for
low mass planets).

2.2 Boundary conditions

At the center, r = 0; m = 0, L = 0. The external boundary conditions are more complex to obtain
because they depend on how energy is transported in the atmosphere. One possibility is to use
the Eddington approximation, and to write ( e.g. Chandrasekhar 1960):

r = R : T0 = Te! ,

P0 =
2
3

g
(

,
(2.5)

where ( is the opacity in cm2 g# 1 (see section ). Note for example that in the case of Jupiter
Te! = 124 K, g = 2600 cm s# 2 and ( # 5! 10# 2(P/ 1 bar) cm2 g# 1. This implies P # 0.2 bar, which
is actually close to JupiterÕs tropopause, whereT # 110 K.

Another possibility is to use an atmospheric model and to relate the temperature and pressure
at a given level to the gravity and e!ective temperature of the object (or equivalently luminosity
and radius):

T0 = T0(Te! , g); P0 = P0(Te! , g). (2.6)

In the case of Jupiter and Saturn, an approximation often used is based on old calculations by
Graboskeet al. (1975). It takes the form

T1 bar = KT a
e! g# b, (2.7)

where K = 1 .5, a = 1 .243 andb = 0 .167, all the quantities being expressed in cgs units. As shown
by Fig. 2.1, this approximation is relatively good for e!ective temperatures lower than 200 K, but
it degrades substantially above that value (see also discussion in Saumonet al. 1996).

Note that these boundary conditions assume that the object is isolated. This is not the case of
the giant planets of the solar system and for extrasolar planets for which the insolation can play
an important role. We leave that problem for a further discussion.

2.3 Simple solutions

2.3.1 Central pressure

In order to estimate the central pressure, it is useful to write the hydrostatic equilibrium in a form
which is independent on density:

$P
$m

= "
Gm
4&r4 . (2.8)

Approximating by m # M/ 2, r # R/ 2 (M and R being the total mass and radius, respectively)
yields

Pc #
2
&

GM 2

R4 . (2.9)
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Figure 2.1: Comparison of the boundary condition obtained from Eq.(2.7) (dashed) to a grey
atmosphere from Saumonet al. (1996) (plain), in the case of Saturn (g # 1100 cm s# 2), Jupiter
(g # 2600 cm s# 2) and Gl229B (g # 105 cm s# 2).

Another simple solution is obtained by assuming uniform density%= 3 M/ 4&R3. Equation 2.1
can then be integrated to obtain

Pc #
3

8&
GM 2

R4 (2.10)

Knowing the mass and radius of a moon, planet or star, its central pressure can therefore be
approximated within a factor of a few.

Using Eqs. (2.9,2.10) the central pressure of the moon is found to be 17" 91 kbar, 1.7" 9.1Mbar
for the Earth, 12 " 64 Mbar for Jupiter and 1.3 " 7.2 Gbar for the Sun. For comparison, the
corresponding values given by more elaborate models are$ 40 kbar, 3.6 Mbar, 40 to 70 Mbar and
230 Gbar, respectively. The approximation is least successful in the case of the Sun, mostly because
of the increase in density of the central regions (%c # 150 g cm# 3).

When dealing with objects of small masses like planetary moons, the uniform density model is
in fact a good approximation to the internal pressure, which can be shown to be:

P() ) #
4&
6

GR2%2
,
1 "

& r
R

' 2
-

. (2.11)

The central temperatures are more di"cult to obtain a priori because contrary to main-sequence
stars the interiors strongly depart from ideality. An a posteriori estimate uses the fact that these
objects are mostly convective andthat their temperature gradient %T & (d ln T/d ln P) # 0.3.
One then Þnds thatT # Te! (P/P 0)& T , with Te! and P0 being deÞned by the boundary conditions
discussed in section 2.2. In the case of Jupiter, starting fromT(1 bar) = 165 K and Pc # 12 Mbar,
one getsTc # 22000 K, a relatively accurate estimate of the temperature at the bottom of the
hydrogen-helium envelope.
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2.3.2 Polytropic solutions

A full integration of the set of di!erential equations is of course necessary to obtain the necessary
precision on quantities such as pressure, temperature and density. However, it is sometime use-
ful to use approximate analytical solutions to understand the underlying physics. One of these
approximations, of considerable importance for stellar physics, is to assume a polytropic relation
between pressure and density:

P = K%1+1 /n , (2.12)

where K is supposed constant, andn is the polytropic index. Of course, this relation implicitly
assumes that either density only depends on pressure not on temperature, or that the temperature
proÞle is well-behaved and yieldsK and n constants.

This property is indeed veriÞed in the limit when the pressure is due to non-relativistic fully
degenerate electrons (e.g. Chandrasekhar 1939). In that case, a pure hydrogen plasma obeys the
polytropic relation (2.12) with n = 3 / 2 and a constant K deÞned by fundamental physics (i.e.
independent ofM , Te! ...etc.).

On the other hand, a perfect gas with a constant temperature gradient can be shown to obey a
polytropic relation of index n = 1 / (1 + 1 / %T ). In the case of a monoatomic perfect gas,n = 3 / 2.
It is important to notice that in that case K is set by the atmospheric boundary condition: it
depends on parameters such as the mass and e!ective temperature of the object considered.

A solution of the polytropic problem is obtained from the integration of the hydrostatic and
Poisson equations: .

/0

/1

dP
dr

= "
d#
dr

%,

1
r 2

d
dr

#
r 2 d#

dr

$
= 4 &G%,

(2.13)

where # is the gravitational potential. The problem can be solved with some algebra. With the
following change of variables,

z = Ar, A 2 =
4&G

(n + 1) K
%

n ! 1
n

c

w =
#
# c

=
#

%
%c

$ 1/n

,
(2.14)

where %c and #c are the central density and gravitational potential, respectively, one is led to
the famous Lane-Emden equation (see Chandrasekhar 1939, Kippenhahn & Weigert 1991 for a
demonstration):

1
z2

d
dz

#
z2 dw

dz

$
+ wn = 0 . (2.15)

This equation possesses analytical solutions for n=0, 1 and 5. For our purpose, it is su"cient
to say that the solutions are characterized by the surface condition:zn such that w(zn ) = 0 and
by the derivative of the function w at that point: ( dw/dz )zn . It can be shown that the total mass
and surface radius of a polytrope are such that:

M = 4 &%cR3
#

"
1
z

dw
dz

$

z= zn

, (2.16)

R = zn

,
1

4&G
(n + 1) K

- 1/ 2

%
1! n
2n

c . (2.17)
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If we assume that K and n are independent of the mass and surface conditions of the object
considered, it is easy to show that the mass-radius relation is such that

R ' M
1! n
3! n . (2.18)

First, one can notice that the exponent diverges forn = 3. In this case, the Lane-Emden equation
has only one solution: this leads to the Chandrasekhar limit for the mass of white dwarfs. Second,
for uncompressible materials,n = 0 and we can verify that R ' M 1/ 3. Third, objects whose
internal pressure is dominated by non-relativistic degenerate electrons (this is formally valid only
in the white dwarfs regime) are such thatn = 3 / 2 (see section 3.1.3) andR ' M # 1/ 3.

2.4 Mass-radius relation

Figure 2.2: Radius versus mass for hydrogen-helium planets (Y=0.25) after 10 Ga of evolution
(plain line). An approximate mass-radius relation for zero-temperature water and olivine planets
is shown as dashed and dash-dotted lines, respectively (Courtesy of W.B. Hubbard). The observed
values for Uranus, Neptune, Saturn and Jupiter, as well as that for the Pegasi planet HD209458b
are indicated.

The relation between mass and radius has very fundamental astrophysical applications. Most
importantly is allows one to infer the gross composition of an object from a measurement of its
mass and radius. This is especially relevant in the context of the discovery of extrasolar planets
with both radial velocimetry and the transit meth od, as the two techniques yield relatively accurate
determination of M and R.

Figure 2.2 shows as a plain line the mass-radius relation of isolated hydrogen-helium objects
(of approximate solar composition) after 10 Ga of evolution. As could have been inferred from the
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polytropic solutions, this curve has a local maximum: at small masses, the compression is rather
small so that the radius increases with mass (corresponding to a low polytropic index). (Note for
example that in the case of the Earth, the central density is$ 13 g cm# 3, to be compared with a
mean density of 5.52 g cm# 3). At large masses, degeneracy sets in and the radius decreases with
mass (note from Þg. 2.2 that it neverquite reaches the white dwarf limit R ' M # 1/ 3). At still
larger masses (more than 70 MJ), we get in the stellar regime, which is dominated by thermonuclear
reactions, and thermal e!ects have to be taken into account.

Figure 2.3: Polytropic index n (such that P ' %1+1 /n ) as a function of internal radius, for 0.1, 1
and 10 MJ isolated planets of solar composition after 10 Ga of evolution.

The polytropic indexes of the isolated 0.1, 1 and 10 MJ are shown in Fig. 2.3. At small masses,
n is e!ectively rather small and the tends toward a uniform density solution. At around the mass
of Jupiter, we get n $ 1, which e!ectively corresponds to a maximum in the polytropic mass-radius
relation (2.18). Above a mass of$ 4 MJ, the radius starts decreasing with increasing mass, and
e!ectively, the 10 M J object has n # 1.3 in most of its interior. Equation (2.18) would imply
R ' M # 0.18, which is steeper than obtained on Þg. 2.2. This is due to the fact that even after
1010 years, a 10 MJ object still retains part of its primordial heat and that K can not be considered
as independent of e!ective temperature and mass, as assumed in Eq. (2.18).

Another conclusion that can be derived from Fig. 2.2 is that the planets in our Solar System
are not of solar composition: their radii lie below that predicted for Y = 0 .25 objects. Indeed, it
can already be inferred that Jupiter, Saturn, and the two ice-giants Uranus and Neptune contain
a growing proportion of heavy elements. The theoretical curves for olivine and ice planets predict
even smaller radii however: even Uranus and Neptune contain 10 to 20% of their mass as hydrogen
and helium.

An object is found above the hydrogen-helium curve: HD209458b. In this case, we will see
that the planet has its evolution dominated by the intense stellar irradiation it receives. Thermal
e!ects are no longer negligible: One cannot neglect the variations of the polytropic constantK
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with mass. Instead of Eq. (2.18), one is led to:

R ' K
n

3! n M
1! n
3! n . (2.19)

The constant K can be estimated through the surface boundary condition, assuming that the
planetary interior is tied to the surface with an approximately constant polytropic index n (a
condition which is generally veriÞed). Thus, using a perfect gas relation

K = P# 1/n
0

#
RT0

µ

$ 1+1 /n

. (2.20)

Let us assume that T0 is, in the case of irradiated planets, set by the stellar insolation (and
therefore independent ofM ). Using the Eddington boundary condition P0 ' g/( . The relation
for the opacity ( ' P is generally valid for hot atmospheres not dominated by hydrogen-helium
collision-induced absorption (see section 4). Therefore, a constant insolation and constant interior
n implies

K '
#

M
R2

$ # 1/ 2n

. (2.21)

It is then easy to show that the mass-radius relation for strongly irradiated planets becomes

R ' M
1/ 2! n

2! n (2.22)

Thus, for n = 3 / 2, a relation valid for an adiabatic, ideal monoatomic gas, one ÞndsR ' M # 2.
For n = 1, one Þnds R ' M # 1/ 2. Strongly irradiated hydrogen-helium planets of small masses
are hence expected to have the largest radii. Note that this estimate implicitly assumes thatn
is constant throughout the planet. The real situation is more complex because of the growth of
a deep radiative region in most irradiated planets, and because of structural changes between the
degenerate interior and the perfect gas atmosphere.

2.5 Rotation and the Þgures of planets

2.5.1 Hydrostatic equilibrium and symmetry breaking

We have thus seen that the knowledge of the mass and radius of a planet could inform us on its
global composition. Fortunately, the giant planets in the Solar System are also fast rotators and
their Þgure can also inform us more precisely on their internal composition. In the case of an
inviscid ßuid rotating with an angular velocity ! (r ), the hydrostatic equilibrium has to be written
in the frame of rest of the system (see e.g. Pedlosky 1979):

%P
%

= %V " ! ! (! ! r ), (2.23)

where the gravitational potential is deÞned as

V (r ) = G
2

%(r ' )
|r " r ' |

d3r ' . (2.24)
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The resolution of eq. (2.23) is generally a complex problem. It can however be somewhat
simpliÞed by assuming that |! | & * is such that the centrifugal force can be derived from a
potential:

W (r ) =
1
2

* 2r 2 sin2 !, (2.25)

where ! is the angle from the rotation axis (colatitude). This implies that * is either constant, or
a function of the distance to the axis of rotation (rotation on cylinders).

The total potential is U = V + W and the hydrostatic equilibrium can be written as

%P = %%U. (2.26)

The Þgureof a ßuid planet in hydrostatic equilibrium is then deÞned by the U = cte level surface.
The expression ofW shows that the centrifugal acceleration will be maximal at t he equator. Since
it tends to oppose gravity, it can be intuited that the planetÕs Þgure will depart from a sphere and
become oblate, with a smaller polar radius than its equatorial radius. This was Þrst demonstrated
by Newton in 1687, but is in no way straightforward, and was contested by contemporaries, some
advocating that the EarthÕs dimension should be larger at the poles!

Most of the problem lies in the breaking of the symmetry by rotation: the gravitational potential
can no longer be integrated simply. We will summarize here one method, worked out by Lagrange,
Clairaut, Darwin and Poincar«e and detailed by Zarkhov & Trubitsyn (1978). At its basis is a
projection of the integrand of eq. (2.24) onto a basis of Legendre polynomialsPn (cos+):

1
|r " r ' |
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/////0

/////1

1
r

""

n =0

#
r '

r

$ n

Pn (cos+) if r ( r ' ,

1
r

""

n =0

#
r '

r

$ # n # 1

Pn (cos+) if r < r ' ,

(2.27)

where+ is the angle between the radius vectorsr and r ' . The Legendre polynomials are determined
from the formula

Pn (x) =
1

2n n!
dn

dxn

3
(x2 " 1)n 4

. (2.28)

In particular, P0 = 1 and P2(x) = (3 x2 " 1)/ 2. These polynomials also have very important
orthogonal properties that will not be detailed here.

Some geometry, the properties of Legendre polynomials and the assumption of hydrostatic
equilibrium (azimuthal symmetry) allows one to write the gravitational potential in the form

V =
G
r

""

n =0

)
r # 2n D2n + r 2n +1 D '

2n

*
P2n (cos! ),

D2n =
2

r " ( r
%(r ' , cos! ' )r ' 2n P2n (cos! ' )d3r ' ,

D '
2n =

2

r " >r
%(r ' , cos! ' )r '# 2n # 1P2n (cos! ' )d3r ' . (2.29)

The potential V is thus projected on the basis of Legendre polynomialsP(cos! ). The D2n and D '
2n

coe"cients are complex functions. It is to be noted that this projection, as proposed by Lagrange
poses a mathematical problem of divergence of the Legendre series between the sphere and level
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surface. Using a method initially proposed by Lyapunov, Trubitsyn showed that this expression is
however valid because of the exact cancellation of the divergent terms (see Zharkov & Trubitsyn
1978).

On the other hand, the centrifugal potential can be written on the same basis:

W =
1
3

* 2r 2[1 " P2(cos! )]. (2.30)

The total potential U thus appears as a weighted sum (however complex) of Legendre polynomials.

2.5.2 Equations for the level surfaces: principles

The Þgureof a planet is determined by the level surfaces on which the total potential is constant.
As shown by eq. (2.26), in hydrostatic equilibrium %P and %U are in the same direction. Taking
the curl of that equation, one Þnds that %%! % U = 0. The surfaces of constant potential are also
surfaces of constant pressure, density, and hence temperature. Hydrostatic equilibrium therefore
also corresponds to barotropic equilibrium. (But remember our hypothesis that the centrifugal
acceleration derives from a potential). These surfaces of constantU are sought in the form:

r (s, cos! ) = s

5

1 +
""

n =0

s2n (s)P2n (cos! )

6

, (2.31)

wheres2n (s) are coe"cients to be determined, and s is chosen to be the radius of a sphere of equal
volume (and hence, equal mass):

4&
3

s3 =
4&
3

2 1

0
r 3(s, cos! )dcos!. (2.32)

This allows one to integrate the angular part entering the calculation of the coe"cients D2n

and D '
2n in eq. (2.29). The solution of the problem is found by noticing that the total potential

can now be written

U(s, cos! ) =
4&
3

G%s2
""

n =0

A2n (s)P2n (cos! ), (2.33)

where%is the planetÕs mean density. Since by deÞnition the gravitational potential is constant on
a level surface (Þxeds), all coe"cients A2n (s) must be zero for n )= 0. With eq. (2.32), we thus
have n + 1 equations for the n + 1 variables s0, . . . , s2n . The problem can thus be solved for weak
rotation rates * by introducing a small parameter, q, the ratio of the centrif ugal acceleration at
the equator to the leading term in the gravitational acceleration:

q =
* 2R3

eq

GM
, (2.34)

Req being the equatorial radius. One can show thats0 ' q and s2n ' qn for n )= 0. This system of
integro-di!erential equations is rather complex and will not be given here (see Zharkov & Trubitsyn
1978 for equations to third order).

With our choice of coordinates, the hydrostatic equation retains a simple form:

$P
$s

= %
$U
$s

, (2.35)
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i.e. the equation is now integrated with respect to the mean planetary radius. Furthermore,
because of our assumption that the ßuid remains barotropic, the other equations are unchanged.
A detailed calculation of U shows that

1
%

$P
$s

= "
Gm
s2 +

2
3

* 2s +
GM
R3 s, ! , (2.36)

where , ! is a slowly varying function of s which, in the case of Jupiter varies from about 2! 10# 3

at the center to 4 ! 10# 3 at the surface.

2.5.3 The external potential: constraints from observations

As suggested previously, the e!ect of rotation is not only to complexify the equation for hydrostatic
equilibrium. It also provide ones with the only way (yet) to probe the interiors of the giant planets
of the solar system. This was Þrst recognized by Sir H. Je!reys (1923), but has seen signiÞcant
progresses due to the ßybys of the giant planets by the Pioneer and Voyager spacecrafts that
allowed for a direct measurement of the planetsÕ gravitational potentials.

The thus measured gravitational potentials are generally written in the form

Vext (r, cos! ) =
GM

r

5

1 "
""

n =1

&a
r

' 2n
J2n P2n (cos! )

6

, (2.37)

and the coe"cients J2n are the planetÕsgravitational moments. These are hence directly related
to the coe"cients D2n deÞned by eq. (2.29), from which it can be shown that

J2n = "
1

Man D2n . (2.38)

(Note that because we are always outside the planetr > r ' and the centrifugal potential does not
appear since we are in an inertial coordinate system).

For example, the Þrst gravitational moment can be calculated as
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2
, (2.39)

whereA, B and C are the principal moments of inertia of the planet with respect to axesx, y and
z, respectively.

The measured gravitational moments can thus be compared to the theoretically measured ones.
For a planet in hydrostatic equilibrium, the odd moments J2n +1 are all zero while the even moments
have a magnitudeJ2n ' qn . The high order gravitational moments also correspond to integrals
with weighting functions peaking closer to the external layers of the planet. The information
contained by the { J2n } is therefore limited: without other information from e.g. global oscillations
of the planet, it is impossible to accurately constrain the structure of the inner regions.
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Table 2.1: Parameters constraining interior structure
q $ 2 C/MR 2

eq

Jupiter 0.08923 0.165 0.26
Saturn 0.15491 0.105 0.22
Uranus 0.02951 0.119 0.23
Neptune 0.0261 0.136 0.24

Table 2.1 shows the values of the parameterq and of the axial moment of inertia of the giant
planets calculated fromJ2 using the Radau-Darwin approximation (Zharkov & Trubitsyn 1978):

C
MR 2

eq
#

2
3

5

1 "
2
5

#
5

3$2 + 1
" 1

$ 1/ 2
6

, (2.40)

where we have introduced the linear response coe"cient $2 & J2/q , and we have neglected second
order terms proportional to the planetsÕ ßattening. Our four giant planets all have an axial moment
of inertia substantially lower than the value for a sphere of uniform density,i.e. 2/ 5MR 2, indicating
that they have dense central regions.

An analytical solution of the Þgure equation can be found for a polytropic equation of state
of index n = 1 ( P ' %2), which is, as we have seen relevant for most of JupiterÕs interior. In
that case, one Þnds that (see Zharkov & Trubitsyn 1978; Hubbard 1989), $2 = 0 .173 and thus
C/MR 2 = 0 .263, indeed very close to the value found for Jupiter. This shows already that
JupiterÕs core is small, relatively to the planetÕs total mass. It also indicates that Saturn, Uranus
and Neptune have dense central regions and hence depart substantially from solar composition.

2.5.4 E!ect of di!erential rotation

In order to be able to integrate the system of integro-di!erential equations, we have implicitly
assumed a solid body rotation. The atmospheres of all giant planets is seen to rotate with a speed
which is latitudinally dependent. These latitudinal variations amount to about 1% for Jupiter to
more than 15% in the case of Neptune, from peak to peak.

A Þrst consequence is that the gravitational potential calculated assuming solid body rotation
will be di!erent than if the interior rotation is, say, on cylinders. For a given structure, di!erential
rotation such as imposed by the surface winds of Jupiter and Saturn increases the absolute values
of the planetsÕ gravitational moments. In order to account for that e!ect using solid body rotation,
one has to use e!ective gravitational moments that are smaller in absolute value than those directly
measured (Hubbard 1982).

Another interesting consequence concernsthe high order gravitational moments, J10 and above.
Hubbard (1999) has shown that if the observed atmospheric rotation pattern persists deep enough
into the interior (say to within a few % of the total radius beneath the atmospheric layer), then the
gravitational moments will stop decreasing and reach a plateau at a value|Jn | # 10# 8 with n $> 10.
This lends support to space missions that would enable a detailed mapping of the gravitational
Þelds of the giant planets. This would require both a polar-like orbit and one (or better several)
very close ßybys.
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2.6 Equations of evolution

We have so far expressed the di!erential equations in terms of the radiusr . This Eulerian approach
has the inconvenience that the spatial variable can be a rapidly varying function of time (when,
during the evolution, the contraction is fast). It is therefore generallymore convenient to use
a Lagrangian approach, in which the new independent coordinates are the massm and time t.
This has the advantage that except in the caseof mass loss/gain, the outer boundary condition
is deÞned at a Þxedm = M , the total mass of the object. Note that because of our deÞnition of
the radius as the mean radius, the e!ect of rotation is just to add two terms to the hydrostatic
equation. Hereafter, we will user instead of s as the mean radius (seee.g. Guillot & Morel 1995
for a possible method to numerically resolve the equations). The system of di!erential equations
becomes: .
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(2.41)

The boundary conditions are as discussed in section 2.2, except that the variable is nowm
instead of r . Note however that when studying the present-day interiors of Jupiter, Saturn, Uranus
or Neptune, the most logical surface boundary condition is at a Þxed temperatureT = Tsurf and
pressurePsurf , for m = M . Note that in that case, there is no time dependency, and the energy
conservation equation cannot be integrated. This requires a priori setting the luminosity (usually
by assuming that it is uniformly equal to the measured intrinsic luminosity of the planet). In all
other cases,i.e. when considering theevolution of substellar objects, the outer boundary condition
must depend onL and R.

Most of the important physics in the system of equations (2.41) is hidden in several quantities:
, ! contains the physics related to rotation discussed previously, but is generally a small pertur-
bation. The term %T depends on the process which transports the energy inside the planet and
will be discussed in section 4 The density%and speciÞc entropyS are functions of the tempera-
ture, pressure and composition. They have to be calculated independently using an appropriate
equation of state, the subject of the next section. Finally, ú' accounts for any source of energy,e.g.
thermonuclear reactions, radioactivity or heat dissipation. This term is generally neglected, but
will be discussed for brown dwarfs, and also in the case of Pegasi planets.



Chapter 3

Equations of state

3.1 Basic considerations

3.1.1 Calculation of equations of state

The knowledge of appropriate equations of state is at the basis of any modeling of substellar
objects. Basically, for a given atomic composition, and two macroscopic thermodynamic variables,
say temperature and volume, an equation of state is to provide all the other thermodynamic
variables and their derivatives (pressure, internal energy, entropy, speciÞc heat...etc.). As discussed
by Fontaine, Graboske & Van Horn (1977), the thermodynamic constraints that have to be satisÞed
for any equilibrium thermodynamic description of a single-phase material are:

I. Accuracy Papprox (T, V) = Pexact (T, V).
Uapprox (T, V) = Uexact (T, V).

II. Stability
)

"P
"V

*
T

< 0,
)

"U
"T

*
V

> 0.

III. Consistency
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*
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=
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"S
"V

*
T

= 1
T

)
P +

)
"U
"V

*
T

*
.

IV. ÒNormalityÓ
)

"P
"T

*
V > 0,

&
" 2 P
"V 2

'

T
> 0.

As noted by the authors, condition II is generally trivial to achieve; condition III is straightforward
but often grossly violated; condition IV is not thermodynamically demanded, but holds for most
%, T values. Indeed, we will see one possible equation of state for which condition IV is violated.

The calculation of equations of state itself can become extremely complex. For our purposes,
it will su"ce to say that it can be split into two main groups: the ÒchemicalÓ and ÒphysicalÓ
pictures. In the chemical picture, one assumes that bound conÞgurations (e.g. atoms, molecules)
retain a deÞnite identity and interact through pair potentials. The system of particles of species
- conÞned to a volume V at temperature T is conveniently described by the Helmoltz free energy
F , which is itself obtained from microscopic physics through

F ({ N# } , V, T) = " kT ln Z ({ N# } , V, T), (3.1)

whereN# denotes the number of particles andZ is the canonical partition function of the system.
Other thermodynamical quantities are then obtained from derivatives of F . For example,

P = "
#

$F
$V

$

{ N ! } ,T
.

23
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When confronted to ionization and/or dissociation, the actual composition of the system (i.e.
abundances of electrons, ions, atoms and molecules) is obtained through a minimization of the free
energy of the system. As discussed by Fontaineet al., the calculation of the free energy requires
several assumptions that necessarily limit its accuracy. Its main drawback is theapriori deÞnition
of certain classes of particles,i.e. ions, atoms and molecules which necessitates the use of e!ective
interaction potentials. The calculation can thus fail in states where more complex systems are
formed and the distinction between bound and free states is not easily made.

Another method consists in directly computing the n-body Schr¬odinger equation of the quantum-
statistical system. This approach is generally exact in the limit set by the computationally intensive
method that has to be used to solve the problem. Within this physical picture, two main approaches
have been used: restricted path integral Monte Carlo simulations, and density functional theory
molecular dynamics. The Þrst approach consists in solving the full problem for a limited number
of protons and electrons in a box (64 of each at the most, with todayÕs computers). The second
approach involves local solutions to the problem and fails when both short range and long range
interactions have to be taken into account.

3.1.2 The phase diagram

In terms of pressures and temperatures, the interiors of giant planets and brown dwarfs lie in
a region for which accurate equations of state are extremely di"cult to calculate. Some of the
important phenomena that occur in these objects are illustrated by the phase diagram of hydrogen
(Þgure 3.1).

The photospheres of these objects is generally relatively cold and at low pressure, so that
hydrogen is in molecular form and the perfect gas conditions apply:

P =
%RT

µ
; U = CV T, (3.2)

with µ # 2 (neglecting helium atoms and heavy elements) andCV # 5/ 2k, due to the vibration of
the hydrogen molecule.

As one goes deeper into the interior however, the molecules become closer to one another.
The system progressively becomes a liquid, in which the interactions between molecules play an
important role. This occurs when the intermolecular distance becomes of the same order as the
size of a hydrogen molecule. Using real equations of state, it can be estimated that the perfect
gas relation tends to underestimate the pressure by 10% or more when the density becomes larger
than about 0.02 g cm# 3 (pressures above 1 kbar in the case of Jupiter).

At higher densities (or pressures) and relatively low temperatures, the electrons can become
degenerate: in that limit, their momentum is not determined by the temperature of the mixture,
but by the fact that, as fermions of spin " 1/ 2 or +1/ 2, only two of them can be stacked in a cell
%p%V = h3. (PauliÕs exclusion principle). The signiÞcance of this phenomenon can be measured
through a degeneracy temperature parameter

! =
T
TF

=
2mek

h2

#
8&
3

µemu

$ 2/ 3 T
%2/ 3

, (3.3)

where TF is the Fermi temperature, and the number density of electrons isne = %/µemu. The
quantity µe is the mean molecular weight per electron (µe # 2/ (1 + X )). The parameter ! can
be deÞned regardless of the presence of bound states. However, in the presence of atoms and
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Figure 3.1: Phase diagram for hydrogen with the main phase transitions occurring in the ßuid or
gas phase. The temperature-pressure proÞles for Jupiter, Saturn, Uranus, Neptune, and Gl229B
(assumed to be a 30 MJ brown dwarf) are shown. The plain, almost vertical line near 1 Mbar repre-
sents the Plasma Phase Transition (PPT) supposed to separate molecular from metallic hydrogen
as computed by Saumonet al. (1995). The region in which hydrogen is predicted to be solid is
represented as a dashed area. Lines showing the values of the parameters! and & (see text) are
also shown.
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molecules, the energy of most of the electrons is notkT nor kTF so that its usefulness in that
regime is limited. It can be seen from Þg. 3.1 that the interiors of substellar objects are always
characterized by! < 1. It is never possible to assume that free electrons behave like a perfect gas.

Another important quantity is the coupling parameter, deÞned as the ratio of the Coulomb
potential to the thermal energy:

& =
e2

akT
=

e2

k

#
4&

3µmu

$ 1/ 3 %1/ 3

T
, (3.4)

wherea is the mean distance between nuclei. As & increases due either to an increase of the density
or to a decrease of the temperature, the Coulomb forces becomes more e!ective. With increasing
densities, the system of ions eventually favors a non-random organization and becomes bound into
a lattice system. This occurs for large values of & ($ 100). Figure 3.1 shows that substellar objects
always have &> 1: the system is dominated by the repulsivecoulombian potential between nuclei.
However, we will be concerned with values of &< 50, i.e. unlike white dwarfs, substellar objects
are not expected to crystallize (this occurs for &$> 180). Hubbard (1968) was the Þrst to show
that JupiterÕs interior should be hot enough for its interior to beßuid. It can also be seen in the
phase diagram that it is the case of Saturn. For Uranus and Neptune, the situation is actually
more complex because at large pressures they arenot expected to contain hydrogen, but several
studies show that ices in their interior should be ßuid as well (e.g. Cavazzoniet al. 1999).

The largest fraction of the interior of brown dwarfs and giant planets is in a region in which
hydrogen is metallic: the hydrogen molecules have been dissociated and ionized. The pressure
inside this region can be expressed in the following form (e.g. Stevenson 1991):

P = Pe + Pth ,ion + Pcoul + Pex, (3.5)

where Pe represents the contribution from the electron gas, Pth ,ion the contribution from the
thermallized ions, and Pcoul and Pex are negative terms due to the Coulombian interactions of
nuclei in the sea of electrons, and the reduction inelectron-electron repulsion due to the exclusion
principle, respectively. Pcoul is signiÞcant when & becomes large. The exchange pressurePex has
to be taken into account for small values of! . Although quantitatively, the terms due to ions are
important, most of the important physics and in particular the molecular/metallic transition is
due to a di!erence in behavior of the electrons when the density rises.

3.1.3 The degenerate electron gas

In stars with masses larger than about 0.3 M) the electrons always behave with a near-maxwellian
distribution of the momenta. However, for objects of lower interior temperatures, the Pauli exclu-
sion principle yields a distribution which is determined by Fermi-Dirac statistics. The number of
electrons in a volume dV and with an absolute of the momentum in [p, p+ dp] is:

f (p)dpdV =
8&p2dpdV

h3

1
1 + eE/kT # $

, (3.6)

where in the non-relativistic caseE = p2/ (2me) and + is the degeneracy parameter. For + * "+
the distribution is identical to the Maxwell-Boltzmann one. In the limit + * + + the electrons
are said to be fully degenerate.
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The density of electrons, electronic pressure and internal energy can be obtained through inte-
grations of that distribution:

ne =
8&
h3

2 "

0

p2dp
1 + eE/kT # $

, (3.7)

Pe =
8&
3h3

2 "

0

vp3dp
1 + eE/kT # $

, (3.8)

Ue =
8&
h3

2 "

0

Ep2dp
1 + eE/kT # $

. (3.9)

(3.10)

The degeneracy parameters+ obtained in the central region of substellar objects is relatively
independent of the mass and age (to a factor$ 3) and is of the order of+ # " 30 (e.g. Chabrier
& Bara!e 2000). The combination of these low values of! and + thus implies that a signiÞcant
fraction of the electrons are indeed degenerate.

Although this is not true of regions at lower pressures, we will Þnd it instructive to use the
relations for a fully degenerate electron gas for qualitative estimates. In the limit+ * + , one
Þnds that the completely degenerate non-relativistic electron gas is such that (e.g. Kippenhahn &
Weigert 1991):

Pe =
1
20

#
3
&

$ 2/ 3 h2

me
n5/ 3

e

= 1 .0036! 1013
#

%
µe

$ 5/ 3

(cgs)

Ue =
3
2

Pe

(3.11)

3.1.4 Pressure ionization

As seen in the phase diagram, hydrogen can becomeionized due to increasingpressure instead of
standard ionization at increasingtemperature. Basically, this occurs when the degenerate electrons
get a Fermi energy which is larger than that necessary to ionize hydrogen atoms. The approximate
level at which this occurs can be estimated as follows.

First, it can be noted that both free and bound electrons have to obey the Pauli principle.
The energy of each electron is hence of the orderUe/n e. For a set value ofne a lower bound

on Ue can be obtained by assuming full degeneracy (Eq. (3.11)). In order to become ionized this
value has to become larger than the ionization potential of hydrogen,u0 = 13.6 eV. This occurs
when

ne $>
#

8&
3

$ 5/ 2 #
5me

4&h2

$ 3/ 2

u3/ 2
0 , (3.12)

corresponding to an electronic pressure

Pe $>
2
3

#
8&
3

$ 5/ 2 #
5me

4&h2

$ 3/ 2

u5/ 2
0 . (3.13)

Quantitatively, hydrogen metallization is then found to occur around ne $ 5 ! 1023 cm# 3, %$
0.8 g cm# 3 and Pe $ 7 Mbar. Even though crude assumptions were made, this is relatively close to
more elaborate calculations.
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The same estimates can be used for helium ionization, assuming helium atoms are immersed in
a sea of protons and electrons. Becauseu0 = 54.4 eV, the density and electronic pressure for helium
ionization rise to 6.5 g cm# 3 and 230 Mbar, respectively. However, at those very high densities, the
distance between nuclei has become much smaller than the Bohr radius (a0 = 5 .3 ! 10# 9 cm). A
very crude solution is to use an e!ective potential ue! = u0(1 " (a0/d )2) to account for the fact
that the ionization energy is reduced due to the proximity to the other nuclei. The mean distance
between hydrogen nuclei isd $ (3/ 4&ne)1/ 3. Including that correction and solving iteratively
Eq.(3.12), one Þnds that helium could ionize at a pressure as low asPe $ 17 Mbar. Applied to
hydrogen, this procedure also leads to a reduced ionization pressurePe $ 2 Mbar.

The total pressure cannot be obtained through that method because one then needs to describe
the system of ions. In the metallic regions of substellar objects, an order of magnitude estimate
is that ions and electrons have similar contributions to the total pressure. Our assumption of
full degeneracy in fact tends to overestimate the pressures at which the transition occurs. This
can be understood by the fact that the Pauli distribution corresponds to the minimum energy
state for a Þxed densityne. Thermal e!ects have the tendency to move some of the electrons to
higher energies, thereby favoring ionization. The transition from molecular to metallic hydrogen is
therefore expected to occur at lower pressures anddensities when the temperature is increased. Of
course, these crude estimates are given for didactic purposes, but cannot replace a full treatment
of this complex problem.

3.2 Experiments and theoretical hydrogen EOSs

3.2.1 Reaching ultrahigh pressures: experimental results

The high pressures and high temperatures typical of the interiors of giant planets can be achieved
in the laboratory by shock-compression of a small sample of material. The shock is typically
generated by a hypervelocity impactor or by a powerful laser. Measuring the thermodynamic
properties of the compressed sample is quite di"cult since such dynamical experiments last only 5
- 100 ns and the sample can be very small (0.4 Ð 500 mm3). For a given initial state of the sample,
the family of shocked states that can be achieved follows a curve in the (P, %, T) phase diagram
known as a Hugoniot. The Hugoniot is one of the Rankine-Hugoniot relations that result from the
conservation of energy, momentum, and matter ßux across the shock front. Nearly all dynamical
experiments on hydrogen and deuterium performed share the same cryogenic initial state and
therefore measurements from di!erent experiments can be directly compared. By reßection of the
shock wave on a back plate made of a material sti!er than the sample, a double-shocked state can
be achieved that reaches even higher pressures with a modest increase in temperature. Multiple
shock reßections, known as shock reverberation, lead to a succession of compressed states that
approach adiabatic compression.

Since 1995, deuterium has been the subject of intense experimental study using several inde-
pendent techniques.1 Measurements of the pressure, density, temperature, reßectivity, electrical
conductivity, and sound speed have been performed along the single-shock Hugoniot and, in some
cases, along double-shock Hugoniots.

The most reliable experimental results come from experiments where the impactor is accelerated
with a gas gun. This technique allows for larger samples ($ 500 mm3) and longer lasting ($ 100 ns)
experiments but is generally limited to pressures below 1 Mbar. Pressures and densities have been

1Due to its higher density, deuterium is experimentally more advantageous than hydrogen because higher shock
pressures can be achieved for a given impactor speed.
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Figure 3.2: Comparison of experimental data and theoretical Hugoniot for deuterium (densities
are twice larger than expected for hydrogen at any given pressure). Empty ellipses correspond to
data points obtained from laser compression (Collinset al. 1998). Filled ellipses were obtained
by magnetic compression (Knudsonet al. 2001). Theoretical calculations are represented by lines.
They are respectively: the ÒPPTÓ (solid) and ÒinterpolatedÓ (dashed) Saumon-Chabrier equations
of state (Saumon, Chabrier & Van Horn 1995), and a Path Integral Monte Carlo EOS (Militzer &
Ceperley 2000). The solid line to the left shows the T=0 equation of state for D2 as determined by
an exp-6 potential Þt to diamond-anvil cell measurements (Hemley et al. 1990). The temperatures
along the Hugoniot have been calculated using the PPT-EOS. [From Guillot et al. 2003].

measured along the single-shock Hugoniot up to 0.2 Mbar and along the double-shock Hugoniot
up to 0.8 Mbar (Nellis et al. 1983). The reshocked states reproduce the (P, T) conditions of
the molecular hydrogen envelope of Jupiter and provide a direct probe of the thermodynamics of
hydrogen.

Under conditions where the dissociation of molecules becomes signiÞcant, the temperature
becomes a sensitive test of the EOS. Processes that can absorb substantial amounts of energy like
dissociation and ionization result in relatively cool temperatures and higher degrees of compression
for a given pressure along the Hugoniot. In the absence of such processes, the energy of the shock
is expended mostly in the kinetic degrees of freedomwith a corresponding increase in temperature.
The temperature of double-shocked deuterium(Holmes, Ross & Nellis 1995) was found to be lower
than all EOS predictions by about 30-40%, indicating that dissociation plays a more important
role than predicted by contemporaneous models.

Finally, the sound speed has been measured along the Hugoniot in gas gun experiments up to
0.28 Mbar (N. C. Holmes, priv. comm.). Since it is a derivative of the pressure, the sound speed
is a sensitive test of EOS models with the advantage of being measurable very reliably.

With powerful lasers, deuterium can be shocked to much higher pressures than with gas guns but
the small sample size and the very short duration of the experiments make accurate diagnostics very
challenging. The (P, %, T) single shock Hugoniot has been measured recently up to 3.5 Mbar with
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the NOVA Laser Facility (Da Silva et al. 1997; Collins et al. 1998; Collins et al. 2001), reaching
a maximum density of $ 1 g cm# 3 at $ 1 Mbar (Þg. 3.2). Such a high compressibility was not
anticipated by most EOS models and this work sparked the current interest in the thermodynamics
of warm dense hydrogen as well as controversy, both on the theoretical and experimental fronts.
The reßectivity of shocked deuterium reaches about 60% for pressures above 0.5 Mbar along the
Hugoniot (Celliers et al. 2000), a value indicative of a large density of free electrons and of a
high electric conductivity characteristic of ßuid metallic hydrogen. Second-shock compression up
to 6 Mbar with the Nike laser give results in agreement with the NOVA (P, %) data (Mostovych et
al. 2000). On the other hand, Knudsonet al. (2001) used a magnetic Z-accelerator to accelerate
impactors to very high velocities. Their single-shock Hugoniot agrees well with the NOVA data
for P $< 0.4 Mbar but it is not as compressible at higher pressures, reaching a density of only
$ 0.7 g cm# 3 at 0.7 Mbar (Þg. 3.2).

3.2.2 Hydrogen: EOS calculations

While the temperatures obtained along the single-shock Hugoniot rapidly become much higher than
those inside Jupiter at the same pressure (Þg. 3.3), these measurements provide very important,
and heretofore unavailable tests of equations of state in the 0.5 to 5 Mbar range where pressure
ionization of hydrogen occurs. Conversely, EOS models can be used to compute the various physical
quantities measured in the lab and to interpret the experimental results.

Theoretical single-shock Hugoniots computed from a wide variety of EOS models basically fall
into two groups. First principle calculations ( e.g. Militzer & Ceperley 2000; Lenosky et al. 1997,
2000; Galli et al. 2000) all predict a rather sti! Hugoniot that is in general agreement with the
Z-accelerator data of Knudson et al. (2001). This is illustrated in Þg. 3.2 by the Path Integral
Monte Carlo calculation of Milit zer & Ceperley (2000). On the other hand, models that are partly
calibrated with experimental data (Saumon, Chabrier & Van Horn 1995; Ross 1998; Saumon et
al. 2000, Ross & Yang 2001), obtain a generally good agreement with the NOVA data (Þg. 3.2;
Collins et al. 1998). Interestingly, the standard SESAME EOS of deuterium(Kerley 1972) predicts
a Hugoniot that generally agrees with the much more sophisticatedab initio calculations.

Our study of a number of theoretical Hugoniots shows that EOS that have been Þtted to the
gas gun single- and double-shock (P, %, T) data of Nellis et al. (1983) and Holmes et al. (1995) Ð
all taken below 0.8 Mbar and 5300 K Ð reproduce the high compression of the NOVA data (Collins
et al. 1998) and the sound speed data along the single shock (N. C. Holmes, priv. comm.). On the
other hand, the Þrst-principle calculations generally agree with the sti!er Hugoniot of Knudson
et al. (2001) and cannot reproduce the high compression of the NOVA data. They also fail to
reproduce the double-shock temperatures and the sound speed measurements. Some of theab
initio calculations disagree with the low-pressure gas gun data (e.g. Lenosky et al. 2000). On the
one hand, the Knudson et al. (2001) data and nearly all Þrst-principle EOS calculations are in good
agreement with each other. On the other hand, more heuristic EOS models clearly show that four
independent EOS experiments (second-shock temperature, sound speed, the NOVA single shock
and the Nike double shock) are fully consistent with each other but neither with Þrst principle
calculations nor the Knudson et al. (2001) data. Both the high compressibility of the NOVA
Hugoniot and the low gas-gun reshock temperatures can be explained by the absorption of the
shock energy resulting from molecular dissociation.

This polarization of EOS calculations along di!erent data sets has created a lively debate and
is stimulating much additional (and challenging) experimental and theoretical work. The EOS of
hydrogen in the 0.5 to 5 Mbar regime, where it is transformed from an insulating molecular ßuid to
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Figure 3.3: Hydrogen phase diagram, with interior proÞles of present-day Jupiter and Saturn
overlaid, and with some experimental data shown. The boundary between liquid H2 and solid H2

is somewhat uncertain in the Mbar pressure range (2 estimates are shown), but is not relevant
to Jupiter. The laser shock measurements of Collins et al. (2001) and the gas-gun measurements
of Holmes et al. (1995) are shown as triangles and Þlled circles in the upper left-hand corner,
respectively. Single- and double-shock hydrogen Hugoniots calculated by Saumon et al. (2000)
are shown as dot-dashed lines in the same region of the plot. The solid line labeled Ò50%Ó shows
where 50% of molecular dissociation is obtained in the model of Ross (1998).

a conducting liquid metal remains uncertain to a level that is signiÞcant for modeling the interior
of Jupiter. The recent progress in this area as beenvery beneÞcial, however, as it appears that the
current data and models bracket the actual EOS of hydrogen.

In order to model JupiterÕs interior with conÞdence, a careful study of the uncertainties arising
from the EOS would be required. This is not presently available, but Þg. 3.2 shows that this
can be crudely approximated by using the ÒinterpolatedÓ and the ÒPPTÓ equations of state of
Saumon, Chabrier & Van Horn (1995) even though they do not Þt the experimental data well.
However, large uncertainties in density along the Hugoniot at 1 Mbar ($ 30%) result in much
smaller di!erences along the Jupiter adiabat ($ 8%). The e!ects on the inferred core mass and
the mass of heavy elements in Jupiter and Saturn are discussed later on.

A Plasma Phase Transition?

We have seen that hydrogen undergoes a transition from a low-pressure molecular insulating
ßuid to a high-pressure conductive ßuid. Is the transition continuous, as is the case for temperature
ionization, or rather a Þrst order phase transition (the so-calledPlasma Phase Transition, or
PPT) with discontinuities in density and entropy across the coexistence curve? Such a Þrst-order
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transition was Þrst suggested by Wigner & Huntington (1935) on the basis of the di!erent nature
of the interaction potentials in metals (a weakly repulsive, screened Coulomb potential) and in
insulators (a strongly repulsive Òhard-sphereÓ potential).

The PPT has not been observed experimentally in hydrogen (i.e. there is no evidence for the
expected discontinuities), but it can be argued that the gas-gun experiments have not reached high
enough pressures, and that laser-shocks may be supercritical. Note for example that using the new
data, the critical point for the PPT computed by Saumon et al. (2000a) is lower (T # 14600 K;
P # 0.73 Mbar) than shown in Þg. 3.3. The PPT is predicted by some of the more heuristic
Òchemical pictureÓ EOS models (Saumonet al. 1995 and references therein) and Beuleet al.
(1999). On the other hand, none of the Þrst-principle EOS calculations show evidence for a
Þrst order phase transition in warm dense hydrogen. This can be seen in Þg. 3.4 which shows a
continuous variation of the proton-proton pair correlation function as a function of density and
temperature obtained by Militzer & Cep erley (2001). The Þgure indicates that H2 molecules are
present at low temperatures and densities, as seen by the peak at$ 0.8ûA, and the fact that the
correlation function goes to zero at larger distances. As one increases the density, the correlation
function becomes non-zero everywhere except close to a proton, indicating that hydrogen has been
dissociated.

If present, the PPT would have signiÞcant consequences for the structure of Jupiter, Saturn,
and low-entropy extrasolar giant planets. Its main e!ect would be to create an impenetrable barrier
for convection between the molecular and metallic hydrogen parts of the envelope, a!ecting the
mixing of chemical species (Stevenson & Salpeter 1977b). The thermodynamic conditions of phase
equilibrium imply that the chemical composition across the PPT must be discontinuous (Landau
& Lifschitz 1969), with t he consequence that atmospheric abundances of all elements would no
longer be indicative of their bulk abundance in the planet. In addition, as the planet cools, a
fraction of the mass of the envelope is converted from one phase to the other with an associated
latent heat release (or absorption). The e!ect on the evolution is not very pronounced for a latent
heat of $ 0.5kB per proton (Saumon et al. 1992).

3.3 Other elements

3.3.1 Approximate e quations of state

An equation of state has been computed for helium by Saumon et al. (1995), but it is less sophis-
ticated (realistic?) than the hydrogen EOS. This shouldnÕt a!ect the results too much because in
a solar composition mixture, hydrogen represents about 90% of the atoms, and helium only about
10%. The consequent EOS for the hydrogen-helium mixture is then calculated using the additive
volume rule:

%# 1 = (1 " Y )%# 1
H + Y %# 1

He
U = (1 " Y)UH + Y UHe

S = (1 " Y)SH + Y SHe + Smix (Y ),
(3.14)

whereSmix is the entropy of mixing, and all quantities depend onP and T. This method implicitly
neglects any interactions between hydrogen and helium.

For other elements, the treatment is even more approximate. Zharkov (1984) suggests a Þt in
the form of a zero temperature pressure plus a thermal component:

P(%, T) = P(%,0) +
3RT

A
%%, (3.15)
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Figure 3.4: Proton-proton pair correlation function multiplied by the density n as a function of
interparticle distance r (in Angstrom). The columns correspond, from left to right, to decreasing
values of the density parameterr s = a0/a e (increasing density %; a0 is BohrÕs radius,ae is the
mean electronic distance). The rows correspond to temperatures increasing from 5000 K (bottom)
to 62500 K (top). [Courtesy of B. Militzer; see also Militzer & Ceperley 2001].
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where . is the Gr¬uneisen parameter (generally of order$ 1). Fits for various elements are given
by Zharkov (1984). Similar approximate relations are also provided by Hubbardet al. (1995).

A Þt to the densities of ÒicesÓ (initially a mixture of water, methane and ammonia) and ÒrocksÓ
at high pressures and planetary temperatures is provided by Hubbard & Marley (1989) based on
experimental Hugoniot data:

ÒicesÓ P = %3.719 exp(" 2.756" 0.271%+ 0 .00701%2), (3.16)

ÒrocksÓ P = %4.406 exp(" 6.579" 0.176%+ 0 .00202%2), (3.17)

whereP is the pressure in megabars and%is the density in g.cm# 3. This Þt is valid in the pressure
range 0.1 Mbar < P < 8 Mbar.

3.3.2 Miscibility of elements in hydrogen

As Þrst proposed for Jupiter and Saturn by Smoluchowski (1967) and Salpeter (1973), helium can
undergo a phase separationfrom hydrogen: at low temperatures, helium (or other elements) can
become insoluble and form droplets. Under the action of gravity, these droplets will tend to fall
toward the central regions of the planet.

Physically, a phase separation arises in a binary mixture of concentrationc when the second
derivative of the Gibbs free energy$2G/$c 2 < 0. The two concentrations c1 and c2 of equal
chemical potentials ($G/$c)(c1) = ( $G/$c)(c2) correspond to the concentration of the droplets
and the environment which are in equilibrium. The lower the temperature, the closerc1 and c2

are to 0 and 1, respectively.
Of course, when calculating the miscibility of hydrogen-helium mixture, both hydrogen, helium

and their interactions should be accounted for. Given the di"culty in modeling the EOS for
hydrogen alone, it may not be so surprising that the question of the helium phase separation in
the giant planets is still unsolved.

One approach has been to calculate the hydrogen-helium phase diagram assuming complete
ionization. In that case, critical temperatures of order 8000 K at 2 Mbar can be calculated (see
Stevenson 1982). Even more importantly, this leads to a critical temperature thatdecreaseswith
increasing pressure. The consequence is that (i) this would imply that a phase separation has
occurred in Jupiter, and earlier in Saturn, as suggested by the abundance of helium measured in
the atmosphere (see section 1); (ii) helium would be most insoluble near the molecular/metallic
transition.

Other calculations have been attempted in the local density approximation (physical picture).
Earlier work (Klepeis et al. 1992) suggested a unrealistically high critical temperature (40000 K
at 10.5 Mbar). However, a more careful study by Pfa!enzeller et al. (1995) with the same basic
technique led to a lower critical temperature (less than 5000 K at 4 Mbar). This value would imply
no demixing of helium in Jupiter and Saturn. More importantly, the work of Pfa!enzeller et al.
implies a critical temperature that increaseswith pressure. This can be explained if hydrogen is
still not fully ionized at the pressures considered (4 to 24 Mbar), which seems di"cult to reconcile
with the more standard hydrogen EOSs. Another problem of the work of Pfa!enzelleret al. is that
it does not recover the fully ionized limit. If the critical temperature increases with pressure, this
would open the possibility that helium separates from hydrogen over an extended fraction of the
planetary radius, with signiÞcant consequences for the interior and evolution models.

Other elements are also expected to separate from hydrogen if the temperature is low enough.
However, the only estimates are for fully ionized mixtures. Table 3.1 shows critical temperatures
and concentrations for the separation of various mixtures, as estimated by Stevenson (1976b). The
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Table 3.1: Separation of fully ionized mixtures
Mixture Tc[K ] cc

H-Li 1.4 ! 104 0.18
H-C 1.1 ! 105 0.086
H-O 2.6 ! 105 0.064
H-Fe 5.5 ! 106 0.019

low temperatures for demixing are due to the di!erent coulombian potential for hydrogen and ions
of progressively larger charges. As for helium however, these elements are not expected to be fully
ionized which severely limits the applicability of these estimates to substellar objects.
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Chapter 4

Opacities & heat transport

We have seen that modeling the interiors of substellar objects requires to be able to calculate
the temperature gradient %T at each level. This necessitates to know how energy is transported.
Three processes can contribute to this transport: radiation, conduction and convection.

4.1 Radiation absorption - basic considerations

Let us consider a ray of radiation whose initial intensity is I 0& as a function of frequency/ passing
through a medium of density %on a distancel . The Þnal intensity is then

I & = I 0&e# ' " (l ,

where 1/( &%corresponds to the mean free path of photons of frequency/ , and ( & is the monochro-
matic opacity. As example of possible values in the interiors of giant planets and brown dwarfs are
( $ 1 cm2 g# 1, %$ 10# 2 leads to a photon mean free path oflph $ 1 meter.

As can be intuited from this very small mean free path, radiation in the interior is almost
isotropic. In order to show that, let us consider the radial temperature di!erence between two
levels separated by the photon mean free path:

%T = lph
dT
dr

.

The temperature lapse ratedT/dr cannot be calculateda priori . However, typical values for the
JupiterÕs interior aredT/dr # 104/ 109 K cm# 1, and lph # 102 cm implying %T # 10# 3 K. Since
the energy density is proportional to T 4, the anisotropy has to be of the order 4%T/T . Using
the previous estimate andT # 104 K, one can see that it is of the order of 4! 10# 7, i.e. most of
the interiors of giant planets and brown dwarfs can be considered as isotropic when radiation is
concerned. Note that this is not the case near the photospheres of these objects, where photons
can escape to space andlph becomes large. In that case, the full radiative transfer equation has
to be solved. We refer the reader to available textbooks on the subject for further information on
that problem ( e.g. Goody & Yung 1989).

For modeling the interior, it is therefore justiÞed to use the di!usion approximation, : radiation
then obeys a standard di!usion equation:

j = " D%n,
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where j is the radiation ßux, D is the di!usion coe"cient, which can be shown to be equal to
clph / 3 (e.g. Clayton 1968) and n represent the energy densityU&. Because all the variables only
vary radially, we can rewrite the di!usion equation as:

F& = "
c

3( &%
$U&

$r
, (4.1)

where F& is the net radial ßux per unit wavelength1.
In this approximation, the energy density at each level of temperatureT is proportional to the

black body function B&(T):

U&(T) =
4&
c

B&(T) =
8&h
c3

/ 3

h//kT " 1
(4.2)

The total radial ßux can then be obtained by integrating over all frequencies:

F = "
,

4&
3%

2 "

0

1
( &

$B&

$T
d/

-
$T
$r

. (4.3)

It is thus convenient to deÞne theRosseland mean opacityas

( R =
,

&
acT3

2 "

0

1
( &

$B&

$T
d/

- # 1

. (4.4)

Note that ( R is a harmonic average of the opacity, weighted by a function which is close to a
blackbody function and peaks at / = 4 kT/h (or equivalently 0 = 2 .78T where 0 is expressed in
cm# 1 and T in Kelvins). This has crucial consequences for its calculation, as spectral regions for
which the monochromatic opacity is the smallest will tend to have the most important contribution
to the mean. Physically, this can be interpreted by the fact that the cooling of any given layer in the
star/planet will be governed by the photons which have the longest mean free path. Numerically,
this implies that regions where the opacities are least known will have potentially very important
contributions and that the Þnal accuracy is extremely hard to estimate.

On the other hand, in a radiative or conductive environment, the temperature gradient will be
directly given by the intrinsic luminosity, as can be seen from eqs. (4.3) and (4.4):

$T
$r

= "
3

16&ac
( R %L
r 2T 3 . (4.5)

In a radiative/conductive region, the temperature proÞle is hence steeper when the luminosity to
be transported is larger. In the limit of a zero luminosity, it becomes isothermal as can be expected
from thermodynamic principles.

4.2 Rosseland opacities

4.2.1 Absorption of a zero-metallicity gas

The contribution of hydrogen and helium to the overall opacities is often relatively small but
fundamental, due to the nature of the Rosseland mean. At the pressures (bars or more) and

1Note that when including rotation, this equation is not strictly valid any more: the surfaces of constant intrinsic
ßux then tend to become more spherical than those of constant pressure. In a radiative environment, this gives rise
to a slow meridional circulation also known as the Eddington-Sweet circulation.
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temperatures (100s to 1000s K) of interest, these elements mostly have continuum opacity and
therefore avoid any divergence of eq. (4.4).

One of the most complete and useful work on the subject so far is certainly that of Lenzuniet
al. (1991). I refer the reader to that paper for details on this problem. In this course, the materials
that will be considered is relatively cool and at high density, implying that the main absorption
sources are:

H2ÐH2and H2ÐHe collision-induced absorption (CIA): H2 and He in their ground state have no
electric dipole and mainly absorb during collisions. The H2 molecule has three degrees of freedom:
translation, rotation 2 and vibration 3. The largest energy transitions are between the vibrational
bands, while the rotational bands imply a Þner structure whose main consequence is to broaden
these bands. The detailed calculation and structure is complex, especially in the case of the H2Ð
H2collision (4 other quantum numbers are then required to describe the state of the supermolecule),
but to simplify it is dominated by 4 almost evenly spaced absorption bands (transitionsv : 0 * 0
to v : 0 * 3) between 0 and 14000 cm# 1. (See Borysowet al. 2000; Borysow 1992 and references
therein).

H# bound-free absorption: At high enough densities, the abundance of the H# ion can become
non-negligible. In this case, photons of su"ciently high energy can dissociate the ion into a
hydrogen atom and a free electron. The absorption rapidly rise with increasing wavenumbers to
reach a maximum at 1 micron. At higher wavenumbers (energies) it slowly decreases.

H#
2 free-free absorption: At very high densities, free electrons can ÒfeelÓ the potential of the

neutral H2 molecule and therefore act as a superparticule which can absorb radiation. The cross-
section for this reaction is a rapidly decreasing function of wavenumber.

Rayleigh scattering by H2: Although this is not real absorption, Rayleigh scattering is very
important for limiting the propagation of high energy radiation due to its 1 /# 4 dependency.

4.2.2 Molecular line opacities

Due to the relatively low temperatures and high pressures encountered in regions where radiative
heat transport matters, the opacity is dominated by molecular absorption. At low temperatures,
the dominant molecules are H2O, CH4 and NH3. For hotter objects CH4 transforms into CO, and
then TiO and VO, two important absorbers in the stellar regime appear (see Fegley & Lodders
1994, 1996; Lodders 1999).

Due to the complexity of the rotation and vibration modes of these molecules, one often has
to rely on experimental measurements. Those can consist of measurements of mean absorptions
in frequency intervals. These are however limited to a Þxed number of pressures and tempera-
ture at which the measurements have been done. Another approach chosen for example for the
GEISA and HITRAN data base is to measure the intensity of the largest possible number of lines.
The absorption at any temperature and pressure of a given compound can then theoretically be
calculated from the following relation:

( &(T, P) =
"

i

I i (T0, P0)
,

1 " eh&/kT

1 " eh&/kT 0

- ,
Q(T)
Q(T0)

e# E i
k

)
1
T # 1

T 0

* -
L &(T, P, / i ), (4.6)

2Approximately, E rot ! øh2/ 2 Ij (j + 1) where I is the moleculeÕs moment of inertia and j the rotational quantum
number.

3Evib ! øh! osc (v + 1 / 2) where ! osc is the vibration frequency of the equivalent harmonic oscillator and v the
vibrational quantum number.
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where the monochromatic opacity( & and the observed intensity of the line i are generally given
in cm2 molec# 1 and the measured quantities have been obtained at temperatureT0 and pressure
P0. The ratio of exponential corresponds to induced emission.Q(T) is the partition function at
temperature T , Ei the energy of the level from which the observed linei comes from, and therefore
the second term in square brackets is the ratio of the population of the initial energy level between
temperature T and T0. The line proÞle isL & and this function is such that

7"
0 L &d/ = 1.

Although theoretically reasonable, one of the main drawback of this approach is the fact that the
extrapolation to high temperatures involves excited energy level transitions which are extremely
di"cult to detect at room temperatures. The problem of formula (4.6) is therefore that the
population of energy levels corresponding to known lines decreases whereas the population of
unknown excited levels increases. This problem, known as the Òhot bandÓ problem eventually
leads to a strong (and false) decrease of the absorption with increasing temperature.

In recent years, progresses in computational power have lead to very interesting advances in
ab initio calculations. These calculation predict the entire energy levels of a given molecule and
can therefore yield the absorption spectrum at all temperatures and pressures. These kind of
calculations have been successfully applied to diatomic molecules such as TiO, CO, VO...etc for
quite a few years, using the principles of the harmonic oscillator. The case of the linear molecules
as HCN has also been solved after that. However it is only relatively recently that convincing
calculations have been performed for more complex molecules such as H2O. Other important
molecules in the context of cool objects (Te! $< 1200 K) that still resist are CH4 and NH3. In
the absence of crucial data for these molecules, one has to rely on hazardous extrapolation of
experimental data.

4.2.3 Line proÞles

In the case of stellar atmospheres, the problem of the proÞle of absorption lines is relatively
straightforward. Because the medium is at relatively high temperatures and low densities the
absorption of a molecule away from the center of a line is due to the Doppler shift of the radiation
as seen by the absorber. The Doppler line proÞle is written as a function of wavenumber (0 = //c ):

L ) (T, 00) =
e# () # ) 0 )2 / " ) 2

D

%0D
,

&
, (4.7)

and the line halfwidth is

%0D =
0
c

8
2kT
m

(4.8)

where m is the mean molecular mass.
In the case of most substellar objects, the cooler and denser conditions which prevail imply a

di!erent kind of broadening which is dominated by the e!ect of collisions: because the energy levels
are populated only for Þnite periods of time (due to excitations/deexcitations caused by collisions),
the transition cannot have a unique frequency. This gives rise to the so-called Lorentzian line proÞle,
which is

L ) (T, P, 00) =
%0L

(%0L )2 + ( 0 " 00)2 , (4.9)

and the Lorentzian half-width then depends on details of the physics of microscopic collisions. In
general, it can be approximated by the following perfect gas approximation

%0L # 00
P

,
T

, (4.10)
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and 00 depends on the line considered. This value can be experimentally determined at room
temperature, but when usingab initio calculation it is generally set to a Þxed value corresponding
to the mean of the observed ones.

The use of the Doppler line broadening can be justiÞed when its halfwidth value is larger than
that of a Lorenztian proÞle, i.e. when

T $> 7000 K
#

%
10# 4 g cm# 3

$
.

At signiÞcantly lower temperature and/or larger densities, one is justiÞed to use a pure Lorentzian
proÞle. In between, the Voigt proÞle is a combination of the two:

L ) (T, P, 00) =
2 + "

#"

%0L

(%0L )2 +
)
0 " 00 " u ) 0

c

*2

& m
2&kT

'
e# mu 2 / 2kT du. (4.11)

The Lorentzian (or Voigt) broadening is intrinsically more complicated than the Doppler one
due to the additional pressure dependency and thea priori unknown halfwidth. It is also more
complicated due to its slow decay compared to the Doppler proÞle.

A cuto! to the Lorentzian proÞle is generally used Þrst because it is computationally much less
intensive. It has also been empirically veriÞed that synthetic spectra of the giant planets generally
Þt the observations better when using a cuto!. This is for example the case of the 5µm spectrum
of Jupiter, modeled by Kunde et al. (1982) using a cuto! of %0cuto! $ 120 cm# 1. Last but not
least, there are theoretical grounds for which the Lorentzian proÞle should fail far from the line
center.

The Lorentzian ÒcoreÓ is indeed a result of the impact approximation: it is valid when the
collision time is large compared to the characteristic time of the transition:

r c

vc
= 1col $> 1! =

1
2&c|* " * 0|

, (4.12)

where rc and vc are the mean radius and velocity at closest approach during collisions. Further
from the line center, the impact approximation fails and a faster exponential decay should prevail
(Birnbaum 1979). This simpliÞcation was indeed used by Guillotet al. (1994a) to predict a line
cuto! proportional to

,
T around 100 cm# 1 at T = 200 K, consistent with spectroscopic models of

JupiterÕs atmosphere.
More generally, the Lorentzian proÞle is known to fail in a variety of conditions. Both super-

lorentzian and sublorentzian proÞles can be observed, and spectral lines can even be shifted due to
microscopic interactions and line mixing. However, a surprising result of the recent years is that,
at least in the case of alkali metals, far wings can still be of signiÞcance much beyond expectation.
In the case of Na lines in the visible spectral region, Nefedovet al. (1999) Þnd that the expected
exponential cuto! occurs for %0 - 1000 cm# 1. Using a Lorentzian proÞle convoluted with an
exponentially-decaying function, Burrows et al. (2000a) Þnd that alkali metals, and especially the
potassium doublet at 0.77µm can explain the absence of ßux emitted by brown dwarfs in the
visible and the slope of the spectrum for wavelengths shorter than 1µm.

The consequences of these results is still to be investigated, as are manymicroscopic problems
of line mixing and departure from ideality.

4.2.4 Radiative Rosseland mean opacities

The calculation of a Rosseland opacity table for substellar objects is a di"cult task, and indeed
no such table spanning the range of giant planets to M-dwarfs is yet available. An opacity table




























































































































































