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R�esum�e

Dans cette th�ese, nous nous int�eressons au probl�eme de l'extraction automatique
d'informations de contenu d'un signal audio de musique. La plupart des travaux existants
abordent ce probl�eme en consid�erant les attributs musicaux de mani�ere ind�ependante
les uns vis-�a-vis des autres. Cependant les morceaux de musique sont extr�emement
structur�es du point de vue de l'harmonie et du rythme et leur estimation devrait se faire
en tenant compte du contexte musical, comme le fait un musicien lorsqu'il analyse un
morceau de musique.

Nous nous concentrons sur trois descripteurs musicaux li�es aux structures harmoniques,
m�etriques et tonales d'un morceau de musique. Plus pr�ecis�ement, nous cherchons �a en
estimer la progression des accords, les premiers temps et latonalit�e. L'originalit�e de
notre travail consiste �a construire un mod�ele qui permet d'estimer de mani�ere conjointe
ces trois attributs musicaux. Notre objectif est de montrer que l'estimation des divers
descripteurs musicaux est meilleure si on tient compte de leurs d�ependances mutuelles
que si on les estime de mani�ere ind�ependante. Nous proposons au cours de ce travail
un ensemble de protocoles de comparaison, de m�etriques de performances et de bases
de donn�ees de test a�n de pouvoir �evaluer les di��erentes m�ethodes �etudi�ees. A�n de
valider notre approche, nous pr�esentons �egalement les r�esultats de nos participations �a
des campagnes d'�evaluation internationales.

Dans un premier temps, nous examinons plusieurs repr�esentations typiques du signal
audio a�n de choisir celle qui est la plus appropri�ee �a l'analyse du contenu harmonique
d'un morceau de musique. Nous explorons plusieurs m�ethodes qui permettent d'extraire
un chromagram du signal et les comparons �a travers un protocole d'�evaluation original
et une nouvelle base de donn�ees que nous avons annot�ee. Nous d�etaillons et expliquons
les raisons qui nous ont amen�es �a choisir la repr�esentation que nous utilisons dans notre
mod�ele.

Dans notre mod�ele, les accords sont consid�er�es comme un attribut central autour
duquel les autres descripteurs musicaux s'organisent. Nous �etudions le probl�eme de
l'estimation automatique de la suite des accords d'un morceau de musique audio en util-
isant les chromas comme observations du signal. Nous proposons plusieurs m�ethodes
bas�ees sur les mod�eles de Markov cach�es (hidden Markov models, HMM), qui permettent
de prendre en compte des �el�ements de la th�eorie musicale,le r�esultat d'exp�eriences cogni-
tives sur la perception de la tonalit�e et l'e�et des harmoni ques des notes de musique. Les
di��erentes m�ethodes sont �evalu�ees et compar�ees pour l a premi�ere fois sur une grande base
de donn�ees compos�ee de morceaux de musique populaire.

Nous pr�esentons ensuite une nouvelle approche qui permet d'estimer de mani�ere si-
multan�ee la progression des accords et les premiers temps d'un signal audio de musique.
Pour cela, nous proposons une topologie sp�eci�que de HMM qui nous permet de mod�eliser
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la d�ependance des accords par rapport �a la structure m�etrique d'un morceau. Une impor-
tante contribution est que notre mod�ele peut être utilis�e pour des structures m�etriques
complexes pr�esentant par exemple l'insertion ou l'omission d'un temps, ou des change-
ments dans la signature rythmique. Le mod�ele propos�e est �evalu�e sur un grand nombre
de morceaux de musique populaire qui pr�esentent des structures m�etriques vari�ees. Nous
comparons les r�esultats d'un mod�ele semi-automatique, dans lequel nous utilisons les po-
sitions des temps annot�ees manuellement, avec ceux obtenus par un mod�ele enti�erement
automatique o�u la position des temps est estim�ee directement �a partir du signal.

En�n, nous nous penchons sur la question de la tonalit�e. Nous commen�cons par
nous int�eresser au probl�eme de l'estimation de la tonalit�e principale d'un signal audio de
musique. Nous �etendons le mod�ele pr�esent�e ci-dessus �aun mod�ele qui permet d'estimer
simultan�ement la progression des accords, les premiers temps et la tonalit�e principale.
Les performances du mod�ele sont �evalu�ees �a travers des exemples choisis dans la musique
populaire. Nous nous tournons ensuite vers le probl�eme plus complexe de l'estimation de
la tonalit�e locale d'un morceau de musique. Nous proposonsd'aborder ce probl�eme en
combinant et en �etendant plusieurs approches existantes pour l'estimation de la tonalit�e
principale. La sp�eci�cit�e de notre approche est que nous consid�erons la d�ependance de
la tonalit�e locale par rapport aux structures harmoniques et m�etriques. Nous �evaluons
les r�esultats de notre mod�ele sur une base de donn�ees originale compos�ee de morceaux de
musique classique que nous avons annot�es.

L'estimation automatique des informations de contenu d'un signal audio de musique
est un probl�eme complexe. Nous esp�erons que ce travail estun pas en avant dans cette
direction, et qu'il ouvre de nouvelles perspectives.

Joint Estimation of Musical Content Information From an Aud io Signal



Abstract

This thesis is concerned with the problem of automatically extracting meaningful con-
tent information from music audio signals. Most of the previous works that address the
problem of estimating musical attributes from the audio signal have dealt with these el-
ements independently. However, musical elements are deeply related to each other and
should be analyzed considering the global musical context,as a musician does when he or
she analyzes a piece of music.

Our research concentrates on three musical descriptors related to the harmonic, the
metrical and the tonal structure. More speci�cally, we focus on three musical attributes:
the chord progression, the downbeats and the musical key. The scope of this work is to
develop a model that allows the joint estimation of the chords, the keys and the downbeats
from polyphonic music recordings. We intend to show that integrating knowledge of
mutual dependencies between several descriptors of musical content improves their estima-
tion. In our model, harmony is a core around which other musical attributes are organized.

We start by investigating several typical representations of the audio signal in order
to select the most appropriate one for the task of harmonic content analysis. We explore
several schemes for chromagram computation and investigate several issues related to
the use of each representation. We detail and explain the choice of the audio signal
representation we use as an input to our model.

We then concentrates on the problem of the automatic estimation of the chord progres-
sion, using chroma features as observation of the music signal. From the audio signal, a
set of chroma vectors representing the pitch content of the �le over time is extracted. The
chord progression is then estimated from these observations using a hidden Markov model.
Several methods are proposed that allow taking into accountmusic theory, perception of
key and presence of higher harmonics of pitch notes. They areevaluated and compared
to existing algorithms through a large-scale evaluation onpopular music songs.

We then present a new technique for estimating simultaneously the chord progression
and the downbeats from an audio �le. A speci�c topology of hidden Markov models that
enables modeling chord dependency on the metrical structure is proposed. This model
allows us to consider pieces with complex metrical structures such as beat insertion, beat
deletion or changes in the meter. The model is evaluated on a large set of popular music
songs that present various metrical structures. We comparea semi-automatic model, in
which the beat positions are annotated, with a fully automatic model in which a beat
tracker is used as a front-end of the system.

Finally, we focus on the problem of key estimation. In a �rst part, we concentrate
on the problem of estimating the main key of a piece. Relying on previous works on key
estimation, we extend the above-mentioned model to a model for simultaneous downbeat,
chord and key estimation from an audio signal. The model is evaluated on a set of
popular music pieces. We then draw our attention to local key�nding. We propose to
address this problem by investigating the possible combination and extension of di�erent
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previous proposed global key estimation approaches. The speci�city of our approach is
that we introduce key dependency on both the harmonic and themetrical structures. We
evaluate and analyze the results of our model on a new annotated database composed of
classical music pieces.

Building models for musical content estimation in which the interaction between mu-
sical attributes is encoded at the level musicians and trained human listeners do, when
they analyze a piece of music, is a very complex problem and one which is far from being
solved. However, we hope that our work is a step towards this direction.

Joint Estimation of Musical Content Information From an Aud io Signal
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2 Introduction

1.1 Motivations

Within the last few years, the huge explosion of online musiccollections has become a
great source of attention. Speci�c demands, such as asking an online store to �nd a song
that �ts his or her taste and musical expectation among milli ons of other tracks, became
common requirements to music listeners. In this context, techniques for interacting with
enormous digital music libraries at the song level are necessary. Content-based music
retrieval is therefore a very active and important �eld of re search.

A piece of music can be characterized by a number of musical attributes such as
the melody, the chord progression, the instrumentation or the tempo. One of the most
important aspects of Music Information Retrieval (MIR) is t he extraction and processing
of meaningful descriptors from the audio signal. This can beviewed as a subtask of the
more general task that is music transcription.

Manual annotation of the content of musical pieces is a very di�cult and tedious
task that requires a huge amount of e�ort. It is thus essential to develop techniques for
automatically extracting musical elements from musical signals.

This is why there has been an increasing research interest within the last ten years in
using computers to analyze music as human beings can do. Humans are able to understand
music at di�erent degrees, depending on their level of musictraining. Because we are
immersed with music, music understanding has become an inherent quality of human
beings.

Musicians or even non-trained persons are usually able to extract meaningful informa-
tion when listening to a piece of music. Some tasks, such as following the beats in a music
recording, are in general trivial, even for non-musicians,and do not require any particular
training.

More complex tasks need some musical training. For instance, identifying the key of a
music excerpt or describing music in terms of tonal and harmonic progression requires some
theoretical music knowledge. A person without a musical education is usually not able
to transcribe chords by ear from a recording whereas trainedmusicians can accurately
label chords from complex polyphonic recordings. This is a common exercise in music
academies. Even a non-trained musician can at least feel a change in harmony or in key
when listening to a piece of music.

Often regarded as an innate human ability, the automatic estimation of music content
information, however, proves to be a highly complex task.

1.2 Scope of the Thesis

This thesis is concerned with the problem of extracting meaningful content information
from music audio signals. Most of the previous works that address the problem of esti-
mating musical attributes from the audio signal deal with th ese elements independently.
However, when a musician analyzes a piece of music, his judgment is based on a global
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Relevant Music Theoretic Concepts and Terminology 3

musical context that encompasses various kinds of musical information. Musical elements
are deeply related to each other and are analyzed in context.For instance, the chord
progression is closely related to the metrical structure ofa piece of music [Got01]: chords
will change more often on strong beats than on other beat positions in the measure. It is
also strongly related to the musical key: some chords are heard as more stable within an
established tonal context [Kru90].

We believe that exploiting the interrelationship between musical attributes for their
estimation should improve upon estimating them independently. This necessity has been
underlined in the past. In [Tem99], Temperley and Sleator observe that:

\ [: : : ] The idea, then, is to let the harmonic analysis in
uence themetrical analysis by
favoring strong beats at changes of harmony. This presents aserious chicken-and-egg

problem, however, since meter is crucial as input to harmony. One solution would be to
compute everything at once, optimizing over both the metrical and harmonic rules, but

we have not yet found an e�cient way of doing this."

Our research concentrates on three musical descriptors related to the harmonic, the
metrical and the tonal structure. More speci�cally, we focus on three musical attributes:
the chord progression, the downbeats and the musical key. All of them are some of the
most important attributes of Western tonal music.

The scope of this work is to develop a model that allows the joint estimation of the
chords, the keys and the downbeats from polyphonic music recordings. We intend to show
that integrating knowledge of mutual dependencies betweenseveral descriptors of musical
content improves their estimation.

1.3 Relevant Music Theoretic Concepts and Terminology

Before going any further, we brie
y review some musical concepts that are central to our
thesis. This section aims at clarifying the music terminology that will be used in the
following chapters. All musical concepts are understood here in the context of Modern
Western music, i.e. after the 16th century.

1.3.1 Notes

When an instrument produces a note, the human listener perceives a pitch that is a
perceptual attribute of sound. In music, the term note is used to refer to the relative
duration and pitch of a given sound. More details about the pitch will be given in Chapter
3.

1.3.2 Key and Scales

In western tonal music, pitches are governed by structural principles. The system of
relationships between pitches corresponds to akey. A musical key implies a tonal center
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that is the most stable pitch called the tonic and a mode (usually major or minor).

A musical scale is associated with each key. Ascale is a series of notes arranged in
ascending or descending order. Two consecutive notes are separated either by a tone (T),
a semitone (S). The harmonic minor scale comprises also aT + S interval. The position
of tones and semitones within a scale associated to a key characterizes its mode.

Figure 1.1 represents a C major scale and its relative Anatural minor scale. There
are two common variations of the natural minor scale:

� the harmonic minor scale, in which the 7th degree, both ascending and descending
is raised a semitone (G# in Figure 1.1). We will consider this type of minor scale in
Chapter 6.

� the melodic minor scale, in which the 6th and the 7th ascending degrees are raised a
semitone(F # and G# in Figure 1.1).

Figure 1.1: Example of major and minor scales: C major, A minor. The accidentals
that characterize the harmonic and melodic minor scales arerepresented in grey.

In this work, we consider enharmonic equivalence,i.e. notes with di�erent spelling but
sounding the same are considered the same (C# is equivalent to Db). In Western tonal
music, there are 12 pitches in an octave range. The major and minor scales and twelve
tonic give rise to a total of 24 possible keys.

In a musical scale, thetonic or �rst scale degree (I) is the �rst note and it is the
pitch upon which all other pitches of a piece are hierarchically referenced. The other scale
degree, in the ascending order are: thesupertonic (II), the mediant (III), the subdominant
(IV), the dominant (V), the leading tone(VI) and the subtonic (VII). In the next chapters,
we will refer in particular to the third and the �fth scale deg rees, themediant and the
dominant, since the combination of these two notes plus the tonic corresponds to the triad
formed on the tonic note, which is the most signi�cant chord in a given key.

1.3.3 Chords

Chords that are speci�c to a key can be constructed around itsscale. In Western tonal
music, the chord progression determines the harmonic structure of a piece of music. It is
strongly related to the musical key of the piece.
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In this dissertation, a chord is de�ned as a combination of three or four notes sounded
simultaneously. We include in this de�nition combinations of notes that sound nearly
simultaneously, such as the arpeggio, which corresponds toan indivisible group of notes
that are played one after the other. A succession of chords over time is called a chord
progression.

Chords may be classi�ed according to the number of notes theycontain. Two-note
combinations are calleddyads, three-note combination are calledtriads. A chord is com-
monly characterized by its root note and by the intervals it contains. Classical triads are
built from major and minor thirds, i.e. the distance between successive pairs of notes
are 3 or 4 semi-tones. The major, minor, augmented and diminished chords are the most
commonly used triads. Figure 1.2 illustrates the four basictriads based on the root-note
C. Table 1.1 gives the relative semitone values for each triad.

Table 1.1: Compositions of the four basic triads computed on a root-note corresponding
to a semitone valuen.

chord major augmented minor diminished
root note n n n n
�rst third (major) n+ 4 (major) n+ 4 (minor) n+ 3 (minor) n+ 3

second third (minor) n+7 (major) n+ 8 (major) n+ 7 (minor) n+ 6

Figure 1.2: Example of common classical triads. From left to right: C major (C-E-G),
C augmented (C-E-G#), C minor (C-Eb-G), C diminished (C-Eb- Gb).

Harmony is here understood as the system of structural principles governing the com-
bination and the relationship between notes and chords.

In Western tonal music, the term tonality is often used to describe the relationships
of melodies and harmonies relative to the tonic.

1.3.4 Metrical Structure

The metrical structure of a piece of music is a hierarchical structure. The meter is \the
sense of strong and weak beats that arises from the interaction among hierarchical level
of sequences having nested periodic components" [PEBB05].

� The most salient metrical level, called the tactus or beat level is a moderate level
that corresponds to the foot-tapping rate.

� The tatum level corresponds to the \shortest durational values in music that are
still more than accidentally encountered " [KEA06]. For instance, in Figure 1.3, the
tatum level corresponds to the sixteenth notes.
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� Musical signals are divided into units of equal time value called measuresor bars.

� The relationship between measures and tactus/tatum is de�ned by the meter, which
is usually indicated by a time signature, the number of units per measure.

� One important problem related to meter analysis is to �nd the position of the down-
beat or the �rst beat of each measure.

The various metrical levels are illustrated in Figure 1.3.

Figure 1.3: Illustration of the various metrical levels (extract of Schumann,
Kinderzenen).

1.4 Applications

Within the context of Music Information Retrieval, many app lications based on content-
based indexing and retrieval have emerged, such as music classi�cation, artist identi�ca-
tion, mood classi�cation or structural audio segmentation. These applications are mostly
based on the use of musical descriptors that are extracted from the audio signal.

For instance, two di�erent versions of the same underlying musical piece generally
share a similar harmonic structure. The detection of cover versions is thus frequently
based on the chord progression [SGHS08]. This can also be used for �nding of plagiarisms
1. For instance the main theme of French nursery rhyme �A vous dirais-je Maman has
been harmonized and used by several composers such as Mozart(piano Variations on �A
vous dirais-je Maman K. 265) or Liszt (Ann�ees de P�elerinage).

The chord progression captures the characteristics of the accompaniment of musical
pieces and their character. The knowledge of chord progression can thus be used for mood
recognition, especially in popular music, for instance by measuring the ratio of major to
minor chords in a piece of music. Information about the key can be used as well.

The automatic extraction of the harmonic structure may also be very useful to musi-
cologists who can perform music analysis on large corpus of music pieces for which they

1A plagiarism is piece produced by a compositor by imitating a nother compositor's music while pre-
senting it as one's original work.
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may not have the score but only the recordings. It can also be used for the purposes of
automatic composition.

Beat is fundamental to the perception of Western music. Beat/downbeat information
can provide structural information about a live musical performance that may be used
to make it interact with computer systems. Beat and downbeat tracking can be used
for synchronizing a musical performance with some electronic devices such as electronic
musical instruments or lights.

There are no limits to the range of possible applications of music content extraction.
We thus believe that it is important to pursue e�orts towards building rich models that
can analyze music as musicians do.

1.5 Objectives

The objectives of this dissertation are listed bellow:

1. Review and analyze the previous approaches for chord progression, downbeat, global
and local key estimation.

2. Compute audio features that capture the harmonic contentof the signal and that
will serve as an input to our model (without the need of an exact transcription).

3. Provide a reliable model for chord estimation that will serve as a baseline for studying
the interrelationship with other musical attributes.

4. Provide a model that allows the joint estimation of the chords, the keys and the
downbeats from polyphonic music recordings.

5. Consider complex cases of harmonic and metrical structure (variable meter, key
changes).

6. Provide an analysis of our models through an evaluation over a large database of
popular and classical music pieces.

7. Demonstrate that integrating knowledge of mutual dependencies between several
descriptors of musical content improves their estimation.

1.6 Overview of the Thesis

This thesis is organized as follows. Figure 1.4 shows an overview of the interactions
between musical attributes considered in the various chapters. In this dissertation, we
consider harmony as a core around which other musical attributes are organized.

Chapter 2 - Databases and Evaluation Measures Used in This Dissertatio n.
This chapter presents the evaluation methodology adopted along this thesis. In order to
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avoid tedious repetitions of our evaluation methodology through the di�erent chapters, we
give in this chapter an overview of our evaluation test-setsand rules.

Chapter 3 - Towards a Signal Representation for Harmonic Content Analy sis.
This chapter investigates a number of typical representations of the audio signal in order
to select the most appropriate one for the task of harmonic content analysis. We detail
and explain the choice of the audio signal representation weuse as an input to our model.

Chapter 4 - Chord Progression Estimation From an Audio File . This chapter
concentrates on the problem of the automatic estimation of the chord progression from an
audio �le, using chroma features as observation of the musicsignal. From the audio signal,
a set of chroma vectors representing the pitch content of the�le over time is extracted. The
chord progression is then estimated from these observations using hidden Markov models.
Several methods are proposed that allow taking into accountmusic theory, perception of
key and presence of higher harmonics of pitch notes. They areevaluated and compared
to existing algorithms through a large-scale evaluation onpopular music songs.

Chapter 5 - Joint Estimation of Chords and Downbeats . This chapter presents
a new technique for joint estimation of the chord progression and the downbeats from
an audio �le. A speci�c topology of hidden Markov models that enables modeling chord
dependency on the metrical structure is proposed. This model allows us to consider pieces
with complex metrical structures such as beat insertion, beat deletion or changes in the
meter. The model is evaluated on a large set of popular music songs from the Beatles
that present various metrical structures. We compare a semi-automatic model in which
the beat positions are annotated, with a fully automatic model in which a beat tracker is
used as a front-end of the system.

Chapter 6 - Interaction Between Chords, Downbeats and Keys . This chapter is
concerned with the problem of key estimation. In a �rst part, we focus on the problem of
global key estimation. Relying on previous works on key estimation, we extend the model
presented in the previous chapter to a model for simultaneous downbeat, chord and key
estimation from an audio signal. The model is evaluated on a set of popular music pieces.
We then draw our attention to local key �nding. We propose to address this problem by
investigating the possible combination and extension of various approaches that have been
previously proposed for global key estimation. The speci�city of our approach is that we
introduce key dependency on both the harmonic and the metrical structures. We evaluate
and analyze our results on a new database composed of classical music pieces.

Chapter 7 -Conclusion . The last chapter of this dissertation summarizes the contri-
butions of the present PhD work and proposes some perspectives.

1.7 Main Thesis Contributions

The principal contributions provided in this thesis are:

1. Chapter 3: An analysis and evaluation of several signal features extraction methods
for harmonic content analysis of audio music.

Joint Estimation of Musical Content Information From an Aud io Signal



Main Thesis Contributions 9

Figure 1.4: Interrelationships between chords, keys and downbeats considered in this
dissertation.

2. Chapter 4: A model for the estimation of chords that encodes musical context in-
formation, takes into account the problem of harmonics in the signal, and does not
need speci�c training.

3. Chapter 5: A model for the simultaneous estimation of chords and downbeats that
exploit the interrelationship between these two musical attributes. We focus in
particular on the problem of variable meter and imperfect beat tracking.

4. Chapter 6: A model for the simultaneous estimation of chords, main key and down-
beats that exploits the interrelationship between these three musical attributes and
an approach to local key estimation that is based on the harmonic and the metrical
structure.
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Chapter 2

Databases and Evaluation
Measures Used in This

Dissertation

This chapter presents the evaluation methodology adopted along this thesis. In the following
chapters, we evaluate the performances of various models. For this, we rely on some
evaluation measures and some test-sets that are common to all of the proposed systems.
In order to avoid tedious repetitions of our evaluation methodology through the di�erent
chapters, we give in this chapter an overview of our evaluation test-sets and rules.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 About Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Music Collections for Evaluation . . . . . . . . . . . . . . . . . . . . 12

2.4 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.1 Introduction

Evaluation is an essential aspect in all areas of computational music analysis. This chapter
is devoted to the evaluation methodology adopted along thisthesis. In the following
chapters, we evaluate the performances of various models. For this, we rely on some
evaluation measures and some test-sets that are common to all of the proposed systems.
In order to avoid tedious repetitions of our evaluation methodology through the di�erent
chapters, we give in this chapter an overview of our evaluation test-sets and rules.

Cross-references to this chapter will be made in the evaluation sections of the following
chapters. We would advise the reader to start by having only aquick look at this chapter
and come back when needed.

The chapter is divided into two main sections. Section 2.3 presents the various music
collections used in this thesis to evaluate our work. In Section 2.4, we present and explain
the evaluation measures used to measure the performances ofour models on the test-sets.

2.2 About Evaluation

When designing a system that extracts some information fromthe audio signal, one must
carefully evaluate the performances and the quality of the proposed models. In this dis-
sertation, we are mainly concerned with two aspects of evaluation. On the one hand, we
want to compare with each other several methods developed for a given task, or we want to
measure whether certain changes in a given method lead to an improvement in the model
performances. For instance, in Chapter 3, we compare several feature extraction methods
and intend to select the best one among all. On the other hand,we are concerned with
measuring the performances of a given method and measure itsretrieval relevance. For
instance, in Chapter 5, we aim to quantify the proportion of downbeat locations correctly
estimated by our model.

2.3 Music Collections for Evaluation

In this section, we detail the characteristics of the databases used for evaluation of the mod-
els proposed in this thesis. In chapter 3, we conduct some experiments on two databases
consisting of short excerpts of audio. In what follows, theyare referred to as theSig-
nal Experiment test-set. The rest of our work is mainly evaluated on two databases that
are referred to as theBeatles test-setand the Piano Mozart test-set. These databases
have been manually annotated in chords, keys, beats and downbeats either by previous
researchers working on the same �eld, or by trained musicians, or by the author. This is
described below.

Joint Estimation of Musical Content Information From an Aud io Signal



Music Collections for Evaluation 13

2.3.1 Signal Experiment Test-set

The Signal Experiment test-set consists of a number of shortexcerpts of about 20 seconds
extracted from audio recordings. It is divided into two subsets:

1. Non-percussive audioDATClas corresponds to audio excerpts of classical music with
various instruments: string quartet, solo piano and orchestra.

2. Percussive audioDATPop corresponds to audio excerpts of popular and rock music
that contains voices and drum sounds.

All the excerpts have been hand-labeled in chords by the author. The chords are
annotated against a time grid de�ned by the beats. The detail of the excerpts is given in
Table 2.1.

Table 2.1: Detail of the Signal Experiment test-set.
Composer Title

DATClas

Beethoven String quartet Op. 127 1 ext1
Beethoven String quartet Op. 131 6 extract 1
Beethoven String quartet Op. 131 6 extract 2
Mozart Piano sonata KV 283 2 Andante CM extract 1
Mozart Piano sonata KV 309 1 CM extract 1
Mozart Piano sonata KV 310 1 Am extract 1
Mozart Piano sonata KV 310 1 Am Kemp� extract 1
Mozart Piano sonata KV 310 1 Am Perahia extract 1
Mozart Piano sonata KV 310 1 Am Richter extract 1
Beethoven symphony no 5 extract 1
Beethoven symphony no 5 extract 2

DATPop

Beatles Misery
Beatles Love Me Do extract 1
Beatles I Should Have Known Better extract 1
Beatles I m a Loser extract 1
Beatles Yesterday extract 1
Beatles Yesterday extract 2
Enya Caribbean blue extract 1
Enya Caribbean blue extract 2
Queen Lazing on a Sunday afternoon extract 1
Queen Lazing on a Sunday afternoon extract 2
Shack Natalies Party extract 1
Shack Natalies Party extract 2

2.3.2 Popular Music: The Beatles Test-set

In the MIR community, works related to chord estimation have almost exclusively been
evaluated on the Beatles test-setsince the chord labels annotations are freely available.
This test-set is composed of 180 songs divided into 13 albums. All the recordings are
polyphonic, multi-instrumental and contain drums and vocal parts. The list of the tracks
and the corresponding albums can be found in Annex 7.2.
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2.3.2.1 Chord Annotations

The chord annotations where kindly provided by C. Harte from the Queen Mary University
of London1. This annotated test-set is by far the largest one availabletoday.

The chords are annotated according to a special grammar proposed for chord labeling
by Harte et al. in [HSAG05]. The annotation style that is adopted intends to be simple
and intuitive to write and understand for musically trained individuals. The chords are
de�ned by three parameters, the root note of the chord, the quality (component intervals
that make up the chord relative to the root), and the inversion (degree of the chord played
as its bass note). For instance, a C major chord will be annotated by C : (3; 5), which
re
ects that it is a triad composed of a major third and a �fth, constructed on a root note
of C. Shorthand labels for common chords are also proposed.

The original chord annotations have been obtained either from listening to the audio
or from music scores and they correspond to the exact transcription of the chords that are
played. They thus present a large variety of chord labels including some complex chords
such as major and minor 6th , 7th or 9th .

We aim to compare the output of our algorithm with the ground- truth annotations.
Since our chord lexicon is composed only of major and minor triads, we have performed
a mapping from complex chords in the annotation to their root triads. This point is
important when analyzing the results. For instance, a Dm7 (D-F-A-C) chord is considered
as a Dm chord (D-F-A). The augmented chords, which include a major third, have been
mapped to major chords whereas the diminished chords, whichinclude a minor third, were
mapped to minor chords.

Analysis of the complete set of the Beatles test-set has shown that most of the chords
correspond to major and minor triads. It was found in [MDH+ 07] that major chords
prevail, accounting for 76% of all chords, whereas the minorchords account for 24%.

2.3.2.2 Key Annotations

We select 55 Beatles songs from the �rst eight albums for which we assigned a global key.
We select songs that remain in the same key from the beginningto the end so that there
are no modulations. The list of the songs with the corresponding global keys is given in
Table 2.2. This subset of the completeBeatles test-setwill be referred to as the Beatles
test-set key in the following.

2.3.2.3 Metric Structure Annotation

The tactus, tatum and downbeat positions of the Beatles songs were manually annotated
by the author and checked by trained musicians.

It has been annotated using the Open Source toolWavesurfer2 placing on-the-
y

1www.elec.qmul.ac.uk/digitalmusic/
2www.speech.kth.se/wavesurfer/
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Table 2.2: Beatles songs annotated in global key:Beatles test-setkey.
Album Title Key

Please Please Me

01 - I Saw Her Standing There EM
03 - Anna (Go To Him) DM
04 - Chains A#M
05 - Boys EM
06 - Ask Me Why EM
07 - Please Please Me EM
08 - Love Me Do GM
09 - P. S. I Love You DM
13 - There is A Place EM

With The Beatles

01 - It Won t Be Long EM
02 - All I' ve Got To Do EM
03 - All My Loving EM
05 - Little Child EM
06 - Till There Was You FM
07 - Please Mister Postman AM
08 - Roll Over Beethoven DM
09 - Hold Me Tight FM
12 - Devil In Her Heart GM
13 - Not A Second Time GM

A Hard Days Night

02 - I Should Have Known Better GM
03 - If I Fell DM
05 - And I Love Her EM
06 - Tell Me Why DM
08 - Any Time At All DM
11 - When I Get Home AM
12 - You Can t Do That GM

Beatles For Sale

01 - No Reply CM
02 - I am a Loser GM
04 - Rock and Roll Music AM
05 - I will Follow the Sun CM
06 - Mr. Moonlight F#M
07 - Kansas City- Hey, Hey, Hey, Hey GM
08 - Eight Days a Week DM
09 - Words of Love AM
11 - Every Little Thing AM
13 - What You are Doing DM

Help

02 - The Night Before DM
04 - I Need You AM
08 - Act Naturally GM
09 - It s Only Love CM
10 - You Like Me Too Much GM
12 { I' ve Just Seen a Face AM

Rubber Soul

01 - Drive My Car DM
05 - Think For Yourself GM
11 - In My Life AM
14 - Run For Your Life DM

Revolver

08 - Good Day Sunshine BM
09 - And Your Bird Can Sing EM
10 - For No One BM
13 - Got To Get You Into My Life GM

Sgt Peppers Lonely Hearts Club Band

02 - With A Little Help From My Friends EM
04 - Getting Better CM
05 - Fixing A Hole FM
09 - When I m Sixty-Four DbM
12 - Sgt. Pepper s Lonely Hearts Club Band (Reprise) DM

markers while listening to the music. Markers have then beenmanually corrected in order
to correct the inherent software latency.

Meter information for each song was provided by the Americanmusicologist Alan W.
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Pollack3. The original set comprises 180 songs of the Beatles. We reduced it to 165
songs removing songs having an overcomplicated metric structure and containing parts
where downbeats were perceptually ambiguous and were extremely di�cult to predict
and annotate, even for a trained musician. For instance, thesong Good Morning, Good
Morning was not analyzed because, according to A.W. Pollack, the meter is \4/4 in intro,
bridge and outro; anything but predictable in verse". For th is reason, those �les were not
annotated.

The songs of the test-set can be classi�ed according to theirmetric structure in the
following way:

� 8 songs are in 3/4 meter

� 9 songs have a variable meter (presenting at least one changein time signature, more
than two for most of them)

� 25 songs present some insertion or deletion of beats (insertion of a measure with
unexpected time-signature in a constant meter passage thatdoes not musically cor-
respond to a change in the meter.)

� The rest of the songs have a constant 4/4 meter.

The detail of those songs is given in Table 7.4.

Table 2.3: Evaluated songs that have a particular metric structure.
Meter Title (album/song number)

3/4

Baby's In Black (4/3)
You've Got To Hide Your Love Away (5/3)
Norwegian Wood (This Bird Has Flown) (6/2)
She's Leaving Home (8/6)
Long, Long, Long (11/7)
Oh! Darling (1/4)
Dig A Pony (13/2)
Dig It (13/5)

variable

A Taste Of Honey (1/12)
Lucy In The Sky With Diamonds (8/3)
Being For The Bene�t Of Mr. Kite (8/7)
Strawberry Fields Forever (9/8)
All You Need Is Love (9/11)
Happiness Is A Warm Gun (10/8)
I Want You (She's So Heavy) (12/6)
Two Of Us (13/1)
I Me Mine (13/4)

2.3.3 Classical Music: The Piano Mozart test-set

The Piano Mozart test-set was introduced for the purpose of evaluating the performances
of the local key algorithm. We are not aware of any available test-set that contains

3http://www.icce.rug.nl/ � soundscapes/DATABASES/AWP/awp-notes on.html
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pieces annotated in local keys. We decided to annotate some Mozart piano pieces for
two reasons. First they are interesting from the point of view of local key because they
contain many modulations. Secondly, it was easier to annotate these pieces than others
because the author is very familiar with them. The test-set consists of 5 movements of
Mozart piano sonatas listed in Table 2.4 corresponding to about 30 minutes of audio music.

Table 2.4: The Piano Mozart test-set.
Reference of the piano sonata movement

KV 283 1
KV 283 2
KV 309 1
KV 310 1
KV 311 2

The author and two other trained musicians from the Musikhorshule of Karlsruhe
(Germany) manually annotated the chord and key progressionground truth. First, a list
of the chords and keys with their duration in beats has been provided. Beat and downbeat
locations were annotated by hand with the help of the software Wavesurfer. Then, the list
was automatically mapped to the annotated beat locations resulting in the ground truth
we use. The pieces have been annotated in mostly by ear but also relying on the scores
when ambiguities were found.

It has to be noticed that it is very hard to label Mozart pieces in chords and mu-
sical keys, even for a well-trained musician because on the one hand, there are a lot of
ornamental notes (such as appoggiaturas, suspensions, passing notes etc.) and on the
other hand, harmony is frequently incomplete (some notes ofthe chord are missing). This
makes the choice of chord labels very di�cult. Changes from one key to another are often
ambiguous, in particular when they are very short. Moreover, modulation is very often
a smooth process, it can take several bars to establish properly a tonal center. Segments
corresponding to transition from one key to another have been labeled as transition parts
and are ignored in the evaluation.

2.3.4 Databases Used for Evaluation in Each Chapter

� In Chapter 4, we compare and evaluate several chord estimation algorithms using
the �rst eight albums of the Beatles test-set. This corresponds to a total of 110
songs.

� In Chapter 5, we evaluate our chord/downbeat simultaneous estimation model using
a subset of 165 of the 180 songs of theBeatles test-set. The songs that have not been
used are referenced in Table 2.5.

� In Chapter 6, we evaluate the model for simultaneous chords,downbeats and global
key on the 55 Beatles songs annotated in global key and described above. We
evaluate our local key estimation algorithm on the Piano Mozart test-set.
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Table 2.5: Beatles songs not considered in the evaluation in Chapter 5.
Album Song number

7 87 - 91 - 97
8 105 - 107 - 108
10 124 - 127
11 140 - 141 - 142 - 150
12 158
13 171 - 180

2.4 Evaluation measures

In this section, we present the measures that have been used for evaluating the various
algorithms that we have implemented. The chord, key and downbeat results discussed
and analyzed in the next chapters (Chapters 4, 5 and 6) have been obtained relying on
these measures. For each musical attribute considered, we evaluate the performances of
our model by comparing the estimation (output of our algorithm) with the ground truth
(human manual annotations).

2.4.1 Beat and Downbeat Tracking Evaluation Measure

In Chapter 5, we evaluate the performances of our downbeat tracking model. We also
evaluate the performance of a beat tracker that is used as a front-end of our system. For
this, we compare the beat/downbeat times of our system output with the hand-labeled
beat/downbeat times that are considered as the correct beat/downbeat locations (see
Figure 2.1).

Figure 2.1: Overview of the beat/downbeat evaluation measure.

It is important to notice that it is very di�cult to annotate b eat and downbeat locations
in an objective manner since it is a perceptual concept. Human experts may in particular
disagree on the downbeat locations when the structure of themusic piece is complex. As
underlined above, this is one of the main reason why we do not use the entire Beatles
test-set for downbeat tracking evaluation.

A large number of evaluation measures for beat/downbeat tracking have been pro-
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posed in previous works. We refer the reader to [Dav07] for a detailed review. In this
work (chapter 5), the evaluation is performed using the standard Precision, Recall and
F-measure. This measure has been previously used by Dixon in[Dix06].

� Precision P is de�ned as the ratio of relevant retrieved beat/downbeat positions
from the total of retrieved ones.

� Recall R is de�ned as the ratio of relevant retrieved beat/downbeat positions from
the total of relevant positions.

� The F-measure F combines the two using the ratio of their geometric to arithmetic
mean: F = 2RP

R+ P .

An estimated beat position is considered as correct if it is within a given tolerance
window of the ground truth time.

Following [Pee09], the tolerance windoww is de�ned as 10% of the minimum (over
time) distance between two successive beats in the track. Itis centered on the estimated
beats when computing the Precision and centered on the annotated beats when computing
the Recall. The tolerance window depends on the local tempo (distance between two beat
markers) in order to avoid drawing misleading conclusions from the results. Indeed, a
�xed tolerance window of 0:166 s for instance would be very restrictive for slow tempi
(half-beat duration of 0:5 s at 60 bpm) but would mean accepting counter-beats as correct
for fast tempi (half-beat duration of 0:166 s at 180 bpm).

Let c denote the number of correct beat/downbeat detections,f + the number of false
positive (unmatched reported beat times,i.e. beats estimated outside of any of the toler-
ance windows) andf � the number of false negative (unmatched correct beat times,i.e.
misses), the Precision, Recall and F-measure can be expressed as following:

P =
c

c + f +

R =
c

c + f �

The beat/downbeat evaluation measure is illustrated in Figure 2.2.

2.4.2 Chord Evaluation Measures

We aim at comparing the output of our chord estimation algorithm with the ground-truth
annotations. As stated above, since our chord lexicon is composed only of major and
minor triads, we have performed a mapping from complex chords in the annotation to
their root triads. We consider two aspects of chord estimation: the label accuracy i.e.
how the estimated chord is consistent with the ground truth (Chapters 4, 5 and 6) and
the segmentation accuracy i.e. how the detected chord changes are consistent with the
actual locations ( see Chapter 5). In Figure 2.3, we provide an overview of the chord
evaluation measure.
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Figure 2.2: Illustration of beat/downbeat evaluation measure. The ground-truth po-
sitions are indicated by solid lines and the estimated beat positions by dashed lines.
ak� 1; ak ; ak+1 : annotated beats, c: correct estimation, f + : false positive, f � : false nega-

tive, dk : duration between two annotated beats.

Figure 2.3: Overview of the chord evaluation measure.

2.4.2.1 Label Accuracy

The chord label accuracymeasure is illustrated in Figure 2.4 and is de�ned as follows.

For each songs of the test-set, let TA = ( tA1; tA2; : : : ; tAM ) denote time positions corre-
sponding to the annotated (ground truth) chord changes and let TE = ( tE 1; tE 2; : : : ; tEN )
denote time positions corresponding to the estimated chordchanges. We noteT = TA [ TE .
We note f Tk = [ tk ; tk+1 ]g the series of segments de�ned by this union. Each segment
[tk ; tk+1 ] � T has a lengthdk . We note Ĉk (Ck ) the estimated (annotated) chord over Tk .
The chord estimation rate � s is computed as:
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Figure 2.4: Illustration of the chord label accuracy measure.

� s = 100 �

X

k so that C k = Ĉk

dk

K � 1X

k=1

dk

(2.1)

In this dissertation, the chord estimation rate � s will be referred to as the chord label
accuracy. Note that in this study, we do not consider \non-existing chords", noted \N" in
the annotation (denoting noise, silent parts or non-harmonic sounds). They are counted
as errors in the evaluation.

The chord estimation results we give in the next chapters correspond to the average of
the values corresponding to the mean and standard deviationof correctly identi�ed frames
per song, computed across all the songs belonging to the test-set.

2.4.2.2 Segmentation Accuracy

The chord segmentation accuracyis evaluated using a measure similar to the one chosen
for downbeat evaluation. We use the standard PrecisionP (ratio of detected chord changes
that are relevant), Recall R (ratio of relevant chord changes detected) and F-measureF ,
using a tolerance windoww of 30% of the minimum distance between two beats in the
track. w is chosen to be larger than the one used for downbeat evaluation but below the
tatum period.

2.4.2.3 Neighboring Chords Confusions

We will also refer to the chord estimation results considering neighboring triad confusions.
Harmonically close chords are in general neighbors on the circle of �fths (see Chapter 6).
The hierarchy between chords presents some similarities with the relationships within keys.
We thus follow for chord estimation the procedure adopted during the MIREX 2005 Key
estimation contest, where keys were considered as close if they had one of the following
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relationships: distance of �fth, relative minor and major a nd parallel i.e. having the same
tonic but di�erent mode (major or minor). Chords are here considered as harmonically
close if they have one of the particular relationships described in Table 2.6.

Table 2.6: Example of particular relationships between a C major chordand other chords.
Weights attributed to neighboring chords in comparison with MIREX 2005 key estimation

task.
Reference chord C major weight chord weight key (MIREX 2005)

Relative Am 1 0.3
Parallel Cm 1 0.2

Dominant GM 1 0.5
Subdominant FM 1 0.5

2.4.3 Keys

2.4.3.1 Main Key

In the �rst part of Chapter 6, the key estimation evaluation i s performed using an 8-fold
cross-validation. The test-set is divided into eight parts according to the albums and each
part is evaluated using the seven remaining parts as training data. We indicate the rate
of correct estimation using two evaluation measures:

� EE (exact estimation) indicates the percentage of exactly estimated key,

� ME (MIREX estimation) gives the estimation rate according t o the measure pro-
posed for the MIREX 2005 key estimation task. Neighboring keys are taken into
account (see Table 2.6) and the score is obtained using the following weights: 1
for correct key estimation, 0.5 for perfect �fth relationsh ip between estimated and
ground-truth key, 0.3 if detection of relative major/minor key, 0.2 if detection of
parallel major/minor key.

For an overview of the main key evaluation measure, see Figure 2.5.

2.4.3.2 Local Keys

In the second part of Chapter 6 devoted to local key estimation, we consider, as in [CV05],
two aspects of the results: thekey label accuracy i.e. how the estimated key is consis-
tent with the ground truth, and the key segmentation accuracy i.e. how the detected
modulation points are consistent with the actual locations. The local key label accuracy
evaluation measure is the same as thechord label accuracyevaluation measure used for
chord estimation.

The key segmentation accuracyis expressed with the Precision, Recall and F-measure.
Key changes are not abrupt and often last several bars. Two established keys are often
separated by a transition part where no key is �rmly established. These parts, which have
been labeled as transition partsT in the ground truth, need to be taken into account in
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Figure 2.5: Overview of the main key evaluation measure.

the evaluation of segmentation accuracy. The tolerance window chosen in the case of local
key estimation is thus larger than in the case of chord estimation: we present in Chapter
6 results with w corresponding to 1 or 2 bars.

2.4.4 About Statistical Signi�cance Testing

During our experiments, we will usepaired samples t-test(or dependent samples t-test) in
order to compare the various methods we propose. They will beused to measure whether
if the changes in the results from one method to another are statistically signi�cant or
not. Paired samples t-test is a statistical technique that allows the comparison between
two population means when the two samples that are correlated.

2.4.5 About Evaluation of Algorithms Based on Training

In this dissertation, we evaluate some algorithms based on training: in Chapter 4, Sections
4.4.3.1 and 4.4.4.4, the chord model parameters are trainedon a labeled database, as well
as the key-dependent chord transition matrix proposed in Chapter 6, Section 6.3. These
algorithms are evaluated on the Beatles test-set. Let k denote the number of albums
considered in the test-set. The algorithms are evaluated using a k-fold cross-validation.
The test-set is divided into k parts according to the albums and each part is evaluated
using the k � 1 remaining parts as training data.

This procedure is adopted in order to avoid the so called \album e�ect" [WFS01]
[KWP06]. A given album is generally recorded within a short time period and songs from
the same album are likely to share common spectral characteristics (choice of instrumen-
tation, audio post-production, etc.), whereas variation in the artist's musical style over
the year may vary more between albums. This is why we use complete albums as training
while the others are used as testing.
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Chapter 3

Towards a Signal Representation
for Harmonic Content Analysis

This chapter investigates a number of typical representations of the audio signal in order to
select the most appropriate one for the task of harmonic content analysis. We explore sev-
eral schemes for chromagram computation and investigate several issues related to the use
of each representation. We detail and explain the choice of the audio signal representation
we use as an input to our model.
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3.1 Introduction

In this dissertation, we are interested in estimating various musical attributes that are
centered on the chord progression. We work directly on the audio signal. In computational
music analysis, the �rst step of any algorithm that works on audio is to extract a set of
feature vectors that represent the signal.

Harmonic analysis of a piece of music is a problem that has interested musicologists
for centuries. Harmonic analysis from a music score is a complex problem, but it is even
more complicated when working directly on the audio signal. Indeed, in addition to the
di�culties inherent to the musical syntax (grammar, langua ge), the �rst di�culty is to
obtain information about the pitches of the notes that are present in the audio signal.

The aim of this chapter is to investigate a number of possiblerepresentations of the
audio signal in order to select the most appropriate one for the task of harmonic content
analysis. Our goal is to provide signal features that are suitable for the chord estimation
task. We do not attempt to propose a new signal feature extraction technique but we
justify the choice of the input representation we use in our system. Many chroma-based
signal representations that capture the harmonic content of an audio signal have been
proposed in the past. However, little time has been devoted to the comparison and the
evaluation of these approaches. In this chapter, we concentrate on this point. The major
contributions of this chapter are the following:

1. We review several methods for extractingchroma features from the audio signal.

2. We focus on the problem of evaluating and comparing the various representations
and propose new evaluation methods.

3. We annotated in chords a database consisting of a number ofshort excerpts of
classical and popular music.

4. We compare the various representations on this database providing statistical tests
to enhance our analysis.

5. We investigate the use of beat-synchronouschroma features for harmonic content
analysis.

Organization of the chapter:

This chapter is organized as follows. In Section 3.2, we review some basic concepts
of audio signal processing. We then introduce in Section 3.3the notion of chroma and
propose several methods for chromagram computation in Section 3.4. We analyze two
problems related to the use of chroma features for harmonic content analysis in Section
3.5. The various methods are evaluated in Section 3.6. A conclusion closes this chapter.
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3.2 A Representation of Audio for Harmonic Content Anal-
ysis

3.2.1 Music Transcription-Based Approaches

Reproducing the human capability of analyzing tonal and harmonic structure of a piece
of music with computers is an ambitious challenge. The most straightforward way to
recreate the human process of music analysis is to start automatic analysis from a symbolic
representation. In the scope of harmonic and tonal analysis, some e�orts have been initially
devoted to the analysis of chord and key sequences using MIDIrepresentation of music
[Tem05] [TS99]. In particular, some tools that allow tonal and harmonic analysis of music
in the symbolic domain, have been developed.

The Melisma Music Analyzer, developed by D. Temperley & D. Sleator is a system for
analyzing music and extracting information from it. The analyzer takes a piece represented
as an "event list" that is a list of notes, with pitch, on-time , and o�-time (MIDI �les
can be used as input as well). It extracts information about meter, phrase structure,
contrapuntal structure (the grouping of notes into melodic lines), harmony, pitch spelling
and key. The HARMONY program produces a harmonic analysis consisting of a series of
segments labeled with roots and a spelling assigned to each pitch-event. Finally, the KEY
program produces a key analysis, consisting of a series of sections labeled with keys and
(optionally) a Roman numeral analysis showing the functionof each chord relative to the
current key. The main goal in this project has been to developmodels of musical cognition.
The components of the Melisma system are all based on the concept of preference rules.

OpenMusic is a visual programming language based on CommonLisp / CLOS
developed at IRCAM. It provides classes and libraries that make it a very convenient
environment for music composition and analysis. Di�erent representations of a musical
process are handled, among which common notation, midi piano-roll and sound signal. A
symbolic representation of a chord progression can be analyzed with OpenMusic, but it
requires information about the key signature and about chord segmentation. Chords are
treated as the combination of discrete tones and recognizedfrom the result of polyphonic
analysis based on music theory.

3.2.2 Chroma Representation, an Alternative to Transcript ion

The work conducted in the symbolic domain could be applied toaudio signals using a sym-
bolic transcription. However, the symbolic transcription (the score) of a piece of music is
not always available, especially in music where there is a large part devoted to improvisa-
tion such as jazz music. In addition to that, algorithms that extract a transcription from
an audio signal are still limited and costly.

A number of recent works have shown that it is possible to accurately extract a music
description of the signal without relying on a symbolic representation. An intermediate
between low-level signal features and symbolic representation can be used to extract some
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musical attributes such as the chord progression. Since their introduction in 1999, Pitch
Class Pro�le (PCP) [Fuj99] or chroma-based representations [Wak99] have become a com-
mon feature for estimating chords and musical keys from audio recordings, as well as for
conducting audio similarity retrieval tasks.

3.2.2.1 De�nition

Shepard reported in the 1960s that our perception of pitch istwo-dimensional and can
be modeled by a helix (see Figure 3.1). He noticed that the representation of pitch into
a helical curve is quite ancient since it had previously beenproposed by Drobisch in
1846. This helix is characterized by two attributes: i) the Tone Height or over-all pitch
level (octave number), that corresponds to the vertical axis, and ii) the Chroma that
corresponds to the angle. By dividing the base of the helix into 12 equal parts, we can
obtain the 12 pitches of the equal-tempered chromatic scale.

Two notes a number of octaves apart (for instance the C1 and C2notes) will share
the same rotation on the chroma circle represented at the base of the helix shown in Fig
3.1. In music theory, the term pitch class is rather used than chroma.

Figure 3.1: Shepard's helix of pitch perception, adapted from [BW05].

Chroma/Pitch Class Pro�le features are traditionally 12-d imensional vectors, with
each dimension corresponding to the intensity associated with one of the 12 semitone
pitch classes (chroma) of the Western tonal music scale, regardless of octave.

In the rest of this dissertation, we will assume that the order of the pitch classes in a
PCP/chroma vector is: C; C# ; D; : : : ; A # ; B . We will often refer to each pitch class using
a number: 1 corresponds toC, 2 corresponds toC#, and so on until 12 that corresponds
to B .

The temporal sequence of chroma vectors over time is known aschromagram. Con-
ceptually, the chromagram is a frequency spectrum folded into a single octave. Chroma
features are closely related to the music signal and workingwith them is very convenient
when dealing with problems related to harmony or tonality. Pooling the spectrum into
twelve bins that correspond to the twelve pitch classes of the equal-tempered scale results
in a signal representation that allows identifying pitches by an octave. As emphasized
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in [EP07], the chroma features capture both melodic information (since the melody note
will typically dominate the feature) and harmonic accompaniment information (since
other notes in chords will result in secondary peaks in a given chroma/PCP vector). The
use of such a mid-level representation overcomes the problem of automatic transcription.

Before going into details in the chromagram representation, we review and compare
some classical time-frequency representations of the signal. They will serve as a basis for
chromagram computation.

3.2.3 Representation of Music Signals, Notations

We rely on the common assumption that the music signal is stationary (i.e., its statistical
properties do not vary with time) in a very short time duratio n and thus that we can
consider music sounds as nearly periodic signals. This means that the waveform repeats
itself, in a slightly modi�ed version, at a regular time inte rval that is called the period. The
reciprocal of the period of the signal is called thefundamental frequencyand denoted byf 0.

When an instrument produces a sound, the human listener perceives a pitch that
is a perceptual attribute of the sound related to the fundamental frequency. The pitch
is a subjective quality of the sound often described as highness or lowness. Pitched
instruments also include certain percussion instruments, such as the marimba, the
vibraphone, the tubular bells or the timpani. Non-harmonic sounds for which the pitch
is unde�ned, such as the cymbals, the gongs, or the tam-tams make sounds rich in
inharmonic partials 1. These sounds do not belong to the harmony progression of a piece
of music. Musicians associate music notes symbols to the pitches.

According to Fourier's theory, a periodic signal can be approximated by a �nite
sum of sinusoids whose frequencies are integer multiple of the fundamental frequency
and whose magnitude and phase can be uniquely determined to match the signal. The
frequency of each sinusoid is calledharmonic. In general, the harmonics of music sounds
do not have frequencies that are exactly multiples of itsf 0. For this reason, they are
often called partials. In this thesis, we are interested in sounds of which the partials are
nearly harmonically related. They are called harmonic sounds.

Let us de�ne some notations that will be used in the rest of the chapter. A music
signal s(t) will be understood as a superimposition ofNn individual notes n i ; i 2 [1 : Nn ]
produced by musical instruments. Each note is characterized by its perceived pitch of fre-
quencyf 0 and a �nite and small number K of partials of frequenciesf k = kf 0; k 2 [1 : K ],
of amplitude ak . The spectral pattern composed of the series of partials characterizes the
sound perceived by the human listener. A quasi-periodic music signal n(t) corresponding

1The inharmonic partials correspond to partials that deviat e from their expected position according to
the harmonic model described above. They can also be observed in the string instrument sounds such as
the piano.
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to a single note can thus be expressed as:

n(t) =
KX

k=0

ak (t)cos(2�f k t + � k ) with f k = kf 0 (3.1)

where ak and � k correspond to the amplitude and phase of the various sinusoids that
approximate the signal.

A harmonic signal ~s(t) that is a superimposition of Nn individual notes can then be
expressed as:

~s(t) =
N nX

n =1

KX

k=0

ak;n (t)cos(2�kf 0;n t + � k;n ) (3.2)

Equations (3.1) and (3.2) give the expression of an ideal music signal composed of a
set of exactly harmonically related sinusoids. In practice, the observed signals(t) contains
some components that are not explained by the sinusoids, forinstance the background
noise or the inharmonic partials. It can be expressed as a sumof harmonic components
~s(t) plus a residual � (t) that comes from the unexplained components:

s(t) = ~s(t) + � (t) (3.3)

=
NnX

n=1

KX

k=0

ak;n (t)cos(2�kf 0;n t + � k;n ) + � (t) (3.4)

The ratios between the �rst partials of a music sound and the fundamental frequency
approximately correspond to musical intervals. In Table 3.1, we represent the musical
intervals corresponding to the ratios between the 6 �rst partials and the fundamental
frequency of a C note.

Table 3.1: Intervals between the �rst 6 partials of a complex tone and its fundamental
frequency f 0. Example for the partials of a C note.
Pitch class Partial Frequency Approximate interval with f 0

C 1 f 0 unison
C 2 2 � f 0 octave
G 3 3 � f 0 octave + 5 th

C 4 4 � f 0 2 octaves
E 5 5 � f 0 2 octave + major 3 rd

G 6 6 � f 0 2 octave + 5 th

3.2.4 About Acoustic Signal Representation

Algorithms for the automatic analysis of audio music signals rely in general on a spec-
tral representation of the signal. The discrete Short Time Fourier Transform (STFT) is
the most commonly used representation. Although it is very popular, a shortcoming of
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this representation is that the frequency components are equally spaced and thus have a
constant resolution, which implies that a global compromise between time and frequency
resolution has to be made. Multi-resolution approaches have been proposed as an alter-
native to the Fourier transform.

3.2.4.1 Fourier Transform

Since its introduction in the 18th century, the Fourier tran sform and its extensions have
become the most common signal representation used in signalprocessing.

In signal processing, we process �nite extent signals. The Discrete Fourier Transform
(DFT) computes a discrete-frequency spectrum from a discrete-time signal of �nite length:

X (k) =
N � 1X

n =0

x(n)e� j 2�kn=N (3.5)

where x(n) denotes the input signal at time samplen, k = 0 ; 1; : : : ; N � 1 denotes the
frequency bin index andX (k) denotes thekth spectral sample.

The computation cost of a DFT can be very expensive. A much faster algorithm has
been developed by Cooley and Tukey in 1965 [CT65], called theFast Fourier Transform
(FFT) and is used in general in signal processing.

In practical signal processing, a windoww(n), that is, a weighting function, is applied
to data to reduce the undesirable e�ects related to spectralleakage associated with �nite
observation intervals [Har78]. The Short Time Fourier Transform (STFT) represents the
frequency content of a short segment (of limited duration) of the signal. This segment of
limited duration is assumed to be stationary. The STFT of a discrete signalx(n) can be
calculated as:

X (k) =
N � 1X

n =0

w(n)x(n)e� j 2�kn=N (3.6)

where w(n) is the temporal window function and k = 0 ; 1; : : : ; N denotes the frequency
bin index.

The length of the window N determines the time and the frequency resolution. The
accuracy in the frequency domain will increase with the length of the window. However,
this occurs at the expense of the time resolution. Moreover,as the window length increases,
the assumption of the stationarity of the signal during the analysis segment becomes
weaker.

3.2.4.2 Frequency Resolution Versus Time Resolution

When analyzing music signals, the choice of the length of theanalysis window is a key
consideration. It determines the trade-o� of time versus frequency resolution which a�ects
the smoothness of the spectrum and the detectability of the sinusoidal components. On
the one hand, good temporal resolution and therefore a shortwindow length are needed
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in order to detect fast changes in the signal (such as note onsets for instance). On the
other hand, a large analysis window is necessary to provide the required frequency res-
olution so that closely spaced sinusoids, corresponding toadjacent pitches, can be resolved.

Let us consider an audio music signal with two sinusoids of frequenciesf 1 and f 2 that
correspond to adjacent pitches. We note �f = f 2 � f 1. In a music signal, when two
sinusoids corresponding to adjacent pitches have nearby frequencies separated by �f Hz,
it is necessary that the window length N is large enough so that the spectrum exhibits
two peaks (see Figure 3.2).

Figure 3.2: Spectral resolution of nearby peaks. From [Har78]. Left: non-resolvable
peaks. Right: resolvable peaks.

According to [Smi08], the lower bound for the minimum FFT length N is:

N � K w
f s

� f
(3.7)

where K w is a constant that depends on the window function main-lobe width. Table
3.2 gives the main-lobe width in-bins,K w , for various windows. The minimum resolving
window length can be determined using the sharper boundK �

w empirically found [AS04].

Table 3.2: Main-lobe width in-bins K w and minimum e�ective values K �
w for various

windows. From [Smi08].
Window Type K w K �

w
Rectangular 2 1.44

Hamming 4 2.22
Hann 4 2.36

Blackman 6 2.02

Because of the logarithmic scaling of the Western tonal music scale, pitch frequencies
are closer in lower frequencies. Two adjacent notes tuned inequal temperament form a
semitone and are separated by 6% of the frequency of the lowest note. Indeed, let f k

and f k+1 denote respectively the frequency of the lowest and the highest notes. From the
construction of the Western tonal music scale, we have:
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f k+1

f k
= 2

1
12 or f k+1 � 1:059f k (3.8)

For instance, a C1 note has a frequency off C1 = 32:7Hz; the frequency of the next
note C#1 is: f C#1 = 32:7 + 0:06 � 32:7 = 34:6Hz.

It is unlikely that two adjacent low-frequency notes will be played simultaneously in
Western tonal music, because this is generally unpleasant for the ears. However, chromatic
notes that are played successively often interfere in time and may be superimposed during
a lapse of time. This is for instance the case in most of Chopinpiano music where the
extensive use of the sustain pedal results in mixtures of adjacent low-frequency notes. The
constraint regarding the minimum length of the analysis window needs thus to be taken
into account for low pitches.

The frequency components of the DFT are equally spaced and thus have a constant
frequency resolution. To discriminate adjacent pitches, particularly at low frequencies, a
su�ciently long window length is thus required whereas it is unnecessary when consid-
ering higher pitches. Multi-resolution approaches have been proposed as an alternative
to the conventional linear frequency and constant resolution of the DFT. In this disser-
tation, we focus on a multi-resolution approach commonly used in music audio analysis:
the Constant-Q transform (CQT). This representation has been used for chromagram
computation in many works related to chord or key estimation.

3.2.4.3 Constant-Q Transform

One common approach to solve the time/frequency resolutiondilemma is to perform a
frequency-varying multi-resolution analysis. In this case, the frequency spectrum is split
into subbands and each one is processed independently from the others. This allows the
use of shorter analysis windows at higher frequencies whilelower frequencies can still
have the required frequency resolution to separate closelyspaced sinusoids. An interesting
approach was presented in 1991 by Brown [Bro91] who proposedto use the constant-
Q transform for music signal analysis. The constant-Q transform is a spectral analysis
where frequency domain channels are not linearly spaced, asin DFT-based analysis, but
geometrically spaced (the center frequency to resolution ratio Q = f

� f remains constant),
thus tightly similar to the frequency resolution of the human ear. The CQT transform is
closely related to the Fourier transform but gives a better representation of spectral data
from a music signal. The center frequencies that are distributed geometrically follow the
equal tempered scale used in Western music. Note that the CQTwas introduced earlier,
outside the musical context, see for instance [YB78].

In case of musical applications, the calculation of the CQT is based on the frequencies
of the equal tempered scale. The constant Q transform of a discrete signal x(n) can be
calculated as:

X cq(k) =
N (k) � 1X

n =0

w(n; k)x(n)e� j 2�f k n (3.9)
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where X cq(k) is the kth component of the constant-Q transform. For each value ofk, the
window function w(n; k) varies proportionally to the center frequency f k . Let Q denote
the constant ratio of frequency to resolution, Q = f k

� f k
, and let f s denote the sampling

rate. The length of the window w(n; k) in samples at frequencyf k is N (k) = Q:f s
f k

. N (k)
depends on the frequency and thus on the bin positionk.

Figure 3.3 represents the window lengthN (in seconds) with respect to the frequency
(in Hertz), for a 1

2-tone spacing (Q = (2
1

12 � 1)). For instance, a window of 0:5s (duration of
a beat at a tempo of 120 bpm) corresponds to a frequency value of 104Hz. The constant-Q
transform increases time resolution towards higher frequencies. The length of the window
w(n; k) decreases with frequency.
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Figure 3.3: Length of the constant Q window in seconds with respect to thefrequency
in Hertz.

[BP92] proposes an e�cient algorithm of the CQT that takes ad vantage of the Fast
Fourier Transform (FFT) so that the computation cost are red uced as compared to the
direct evaluation of the CQT.

3.3 Chroma Representation, Background

Because they are a powerful compact representation of the tonal content information of the
signal, chroma features have been widely used as input features of music analysis models
based on the music harmonic content, such as chord or key �nding, cover song detection or
structure estimation. Various approaches for chroma computation exist. Although they
present some variances in the implementation, they follow in general the same guideline
that consists of two main steps:

1. First, a semitone pitch class spectrum (SPS), that is a log-frequency representation
of the spectral content of the music audio signal, is constructed. It is expressed in
a MIDI-note scale and is either computed from the Fourier transform or from the
constant-Q transform. The center frequencies of the CQT canbe chosen according to
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the frequencies of the equal-tempered scale. In such a case,the constant-Q spectrum
corresponds to a semitone pitch class spectrum.

2. Secondly, the semitone pitch spectrum is mapped to the chroma vectors. For this,
the semitones in octave distance are added up to pitch classes.

The chromagram computation may include some other steps such as a pre-processing
step that separates harmonic and noise components, a �ltering step that smoothes
the chromagram or a post-processing normalization step that makes the chromagram
invariant to dynamics. We review in the following some chroma feature extraction
methods.

3.3.1 Chromagram Based on the Fourier Transform

In many approaches, the chromagram is generated using the Fourier transform. This
approach was �rst proposed by Fujishima in [Fuj99], where the input signal is transformed
from the time to the frequency domain using an FFT. Frequencybins corresponding to a
same semitone are summed up to form a semitone pitch spectrum, which is then folded
to pitch classes, resulting in a PCP vector.

This approach was followed by a large number of researchers with some variants.
In some approaches, the resolution of the chromagram is increased in order to improve
robustness against tuning and other frequency oscillations, such as in the work of Goto
[Got06], where a chromagram is computed so that there are 100cents to a tempered
semitone. Some approaches introduce a �ltering process to reduce transient and noise,
such as in the work of Peeters [Pee06b].

The FFT is particularly blurred at low frequencies. In order to identify strong tonal
components in the spectrum and to get a higher resolution estimate of the underlying
frequency, Ellis & Poliner [EP07] do not compute the chroma feature directly from the
FFT. They use the Instantaneous Frequency spectrum, which uses the phase derivative to
interpolate the frequency distribution.

3.3.2 Considering the Harmonics in the Pitch Class Pro�les

Some methods for chroma computation take into account the higher harmonics of the
notes in the chroma features computation. For instance G�omez introduces in [G�06a] an
extension of the PCP, the Harmonic Pitch Class Pro�les (HPCPs). A weighting procedure
is proposed in order to make harmonics contribute to the pitch class of its fundamental
frequency, so that each peak frequencyf i has a contribution to the frequencies havingf i

as harmonic frequency (f i , f i
2 , f i

3 , f i
4 , . . . ).

Lee [Lee06a] proposes a feature vector called the Enhanced Pitch Class Pro�le (EPCP)
for the application of chord recognition from audio. The chromagram is computed from
the Harmonic Product Spectrum (HPS) instead of the DFT. The use of a HPS allows the
elimination of non-tonal signal components from the spectrum.
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Pauws [Pau04] computes the chromagram using an auditory perception inspired front-
end so that the perceptual pitch and the musical background are simultaneously taken
into account.

3.3.3 Constant-Q Pro�les

Some approaches derive the chromagram from a CQT instead of the FFT. In [PBO01],
Purwins et al. propose to compute CQ-pro�les that are 12{dimensional vectors similar
to chroma vectors. The CQT �lters are chosen so that they correspond to musical notes.
The Constant-Q spectrum thus directly corresponds to a semitone pitch spectrum from
which 12-dimensional vectors (corresponding to the 12 pitch classes) can be computed.

This approach has been often adopted by other researchers, possibly with some vari-
ations. For instance, Harte & Sandler [HS05] propose a tuning algorithm for a CQ-based
chromagram. In [BP05], Bello & Pickens generate the chromagram using a constant-Q
transform. A resolution of 36 bins per octave is used. The chromagram is low-pass �ltered
to eliminate sharp edges.

3.3.4 Chromagram Based on multi-f0s

Some approaches compute chroma features from a multi-pitchrepresentation instead of a
spectral representation. For instance, Ryyn•anen & Klapuri [RK08b] compute a chroma-
gram from a pitch salience estimator. In [ZR07], Zenz & Rauber compute a multi-pitch
based chromagram using the Enhanced Autocorrelation (EAC)algorithm described by
Tolonen et al [TK00]. Varewyck et al. [VPM08] also propose a chroma extraction method
based on multiple pitch tracking techniques.

3.3.5 Filter bank

In the context of audio matching, M•uller et al. [MKC05] introduce a new kind of chroma-
based audio feature referred to as CENS features (Chroma Energy distribution Normalized
Statistics) that presents a high degree of robustness to variations in parameters such as
dynamics, timbre, articulation and local tempo deviations. In this approach, the chroma
features are computed by the use of a �lterbank with �xed frequency bands. The audio
signal is decomposed into subbands corresponding to notes A0 to C8 (MIDI pitches 21 to
108). The short-time mean-square power is computed over each subband using a 200ms
with an overlap of half the size. The chroma vectors are obtained by adding up the
corresponding short-time mean-square power (STMSPs) of all pitches belonging to the
12 respective pitch class. The chroma vectors are normalized to be invariant to dynamic
variations and then quantized by applying energy thresholds in order to be insensitive to
noise components. In order to smooth local tempo deviationsand slight variations in note
groups, such as trills or arpeggios, a much larger statistics window is then considered.
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3.3.6 Extension: the Tonal Centroid

Another feature devoted to harmonic analysis has recently been proposed. We give here
a brief overview of this feature since some recent works [LS08] [LB07] have shown that it
may be a powerful feature for harmonic analysis.

The Tonal Centroid was introduced in [HSG06] as a new feature for detecting changes
in the harmonic content of musical audio signals. A harmonicCentroid transform is
applied to the chromagram decomposition so that the 12-dimensional chroma vectors are
mapped to a six-dimensional Hypertorus structure. The Tonal Centroid is derived from
an old planar representation of pitch relations called the Harmonic Network or Tonnetz.
In this representation, close harmonic relations such as �fths and thirds appear as small
Euclidian distances on the plane. Three circularities are considered: the circle of �fths,
the circle of minor thirds and the circle of major thirds.

When enharmonic equivalence (C# equivalent to Db) and octave equivalence (C1
equivalent to C2) are assumed, the Tonnetz, which is theoretically an in�nite plane, can
be wrapped into a tube with the line of �fths becoming a helix on its surface. In the
Spiral Array model [Che02], the two ends of the tube are joint together, resulting into a
hypertorus with the circle of �fths wrapping around its surf ace three times. The Tonal
Centroid is a 6-dimensional interior space contained by thesurface of the Hypertorus. The
6 dimensions can be visualized as a projection onto the circle of �fths, the circle of minor
thirds and the circle of major thirds and represented as three coordinate pairs (x1; y1),
(x2; y2) and (x3; y3) (see Figure 3.4).

Figure 3.4: Graphical representation of the 6-dimensional Tonal Spaceas three circles.
From left to right: circle of �fths, circle of minor thirds an d circle of major thirds. The
Tonal Centroid for chord A Major (pitch classes 9, 1 and 4) is shown at point A. Adapted

from [HSG06].

Let c denote a 12-dimensional chroma vector and let � denote the transformation
matrix that represents the basis of the 6-dimensional space.

� = [� 1; � 2; � 3; � 4; � 5; � 6] (3.10)
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where

� l =

2

6
6
6
6
6
6
4

�(1 ; l )
�(2 ; l )
�(3 ; l )
�(4 ; l )
�(5 ; l )
�(6 ; l )

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

r1sinl 7�
6

r1cosl7�
6

r2sinl 3�
2

r2cosl3�
2

r3sinl 2�
3

r3cosl2�
3

3

7
7
7
7
7
7
5

(3.11)

where the valuesr1, r2 and r3 are the radii of the three circles. In [HSG06], they are
set to 1, 1 and 0:5 respectively, ensuring that the distances between pitch classes in the
6-dimensional space correspond to our perception of harmonic relations between pitches.
The 6-dimensional Tonal Centroid vector � is obtained from the 12-dimensional chroma
vector c according to the following equation:

� (d) = 1
jj cjj 1

P 12
l=1 � (d; l)c(l ) 1 � d � 6

1 � l � 12
(3.12)

3.3.7 Why Using Chroma Features for Harmonic Content Analys is?

We have chosen to use the chroma representation because we think that it is a very intu-
itive and natural representation of the signal in terms of harmony. We �nd it particularly
convenient for chord analysis: the 12 bins of the chroma features correspond to the tra-
ditional pitch classes of the equal tempered scale. The chromagram can be followed as a
music score when listening to the music.

3.4 Derivation of Chroma Features

In what follows, we focus on the derivation of three chroma representation extraction
methods. The �rst two are based on the two above-mentioned spectral representations
of the signal (FFT and CQT), the third one is based on a multipi tch tracking technique.
These approaches will be analyzed and compared in Section 3.6.

3.4.1 Chroma Based on a Spectral Representation

We review here two chromagram computation methods based on aspectral representation.
The �rst one is based on the conventional �xed resolution FFT and the second one is based
on the multi-resolution CQT. The two methods follow the samegeneral schema represented
in Figure 3.5. We start by estimating the tuning of the piece. The chromagram is computed
in three steps after tuning estimation. First, the values of the DFT/CQT are mapped to
a semitone pitch spectrum. The corresponding channels are then smoothed over time.
Finally, the resulting semitone pitch spectrum is mapped to the semi-tone pitch classes.
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Figure 3.5: General 
owchart of chromagram computation.

3.4.1.1 Tuning

The chroma values are obtained by mapping frequency values of the spectrogram to the
semitone pitch classes that are based on a standard reference frequencyTref = 440Hz.
The energy peaks in the spectrogram will be mapped to the chroma vectors. It is therefore
important that the peak frequencies correspond as close as possible to usual pitch values
(262:6, 277:2, 293:7, . . . Hz). Since the instruments may have been tuned according to a
reference pitch di�erent from the standard A4 = 440Hz , it is necessary to estimate the
tuning of the track. After computing the precise tuning used in a given song, we center
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the semitone pitch spectrum �lters accordingly so that they fall precisely in the middle
of a note. We now detail the tuning estimation method we use inthis work.

In our approach, we estimate the reference frequency (or tuning) before mapping
frequency values to the pitch classes. Other works propose to �rst compute a chromagram
and then tune it according to a determined reference frequency. For instance [HS05]
or [BP05] built a 36 bins-per octave resolution chromagram.They then compute the his-
togram of the chromagram peaks distribution across one semitone width (corresponding
to 3 bins). The maximum point in the histogram gives the semitone centre tuning value.

Here, the tuning is estimated using the method proposed by Peeters in [Pee06b]. We
assume that the tuning is constant over the music track duration. The amount of energy
of the spectrum explained by the frequencies correspondingto the semitones based on
each candidate tuning is measured. The candidate tuning that allows us to explain the
best the energy of the spectrum is selected as the tuning of the track.

Let us consider a set of tuning candidates between 427Hz and 452Hz, which correspond
to the quartertones below and above A4. The candidate tunings are successively tested
as following. For a given tuning test t and a given signal framem, we de�ne the modeling
error � (t; m) as the ratio between the energy of the spectrum explained bythe current
tuning t and the total energy of the spectrum.

� (t; m) = 1 �

P
n A(f t;n ; m)

P
f A(f; m )

(3.13)

where A denotes the amplitude of the Fourier transform and f t;n are the frequencies of
the semi-tones pitchesn (in MIDI) based on the tuning t:

f t;n = t � 2
n � 69

12 ; t 2 [427; : : : ; 452] (3.14)

The energy of the current tuning t is computed as the sum of the energy at the
frequenciesf t corresponding to the semi-tones pitches based on the tuningt. A low value
of � indicates that most of the peaks of the spectrum correspond to notes based on the
tested tuning. The estimated tuning is chosen as the valuet that minimizes the modeling
error over time. The estimated tuning Tref is taken into account when computing the
chromagram, as explained below.

In practice, many audio �les are not based on a tuning of A4 = 440Hz . As an
illustration, we represent in Figure 3.6 the histogram of the tunings estimated over the
widely usedBeatles test-setfor chord recognition (see Chapters 2, Section 2.3.2). It shows
that most of the songs are not based on a tuning ofA4 = 440 Hz. The estimated tunings
of the tracks are comprised between 430 Hz and 444 Hz.

Note that we assume here a constant tuning over the whole duration of the piece. To
reduce the computation cost, it would be possible to computethe tuning of the piece on
a short extract (using only 30s of music for instance).
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Figure 3.6: Histogram of the estimated tunings over theBeatles test-set.

3.4.1.2 Frequency Region Selection for Chroma Computation

The chroma vector is obtained by converting the signal into the frequency domain, using an
FFT or a CQT, and mapping the calculated intensities in the frequency bins corresponding
to the music pitches. In the mapping, we do not consider all the frequencies of the spectrum
X (k) but the analysis is restricted in general to a frequency region that corresponds to
the most relevant frequency values for pitch distribution.

Let f min and f max respectively denote the minimum and maximum frequencies ofX (f )
considered in the chroma computation. In what follows, andnmin and nmax denote the
midi notes corresponding to f min and f max . Assuming a tuning of A4 = 440Hz, a midi
note n is related to its frequency f by the following equation:

n = 12log2
f

440
+ 69 (3.15)

The various works that use chroma features as a representation of the harmonic content
of the signal do not consider the same frequency region for chromagram computation. For
instance, Bello & Pickens [BP05] compute the chromagram from 98Hz to 5250Hz whereas
Oudre et al. [OGF09b] limit the frequency range to the interval 73:42� 587:36Hz, although
both of them are used as input of a chord estimation algorithmevaluated on the Beatles
test-set.

The selection of the frequency region depends on many criteria. Di�erent frequency
regions should be selected depending on the possible presence of noise or percussive
sounds in the signal, depending on whether the chroma extraction algorithm considers
the presence of higher harmonics or not, or depending on the instrumentation.

In our work, because of frequency resolution limits (the frequency distance between
adjacent semitone pitches becomes small in low frequencies), we only consider frequencies
above f min = 60Hz.

In our experiments on the Beatles test-set, we found that thebest results were obtained
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considering only the frequencies belowf max = 1000Hz. The upper limit is set to 1kHz
because the fundamentals and partials of the music notes in popular music are usually
stronger than the non-harmonic components up to 1kHz [Mad06]. This is illustrated in
Figure 3.7, in Section 3.5.1 of this Chapter. Our choice forf max is also supported by the
fact that many of the higher partials, which are whole numbermultiples of the fundamental
frequency, are far from any note of the Western chromatic scale. This is especially true for
the 7th and the 11th partials. We found that the best results on a classical musictest-set,
the Mozart piano test-set are obtained using components up to 2kHz. Further experiments
should be devoted to better study the in
uence of the frequency region selection parameter.

Note that some approaches such as [MND09] or [RK08b] use jointly several chroma-
grams instead of one, in order to distinguish between various registers. Each chromagram
is computed considering a di�erent frequency region that may capture for instance to the
bass or the melody content.

3.4.1.3 Computation of a Semitone Pitch Spectrum

Semitone Pitch Spectrum from the FFT

We review here a method that was initially proposed in [Pee06a]. In our analysis, the
signal is down-sampled to 11025Hz, converted to mono and converted to the frequency
domain by a FFT using a Blackman window of length N with 12:5% overlap. The value
of N will be discussed further, in part 3.6.4. The values of the FFT are mapped to a
semitone pitch spectrum according to the estimated tuning using the mapping function:

n(f k ) = 12 log2(
f k

Tref
) + 69 ; n 2 < + (3.16)

where f k are the frequencies of the notes in the Fourier transform andn corresponds to
the semitone pitch scale values expressed in a MIDI-note scale. For each MIDI note of
frequencyf k of the semitone pitch spectrum, we consider the frequenciesof the spectrum
that are contained in a window centered aroundf k . The contribution of the peaks of the
DFT bins comprised in the considered window is weighted using a set of �lters described
below.

Let us de�ne a set of �lters Hn0 centered on the semi-tone pitch frequenciesn0 2
[nmin ; nmin + 1 ; : : : ; nmax ]. For instance, if we consider the notes comprised between the
frequencies 60Hz and 1000Hz (B1 to B5), the �lters will be centered on the MIDI notes
n0 2 [35; 36; : : : ; 83]. Frequency resolution is a salient parameter in pitch class features
computation. Chroma features are in general represented as12-dimensional vectors that
correspond to the 12 semitones of the equal tempered scale. Nevertheless, it may be
pertinent to increase the semitone resolution to improve robustness against tuning and
other frequency variations, such as the vibrato of an instrument. In this case, a semitone
is represented by several �lters instead of one (typically 2or 3). In order to increase the
semitone resolution, we de�ne a factorR 2 < + that sets the number of �lters used to
represent one semitone. The center of the �lters are now set on the MIDI notes n0 2
[nmin ; nmin + 1

R ; nmin + 2
R ; : : : ; nmax ].
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Each �lter can be de�ned by the function

Hn 0(f k ) =
1
2

tanh(� (1 � 2x)) +
1
2

(3.17)

where x is the relative distance between the center of the �lter n0 and the frequencies of
the Fourier transform: x = Rjn0 � n(f k)j. The �lters are equally spaced and symmetric
in the logarithmic semitone pitch scale, extend from n0 � 1 to n0 + 1 with a maximum
value at n0. The values of the semi-tone pitch spectrumNF F T (n0) are then obtained by
multiplying the Fourier transform values A(f k ) by the set of �lters Hn0 :

NF F T (n0) =
X

f k

Hn 0(f k )A(f k ) (3.18)

Semitone Pitch Spectrum from the CQT

The CQT is closely related to a semitone pitch spectrum. Let� denote the number
of bins of the CQT per octave. Chroma features are usually represented in a 12-bin
histogram, each bin corresponding to one of the 12 semitonesof the equal-tempered scale.
In the case of � = 12 (semitone spacing), the center frequencies directly correspond to
musical notes of the semitone pitch scale and the computation of the constant Q transform
leads to a semitone pitch spectrumNCQT (n0). Very often, as in the case of the FFT-
based chroma feature computation, a higher resolution is used to get a �ner pitch class
representation. We use here a 36-bins per octave resolution. When � = 36, each note in the
octave is mapped to 3 bins in the chroma and the computed CQT spectrum corresponds
to a 1

6-tone pitch spectrum.

Let f min; 440 be the minimum frequency considered in the signal feature computation
in the ideal case of a perfect tuning. The actual minimum frequency value f min is cho-
sen according to the estimated tuning of the track: f min = f min; 440 � Tref

440 . The center
frequencies are geometrically spaced, according to the frequencies of the equal-tempered
scale:

f k = (2 1=� )k f min (3.19)

As stated in Equation (3.9), the CQT time resolution increases towards higher frequen-
cies. The length of the analysis window decreases with the frequency. Here, the hopsize
is chosen to be equal to the smallest window length.

3.4.1.4 Smoothing

Transient reduction can be done during chromagram computation, as proposed in [Pee06a],
the semitone pitch spectrumNF F T (n0) or NCQT (n0), simply denoted from now by N (n0)
is computed for each framem and is then smoothed over time using a median �ltering.
This provides a reduction of transients and noise. Note thatsmoothing of the semitone
pitch spectrogram strengthens spectral envelope continuity, a physical property; while
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smoothing on the chromagram does not rely on any physical property. This is why the
�ltering is performed on the notes rather than on the chroma vectors.

In general, when increasing resolution, only one �lter per semitone is considered so
that the �nal chroma feature is 12-dimensional and can easily be compared with chord or
key pro�les2. In our chroma feature implementation based on the FFT, for each semitone
n0 2 [nmin ; nmin +1 ; : : : ; nmax ], we select the �lter centered on the exact pitch. For instance,
for a 36-bins per octave resolution, we only consider the �lter centered onn0 = 69 for the
A4 note, not the ones centered onn0 = 68:666 andn0 = 69:333. This can be done because
the tuning is now guaranteed to be 440 Hz. This process also provides a reduction of the
in
uence of noise in the computation of the chroma features.

3.4.1.5 Chroma Spectrum

The mapping between the semitone pitchesn and the semitone pitch classes (chroma)c
is de�ned as:

c(n) = mod ( n; 12) (3.20)

All the semitones pitches corresponding to equivalent pitch classes are added so that
we obtain a sequence of 12-dimensional chroma feature vectors. Each of the 12 binsl of
the chroma vector can be calculated from the semitone pitch spectrum N (n0)as:

C(l) =
X

n 0 so that c (n 0)= l

N (n0); l 2 [1; 12] (3.21)

3.4.1.6 Post-processing: Normalization

The chromagram is in general normalized to provide robustness against variations of dy-
namics. This normalization post-processing step can be done so that the components of
each chroma vector sums to unity, as we do here. This choice isfollowed in many other
works [LB07] [RK08b]. Other methods propose to normalize the chromagram for each
frame by its maximum value [G�06b] [CC05a].

3.4.2 Chroma Based on multiple f0s

In the last few years, the problem of estimating the fundamental frequency, or f 0, of the
signal is a task that has attracted the attention of a growing number of researchers. This
is because it is an extremely important descriptor of the signal. It is largely admitted that
f 0 estimation is equivalent to pitch estimation. In the case of polyphonic music, several
musical notes are played simultaneously and the termmultiple-f0 is used. Themultiple-f0
algorithms allow retrieving the various pitches that have been produced.

The idea of deriving a chroma representation from the output of a multiple pitch
tracking technique comes out naturally. It has been alreadyexplored in [RK08b] and

2A key/chord pro�le is a 12-dimensional template that indica tes the perceptual importance of each note
of the equal-tempered scale within a key or a chord. More details will be given in the next chapters.
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[VPM08] for instance. Here, we are interested in comparing the approaches based on
spectral representation with an approach based on a multiple pitch tracking technique
for chroma features computation. For this, we rely on a multiple-f0 estimation algorithm
proposed by Yeh in [Yeh08] and [YRC08]. We thank C. Yeh for providing his code.

Brie
y, to estimate the pitches of the notes in the audio signal, we use the frame-
basedf 0 estimation algorithm proposed in [Yeh08]. It is based on a score function which
evaluates the plausibility of a set of f 0 hypotheses. It works in four stages.

1. First, an adaptive noise level is estimated in order to classify the spectral peaks into
sinusoids (above the noise level) and noise (below the noiselevel).

2. Secondly, a set off 0 candidates is iteratively extracted until all the signi�c ant sinu-
soidal components are explained.

3. Thirdly, a score function jointly evaluates all the combinations of f 0 candidates.
It is based on four criteria: harmonicity (harmonic matchin g that estimates the
partial frequencies and amplitudes of the hypothetical sources), mean bandwidth
(envelope smoothness), spectral centroid (energy concentration in lower partials)
and synchronicity (synchronous amplitude evolution within a single source).

4. Finally, the best combination of f 0 candidates is selected by a polyphony inference
algorithm.

The output of the multiple-f0 estimation algorithm can be seen as a semitone pitch
spectrum: for each frame, it gives an estimation of the pitchand salience of the notes
present in the signal. This semitone pitch spectrum covers several octaves. It is reduced
to one octave by adding each pitch's intensity to the pitch class of its chroma. The resulting
feature is a 12-dimensional chroma vector.

3.5 Two Problems Related to the Chroma Features

3.5.1 Chroma Features and Harmonics

Let us consider a chroma feature extraction method based on aspectral representation
(FFT or CQT). As explained in part 3.2.3, a note generated by an instrument produces
a set of harmonics. In a spectral representation, we do not directly observe the various
pitches but a mixture of their harmonics that will result in a mixture of non-zero values in
the chroma vector. It is thus important to note that the chrom a vector of a note played by
an instrument does not only contain the pitch classes corresponding to the fundamental
frequency f 0 of the perceived pitchp0 (ignoring octave considerations) but also include a
mixture of their harmonics.

Figure 3.7 shows a chroma feature of a cello C1 note (65; 4Hz) considering various
frequency intervals (from f min = 60Hz to various values off max ) for computation. We can
follow the apparition of the harmonics of the C: C-C-G-C-E-G and so on, as well as of some
other components related to the residual part expressed in Equation (3.3), especially when
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high frequencies are considered in the feature computation. The problem of harmonics in
the chroma features will be further discussed in Chapter 4 ofthis dissertation.
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Figure 3.7: Chroma feature of a cello C1 note considering various frequency intervals
(from f min = 60Hz to f max 2 [100; 2000] Hz) for computation.

3.5.2 Beat-Synchronous Analysis

Most of the works that extract harmonic content information from audio signals rely on
chroma features. In some cases, it can be very useful and evennecessary to perform
a beat-synchronous analysis, that is to compute one featureper beat. The computa-
tion of beat-synchronous chroma features has thus become quite common in harmonic
content analysis models. Beat-synchronous chroma features have been used in many
approaches that attempt to estimate the chord progression of an audio �le, as for in-
stance [BP05], [RSN08], [SIY+ 08], [YKK + 04], [ZR07]. [BP05] argue that beat-synchronous
analysis frames help to overcome noise introduced by transient components in the sound
(drums and guitar strumming) and short ornamentations, thu s minimizing the e�ect of lo-
cal variations. The use of beat-synchronous chroma features is convenient in music similar-
ity and cover song identi�cation tasks [Mad06] [MKL06] [SW05] [BW01] [BW05], especially
when comparing the chord progression of two songs, possiblyat di�erent tempo. Indeed,
this provides invariance to tempo changes [Ell06] [EP07]. Beat-synchronous chroma fea-
tures may be useful for music segmentation and music structure detection, in particular
in approaches that combine harmonic and metrical information and need to work with
features related to the meter [PP08b] [Mad06].

In this section, we wish to underline several issues relatedto the use of beat-
synchronous chroma features. We shall conduct in Section 3.6.3 several experiments that
illustrate our purpose. In Chapter 5, we shall propose a model that takes into account
interaction between chords and downbeats. The proposed model requires features related
to the meter. We will use one single input vector per beat/tactus (or per half-beat/tatum).
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3.5.2.1 Towards a Beat-Synchronous Analysis

Beat-synchronous chroma features can be obtained in various manners.

In the case of a �xed resolution analysis (using a FFT), beat-synchronous chroma
vectors can be obtained from the frame-by-frame analysis intwo ways.

1. We can either compute a frame-by-frame chromagram using a�x length of analysis
frame and then averaging the chromagram according to the tactus/tatum positions
(see Figure3.8, top). In what follows, we will refer to this approach as abeat-average
analysis denoted by BAV . This approach is adopted in [EP07].

2. Or we can perform a beat-synchronous analysis by using an adaptive window length
that is de�ned by the beat positions (see Figure 3.8, bottom). In this case, each
analysis frame corresponds to a beat and there is no overlap between successive
frames. In what follows, we will refer to this approach as abeat-adaptive analysis
denoted by BAD . This approach is adopted for instance in [ZR07].

Figure 3.8: Two FFT-based beat-synchronous analysis: a)BAV , b) BAD . Dashed lines
correspond to the frames that are not taken into account in the computation of the beat-

synchronous chroma vector.

In the case of multi-resolution analysis, the length of the window is determined by the
frequency. The beat-synchronous chroma features can thus only be obtained by averaging
frames according to beat locations. This approach is adopted in [BP05].

The various investigated methods for chroma features computation are listed in Table
3.3.

A more detailed discussion about beat-synchronous chroma features with quantitative
evaluation follows in part 3.6.3.

3.5.2.2 Problem of Mixing Harmonies

Let us consider a simple case of chord progression with one chord change per beat. Let
c1; c2; c3; : : : denote the successive chroma features computed on overlapping frames. Let

Joint Estimation of Musical Content Information From an Aud io Signal



48 Towards a Signal Representation for Harmonic Content Ana lysis

Table 3.3: Summary of the investigated methods for computing the chroma features.
FFTL / FFTS : frame-by frame FFT-based method using a long (0:5s)/short(0 :125s) anal-
ysis window, CQT: CQT-based method,BAV : beat averaged analysis, BAD : beat adaptive

analysis.
FFT CQT

Frame-by-frame
F F T L 0:5s

CQT
F F T S 0:125s

Beat-synchronous
F F T L B AV

CQT B AVF F T S B AV
F F T B AD

bk and bk+1 denote two successive beat positions andNk denote the number of overlapping
chroma vectors that are comprised betweenbk and bk+1 .

A common approach used to obtain a beat-synchronous chroma feature Ck is to com-
pute the average of theNk overlapping frames that are comprised between two considered
beat positions bk and bk+1 (see for instance [BP05], [PP08b], [Ser07]):

Ck =
1

Nk

X

bk � n<b k +1

cn (3.22)

This is illustrated in Figure 3.9. This method will be referr ed to asBAV mean method
or as BAV method when there is no ambiguity.

Figure 3.9: Computation of a beat-related feature by averaging overlapping frames be-
tween two successive beat positionsbk and bk+1 . Solid lines correspond to the frames
that are taken into account in the computation of the beat-related chroma feature. The
grey areas correspond to information related to harmony that does not correspond to the

considered chord.

Another possible way of computing beat-synchronous chromafeatures from frame-
based features is to take the median (in the time direction) over all the chroma frames
falling between two consecutive beat positions [MND09]. This will be referred to as the
BAV median method. We will compare the two possibilities in part 3.6.3.

Ideally, the beat-synchronous chroma features should capture the harmonic content of
each single chord. However, some spectral information thatcomes from adjacent chords
is mixed with the spectral information of the considered chord, as represented in Figure
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3.9. The amount of spectral information coming from the adjacent chords increases with
the length of the analysis window. It would be thus desired touse small window lengths.
This is in con
ict with the need of su�ciently large windows f or resolution considerations.
We thus need to make a trade-o� between considering low pitchfrequencies and mixing
spectral information between adjacent chords.

Let us illustrate this on an example: Chopin's Study op. 25 no10 (Octaves). The
opening of this study, represented in Figure 3.10, consistsof a series of eight-note-tuplets
octaves in cut time, played at a very fast tempo,Allegro. There is one chord per eight-note
and each chord corresponds to a single note played at four di�erent octaves (in practice
adjacent chords may mixed up because of the use of the pedal).

Figure 3.10: Opening of the Chopin Study Octaves.

Figure 3.11 represents three variations of the FFT-based chromagram computed on
the considered music excerpt and averaged on the eighth notes.
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Figure 3.11: FFT-based chromagram computed on the beginning of the Chopin Study
Octaves. From left to right: FFTL BAV , FFTSBAV , FFT B AD . The blank\+" signs
represent the successive notes played at four di�erent octaves, according to Figure 3.10.

It can be seen that the chord transitions are much clearer in the case ofbeat-adaptive
analysis than in case ofbeat-average analysis. However, if we look at the semitone pitch
spectrum, Figure 3.12, we can distinguish chromatic scalesat 4 di�erent octaves in case
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FFTL BAV whereas some notes in the low frequencies are not correctly detected in cases
FFT B AD and FFTSBAV . This is because the analysis is done using a window that is
too short regarding the frequency resolution that is needed. A longer analysis window
would be required to detect precisely the low octaves notes.
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Figure 3.12: FFT-based semitone pitch spectrum computed on the beginning of the
Chopin Study Octaves. From left to right: FFTL BAV , FFTSBAV , FFT B AD .

The problem of mixing the harmonic content of two di�erent ch ords in one beat-
synchronous chroma vector occurs at the point where the harmony changes. The Chopin's
study example is an extreme case. In general the harmony of a piece changes much slower,
especially in popular music where very often the chords haveduration of a measure or
half a measure (even if this is not a rule). On the one hand, thelonger the length of the
analysis window is, the more undesirable harmonic information from the adjacent chords
the beat-synchronous chroma feature will capture. On the other hand, a su�ciently long
window is required to detect precisely the low pitches notes. This trade-o� should be kept
in mind when using beat-synchronous features.

3.5.2.3 In
uence of the Position of an Adaptive Window

We now consider the case of abeat-adaptive analysis. The choice of the position of the
window according to the beat location is not trivial. In our v iew, the most logical solution
would be to center the analysis window exactly between two beats. In this case, the
problem of mixing several harmonies within the same beat does not exist. However,
experiments have shown that the best position of the adaptive window depends on the
music style (see Section 3.6.3.2).
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3.6 Selecting a Feature Vector for Harmonic Analysis

In this Section, we evaluate and compare the three presentedchroma representations. We
do not intend to compare the numerous chroma feature extraction methods proposed in
the literature but we intend to draw some general conclusions concerning the use of chroma
features extracted either from a �xed resolution analysis,a multi-resolution analysis or a
multi-f0 pitch tracking approach.

3.6.1 De�ning a Measure to Compare Various Features

Selecting an input feature among others is a complex task. First of all, we need to
de�ne the criteria that are relevant for comparison. The potential superiority of a feature
above another depends on their �nal use. The various presented features exhibit di�erent
weaknesses and strengths. Choosing one input feature amongthe others is a result of a
compromise. We aim here at selecting the most appropriate chroma representation for the
harmony related tasks (key or chord recognition). The best candidate should provide the
most reliable information about the notes that comprise the played chord.

The problem of selecting the best front-end representationfor a given task has already
been studied in some previous works. For instance [Dav07] compares the performances of a
downbeat tracker using three di�erent spectral representations (a constant-Q spectrogram,
a 36-bin chromagram and a 12-bin chromagram), [MEK09] compares the robustness to
timbre changes of a newly proposed chroma representation with some commonly used
chroma types including two freely available chroma representations 3.

However, we are not aware of any systematic analysis and comparison of the large
number of previously proposed chroma representations except two recent studies that
investigate the use of various chroma representations. [VPM08] investigate six formerly
proposed algorithms and proposes a new scheme based on multipitch tracking for chroma
vector computation. [SSG+ 09] analyzes and compares di�erent methods for audio chroma
feature extraction. These two studies lead to di�erent results concerning the performances
of the chroma features. For instance, in [SSG+ 09], the Enhanced Pitch Class Pro�les
originally proposed in [Lee06a] are found to perform betterthan the Instantaneous Fre-
quency spectrum-based chroma vectors [EP07], whereas the opposite conclusion is claimed
in [VPM08]. This can be explained by the fact that di�erent pe rformance measures and
di�erent evaluation test-sets are used in the two studies. This shows that comparison
between chroma features is not a trivial point.

We investigate here the three above-mentioned chroma-based representations (FFT,
CQT, f 0) through the analysis of experimental results obtained ona number of music
audio excerpts.

3Ellis: \Chroma features analysis and synthesis," http://w ww.ee.columbia.edu/dpwe/
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3.6.1.1 Previously proposed measures

In the literature, we can distinguish between two approaches for comparing front-end fea-
tures. On the one hand, the features are compared through theresults of an application.
For instance, [DBSD04] compares the e�ects of using a �xed resolution spectral analysis
or a multi-resolution subband approach in the context of onset detection. To evaluate
and compare the two methods, a measure of onset detection accuracy is de�ned and com-
puted over a set of recordings. [NM06] proposes a study that investigates the e�ects of
low-level digital signal processing parameters (such as the analysis window length) for an
HMM-based key estimation algorithm. One set of parameters is selected as a reference
setting. The e�ect of changing the other parameter values ismeasured by evaluating key
estimation performance of the algorithm on two di�erent test-sets of real audio record-
ings (110 Beatles songs plus 48 piano recordings of all preludes and fugues from J.S.
Bach). [Dav07] investigates the use of three beat-synchronous spectral representations for
detecting bar boundaries based on harmonic changes ((i) a constant-Q spectrogram (ii), a
36 bin-chromagram; and (iii) a 12-bin chromagram). The comparison between the di�erent
spectral front-ends is done through the downbeat tracking performance results.

The drawback of these approaches is that the features are compared through a complex
process in which, in general, not only the type of features used as front-end are evaluated
but also other parameters that have an impact on the result. It is thus di�cult to analyze
the results and to distinguish between di�erences due to thetype of the feature and
di�erences due to other parameters.

On the other hand, features can be compared using a speci�c evaluation measure that
is supposed to measure their quality. In [VPM08], a large-scale experimental evaluation
is performed to compare a newly proposed chroma representation based on multiple pitch
tracking techniques with six other schemes. The experimental evaluation is performed by
measuring the similarity of the novel and the previous chroma representation with \ideal"
pro�les retrieved from manually labeled chords on a data setconsisting of 161 30s-length
real audio excerpts covering di�erent tempi and genres. Thegoal of the experimentation is
to quantify the closeness between each computed chroma pro�le and the annotated chord
pro�le. It relies on the argument that the better the resembl ance is, the more accurate
the chord detection will be. To quantify the similarity betw een the computed chroma
pro�les and the annotated chord pro�les, for each chord segment, the computed chroma
Vc is compared to the annotated chroma vectorVa consisting of 1 when the note belongs
to the chord and 0 otherwise using a cosine similarity distance S de�ned as

S(Vc; Va) =
(VcjVa)

kVckkVak

To measure the quality of the tested algorithm two measures are used: the mean cosine
similarity across all chord segments and the mean reciprocal rank (MRR) [EP07]. The
various chroma representations are ranked according to their mean cosine similarity.

[SSG+ 09] analyzes and compares di�erent methods for audio chromafeature extraction
using 55 audio tracks synthesized from MIDI �les. This database is built considering four
parameters: pitch, chord type, duration and attack. Evaluation of the chroma feature
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extraction methods is done through a set of measures that arerelated to the so-called
Chroma Precision (CP). For each computed feature vectorVc, the intensities of the pitch
classes corresponding to the tonal content of the input signal are added:

CP(Vc) =
P 12

i =1 I (Vc) � s(i ))
P 12

i =1 I (Va)
; s(i ) 2 [0; 1]

This evaluation measure is close to the one proposed in [VPM08] since the chroma is
considered all the more precise when it is close to a bit mask representing the tonal
content of the input signal.

We do not agree with the argument that \the better the resemblance is, the more
chance there is that the computed chroma pro�le can give riseto an accurate chord
detection and classi�cation" [VPM08]. Indeed, the goal of chord estimation is to select a
chord among a set of chord candidates. Resemblance with the annotated chord is thus only
important regarding resemblance with the other possible chords. A greater resemblance
with an annotated chord does not result automatically in an improved accuracy of chord
detection (see an example in Section 3.6.1.2, Figure 3.13. In other words, the discriminative
power of the chroma vectors must be taken into account in the evaluation measure.

To measure the quality of the various representations regarding chord estimation, we
should consider the following three conditions:

1. (i) First, the notes present in the chord should be clearlyemphasized in the chroma
feature.

2. (ii) Secondly, the similarity between the computed chroma feature and the chord
templates that do not correspond to the annotated (ground-truth) chord should be
weak.

3. (iii) Finally, the similarity between the computed chrom a feature and all possible
chord templates should be maximum with the template corresponding to the anno-
tated chord.

The best chroma feature should be thus selected as the one that gives the maximum
discriminative power.

The idea of measuring the performance of a feature extraction method in relation to
its discriminative power is presented in [MEK09]. In this paper, a method for making
chroma features more robust to changes in timbre and instrumentation is presented. The
novel chroma feature is quantitatively compared with three commonly used chroma types
that serve as reference. Two types of experiments are conducted.

1. The �rst experiment is conducted on synthesized audio. A MIDI �le containing
various chords is synthesized into 24 di�erent ways using 8 di�erent instruments
playing the �le in 3 di�erent octaves and considering two cases: the attack and the
sustain phase. A class composed of the 48 computed chroma vectors is formed for
each chord. The distance between two chroma vectors is computed using the cosine
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distance. Three measures are computed to quantify the degree of timbre invariance
of a given chroma type: the within-class distance� 1 (corresponding to the average
over the distances computed between any two chroma vectors that belong to the
same class) that measures the degree of timbre invariance and the between-class
distance � 0 (corresponding to the average over the distances computed between
any two chroma vectors from di�erent chord chroma classes) that measures the
discriminative power of the chroma representation. Finally, the inertia ratio � = � 1

� 0

expresses the across-class distance relative to the within-class distance.

2. The second set of experiments is conducted on real audio data. The newly proposed
chroma features are compared to the previously proposed ones by means of several
performance measures that allow comparing a query sequencewith a given database
sequence.

3.6.1.2 Proposed Measure for Chroma Feature Comparison

To compare the di�erent chroma feature extraction methods, we propose a measure that
quanti�es the quality of a chroma vector in terms of representation of the harmonic content
of the signal.

From the previous observations, in order to measure the quality of the various pro-
posed features, we follow the approaches proposed in [SSG+ 09] and [VPM08] and compare
each computed chroma feature with the input signal using a bit mask composed of zeros
and ones that represents the tonal content of the input signal (the ground-truth chord).
The chord template contains a 1 if the pitch class belongs to the chord and a 0 if it
does not. For instance, a C major chord template (C-E-G) has the following format:
[1,0,0,0,1,0,0,1,0,0,0,0]4 .

We use a measure inspired from the one proposed in [MEK09] to quantify the
resemblance between the computed and the theoretical chroma against the resemblance
between the computed chroma vector and the other possible chords. In our experiments,
we consider only the 24 major and minor triads. The chord templates are denoted by
Ti ; i 2 [1 : 24]. Distances between the computed chroma vectors and the theoretical chord
templates are computed using a cosine similarity distance,as in [VPM08]. We restrict
here our analysis to this commonly used distance measure butit is important to note
that the type of the distance used to compare two chroma features has an impact on the
results, as shown in [OGF09a]. We plan to pay more attention to this point in future works.

Let us consider a given input audio chord corresponding to an\ideal" template Ti and
let C denote a chroma vector computed on this audio signal. According to condition (i) the
chroma feature should match as closely as possible the theoretical template corresponding
to the chord. The correct-chord distanceDCC is computed as:

DCC (C) =
C:Ti

kCkkTi k
(3.23)

4Note that for the sake of simplicity, we do not consider here t he problem of harmonics evoked in
paragraph 3.2.2.1 and we do not consider harmonics in the theoretical templates that represent the input
signal. We will give more attention to this issue in the next c hapter.
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We now consider condition (ii). We aim to �nd a measure that characterizes the
discriminative power of a chroma representation. Our �rst idea was to use a measure
similar to the between-class distance employed in [MEK09]: the average distance over
any computed chroma vectorC and any chord template that does not correspond to the
annotated chord:

Dav (C) =
1
23

X

j 6= i

C:Tj

kCkkTj k
(3.24)

However, this measure does not re
ect the discriminative power of a chroma representation.
Indeed, the computed chroma vector might be even more similar to an other chord than
to the annotated chord although the value Dav is small.

To illustrate this, consider Figure 3.13, which representsa multi-f0 based chroma
representation (top, left) and a CQT based chroma representation (bottom, left) of an F
major chord (F-A-C) extracted from the Beatles song Misery. Let us denote these two
vectors by Cf 0 and CCQT respectively. The right part of the �gure represents the values
of the correct-chord distance computed between the extracted chroma and the 24 chord
templates.

It can be seen that the value DCC (Cf 0) = 0 :9120 is much larger than the value
DCC (CCQT ) = 0 :6382. However, the amplitude of the A note inCf 0 is very small (this
is probably due to the fact that the considered frame is disrupted by a drum sound that
makes multi-f0 estimation di�cult). As a result, the comput ed chroma vector is closer to
an Fm chord than to a FM chord (see the dashed circle in the right part of Figure 3.13,
top). On the contrary, the FM chord is well discriminated fro m the others in the case of
CCQT .

Let us compute the distanceDav for the two representations. For Cf 0, we obtain a
value of 0:2212 and a ratio D CC

D av
= 4 :1227. This is much larger than the valueD CC

D av
= 2 :7378

obtained in the case ofCCQT , although the annotated chord is clearly better discriminated
using the constant-Q based approach. The poor discriminative power of Cf 0 over CCQT

in the example is not represented using the average distanceDav between the computed
chroma vector and any chord template that does not correspond to the annotated chord.

To take into account the discriminative power of the chroma features (condition (ii)),
we de�ne the incorrect-chord distanceD IC as:

D IC (C) = max
j 6= i

C:Tj

kCkkTj k
(3.25)

The ratio DCIC = D CC
D IC

expresses the correct-chord distance relative to the incorrect-
chord distance. The mean value of the distancesDCIC computed over all the frames of
the test database, denoted by �DCIC is used to measure the quality of a given chroma
representation. A good chroma representation should result in a large value of �DCIC .

Finally, to take condition (iii) into account, we also compu te the rate of correctly
detected chords using a given chroma representation, whichis given by the percentage
of chords for which the similarity between the computed chroma feature and the chord
templates is maximum for the template corresponding to the annotated chord. Note that
this is equivalent to the condition DCIC > 1. In the following tables of results, this will
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Figure 3.13: Chroma representations of a AM chord and similarity with the chord tem-
plates using a multi-f0 based approach [top] and using a CQT based approach [bottom].
The grey rectangles indicate the amplitude of the notes composing the FM chord. The

grey circles indicate theDCC values.

be referred to as \% of correct chords".

3.6.2 Database for Feature Selection

The various presented chroma feature extraction methods were analyzed and compared
through a database consisting of a number of short excerpts of about 20 seconds extracted
from audio recordings and hand-labeled in chords (major andminor triads) by the au-
thor. The chords are annotated against a time grid de�ned by the beats. The database is
divided into non-percussive audio (DATClas ) and percussive audio (DATPop ). DATClas
corresponds to extracts of classical music with various instruments and DATPop corre-
sponds to audio excerpts of popular and rock music containing voices and drum sounds.
These two databases are described in details in Chapter 2, Section 2.3.1.

3.6.3 On the use of a Beat-Synchronous Analysis

In this section, we give a quantitative analysis of the use ofbeat-synchronous chroma
features. We �rst discuss the e�ect of using beat-synchronous chroma features instead of
frame-by-frame features in terms of capturing the harmoniccontent of a piece. We then
study the in
uence of the position of an adaptive window according to the beat positions.
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3.6.3.1 Beat-Synchronous Versus Frame-by-Frame Analysis

The results of comparison between frame-by-frame versus beat-synchronous analysis for
the various considered methods are given in Table 3.4. We give the mean value and the
standard deviation of the various evaluation measures computed over all the frames of the
test-set. The chord estimation results are illustrated in Figure 3.14.

Table 3.4: Similarity measure for comparing frame-by-frame versus beat-synchronous
(BS) analysis. DATPop : Popular music database,DATClas : Classical music database.

SS: Statistical signi�cance.
DATPop

f 0 f 0BAV F F TL F F TL BAV F F TS F F TS BAV CQT CQT B AV
�D CC 0:6361 �

0:0971
0:6347 �
0:0968

0:4921 �
0:0751

0:4928 �
0:0757

0:4423 �
0:0500

0:4416 �
0:0501

0:5118 �
0:0683

0:5133 �
0:0679

�D IC 0:8209 �
0:0375

0:6503 �
0:0776

0:4872 �
0:0666

0:4768 �
0:0634

0:4812 �
0:0429

0:4622 �
0:0384

0:5120 �
0:0618

0:4922 �
0:0550

�D CIC 0:7835 �
0:0946

0:9723 �
0:0767

1:0078 �
0:0520

1:0297 �
0:0493

0:9269 �
0:0608

0:9590 �
0:0609

0:9973 �
0:0540

1:0399 �
0:0455

% Cor-
rect

26:3954�
8:6968

59:6364�
20:1500

63:5549�
11:2007

66:8039�
12:8174

46:9668�
14:4024

49:8616�
15:2406

61:5483�
11:8779

70:3990�
10:2607

SS yes yes yes yes

DATClas
f 0 f 0BAV F F TL F F TL BAV F F TS F F TS BAV CQT CQT B AV

�D CC 0:7349 �
0:0584

0:7358 �
0:0577

0:6030 �
0:0893

0:6046 �
0:0856

0:5857 �
0:0755

0:5844 �
0:0717

0:6159 �
0:0768

0:6185 �
0:0738

�D IC 0:8075 �
0:0438

0:7107 �
0:0343

0:6037 �
0:0516

0:5881 �
0:0504

0:5969 �
0:0387

0:5750 �
0:0346

0:6162 �
0:0404

0:5955 �
0:0431

�D CIC 0:9280 �
0:1129

1:0435 �
0:1220

1:0004 �
0:0741

1:0300 �
0:0771

0:9884 �
0:0813

1:0199 �
0:0862

1:0045 �
0:0703

1:0412 �
0:0722

% Cor-
rect

39:4648�
21:5594

73:4211�
15:1892

66:4417�
12:7790

70:7845�
13:0598

64:6579�
15:0906

68:5439�
16:4696

67:6692�
12:6419

73:1704�
14:7149

SS yes yes yes yes

It can be seen that, for all the methods, the use of beat-synchronous features improves
the results. Using a paired sample t-test, we found the di�erence between the results of
the beat-synchronous and frame-by-frame analysis to be statistically signi�cant at the
5% level5.

This corroborates the results obtained by Bello & Pickens in [BP05]: the use
of beat-synchronous analysis frames helps overcome noise introduced by transient
components in the sound, short ornamentations and passing notes. Averaging the
analysis windows between two beats results in some smoothing. Of course, we need
for this that the beat positions are correctly detected. This may not be the case in
real situations. In [Bel07], Bello compares beat-synchronous with frame-based chroma
features for the purpose of cover song retrieval. It is foundthat, due to errors in the beat

5The number of analysis frames is di�erent between the beat-synchronous and the frame-by-frame
analysis. We thus computed a score for each audio excerpt andperformed the t-test using each excerpt as
a sample.
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Figure 3.14: Chord estimation results on DATPop (left) and DATClas (right) for frame-
by-frame (black bars) versus beat-synchronous (BAV ) analysis: BAV mean in dark grey,

BAV median in light grey.

tracking, the frame-based analysis consistently outperforms the beat-synchronous analysis.

It can be seen that the use of long analysis windows (casesFFTL and CQT for low
frequencies) leads to higher chord estimation results thanwhen using a short analysis
window, even if more undesirable information from the adjacent chords is captured by
the beat-synchronous chroma vectors. This is probably due to the fact that we need
su�ciently long windows to capture the bass notes, which are in general the most
important information for chord estimation.

Figure 3.14 shows that the results are di�erent according to whether the beat-
synchronous features are computed with methodBAV mean (mean) or with method
BAV median (median). However, the results are not statistically signi�cant. Tests on a
larger database would be required to possibly decide which method is the best.

3.6.3.2 In
uence of the Position of an Adaptive Window

In this section, we present some experiments that we conducted to study the in
uence of
the position of the beat-adaptive window according to the beat positions. The di�erent
tested center positions are represented in Figure 3.15.

Figure 3.16 and Table 3.5 present the results obtained when centering the beat syn-
chronous window on di�erent positions, using the proposed evaluation measures. Note
that the adaptive analysis window corresponding to a pair ofsuccessive beat positionsbk

and bk+1 has a length ofbk+1 � bk .

In the case of popular music (DATPop ), the best results are obtained when the
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Figure 3.15: Di�erent tested center positions of the beat-adaptive window: on the beat
(B), on the beat plus a 1

5-beat duration shift, on the beat plus a 1
4-beat duration shift

(solid lines), on the middle of the two beats (M), on the middle of the two beats plus a
1
5-beat duration shift, on the middle of the two beats plus a 1

4-beat duration shift (dashed
lines).

Table 3.5: Similarity measure between extracted chroma features and chord templates
and percentage of chords that have been correctly detected for investigating the in
uence
of the position of beat adaptive windows. B : on the beat, M : between two beats (middle).

DATPop : Popular music database,DATClas : Classical music database.
DATPop

B B + 1
5 B + 1

4 M M + 1
5 M+ 1

4
�D CC 0:4471 �

0:0759
0:4815 �
0:0848

0:4946 �
0:0821

0:5089 �
0:0672

0:4977 �
0:0713

0:4911 �
0:0739

�D IC 0:4603 �
0:0687

0:4846 �
0:0715

0:4964 �
0:0702

0:5107 �
0:0604

0:5204 �
0:0667

0:5183 �
0:0684

�D CIC 0:9710 �
0:0507

0:9906 �
0:0596

0:9942 �
0:0600

0:9952 �
0:0454

0:9535 �
0:0650

0:9457 �
0:0718

% Correct 53:6962 �
11:1792

58:1196 �
11:8082

60:1012 �
12:6013

61:8671 �
10:5671

53:4751 �
8:4631

52:4971 �
8:5302

DATClas
B B + 1

5 B + 1
4 M M + 1

5 M+ 1
4

�D CC 0:5478 �
0:0398

0:6133 �
0:0482

0:6244 �
0:0561

0:6219 �
0:0893

0:6272 �
0:0910

0:6208 �
0:0909

�D IC 0:5906 �
0:0463

0:6221 �
0:0282

0:6255 �
0:0287

0:6283 �
0:0400

0:6304 �
0:0418

0:6201 �
0:0443

�D CIC 0:9413 �
0:0587

0:9918 �
0:0652

1:0058 �
0:0809

0:9939 �
0:0950

1:0027 �
0:0843

1:0083 �
0:0796

% Correct 56:2206 �
6:5431

66:1654 �
11:7777

70:4536 �
14:6333

68:3559 �
17:5472

67:2632 �
13:3461

67:4561 �
13:4273

window is centered exactly between two beats. Using a pairedsample t-test, we found
the di�erence between window positions B and M to be statistically signi�cant at the
5% level. Moreover, the more information from adjacent chords is taken into account, the
worst the results are. The huge increase in the results from position B to position B + 1

5
may be due to the fact that, by placing the center of the windownot exactly on the beat,
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Figure 3.16: Results of comparison of an adaptive window analysis. On thebeat (B),
on the beat plus a 1

5-beat duration shift, on the beat plus a 1
4-beat duration shift, on the

middle of the two beats (M), on the middle of the two beats plusa 1
5-beat duration shift,

on the middle of the two beats plus a1
4-beat duration shift. Black bars (left) correspond to

the results obtained onDATPop and grey bars (right) correspond to the results obtained
on DATClas.

we avoid taking into account part of the noise introduced by transient components in the
sound.

It is interesting to notice that the results are di�erent in t he case of classical music
(DATClas ). In this case, the best results are not obtained when the window is centered
exactly between two beats. A deeper analysis shows that the best position of the adaptive
window depends on the music style.

In our test-set, we have 6 excerpts of piano Mozart sonatas. Each beat can be asso-
ciated with a chord. Notes composing the chord are played in general on the beat, and
ornamental notes, passing notes or scales that do not belongto the chord usually follow
them. As a result, the chroma features computed between two beat positions capture
some harmonic information that does not correspond to the underlying harmony.

For all of the other classical music pieces, the best resultsare obtained when the
window is centered exactly between two beats (caseM ). We can also notice that the worst
results are obtained when the center window is positioned onthe beats B . This corre-
sponds to the case where the most information from adjacent chords is taken into account.

3.6.3.3 Conclusion on Beat-Synchronous Analysis

Many algorithms related to music content analysis rely on beat-synchronous features.
We have investigated the consequences of using beat-synchronous chroma features for
harmonic content analysis. We have shown that it increases the chord estimation results
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under the assumption of perfect beat tracking. Analysis andexperiments show that it is
necessary to make a trade-o� between having a satisfying frequency resolution and mixing
the harmonic content of two di�erent chords in one beat-synchronous chroma vector. We
have also shown that in the case of a beat-adaptive analysis,the choice of the window
position depends on the music style.

3.6.4 Fixed versus Multi-resolution Analysis

The results of comparison between �xed versus multi-resolution chroma feature extraction
over databasesDATClas DATPop are represented in Table 3.6, in which we give the
mean value and the standard deviation of the various distances computed over all the
beat-synchronous frames of the test-set. They are illustrated in Figure 3.17.

Table 3.6: Similarity measure between extracted chroma features and chord templates
and percentage of chords that have been correctly detected for comparing �xed versus
multi-resolution chroma feature extraction. From left to r ight: FFTL BAV FFT using
a long analysis window (0:5s), FFTSBAV FFT using a short analysis window (0:125s),
FFT B AD beat-synchronous FFT,CQT BAV CQT. SS: Statistical signi�cance between the

considered FFT-based approach and the CQT-based approach.
DATPop

F F TL BAV F F TS BAV F F T B AD CQT B AV
�D CC 0:4928 �

0:0757
0:4416 �
0:0501

0:5089 �
0:0672

0:5133 �
0:0679

�D IC 0:4768 �
0:0634

0:4622 �
0:0384

0:5107 �
0:0604

0:4922 �
0:0550

�D CIC 1:0297 �
0:0493

0:9590 �
0:0609

0:9952 �
0:0454

1:0399 �
0:0455

SS yes yes yes
% Cor-
rect

66:8039 �
12:8174

49:8616 �
15:2406

61:8671 �
10:5671

70:3990 �
10:2607

DATClas
F F TL BAV F F TS BAV F F T B AD CQT B AV

�D CC 0:6046 �
0:0856

0:5844 �
0:0717

0:6219 �
0:0893

0:6185 �
0:0738

�D IC 0:5881 �
0:0504

0:5750 �
0:0346

0:6283 �
0:0400

0:5955 �
0:0431

�D CIC 1:0300 �
0:0771

1:0199 �
0:0862

0:9939 �
0:0950

1:0412 �
0:0722

SS yes yes yes
% Cor-
rect

70:7845 �
13:0598

68:5439 �
16:4696

68:3559 �
17:5472

73:1704 �
14:7149

As explained above, a �xed-resolution analysis is the result of a trade-o� between a
good temporal resolution (short analysis window length) and a good spectral resolution
(long analysis window length). The results presented in Table 3.6 show that the CQT-
based approach outperforms the FFT-based approach, especially in the case of percussive
music.

Joint Estimation of Musical Content Information From an Aud io Signal



62 Towards a Signal Representation for Harmonic Content Ana lysis

f0 FFT,long FFT,short FFT,BAd CQT 

50

55

60

65

70

Type of chroma representation

C
ho

rd
 r

ec
og

ni
tio

n 
ra

te
 (

in
 %

)

Figure 3.17: Results of comparison between various chroma-based representations.
Black: DatPop, grey: DatClas.

We performed a paired sample t-test to determine whether there is a signi�cant
di�erence between the results obtained with the two approaches. The null hypothesis
could be rejected at the 5% signi�cance level, which indicates that the FFT based
features are outperformed by the CQT based features. The di�erences, although small,
are statistically signi�cant.

We illustrate these results on an example. Let us consider the beginning of the Beatles
song Love Me Do. Figure 3.19 and 3.18 represent respectively the chromagram and the
semitone pitch spectrum of the �rst seconds of this song. Theharmony is waving between
C major and G major chords. In the case of the CQT, all chord changes are correctly
detected whereas in the case of the FFT, the C major chords areconsidered as G major
chords.

If we listen to the music, we can hear that the harmony given bythe accompaniment
is covered by the melody played by the harmonica. When C major(C-E-G) chords occur,
the bass (the C note) is hardly audible. The duration of the C2midi note played by the
bass is very short.

� FFT long analysis window: We consider a chroma feature extraction based on a
FFT using a long analysis window length of 0:5s. We can see in the left part of Figure
3.19 that the C note of the �rst C major chord is not accurately discriminated from
the other pitch classes on the chromagram. Looking at the semitone pitch spectrum
(see left part of Figure 3.18), it can be seen that the semitone pitch-class spectrum
is blurred (due to the percussive sounds).

� FFT short analysis window: We consider the case where a smaller analysis
window is used. It is now set to 125ms. The semitone pitch-class spectrum and
the chromagram are respectively represented in the middle part of Figures 3.18 and
3.19. It can be seen that the C2 note is not detected anymore (see the 21st frame of
the chromagram). This is because the frequency resolution is too low.
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Figure 3.18: Pitch class spectrum of the �rst seconds of the songLove Me Do. From
left to right: FFTL BAV , FFTSBAV and CQT BAV .
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Figure 3.19: Chromagram of the �rst seconds of the songLove Me Do. From left to right:
FFTL BAV , FFTSBAV and CQT BAV . The horizontal lines correspond to the annotated

chords (ground truth).

� Constant-Q transform: The use of a constant-Q transform to compute the chro-
magram allows a better management of the time-frequency trade-o� problem. The
use of long windows in low frequency allows detecting accurately the bass line (G-D-
C) whereas the use of short windows in higher frequencies allows reducing the e�ects
of percussive sounds. This is illustrated in the right part of Figure 3.19.

This example illustrates that the multi-resolution based approach can be an answer
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to the trade-o� between the temporal and spectral resolution of the FFT. The constant-
Q based approach itself presents some drawbacks (for instance regarding the problem
of computing beat-adaptive related features, as explainedbelow) but it seems a more
powerful chroma feature, especially for popular and rock music, that contains in general
lots of percussive sounds.

3.6.5 Multi-f0s Versus Spectral Representation

Table 3.7 presents the results obtained using a multi-f0s based approach for chromagram
computation and using a constant-Q based approach. See alsoFigure 3.17.

Table 3.7: Similarity measure between extracted chroma features and chord templates
and percentage of chords that have been correctly detected for comparing multi-f0s (left)

versus constant-Q based chroma feature extraction.
DATPop

multi-f0s CQT Statistical
signi�-
cance

�D CC 0:6347 �
0:0968

0:5133 �
0:0679

�D IC 0:6503 �
0:0776

0:4922 �
0:0550

�D CIC 0:9723 �
0:0767

1:0399 �
0:0455

% Cor-
rect

59:6364 �
20:1500

70:3990 �
10:2607

yes

DATClas
multi-f0s CQT Statistical

signi�-
cance

�D CC 0:7358 �
0:0577

0:6185 �
0:0738

�D IC 0:7107 �
0:0343

0:5955 �
0:0431

�D CIC 1:0435 �
0:1220

1:0412 �
0:0722

% Cor-
rect

73:4211 �
15:1892

73:1704 �
14:7149

no

It is di�cult to decide which one of the chroma representatio ns based on multi-f0s and
constant-Q transform is the best. Both have proved in previous works to give good results
as shown during the MIREX 2008 audio chord detection contestwhere a method using a
CQT-based chroma representation [BP05] and a method using af0-based chroma repre-
sentation [RK08a] were among the three approaches that gavethe best results. Note that
the multi-f0 based approach is more recent (probably because it follow the advances of
multi-f0 estimation) and has been used in a smaller number ofworks than the CQT-based
approach. It can be seen in Table 3.7 than in the case of non-percussive audio, the two rep-
resentations yield close results. We performed a paired sample t-test to determine whether
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there is a signi�cant di�erence between the results obtained with the two approaches. In
the case of classical music, the null hypothesis could not berejected at the 5% signi�-
cance level, which indicates that the multi-f0 based features are not outperformed by the
CQT-based features in the case of non-percussive music.

However, in the case of percussive audio (popular and rock music), the constant-Q-
based chroma features clearly outperform the multi-f0 based chroma features. A deeper
analysis of the results shows that multi-f0-based chroma features computed on the pieces
containing a lot of drum sounds give particularly low results as compared to the CQT.
This is because the estimation of the multi-f0 is less accurate in case of percussive audio
containing transient and noise.

Regarding the results obtained in the case of non-percussive audio, we believe that
the multi-f0 approach is very promising. However, to be usable in the case of percussive
audio, the signal should be pre-processed before computation to reduce transients and
noise. A separation between the harmonic and drum parts would probably lead to a
successful use of multi-f0 based chroma features. This has been corroborated by some
preliminary experiments that we conducted on the popular music test database. We have
intended to reduce the transients in the signal using the IRCAM software AudioSculpt 6.
The results (for the f0-based and the CQT-based chroma features) are presented in Table
3.8 and illustrated in Figure 3.20. It can be seen that the performances of the chroma
features seem to be improved using this transient reductionpre-processing step. However,
the results are not statistically signi�cant for the multi- f0 based method. The problem of
reducing transients and noise deserves a full attention andthis is left for future works.

Table 3.8: Similarity measure between extracted chroma features and chord templates
on the popular music database for comparing CQT andmulti � f 0-based chroma features
using (TR) or not a transient reduction pre-processing step. SS indicates statistical sig-
ni�cance between the two cases. We also indicate the percentage of chords that have been

correctly detected.
CQT CQTT R SSCQT f 0 f 0T R SSf 0

�D CC 0:5133 �
0:0679

0:5634 �
0:0600

0:6347 �
0:0968

0:6465 �
0:0804

�D IC 0:4922 �
0:0550

0:5412 �
0:0512

0:6503 �
0:0776

0:6567 �
0:0713

�D CIC 1:0399 �
0:0455

1:0413 �
0:0448

0:9723 �
0:0767

0:9864 �
0:0554

% Cor-
rect

70:3990 �
10:2607

74:3661 �
8:2053

yes 59:6364 �
20:1500

62:9956 �
17:5220

no

We have seen that in the case of percussive audio, the constant-Q based chroma
features clearly outperform the multi-f0 based chroma features. In the rest of this PhD
thesis, we will thus work using constant-Q based chroma features. Another argument
that motivated or choice is that the multi-f0 estimation of a music track and thus the
chroma features based on the f0s is a very costly process in terms of computation time

6AudioSculpt is an application for the musical analysis and p rocessing of sound �les developed at
IRCAM since 1993.
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Figure 3.20: Performances in terms of correct chord recognition rate (in%) of chroma
features using a transient reduction pre-processing step in the case of a CQT-based analysis
(left) and an multi-f0-based analysis (right), for the popular music database. Black bars
correspond to the results obtained without a pre-processing step and grey bars correspond

to the results obtained in the case of a transient reduction pre-processing step.

compared to the computation of chroma features based on the CQT.

3.7 Summary and Conclusion

At the front-end of our models, we extract a chromagram, a representation of the signal
that captures its harmonic content. We explored several schemes for chromagram compu-
tation and investigated several issues related to the use ofeach representation (problem of
noise, beat-synchronous features). We conducted a number of experiments on short audio
excerpts and proposed some evaluation measures that allow the comparison between the
various representations.

We have shown that the use of a beat-synchronous analysis increases the chord estima-
tion results under the assumption of perfect beat tracking. Analysis and experiments show
that it is necessary to make a trade-o� between having a satisfying frequency resolution
and mixing the harmonic content of two di�erent chords in one beat-synchronous chroma
vector. We have also shown that in the case of a beat-adaptiveanalysis, the choice of the
window position depends on the music style.

The Constant-Q based chroma features were preferred to the FFT based chroma fea-
tures. They were found to re
ect more accurately the harmonic content than the FFT-
based chroma features, especially for popular and rock music that contain lots of percussive
sounds: the use of long windows in low frequency allows detecting accurately the bass line,
which is very important for chord estimation, whereas the use of short windows in higher
frequencies allows reducing the e�ects of percussive sounds.

Tests on classical piano music showed that the use of multi-f0 features seems to be a
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promising approach for harmonic content description. However, we did not �nd this rep-
resentation convenient for our system since we do not currently have any harmonic/noise
separation front-end and thus percussive sounds and noise disrupt the multi-f0s estima-
tion, especially in popular music. Moreover, the rest of oursystem is computationally
very e�cient compared to the multi-f0 analysis (far less tim e-consuming). We thus did
not favor the use of multi-f0 based chroma features in the rest of our work.
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Chapter 4

Chord Progression Estimation
From an Audio File

In this chapter, we focus on the problem of the automatic estimation of the chord progres-
sion from an audio �le using chroma features as observation of the music signal. From
the audio signal, a set of chroma vectors representing the pitch content of the �le over
time is extracted. The chord progression is then estimated from these observations using
hidden Markov models. Several methods are proposed that allow taking into account mu-
sic theory, perception of key and presence of higher harmonics of pitch notes. They are
evaluated and compared with existing algorithms through a large-scale evaluation on 110
hand-labeled songs from the Beatles.
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4.1 Introduction

This chapter is devoted to chord progression estimation. Chords are central to our
work. In the global model for musical attribute estimation p resented in this disserta-
tion, we consider harmony as the core around which other musical attributes are organized.

In this chapter, we review and analyze several previous methods for estimating the
chord progression of a piece of music directly from audio signals of musical recordings.
The presented methods are based on chroma features and hidden Markov models (HMMs).
We then propose improvements of these methods to build our chord estimation algorithm
that will serve as a basis for investigating interaction between various musical attributes
in the next chapters. The presented work is based on the publication [PP07]. The major
contributions of this chapter are:

1. We provide a detailed review of the previous works in the area of chord estimation.

2. We compare and extend some previous proposed methods for chord estimation.

3. We propose a new method to take into account the problem of harmonics in the case
of chord estimation.

4. We compare several previously used state transition matrices with newly proposed
ones in the HMM.

5. We present a large-scale evaluation of the proposed chordestimation systems.

6. We provide a discussion of the obtained results and a criticism of the proposed model.

Organization of the chapter:

This chapter is organized as follows. In Section 5.2, we provide a detailed review
of the previous work on chord estimation. Relying on this review, we introduce our
point of view on the chord estimation problem in Section 4.3. We then study several
approaches to estimate the chords from the succession of chroma vectors over time using
HMM in Section 4.4. In particular, we describe various con�gurations of the observation
probabilities (Section 4.4.3) and transition probabiliti es (Section 4.4.4). In Section 4.5, we
evaluate and compare our approach to previous models. A conclusion closes this chapter.

4.2 Previous Work on Chord Estimation

In this section, we review a number of chord estimation methods. We distinguish between
approaches employing a probabilistic model (Section 4.2.2) and pattern-matching-based
approaches (Section 4.2.3). We also discern some recent approaches that are devoted to
real-time implementation (Section 4.2.4).
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4.2.1 Extraction of Signal Features That Describe the Harmo nic Con-
tent

The �rst stage of a chord estimation system consists in extracting some low-dimensional
features from the audio signal that are appropriated to the task. Since their introduction
in 1999, Pitch Class Pro�les (PCP) [Fuj99] or chroma-based representation [Wak99] have
become common features for estimating chords or musical keys from audio recordings.
PCP/chroma vectors are low-dimensional features that represent the intensity of the twelve
semitones of the pitch classes. Fujishima [Fuj99] uses the chroma representation to derive
a large set of chords using either a nearest-neighbor or a weighted sum pattern matching
method. 27 complex chords are considered. The system is successfully evaluated on
synthetic sounds from a YAHAMA PSR-520 electronic keyboard and on a real-audio
excerpt: the opening theme of Smetana's Moldau. Because thechroma features emphasize
the harmonic content of the signal, most of the works on chordestimation are based on
this representation.

Recently, a new feature called the Tonal Centroid has been proposed by Harte et
al. [HSG06]. This feature can be viewed somehow as an extension of the chromagram.
Lee [Lee08] uses this feature in the context of chord estimation and shows that his chord
estimation system performs better than when using chroma features.

It can be noticed that other features have been explored for the chord estimation
task. For instance, [Lee05] proposes a novel approach basedon human perception for
automatic chord estimation from the raw audio data using the Summary Autocorrelation
Function as signal features. [Lee06a] introduces a featurevector called the Enhanced
Pitch Class Pro�le (EPCP) that is based on the Harmonic Product Spectrum. These
features have been investigated in order to take into account the overtones generated by
the chord tones. However, chroma features have almost been exclusively used as a front
end to existing chord estimation models.

4.2.2 Statistical Machine Learning Techniques for Chord Es timation

4.2.2.1 HMM-based Baseline Approaches

Raphael [Rap02] uses HMMs trained by the Expectation Maximization (EM) algorithm
to transcribe piano music in terms of chord labels. The �nal purpose of his work is a
piano MIDI transcription. The chord dictionary thus distin guishes between each di�erent
combination of simultaneous notes, resulting in a very hugestate space. The model is
trained on various Mozart piano sonata movements and evaluated on clean recordings of
solo piano music. Results on a performance of the 3rd movement of the Mozart piano
Sonata K. 570 are reported.

The �rst system evaluated on rich polyphonic music recordings (whole pieces of music
of commercial recordings) is presented by Sheh & Ellis in [SE03]. They show that chro-
magram features outperform cepstral coe�cients for the purpose of chord estimation of
real-world musical recordings. Their system draws on the prior work of [Rap02]. However,
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rather than considering every possible note combination, they use a reduced set of 147
chords, having a single model for each chord type. The chord lexicon is composed of 7
chord families (maj, min, maj7, min7, dom7, aug, dim) and 21 roots (A, B, C, D, E, F,
G, Ab, Bb, . . . , Gb, A#, B#, . . . , G#). The sequence of chord name s (without chord
boundaries) is used as an input to the model. Both the model parameters for chords and
for chord transitions are unsupervisedly learned from 
at start initializations using the
forward-backward algorithm. The Viterbi algorithm is used for forced alignment or chord
label recognition. The system is trained and evaluated on a small collection of 20 early
Beatles songs. Considering the rather large number of chords and the small amount of
training data, the chord recognition accuracy is poor. However, this work initiated the
use of HMM-based approaches for the purpose of audio chord estimation. Since then, the
HMM approach for chord estimation has been followed by many other researchers.

In the context of automatic structure detection for popular music, Maddage et al.
[MXKS04] [Mad06] employ a similar learning method for chordestimation using a HMM.
However, the chord model is di�erent from [SE03]: 48 HMMs areused to model 12 major,
12 minor, 12 diminished and 12 augmented triads. Each model has �ve states, including
entry, exit and three Gaussian mixtures (GM) for each hiddenstate. The mixture weights,
means and covariances of all GMMs, as well as the initial and transition state probabilities
are computed using the Baum-Welch algorithm. The Viterbi algorithm is then applied and
gives a �rst estimation of the chord progression. A post-processing step is incorporated to
correct possible misclassi�cations. Key determination isperformed so that chords not in
the detected key are disallowed and replaced by other chordswith high probability or with
the previous chord. Time alignment of the chords is corrected using heuristics derived from
popular music composition knowledge. The model is trained with real songs and additional
synthesized audio chord samples. Cross-validation experiments on 40 popular music songs
in [MXKS04] (50 in [Mad06]) show that the chord estimation results are improved thanks
to the music knowledge-based post-processing step.

Bello & Pickens [BP05] improve the approach proposed by [SE03] by encoding musical
knowledge into the model. The feature extraction part is ameliorated in one part by a
tuning stage [HS05] and in the other part by the use of beat (tactus)-synchronous features
that minimizes the e�ect of local variations and transients. Finally, the chord lexicon is
limited to the 24 major and minor triads since the purpose of the work is to achieve a
robust mid-level representation that describes the harmonic character of an input signal,
rather than an academic chord transcription from audio. The chroma features are used
as observations on a 24-state hidden Markov model, where each state corresponds to
one of the major and minor triads. The observation distribution is modeled by a single
Gaussian. The parameters of the model are initialized usingsimple musical knowledge
about the key distance in a circle of �fths. The model is then selectively trained in an
unsupervised fashion using the Expectation-Maximization(EM) algorithm, assuming that
a chord template or distribution is almost universal regardless of the type of music and thus
disallowing adjustment of distribution parameters. The chord progression is obtained by
decoding the model using the Viterbi algorithm. The model istested on two early Beatles
albums, Please Please Meand Beatles For Sale. Experiments show that the use of musical
knowledge is crucial, that selective training introduces substantial gains into the approach
and that the use of a tactus-based feature set clearly outperforms the frame-by-frame
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estimation.

This last result is also claimed by Maddageet al. [MKL06] who propose a hierarchical
approach to model the tonal characteristics of musical audio. Major, minor, diminished
and augmented chords are considered. The usual pitch class pro�le (PCP) features are
compared to psycho-acoustical pro�le (PAP) features that are presented as the expansion
of PCP features. They consider e�ects of the notes in all the octaves individually. Eval-
uation on 40 English songs (10 Michael Learns To Rock, 10 Bryan Adams, 6 Beatles, 8
Westlife and 6 Backstreet Boys) shows that the e�ects of f0, sub-harmonic, and harmonic
of the notes which comprise a given chord, are important clues for chord detection. It
is found that the best features are the PCP where note e�ects (f0, sub-harmonic, har-
monic) are averaged across the octaves. It is also found thattonal characteristics are
better extracted using tempo proportional signal segmentation than using �xed length
segmentation.

Ryyn•anen & Klapuri [RK08b] present a method for chord estimation related to [BP05]
in the sense that it uses a chord HMM where the states correspond to the major and
minor triads. The proposed chord estimation method is only one part of a global model
that attempts to provide a useful representation of polyphonic popular music songs. The
purpose is the automatic transcription of the chord progression, the bass line and the key
signature of audio �les. In the front end, the system extracts two frame-wise features:
a pitch-salience estimator and an accent estimator that indicates potential note onsets
based on signal energy. The chord transcription method usesa 24-state HMM where
the observation likelihoods are obtained by mapping the pitch salience into a pitch-class
representation, and comparing them with trained pro�les for major and minor chords.
Two PCPs are used, one for low-register MIDI notes 26-49 and one for high-register MIDI
notes 50-73. Chord transition probabilities are estimatedfrom training and the chord
progression is found using the Viterbi decoding algorithm.The method is evaluated using
a two-fold cross validation on 8 Beatles albums.

4.2.2.2 Simultaneous Estimation of Chords and Musical Cont ext

Some HMM-based chord recognition systems use context information to improve the chord
progression. Additional musical attributes (such as key, meter or structure) may be mod-
eled simultaneously with the chords.

Lee & Slaney [LS08] follow an HMM-based approach for chord extraction similar to
[SE03] and [BP05] in that the states in the HMM represent chord types and that the
most probable chord sequence is found in a maximum-likelihood sense. However, they
use the tonal centroid feature instead of the chroma feature. Moreover, the parameters
of the model are supervisedly learned without using an EM algorithm, but directly from
labeled training data. Symbolic data are used to automatically obtain a large set of
labeled training data, avoiding the tedious task of human annotation of chord names and
boundaries. The large amount of training data allows the building of key-speci�c HMMs,
which not only increase the chord estimation accuracy but also provide key information.
The model is evaluated on two pieces of classical music, Bach's keyboard piece Prelude
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in C Major and Haydn's string quartet Op.3, No.5: Andante measures 1-46, and on
two Beatles albums, Please Please Meand Beatles For Sale. Experimental results show
that the approach compares favorably to the state-of-the-art [BP05]. The tonal centroid
feature is found to outperform the conventional chroma feature. Chord accuracy results
are improved considering musical key information.

Burgoyne & Saul [BS05] also present an HMM-based model that tracks key simulta-
neously with chords. It is claimed that transitions between chords are dependent of their
tonal context. On the contrary to [LS08], they do not assume that music remains in a
single key from start to end. The model considers chord and key to be inseparable prop-
erties of any given harmony. The model is restricted to majorand minor triads. Each
state of the HMM represents a chord in a possible key (C major in the key of A minor for
instance). Simpli�ed rules of tonal harmony are encoded in the transition matrix. The
traditional Gaussian emission distribution is replaced with a Dirichlet distribution. The
model is unsupervisedly trained with the EM algorithm on �ve Mozart symphonies (K.
134, K. 162, K. 181, K.182 and K.183) and tested on the Minuet of Mozart symphony K.
550. The results reveal that a more advanced harmonic model is needed to improve the
results.

Papadopoulos & Peeters [PP08b] present a method for simultaneously estimating the
chord progression and the downbeats from an audio �le. A speci�c topology of hidden
Markov models that enables to model chords dependency on metrical structure is proposed.
Each state is de�ned as an occurrence of a chord at a \positionin the measure". The model
relies on the idea that chords are more likely to change at thebeginning of measures than
on other beat positions in the measure. In this model, the chord progression bene�ts from
the knowledge of the downbeats positions and conversely thedownbeats are estimated
relying on the chord progression. The model is evaluated on atest-set of 66 popular music
songs from the Beatles and shows improvement over the state of the art. The model is
further extended in [PP10] to more complex cases that include pieces with complex metric
structures such as beat addition, beat deletion or changes in the meter.

The work of Mauch & Dixon [MD10] is also concerned with the simultaneous estimation
of chords and other musical attributes. A 6-layered dynamicBayesian network models
jointly key, metric position, chord and bass pitch class. The most probable sequence is
inferred from the beat-synchronous bass and treble chromagrams of the whole song. The
model distinguishes between 109 di�erent chords (7 chord classes in root position: maj,
min, dim, aug, maj7, maj6, dom7, plus 24 major chords in 1st and 2nd inversion, plus one
no chord \N" chords) and is evaluated on 176 audio tracks fromthe MIREX 2008 Chord
recognition test-set.

In [MD08], Mauch & Dixon present a new approach for chord labeling in which a
chord is modeled as a mixture of di�erent sonorities. A melody range and a bass range
chromagram are separately computed and simultaneously used as observations in a hidden
Markov model. A sophisticated state duration modeling is proposed, in which chord
durations are gamma-distributed. The system also includesa bass model. In this work,
6 chord classes are considered (major, minor, dominant, diminished, suspended, and no
chord). The model is evaluated using a �ve-fold cross-validation procedure on 175 Beatles
songs. It is shown that the new duration modeling retains thelevel of accuracy while it
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reduces fragmentation.

The work of Mauch et al. [MND09] also deals with the concept of uni�ed music analysis.
The baseline is the chord estimation method proposed in [MD10]. They propose to improve
the chord progression estimation by exploiting the repetitive structure of songs. They rely
on the idea that the chord sequence is the same in all sectionsof the same type (such as
chorus or verse). They thus assign the same chord progression to repeated sections. Four
types of chords are considered: major, minor, diminished, dominant or no chord. The
evaluation of the method on 125 Beatles songs shows improvement in chord accuracy and
reveals that the chord transcription is more consistent with the repetitive structure of the
song.

4.2.2.3 Introducing Language Modeling, N-grams

Some approaches for chord estimation employLanguage Modeling(LM) because sequences
of chord labels can be viewed as word sequences in natural language. The previously
presented HMM-based works make the Markovian assumption that each chord symbol
depends only on the preceding one, which is a simplifying assumption. Higher order prob-
abilistic N-grams are an interesting alternative to HMMs (t hat correspond to probabilistic
2-grams) because they can e�ciently model the actual complexity of music.

Cheng et al. [CYL + 08] claim that the information of two adjacent chords is insu�-
cient for recognizing longer chord sequences. They thus propose to incorporate a N-gram
model that learns the common rule of chord progression into aHMM framework for chord
estimation. Applications to music classi�cation and retri eval are investigated. Two new
chord features are proposed: the longest common chord subsequence and the histogram
statistics of chords. Experiments on the previously cited two early Beatles albums indicate
that the N-gram-based approach outperforms the typical HMM-based approach.

Scholzet al. [SVB08] focus on two possible limitations of N-gram-based chord estima-
tion models: the problem of over�tting and the problem of using a single chord labeling
scheme. In order to overcome these limitations, they investigate several model smooth-
ing and selection techniques for modeling the chord sequence of a piece of music using
probabilistic N-grams. Several chord labeling schemes areconsidered. The various con�g-
urations of the model are tested on 180 Beatles songs. The results show that the accuracy
of N-grams is increased by the proposed techniques. They also show that it is possible to
accurately model more complex chord types than the usual minor/major chords.

The approach to chord estimation from audio proposed by Khadkevich & Omologo
in [KO09] is based on a trained HMM combined with a Language Model. Pitch Class
Pro�le vectors are used as input to the model. The method di�ers from most existing
approaches in the sense that a chord is not represented as a hidden state in one ergodic
HMM, but a separate left-to-right HMM is created for each chord. For a given analyzed
song, the most likely chord sequence is obtained using the Viterbi decoding algorithm. The
resulting chord lattice is then rescored by applying a language model of high orders (3-
gram, 4-gram). The model is evaluated on 175 Beatles songs using a 5-fold cross-validation
procedure. Factored and standard language models are compared and it is found that the
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use of a factored LM results in a small increase in performance.

The work of Schulleret al. [SHAR09] is related to [KO09]. It shows that incorporating a
Musicological Model (MM) in an HMM-based approach for chordlabeling allows improving
chord accuracy. Temporal harmonic structure is incorporated by using one \Chroma
Energy Distribution Normalized Statistics" (CENS) featur e [MKC05] per bar. The model
is trained on 19; 025 chord lead sheets1. It is compared to a Cross-Correlation (CC)
with templates method and a Support Vector Machines (SVM) method. Experiments
on a database of 100 pieces of pop and rock music that have beenannotated by trained
musicians2 are conducted. The results indicate that data-driven approaches are superior
to template-based approaches and that language modeling improves chord estimation.

4.2.2.4 Other Statistical Modeling Approaches

Machine-learning-based methods for chord estimation alsoinclude approaches other than
HMMs. For instance Paiement et al. [PEBB05] present a graphical probabilistic model
where contextual information related to the meter is used tomodel the chord progression
in order to generate chords. The graphical model uses probabilities of chord substitu-
tions that are derived from a continuous distributed representation for chords. In this
distribution, perceptually similar chords tend to be close in Euclidean distance. In the
graphical models, the parameters are learnt with the EM algorithm and the Junction Tree
algorithm is used for inference. The model is validated using 52 jazz standard excerpts
from Sher (1988) [She88] interpreted and recorded by one of the authors in MIDI format
on a Yamaha Disklavier piano. Experiments show that chord progression dependencies to
the meter can be better captured with a tree structure rather than with a HMM.

The use of HMMs is compared to the use of conditional random �elds (CRFs) by
Burgoyne et al. [BPKF07]. Audio is modeled with PCP features and various con�gura-
tions of HMMs and CRFs models are implemented. Cross-validation and comparison of
the systems is conducted on the same set of Beatles songs thanSheh & Ellis [SE03]. It
is demonstrated that the CRF-based method yields to resultsclose to the ones obtained
with the best HMM-based method, while using much fewer modelparameters.

Other statistically-based chord estimation approaches include hypothesis-search-based
methods. Yoshiokaet al. [YKK + 04] propose a method that concurrently recognizes chord
boundaries, chord symbols and keys. This approach allows taking into account the mutual
dependency of chord-boundary detection and chord-symbol identi�cation as well as the
mutual dependency of chord-symbol identi�cation and key identi�cation. The core of
this algorithm is a hypothesis-search algorithm that evaluates tuples of chord symbols
and chord boundaries. Three criteria are taken into account: acoustic features, chord
progression patterns and bass sounds. Likely hypotheses are followed while highly unlikely
hypotheses are pruned after a while. At the end of the song, the most probable path is
chosen as the chord progression. The accuracy of the chord transcription, measured on one-

1 \The on-line guitar archive," in http://www.olga.net, 200 6.
2The list of the songs can be found at: \Songlist chord data-set," in

http://www.mmk.ei.tum.de/sch/chord.txt, 2006.

Joint Estimation of Musical Content Information From an Aud io Signal



Previous Work on Chord Estimation 77

minute excerpts from seven songs of RWC-MDBP-2001 [GHNO02](No.14, 17, 40, 44, 45,
46, and 74), is improved considering chord progression patterns and bass sounds. However,
the correctness is not improved because the proposed methodmakes many insertion errors.

Although information about bass sounds is used in [YKK+ 04], it is not integrated
into a probabilistic framework. Errors in estimating bass tones tend to produce errors
in the chord estimation. Sumi et al. [SIY+ 08] improve the hypothesis-search-based
method proposed in [YKK+ 04] by probabilistically integrating bass pitch estimation into
the model to improve chord estimation. Evaluation of the proposed methods on 150
one-minute excerpts of Beatles songs shows that the baseline method has been improved.

4.2.3 Pattern Matching Approaches

Alternative to the machine learning approaches for chord estimation are the pattern match-
ing approaches. In such approaches, each feature vector computed from the audio signal
is correlated with a set of chord templates that indicate theperceptual importance of the
notes within a chord. The estimated chord is obtained by selecting the template that gives
the maximum correlation coe�cient.

Harte & Sandler [HS05] estimate chords by comparing prede�ned chord templates that
are simple bit masks3 to chroma features. The originality of their work is that it p roposes
a tuning algorithm to accurately locate the boundaries between semitones. This allows
the calculation of a novel semitone-quantized chromagram.The model can distinguish
between 48 chords. The model is evaluated on two early Beatles albums, Please Please
Me and Beatles For Sale.

Oudre et al. [OGF09a] propose a chroma, template-based method for chordrecog-
nition. They rely on the idea that in a given chroma vector corresponding to a chord,
the amplitudes of the notes that comprise the chord should belarger than the ones of
the non-played tones. They investigate the in
uence of several parameters in the model.
They examine several chord templates that take into accountone or more harmonics for
the notes, as previously proposed in [PP07]. They compare the use of several measures of
�t between the chroma features and the chord templates. Theyalso explore the in
uence
of the number and the types of the chords that are considered in the model. Performance
of the system is evaluated on 13 Beatles albums.

Some template-based approaches include post-processing steps to correct chord estima-
tion errors. Shenoyet al. [SMW04] propose a symbolic inference-based chord estimation
method. Individual notes are identi�ed from beat-synchronous chroma features by con-
sidering only the elements with the four highest values in the chroma vectors. Symbolic
inference is used to determine major and minor chords. The chord estimation accuracy is
not su�cient to provide a usable chord transcription. This m ethod is improved by Shenoy
& Wang in [SW05] where a post-processing step similar to the one in [Mad06] is proposed.
Three rule-based chord accuracy enhancement steps based onmusical key and meter infor-

3A bit mask is a 12-dimensional vector corresponding to the 12 semitones of the pitch classes with 1
when the note belongs to the chord, 0 otherwise.
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mation are used. Firstly, chords that do not belong to the keyof the song (assumed to be
constant over time) are eliminated. Secondly, the chord progression is smoothed so that
if a chord is di�erent from two same adjacent chords, it is replaced to match the adjacent
chords. Finally, chord changes are favored at the beginningof the measures instead of
other half-note time. Experiments are performed on 30 popular English songs and show
that the chord estimation accuracy is spectacularly improved by the post-processing steps
based on music knowledge, increasing from a relatively low score of 48:13% to a score of
78:91%.

Reinhard et al. [RSN08] also introduce an approach to improve chord estimation
accuracy. A post-processing step to chord estimation algorithms is proposed to correct
possible misclassi�cations caused for instance by the presence of percussive sounds
or harmonics. The method is based on musical harmony principles. It works with a
probability-based classi�er that is solely based on the chromagram feature extracted
in the previous step and that exploits the knowledge about the distribution in the
neighborhood of a chord. The main assumption is that a chord is more likely to be
from a pool of chords in the neighborhood, than to be any otherarbitrary chord. The
classi�er does not only predict the most probable chord, butalso returns a probability of
con�dence for every possible chord considering the observed chromagram. Three di�erent
classi�ers (scalar product pattern matching, Mahalanobis distance classi�er, Naive Bayes
classi�er) are used in order to demonstrate that the proposed post-processing technique
can be used in combination with arbitrary classi�ers.

As in machine learning approaches, some template-based approaches are also based
on music theory. For instance the purpose of Zenz & Rauber [ZR07] is to incorporate
music theoretical knowledge in a chord extraction algorithm without restricting the input
data to a narrow range of musical styles. The algorithm distinguishes between major,
minor and diminished chords. This work uses Pitch Class Pro�le features computed on
beat-synchronous frames using the Enhanced Autocorrelation (EAC) Algorithm [TK00].
The generated PCPs are compared to a set of reference chord PCPs that are empirically
determined from one-minute excerpts of 5 popular songs. A single key is estimated for
each song and key information is used to re�ne the set of possible chords. The context of
each chord is analyzed for estimating the �nal chord progression. Evaluation is performed
on a set of 35 pieces of various music styles and indicates that music theory information
improves chord estimation accuracy.

4.2.4 Real-Time Implementation for Chord Estimation

Some recent works are concerned with real-time implementation of chord estimation meth-
ods. Cho & Bello [CB09] propose a real-time implementation of HMM-based chord es-
timation based on the model proposed in [BP05]. To overcome the limits of the online
processing (limited memory capabilities and no access to future observations), they pro-
pose a system of bu�ers. Modi�cations are introduced in the standard Viterbi decoding
algorithm to approximate o�ine results while minimizing th e system's latency. 12-fold
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cross evaluation on the MIREX 2008 169 Beatles songs show that the results of realtime
decoding converge towards the non-realtime decoding result.

Stark & Plumbley [SP09] propose a real-time chord recognition system using a classi�-
cation technique based on residual energy in the chromagram. They develop a chromagram
calculation method in which unwanted energy such as noise isdiscarded. Experiments
are carried on a set of 180 chord samples extracted from real-world guitar recordings.
108 di�erent chords are considered (the 12 variations of major, minor, diminished, aug-
mented, suspended 2nd , suspended 4th , major 7th , minor 7th and dominant 7th chords).
The proposed chroma computation method is shown to compare favorably with other
state-of-the-art methods [BP05] [SE03].

Konoki et al. [KM10] describe a system that estimates in real-time chord labels
from sounds generated by electric guitars. Two di�culties r elated to chord estimation
are addressed: \omitting", \inversions" and \tension voic ing" notes as well as enhar-
monic equivalence. The system starts by computing chroma vectors from which the
theoretically played notes are estimated. For this, the four highest strong pitch classes
that have an intensity above a threshold are selected. Possible chord labels are then
listed by using a \search tree". The model is evaluated in real-time using guitar chords
generated by a guitar player. 16 chord types are considered.The chord types employed
in this study are the sixteen patterns frequently used in chord guitar performances
(maj; min; 7th ; m7; M 7; mM 7; aug; dim; 6th ; m6; sus4; 7sus4; 7(b5); aug7; dim7; andadd9).
Ambiguous cases (such as enharmonic equivalence) are resolved by comparing the possible
chord progressions obtained from the chord labels with somechord progression patterns
extracted from a \chord progression database".

4.2.5 Summary of Chords Estimation Techniques

4.2.5.1 Summary of the Above-Presented Methods

Tables 4.1, 4.2 and 4.3 list the characteristic attributes of the above-presented chord
estimation methods. The systems are presented in the chronological order. The column
\Method" indicates the main techniques that are used for chord estimation. The column
\Input features" indicates the type of input that are proces sed. The column \Comments"
underlines some interesting speci�c strategies that are adopted. The column \Chord
lexicon" indicates the chords lexicon that can be handled bythe systems. Finally, the
column \Evaluation material" indicates the musical materi al on which the systems have
been tested and possibly trained.

4.2.5.2 Summary of the MIREX Chord Recognition Systems

In this section, we present an overview of the chord estimation algorithms submitted to
the MIREX 2008 and 2009 contests.

� Introduction to MIREX Chord Recognition Task

The �rst audio chord detection task in Music Information Ret rieval Evaluation eX-
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Table 4.1: Characteristics of some chord estimation methods 1999-2006.
Reference Method Input fea-

tures
Comments Chord lexicon Evaluation material

Fujishima
[Fuj99]

Pattern
Matching

PCP � nearest neighbor or a
weighted sum method
� bit-mask chord tem-
plates

27 complex
chords

� no training � testing
on synthetic sounds +
one real-audio excerpt
(50s)

Raphael
[Rap02]

HMM collection
of features

unsupervised training
by EM

chord consid-
ered as any
combination of
simultaneous
notes

� training on various
Mozart piano sonata
movements � testing on
the 3rd movement of
Mozart piano Sonata
18, K. 570.

Sheh & El-
lis [SE03]

HMM PCP � unsupervised learn-
ing with EM � random
initialization � Viterbi
decoding for forced
alignment or chord
label recognition

147 complex
chords

� training on 18 early
Beatles songs � testing
on 2 Beatles songs

Maddage
et al.
[MXKS04],
[Mad06]

HMM PCP � 48 HMMs, one for
each chord, 3 states
per chord � supervised
training EM � post-
processing step base on
key and meter

48 (maj, min,
dim aug)

� training: real songs
+ synthesized audio
chord samples � Cross-
validation on 40 popu-
lar music songs

Yoshioka
et al.
[YKK + 04]

hypothesis-
search
algorithm

beat-
synchronous
PCP

� concurrent recogni-
tion chord boundaries,
chord symbols and
keys � generation of
hypotheses about tu-
ples of chord symbols
and chord boundaries
� 3 criteria taken
into account: acoustic
features, chord pro-
gression patterns and
bass sounds

48 (maj, min,
dim, aug)

� training: 2592 audio
samples of each chord
played on a MIDI tone
generator + 6 RWC
songs (2-fold cross-
validation) � testing:
one-minute excerpts
from seven songs of
RWC (No.14, 17, 40,
44, 45, 46, and 74)

Bello &
Pick-
ens [BP05]

HMM beat-
synchronous
PCP

� musical knowledge
encoded into the model
� unsupervised selec-
tive training EM

24 (maj, min) 2 Beatles albums,
Please Please Me and
Beatles For Sale

Burgoyne
& Saul
[BS05]

HMM PCP � simultaneous keys
and chords estimation �
Simpli�ed rules of
tonal harmony en-
coded in the transition
matrix � Dirichlet
distribution unsuper-
visedly trained with
EM

24 (maj, min) � training: 5 Mozart
symphonies (K. 134, K.
162, K. 181, K.182
and K.183) � testing:
Mozart Symphony K.
550, Minuet

Harte
& San-
dler [HS05]

template-
matching

PCP � quantized chroma-
gram � bit-mask chord
templates

48 (maj, min,
dim aug)

� no training � 2
Beatles albums, Please
Please Me and Beatles
For Sale .

Paiement
et al.
[PEBB05]

graphical
model

MIDI � contextual informa-
tion related to the
meter used to model
the chord progression �
comparison tree struc-
ture/HMM

any group of
observed notes
forming a chord

52 jazz standards ex-
cerpts

Shenoy
& Wang
[SW05]

symbolic
inference

beat-
synchronous
PCP

� 3 rule-based chord
accuracy enhancement
steps based on musical
key and meter informa-
tion

24 (maj, min) � no training � test-
ing:30 popular English
song

Maddage
et al.
[MKL06]

hierarchical
model

beat-
synchronous
PCP/PAP

incorporate the note
e�ects (F0, sub-
harmonic, harmonic)

48 (maj, min,
dim, aug)

� synthetically gener-
ated music chords � 40
English songs
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Table 4.2: Characteristics of some chord estimation methods 2007-2008.
Reference Method Input fea-

tures
Comments Chord lexicon Evaluation material

Burgoyne
et al.
[BPKF07]

CRF PCP Dirichlet for modeling
PCP distribution

48 (maj, min,
dim, aug)

10-fold cross validation
on 20 Beatles songs (18
for training, 2 for test-
ing)

Lee &
Slaney
[LS08]

key-speci�c
HMM

tonal cen-
troid

� supervised training
with EM � training �les
generated from symbolic
data

24 (maj, min)
or 36 (maj,
min, dim)

� training: 765 clas-
sical music �les +158
Beatles songs � testing:
Bach Prelude in CM
and Haydn string quar-
tet Op.3, No.5, mea-
sures 1-46 + 2 Beatles
albums, Please Please
Me and Beatles For
Sale.

Zenz &
Rauber
[ZR07]

template
matching

beat-
synchronous
PCP

� empirically-based ref-
erence PCP from one-
minute excerpts of 5
popular songs � encode
music theoretical knowl-
edge about key

36 (maj, min,
dim)

� no training � testing:
35 pieces of various mu-
sic styles

Cheng
et al.
[CYL + 08]

HMM + N-
grams

PCP � Language Modeling
� observation proba-
bilities based on chord
templates � 2 new
chord features: the
longest common chord
subsequence and the
histogram statistics of
chords

24 (maj, min) � training: 152 Beat-
les songs � testing: 2
Beatles albums, Please
Please Me and Beatles
For Sale

Mauch
& Dixon
[MD08]

HMM melody
range +
bass range
chroma-
gram

� sophisticated state du-
ration modeling � bass
model

6 chord
classes (maj,
min, dom,
dim, sus, no
chord)

5-fold cross-
validation,175 Beatles
songs

Papadopoulos
& Peeters
[PP08b]

double-
states
HMM

beat-
synchronous
PCP

� simultaneous esti-
mation chords and
downbeats � observa-
tion probabilities based
on chord templates +
harmonics

24 (maj, min) � no training � testing:
66 Beatles songs

Reinhard
et al.
[RSN08]

Classi�er
(Scalar
product,
Maha-
lanobis
distance,
Naive
Bayes)

beat-
synchronous
PCP

post-processing step
based on chord neigh-
borhood

24 (maj, min) � training: 2 Beatles
albums, Please Please
Me and A Hard Day's
Night � testing: 2
Beatles albums, Please
Please Me and Beatles
For Sale

Ryyn•anen
& Klapuri
[RK08b]

HMM multi-f0
PCP

� observation likelihoods
obtained by comparison
with trained pro�les �
2 chromagrams are used
(one for low and one for
high-register)

24 (maj, min) 2-fold cross-validation,
�rst 8 Beatles albums

Scholz et
al. [SVB08]

N-gram chord
labels

use model smoothing
and selection tech-
niques initially designed
for spoken language
modeling

various label-
ing schemes:
� Maj/min
� Short-
hand types �
Harte's with
enharmonic
equivalence

13-fold cross-validation
on 13 Beatles albums

Sumi et al.
[SIY + 08]

hypothesis-
search

beat-
synchronous
PCP

interrelationship be-
tween bass lines and
chords

48 (maj, min,
dim, aug)

5-fold cross-validation
on 175 Beatles songs
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Table 4.3: Characteristics of some chord estimation methods 2009-2010.
Reference Method Input fea-

tures
Comments Chord lexicon Evaluation material

Cho &
Bello
[CB09]

HMM +
real-time
decoding

PCP � real-time processing
� system of bu�ers �
modi�ed Viterbi de-
coding for real-time

24 (maj, min) 12-fold cross evaluation
on the MIREX 2008
169 Beatles songs

Khadkevich
& Omol-
ogo [KO09]

HMM +
LM

PCP
(HMM),
beat-
synchronous
chord sym-
bols (LM)

� a separate left-to-
right HMM for each
chord

24 (maj, min) 5-fold cross-validation
on 175 Beatles songs

Mauch
et al.
[MND09]

dynamic
Bayesian
network
+ musical
structure

beat-
synchronous
treble and
bass chro-
magrams

� same chord progres-
sion to repeated sec-
tions

48 (maj, min,
dim, dom) + no
chord.

5-fold cross-validation
on 125 Beatles songs

Oudre
et al.
[OGF09a]

Pattern
Matching

PCP � investigate various
measures of �t � study
chord type in
uence

4 chord classes
(maj, min,
dom7, min7)

� no training � testing:
13 Beatles albums

Schuller
et al.
[SHAR09]

HMM +
MM

one CENS
per bar

� learn typical chord
successions with mu-
sicological model �
comparison data-
driven/template-based
approaches

� 24 (maj,
min) � 36 (maj,
min, and
\other")

� training: 19 ; 025
chord lead sheets �
testing: 100 pieces of
pop and rock music

Stark &
Plumb-
ley [SP09]

frame-
based
classi-
�er for
real-time
use

PCP � classi�cation based
upon chroma residual
energy � allows for in-
harmonicity in signal

108 (maj, min,
dim, aug, sus2,
sus4, maj7,
min7, dom)

� no training � testing:
180 chord guitar audio
samples

Konoki et
al. [KM10]

search
tree

PCP � \omitting", \inver-
sions" and \tension
voicing" notes � enhar-
monic equivalence

16 chord classes � no training � testing:
guitar sounds

Mauch
& Dixon
[MD10]

dynamic
Bayesian
network

bass and
treble chro-
magrams

� simultaneous estima-
tion chords and musi-
cal context

109 complex
chords

� no training � testing:
176 Beatles songs.

Papadopoulos
& Peeters
[PP10]

double-
state
HMM

beat-
synchronous
PCP

� simultaneous estima-
tion chords and down-
beats in variable meter

24 (maj, min) � no training � testing:
169 Beatles songs
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change4 was organized in 2008. The MIREX 2008 Audio Chord Detection task was divided
into two subtasks. In the �rst subtask the systems were pre-trained and tested against 176
Beatles songs. In the second subtask systems were trained on2=3 of the Beatles test-set
and tested on 1=3. An overlap score was calculated as the ratio between the overlap of the
ground truth and detected chords and ground truth duration. Four songs were excluded
from the original Beatles test-set because of problems whenaligning the ground truth
chords to the audio data.

The MIREX 2009 audio chord detection5 task description is similar to the one proposed
in 2008 except that the score computation is slightly di�erent. A �rst score is calculated
as the ratio between the overlap of the ground truth and detected chords and ground
truth duration, then a weighted average is computed across the songs by weighting each
score by the song duration. In 2009, the test-set also included 37 popular music songs. A
total number of 13 algorithms were submitted to the pre-trained systems subtask, and 5
algorithms were submitted to the trained systems subtask.

� Methods and Results

Tables 4.4 and 4.5 give a brief description of the various algorithms submitted to
MIREX 2008 and MIREX 2009 Audio Chord Detection task.

Figures 4.1 and 4.2 indicate the chord accuracy results obtained by the various algo-
rithms submitted to the MIREX 2008 and MIREX 2009 Audio Chord Detection task.
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Figure 4.1: MIREX 2008 Audio chord detection results (in %) for the pre-t rained systems
(left) and for the trained systems (right).

4http://www.music-ir.org/mirex/2008/
5http://www.music-ir.org/mirex/2009/
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Table 4.4: Summary of audio chord detection systems submitted to MIREX 2008.
Reference Method Input features Training Comments
Bello & Pickens BP HMM beat-synchronous

CQT-PCP
yes tuning, music

knowledge
Ellis DE HMM beat-synchronous

IF-PCP
yes tuning, uses 2 chro-

magrams (including
one to emphasize the
bass line)

Khadkevich &
Omologo KO

HMM DFT-PCP yes one separate HMM
for each chord, 512
12-dimensional GM

Lee KL, KL1 & KL2 HMM tonal centroid yes key-speci�c HMM
Mehnert et al. MM HMM chromagram

mapped to cir-
cular pitch spaces
(CPS) [GMAB08]

yes Symmetry Model
used as basis for
the chord analysis
system

Papadopoulos &
Peeters PP

HMM DFT-PCP no tuning, music
knowledge and
chord templates
considering harmon-
ics

Pauwels et al. PVM probabilistic frame-
work based on Ler-
dahl's tonal distance
metric

multi-f0s PCP no simultaneous
chords/keys

Ryyn•anen & Kla-
puri RK

HMM multi-f0s PCP yes 2 chromagrams (low
and high registers)

Uchiyama et al.
UMS

HMM PCP yes Harmonic/Percussive
sound separation
front-end

Weil & Durrieu
WD1 & WD2

HMM CQT-tonal Centroid yes tuning, attenuation
of the main melody

Zhang & Lash ZL HMM DFT-PCP yes pre-processing
step which detects
silences
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Table 4.5: Summary of audio chord detection systems submitted to MIREX 2009. IF:
Instantaneous Frequency, HPCP Harmonic Pitch Class Pro�le, HCDF Harmonic Change

Detection Function.
Reference Method Input features Training Comments
Ellis DE HMM beat-synchronous

IF-PCP
pre-trained tuning, key-relative

transition matrix,
maximal gamma
values instead of
Viterbi path

Harte & Sandler
CH

Template matching CQT-HPCP no tuning, chord
boundaries based
on an HCDF

Khadkevich &
Omologo KO1 &
KO2

HMM beat-synchronous
DFT-PCP

pre-trained separate models are
built for each chord
distinguished by the
system

Mauch et al. MD Bayesian network beat-synchronous
note salience repre-
sentation PCP

no separate bass and
treble chroma-
grams, structure
repetitions used
to improve chord
estimation

Oudre et al. OGF1
& OGF2

template matching CQT-PCP no systems 1 major &
minor chords and
2: major, minor
and dominant 7 th

chords
Papadopoulos &
Peeters PP

HMM beat-synchronous
CQT-PCP

no tuning, si-
multaneous
chords/downbeats
estimation

Pauwels et al.
PVM1

probabilistic frame-
work based on
Lerdahl's tonal
distance metric

multi-f0s-PCP no simultaneous
chords/keys

Pauwels et al.
PVM2

template matching multi-f0s-PCP no binary templates

Reed et al.
RUSUSL

HMM dynamic features of
chroma vectors

yes harmonic/percussion
source separation,
tuning, minimum
classi�cation error
learning

Rocher et al.
RRHS1 RRHS2
RRHS3

note segment graph, rule-based,
dynamic program-
ming

no interaction
chords/key

Weller et al. WEJ1,
WEJ2, WEJ3 and
WEJ4

large margin struc-
tured prediction
approach (SVM-
struct)

beat-synchronous
PCP

yes MaxGamma decod-
ing
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Figure 4.2: MIREX 2009 Audio chord detection results (in %) for the pre-t rained systems
(left) and for the trained systems (right).

4.3 Proposed Approach for Chord Estimation

As in most of the previous methods, we have chosen to use the chroma features as signal
observations and represent the chord progression using a hidden Markov model. We
mainly rely on the above-mentioned approach [BP05] as we incorporate musical knowledge
in our model. Various ways of constructing the HMM are studied using either music
theory, results from cognitive studies, smoothed training, multivariate Gaussian models or
normalized-correlation. We also pay attention to the problem of taking into account the
overtones produced by the musical acoustic instruments in the model.

4.3.1 Hidden Markov Models

Since their introduction in the late 1960s, the hidden Markov models (HMMs) have been
widely used in many di�erent research areas, including speech processing and more recently
music information retrieval. Real world is full of processes that we wish to understand
via observation. These processes produce observable outputs that can be characterized as
signals. Markov models are statistical models used to describe systems from which each
observation corresponds to a physical event, usually called state.

The hidden Markov models (HMMs) are an extension of the Markov models that are
used when the states cannot be directly observed (they are hidden), but can be observed
through another set of stochastic processes that produce the sequence of observations (the
observation is a probabilistic function of the state). For a tutorial on hidden Markov
models, we refer the reader to the work of Rabiner [Rab89].
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4.3.2 On the Use of HMM for Chord Estimation

According to [Rap02], there are two major advantages when modeling the chord progres-
sion using a HMM. First of all, the realization of a given state, for instance a C major
chord, depends on a wide range of parameters such as the instrumentation, the dynamics,
the room acoustics etc. The realization of two CM chords produced in di�erent conditions
may result into extremely di�erent signal observations. Th is variability of con�guration
of the data can be handled using statistical machine learning approaches.

Secondly, the structure of musical data can be captured using a probabilistic frame-
work. The major reason why we use HMM for chord estimation relies on this second
argument. We can exploit the structure of musical data (interaction between keys,
chords and downbeats) using a HMM. It allows us to incorporate in a simple manner
some information related to the inherent structure of Western tonal music and build rich
models that are speci�c to music. In general, compositors take into account musical rules
to create a piece of music. The harmony is related to many other musical attributes and
is part of a global musical context. For instance, chord transitions follow some musical
rules that can be embedded in the state transition matrix of the HMM. We will also see
in Chapters 5 and 6 of this dissertation that the use of an HMM allows us to consider
interaction between harmony and other musical attributes such as the meter and the key.

4.3.3 The Problem of the Harmonics

We follow most of the previous works on chord estimation and use chroma features extrac-
tion as front-end of our system. Our observations thus consist of 12-dimensional vectors
that represent the intensity of the 12 semitones of the equal-tempered scale of Western
tonal music.

A weakness of most of the previously proposed methods is thatthey operate a
direct mapping between the PCP/chroma values and the pitch of a note, i.e. a C note
is represented by a single non-zero value in the chroma vector. In other words, the
assumption is made that what we observe in the spectrum is directly the pitch of the
notes. As underlined in Section 3.5.1 of Chapter 3, in a spectral representation, we do not
observe directly the various pitches but a mixture of their harmonics that will result in a
mixture of non-zero values in the chroma vector. Therefore,values at pitch classes other
than those of the notes will occur in the chroma vectors. For this reason, we propose to
consider the presence of the harmonics in the parameters of the model.

In [MKL06], Maddage et al. experimentally show that the e�ects of f 0, sub-harmonic
and harmonic of the notes, which comprise the chord, are important for chord estima-
tion. Some works related to chord or key estimation also focus on this problem. The
presence of harmonics is taken into account either when computing the chroma features
or in the model parameters. The �rst approach is followed for instance by Pauws [Pau04]
who computes the chromagram using an auditory perception inspired front-end so that
the perceptual pitch and the musical background are simultaneously taken into account.
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Zhu et al. [ZKG05] extract from the constant-Q spectrum only the partials which are con-
sonant according to a diatonic scale, using a �ltering method, called consonance �ltering.
Peeters [Pee06a] proposes the use of a Harmonic Peak Subtraction function which reduces
the in
uence of the higher harmonics of each pitch. Lee [Lee06a] proposes a chroma
feature called the Enhanced Pitch Class Pro�le that takes into account the overtones gen-
erated by the chord tones. The chromagram is not directly computed from the DFT but
from the Harmonic Product Spectrum. The second approach is followed for instance by
Izmirli [Izm05] who measures the contribution of the harmonics on a piano database. The
contribution of the harmonics of a note is taken into account in Paiement et al. [PEBB05]
and G�omez [G�06b] using a theoretical spectral envelope. It relies on theproperty that
the amplitude of the hth harmonic f h = hf 0 of a note of fundamental frequencyf 0 can be
modeled with geometric decaying� h , with 0 < � < 1.

We propose to take into account the presence of harmonics in our model for chord
estimation relying on the model presented in [G�06b]. This model extends the Pitch Class
Pro�les (PCPs) to the Harmonic Pitch Class Pro�les (HPCPs). For this, a theoretical
amplitude is attributed to each harmonic composing the spectrum of a note with an
empirical decay factor set to 0:6 in the experiments so that this contribution decreases with
the frequency. The contribution for the �rst 6 harmonics of a note is given in Table 4.6.
Therefore, higher harmonics contribute to the pitch class of their fundamental frequencies.
In spite of its over-simplicity, and even if this approach provides an extremely rough
approximation of the spectral envelope of musical instrument sounds, it has empirically
been proved to be robust in the case of key estimation. For instance [Pee06b] has compared
a template-based approach relying on the model proposed in [G�06b] with an HMM-based
approach using a database consisting of 302 European baroque, classical and romantic
music extracts. It was found that the cognitive-based approach performed better than the
HMM-based approach. This is why we propose to use this approach for chord estimation
purpose.

Table 4.6: First 6 harmonics of a note and given amplitudes.

4.4 Chord Estimation From the Chroma Vectors Using a
HMM

We describe here several methods to estimate the chord progression of an audio signal over
time. All these methods are based on the hidden Markov models(HMMs) [Rab89]. The
various methods di�er in the way observation probabilities and transition probabilities are
computed.
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4.4.1 Model

4.4.1.1 Chord Lexicon

Following a large part of the previous works, we restrict our harmonic content analysis
to a limited set of chords composed of theI = 24 major and minor triads (C major, . . . ,
B major, C minor, . . . , B minor). The notation for chord types w ill be the following:
CM, . . . , BM, for major chords, Cm, . . . , Bm for minor chords. We do not make any
distinction between enharmonic equivalent (C#/Db, E#/F, . . . ). We did not include other
chords, neither simpler such as dyads, more complex such as 7th chords nor diminished or
augmented chords (even if this last categories of chords wasconsidered in several previous
works such as in [HS05]). We acknowledge that the harmonic progression of a piece of
music cannot be fully described according to music theory with such a limited chord
lexicon. However, we choose to limit our chord dictionary to the 24 major and minor
triads for the following reasons:

� Firstly, we �nd it su�cient to describe the harmonic charact eristics of a wide range
of music types. Previous works on music classi�cation have shown that this reduced
set of chords is su�cient to describe the harmony content of music for similarity
applications such as cover version estimation6. See for instance [Lee06b] or [Bel07].

� Secondly, we think that, by limiting the number of chords in t he lexicon, we can
avoid over�tting to a particular type of music during traini ng.

� Moreover, a larger chord lexicon would require a larger amount of manually labeled
training data (in the case of supervised training), which isan extremely tedious task,
even for well-trained musicians.

� Finally, limiting our chord dictionary to the 24 major and mi nor triads allows us to
incorporate some theoretical and experimental music knowledge in our probabilistic
model. This music knowledge we rely on is speci�c to the 24 major and minor triads
and could not have been applied to a more complex chord lexicon.

4.4.1.2 Overview of the Proposed Model

We consider an ergodic 24-states HMM, each state representing a single chord of our chord
lexicon. The hidden states correspond to the di�erent chords (CM, . . . , BM, Cm, . . . ,
Bm). The observations correspond to each signal frame represented by a 12-dimensional
chroma vector. The chord progression is obtained by decoding the underlying sequence of
hidden chords from the sequence of observed chroma vectors using the Viterbi decoding
algorithm. Because we use an ergodic model, all possible chord transitions are allowed.
State transitions obey a �rst-order Markov property, i.e., the future is independent of the
past given the present state.

6Cover versions consist of di�erent performances of the same underlying piece of music performed with
variations in the style, the instrumentation, the tempo, et c.
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Figure 4.3 shows a simpli�ed graph of the HMM we use for chord estimation. For
clarity, only three chords are represented in the �gure (CM, C#M, DM). Each state
represents a chord. At each time step, the chord generates anobservable chroma vector.
Any chord can move to any other chord or remain the same.

Figure 4.3: Simpli�ed graph of the chord estimation hidden Markov model considered
in this dissertation. The hidden states correspond to the chords and the observations

correspond to the chroma vectors.

Each state in the model generates an observation vector, thechroma feature, with
some probability. This is de�ned by the observation probabilities . In part 4.4.3,
we study three approaches to de�ne these probabilities. The�rst one (Method 1) learns
these probabilities by training a Gaussian model on chord-normalized chroma vectors. The
second one (Method 2) does not use the training set but de�nesprobabilities based only
on music theory, considering the presence of higher harmonics (using the HPCPs). The
third one (Method 3) is close to Method 2 but de�nes probabilities based on a normalized-
correlation measure rather than a Gaussian model.

In music pieces, the transitions between chords result frommusical rules that should
be re
ected in the state transition matrix . This is one of the reasons why the problem
is modeled using a Markov model. In part 4.4.4, we study four approaches to de�ne
the transition matrix. Method A is based on music theory: the closeness of chords in
the doubly-nested circle of �fths. Method B uses the results of cognitive experiments:
the closeness of chords using Krumhansl's key pro�les. Method C learns the transitions
probabilities from the HMM training. We �nally propose a new method, D, which learns
the transitions from score transcriptions.

Figure 4.4 illustrates the general 
owchart of the considered model and shows the
various studied con�gurations. In what follows, we denote by � and T, the initial state
distribution and state transition probability distributi on. Given the observations, we
estimate the most likely chord sequence over time in a maximum likelihood sense. We now
describe in detail the characteristics of our HMM: initial state distribution, observation
probability distribution and state transition probabilit y distribution.
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Figure 4.4: General 
owchart of the studied models for chord progression estimation.

4.4.2 Initial State Distribution

The prior probability � i for each state is the prior probability that a speci�c chord i; i 2
[1; 24] has been emitted. Since we do not knowa priori which chord the piece begins with,
we initialize � at 1

24 for each of the 24 states. This choice was also taken in [BP05].

4.4.3 Observation Symbol Probability Distribution

4.4.3.1 Method 1: Modeling by a Multivariate Gaussian Train ed on a Labeled
Test-set

In this method, the observation distribution is modeled by 24 (one for each state) 12-
dimensional single multivariate Gaussian distributions de�ned by their mean vectors � i

and covariance matrices � i , with i denoting the i th state, i 2 [1; 24].

In [SE03], the model is trained using the standard expectation maximization (EM)
algorithm for HMM parameters estimation. The parameters � and � are initialized with
random values. According to [BP05], on the one hand, the template for a chord is almost
universal and should not change from song to song. On the other hand, it is unlikely
that every chord of the lexicon will be present in the training test-set. This is why it is
proposed to selectively train the model, disallowing adjustments of � and � while � and
T are updated. Experiments on 28Beatles songs show that selective training results in a
large increase of chord accuracy. We also believe that any reasonably sized training set
will be insu�cient to appropriately estimate the parameter s of the model. Indeed, since

Joint Estimation of Musical Content Information From an Aud io Signal



92 Chord Progression Estimation From an Audio File

the number of observations in the test-set will likely di�er among the 24 possible chords,
training directly the model on the test-set may lead to over� t the model to a speci�c type
of music (that means learning the characteristics of the test-set).

In order to learn the observation distribution for each of the 24 possible chords, we
propose to �rst learn the model for the CM chord and the Cm chord and then map the two
trained models to all possible chords by circular permutation. This allows increasing the
training set of each chord type. A similar approach was proposed in [Pee06b] in the case
of key estimation and in [SE03] in the case of chord estimation. We proceed as follows:

1. All the chroma vectors of the labeled training test-set are mapped to a root-note of
C using circular permutation.

2. The mean vector and the covariance matrix for the CM (Cm) chord are computed
from all CM (Cm) chroma vectors.

3. The mean vectors and covariance matrices for all chords are obtained from the two
trained models by circular permutation.

The mean vectors for the CM and Cm chords trained on the test-set presented in Section
4.5.1 are represented in the left part of Figure 4.5. Note that in this case we do not make
any assumption on the signal (instrumentation, harmonics,etc.) and we do not introduce
any musical knowledge. In what follows, we will call this method \Method 1".

4.4.3.2 Method 2: Modeling by a Multivariate Gaussian Based on Music
Theory Considering the Presence of Higher Harmonics

In this case, the observation distribution does not rely on any training on a given test-
set. As in [BP05], the observation distribution relies directly on music theory; however a
major di�erence with [BP05] is that we consider the presenceof the higher harmonics of the
theoretical notes in the construction of the multivariate Gaussian models (by modifying
the parameters� and �). This consideration allows us to signi�cantly improv e the results
over the method proposed in [BP05].

In [BP05], the mean vectors and covariance matrices re
ect musical knowledge. The
mean vectors are 12-dimensional vectors with 1 if the note belongs to the chord and
0 otherwise. For instance, if we consider a 12-dimensional mean vector �! � with �! � (1)
corresponding to pitch C, �! � (2) corresponding to pitch C# and so on, the mean vector
corresponding to the CM chord (C-E-G) will be 100010010000 (see middle-left part of
Figure 4.5).

In the covariance matrices, pitches that comprise the triadare more correlated than
pitches that do not belong to the triad. The covariance between pitches that comprise the
triad is thus given a non-zero value. The value is attributed with respect to music theory
and empirical evidence from Krumhansl work [Kru90], that is to say that the dominant
(5th degree) is more important than the mediant (3rd degree) in characterizing the root
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of a triad 7.
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Figure 4.5: Mean chroma vectors for the C Major (upper part of each �gure) and C
minor (lower part) chords using [from left to right]: Method 1 (trained using 7 CDs
of the Beatles), Method 2 without harmonic contribution, Me thod 2 with 4 harmonics
contribution, Method 3 with 6 harmonics contribution (in th is case, the �gures represent

the chroma templates instead of the mean vectors).

We now propose to take into account the contribution of the higher harmonics of the
theoretical notes into the Gaussian parameters. We do this in the following way.

Mean vectors: For each note of a chord, we add the contribution of the harmonics
in the mean vectors. The amplitude contribution of the hth harmonic of a note is similar
to the one proposed by [G�06b]: 0:6h� 1. Table 4.7 indicates the considered harmonics
and the corresponding amplitudes for the CM and the Cm templates. We represent
the corresponding mean vectors for CM and Cm (in the case of 4 harmonics) in the
middle-right part of Figure 4.5.

Table 4.7: The �rst 6 harmonics and their amplitude for a CM (Cm) triad.
CM (Cm) chord

note harmonics
C C C G C E G

E(Eb) E(Eb) E(Eb) B(Bb) E(Eb) G#(G) B(Bb)
G G G D G B D

amplitude 1 0:6 0:62 0:63 0:64 0:65

Covariance matrices: [BP05] only considers the correlation between the chroma
vectors corresponding to the pitch of the notes belonging toa given chord. In our method,
we also consider the correlation between the harmonics of each note. For example, for a
CM chord (C-E-G), D is the 3 rd harmonic of G. Hence, we attribute a non-zero value to

7 In [BP05], the covariance of the tonic with the dominant and o f the dominant with the mediant is
set to 0:8. The covariance of the tonic with the mediant is set to 0 :6. Since we both use songs from the
Beatles to evaluate our system, we will use the same values when testing method [BP05].
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the covariance between D and G. As in [BP05], the values we useare heuristic but we still
respect the rule that the dominant is more important than the mediant in characterizing
the root of a triad 8. The covariance matrices we propose for a CM and a Cm chord
are represented in Figure 4.6 above the covariance matricesproposed in [BP05]. In what
follows, we will call this method \Method 2".
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Figure 4.6: Covariance matrices for a CM (left) and a Cm (right) chord considering
the presence of 4 harmonics (upper part, (a) and (b)) and proposed covariance matrices

in [BP05] (bottom part, (c) and (d)).

4.4.3.3 Method 3: Probability Derived from Correlation wit h Chord Tem-
plates

In this method, the observation probabilities are not modeled by a multivariate Gaussian
distribution. They are obtained by computing the correlati on between the observation
vectors and a set of chord templates.

8The covariance of the tonic with the dominant is set to 0 :6; the covariance of the dominant with the
mediant is set to 0:5; the covariance of the tonic with the mediant is set to 0 :3; the covariance of a note
with its second harmonic is set to 0:1; the other non-zero values are set to 0:05. The matrix needs to be
positive, semi-de�nite, so we set the non-triad diagonal me mbers to 0:1.
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Chord templates:

The chord templates are the theoretical chroma vectors corresponding to the 24
Major and minor triads. A chord template is a 12-dimensional vector which contains
the theoretical amplitude values of the notes and their harmonics composing a chord.
We consider 24 chord templates corresponding to the 24 Majorand minor triads. The
amplitude of a note in the template is non-zero if the note belongs to the considered chord
(fundamental or harmonic). As in the case of the mean vectorsin Method 2, we attribute
an amplitude of 0:6h� 1 to the harmonic h. In Section 4.5, we will compare the system
results without considering any harmonic (nbh = 1), with 4 harmonics ( nbh = 4) and
with 6 harmonics (nbh = 6). In the right part of Figure 4.5, the chord templates for
a CM and a Cm chord considering 6 harmonics in the model are represented. The �rst
six harmonics of the notes composing a CM and a Cm chord and their corresponding
amplitude are given in Table 4.7. It can be seen that higher harmonics contribute to the
pitch class of their fundamental frequencies. For instance, the amplitude of the G is very
high in the C major chord (C-E-G) because, besides being a note of the chord, G is a
strong harmonic of C. The chord templates for other chords (C#M, . . . , BM, C#m, . . . ,
Bm) are obtained from the CM and Cm chords by circular permutation.

Observation probabilities: For each chroma vector, we compute the correlation
between the observation vector and each of the 24 chord templates. We obtain 24 values
P(ci ), i 2 [1; 24], normalized so that

P
i P(ci ) = 1. We now have 24 \pseudo-probabilities"

which are used as observation probabilities in the HMM. In what follows, we will call this
method \Method 3".

4.4.4 State Transition Probability Distribution

4.4.4.1 Method A: Theoretical Approach Using the Doubly-Ne sted Circle of
Fifths

This method was �rst proposed by [PC02] for describing the harmonic content of poly-
phonic music in the symbolic domain. It was then applied in the audio domain in [BP05].
In this approach, the transition probability between two ch ords is derived from musical
knowledge relying on their distance in the doubly-nested circle of �fths (see Figure 4.7).

The doubly-nested circle of �fths depicts relationships among the 12 equal-tempered
pitch classes comprising the chromatic scale. The 24 major and minor triads can be
represented as points on two overlapping \circles of �fths", one for major triads, the other
for minor triads. The more consonant two chords are, the closer on the double circle of
�fths. For instance the CM chord (C-E-G) has two notes in common with the Em chord
(E-G-B). It also has two notes in common with the Am chord (A-C-E). The CM chord
is thus placed between the Am and the Em chords on the double circle of �fths.

The closer two triads are on the circle, the higher the corresponding chord transition
value is. Following [BP05], we give to the transition CM-CM a probability of 12, CM-Em =
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11, and then clockwise in a decreasing manner, until CM-FM# = 0. From this pair of
chord, the value of the corresponding chord transition probabilities starts increasing again,
starting with CM-Bbm = 1 until CM-Am = 11. These probabilitie s are normalized so
that they sum to unity.

Although we do not know which state is going to follow another, musical rules allow
us to make hypotheses that some chord transitions are more probable than others. For
instance, especially in popular Western music, an AM chord is more likely to be followed
by a F#m or DM chord than by a G#M chord. The corresponding stat e transition
matrix is represented in the left part of Figure 4.8.

Figure 4.7: Doubly-nested circle of �fths. Adapted from [BP05].
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4.4.4.2 Method B: Cognitive Approach Using Correlation Bet ween Key Pro-
�les

In [Kru90], music-psychologist Krumhansl studies the proximity between the various musi-
cal keys using correlations between key pro�les obtained from perceptual tests. The probe
tone ratings [KK82] represent the stability of each semitone pitch-class relative to a given
key (see also Chapter 6, Section 6.2.1.1). These probe-tones ratings are used to obtain a
quantitative measure of the distances between keys. Krumhansl & Kessler compute the
correlation between pro�les for each possible pair of majorand minor keys, relying on the
idea that two keys are close if they impose a similar pattern of relative stability on the
tones. Table 4.8 gives the numerical values corresponding to key pro�le correlations for
CM and Cm keys.

These key pro�le correlations are used in [NM06] to derive a key transition matrix in
the context of local key estimation as described below. In order to have probabilities, all
the values are made positive by adding 1, and then normalizedto sum to 1 for each key.
This results in 24-dimensional vectors that express how likely the music moves from a given
key to another at the next time step. The 24-dimensional vectors can be circularly shifted
to give the transition probabilities for keys other than CM a nd Cm. A key transition
matrix of size 24 x 24 is built from these 24-dimensional vectors.

In our experiments, we obtained good results for chord estimation using the key tran-
sition matrix from [NM06] as a chord transition matrix. This matrix is represented in the
middle part of Figure 4.8.

4.4.4.3 Method C: Trained Approach Using the EM Algorithm

This approach uses the transition matrix provided by the training of the HMM using the
Expectation Maximization (EM) algorithm, i.e. the system is trained using on the one
side the succession of chroma vectors extracted from the audio signal and on the other
side the corresponding chord labels.

The expectation maximization algorithm [GM99a] is an e�cie nt iterative procedure
for �nding maximum likelihood estimates of parameters in statistical models, where the
model depends on unobserved (hidden) variables. Each iteration of the EM algorithm
consists of two processes: the E-step, and the M-step. In theexpectation (E)-step, the
missing data Q (for us the unknown chord labels) are estimated given the observed data
O (the observed chroma vectors) and current estimate of the model parameters� . In the
maximization-(M) step, the parameters are computed by maximizing the expected log-
likelihood found in the E-step. Equation (4.1) expresses the complete-data log likelihood
as a function of old and new parameters,� old and � . At each step the old parameters are
�xed and � is adjusted to maximize logP(O; Qj� ) in expectation.

E[logP(O; Qj� )] =
X

Q

P(Qjx; � old )log(P(OjQ; � )P(Qj� ) (4.1)

Convergence is assured since the algorithm is guaranteed toincrease the likelihood at each
iteration. The speci�c application of EM to �nd maximum-lik elihood parameter estimates
for a hidden Markov model is known as the Baum-Welch, or forward-backward algorithm.
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Table 4.8: Krumhansl's correlations between key pro�les for CM and Cm keys, from
[Kru90].
C major C minor

CM 1.000 0.511
C#M -0.500 -0.158
DM 0.040 -0.402

D#M -0.105 0.651
EM -0.185 -0.508
FM 0.591 0.241

F#M -0.683 -0.369
GM 0.591 0.215

G#M -0.185 0.536
AM -0.105 -0.654

A#M 0.040 0.237
BM -0.500 -0.298
Cm 0.511 1.000

C#m -0.298 -0.394
Dm 0.237 -0.160

D#m -0.654 0.055
Em 0.536 -0.003
Fm 0.215 0.339

F#m -0.369 -0.673
Gm 0.241 0.339

G#m -0.508 -0.003
Am 0.651 0.055

A#m -0.402 -0.160
Bm -0.158 -0.394
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4.4.4.4 Method D: Trained Approach Using the Chord Transcri ption

As opposed to the previous method, this approach is only based on symbolic information,
i.e. the chord labels transcription of the training set. From the succession of transcribed
chord labels over time, we derive an \annotation" transition matrix which is, as in the
previous case, speci�c to the training set (in our case the Beatles corpus). We want to learn
from the training set the probabilities of transiting from o ne chord to another. We achieve
this by counting the number of occurrences of each chord transition in the training set.
Our goal is to construct a 24-dimensional matrix T that indexes all the chord transitions.
However, because the distribution of musical keys is not homogeneous in the training set,
we are likely to favor speci�c chord transitions9, and therefore the transition matrix will be
unbalanced. In order to face this problem, we only considerrelative chord transitions
(GM ! CM transition is considered as equivalent to CM ! FM). We denote by T(i; j )
the value of the transition matrix that represents the probability of transiting between
chord i at time t � 1 to chord j at time t. The indexes i; j 2 [1; 12] represent the Major
(M) chords, i; j 2 [13; 24] the minor (m) chords. The matrix is therefore composed by
four sub-matrices that represent transitions between M to M, m to m, M to m and m to
M chords. These four cases are processed separately.

1. We �rst select from the training set all chord transitions belonging to a speci�c case
(MM, mm, Mm, mM).

2. For each chord belonging to a given subset, we then computethe relative chord
transitions. Each chord transition i ! j is characterized by the equivalent transition
from/to a root-note of C. We denote it by f (i; j ).

3. We then form a 12-dimensional vector� (k) by counting the number of relative chord
transitions f (i; j ) = k.

4. Using these vectors, we form theT(1; k 2 [1; 12]) (MM), T(13; k 2 [13; 24]) (mm),
T(1; k 2 [13; 24]) (Mm), T(13; k 2 [1; 12]) (mM).

5. The diagonal of the sub-matrices (self-transition) is processed in a separate way. We
set the diagonal values to 1:1 max(� (k)).

6. The rest of the sub-matrices are constructed by circular permutation.

7. We �nally normalize the matrix T so that the sum of each row is equal to 1.

The resulting matrix trained on the test-set presented in Section 4.5.1 is represented in
the right part of Figure 4.8. It is interesting to observe the predominance (high transition
values in the matrix) of typical transitions in the matrix, s uch as the II/V/I (transition
between Dm, GM and CM) that seems usual in this set of Beatles albums. However, the
amount of transitions between Major and minor chords is muchlower than the amount of
transitions between two Major chords in this training set. I t can be noticed, for instance,
that the typical transition CM-Am, that frequently arises i n songs in the C major key,

9For instance, if 90% of the training set is in C Major we are mor e likely to observe a II/V/I transition
in C Major, i.e. Dm/GM/CM, than a II/V/I transition in F#M, i.e. G#m/D#M/F#M.
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are not enhanced in this trained transition matrix. The consequence of that, is a lower
estimation rate for tracks with Major to minor chords.

4.4.5 Chord Progression Detection Over Time

In all cases (Method 1, 2, 3, A, B, C or D), the optimal succession of chords over time is
found using the Viterbi decoding algorithm [Rab89] which gives us the most likely path
trough the HMM states given our sequence of chroma observations.

4.5 Evaluation and Results

This study was initially published in [PP07]. It was the �rst large-scale evaluation of chord
estimation algorithms.

4.5.1 Test Set and Protocol

The system has been tested on a set of 110 hand-labeled �les from the �rst eight albums
of the hand-labeledBeatles test-setpresented in Chapter 2, Section 2.3.2. The chord label
accuracy is measured using the measure detailed in Section 2.4.2 of Chapter 2.

4.5.2 Results

The chord estimation results obtained with the various methods are indicated in Table
4.9 and illustrated in Figure 4.9. Note that we present here earlier results published
in [PP07]. They were obtained using a FFT-based chroma representation (and not using
a CQT-based chroma representation) and correspond to a frame-by-frame analysis (not
a beat-synchronous analysis). The purpose here is to compare the various proposed
con�gurations of the HMM 10.

In Table 4.9, we compare the various methods according to thenature of the observa-
tion distribution and to the number of harmonics ( nbh)considered:

� (Method 1) Gaussian observation distribution with trainin g. For this method, the
evaluation has been performed using a 8-folds cross-validation (each album was evaluated
using the seven remaining albums as training data).

� (Method 2, nbh = 1) Gaussian observation distribution with music theory as pro-
posed in [BP05].

� (Method 2, nbh = 4) Our proposal: Gaussian observation distribution with music
theory considering the presence of four higher harmonics.

10 To introduce chord dependency to the meter, we have later used beat-synchronous chroma features.
In the next chapter, we will present more recent chord estima tion results using beat-synchronous chroma
features.
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� (Method 3, nbh = 1 ; 4; 6) Our proposal: Observation distribution from correlation
with templates combined with music theory considering the presence of one, four or six
higher harmonics.

Note that we only present here the results obtained using method B for the transition
matrix (see explanations Section 4.5.3.2).

Table 4.9: Chord estimation rate (mean and standard deviation) using methods 1, 2 and
3 for the observation distribution and transition matrix B ( theoretical transition matrix
based on correlation between key pro�les). Rex: exact chordestimation rate. Rct: chord
estimation rate including close triads. nbh: number of harmonics considered in the model.

Method1 Method2 Method3
nbh = 1 nbh = 4 nbh = 1 nbh = 4 nbh = 6

Rex 69:95 � 14:90 61:57 � 14:72 69:28 � 11:42 67:54 � 13:54 70:22 � 17:01 70:96 � 19:23
Rct 84:08 � 9:87 74:67 � 10:47 81:82 � 9:91 81:22 � 9:64 82:57 � 10:49 86:18 � 8:67

M1 M2, nbh = 1 M2, nbh = 4 M3, nbh = 1 M3, nbh = 4 M3, nbh = 6
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Figure 4.9: Histogram of chord estimation results obtained using the transition matrix
based on correlation between key pro�les (method B) according to the various methods.
From left to right: method 1 (M1), method 2 considering 1 and 4 harmonics (M2, nbh =
1; M2, nbh = 4) and method 3 considering 1, 4 and 6 harmonics (M3, nbh = 1; M3, nbh
= 4; M3, nbh = 6). In black: exact chord estimation rate. In gre y: chord estimation rate

including close triads.

Table 4.10: Statistical Signi�cance (Stat. Sig.) of the di�erence between the results
obtained with several pairs of methods. nbh: number of harmonics considered in the

model.
Compared Methods Stat. Sig.

Method1 - Method2, nbh = 1 yes
Method1 - Method2, nbh = 4 no
Method1 - Method3, nbh = 6 yes

Method2, nbh = 4 - Method3, nbh = 6 yes
Method3, nbh = 4 - Method3, nbh = 6 yes
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4.5.3 Analysis of Results

4.5.3.1 Chord Estimation Method

The results obtained with the various methods are pretty close to each other. However,
we performed paired-sample t-tests at the 5% signi�cance level and we found that the
di�erence between the results is statistically signi�cant in most of the cases (see Table
4.10).

In our experiments, the best results were obtained with Method 3 (70:96%). Note
that there was no training of the observation distribution i n this case. Despite the fact
that Method 1 uses training (and is therefore likely to �t ver y well to the characteristics
of the Beatles), Method 2 with nbh = 4 (which does not use training at all) gives very
close results11. Note that the di�erence between the two methods is not statistically
signi�cant.

4.5.3.2 Transition Matrix

The best results were obtained using the theoretical transition matrix based on correlation
between key pro�les (Method B). The transition matrix based on the doubly-nested circle
of �fths (Method A) gives slightly lower results. We do not pr esent the results obtained
with the two trained matrices (Methods C and D). Although met hod C is the usual
approach and the one used for example in [SE03] [BP05], it didnot provide satisfactory
results in our evaluation. Method D did not perform well because, as explained in
Section 4.4.4.4 some typical transitions are not enhanced in this trained transition matrix.
In Chapter 6, we will show how this training method can be improved by taking into
account information related to the musical key.

4.5.3.3 Number of Harmonics

Considering the presence of higher harmonics in the model clearly improves the results.
For instance, for Method 3, considering 6 harmonics in the templates brings about 5%
relative improvement to Method 3 with nbh = 1. Note that the di�erence in the results
considering 4 and 6 harmonics, although small, is statistically signi�cant (see Table
4.10). This is even clearer in the case of Method 2 where considering harmonics in the
parameters of the model brings about 12.5% relative improvement (compared to Method
2 with nbh = 1).

11 It should be noted however that, although Method 1 and nbh = 1 is very close to the one presented
in [BP05], we did not recover the high results reported in [BP 05].
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4.5.4 Discussion

4.5.4.1 Chord Confusions Due to Ambiguous Mapping

As it can be seen in Table 4.9, the standard deviation of the results is relatively high (up
to 19%) independently from the chosen method. A deeper analysis of the results shows
that the errors come from a subset of songs which possess speci�c characteristics described
below.

Concerning partial chords, we obtain for instance less than3% of chords correctly
identi�ed on the song Love You To from the Beatles albumRevolver. Provided annotation
indicates that almost all the chords of this song but a few areCmin(*b3) chords, i.e. a triad
without the third note (C-G). In such a case, it is di�cult to m ake a decision between
major and minor chords in the absence of musical key information. For this song, our
system in fact recognized in all cases a CM chord instead of a Cm chord, resulting in a
low estimation rate.

As mentioned earlier, because of our limited chord dictionary, a mapping was
performed between complex chords and their root triad. The chord type distribution in
the test-set is unbalanced and, even if the majority of the songs in the evaluation test-set
are composed of triad chords, some of them contain many partial or complex (non-triads)
chords. The system sometimes recognizes other triads than the root triad of the complex
chord analyzed, which decreases the estimation rate. For instance, the Beatles song
Ask Me Why contains many G#min7 chords (G#-B-D#-F#). This complex cho rd
comprises a G#m chord (G#-B-D#) and a BM chord (B-D#-F#). The theoretically
correct answer depends on the tonal function of the chord in the harmonic progression.
Modeling chord sequences using longer dependencies between chords, using for instance
probabilistic N-grams, would help characterize the complexities of harmonic progressions
in Western tonal music.

4.5.4.2 Neighboring Triad Confusions

It can be noticed that most of the chord errors correspond to harmonically close triad
confusions:

� Parallel Major/ minor chords (EM being confused with Em),

� Relative chords (Am being confused with CM),

� Dominant chords (CM being confused with GM),

� Subdominant chords (CM being confused with FM).

If the system does not recognize exactly a chord but makes such confusions, the result
can still be useful for higher-level structural analysis such as key estimation, harmony
progression or segmentation. Table 4.9 shows that if we consider close triads estimation
as correct, the estimation rate of method 3 reaches up to 86%.It also becomes now the
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method with the smallest standard deviation, 9%. This point will be further discussed in
the next chapter.

4.5.4.3 Passing or Missing Tones

In the Beatles songTill There Was You , there is a repeating pattern beginning by an
FM chord that has a duration of two beats. The system estimates the following chords:
FM-Dm. If we listen to the music, we can hear that on the �rst tw o beats, the guitar
is playing a broken FM chord (F-A-C). On the second beat, the C note is not present
anymore. A musician would naturally label the two chords as aFM chord, ignoring the
fact that there are missing notes (because it is the same harmony). However, the signal
features only take into account notes that are present in thesignal. As a result, the
estimated chords do not match exactly those of the ground truth. Conversely, non-chord
tones such as neighbor tones, anticipation, passing tones,suspension and escape tones
that occur in the melody and do not belong to the harmony may also confuse the harmony.
This example leads to the relevant question of how to evaluate the performances of a
chord estimation system. The ground truth is provided by trained musicians who not
only take into account the notes present in the signal but also the harmonic context to
label the chords, ignoring the addition or the deletion of some notes in their annotation.
This complicates the evaluation of the algorithm.

4.5.4.4 Limitation of the Chroma-Based Approach for Inharm onic Sounds

It is interesting to notice that we obtain much better result s for the �ve �rst Beatles
albums than for the others (from the Norwegian Wood (This Bird Has Flown) on 1965's
Rubber Soulalbum). The reason for this may come from the extended use of the Indian
sitar instrument 12 and various percussive instruments such as bells, wood blocks or congas
that cause transients. Since the chroma-based approach strongly relies on the presence
of harmonic sounds, the use of chroma-based signal featureswould ideally require a
pre-processing step that e�ectively reduces transients and noise. We plan to concentrate
on this point in future work.

4.6 Conclusion

In this chapter we have proposed and compared several methods for the automatic esti-
mation of chord progression of an audio signal of music. All the methods are based on a
chroma representation of the audio signal and on modeling ofthe sequence of observation
using a hidden Markov model. The methods have been compared through a large-scale

12 The sitar is a stringed instrument that uses sympathetic str ings in addition to regular strings. This
produces a very lush sound with complex, competing harmonic components.
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evaluation. We have presented here the results that were originally published in [PP07].
To our knowledge, it was the �rst attempt to evaluate chord estimation algorithms on
such a large test-set. The best results are obtained with themodeling of the observation
probabilities using a normalized correlation with a set of extended chord templates and
a cognitive-based transition matrix. The templates are extended by considering the pres-
ence of higher harmonics of each pitch note of a chord. The transition matrix is derived
from cognitive experiments on the perception of musical key.

In our experiments, we have found that music knowledge-based parameters work at
least as well as trained parameters. However, we believe that the training could still
be exploited and yield to higher results. The best results for the chord estimation task
obtained in the Music Information Retrieval Evaluation eXc hange (MIREX) contests were
obtained by trained systems. Moreover, the proposed music knowledge-based parameters
can only be used for a chord lexicon reduced to the 24 major andminor triads.

However, since we only consider these 24 triads, we will use in the rest of the present
work the HMM-based approach relying on chord templates since it gives satisfactory re-
sults without requiring any training data. We will use the tr ansition matrix based on
Krumhansl's key pro�les because we believe that this matrix, as well as the one based
on the circle of �fths, characterizes well harmonic relationships in a large part of Western
tonal music styles including classical and popular music, without requiring any training
data. This will allow us to work on other styles of music than popular music (see Chapter
6). It is important to note that the approaches that will be pr esented in the next chapters
can be extended to a larger chord lexicon and do not depend on the choice of the chord
estimation method or the choice of the chord transition matrix.

A limitation of the model comes from the confusion between the various interpretations
one can make about chords. A solution would be to integrate extra (context) information
such as musical key information. The integration of metrical information could also in-
crease the robustness of the system. This is the points we will focus on in the next chapters.
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Chapter 5

Joint Estimation of Chords and
Downbeats

In this chapter, we present a new technique for joint estimation of the chord progression
and the downbeats from an audio �le. Musical signals are highly structured in terms of
harmony and rhythm. In this chapter, we intend to show that integrating knowledge of
mutual dependencies between chords and downbeats allows usto improve the estimation of
these musical attributes. For this, we propose a speci�c topology of hidden Markov models
that enables modeling chord dependency on the metrical structure. This model allows
considering pieces with complex metrical structures such as beat insertion, beat deletion
or changes in the meter. It is evaluated on a large set of popular music songs from the
Beatles that present various metrical structures. We compare a semi-automatic model in
which the beat positions are annotated with a fully automatic model in which a beat tracker
is used as a front-end of the system. The results show that thedownbeat positions of a
music piece can be estimated in terms of its harmonic structure and that, conversely, the
chord progression estimation bene�ts from considering theinteraction between the metric
and the harmonic structures.
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5.1 Introduction

The previous chapter has been devoted to chord progression estimation. In this disserta-
tion, we are interested in understanding how various musical attributes may interact with
each other. In this chapter, we focus on the problem of estimating simultaneously two
musical attributes: the chord progression, which is related to the harmony, and the down-
beats, which are related to the metrical structure. A piece of music can be characterized
by its chord progression that determines the harmonic structure. The chord progression
is closely related to the metrical structure of the piece [Got01]. For example, chords will
change more often on strong beats than on other beat positions in the measure. Most of
the previous studies deal with various musical attributes independently. However, har-
mony and meter are deeply related to each other and their automatic estimation should
be improved by exploiting their interrelationship. In this chapter, we present a system
that allows the simultaneous estimation of the chord progression and the downbeats from
an audio �le. Most of the previous works on downbeat detection have dealt with constant
meter pieces. A contribution of this chapter is that we consider the problem of complex
meter (e.g. changes in the meter, insertion or deletion of beats). We also consider the
problem of imperfect beat tracking. The model is evaluated on a large set of popular
music songs and gives very interesting results on pieces with complex metrical structure.
This chapter is based on publications [PP08b] and [PP10].

The major contributions of this chapter are the following:

1. We provide a detailed review of the previous works relatedto the problem of down-
beat estimation, including interaction between harmony and meter.

2. We present an approach to the chord progression and the downbeat tracking esti-
mation problems, which are jointly considered using a speci�c topology of hidden
Markov models.

3. The proposed model can be used for pieces containing changes in the meter.

4. The system can handle real situations, when using an imperfect beat tracking as a
front-end of the system.

5. We have annotated the beats and the downbeats of a large setof popular music
songs.

6. This allows us to provide a quantitative evaluation of our model considering various
cases of meter.

7. We provide a deep analysis of chords/downbeats interaction results.

8. We compare the newly proposed model with the state-of-the-art and show that it
presents improvements.

9. We provide a discussion of the proposed model.
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Organization of the chapter:

This chapter is organized as follows. First, in Section 5.2,we provide a review of
previous works related to the problem of downbeat tracking. We then introduce in Sec-
tion 5.4 a probabilistic model for simultaneous chord progression and downbeat position
estimation. This model encodes contextual information in the state transition matrix;
this is detailed in Section 5.4.5. In Section 6.3.3, we present our approach to estimate
the two considered musical attributes (chords and downbeats) using the Viterbi decoding
algorithm. In Section 5.6, the proposed model is evaluated on a set of hand-annotated
songs from the Beatles. A conclusion that underlines the advantages and the limits of the
proposed model closes the chapter.

5.2 Related Work

The problem of tracking beat and tempo in audio signals is addressed in a large number
of previous works. Even if it has drawn less attention than beat tracking, downbeat
detection is an interesting problem that deserves to be carefully studied and a number of
contributions dealing with various aspects of this problem have already been proposed.
This is not surprising since downbeat positions knowledge may be useful in various
applications within the context of music information retri eval. It may facilitate fully
automated rhythmic pattern analysis, as in the work of Ellis & Arroyo [EA04] where a
representation of the drum patterns is used as a space for genre classi�cation. It can be
used for automated rhythmic transformation of musical audio, as in the work of Hockman
& Bello [HB08] where a technique for automatic mixing and synchronization between
two musical signals in a disc jockey application is presented. It may serve to partition
the signal into segments of lengths that have a musical meaning in structural audio
segmentation, as in the work of Bartsch & Wake�eld [BW05]. It may also be used in
intelligent computer accompaniment, as in the work of Goto [Got01] where the downbeats
are used to produce an intelligent drum machine that can playdrum patterns in time to
input musical audio signals without drum-sounds.

The downbeat tracking problem has �rst drawn the attention o f researchers working
with MIDI format. For instance Temperley & Sleator [TS99] pr opose a computational
system for analyzing metrical and harmonic structure. The program takes as input a
symbolic representation of music. The metrical structure produced by the algorithm con-
sists of several levels of beats, including the downbeat positions. The approach is based
on preference rules. The inference of the metrical structure relies on three rules: theevent
rule, the length rule, and the regularity rule. For a given piece, all possible analyses are
considered. The analysis that best satis�es the rules is selected among the others. The
performances of the model are illustrated on some examples.

In this dissertation, we are interested in working directly on the audio signal. The
�rst downbeat tracking system that works reasonably well on audio was presented by
Goto & Muraoka in [GM99b]. In this work, a complex agent-based model for detecting
a hierarchical beat structure in musical audio signals without drum-sounds is proposed.
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The system tracks beat structure at the quarter-note, the half-note and the measure levels,
and operates in real-time. The analysis is restricted to pieces having a 4/4 time-signature
and the tempo is assumed to be roughly constant within the range of 60 to 120 beats per
minute (bpm). The hierarchical beat structure is identi�ed relying on musical knowledge.
The system is based on an architecture where multiple agentstrack alternative meter
hypotheses. The provisional beat times are a hypothesis at the quarter-note level and
are inferred by an analysis of onset times. Short-term spectral frames are peak-picked
and then \histogrammed" into beat length segments, where chord changes are used to
infer higher level metrical structure. In the same way that untrained music listeners, who
cannot identify chord names but are able to perceive harmonyand chord changes, the chord
changes detection method does not require chord names to be identi�ed. The approach
is tested on 40 popular music songs and estimates correctly the downbeat positions for
94:1% of the songs for which the quarter-note level and the half-note level have been
correctly estimated. The experiments show that both chord-change possibilities based on
the eighth-note-level knowledge and on the quarter-note-level knowledge are necessary for
determining the hierarchical beat structure. The method was further combined with a
previous beat-tracking system designed to process real-world audio signals with drums
[GM94] [GM96]. Musical knowledge of chord changes and musical knowledge of drum
patterns are selectively applied according to the presenceor absence of drum-sounds.
This results in a single system that can recognize the hierarchical beat structure of music
with drums and music without drums by using three kinds of musical knowledge: onset
times, chord changes and drum patterns.

Previous works that speci�cally address the problem of downbeat tracking can be found
in the literature. Most of them rely on prior knowledge such as tempo, time-signature of
the piece or hand-annotated beat positions. Allan [All04] presents a model that uses an
autocorrelation technique to determine the downbeats in musical audio signals for which
beat positions are known. The system relies on the assumption that a piece of music
will contain repeated spectrally similar patterns. The boundaries of those patterns are
assumed to fall on metrical hierarchical boundaries (bars). Bar boundaries are identi�ed
from the known beat positions by measuring the Euclidean distance between grouped beat
length spectral segments of varying lengths at incrementalo�sets. It has been tested on
42 di�erent pieces of music at various metrical levels, in several genres. It achieves a
success rate of 81% for pieces in 4/4 time-signature and needs more testing on ternary
time-signatures.

Hand-annotated beat positions are not needed in the model proposed by Jehan in
[Jeh05]. This work proposes an unbiased and predictive approach for downbeat tracking
that combines psychoacoustic models of music listening with time-lag embedded segment
learning. The model is tempo independent and does not require beat tracking. It however
requires some fair amount of prior knowledge acquired through listening or learning during
a supervised training stage where downbeats are hand-labeled. The model has only been
applied to music in 4/4 meter. To demonstrate its performances, it is applied to two
complex musical cases for which the downbeat cannot be interpreted through harmonic
shift or a generic \template" pattern: a song characterized by its repetitive single chord
and syncopated rhythmic pattern and a rhythmically complex piece of Brazilian music.
However, the model is not quantitatively evaluated.
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A recent method that segments the audio according to the position of the bar lines
(downbeats) has been presented by Gainzaet al. in [GBC07]. The model does not depend
on the presence of percussive instruments and allows moderate tempo deviations. The
downbeat detection is based on three independent tasks: barline detection, anacrusis
detection and bar line alignment. The bar length and the anacrusis beats are identi�ed
using an audio similarity matrix. The bar length is determin ed by computing the length of
the most repeating segment within a range of bar length candidates, which are derived from
tempo and time signature ranges. A vector of anacrusis candidates is generated, on which
an anacrusis detection function is applied. The position ofeach bar line is then predicted
by using on the one hand prior information about the position of previous bar lines, and
on the other hand the estimated bar length. Finally, each barline is estimated by aligning
the predicted bar line position to the most prominent value in an onset detection function
within a window centered at the predicted bar line. The approach is evaluated on a set
of 9 popular music excerpts from which the downbeats have been manually annotated. It
shows that the detection of the bar length is accurate but thedetection of the anacrusis
is not. The model has the advantage that it does not require tempo estimation and that
the alignment of the bars allows moderate tempo deviation. However, it may be badly
a�ected by time signature or abrupt tempo changes.

Contrary to some previous mentioned methods such as [GM99b][Jeh05], Klapuri et
al. [KEA06] propose an approach that allows tempo deviation andis not restricted to
a particular time signature (typically 4/4 in the previous a pproaches). This work is not
restricted to downbeat tracking but analyzes the musical meter into three di�erent metrical
levels: tatum, tactus and measure level. A probabilistic model that encodes prior musical
knowledge jointly estimates the period-length and phase ofeach level, by taking into
account the temporal dependencies between successive estimates. The downbeats are
identi�ed by matching rhythmic pattern templates to a mid-l evel representation. The
proposed downbeat tracking approach is evaluated on a manually annotated database of
320 one-minute long excerpts of musical signals from various genres. It is noticed that
pitch analysis should be used to estimate more accurately the downbeats.

Ellis & Arroyo [EA04] also use a \template-based" approach in a drum-pattern clas-
si�cation and generation task. For this a collection of drum patterns is created. The
downbeat of an input drum pattern is de�ned as the beginning of a looping drum pattern.
To estimate this point, the input pattern is cross-correlated with reference patterns. The
method is evaluated on a corpus of 100 drum tracks from real pieces of di�erent genres,
encoded as MIDI �les. The algorithm estimates correctly the downbeat positions of half
of the tracks for which the tempo and the pattern length have been correctly estimated.
It is concluded that the downbeat detection would require a more sophisticated approach
such as training.

The above-mentioned rhythmic pattern approach [KEA06] is compared with an ap-
proach based on a spectral di�erence between band-limited beat-synchronous analysis
frames proposed by Davies & Plumbley in [DP06]. The sequenceof beat positions of the
input signal is required and the time-signature is to be known a priori . The input sig-
nal is partitioned into band-limited beat length frames. Relying on the musical knowledge
that lower frequency bands are perceptually more important, information within the range
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0 � 1:4kHz is preserved. The Kullback-Leibler divergence between successive beat frames
is computed in order to form a spectral di�erence function. The beats that globally lead
to most spectral change are selected as downbeats. The modelis evaluated against the
one presented in [KEA06] on a subset of the database originally presented in [Hai04], that
consists of 181 excerpts of six musical genres (rock, dance,jazz, folk, classical and choral).
It obtains an overall accuracy of 53% rising to 81% for cases where beat tracking is accu-
rate, comparing favorably with the state-of-the-art [KEA0 6], which obtains respectively
40:8% and 69:9%. This downbeat extraction method is employed in [HB08] for the pur-
pose of automatic mixing and synchronization between two musical signals. We consider
this approach to be the state-of-the art. One of the drawbacks of this approach is that any
omitted beat or change in tempo or time-signature causes errors from which the model
cannot recover. Moreover, it is limited to cases where the time-signature does not change
and the tempo is approximately constant.

The strong relationship between the chord progression and the metrical structure of
a musical piece has already been explored in previous works [TS99], [Mad06], [SW05],
[PEBB05] or [RS03].

In the work of Temperley & Sleator [TS99], information about the metrical structure
is used during the analysis of the harmonic structure: the \strong-beat rule" stipends
that it is preferable to start chord spans on strong beat scores. In this model, there is
no complete interaction between the harmonic and the metrical information. Indeed, if
harmonic analysis uses metrical information, the metricalanalysis process does not use
harmonic information. This is viewed as a drawback of the model.

Drawing on the prior idea of Goto [Got01], Shenoy & Wang [SW05] present a framework
that provides the hierarchical rhythm structure representation of a piece of music at the
quarter-note, the half-note and the measure levels. The aimof this work is to determine
the key, chords and hierarchical rhythm structure of a musicsignal by combining low-level
features with high-level music knowledge in a rule-based approach. Harmonic and metric
information are estimated in a mutually informing manner. A �rst estimation of the chord
progression is provided using beat-length chroma features. The measures boundaries are
then estimated relying on the music knowledge that chords are more likely to change at
the beginning of a measure than at other beat positions [Got01]. Assuming a 4/4 time-
signature, all possible patterns of boundary locations that have integer relationships in
multiples of four are computed. The pattern with the highest count is selected as the
one corresponding to the pattern of actual measure boundaries. Finally, the measures
boundaries are used to correct possible chord errors relying on the rule that chord changes
are more likely to change at the beginning of the measures than other positions of half-note
times. The system works reasonably well on popular music assuming a constant 4/4 meter
and a �xed tempo constrained between 40 and 185 bpm. Tests on aset of 30 popular
English songs lead to an accuracy of 93% for the downbeat tracking. However, it is noted
that the model cannot be used to analyze music more rhythmically and tonally complex.
Moreover, possible beat detection errors are systematically propagated into the downbeat
tracking stage.

This is a typical drawback of rule-based approaches. One of the main drawbacks of
rule-based approaches is that errors are irreversibly propagated from one step to another.
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Statistical approaches, including graphical and Bayesianmodels, are more 
exible than
rule-based approaches and o�er large opportunities to explore the interaction between
low-level features with high-level music information. An example of such a work related to
the issues addressed in this chapter is the one presented by Paiement et al. in [PEBB05].
It considers the interaction between the harmonic and the metrical structures using a
graphical (probabilistic) model where contextual information is used to model the chord
progression. It is related to our work in the sense that information related to the meter
is used for modeling the chord progressions. However, the approach is di�erent. It is not
based on a HMM but the strong relationship between the chord progression and the meter
of the piece is embedded in a tree structure that captures thechord structure in a given
musical style. The main assumption behind the model is that conditional dependencies
between chords in a typical chord progression are strongly tied to the metrical structure
associated to it. In this model, a chord progression is seen as a two-dimensional
architecture. Each chord in the chord progression depends both on its position in the
chord structure (global dependencies) and on the surrounding chords (local dependencies).

The various presented methods for downbeat estimation fromaudio �les are summa-
rized in Table 5.1.

Table 5.1: Summary of downbeat estimation methods.
Reference Method Meter Knowledge applied Evaluation Material
Goto &
Muraoka
[GM99b]

agent-based
model

constant 4/4 musical knowledge of
chord changes and mu-
sical knowledge of drum
patterns

40 popular music songs

Allan [All04] autocorrelation
technique

constant 4/4
and 3/4

Euclidian distance be-
tween grouped beat length
spectral segments

42 di�erent pieces in sev-
eral genres

Ellis & Ar-
royo [EA04]

template-based
approach

�nding the
beginning of a
looping drum
pattern

cross-correlation with ref-
erence drum patterns

100 drum tracks from real
pieces of di�erent genres,
encoded as MIDI �les

Jehan
[Jeh05]

unbiased and
predictive
approach

constant 4/4 prior knowledge acquired
through listening or learn-
ing

two complex musical songs

Shenoy
& Wang
[SW05]

rule based constant 4/4 musical knowledge of
chord changes

30 popular English songs

Klapuri et
al. [KEA06]

probabilistic
model

no restriction joint analysis at three dif-
ferent time scales, encode
musical knowledge

320 one-minute long ex-
cerpts from various genres

Davies &
Plumb-
ley [DP06]

spectral dif-
ference be-
tween beat
synchronous
analysis frames

constant 3/4 or
4/4

musical knowledge that
lower frequency bands are
perceptually more impor-
tant

181 �les from [Hai04]
database

Gainza et al.
[GBC07]

similarity ma-
trix

constant exploit the self-similarity
nature of the structure of
music

9 popular music excerpts

Papadopoulos
& Peeters
[PP08b]

double-state
HMM

constant 4/4 simultaneous estimation
chords/downbeats

66 Beatles songs

Papadopoulos
& Peeters
[PP10]

double-state
HMM

no restriction,
variable

simultaneous estimation
chords/downbeats

169 Beatles songs
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