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Resune

Dans cette these, nous nous ineressons au probeme de éxtraction automatique
d'informations de contenu d'un signal audio de musique. La pupart des travaux existants
abordent ce probeme en consicerant les attributs musicaux de manere incependante
les uns visa-vis des autres. Cependant les morceaux de migsie sont extemement
structues du point de vue de I'harmonie et du rythme et leur estimation devrait se faire
en tenant compte du contexte musical, comme le fait un musi@n lorsqu'il analyse un
morceau de musique.

Nous nous concentrons sur trois descripteurs musicaux & aux structures harmoniques,
netriques et tonales d'un morceau de musique. Plus pecisment, nous cherchonsa en
estimer la progression des accords, les premiers temps et tanalie. L'originalie de
notre travail consistea construire un mocele qui permet d'estimer de manere conjointe
ces trois attributs musicaux. Notre objectif est de montrer que I'estimation des divers
descripteurs musicaux est meilleure si on tient compte de las dependances mutuelles
que si on les estime de manere incependante. Nous proposs au cours de ce travall
un ensemble de protocoles de comparaison, de netriques deegormances et de bases
de donrees de test an de pouvoir evaluer les dierentes methodes etudees. An de
valider notre approche, nous pesentons egalement les @sultats de nos participations a
des campagnes dévaluation internationales.

Dans un premier temps, nous examinons plusieurs repeseations typiques du signal
audio an de choisir celle qui est la plus appropree a I'analyse du contenu harmonique
d'un morceau de musique. Nous explorons plusieurs nethodequi permettent d'extraire
un chromagram du signal et les comparonsa travers un protocole dévaluaion original
et une nouvelle base de donrees que nous avons annote. Nouwktaillons et expliquons
les raisons qui nous ont ameresa choisir la repesentaton que nous utilisons dans notre
mockle.

Dans notre moctle, les accords sont consicees comme un t&ibut central autour
duquel les autres descripteurs musicaux s'organisent. Nauetudions le probeme de
I'estimation automatique de la suite des accords d'un morcau de musique audio en util-
isant les chromas comme observations du signal. Nous proposons plusieurs tieodes
bases sur les moceles de Markov cactes (hidden Markov mdels, HMM), qui permettent
de prendre en compte deseéments de la treorie musicalele esultat d'expgeriences cogni-
tives sur la perception de la tonalie et I'e et des harmoni ques des notes de musique. Les
dierentes methodes sontevallees et compaees pour | a premere fois sur une grande base
de donrees compose de morceaux de musique populaire.

Nous pesentons ensuite une nouvelle approche qui permet'estimer de manere si-
multaree la progression des accords et les premiers tempsuh signal audio de musique.
Pour cela, nous proposons une topologie speci que de HMM gunous permet de mockliser



la cependance des accords par rapporta la structure netriqgue d'un morceau. Une impor-
tante contribution est que notre moctle peut étre utilise pour des structures netriques
complexes pesentant par exemple l'insertion ou I'omissbn d'un temps, ou des change-
ments dans la signature rythmique. Le mocdele propos estevalie sur un grand nombre
de morceaux de musique populaire qui pesentent des strucires netriques varees. Nous
comparons les esultats d'un moctle semi-automatique, dins lequel nous utilisons les po-
sitions des temps annoees manuellement, avec ceux obtesupar un mockle enterement
automatique au la position des temps est estinee directenenta partir du signal.

En n, nous nous penchons sur la question de la tonalie. Nows commercons par
nous ineresser au probeme de I'estimation de la tonalie principale d'un signal audio de
musique. Nousetendons le moctle pesent ci-dessusaun moctle qui permet d'estimer
simultarement la progression des accords, les premiers teps et la tonalie principale.
Les performances du mocktle sontevalleesa travers des gemples choisis dans la musique
populaire. Nous nous tournons ensuite vers le probeme plsi complexe de l'estimation de
la tonalie locale d'un morceau de musique. Nous proposongl'aborder ce probeme en
combinant et enetendant plusieurs approches existantes pur l'estimation de la tonalie
principale. La specicie de notre approche est que nous @nsicerons la ependance de
la tonalie locale par rapport aux structures harmonigues et netriques. Nous evaluons
les esultats de notre mockle sur une base de donrees origale compose de morceaux de
musique classique que nous avons annoes.

L'estimation automatique des informations de contenu d'unsignal audio de musique
est un probeme complexe. Nous esperons que ce travail estin pas en avant dans cette
direction, et qu'il ouvre de nouvelles perspectives.
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Abstract

This thesis is concerned with the problem of automatically tracting meaningful con-
tent information from music audio signals. Most of the previous works that address the
problem of estimating musical attributes from the audio signal have dealt with these el-
ements independently. However, musical elements are degptelated to each other and
should be analyzed considering the global musical contextas a musician does when he or
she analyzes a piece of music.

Our research concentrates on three musical descriptors rafed to the harmonic, the
metrical and the tonal structure. More speci cally, we focus on three musical attributes:
the chord progression, the downbeats and the musical key. Té scope of this work is to
develop a model that allows the joint estimation of the chords, the keys and the downbeats
from polyphonic music recordings. We intend to show that integrating knowledge of
mutual dependencies between several descriptors of muslaontent improves their estima-
tion. In our model, harmony is a core around which other musial attributes are organized.

We start by investigating several typical representations of the audio signal in order
to select the most appropriate one for the task of harmonic cotent analysis. We explore
several schemes for chromagram computation and investigat several issues related to
the use of each representation. We detail and explain the chice of the audio signal
representation we use as an input to our model.

We then concentrates on the problem of the automatic estimaibn of the chord progres-
sion, using chroma features as observation of the music sigh From the audio signal, a
set of chroma vectors representing the pitch content of the le over time is extracted. The
chord progression is then estimated from these observatianusing a hidden Markov model.
Several methods are proposed that allow taking into accounmusic theory, perception of
key and presence of higher harmonics of pitch notes. They arevaluated and compared
to existing algorithms through a large-scale evaluation onpopular music songs.

We then present a new technique for estimating simultaneouy the chord progression
and the downbeats from an audio le. A specic topology of hidden Markov models that
enables modeling chord dependency on the metrical structw is proposed. This model
allows us to consider pieces with complex metrical structues such as beat insertion, beat
deletion or changes in the meter. The model is evaluated on afge set of popular music
songs that present various metrical structures. We comparea semi-automatic model, in
which the beat positions are annotated, with a fully automatic model in which a beat
tracker is used as a front-end of the system.

Finally, we focus on the problem of key estimation. In a rst part, we concentrate
on the problem of estimating the main key of a piece. Relying o previous works on key
estimation, we extend the above-mentioned model to a modelor simultaneous downbeat,
chord and key estimation from an audio signal. The model is easluated on a set of
popular music pieces. We then draw our attention to local key nding. We propose to
address this problem by investigating the possible combindgon and extension of di erent



previous proposed global key estimation approaches. The sgi city of our approach is
that we introduce key dependency on both the harmonic and themetrical structures. We
evaluate and analyze the results of our model on a new annotatl database composed of
classical music pieces.

Building models for musical content estimation in which the interaction between mu-
sical attributes is encoded at the level musicians and traied human listeners do, when
they analyze a piece of music, is a very complex problem and enwhich is far from being
solved. However, we hope that our work is a step towards this idection.
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2 Introduction

1.1 Motivations

Within the last few years, the huge explosion of online musiccollections has become a
great source of attention. Speci c demands, such as askingraonline store to nd a song
that ts his or her taste and musical expectation among millions of other tracks, became
common requirements to music listeners. In this context, tehniques for interacting with
enormous digital music libraries at the song level are necsary. Content-based music
retrieval is therefore a very active and important eld of re search.

A piece of music can be characterized by a number of musical &tbutes such as
the melody, the chord progression, the instrumentation or he tempo. One of the most
important aspects of Music Information Retrieval (MIR) is t he extraction and processing
of meaningful descriptors from the audio signal. This can beviewed as a subtask of the
more general task that is music transcription.

Manual annotation of the content of musical pieces is a very dcult and tedious
task that requires a huge amount of e ort. It is thus essentid to develop techniques for
automatically extracting musical elements from musical sgnals.

This is why there has been an increasing research interest thin the last ten years in
using computers to analyze music as human beings can do. Humsa are able to understand
music at di erent degrees, depending on their level of musictraining. Because we are
immersed with music, music understanding has become an inlhent quality of human
beings.

Musicians or even non-trained persons are usually able to ¢sact meaningful informa-
tion when listening to a piece of music. Some tasks, such asliowing the beats in a music
recording, are in general trivial, even for non-musiciansand do not require any particular
training.

More complex tasks need some musical training. For instancadentifying the key of a
music excerpt or describing music in terms of tonal and harmaic progression requires some
theoretical music knowledge. A person without a musical edaoation is usually not able
to transcribe chords by ear from a recording whereas trainednusicians can accurately
label chords from complex polyphonic recordings. This is a @ammon exercise in music
academies. Even a non-trained musician can at least feel a ahge in harmony or in key
when listening to a piece of music.

Often regarded as an innate human ability, the automatic estmation of music content
information, however, proves to be a highly complex task.

1.2 Scope of the Thesis

This thesis is concerned with the problem of extracting meaimgful content information

from music audio signals. Most of the previous works that addess the problem of esti-
mating musical attributes from the audio signal deal with these elements independently.
However, when a musician analyzes a piece of music, his judgmt is based on a global
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musical context that encompasses various kinds of musicahformation. Musical elements

are deeply related to each other and are analyzed in context.For instance, the chord

progression is closely related to the metrical structure ofa piece of music [Got01]: chords
will change more often on strong beats than on other beat posibns in the measure. It is

also strongly related to the musical key: some chords are hed as more stable within an

established tonal context [Kru90].

We believe that exploiting the interrelationship between musical attributes for their
estimation should improve upon estimating them independetly. This necessity has been
underlined in the past. In [Tem99], Temperley and Sleator olserve that:

\[:::] The idea, then, is to let the harmonic analysis in uence themetrical analysis by
favoring strong beats at changes of harmony. This presents serious chicken-and-egg
problem, however, since meter is crucial as input to harmonyOne solution would be to
compute everything at once, optimizing over both the metrad and harmonic rules, but
we have not yet found an e cient way of doing this"

Our research concentrates on three musical descriptors rafed to the harmonic, the
metrical and the tonal structure. More speci cally, we focus on three musical attributes:
the chord progression, the downbeats and the musical key. Alof them are some of the
most important attributes of Western tonal music.

The scope of this work is to develop a model that allows the jait estimation of the
chords, the keys and the downbeats from polyphonic music rexrdings. We intend to show
that integrating knowledge of mutual dependencies betweerseveral descriptors of musical
content improves their estimation.

1.3 Relevant Music Theoretic Concepts and Terminology

Before going any further, we brie y review some musical conepts that are central to our
thesis. This section aims at clarifying the music terminolagy that will be used in the
following chapters. All musical concepts are understood he in the context of Modern
Western music, i.e. after the 16" century.

1.3.1 Notes
When an instrument produces a note, the human listener perdges a pitch that is a
perceptual attribute of sound. In music, the term note is used to refer to the relative

duration and pitch of a given sound. More details about the pich will be given in Chapter
3.

1.3.2 Key and Scales

In western tonal music, pitches are governed by structural pinciples. The system of
relationships between pitches corresponds to &ey. A musical key implies a tonal center
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that is the most stable pitch called the tonic and a mode (usually major or minor).

A musical scale is associated with each key. Acaleis a series of notes arranged in
ascending or descending order. Two consecutive notes arepseated either by a tone (T),
a semitone §). The harmonic minor scale comprises also & + S interval. The position
of tones and semitones within a scale associated to a key claterizes its mode.

Figure 1.1 represents a C major scale and its relative Anatural minor scale. There
are two common variations of the natural minor scale:

the harmonic minor scale, in which the 7" degree, both ascending and descending
is raised a semitone G# in Figure 1.1). We will consider this type of minor scale in
Chapter 6.

the melodic minor scale in which the 6" and the 7" ascending degrees are raised a
semitone(# and G# in Figure 1.1).

Figure 1.1: Example of major and minor scales: C major, A minor. The accientals
that characterize the harmonic and melodic minor scales areepresented in grey.

In this work, we consider enharmonic equivalencei.e. notes with di erent spelling but
sounding the same are considered the same (C# is equivalentotDb). In Western tonal
music, there are 12 pitches in an octave range. The major and mor scales and twelve
tonic give rise to a total of 24 possible keys.

In a musical scale, thetonic or rst scale degree (l) is the rst note and it is the
pitch upon which all other pitches of a piece are hierarchicly referenced. The other scale
degree, in the ascending order are: thsupertonic (I1), the mediant (I11), the subdominant
(IV), the dominant (V), the leading tone (VI) and the subtonic (VII). In the next chapters,
we will refer in particular to the third and the fth scale deg rees, the mediant and the
dominant, since the combination of these two notes plus the tonic coesponds to the triad
formed on the tonic note, which is the most signi cant chord in a given key.

1.3.3 Chords
Chords that are specic to a key can be constructed around itsscale. In Western tonal

music, the chord progression determines the harmonic struare of a piece of music. It is
strongly related to the musical key of the piece.
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In this dissertation, a chord is de ned as a combination of three or four notes sounded
simultaneously. We include in this de nition combinations of notes that sound nearly
simultaneously, such as the arpeggio, which corresponds tan indivisible group of notes
that are played one after the other. A succession of chords @r time is called achord
progression

Chords may be classi ed according to the number of notes theycontain. Two-note
combinations are calleddyads three-note combination are calledtriads. A chord is com-
monly characterized by its root note and by the intervals it contains. Classical triads are
built from major and minor thirds, i.e. the distance between successive pairs of notes
are 3 or 4 semi-tones. The major, minor, augmented and dimirshed chords are the most
commonly used triads. Figure 1.2 illustrates the four basictriads based on the root-note
C. Table 1.1 gives the relative semitone values for each tric

Table 1.1: Compositions of the four basic triads computed on a root-no¢ corresponding

to a semitone valuen.
chord major augmented minor diminished
root note n n n n
rst third (major) n+ 4 | (major) n+ 4 (minor) n+ 3 (minor) n+ 3
second third | (minor) n+7 (major) n+ 8 (major) n+ 7 (minor) n+ 6

Figure 1.2: Example of common classical triads. From left to right: C major (C-E-G),
C augmented (C-E-G#), C minor (C-Eb-G), C diminished (C-Eb- Gb).

Harmony is here understood as the system of structural principles gerning the com-
bination and the relationship between notes and chords.

In Western tonal music, the term tonality is often used to describe the relationships
of melodies and harmonies relative to the tonic.

1.3.4 Metrical Structure

The metrical structure of a piece of music is a hierarchical sucture. The meter is \the
sense of strong and weak beats that arises from the interacin among hierarchical level
of sequences having nested periodic components" [PEBBO05].

The most salient metrical level, called thetactus or beat level is a moderate level
that corresponds to the foot-tapping rate.

The tatum level corresponds to the \shortest durational values in mug that are
still more than accidentally encountered " [KEAO06]. For instance, in Figure 1.3, the
tatum level corresponds to the sixteenth notes.
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Musical signals are divided into units of equal time value cded measuresor bars.

The relationship between measures and tactus/tatum is de rned by the meter, which
is usually indicated by atime signature, the number of units per measure.

One important problem related to meter analysis is to nd the position of the down-
beat or the rst beat of each measure.

The various metrical levels are illustrated in Figure 1.3.

Figure 1.3: lllustration of the various metrical levels (extract of Schumann,
Kinderzenen).

1.4 Applications

Within the context of Music Information Retrieval, many app lications based on content-
based indexing and retrieval have emerged, such as music ek cation, artist identi ca-
tion, mood classi cation or structural audio segmentation. These applications are mostly
based on the use of musical descriptors that are extracted ém the audio signal.

For instance, two dierent versions of the same underlying nusical piece generally
share a similar harmonic structure. The detection of cover ersions is thus frequently
based on the chord progression [SGHSO08]. This can also be dder nding of plagiarisms
1. For instance the main theme of French nursery rhymeA vous dirais-je Maman has
been harmonized and used by several composers such as Mozgstano Variations on A
vous dirais-je Maman K. 265) or Liszt (Anrees de Relerinage).

The chord progression captures the characteristics of the @ompaniment of musical
pieces and their character. The knowledge of chord progre&s can thus be used for mood
recognition, especially in popular music, for instance by neasuring the ratio of major to
minor chords in a piece of music. Information about the key ca be used as well.

The automatic extraction of the harmonic structure may also be very useful to musi-
cologists who can perform music analysis on large corpus ofusic pieces for which they

LA plagiarism is piece produced by a compositor by imitating a nother compositor's music while pre-
senting it as one's original work.
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may not have the score but only the recordings. It can also be sed for the purposes of
automatic composition.

Beat is fundamental to the perception of Western music. Beatdownbeat information
can provide structural information about a live musical performance that may be used
to make it interact with computer systems. Beat and downbeat tracking can be used
for synchronizing a musical performance with some electran devices such as electronic
musical instruments or lights.

There are no limits to the range of possible applications of rasic content extraction.
We thus believe that it is important to pursue e orts towards building rich models that
can analyze music as musicians do.

1.5 Objectives

The objectives of this dissertation are listed bellow:

1. Review and analyze the previous approaches for chord progssion, downbeat, global
and local key estimation.

2. Compute audio features that capture the harmonic contentof the signal and that
will serve as an input to our model (without the need of an exat transcription).

3. Provide areliable model for chord estimation that will serve as a baseline for studying
the interrelationship with other musical attributes.

4. Provide a model that allows the joint estimation of the chords, the keys and the
downbeats from polyphonic music recordings.

5. Consider complex cases of harmonic and metrical structw (variable meter, key
changes).

6. Provide an analysis of our models through an evaluation osr a large database of
popular and classical music pieces.

7. Demonstrate that integrating knowledge of mutual dependencies between several
descriptors of musical content improves their estimation.

1.6 Overview of the Thesis

This thesis is organized as follows. Figure 1.4 shows an owgew of the interactions
between musical attributes considered in the various chamrs. In this dissertation, we
consider harmony as a core around which other musical attribtes are organized.

Chapter 2 - Databases and Evaluation Measures Used in This Dissertatio n.
This chapter presents the evaluation methodology adopted kng this thesis. In order to
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avoid tedious repetitions of our evaluation methodology tirough the di erent chapters, we
give in this chapter an overview of our evaluation test-setsand rules.

Chapter 3 - Towards a Signal Representation for Harmonic Content Analy sis.
This chapter investigates a number of typical representatons of the audio signal in order
to select the most appropriate one for the task of harmonic cotent analysis. We detail
and explain the choice of the audio signal representation wese as an input to our model.

Chapter 4 - Chord Progression Estimation From an Audio File . This chapter
concentrates on the problem of the automatic estimation of he chord progression from an
audio le, using chroma features as observation of the musisignal. From the audio signal,
a set of chroma vectors representing the pitch content of thele over time is extracted. The
chord progression is then estimated from these observatianusing hidden Markov models.
Several methods are proposed that allow taking into accounimusic theory, perception of
key and presence of higher harmonics of pitch notes. They arevaluated and compared
to existing algorithms through a large-scale evaluation onpopular music songs.

Chapter 5 - Joint Estimation of Chords and Downbeats . This chapter presents
a new technique for joint estimation of the chord progressia and the downbeats from
an audio le. A specic topology of hidden Markov models that enables modeling chord
dependency on the metrical structure is proposed. This modeallows us to consider pieces
with complex metrical structures such as beat insertion, bat deletion or changes in the
meter. The model is evaluated on a large set of popular musicomngs from the Beatles
that present various metrical structures. We compare a semautomatic model in which
the beat positions are annotated, with a fully automatic model in which a beat tracker is
used as a front-end of the system.

Chapter 6 - Interaction Between Chords, Downbeats and Keys . This chapter is
concerned with the problem of key estimation. In a rst part, we focus on the problem of
global key estimation. Relying on previous works on key esthation, we extend the model
presented in the previous chapter to a model for simultaneos downbeat, chord and key
estimation from an audio signal. The model is evaluated on aet of popular music pieces.
We then draw our attention to local key nding. We propose to address this problem by
investigating the possible combination and extension of veous approaches that have been
previously proposed for global key estimation. The speci ity of our approach is that we
introduce key dependency on both the harmonic and the metrial structures. We evaluate
and analyze our results on a new database composed of clagdicnusic pieces.

Chapter 7 -Conclusion . The last chapter of this dissertation summarizes the conti-
butions of the present PhD work and proposes some perspects.

1.7 Main Thesis Contributions

The principal contributions provided in this thesis are:

1. Chapter 3: An analysis and evaluation of several signal fetures extraction methods
for harmonic content analysis of audio music.
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Figure 1.4: Interrelationships between chords, keys and downbeats caidered in this
dissertation.

2. Chapter 4: A model for the estimation of chords that encode musical context in-
formation, takes into account the problem of harmonics in the signal, and does not
need speci c training.

3. Chapter 5: A model for the simultaneous estimation of chods and downbeats that
exploit the interrelationship between these two musical atributes. We focus in
particular on the problem of variable meter and imperfect beat tracking.

4. Chapter 6: A model for the simultaneous estimation of chods, main key and down-
beats that exploits the interrelationship between these three musical attributes and
an approach to local key estimation that is based on the harmaic and the metrical
structure.
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Chapter 2

Databases and Evaluation
Measures Used In This
Dissertation

This chapter presents the evaluation methodology adoptedoag this thesis. In the following

chapters, we evaluate the performances of various models. oiFthis, we rely on some
evaluation measures and some test-sets that are common tol @f the proposed systems.
In order to avoid tedious repetitions of our evaluation metlodology through the di erent

chapters, we give in this chapter an overview of our evaluatn test-sets and rules.

Contents
2.1 Introduction . . . . .. ... 12
2.2 About Evaluation . ... ... .. ... ... . 12
2.3 Music Collections for Evaluation . . . .. ... ........... .12
2.4 Evaluation measures . . . . . . . . . . i e 18
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2.1 Introduction

Evaluation is an essential aspect in all areas of computatioal music analysis. This chapter
is devoted to the evaluation methodology adopted along thisthesis. In the following
chapters, we evaluate the performances of various models. oF this, we rely on some
evaluation measures and some test-sets that are common toladf the proposed systems.
In order to avoid tedious repetitions of our evaluation methodology through the di erent
chapters, we give in this chapter an overview of our evaluatin test-sets and rules.

Cross-references to this chapter will be made in the evalu&n sections of the following
chapters. We would advise the reader to start by having only aquick look at this chapter
and come back when needed.

The chapter is divided into two main sections. Section 2.3 pesents the various music
collections used in this thesis to evaluate our work. In Sedbn 2.4, we present and explain
the evaluation measures used to measure the performances afir models on the test-sets.

2.2 About Evaluation

When designing a system that extracts some information fromthe audio signal, one must
carefully evaluate the performances and the quality of the poposed models. In this dis-
sertation, we are mainly concerned with two aspects of evalation. On the one hand, we
want to compare with each other several methods developed f@a given task, or we want to
measure whether certain changes in a given method lead to amprovement in the model
performances. For instance, in Chapter 3, we compare sevdrieature extraction methods
and intend to select the best one among all. On the other handwe are concerned with
measuring the performances of a given method and measure itetrieval relevance. For
instance, in Chapter 5, we aim to quantify the proportion of downbeat locations correctly
estimated by our model.

2.3 Music Collections for Evaluation

In this section, we detail the characteristics of the databaes used for evaluation of the mod-
els proposed in this thesis. In chapter 3, we conduct some egpiments on two databases
consisting of short excerpts of audio. In what follows, theyare referred to as the Sig-

nal Experiment test-set The rest of our work is mainly evaluated on two databases tha

are referred to as theBeatles test-setand the Piano Mozart test-set These databases
have been manually annotated in chords, keys, beats and doviaeats either by previous
researchers working on the same eld, or by trained musiciag, or by the author. This is

described below.
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2.3.1 Signal Experiment Test-set

The Signal Experiment test-set consists of a number of shorexcerpts of about 20 seconds
extracted from audio recordings. It is divided into two subsets:

1. Non-percussive audidATClas corresponds to audio excerpts of classical music with
various instruments: string quartet, solo piano and orchesa.

2. Percussive audioDATPop corresponds to audio excerpts of popular and rock music
that contains voices and drum sounds.

All the excerpts have been hand-labeled in chords by the autbr. The chords are
annotated against a time grid de ned by the beats. The detail of the excerpts is given in
Table 2.1.

Table 2.1: Detail of the Signal Experiment test-set.

Composer | Title
Beethoven | String quartet Op. 127 1 extl
Beethoven | String quartet Op. 131 6 extract 1
Beethoven | String quartet Op. 131 6 extract 2
Mozart Piano sonata KV 283 2 Andante CM extract 1
Mozart Piano sonata KV 309 1 CM extract 1
DATClas Mozart Pﬁano sonata KV 310 1 Am extract 1
Mozart Piano sonata KV 310 1 Am Kemp extract 1
Mozart Piano sonata KV 310 1 Am Perahia extract 1
Mozart Piano sonata KV 310 1 Am Richter extract 1
Beethoven | symphony no 5 extract 1
Beethoven | symphony no 5 extract 2
Beatles Misery
Beatles Love Me Do extract 1
Beatles | Should Have Known Better extract 1
Beatles I m a Loser extract 1
Beatles Yesterday extract 1
Beatles Yesterday extract 2
DATPop Enya Caribbean blue extract 1
Enya Caribbean blue extract 2
Queen Lazing on a Sunday afternoon extract 1
Queen Lazing on a Sunday afternoon extract 2
Shack Natalies Party extract 1
Shack Natalies Party extract 2

2.3.2 Popular Music: The Beatles Test-set

In the MIR community, works related to chord estimation have almost exclusively been
evaluated on the Beatles test-setsince the chord labels annotations are freely available.
This test-set is composed of 180 songs divided into 13 albumsAll the recordings are
polyphonic, multi-instrumental and contain drums and vocal parts. The list of the tracks
and the corresponding albums can be found in Annex 7.2.
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2.3.2.1 Chord Annotations

The chord annotations where kindly provided by C. Harte from the Queen Mary University
of London!. This annotated test-set is by far the largest one availabletoday.

The chords are annotated according to a special grammar prapsed for chord labeling
by Harte et al. in [HSAGO05]. The annotation style that is adopted intends to be simple
and intuitive to write and understand for musically trained individuals. The chords are
de ned by three parameters, the root note of the chord, the quality (component intervals
that make up the chord relative to the root), and the inversion (degree of the chord played
as its bass note). For instance, a C major chord will be annotted by C : (3;5), which
re ects that it is a triad composed of a major third and a fth, constructed on a root note
of C. Shorthand labels for common chords are also proposed.

The original chord annotations have been obtained either fom listening to the audio
or from music scores and they correspond to the exact transqution of the chords that are
played. They thus present a large variety of chord labels intuding some complex chords
such as major and minor &', 7" or 9",

We aim to compare the output of our algorithm with the ground-truth annotations.
Since our chord lexicon is composed only of major and minor tads, we have performed
a mapping from complex chords in the annotation to their root triads. This point is
important when analyzing the results. For instance, a Dm7 (D-F-A-C) chord is considered
as a Dm chord (D-F-A). The augmented chords, which include a major third, have been
mapped to major chords whereas the diminished chords, whicinclude a minor third, were
mapped to minor chords.

Analysis of the complete set of the Beatles test-set has shawthat most of the chords
correspond to major and minor triads. It was found in [MDH™ 07] that major chords
prevail, accounting for 76% of all chords, whereas the minochords account for 24%.

2.3.2.2 Key Annotations

We select 55 Beatles songs from the rst eight albums for whikc we assigned a global key.
We select songs that remain in the same key from the beginningp the end so that there

are no modulations. The list of the songs with the corresponthg global keys is given in
Table 2.2. This subset of the completeBeatles test-setwill be referred to as the Beatles

test-setkey in the following.

2.3.2.3 Metric Structure Annotation

The tactus, tatum and downbeat positions of the Beatles song were manually annotated
by the author and checked by trained musicians.

It has been annotated using the Open Source tooWavesurfer? placing on-the-y

Lwww.elec.gmul.ac.uk/digitalmusic/
2www.speech.kth.se/wavesurfer/
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Table 2.2: Beatles songs annotated in global keyBeatles test-setkey.

Album Title Key
01 - | Saw Her Standing There EM
03 - Anna (Go To Him) DM
04 - Chains A#M
05 - Boys EM
Please Please Me 06 - Ask Me Why EM
07 - Please Please Me EM
08 - Love Me Do GM
09 - P. S. | Love You DM
13 - There is A Place EM
01 - It Won t Be Long EM
02 - All I' ve Got To Do EM
03 - All My Loving EM
05 - Little Child EM
. 06 - Till There Was You FM
With The Beatles 07 - Please Mister Postman AM
08 - Roll Over Beethoven DM
09 - Hold Me Tight FM
12 - Devil In Her Heart GM
13 - Not A Second Time GM
02 - | Should Have Known Better GM
03 - If I Fell DM
05 - And | Love Her EM
A Hard Days Night 06 - Tell Me Why DM
08 - Any Time At All DM
11 - When | Get Home AM
12 - You Can t Do That GM
01 - No Reply CM
02 - 1 am a Loser GM
04 - Rock and Roll Music AM
05 - | will Follow the Sun CM
06 - Mr. Moonlight F#M
Beatles For Sale 07 - Kansas City- Hey, Hey, Hey, Hey GM
08 - Eight Days a Week DM
09 - Words of Love AM
11 - Every Little Thing AM
13 - What You are Doing DM
02 - The Night Before DM
04 - | Need You AM
Help 08 - Act Naturally GM
09 - It s Only Love CM
10 - You Like Me Too Much GM
12 { I' ve Just Seen a Face AM
01 - Drive My Car DM
05 - Think For Yourself GM
Rubber Soul 11 - In My Life AM
14 - Run For Your Life DM
08 - Good Day Sunshine BM
Revolver 09 - And Your Bird Can Sing EM
10 - For No One BM
13 - Got To Get You Into My Life GM
02 - With A Little Help From My Friends EM
04 - Getting Better CM
Sgt Peppers Lonely Hearts Club Band 05 - Fixing A Hole FM
09 - When | m Sixty-Four DbM
12 - Sgt. Pepper s Lonely Hearts Club Band (Reprise) DM

markers while listening to the music. Markers have then beemmanually corrected in order
to correct the inherent software latency.

Meter information for each song was provided by the Americanmusicologist Alan W.
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Pollack3. The original set comprises 180 songs of the Beatles. We reded it to 165
songs removing songs having an overcomplicated metric stalure and containing parts
where downbeats were perceptually ambiguous and were extmgely dicult to predict
and annotate, even for a trained musician. For instance, thesong Good Morning, Good
Morning was not analyzed because, according to A.W. Pollack, the met is \4/4 in intro,
bridge and outro; anything but predictable in verse". For this reason, those les were not
annotated.

The songs of the test-set can be classi ed according to theimetric structure in the
following way:

8 songs are in 3/4 meter

9 songs have a variable meter (presenting at least one changetime signature, more
than two for most of them)

25 songs present some insertion or deletion of beats (inséh of a measure with
unexpected time-signature in a constant meter passage thatoes not musically cor-
respond to a change in the meter.)

The rest of the songs have a constant 4/4 meter.

The detail of those songs is given in Table 7.4.

Table 2.3: Evaluated songs that have a particular metric structure.
Meter Title (album/song number)

Baby's In Black (4/3)

You've Got To Hide Your Love Away (5/3)
Norwegian Wood (This Bird Has Flown) (6/2)
She's Leaving Home (8/6)

Long, Long, Long (11/7)

Oh! Darling (1/4)

Dig A Pony (13/2)

Dig It (13/5)

A Taste Of Honey (1/12)

Lucy In The Sky With Diamonds (8/3)

Being For The Bene t Of Mr. Kite (8/7)
Strawberry Fields Forever (9/8)

variable | All You Need Is Love (9/11)

Happiness Is A Warm Gun (10/8)

| Want You (She's So Heavy) (12/6)

Two Of Us (13/1)

| Me Mine (13/4)

3/4

2.3.3 Classical Music: The Piano Mozart test-set

The Piano Mozart test-set was introduced for the purpose of evaluating the performanes
of the local key algorithm. We are not aware of any available éest-set that contains

3http:/iwww.icce.rug.nl/ soundscapes/DATABASES/AWP/awp-notes _on.html
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pieces annotated in local keys. We decided to annotate some d#art piano pieces for
two reasons. First they are interesting from the point of view of local key because they
contain many modulations. Secondly, it was easier to annotte these pieces than others
because the author is very familiar with them. The test-set onsists of 5 movements of
Mozart piano sonatas listed in Table 2.4 corresponding to abut 30 minutes of audio music.

Table 2.4: The Piano Mozart test-set

Reference of the piano sonata | movement
KV 283 1
KV 283 2
KV 309 1
KV 310 1
KV 311 2

The author and two other trained musicians from the Musikhorshule of Karlsruhe
(Germany) manually annotated the chord and key progressionground truth. First, a list
of the chords and keys with their duration in beats has been povided. Beat and downbeat
locations were annotated by hand with the help of the softwae Wavesurfer. Then, the list
was automatically mapped to the annotated beat locations reulting in the ground truth
we use. The pieces have been annotated in mostly by ear but asrelying on the scores
when ambiguities were found.

It has to be noticed that it is very hard to label Mozart pieces in chords and mu-
sical keys, even for a well-trained musician because on thene hand, there are a lot of
ornamental notes (such as appoggiaturas, suspensions, [Esg notes etc.) and on the
other hand, harmony is frequently incomplete (some notes ofhe chord are missing). This
makes the choice of chord labels very di cult. Changes from me key to another are often
ambiguous, in particular when they are very short. Moreover modulation is very often
a smooth process, it can take several bars to establish propg a tonal center. Segments
corresponding to transition from one key to another have bee labeled as transition parts
and are ignored in the evaluation.

2.3.4 Databases Used for Evaluation in Each Chapter

In Chapter 4, we compare and evaluate several chord estimain algorithms using
the rst eight albums of the Beatles test-set This corresponds to a total of 110
songs.

In Chapter 5, we evaluate our chord/downbeat simultaneous etimation model using
a subset of 165 of the 180 songs of thReatles test-set The songs that have not been
used are referenced in Table 2.5.

In Chapter 6, we evaluate the model for simultaneous chordsgownbeats and global
key on the 55 Beatles songs annotated in global key and desbed above. We
evaluate our local key estimation algorithm on the Piano Mozart test-set
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Table 2.5: Beatles songs not considered in the evaluation in Chapter 5.

Album Song number
7 87 -91-97
8 105 - 107 - 108
10 124 - 127
11 140 - 141 - 142 - 150
12 158
13 171 - 180

2.4 Evaluation measures

In this section, we present the measures that have been usedrf evaluating the various
algorithms that we have implemented. The chord, key and dowbeat results discussed
and analyzed in the next chapters (Chapters 4, 5 and 6) have ben obtained relying on
these measures. For each musical attribute considered, wevauate the performances of
our model by comparing the estimation (output of our algorithm) with the ground truth
(human manual annotations).

2.4.1 Beat and Downbeat Tracking Evaluation Measure

In Chapter 5, we evaluate the performances of our downbeat &cking model. We also
evaluate the performance of a beat tracker that is used as a ént-end of our system. For
this, we compare the beat/downbeat times of our system outpt with the hand-labeled
beat/downbeat times that are considered as the correct bedtdownbeat locations (see
Figure 2.1).

Figure 2.1: Overview of the beat/downbeat evaluation measure.

It is important to notice that it is very di cult to annotate b eat and downbeat locations
in an objective manner since it is a perceptual concept. Huma experts may in particular
disagree on the downbeat locations when the structure of thenusic piece is complex. As
underlined above, this is one of the main reason why we do notse the entire Beatles
test-set for downbeat tracking evaluation.

A large number of evaluation measures for beat/downbeat traking have been pro-
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posed in previous works. We refer the reader to [Dav07] for a etailed review. In this
work (chapter 5), the evaluation is performed using the stamlard Precision, Recall and
F-measure. This measure has been previously used by Dixon {Dix06].

Precision P is de ned as the ratio of relevant retrieved beat/downbeat positions
from the total of retrieved ones.

Recall R is de ned as the ratio of relevant retrieved beat/downbeat positions from
the total of relevant positions.

The F-measure F combines the two using the ratio of their geometric to arithmetic

"F = 2RP
mean: F = &%

An estimated beat position is considered as correct if it is Wthin a given tolerance
window of the ground truth time.

Following [Pee09], the tolerance windoww is de ned as 10% of the minimum (over
time) distance between two successive beats in the track. lis centered on the estimated
beats when computing the Precision and centered on the annated beats when computing
the Recall. The tolerance window depends on the local tempodistance between two beat
markers) in order to avoid drawing misleading conclusions fom the results. Indeed, a
xed tolerance window of 0:166 s for instance would be very restrictive for slow tempi
(half-beat duration of 0:5 s at 60 bpm) but would mean accepting counter-beats as corpt
for fast tempi (half-beat duration of 0:166 s at 180 bpm).

Let c denote the number of correct beat/downbeat detectionsf * the number of false
positive (unmatched reported beat times,i.e. beats estimated outside of any of the toler-
ance windows) andf the number of false negative (unmatched correct beat timesj.e.
misses), the Precision, Recall and F-measure can be expressas following:

c

c+f+
C

c+f

The beat/downbeat evaluation measure is illustrated in Figure 2.2.

2.4.2 Chord Evaluation Measures

We aim at comparing the output of our chord estimation algorithm with the ground-truth
annotations. As stated above, since our chord lexicon is coposed only of major and
minor triads, we have performed a mapping from complex chord in the annotation to
their root triads. We consider two aspects of chord estimaton: the label accuracyi.e.
how the estimated chord is consistent with the ground truth (Chapters 4, 5 and 6) and
the segmentation accuracy i.e. how the detected chord chamg are consistent with the
actual locations ( see Chapter 5). In Figure 2.3, we provide a overview of the chord
evaluation measure.
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Figure 2.2: lllustration of beat/downbeat evaluation measure. The ground-truth po-

sitions are indicated by solid lines and the estimated beat psitions by dashed lines.

ax 1;ax;ak+1 . annotated beats, c: correct estimation, f *: false positive,f : false nega-
tive, dx: duration between two annotated beats.

Figure 2.3: Overview of the chord evaluation measure.

2.4.2.1 Label Accuracy

The chord label accuracymeasure is illustrated in Figure 2.4 and is de ned as follows

denote time positions corresponding to the estimated choragthanges. We notel' = Ta[ Te.
We note f Ty = [tk;tk+1]g the series of segments de ned by this union. Each segment
[tc;tksa] T has a lengthdc. We note & (Cy) the estimated (annotated) chord over Ty.
The chord estimation rate s is computed as:
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Figure 2.4: lllustration of the chord label accuracy measure.
X
dk

s=100 KoUECL=Ch 2.1)
d

k=1

In this dissertation, the chord estimation rate s will be referred to as the chord label
accuracy. Note that in this study, we do not consider \non-existing chords"”, noted \N" in
the annotation (denoting noise, silent parts or non-harmoric sounds). They are counted
as errors in the evaluation.

The chord estimation results we give in the next chapters carespond to the average of
the values corresponding to the mean and standard deviatiomf correctly identi ed frames
per song, computed across all the songs belonging to the teset.

2.4.2.2 Segmentation Accuracy

The chord segmentation accuracyis evaluated using a measure similar to the one chosen
for downbeat evaluation. We use the standard PrecisiorP (ratio of detected chord changes
that are relevant), Recall R (ratio of relevant chord changes detected) and F-measuré-,
using a tolerance windoww of 30% of the minimum distance between two beats in the
track. w is chosen to be larger than the one used for downbeat evaluatin but below the
tatum period.

2.4.2.3 Neighboring Chords Confusions

We will also refer to the chord estimation results considenmg neighboring triad confusions.
Harmonically close chords are in general neighbors on thercile of fths (see Chapter 6).
The hierarchy between chords presents some similarities Wi the relationships within keys.
We thus follow for chord estimation the procedure adopted duing the MIREX 2005 Key
estimation contest, where keys were considered as close lidy had one of the following
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relationships: distance of fth, relative minor and major and parallel i.e. having the same
tonic but di erent mode (major or minor). Chords are here considered as harmonically
close if they have one of the particular relationships desébed in Table 2.6.

Table 2.6: Example of particular relationships between a C major chordand other chords.
Weights attributed to neighboring chords in comparison with MIREX 2005 key estimation

task.
Reference chord | C major | weight chord weight key (MIREX 2005)
Relative Am 1 0.3
Parallel Cm 1 0.2
Dominant GM 1 0.5
Subdominant FM 1 0.5

2.4.3 Keys
2.4.3.1 Main Key

In the rst part of Chapter 6, the key estimation evaluation i s performed using an 8-fold
cross-validation. The test-set is divided into eight parts according to the albums and each
part is evaluated using the seven remaining parts as trainigg data. We indicate the rate
of correct estimation using two evaluation measures:

EE (exact estimation) indicates the percentage of exactly stimated key,

ME (MIREX estimation) gives the estimation rate according to the measure pro-
posed for the MIREX 2005 key estimation task. Neighboring kgs are taken into
account (see Table 2.6) and the score is obtained using the lfowing weights: 1
for correct key estimation, 0.5 for perfect fth relationship between estimated and
ground-truth key, 0.3 if detection of relative major/minor key, 0.2 if detection of
parallel major/minor key.

For an overview of the main key evaluation measure, see Figer2.5.

2.4.3.2 Local Keys

In the second part of Chapter 6 devoted to local key estimatio, we consider, as in [CV05],
two aspects of the results: thekey label accuracy i.e. how the estimated key is consis-
tent with the ground truth, and the key segmentation accuracy i.e. how the detected
modulation points are consistent with the actual locations. The local key label accuracy
evaluation measure is the same as thehord label accuracyevaluation measure used for
chord estimation.

The key segmentation accuracyis expressed with the Precision, Recall and F-measure.
Key changes are not abrupt and often last several bars. Two ¢ablished keys are often
separated by a transition part where no key is rmly established. These parts, which have
been labeled as transition partsT in the ground truth, need to be taken into account in
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Figure 2.5: Overview of the main key evaluation measure.

the evaluation of segmentation accuracy. The tolerance widow chosen in the case of local
key estimation is thus larger than in the case of chord estiméion: we present in Chapter
6 results with w corresponding to 1 or 2 bars.

2.4.4 About Statistical Signi cance Testing

During our experiments, we will usepaired samples t-test(or dependent samples t-tesgtin
order to compare the various methods we propose. They will beised to measure whether
if the changes in the results from one method to another are sitistically signi cant or
not. Paired samples t-test is a statistical technique that dlows the comparison between
two population means when the two samples that are correlatd.

2.4.5 About Evaluation of Algorithms Based on Training

In this dissertation, we evaluate some algorithms based onraining: in Chapter 4, Sections

4.4.3.1 and 4.4.4.4, the chord model parameters are trainedn a labeled database, as well
as the key-dependent chord transition matrix proposed in Clapter 6, Section 6.3. These
algorithms are evaluated on the Beatles test-set Let k denote the number of albums
considered in the test-set. The algorithms are evaluated uag a k-fold cross-validation.

The test-set is divided into k parts according to the albums and each part is evaluated
using the k 1 remaining parts as training data.

This procedure is adopted in order to avoid the so called \alum e ect" [WFSO01]
[KWPO06]. A given album is generally recorded within a short time period and songs from
the same album are likely to share common spectral charactéstics (choice of instrumen-
tation, audio post-production, etc.), whereas variation in the artist's musical style over
the year may vary more between albums. This is why we use comete albums as training
while the others are used as testing.
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Chapter 3

Towards a Signhal Representation
for Harmonic Content Analysis

This chapter investigates a number of typical representatins of the audio signal in order to
select the most appropriate one for the task of harmonic coent analysis. We explore sev-
eral schemes for chromagram computation and investigate geral issues related to the use
of each representation. We detail and explain the choice oht audio signal representation
we use as an input to our model.
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3.1 Introduction

In this dissertation, we are interested in estimating various musical attributes that are
centered on the chord progression. We work directly on the adio signal. In computational
music analysis, the rst step of any algorithm that works on audio is to extract a set of
feature vectors that represent the signal.

Harmonic analysis of a piece of music is a problem that has imrested musicologists
for centuries. Harmonic analysis from a music score is a conigx problem, but it is even
more complicated when working directly on the audio signal. Indeed, in addition to the
di culties inherent to the musical syntax (grammar, langua ge), the rst diculty is to
obtain information about the pitches of the notes that are present in the audio signal.

The aim of this chapter is to investigate a number of possiblerepresentations of the
audio signal in order to select the most appropriate one for lhe task of harmonic content
analysis. Our goal is to provide signal features that are suable for the chord estimation
task. We do not attempt to propose a new signal feature extration technique but we
justify the choice of the input representation we use in our gstem. Many chroma-based
signal representations that capture the harmonic content é& an audio signal have been
proposed in the past. However, little time has been devoted d the comparison and the
evaluation of these approaches. In this chapter, we concerdte on this point. The major
contributions of this chapter are the following:

1. We review several methods for extractingchroma features from the audio signal.

2. We focus on the problem of evaluating and comparing the vaous representations
and propose new evaluation methods.

3. We annotated in chords a database consisting of a number ofhort excerpts of
classical and popular music.

4. We compare the various representations on this databaserpviding statistical tests
to enhance our analysis.

5. We investigate the use of beat-synchronoughroma features for harmonic content
analysis.

Organization of the chapter:

This chapter is organized as follows. In Section 3.2, we regiv some basic concepts
of audio signal processing. We then introduce in Section 3.3ne notion of chroma and
propose several methods for chromagram computation in Seicn 3.4. We analyze two
problems related to the use of chroma features for harmonicantent analysis in Section
3.5. The various methods are evaluated in Section 3.6. A cothgsion closes this chapter.
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3.2 A Representation of Audio for Harmonic Content Anal-
ysSis

3.2.1 Music Transcription-Based Approaches

Reproducing the human capability of analyzing tonal and hamonic structure of a piece
of music with computers is an ambitious challenge. The most tgaightforward way to
recreate the human process of music analysis is to start autnatic analysis from a symbolic
representation. In the scope of harmonic and tonal analysissome e orts have been initially
devoted to the analysis of chord and key sequences using MIDiepresentation of music
[TemO05] [TS99]. In particular, some tools that allow tonal and harmonic analysis of music
in the symbolic domain, have been developed.

The Melisma Music Analyzer, developed by D. Temperley & D. Séator is a system for
analyzing music and extracting information from it. The analyzer takes a piece represented
as an "event list" that is a list of notes, with pitch, on-time , and o -time (MIDI les
can be used as input as well). It extracts information about neter, phrase structure,
contrapuntal structure (the grouping of notes into melodic lines), harmony, pitch spelling
and key. The HARMONY program produces a harmonic analysis casisting of a series of
segments labeled with roots and a spelling assigned to eaclitgh-event. Finally, the KEY
program produces a key analysis, consisting of a series ofcsiens labeled with keys and
(optionally) a Roman numeral analysis showing the functionof each chord relative to the
current key. The main goal in this project has been to developmodels of musical cognition.
The components of the Melisma system are all based on the coapt of preference rules.

OpenMusic is a visual programming language based on Commordp / CLOS
developed at IRCAM. It provides classes and libraries that make it a very convenient
environment for music composition and analysis. Di erent representations of a musical
process are handled, among which common notation, midi piao+roll and sound signal. A
symbolic representation of a chord progression can be anatgd with OpenMusic, but it
requires information about the key signature and about chod segmentation. Chords are
treated as the combination of discrete tones and recognizeftom the result of polyphonic
analysis based on music theory.

3.2.2 Chroma Representation, an Alternative to Transcript ion

The work conducted in the symbolic domain could be applied toaudio signals using a sym-
bolic transcription. However, the symbolic transcription (the score) of a piece of music is
not always available, especially in music where there is a tge part devoted to improvisa-
tion such as jazz music. In addition to that, algorithms that extract a transcription from
an audio signal are still limited and costly.

A number of recent works have shown that it is possible to accrately extract a music
description of the signal without relying on a symbolic representation. An intermediate
between low-level signal features and symbolic represertian can be used to extract some
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musical attributes such as the chord progression. Since theintroduction in 1999, Pitch
Class Pro le (PCP) [Fuj99] or chroma-based representations [Wak99] have become a com-
mon feature for estimating chords and musical keys from audi recordings, as well as for
conducting audio similarity retrieval tasks.

3.2.2.1 De nition

Shepard reported in the 1960s that our perception of pitch istwo-dimensional and can
be modeled by a helix (see Figure 3.1). He noticed that the resentation of pitch into

a helical curve is quite ancient since it had previously beerproposed by Drobisch in
1846. This helix is characterized by two attributes: i) the Tone Height or over-all pitch

level (octave number), that corresponds to the vertical axs, and ii) the Chroma that

corresponds to the angle. By dividing the base of the helix itb 12 equal parts, we can
obtain the 12 pitches of the equal-tempered chromatic scale

Two notes a number of octaves apart (for instance the C1 and C2otes) will share
the same rotation on the chroma circle represented at the bas of the helix shown in Fig
3.1. In music theory, the term pitch classis rather used than chroma.

Figure 3.1. Shepard's helix of pitch perception, adapted from [BWO05].

Chroma/Pitch Class Pro le features are traditionally 12-d imensional vectors, with
each dimension corresponding to the intensity associated ith one of the 12 semitone
pitch classes (chroma) of the Western tonal music scale, regdless of octave.

In the rest of this dissertation, we will assume that the orde of the pitch classes in a

a number: 1 corresponds toC, 2 corresponds toC#, and so on until 12 that corresponds
to B.

The temporal sequence of chroma vectors over time is known ashromagram Con-
ceptually, the chromagram is a frequency spectrum folded ito a single octave. Chroma
features are closely related to the music signal and workingvith them is very convenient
when dealing with problems related to harmony or tonality. Pooling the spectrum into
twelve bins that correspond to the twelve pitch classes of tie equal-tempered scale results
in a signal representation that allows identifying pitches by an octave. As emphasized
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in [EPO7], the chroma features capture both melodic informdion (since the melody note
will typically dominate the feature) and harmonic accompaniment information (since
other notes in chords will result in secondary peaks in a give chroma/PCP vector). The
use of such a mid-level representation overcomes the prolsteof automatic transcription.

Before going into details in the chromagram representation we review and compare
some classical time-frequency representations of the sigh They will serve as a basis for
chromagram computation.

3.2.3 Representation of Music Signals, Notations

We rely on the common assumption that the music signal is staibnary (i.e., its statistical

properties do not vary with time) in a very short time duratio n and thus that we can
consider music sounds as nearly periodic signals. This mearthat the waveform repeats
itself, in a slightly modi ed version, at a regular time inte rval that is called the period. The
reciprocal of the period of the signal is called thdundamental frequencyand denoted byf 0.

When an instrument produces a sound, the human listener perives a pitch that
is a perceptual attribute of the sound related to the fundamental frequency. The pitch
is a subjective quality of the sound often described as highess or lowness. Pitched
instruments also include certain percussion instruments,such as the marimba, the
vibraphone, the tubular bells or the timpani. Non-harmonic sounds for which the pitch
is unde ned, such as the cymbals, the gongs, or the tam-tams m@ke sounds rich in
inharmonic partials . These sounds do not belong to the harmony progression of a gie
of music. Musicians associate music notes symbols to the pites.

According to Fourier's theory, a periodic signal can be appoximated by a nite
sum of sinusoids whose frequencies are integer multiple ohé fundamental frequency
and whose magnitude and phase can be uniquely determined to ach the signal. The
frequency of each sinusoid is calletharmonic. In general, the harmonics of music sounds
do not have frequencies that are exactly multiples of itsf 0. For this reason, they are
often called partials. In this thesis, we are interested in sounds of which the paitls are
nearly harmonically related. They are called harmonic sounls.

Let us de ne some notations that will be used in the rest of the chapter. A music
signal s(t) will be understood as a superimposition ofN,, individual notes n;j;i 2 [1: Np]
produced by musical instruments. Each note is characterizé by its perceived pitch of fre-
quencyfg and a nite and small number K of partials of frequenciesfy = kfg;k 2 [1: K],
of amplitude ax. The spectral pattern composed of the series of partials chracterizes the
sound perceived by the human listener. A quasi-periodic mus signal n(t) corresponding

1The inharmonic partials correspond to partials that deviat e from their expected position according to
the harmonic model described above. They can also be observe in the string instrument sounds such as
the piano.
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to a single note can thus be expressed as:

X
nit)=  ac(t)cog2f yt+ ) with f , = kfg (3.1)
k=0
where ax and  correspond to the amplitude and phase of the various sinusds that
approximate the signal.

A harmonic signal s(t) that is a superimposition of N, individual notes can then be
expressed as:

Ko X
s(t) = agn (1)cos2 kf gnt+  in) 3.2)
n=1 k=0

Equations (3.1) and (3.2) give the expression of an ideal mus signal composed of a
set of exactly harmonically related sinusoids. In practice the observed signals(t) contains
some components that are not explained by the sinusoids, fomstance the background
noise or the inharmonic partials. It can be expressed as a suraf harmonic components
s(t) plus a residual (t) that comes from the unexplained components:

s(t) = s(t)+ (1) (3.3
KXo X

= akn (t)cos2 kf gnt+ o)+ (1) (3.4)
n=1 k=0

The ratios between the rst partials of a music sound and the undamental frequency
approximately correspond to musical intervals. In Table 31, we represent the musical
intervals corresponding to the ratios between the 6 rst partials and the fundamental
frequency of a C note.

Table 3.1: Intervals between the rst 6 partials of a complex tone and its fundamental
frequencyf 0. Example for the partials of a C note.

Pitch class | Partial Frequency | Approximate interval with  fg
C 1 fo unison
C 2 2 fo octave
G 3 3 fo octave + 51
C 4 4 fo 2 octaves
E 5 5 fo 2 octave + major 3 '@
G 6 6 fo 2 octave + 51

3.2.4 About Acoustic Signal Representation
Algorithms for the automatic analysis of audio music signat rely in general on a spec-

tral representation of the signal. The discrete Short Time Fourier Transform (STFT) is
the most commonly used representation. Although it is very mppular, a shortcoming of
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this representation is that the frequency components are egglly spaced and thus have a
constant resolution, which implies that a global compromis between time and frequency
resolution has to be made. Multi-resolution approaches has been proposed as an alter-
native to the Fourier transform.

3.2.4.1 Fourier Transform

Since its introduction in the 18th century, the Fourier tran sform and its extensions have
become the most common signal representation used in signprocessing.

In signal processing, we process nite extent signals. The Bcrete Fourier Transform
(DFT) computes a discrete-frequency spectrum from a discrie-time signal of nite length:
K 1 _
X (k) = x(n)e 12kn=N (3.5)
n=0
where x(n) denotes the input signal at time samplen, k = 0;1;:::;N 1 denotes the
frequency bin index and X (k) denotes thek™ spectral sample.

The computation cost of a DFT can be very expensive. A much fater algorithm has
been developed by Cooley and Tukey in 1965 [CT65], called thBast Fourier Transform
(FFT) and is used in general in signal processing.

In practical signal processing, a windoww(n), that is, a weighting function, is applied
to data to reduce the undesirable e ects related to spectralleakage associated with nite
observation intervals [Har78]. The Short Time Fourier Transform (STFT) represents the
frequency content of a short segment (of limited duration) d the signal. This segment of
limited duration is assumed to be stationary. The STFT of a discrete signalx(n) can be
calculated as:

K1 _
X (k) = w(n)x(n)e 12kn=N (3.6)
n=0
where w(n) is the temporal window function and k = 0;1;:::;N denotes the frequency

bin index.

The length of the window N determines the time and the frequency resolution. The
accuracy in the frequency domain will increase with the lenth of the window. However,
this occurs at the expense of the time resolution. Moreoveras the window length increases,
the assumption of the stationarity of the signal during the analysis segment becomes
weaker.

3.2.4.2 Frequency Resolution Versus Time Resolution

When analyzing music signals, the choice of the length of thenalysis window is a key
consideration. It determines the trade-o of time versus frequency resolution which a ects
the smoothness of the spectrum and the detectability of the gusoidal components. On
the one hand, good temporal resolution and therefore a shorvindow length are needed
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in order to detect fast changes in the signal (such as note omss for instance). On the
other hand, a large analysis window is necessary to providehe required frequency res-
olution so that closely spaced sinusoids, corresponding tadjacent pitches, can be resolved.

Let us consider an audio music signal with two sinusoids of ffquenciesf; and f, that
correspond to adjacent pitches. We note f = f, f1. In a music signal, when two
sinusoids corresponding to adjacent pitches have nearby dgquencies separated by f Hz,
it is necessary that the window length N is large enough so that the spectrum exhibits
two peaks (see Figure 3.2).
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Figure 3.2: Spectral resolution of nearby peaks. From [Har78]. Left: na-resolvable
peaks. Right: resolvable peaks.

According to [Smi08], the lower bound for the minimum FFT length N is:

N wa—; (3.7)
where K, is a constant that depends on the window function main-lobe vidth. Table
3.2 gives the main-lobe width in-bins,K,, for various windows. The minimum resolving
window length can be determined using the sharper bound,, empirically found [AS04].

Table 3.2: Main-lobe width in-bins K,, and minimum e ective values K,, for various

windows. From [Smi08].
Window Type Kw K

w
Rectangular 2 1.44
Hamming 4 2.22
Hann 4 2.36
Blackman 6 2.02

Because of the logarithmic scaling of the Western tonal musi scale, pitch frequencies
are closer in lower frequencies. Two adjacent notes tuned iequal temperament form a
semitone and are separated by 6% of the frequency of the lowegote. Indeed, let f
and f 4+, denote respectively the frequency of the lowest and the higest notes. From the
construction of the Western tonal music scale, we have:
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fret
K

=2%orfisy  1:059 (3.8)

For instance, a C1 note has a frequency of c; = 32:7Hz; the frequency of the next
note C#l is: fcyy =32:7+0:06 327 = 34:6Hz.

It is unlikely that two adjacent low-frequency notes will be played simultaneously in
Western tonal music, because this is generally unpleasanof the ears. However, chromatic
notes that are played successively often interfere in time ad may be superimposed during
a lapse of time. This is for instance the case in most of Chopimpiano music where the
extensive use of the sustain pedal results in mixtures of adicent low-frequency notes. The
constraint regarding the minimum length of the analysis window needs thus to be taken
into account for low pitches.

The frequency components of the DFT are equally spaced and ths have a constant
frequency resolution. To discriminate adjacent pitches, @rticularly at low frequencies, a
su ciently long window length is thus required whereas it is unnecessary when consid-
ering higher pitches. Multi-resolution approaches have ben proposed as an alternative
to the conventional linear frequency and constant resolutbn of the DFT. In this disser-
tation, we focus on a multi-resolution approach commonly ugd in music audio analysis:
the Constant-Q transform (CQT). This representation has been used for chromagram
computation in many works related to chord or key estimation.

3.2.4.3 Constant-Q Transform

One common approach to solve the time/frequency resolutiondilemma is to perform a
frequency-varying multi-resolution analysis. In this case, the frequency spectrum is split
into subbands and each one is processed independently frorhé others. This allows the
use of shorter analysis windows at higher frequencies whilower frequencies can still
have the required frequency resolution to separate closelgpaced sinusoids. An interesting
approach was presented in 1991 by Brown [Bro91] who proposetb use the constant-
Q transform for music signal analysis. The constant-Q trangorm is a spectral analysis
where frequency domain channels are not linearly spaced, as DFT-based analysis, but
geometrically spaced (the center frequency to resolutionatio Q = f—f remains constant),
thus tightly similar to the frequency resolution of the human ear. The CQT transform is
closely related to the Fourier transform but gives a better representation of spectral data
from a music signal. The center frequencies that are distrinted geometrically follow the
equal tempered scale used in Western music. Note that the CQWas introduced earlier,
outside the musical context, see for instance [YB78].

In case of musical applications, the calculation of the CQT § based on the frequencies
of the equal tempered scale. The constant Q transform of a digete signalx(n) can be
calculated as:

Nk 1
X (k) = w(n; k)x(n)e J12f«n (3.9)
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where X €4(k) is the k™ component of the constant-Q transform. For each value ok, the
window function w(n; k) varies proportionally to the center frequency f¢. Let Q denote
the constant ratio of frequency to resolution, Q = kak and let fs denote the sampling

rate. The length of the window w(n; k) in samples at frequencyfy is N (k) = Qf—zs N (k)
depends on the frequency and thus on the bin positiork.

Figure 3.3 represents the window lengthN (in seconds) with respect to the frequency
(in Hertz), for a %—tone spacing Q = (2 & 1)). For instance, a window of Q5s (duration of
a beat at a tempo of 120 bpm) corresponds to a frequency valug 404Hz. The constant-Q
transform increases time resolution towards higher frequecies. The length of the window
w(n; k) decreases with frequency.

o o
o o

window length (s)
o ©°
~

0.2

0 1(54 200 400 600 800 1000 1200
frequency (Hz)

Figure 3.3: Length of the constant Q window in seconds with respect to thefrequency
in Hertz.

[BP92] proposes an e cient algorithm of the CQT that takes advantage of the Fast
Fourier Transform (FFT) so that the computation cost are red uced as compared to the
direct evaluation of the CQT.

3.3 Chroma Representation, Background

Because they are a powerful compact representation of the twl content information of the
signal, chroma features have been widely used as input feates of music analysis models
based on the music harmonic content, such as chord or key ndig, cover song detection or
structure estimation. Various approaches for chroma comptation exist. Although they
present some variances in the implementation, they follown general the same guideline
that consists of two main steps:

1. First, a semitone pitch class spectrum (SPS), that is a logrequency representation
of the spectral content of the music audio signal, is constrated. It is expressed in
a MIDI-note scale and is either computed from the Fourier transform or from the
constant-Q transform. The center frequencies of the CQT carbe chosen according to
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the frequencies of the equal-tempered scale. In such a caske constant-Q spectrum
corresponds to a semitone pitch class spectrum.

2. Secondly, the semitone pitch spectrum is mapped to the cluma vectors. For this,
the semitones in octave distance are added up to pitch classe

The chromagram computation may include some other steps sicas a pre-processing
step that separates harmonic and noise components, a ltenig step that smoothes
the chromagram or a post-processing normalization step thtimakes the chromagram
invariant to dynamics. We review in the following some chroma feature extraction

methods.

3.3.1 Chromagram Based on the Fourier Transform

In many approaches, the chromagram is generated using the kwier transform. This

approach was rst proposed by Fujishima in [Fuj99], where the input signal is transformed
from the time to the frequency domain using an FFT. Frequencybins corresponding to a
same semitone are summed up to form a semitone pitch spectrunwhich is then folded
to pitch classes, resulting in a PCP vector.

This approach was followed by a large number of researchersith some variants.
In some approaches, the resolution of the chromagram is ineased in order to improve
robustness against tuning and other frequency oscillatios, such as in the work of Goto
[Got06], where a chromagram is computed so that there are 10@ents to a tempered
semitone. Some approaches introduce a lItering process toeduce transient and noise,
such as in the work of Peeters [Pee06b].

The FFT is particularly blurred at low frequencies. In order to identify strong tonal
components in the spectrum and to get a higher resolution estnate of the underlying
frequency, Ellis & Poliner [EP07] do not compute the chroma &ature directly from the
FFT. They use the Instantaneous Frequency spectrum, which gses the phase derivative to
interpolate the frequency distribution.

3.3.2 Considering the Harmonics in the Pitch Class Pro les

Some methods for chroma computation take into account the hgher harmonics of the
notes in the chroma features computation. For instance Gonez introduces in [Q6a] an
extension of the PCP, the Harmonic Pitch Class Pro les (HPCPs). A weighting procedure
is proposed in order to make harmonics contribute to the pitd class of its fundamental
frequency, so that each peak frequency; has a contribution to the frequencies havingf
as harmonic frequency {; , &, %5, & ..).

Lee [Lee06a] proposes a feature vector called the Enhancedtdh Class Pro le (EPCP)
for the application of chord recognition from audio. The chromagram is computed from
the Harmonic Product Spectrum (HPS) instead of the DFT. The use of a HPS allows the
elimination of non-tonal signal components from the spectum.
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Pauws [Pau04] computes the chromagram using an auditory peeption inspired front-
end so that the perceptual pitch and the musical background a simultaneously taken
into account.

3.3.3 Constant-Q Proles

Some approaches derive the chromagram from a CQT instead ohe FFT. In [PBO01],
Purwins et al. propose to compute CQ-pro les that are 12{dimensional vecbrs similar
to chroma vectors. The CQT lIters are chosen so that they correspond to musical notes.
The Constant-Q spectrum thus directly corresponds to a sentbne pitch spectrum from
which 12-dimensional vectors (corresponding to the 12 pitie classes) can be computed.

This approach has been often adopted by other researchers,opsibly with some vari-
ations. For instance, Harte & Sandler [HS05] propose a tunig algorithm for a CQ-based
chromagram. In [BPO5], Bello & Pickens generate the chromagm using a constant-Q
transform. A resolution of 36 bins per octave is used. The cltomagram is low-pass lItered
to eliminate sharp edges.

3.3.4 Chromagram Based on multi-fOs

Some approaches compute chroma features from a multi-pitclhepresentation instead of a
spectral representation. For instance, Ryynanen & Klapuri [RKO8b] compute a chroma-
gram from a pitch salience estimator. In [ZR07], Zenz & Raube compute a multi-pitch
based chromagram using the Enhanced Autocorrelation (EAC)algorithm described by
Tolonen et al [TK0O]. Varewyck et al. [VPMO08] also propose a chroma extraction method
based on multiple pitch tracking techniques.

3.3.5 Filter bank

In the context of audio matching, Mdller et al. [MKCO05] introduce a new kind of chroma-
based audio feature referred to as CENS features (Chroma Engy distribution Normalized
Statistics) that presents a high degree of robustness to vaations in parameters such as
dynamics, timbre, articulation and local tempo deviations. In this approach, the chroma
features are computed by the use of a Iterbank with xed frequency bands. The audio
signal is decomposed into subbands corresponding to notesOAo C8 (MIDI pitches 21 to
108). The short-time mean-square power is computed over ehcsubband using a 200ms
with an overlap of half the size. The chroma vectors are obtaied by adding up the
corresponding short-time mean-square power (STMSPs) of hlpitches belonging to the
12 respective pitch class. The chroma vectors are normaligeto be invariant to dynamic
variations and then quantized by applying energy threshold in order to be insensitive to
noise components. In order to smooth local tempo deviationgnd slight variations in note
groups, such as trills or arpeggios, a much larger statistie window is then considered.
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3.3.6 Extension: the Tonal Centroid

Another feature devoted to harmonic analysis has recently ken proposed. We give here
a brief overview of this feature since some recent works [LS) [LBO7] have shown that it
may be a powerful feature for harmonic analysis.

The Tonal Centroid was introduced in [HSGO06] as a new feature for detecting chayes
in the harmonic content of musical audio signals. A harmonicCentroid transform is
applied to the chromagram decomposition so that the 12-dimasional chroma vectors are
mapped to a six-dimensional Hypertorus structure. The Tond Centroid is derived from
an old planar representation of pitch relations called the Harmonic Network or Tonnetz.
In this representation, close harmonic relations such as ths and thirds appear as small
Euclidian distances on the plane. Three circularities are onsidered: the circle of fths,
the circle of minor thirds and the circle of major thirds.

When enharmonic equivalence (C# equivalent to Db) and octawe equivalence (C1l
equivalent to C2) are assumed, the Tonnetz, which is theoratally an in nite plane, can
be wrapped into a tube with the line of fths becoming a helix on its surface. In the
Spiral Array model [Che02], the two ends of the tube are jointtogether, resulting into a
hypertorus with the circle of fths wrapping around its surf ace three times. The Tonal
Centroid is a 6-dimensional interior space contained by thesurface of the Hypertorus. The
6 dimensions can be visualized as a projection onto the cirelof fths, the circle of minor
thirds and the circle of major thirds and represented as thre coordinate pairs §&1;y1),
(x2;¥2) and (x3;y3) (see Figure 3.4).

Figure 3.4: Graphical representation of the 6-dimensional Tonal Spaces three circles.

From left to right: circle of fths, circle of minor thirds an d circle of major thirds. The

Tonal Centroid for chord A Major (pitch classes 9, 1 and 4) is $iown at point A. Adapted
from [HSGOB].

Let c denote a 12-dimensional chroma vector and let denote the tmansformation
matrix that represents the basis of the 6-dimensional space

=[ 1 20 3 4 s 6l (3.10)
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where
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where the valuesrq, ro and r3 are the radii of the three circles. In [HSGO06], they are
set to 1, 1 and Q5 respectively, ensuring that the distances between pitch lasses in the
6-dimensional space correspond to our perception of harmamn relations between pitches.
The 6-dimensional Tonal Centroid vector is obtained from the 12-dimensional chroma
vector ¢ according to the following equation:

P
=g 4 (dhe() 1 d 6

3.12
1 1 12 ( )

3.3.7 Why Using Chroma Features for Harmonic Content Analys is?

We have chosen to use the chroma representation because wartk that it is a very intu-
itive and natural representation of the signal in terms of hamony. We nd it particularly
convenient for chord analysis: the 12 bins of the chroma feafres correspond to the tra-
ditional pitch classes of the equal tempered scale. The chmagram can be followed as a
music score when listening to the music.

3.4 Derivation of Chroma Features

In what follows, we focus on the derivation of three chroma r@resentation extraction
methods. The rst two are based on the two above-mentioned spctral representations
of the signal (FFT and CQT), the third one is based on a multipitch tracking technique.
These approaches will be analyzed and compared in SectionGs.

3.4.1 Chroma Based on a Spectral Representation

We review here two chromagram computation methods based on spectral representation.
The rstone is based on the conventional xed resolution FFT and the second one is based
on the multi-resolution CQT. The two methods follow the same general schema represented
in Figure 3.5. We start by estimating the tuning of the piece. The chromagram is computed
in three steps after tuning estimation. First, the values of the DFT/CQT are mapped to

a semitone pitch spectrum. The corresponding channels arehen smoothed over time.
Finally, the resulting semitone pitch spectrum is mapped to the semi-tone pitch classes.
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Figure 3.5: General owchart of chromagram computation.

3.4.1.1 Tuning

The chroma values are obtained by mapping frequency valuesfdhe spectrogram to the
semitone pitch classes that are based on a standard referemdrequency T;es = 440Hz.

The energy peaks in the spectrogram will be mapped to the chnma vectors. It is therefore
important that the peak frequencies correspond as close asgssible to usual pitch values
(2626, 2772, 2937, ...Hz). Since the instruments may have been tuned accordg to a

reference pitch di erent from the standard A4 = 440Hz , it is necessary to estimate the
tuning of the track. After computing the precise tuning used in a given song, we center
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the semitone pitch spectrum Iters accordingly so that they fall precisely in the middle
of a note. We now detail the tuning estimation method we use inthis work.

In our approach, we estimate the reference frequency (or tuing) before mapping
frequency values to the pitch classes. Other works proposet rst compute a chromagram
and then tune it according to a determined reference frequety. For instance [HSO05]
or [BPO5] built a 36 bins-per octave resolution chromagram.They then compute the his-
togram of the chromagram peaks distribution across one sertone width (corresponding
to 3 bins). The maximum point in the histogram gives the semitone centre tuning value.

Here, the tuning is estimated using the method proposed by Peters in [Pee06b]. We
assume that the tuning is constant over the music track duraion. The amount of energy
of the spectrum explained by the frequencies correspondingp the semitones based on
each candidate tuning is measured. The candidate tuning thaiallows us to explain the
best the energy of the spectrum is selected as the tuning of #htrack.

Let us consider a set of tuning candidates between 427Hz andb2Hz, which correspond
to the quartertones below and above A4. The candidate tuning are successively tested
as following. For a given tuning testt and a given signal framem, we de ne the modeling
error (t;m) as the ratio between the energy of the spectrum explained bythe current
tuning t and the total energy of the spectrum.

A(fyn;m)

(tm)=1 CA(fm)

(3.13)

where A denotes the amplitude of the Fourier transform andf, are the frequencies of
the semi-tones pitchesn (in MIDI) based on the tuning t:

69

fin =t 277 ;t2[427:::;452] (3.14)

The energy of the current tuning t is computed as the sum of the energy at the
frequenciesf corresponding to the semi-tones pitches based on the tuning A low value
of indicates that most of the peaks of the spectrum correspondd notes based on the
tested tuning. The estimated tuning is chosen as the valud that minimizes the modeling
error over time. The estimated tuning T.e is taken into account when computing the
chromagram, as explained below.

In practice, many audio les are not based on a tuning of A4 = 440Hz . As an
illustration, we represent in Figure 3.6 the histogram of the tunings estimated over the
widely usedBeatles test-setfor chord recognition (see Chapters 2, Section 2.3.2). It shws
that most of the songs are not based on a tuning oA4 = 440 Hz. The estimated tunings
of the tracks are comprised between 430 Hz and 444 Hz.

Note that we assume here a constant tuning over the whole durion of the piece. To
reduce the computation cost, it would be possible to computehe tuning of the piece on
a short extract (using only 30s of music for instance).
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40

number of songs
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Figure 3.6: Histogram of the estimated tunings over the Beatles test-set

3.4.1.2 Frequency Region Selection for Chroma Computation

The chroma vector is obtained by converting the signal into the frequency domain, using an
FFT or a CQT, and mapping the calculated intensities in the frequency bins corresponding
to the music pitches. In the mapping, we do not consider all the frequencies of the spectrum
X (k) but the analysis is restricted in general to a frequency regn that corresponds to
the most relevant frequency values for pitch distribution.

Let f min andf max respectively denote the minimum and maximum frequencies oX (f )
considered in the chroma computation. In what follows, andnpi, and nphax denote the
midi notes corresponding tof min and f max . Assuming a tuning of A4 = 440Hz, a midi
note n is related to its frequencyf by the following equation:

f
n= 12Iogz4—40+ 69 (3.15)

The various works that use chroma features as a representatn of the harmonic content
of the signal do not consider the same frequency region for comagram computation. For
instance, Bello & Pickens [BP05] compute the chromagram fron 98Hz to 5250Hz whereas
Oudre et al. [OGF09b] limit the frequency range to the interval 73:42 587.36Hz, although
both of them are used as input of a chord estimation algorithmevaluated on the Beatles
test-set

The selection of the frequency region depends on many critex. Di erent frequency
regions should be selected depending on the possible presenof noise or percussive
sounds in the signal, depending on whether the chroma extrdion algorithm considers
the presence of higher harmonics or not, or depending on thexstrumentation.

In our work, because of frequency resolution limits (the frguency distance between
adjacent semitone pitches becomes small in low frequenciesve only consider frequencies
abovef nin = 60Hz.

In our experiments on the Beatles test-set, we found that thebest results were obtained
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considering only the frequencies below nox = 1000Hz. The upper limit is set to 1kHz
because the fundamentals and partials of the music notes in gpular music are usually
stronger than the non-harmonic components up to 1kHz [Mad0§ This is illustrated in
Figure 3.7, in Section 3.5.1 of this Chapter. Our choice foif o IS also supported by the
fact that many of the higher partials, which are whole numbermultiples of the fundamental
frequency, are far from any note of the Western chromatic scie. This is especially true for
the 7" and the 11" partials. We found that the best results on a classical musidest-set,
the Mozart piano test-setare obtained using components up to 2kHz. Further experimets
should be devoted to better study the in uence of the frequerty region selection parameter.

Note that some approaches such as [MNDQ9] or [RK08b] use jdiy several chroma-
grams instead of one, in order to distinguish between varios registers. Each chromagram
is computed considering a di erent frequency region that ma capture for instance to the
bass or the melody content.

3.4.1.3 Computation of a Semitone Pitch Spectrum

Semitone Pitch Spectrum from the FFT

We review here a method that was initially proposed in [Pee08&]. In our analysis, the
signal is down-sampled to 11028z, converted to mono and converted to the frequency
domain by a FFT using a Blackman window of length N with 12:5% overlap. The value
of N will be discussed further, in part 3.6.4. The values of the FH are mapped to a
semitone pitch spectrum according to the estimated tuning wing the mapping function:

n(fx) = 121og,( )+69;n2<" (3.16)

fi
Tref
where fy are the frequencies of the notes in the Fourier transform anch corresponds to
the semitone pitch scale values expressed in a MIDI-note st&a For each MIDI note of
frequencyf ¢ of the semitone pitch spectrum, we consider the frequenciesf the spectrum
that are contained in a window centered aroundf . The contribution of the peaks of the
DFT bins comprised in the considered window is weighted usig a set of lters described
below.

Let us de ne a set of lters Hpo centered on the semi-tone pitch frequencies® 2

n®2 [35;36;:::;83]. Frequency resolution is a salient parameter in pitch @ss features
computation. Chroma features are in general represented a%2-dimensional vectors that
correspond to the 12 semitones of the equal tempered scale. eiertheless, it may be
pertinent to increase the semitone resolution to improve rdustness against tuning and
other frequency variations, such as the vibrato of an instrunent. In this case, a semitone
is represented by several Iters instead of one (typically 2or 3). In order to increase the
semitone resolution, we de ne a factorR 2 <* that sets the number of Iters used to

represent one semitone. The center of the lters are now set  the MIDI notes n°2
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Each Iter can be de ned by the function

Hno(f ) = %tanh( 1 2x)+ % (3.17)

where x is the relative distance between the center of the lter n®and the frequencies of
the Fourier transform: x = Rjn® n(fy)j. The lters are equally spaced and symmetric
in the logarithmic semitone pitch scale, extend fromn® 1 to n%+ 1 with a maximum
value at n® The values of the semi-tone pitch spectrumNggT (n9 are then obtained by
multiplying the Fourier transform values A(fy) by the set of Iters Hpo:

X
Neer (n9) = Hno(fi)A(fk) (3.18)
fx

Semitone Pitch Spectrum from the CQT

The CQT is closely related to a semitone pitch spectrum. Let denote the number
of bins of the CQT per octave. Chroma features are usually repesented in a 12-bin
histogram, each bin corresponding to one of the 12 semitonas the equal-tempered scale.
In the case of = 12 (semitone spacing), the center frequencies directly awespond to
musical notes of the semitone pitch scale and the computatio of the constant Q transform
leads to a semitone pitch spectrumNcQT(n%. Very often, as in the case of the FFT-
based chroma feature computation, a higher resolution is usd to get a ner pitch class
representation. We use here a 36-bins per octave resolutioWwhen = 36, each note in the
octave is mapped to 3 bins in the chroma and the computed CQT spctrum corresponds
to a £-tone pitch spectrum.

Let f min: 440 be the minimum frequency considered in the signal feature aoputation
in the ideal case of a perfect tuning. The actual minimum freqiency value f i, is cho-
sen according to the estimated tuning of the track: fmin = fmin: 440 %o- The center
frequencies are geometrically spaced, according to the fyeencies of the equal-tempered

scale:

fr=(0"% )kfmin (3.19)

As stated in Equation (3.9), the CQT time resolution increases towards higher frequen-
cies. The length of the analysis window decreases with the éiquency. Here, the hopsize
is chosen to be equal to the smallest window length.

3.4.1.4 Smoothing

Transient reduction can be done during chromagram computaion, as proposed in [Pee06a],
the semitone pitch spectrumNgeT (n9 or Ncor (n9, simply denoted from now by N (n9
is computed for each framem and is then smoothed over time using a median lItering.
This provides a reduction of transients and noise. Note thatsmoothing of the semitone
pitch spectrogram strengthens spectral envelope continty, a physical property; while
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smoothing on the chromagram does not rely on any physical pneerty. This is why the
Itering is performed on the notes rather than on the chroma vectors.

In general, when increasing resolution, only one Iter per #mitone is considered so
that the nal chroma feature is 12-dimensional and can easly be compared with chord or
key pro les?. In our chroma feature implementation based on the FFT, for each semitone

for a 36-bins per octave resolution, we only consider the ler centered onn®= 69 for the
A4 note, not the ones centered om®= 68:666 andn®= 69:333. This can be done because
the tuning is now guaranteed to be 440 Hz. This process also pvides a reduction of the
in uence of noise in the computation of the chroma features.

3.4.1.5 Chroma Spectrum

The mapping between the semitone pitchesh and the semitone pitch classes (chromak
is de ned as:
c(n)= mod (n;12) (3.20)

All the semitones pitches corresponding to equivalent pitb classes are added so that
we obtain a sequence of 12-dimensional chroma feature vecto Each of the 12 binsl of
the chroma vector can be calculated from the semitone pitch gectrum N (n9as:

X
c\h= N(n%; 12 [1;12] (3.21)

n% so that ¢ (n%=1

3.4.1.6 Post-processing: Normalization

The chromagram is in general normalized to provide robustnss against variations of dy-
namics. This normalization post-processing step can be danso that the components of
each chroma vector sums to unity, as we do here. This choice i®llowed in many other
works [LBO7] [RK0O8b]. Other methods propose to normalize tle chromagram for each
frame by its maximum value [G06b] [CCO05a].

3.4.2 Chroma Based on multiple fOs

In the last few years, the problem of estimating the fundamemal frequency, or f 0, of the
signal is a task that has attracted the attention of a growing number of researchers. This
is because it is an extremely important descriptor of the sigal. It is largely admitted that

f 0 estimation is equivalent to pitch estimation. In the case d polyphonic music, several
musical notes are played simultaneously and the termmultiple-fO is used. Themultiple-fO

algorithms allow retrieving the various pitches that have been produced.

The idea of deriving a chroma representation from the output of a multiple pitch
tracking technigue comes out naturally. It has been alreadyexplored in [RK0O8b] and

2 key/chord pro le is a 12-dimensional template that indica tes the perceptual importance of each note
of the equal-tempered scale within a key or a chord. More details will be given in the next chapters.
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[VPMO8] for instance. Here, we are interested in comparing lte approaches based on
spectral representation with an approach based on a multipd pitch tracking technique
for chroma features computation. For this, we rely on a multiple-fO estimation algorithm
proposed by Yeh in [Yeh08] and [YRCO08]. We thank C. Yeh for preiding his code.

Brie y, to estimate the pitches of the notes in the audio signal, we use the frame-
basedf 0 estimation algorithm proposed in [Yeh08]. It is based on a ore function which
evaluates the plausibility of a set off 0 hypotheses. It works in four stages.

1. First, an adaptive noise level is estimated in order to clasify the spectral peaks into
sinusoids (above the noise level) and noise (below the noisevel).

2. Secondly, a set of 0 candidates is iteratively extracted until all the signi ¢ ant sinu-
soidal components are explained.

3. Thirdly, a score function jointly evaluates all the combinations of f 0 candidates.
It is based on four criteria: harmonicity (harmonic matching that estimates the
partial frequencies and amplitudes of the hypothetical souces), mean bandwidth
(envelope smoothness), spectral centroid (energy concemtion in lower partials)
and synchronicity (synchronous amplitude evolution within a single source).

4. Finally, the best combination of f 0 candidates is selected by a polyphony inference
algorithm.

The output of the multiple-fO estimation algorithm can be seen as a semitone pitch
spectrum: for each frame, it gives an estimation of the pitchand salience of the notes
present in the signal. This semitone pitch spectrum covers everal octaves. It is reduced
to one octave by adding each pitch's intensity to the pitch class of its chroma. The resulting
feature is a 12-dimensional chroma vector.

3.5 Two Problems Related to the Chroma Features

3.5.1 Chroma Features and Harmonics

Let us consider a chroma feature extraction method based on apectral representation
(FFT or CQT). As explained in part 3.2.3, a note generated by an instrument produces

a set of harmonics. In a spectral representation, we do not déctly observe the various
pitches but a mixture of their harmonics that will result in a mixture of non-zero values in
the chroma vector. It is thus important to note that the chrom a vector of a note played by
an instrument does not only contain the pitch classes corrgsonding to the fundamental

frequencyf O of the perceived pitchpg (ignoring octave considerations) but also include a
mixture of their harmonics.

Figure 3.7 shows a chroma feature of a cello C1 note (§8Hz) considering various
frequency intervals (fromf iy = 60Hz to various values off a4« ) for computation. We can
follow the apparition of the harmonics of the C: C-C-G-C-E-G and so on, as well as of some
other components related to the residual part expressed in §uation (3.3), especially when
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high frequencies are considered in the feature computatianThe problem of harmonics in
the chroma features will be further discussed in Chapter 4 othis dissertation.

pitch class
9]
S ofmuiof>Fo

Q
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Figure 3.7: Chroma feature of a cello C1 note considering various frequrey intervals
(from fmin = 60Hz to fmax 2 [10G 2000] Hz) for computation.

3.5.2 Beat-Synchronous Analysis

Most of the works that extract harmonic content information from audio signals rely on
chroma features. In some cases, it can be very useful and everecessary to perform
a beat-synchronous analysis, that is to compute one featurger beat. The computa-
tion of beat-synchronous chroma features has thus become @a common in harmonic
content analysis models. Beat-synchronous chroma featusshave been used in many
approaches that attempt to estimate the chord progression 6 an audio le, as for in-
stance [BPO05], [RSNO08], [SIY 08], [YKK * 04], [ZR07]. [BP05] argue that beat-synchronous
analysis frames help to overcome noise introduced by tranent components in the sound
(drums and guitar strumming) and short ornamentations, thus minimizing the e ect of lo-
cal variations. The use of beat-synchronous chroma featugeis convenient in music similar-
ity and cover song identi cation tasks [Mad06] [MKLO06] [SWO05] [BWO01] [BWO05], especially
when comparing the chord progression of two songs, possibbt di erent tempo. Indeed,
this provides invariance to tempo changes [EII06] [EPO7]. Bat-synchronous chroma fea-
tures may be useful for music segmentation and music structte detection, in particular
in approaches that combine harmonic and metrical informaton and need to work with
features related to the meter [PP08b] [Mad06].

In this section, we wish to underline several issues relatedo the use of beat-
synchronous chroma features. We shall conduct in Section 8.3 several experiments that
illustrate our purpose. In Chapter 5, we shall propose a modethat takes into account
interaction between chords and downbeats. The proposed mad requires features related
to the meter. We will use one single input vector per beat/tadus (or per half-beat/tatum).
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3.5.2.1 Towards a Beat-Synchronous Analysis

Beat-synchronous chroma features can be obtained in vari®gmanners.

In the case of a xed resolution analysis (using a FFT), beatsynchronous chroma
vectors can be obtained from the frame-by-frame analysis inwo ways.

1. We can either compute a frame-by-frame chromagram using a length of analysis
frame and then averaging the chromagram according to the tatus/tatum positions
(see Figure3.8, top). In what follows, we will refer to this goproach as abeat-average
analysis denoted by By . This approach is adopted in [EPO7].

2. Or we can perform a beat-synchronous analysis by using andaptive window length
that is de ned by the beat positions (see Figure 3.8, bottom). In this case, each
analysis frame corresponds to a beat and there is no overlapebween successive
frames. In what follows, we will refer to this approach as abeat-adaptive analysis
denoted by Bap . This approach is adopted for instance in [ZRO07].

Figure 3.8: Two FFT-based beat-synchronous analysis: aBay, b) Bap . Dashed lines
correspond to the frames that are not taken into account in the computation of the beat-
synchronous chroma vector.

In the case of multi-resolution analysis, the length of the wndow is determined by the
frequency. The beat-synchronous chroma features can thusnty be obtained by averaging
frames according to beat locations. This approach is adoptdin [BP05].

The various investigated methods for chroma features comptation are listed in Table
3.3.

A more detailed discussion about beat-synchronous chromaétures with quantitative
evaluation follows in part 3.6.3.

3.5.2.2 Problem of Mixing Harmonies

Let us consider a simple case of chord progression with one @td change per beat. Let
C1; Cp; C3; 11 denote the successive chroma features computed on overlapg frames. Let
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Table 3.3: Summary of the investigated methods for computing the chrona features.
FFT_./FFTgs: frame-by frame FFT-based method using a long (&bs)/short(0:125s) anal-
ysis window, CQT: CQT-based method,Bay : beat averaged analysisB ap : beat adaptive

analysis
FFT CQT
FFT_ 0:5s
FFTs 0:125s cQT
FFTLBav
Beat-synchronous FFTsBav CQT Bav
FFTB ap

Frame-by-frame

b and b1 denote two successive beat positions anN i denote the number of overlapping
chroma vectors that are comprised betweerb, and b1 .

A common approach used to obtain a beat-synchronous chromaeature Cy is to com-
pute the average of theNy overlapping frames that are comprised between two consided
beat positions b, and b1 (see for instance [BP05], [PP08b], [Ser07]):

1 X
Ck = — Cn (3.22)

k by n<b k41

This is illustrated in Figure 3.9. This method will be referred to asBav mean Method
or asBay method when there is no ambiguity.

Figure 3.9: Computation of a beat-related feature by averaging overlaping frames be-

tween two successive beat positiond and 1. Solid lines correspond to the frames

that are taken into account in the computation of the beat-related chroma feature. The

grey areas correspond to information related to harmony tha does not correspond to the
considered chord.

Another possible way of computing beat-synchronous chromdeatures from frame-
based features is to take the median (in the time direction) @er all the chroma frames
falling between two consecutive beat positions [MNDQ9]. Tlis will be referred to as the
B av median method. We will compare the two possibilities in part 3.6.3.

Ideally, the beat-synchronous chroma features should capire the harmonic content of
each single chord. However, some spectral information thatomes from adjacent chords
is mixed with the spectral information of the considered chad, as represented in Figure
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3.9. The amount of spectral information coming from the adjacent chords increases with
the length of the analysis window. It would be thus desired touse small window lengths.
This is in con ict with the need of su ciently large windows f or resolution considerations.
We thus need to make a trade-o between considering low pitchfrequencies and mixing
spectral information between adjacent chords.

Let us illustrate this on an example: Chopin's Study op. 25 nol0 (Octaves. The
opening of this study, represented in Figure 3.10, consistef a series of eight-note-tuplets
octaves in cut time, played at a very fast tempo,Allegro. There is one chord per eight-note
and each chord corresponds to a single note played at four derent octaves (in practice
adjacent chords may mixed up because of the use of the pedal).
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Figure 3.10: Opening of the Chopin Study Octaves

Figure 3.11 represents three variations of the FFT-based alomagram computed on
the considered music excerpt and averaged on the eighth nate

B B ] B
A# A# 1 A#
A A A
G# G# 1 G#
g ° g ° g °
< F# 5 F# o F#
f;, F § F § F
o E a E 1’2 E
D# D# 1 D#
D D D
C# C# 1 C#
C C 1 C 1
10 20 30 40 10 20 30 40 10 20 30 40
frame number frame number frame number

Figure 3.11: FFT-based chromagram computed on the beginning of the Chomi Study
Octaves From left to right: FFT_ Bav, FFTsBav, FFTBap. The blank\+" signs
represent the successive notes played at four di erent octees, according to Figure 3.10.

It can be seen that the chord transitions are much clearer in he case ofbeat-adaptive
analysis than in case ofbeat-average analysis However, if we look at the semitone pitch
spectrum, Figure 3.12, we can distinguish chromatic scaleat 4 di erent octaves in case
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FFT_Bav whereas some notes in the low frequencies are not correctlyetected in cases
FFTBap and FFTsBav . This is because the analysis is done using a window that is
too short regarding the frequency resolution that is needed A longer analysis window

would be required to detect precisely the low octaves notes.

C5 5t C5
0 (%] ; (%]
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p= s p=
c3 C3t c3
c2t ] ca2 ] ca2 ]
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frame number frame number frame number

Figure 3.12: FFT-based semitone pitch spectrum computed on the beginnig of the
Chopin Study Octaves From left to right: FFT_ Bay, FFTsBav, FFTBap.

The problem of mixing the harmonic content of two dierent ch ords in one beat-
synchronous chroma vector occurs at the point where the harrony changes. The Chopin's
study example is an extreme case. In general the harmony of agce changes much slower,
especially in popular music where very often the chords haveluration of a measure or
half a measure (even if this is not a rule). On the one hand, thdonger the length of the
analysis window is, the more undesirable harmonic informabn from the adjacent chords
the beat-synchronous chroma feature will capture. On the ober hand, a su ciently long
window is required to detect precisely the low pitches notes This trade-o should be kept
in mind when using beat-synchronous features.

3.5.2.3 Inuence of the Position of an Adaptive Window

We now consider the case of deat-adaptive analysis The choice of the position of the
window according to the beat location is not trivial. In our v iew, the most logical solution
would be to center the analysis window exactly between two bats. In this case, the
problem of mixing several harmonies within the same beat do not exist. However,
experiments have shown that the best position of the adaptie window depends on the
music style (see Section 3.6.3.2).
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3.6 Selecting a Feature Vector for Harmonic Analysis

In this Section, we evaluate and compare the three presentedhroma representations. We
do not intend to compare the numerous chroma feature extradon methods proposed in

the literature but we intend to draw some general conclusios concerning the use of chroma
features extracted either from a xed resolution analysis,a multi-resolution analysis or a

multi-fO pitch tracking approach.

3.6.1 Dening a Measure to Compare Various Features

Selecting an input feature among others is a complex task. st of all, we need to
de ne the criteria that are relevant for comparison. The potential superiority of a feature
above another depends on their nal use. The various presemd features exhibit di erent

weaknesses and strengths. Choosing one input feature amonige others is a result of a
compromise. We aim here at selecting the most appropriate adtoma representation for the
harmony related tasks (key or chord recognition). The best andidate should provide the
most reliable information about the notes that comprise the played chord.

The problem of selecting the best front-end representatiorfor a given task has already
been studied in some previous works. For instance [Dav07] atpares the performances of a
downbeat tracker using three di erent spectral representdions (a constant-Q spectrogram,
a 36-bin chromagram and a 12-bin chromagram), [MEKQ9] compees the robustness to
timbre changes of a newly proposed chroma representation i some commonly used
chroma types including two freely available chroma represatations 3.

However, we are not aware of any systematic analysis and comapison of the large
number of previously proposed chroma representations expé two recent studies that
investigate the use of various chroma representations. [VMO08] investigate six formerly
proposed algorithms and proposes a new scheme based on mpitch tracking for chroma
vector computation. [SSG' 09] analyzes and compares di erent methods for audio chroma
feature extraction. These two studies lead to di erent resuts concerning the performances
of the chroma features. For instance, in [SSG09], the Enhanced Pitch Class Pro les
originally proposed in [Lee06a] are found to perform betterthan the Instantaneous Fre-
guency spectrum-based chroma vectors [EPQ7], whereas th@posite conclusion is claimed
in [VPMO08]. This can be explained by the fact that di erent pe rformance measures and
di erent evaluation test-sets are used in the two studies. This shows that comparison
between chroma features is not a trivial point.

We investigate here the three above-mentioned chroma-baserepresentations (FFT,
CQT, f 0) through the analysis of experimental results obtained ona number of music
audio excerpts.

3Ellis: \Chroma features analysis and synthesis," http://w ww.ee.columbia.edu/dpwe/
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3.6.1.1 Previously proposed measures

In the literature, we can distinguish between two approache for comparing front-end fea-
tures. On the one hand, the features are compared through theesults of an application.
For instance, [DBSDO04] compares the e ects of using a xed regolution spectral analysis
or a multi-resolution subband approach in the context of on®t detection. To evaluate
and compare the two methods, a measure of onset detection ao@cy is de ned and com-
puted over a set of recordings. [NMO6] proposes a study thatnvestigates the e ects of
low-level digital signal processing parameters (such as #hanalysis window length) for an
HMM-based key estimation algorithm. One set of parameters $ selected as a reference
setting. The e ect of changing the other parameter values ismeasured by evaluating key
estimation performance of the algorithm on two di erent test-sets of real audio record-
ings (110 Beatles songs plus 48 piano recordings of all prelas and fugues from J.S.
Bach). [Dav07] investigates the use of three beat-synchrasus spectral representations for
detecting bar boundaries based on harmonic changes ((i) a ogtant-Q spectrogram (i), a
36 bin-chromagram; and (iii) a 12-bin chromagram). The comrison between the di erent
spectral front-ends is done through the downbeat tracking @rformance results.

The drawback of these approaches is that the features are cgmared through a complex
process in which, in general, not only the type of features usd as front-end are evaluated
but also other parameters that have an impact on the result. t is thus di cult to analyze
the results and to distinguish between dierences due to thetype of the feature and
di erences due to other parameters.

On the other hand, features can be compared using a speci ¢ @luation measure that
is supposed to measure their quality. In [VPMO08], a large-sale experimental evaluation
is performed to compare a newly proposed chroma representan based on multiple pitch
tracking techniques with six other schemes. The experimeral evaluation is performed by
measuring the similarity of the novel and the previous chronma representation with \ideal"
pro les retrieved from manually labeled chords on a data setconsisting of 161 30s-length
real audio excerpts covering di erent tempi and genres. Thegoal of the experimentation is
to quantify the closeness between each computed chroma prte and the annotated chord
pro le. It relies on the argument that the better the resembl ance is, the more accurate
the chord detection will be. To quantify the similarity betw een the computed chroma
pro les and the annotated chord pro les, for each chord segnent, the computed chroma
V. is compared to the annotated chroma vectorV, consisting of 1 when the note belongs
to the chord and 0 otherwise using a cosine similarity distage S de ned as

(Vi Va)
S(Ve; Va) =
(Vei Va) KVckkVak
To measure the quality of the tested algorithm two measures ee used: the mean cosine
similarity across all chord segments and the mean reciprodaank (MRR) [EPQ7]. The
various chroma representations are ranked according to tHe mean cosine similarity.

[SSG 09] analyzes and compares di erent methods for audio chroméeature extraction
using 55 audio tracks synthesized from MIDI les. This database is built considering four
parameters: pitch, chord type, duration and attack. Evaluation of the chroma feature
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extraction methods is done through a set of measures that areelated to the so-called
Chroma Precision (CP). For each computed feature vectorV,, the intensities of the pitch
classes corresponding to the tonal content of the input sigal are added:

CP(V.) = i 21V s() s(0) 2 [0:1]
¢ TRV ’

This evaluation measure is close to the one proposed in [VPM] since the chroma is
considered all the more precise when it is close to a bit maskepresenting the tonal
content of the input signal.

We do not agree with the argument that \the better the resemblance is, the more
chance there is that the computed chroma prole can give riseto an accurate chord
detection and classi cation" [VPMO08]. Indeed, the goal of chord estimation is to select a
chord among a set of chord candidates. Resemblance with thenaotated chord is thus only
important regarding resemblance with the other possible cbrds. A greater resemblance
with an annotated chord does not result automatically in an improved accuracy of chord
detection (see an example in Section 3.6.1.2, Figure 3.13n bther words, the discriminative
power of the chroma vectors must be taken into account in the ealuation measure.

To measure the quality of the various representations regating chord estimation, we
should consider the following three conditions:

1. (i) First, the notes present in the chord should be clearlyemphasized in the chroma
feature.

2. (i) Secondly, the similarity between the computed chroma feature and the chord
templates that do not correspond to the annotated (ground-truth) chord should be
weak.

3. (iii) Finally, the similarity between the computed chrom a feature and all possible
chord templates should be maximum with the template correspnding to the anno-
tated chord.

The best chroma feature should be thus selected as the one thaives the maximum
discriminative power.

The idea of measuring the performance of a feature extractio method in relation to
its discriminative power is presented in [MEKO09]. In this paper, a method for making
chroma features more robust to changes in timbre and instrurentation is presented. The
novel chroma feature is quantitatively compared with three commonly used chroma types
that serve as reference. Two types of experiments are condtex.

1. The rst experiment is conducted on synthesized audio. A MDI le containing
various chords is synthesized into 24 di erent ways using 8 derent instruments
playing the le in 3 di erent octaves and considering two cases: the attack and the
sustain phase. A class composed of the 48 computed chroma texs is formed for
each chord. The distance between two chroma vectors is comped using the cosine
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distance. Three measures are computed to quantify the degesof timbre invariance

of a given chroma type: the within-class distance ; (corresponding to the average
over the distances computed between any two chroma vectorshtat belong to the

same class) that measures the degree of timbre invariance drthe between-class
distance ¢ (corresponding to the average over the distances computed diween
any two chroma vectors from dierent chord chroma classes) hat measures the
discriminative power of the chroma representation. Finall, the inertia ratio = —é

expresses the across-class distance relative to the withiclass distance.

2. The second set of experiments is conducted on real audio tta The newly proposed
chroma features are compared to the previously proposed oseby means of several
performance measures that allow comparing a query sequengéth a given database
sequence.

3.6.1.2 Proposed Measure for Chroma Feature Comparison

To compare the di erent chroma feature extraction methods, we propose a measure that
quanti es the quality of a chroma vector in terms of represenation of the harmonic content
of the signal.

From the previous observations, in order to measure the qudty of the various pro-
posed features, we follow the approaches proposed in [S$@9] and [VPM08] and compare
each computed chroma feature with the input signal using a ki mask composed of zeros
and ones that represents the tonal content of the input signa (the ground-truth chord).
The chord template contains a 1 if the pitch class belongs to lhe chord and a 0O if it
does not. For instance, a C major chord template (C-E-G) has he following format:
[1,0,0,0,1,0,0,1,0,0,0,6]

We use a measure inspired from the one proposed in [MEKQ09] to uantify the
resemblance between the computed and the theoretical chromagainst the resemblance
between the computed chroma vector and the other possible @rds. In our experiments,
we consider only the 24 major and minor triads. The chord tempates are denoted by
Ti;i 2 [1: 24]. Distances between the computed chroma vectors andeé theoretical chord
templates are computed using a cosine similarity distanceas in [VPM08]. We restrict
here our analysis to this commonly used distance measure but is important to note
that the type of the distance used to compare two chroma featves has an impact on the
results, as shown in [OGF09a]. We plan to pay more attention o this point in future works.

Let us consider a given input audio chord corresponding to anideal" template T; and
let C denote a chroma vector computed on this audio signal. Accorithg to condition (i) the
chroma feature should match as closely as possible the thestical template corresponding
to the chord. The correct-chord distanceDcc is computed as:

CITi

Dcc(C) = KCKKT K (3.23)

“Note that for the sake of simplicity, we do not consider here t he problem of harmonics evoked in
paragraph 3.2.2.1 and we do not consider harmonics in the theoretical templates that represent the input
signal. We will give more attention to this issue in the next ¢ hapter.
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We now consider condition (ii). We aim to nd a measure that characterizes the
discriminative power of a chroma representation. Our rst idea was to use a measure
similar to the between-class distance employed in [MEKQ9]:the average distance over
any computed chroma vectorC and any chord template that does not correspond to the

annotated chord:
1 X  CT

D = = Ll
av(C) 23, kCKKTk

(3.24)
However, this measure does not re ect the discriminative paver of a chroma representation.
Indeed, the computed chroma vector might be even more similato an other chord than

to the annotated chord although the value D 5, is small.

To illustrate this, consider Figure 3.13, which representsa multi-f0 based chroma
representation (top, left) and a CQT based chroma represerdtion (bottom, left) of an F
major chord (F-A-C) extracted from the Beatles song Misery. Let us denote these two
vectors by Cro and Ccqr respectively. The right part of the gure represents the values
of the correct-chord distance computed between the extraed chroma and the 24 chord
templates.

It can be seen that the value Dcc(Crg) = 0:9120 is much larger than the value
Dcc(Ccor) = 0:6382. However, the amplitude of the A note inCsg is very small (this
is probably due to the fact that the considered frame is disrpted by a drum sound that
makes multi-fO estimation di cult). As a result, the comput ed chroma vector is closer to
an Fm chord than to a FM chord (see the dashed circle in the righ part of Figure 3.13,
top). On the contrary, the FM chord is well discriminated fro m the others in the case of
Ccor-

Let us compute the distanceD,, for the two representations. For Cso, we obtain a
value of 02212 and a ratio 3= = 4:1227. This is much larger than the valuecs- = 2:7378
obtained in the case ofCCQT , although the annotated chord is clearly better dlscrlmlnated
using the constant-Q based approach. The poor discriminatie power of Ct o over Ccor
in the example is not represented using the average distancB 5, between the computed
chroma vector and any chord template that does not correspod to the annotated chord.

To take into account the discriminative power of the chroma features (condition (ii)),
we de ne the incorrect-chord distanceDc as:

T
Dic (C) = max G

js1 KCKKT, K (3.25)

The ratio D¢|c = %lccc expresses the correct-chord distance relative to the incoect-
chord distance. The mean value of the distance® c,c computed over all the frames of
the test database, denoted byDc|c is used to measure the quality of a given chroma
representation. A good chroma representation should restiin a large value of D¢c .

Finally, to take condition (iii) into account, we also compute the rate of correctly
detected chords using a given chroma representation, whiclis given by the percentage
of chords for which the similarity between the computed chrana feature and the chord
templates is maximum for the template corresponding to the anotated chord. Note that
this is equivalent to the condition D¢ic > 1. In the following tables of results, this will
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Figure 3.13: Chroma representations of a AM chord and similarity with the chord tem-

plates using a multi-f0 based approach [top] and using a CQT hsed approach [bottom].

The grey rectangles indicate the amplitude of the notes compsing the FM chord. The
grey circles indicate theD ¢ values.

be referred to as \% of correct chords".

3.6.2 Database for Feature Selection

The various presented chroma feature extraction methods we analyzed and compared
through a database consisting of a number of short excerptsfabout 20 seconds extracted
from audio recordings and hand-labeled in chords (major andminor triads) by the au-
thor. The chords are annotated against a time grid de ned by the beats. The database is
divided into non-percussive audio DATClas) and percussive audio DATPop). DATClas
corresponds to extracts of classical music with various irtsuments and DATPop corre-
sponds to audio excerpts of popular and rock music containig voices and drum sounds.
These two databases are described in details in Chapter 2, 8&gon 2.3.1.

3.6.3 On the use of a Beat-Synchronous Analysis

In this section, we give a quantitative analysis of the use ofbeat-synchronous chroma
features. We rst discuss the e ect of using beat-synchronas chroma features instead of
frame-by-frame features in terms of capturing the harmoniccontent of a piece. We then
study the in uence of the position of an adaptive window accading to the beat positions.
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3.6.3.1 Beat-Synchronous Versus Frame-by-Frame Analysis

The results of comparison between frame-by-frame versus he&synchronous analysis for
the various considered methods are given in Table 3.4. We gévthe mean value and the
standard deviation of the various evaluation measures comyted over all the frames of the
test-set. The chord estimation results are illustrated in Figure 3.14.

Table 3.4: Similarity measure for comparing frame-by-frame versus bat-synchronous
(BS) analysis. DATPop: Popular music database,DATClas: Classical music database.
SS: Statistical signi cance.

DATPop
fo f OB Av FFTL FFT.Bav| FFTs FFTsBav| CQT CQTBav
Dcc 0:6361 0:6347 0:4921 0:4928 0:4423 0:4416 0:5118 0:5133
0:0971 0:0968 0:0751 0:0757 0:0500 0:0501 0:0683 0:0679
Dic 0:8209 0:6503 0:4872 0:4768 0:4812 0:4622 0:5120 0:4922

0:0375 0:0776 0:0666 0:0634 0:0429 0:0384 0:0618 0:0550

Dcic 0:7835 0:9723 1:0078 1:0297 0:9269 0:9590 0:9973 1:0399
0:0946 0:0767 0:0520 0:0493 0:0608 0:0609 0:0540 0:0455

% Cor- | 26:3954 59:6364 63:5549 66:8039 46:9668 49:8616 61:5483 70:3990

rect 8:6968 20:1500 11:2007 12:8174 14:4024 15:2406 11:8779 10:2607
SS yes yes yes yes
DATClas
fo f OB av FFTL FFTLBav| FFTs FFTsBav| CQT CQTBav
Dcc 0:7349 0:7358 0:6030 0:6046 0:5857 0:5844 0:6159 0:6185
0:0584 0:0577 0:0893 0:0856 0:0755 0:0717 0:0768 0:0738
Dic 0:8075 0:7107 0:6037 0:5881 0:5969 0:5750 0:6162 0:5955

0:0438 0:0343 0:0516 0:0504 0:0387 0:0346 0:0404 0:0431

Dcic 0:9280 1:0435 1:0004 1:0300 0:9884 1:0199 1:0045 1:0412
0:1129 0:1220 0:0741 0:0771 0:0813 0:0862 0:0703 0:0722

% Cor- | 39:4648 734211 66:4417 70:7845 64:6579 68:5439 67:6692 73:1704
rect 21:5594 15:1892 12:7790 13:0598 15:0906 16:4696 12:6419 14:7149

SS yes yes yes yes

It can be seen that, for all the methods, the use of beat-syndonous features improves
the results. Using a paired sample t-test, we found the di elence between the results of
the beat-synchronous and frame-by-frame analysis to be stitically signi cant at the
5% leveP.

This corroborates the results obtained by Bello & Pickens in [BP0O5]: the use
of beat-synchronous analysis frames helps overcome noisatroduced by transient
components in the sound, short ornamentations and passing otes. Averaging the
analysis windows between two beats results in some smoothin Of course, we need
for this that the beat positions are correctly detected. This may not be the case in
real situations. In [Bel07], Bello compares beat-synchroous with frame-based chroma
features for the purpose of cover song retrieval. It is foundhat, due to errors in the beat

5The number of analysis frames is dierent between the beat-synchronous and the frame-by-frame
analysis. We thus computed a score for each audio excerpt andperformed the t-test using each excerpt as
a sample.
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Figure 3.14: Chord estimation results on DATPop (left) and DATClas (right) for frame-
by-frame (black bars) versus beat-synchronous By ) analysis: Baymean in dark grey,
B AV median in light grey.

tracking, the frame-based analysis consistently outperfoms the beat-synchronous analysis.

It can be seen that the use of long analysis windows (casdsF T, and CQT for low
frequencies) leads to higher chord estimation results thanwhen using a short analysis
window, even if more undesirable information from the adjaent chords is captured by
the beat-synchronous chroma vectors. This is probably dued the fact that we need
su ciently long windows to capture the bass notes, which are in general the most
important information for chord estimation.

Figure 3.14 shows that the results are dierent according to whether the beat-
synchronous features are computed with methodBavmean (Mean) or with method
Bavmedian (median). However, the results are not statistically signicant. Tests on a
larger database would be required to possibly decide which athod is the best.

3.6.3.2 Inuence of the Position of an Adaptive Window

In this section, we present some experiments that we condued to study the in uence of
the position of the beat-adaptive window according to the bet positions. The di erent
tested center positions are represented in Figure 3.15.

Figure 3.16 and Table 3.5 present the results obtained whenentering the beat syn-
chronous window on di erent positions, using the proposed ealuation measures. Note
that the adaptive analysis window corresponding to a pair ofsuccessive beat positiongy
and b+, has a length ofb+1 by

In the case of popular music DATPop), the best results are obtained when the
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Figure 3.15: Dierent tested center positions of the beat-adaptive window: on the beat

(B), on the beat plus a %-beat duration shift, on the beat plus a %-beat duration shift

(solid lines), on the middle of the two beats (M), on the middle of the two beats plus a

%-beat duration shift, on the middle of the two beats plus a%-beat duration shift (dashed
lines).

Table 3.5: Similarity measure between extracted chroma features andhword templates

and percentage of chords that have been correctly detectedf investigating the in uence

of the position of beat adaptive windows. B: on the beat, M : between two beats (middle).
DATPop : Popular music database,DATClas: Classical music database.

DATPop
B B+ : B+ 7 M M+ 2 M+ 2
Dcc 0:4471 0:4815 0:4946 0:5089 0:4977 0:4911
0:0759 0:0848 0:0821 0:0672 0:0713 0:0739
Dic 0:4603 0:4846 0:4964 0:5107 0:5204 0:5183
0:0687 0:0715 0:0702 0:0604 0:0667 0:0684
Dcic 0:9710 0:9906 0:9942 0:9952 0:9535 0:9457
0:0507 0:0596 0:0600 0:0454 0:0650 0:0718
% Correct | 53:6962 58:1196 60:1012 61:8671 53:4751 52:4971
11:1792 11:8082 12:6013 10:5671 8:4631 8:5302
DATClas
B B+ B+ 7 M M+ 2 M+ 2
Dcc 0:5478 0:6133 0:6244 0:6219 0:6272 0:6208
0:0398 0:0482 0:0561 0:0893 0:0910 0:0909
Dic 0:5906 0:6221 0:6255 0:6283 0:6304 0:6201
0:0463 0:0282 0:0287 0:0400 0:0418 0:0443
Dcic 0:9413 0:9918 1.0058 0:9939 1:.0027 1.0083
0:0587 0:0652 0:0809 0:0950 0:0843 0:0796
% Correct | 56:2206 66:1654 70:4536 68:3559 67:2632 67:4561
6:5431 117777 14:6333 17:5472 13:3461 13:4273

window is centered exactly between two beats. Using a pairedample t-test, we found
the di erence between window positionsB and M to be statistically signi cant at the

5% level. Moreover, the more information from adjacent chods is taken into account, the
worst the results are. The huge increase in the results from @sition B to position B + 2

5
may be due to the fact that, by placing the center of the window not exactly on the beat,

Joint Estimation of Musical Content Information From an Aud io Signal



60 Towards a Signal Representation for Harmonic Content Ana lysis

70
g g 68
= £
P o 66
[ [
S S 64
E= E=
j=2] [=2}
8 8 62
< o
e} =]
S s 60
< <
(@) o
58
52 56
B B+1/5B+1/4 M M+1/5M+1/4 B B+1/5 B+1/4 M M+1/5 M+1/4
Position of the center of the beat-adaptive window Position of the center of the beat-adaptive window
DatPop DatClas

Figure 3.16: Results of comparison of an adaptive window analysis. On théeat (B),

on the beat plus a%—beat duration shift, on the beat plus a %—beat duration shift, on the

middle of the two beats (M), on the middle of the two beats plusa %-beat duration shift,

on the middle of the two beats plus a%l—beat duration shift. Black bars (left) correspond to

the results obtained onDATPop and grey bars (right) correspond to the results obtained
on DATClas.

we avoid taking into account part of the noise introduced by transient components in the
sound.

It is interesting to notice that the results are dierent in t he case of classical music
(DATClas). In this case, the best results are not obtained when the widow is centered
exactly between two beats. A deeper analysis shows that thedst position of the adaptive
window depends on the music style.

In our test-set, we have 6 excerpts of piano Mozart sonatas. &h beat can be asso-
ciated with a chord. Notes composing the chord are played in gneral on the beat, and
ornamental notes, passing notes or scales that do not belonp the chord usually follow
them. As a result, the chroma features computed between two bat positions capture
some harmonic information that does not correspond to the uderlying harmony.

For all of the other classical music pieces, the best resultare obtained when the
window is centered exactly between two beats (cashl ). We can also notice that the worst
results are obtained when the center window is positioned orthe beats B. This corre-
sponds to the case where the most information from adjacenthwords is taken into account.

3.6.3.3 Conclusion on Beat-Synchronous Analysis
Many algorithms related to music content analysis rely on beat-synchronous features.

We have investigated the consequences of using beat-syncmous chroma features for
harmonic content analysis. We have shown that it increaseshe chord estimation results
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under the assumption of perfect beat tracking. Analysis andexperiments show that it is
necessary to make a trade-o between having a satisfying frguency resolution and mixing
the harmonic content of two di erent chords in one beat-syndironous chroma vector. We
have also shown that in the case of a beat-adaptive analysighe choice of the window
position depends on the music style.

3.6.4 Fixed versus Multi-resolution Analysis

The results of comparison between xed versus multi-resoltion chroma feature extraction
over databasesDATClas DATPop are represented in Table 3.6, in which we give the
mean value and the standard deviation of the various distanes computed over all the
beat-synchronous frames of the test-set. They are illustried in Figure 3.17.

Table 3.6: Similarity measure between extracted chroma features andhord templates
and percentage of chords that have been correctly detectedof comparing xed versus
multi-resolution chroma feature extraction. From left to right: FFT Bay FFT using
a long analysis window (05s), FFTsBay FFT using a short analysis window (0:125s),
FFTBap beat-synchronous FFT,CQTBay CQT. SS: Statistical signi cance between the
considered FFT-based approach and the CQT-based approach.

DATPop

FFT.Bav | FFTsBay | FFTBap CQTBav
Dcc 0:4928 0:4416 0:5089 0:5133

0:0757 0:0501 0:0672 0:0679
Dic 0:4768 0:4622 0:5107 0:4922

0:0634 0:0384 0:0604 0:0550
Dcic 1:0297 0:9590 0:9952 1:0399

0:0493 0:0609 0:0454 0:0455
SS yes yes yes
% Cor- | 66:8039 49:8616 61:8671 70:3990
rect 12:8174 15:2406 10:5671 10:2607

DATClas

FFT.Bav | FFTsBay | FFTBap CQTBav
Dcc 0:6046 0:5844 0:6219 0:6185

0:0856 0:0717 0:0893 0:0738
Dic 0:5881 0:5750 0:6283 0:5955

0:0504 0:0346 0:0400 0:0431
Dcic 1:0300 1:0199 0:9939 1:0412

0:0771 0:0862 0:0950 0:0722
SS yes yes yes
% Cor- | 70:7845 68:5439 68:3559 73:1704
rect 13:0598 16:4696 17:5472 14:7149

As explained above, a xed-resolution analysis is the resulof a trade-o between a
good temporal resolution (short analysis window length) amd a good spectral resolution
(long analysis window length). The results presented in Talle 3.6 show that the CQT-
based approach outperforms the FFT-based approach, espetiy in the case of percussive
music.
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Figure 3.17: Results of comparison between various chroma-based repergations.
Black: DatPop, grey: DatClas.

We performed a paired sample t-test to determine whether thee is a signi cant
di erence between the results obtained with the two approates. The null hypothesis
could be rejected at the 5% signi cance level, which indicaés that the FFT based
features are outperformed by the CQT based features. The dierences, although small,
are statistically signi cant.

We illustrate these results on an example. Let us consider th beginning of the Beatles
song Love Me Do Figure 3.19 and 3.18 represent respectively the chromagna and the
semitone pitch spectrum of the rst seconds of this song. Theharmony is waving between
C major and G major chords. In the case of the CQT, all chord chages are correctly
detected whereas in the case of the FFT, the C major chords areonsidered as G major
chords.

If we listen to the music, we can hear that the harmony given bythe accompaniment
is covered by the melody played by the harmonica. When C majo(C-E-G) chords occur,
the bass (the C note) is hardly audible. The duration of the C2midi note played by the
bass is very short.

FFT long analysis window: We consider a chroma feature extraction based on a
FFT using a long analysis window length of 05s. We can see in the left part of Figure
3.19 that the C note of the rst C major chord is not accurately discriminated from
the other pitch classes on the chromagram. Looking at the seitone pitch spectrum
(see left part of Figure 3.18), it can be seen that the semitor pitch-class spectrum
is blurred (due to the percussive sounds).

FFT short analysis window: We consider the case where a smaller analysis
window is used. It is now set to 125ms. The semitone pitch-cles spectrum and
the chromagram are respectively represented in the middle grt of Figures 3.18 and
3.19. It can be seen that the C2 note is not detected anymore & the 28! frame of
the chromagram). This is because the frequency resolutionsitoo low.
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Figure 3.18: Pitch class spectrum of the rst seconds of the song.ove Me Do. From
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Figure 3.19: Chromagram of the rst seconds of the song.ove Me Da. From left to right:
FFT.Bav, FFTsBay and CQTBay . The horizontal lines correspond to the annotated
chords (ground truth).

Constant-Q transform: The use of a constant-Q transform to compute the chro-
magram allows a better management of the time-frequency trde-o problem. The

use of long windows in low frequency allows detecting accutaly the bass line (G-D-
C) whereas the use of short windows in higher frequencies allvs reducing the e ects
of percussive sounds. This is illustrated in the right part o Figure 3.19.

This example illustrates that the multi-resolution based approach can be an answer
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to the trade-o between the temporal and spectral resolution of the FFT. The constant-

Q based approach itself presents some drawbacks (for instae regarding the problem
of computing beat-adaptive related features, as explainedoelow) but it seems a more
powerful chroma feature, especially for popular and rock maic, that contains in general
lots of percussive sounds.

3.6.5 Multi-fOs Versus Spectral Representation

Table 3.7 presents the results obtained using a multi-fOs bsed approach for chromagram
computation and using a constant-Q based approach. See ald€igure 3.17.

Table 3.7: Similarity measure between extracted chroma features andhord templates
and percentage of chords that have been correctly detectecbf comparing multi-fOs (left)
versus constant-Q based chroma feature extraction.

DATPop
multi-fOs CQT Statistical
signi -
cance
Dcc 0:6347 0:5133
0:0968 0:0679
Dic 0:6503 0:4922
0:0776 0:0550
Dcic 0:9723 1:0399
0:0767 0:0455
% Cor- | 59:6364 70:3990 yes
rect 20:1500 10:2607
DATClas
multi-fOs CQT Statistical
signi -
cance
Dcc 0:7358 0:6185
0:0577 0:0738
Dic 0:7107 0:5955
0:0343 0:0431
Dcic 1:0435 1:.0412
0:1220 0:0722
% Cor- | 734211 73:1704 no
rect 15:1892 14:7149

Itis di cult to decide which one of the chroma representatio ns based on multi-fOs and
constant-Q transform is the best. Both have proved in previas works to give good results
as shown during the MIREX 2008 audio chord detection conteswhere a method using a
CQT-based chroma representation [BP05] and a method using #-based chroma repre-
sentation [RK08a] were among the three approaches that gavthe best results. Note that
the multi-f0 based approach is more recent (probably becawsit follow the advances of
multi-fO estimation) and has been used in a smaller number ofvorks than the CQT-based
approach. It can be seen in Table 3.7 than in the case of non-peussive audio, the two rep-
resentations yield close results. We performed a paired sane t-test to determine whether
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there is a signi cant di erence between the results obtained with the two approaches. In
the case of classical music, the null hypothesis could not beejected at the 5% signi -
cance level, which indicates that the multi-fO based featues are not outperformed by the
CQT-based features in the case of non-percussive music.

However, in the case of percussive audio (popular and rock nsic), the constant-Q-
based chroma features clearly outperform the multi-fO basé chroma features. A deeper
analysis of the results shows that multi-fO-based chroma fatures computed on the pieces
containing a lot of drum sounds give particularly low results as compared to the CQT.
This is because the estimation of the multi-fO is less accuta in case of percussive audio
containing transient and noise.

Regarding the results obtained in the case of non-percusstvaudio, we believe that
the multi-fO approach is very promising. However, to be usale in the case of percussive
audio, the signal should be pre-processed before computati to reduce transients and
noise. A separation between the harmonic and drum parts wou probably lead to a
successful use of multi-f0 based chroma features. This hasebn corroborated by some
preliminary experiments that we conducted on the popular music test database. We have
intended to reduce the transients in the signal using the IRGAM software AudioSculpt 6.
The results (for the fO-based and the CQT-based chroma featies) are presented in Table
3.8 and illustrated in Figure 3.20. It can be seen that the peformances of the chroma
features seem to be improved using this transient reductiorpre-processing step. However,
the results are not statistically signi cant for the multi- fO based method. The problem of
reducing transients and noise deserves a full attention andhis is left for future works.

Table 3.8: Similarity measure between extracted chroma features andhord templates

on the popular music database for comparing CQT andmulti  f 0-based chroma features

using (TR) or not a transient reduction pre-processing step SS indicates statistical sig-

ni cance between the two cases. We also indicate the perceage of chords that have been
correctly detected.

cQT CQTr SScor f0 fOrr SSio
Decc 0:5133 0:5634 0:6347 0:6465

0:0679 0:0600 0:0968 0:0804
Dic 0:4922 0:5412 0:6503 0:6567

0:0550 0:0512 0:0776 0:0713
Dcic 1:0399 1.0413 0:9723 0:9864

0:0455 0:0448 0:0767 0:0554
% Cor- | 70:3990 74:3661 yes 59:6364 62:9956 no
rect 10:2607 8:2053 20:1500 17:5220

We have seen that in the case of percussive audio, the consta® based chroma
features clearly outperform the multi-fO based chroma featires. In the rest of this PhD
thesis, we will thus work using constant-Q based chroma featres. Another argument
that motivated or choice is that the multi-f0 estimation of a music track and thus the
chroma features based on the fOs is a very costly process inrtes of computation time

6 AudioSculpt is an application for the musical analysis and p rocessing of sound les developed at
IRCAM since 1993.
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Figure 3.20: Performances in terms of correct chord recognition rate (in%) of chroma

features using a transient reduction pre-processing stemithe case of a CQT-based analysis

(left) and an multi-fO-based analysis (right), for the popular music database. Black bars

correspond to the results obtained without a pre-processig step and grey bars correspond
to the results obtained in the case of a transient reduction pe-processing step.

compared to the computation of chroma features based on the QT.

3.7 Summary and Conclusion

At the front-end of our models, we extract a chromagram, a representation of the signal
that captures its harmonic content. We explored several sckmes for chromagram compu-
tation and investigated several issues related to the use afach representation (problem of
noise, beat-synchronous features). We conducted a numbeff experiments on short audio
excerpts and proposed some evaluation measures that allovh¢é comparison between the
various representations.

We have shown that the use of a beat-synchronous analysis ingases the chord estima-
tion results under the assumption of perfect beat tracking. Analysis and experiments show
that it is necessary to make a trade-o between having a satifying frequency resolution
and mixing the harmonic content of two di erent chords in one beat-synchronous chroma
vector. We have also shown that in the case of a beat-adaptivanalysis, the choice of the
window position depends on the music style.

The Constant-Q based chroma features were preferred to the FT based chroma fea-
tures. They were found to re ect more accurately the harmonic content than the FFT-
based chroma features, especially for popular and rock musthat contain lots of percussive
sounds: the use of long windows in low frequency allows dettiag accurately the bass line,
which is very important for chord estimation, whereas the us of short windows in higher
frequencies allows reducing the e ects of percussive sousd

Tests on classical piano music showed that the use of multief features seems to be a
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promising approach for harmonic content description. Howeer, we did not nd this rep-

resentation convenient for our system since we do not currdly have any harmonic/noise
separation front-end and thus percussive sounds and noiseistupt the multi-fOs estima-
tion, especially in popular music. Moreover, the rest of oursystem is computationally
very e cient compared to the multi-fO analysis (far less tim e-consuming). We thus did
not favor the use of multi-fO based chroma features in the resof our work.
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Chapter 4

Chord Progression Estimation
From an Audio File

In this chapter, we focus on the problem of the automatic estiation of the chord progres-
sion from an audio le using chroma features as observation bthe music signal. From

the audio signal, a set of chroma vectors representing the tgh content of the le over

time is extracted. The chord progression is then estimatedrém these observations using
hidden Markov models. Several methods are proposed that@M taking into account mu-

sic theory, perception of key and presence of higher harmors of pitch notes. They are
evaluated and compared with existing algorithms through aatge-scale evaluation on 110
hand-labeled songs from the Beatles.

Contents
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4.1 Introduction

This chapter is devoted to chord progression estimation. Chrds are central to our
work. In the global model for musical attribute estimation presented in this disserta-
tion, we consider harmony as the core around which other musal attributes are organized.

In this chapter, we review and analyze several previous methds for estimating the
chord progression of a piece of music directly from audio sitals of musical recordings.
The presented methods are based on chroma features and hidd&arkov models (HMMs).
We then propose improvements of these methods to build our abrd estimation algorithm
that will serve as a basis for investigating interaction betveen various musical attributes
in the next chapters. The presented work is based on the pubtiation [PP07]. The major
contributions of this chapter are:

1. We provide a detailed review of the previous works in the aga of chord estimation.
2. We compare and extend some previous proposed methods fdnard estimation.

3. We propose a new method to take into account the problem of &rmonics in the case
of chord estimation.

4. We compare several previously used state transition matces with newly proposed
ones in the HMM.

5. We present a large-scale evaluation of the proposed chomstimation systems.

6. We provide a discussion of the obtained results and a critism of the proposed model.

Organization of the chapter:

This chapter is organized as follows. In Section 5.2, we progde a detailed review
of the previous work on chord estimation. Relying on this revew, we introduce our
point of view on the chord estimation problem in Section 4.3. We then study several
approaches to estimate the chords from the succession of ama vectors over time using
HMM in Section 4.4. In particular, we describe various con gurations of the observation
probabilities (Section 4.4.3) and transition probabiliti es (Section 4.4.4). In Section 4.5, we
evaluate and compare our approach to previous models. A cohgsion closes this chapter.

4.2 Previous Work on Chord Estimation

In this section, we review a number of chord estimation methals. We distinguish between
approaches employing a probabilistic model (Section 4.2)2and pattern-matching-based
approaches (Section 4.2.3). We also discern some recent appches that are devoted to
real-time implementation (Section 4.2.4).
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4.2.1 Extraction of Signal Features That Describe the Harmo nic Con-
tent

The rst stage of a chord estimation system consists in extrating some low-dimensional
features from the audio signal that are appropriated to the task. Since their introduction

in 1999, Pitch Class Pro les (PCP) [Fuj99] or chroma-based epresentation [Wak99] have
become common features for estimating chords or musical keyfrom audio recordings.
PCP/chroma vectors are low-dimensional features that repesent the intensity of the twelve

semitones of the pitch classes. Fujishima [Fuj99] uses thehooma representation to derive

a large set of chords using either a nearest-neighbor or a vgited sum pattern matching

method. 27 complex chords are considered. The system is swssfully evaluated on
synthetic sounds from a YAHAMA PSR-520 electronic keyboard and on a real-audio
excerpt: the opening theme of Smetana's Moldau. Because thehroma features emphasize
the harmonic content of the signal, most of the works on chordestimation are based on
this representation.

Recently, a new feature called the Tonal Centroid has been mposed by Harte et
al. [HSGO06]. This feature can be viewed somehow as an extensiof the chromagram.
Lee [Lee08] uses this feature in the context of chord estim&n and shows that his chord
estimation system performs better than when using chroma fatures.

It can be noticed that other features have been explored for tie chord estimation
task. For instance, [Lee05] proposes a novel approach basesh human perception for
automatic chord estimation from the raw audio data using the Summary Autocorrelation
Function as signal features. [Lee06a] introduces a feature@ector called the Enhanced
Pitch Class Prole (EPCP) that is based on the Harmonic Product Spectrum. These
features have been investigated in order to take into accounthe overtones generated by
the chord tones. However, chroma features have almost beerx@usively used as a front
end to existing chord estimation models.

4.2.2 Statistical Machine Learning Techniques for Chord Es timation
4.2.2.1 HMM-based Baseline Approaches

Raphael [Rap02] uses HMMs trained by the Expectation Maximiation (EM) algorithm
to transcribe piano music in terms of chord labels. The nal purpose of his work is a
piano MIDI transcription. The chord dictionary thus distin guishes between each di erent
combination of simultaneous notes, resulting in a very hugestate space. The model is
trained on various Mozart piano sonata movements and evaluid on clean recordings of
solo piano music. Results on a performance of the 3rd movemtiof the Mozart piano
Sonata K. 570 are reported.

The rst system evaluated on rich polyphonic music recordings (whole pieces of music
of commercial recordings) is presented by Sheh & Ellis in [S&3]. They show that chro-
magram features outperform cepstral coe cients for the purpose of chord estimation of
real-world musical recordings. Their system draws on the pior work of [Rap02]. However,
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rather than considering every possible note combination, hey use a reduced set of 147
chords, having a single model for each chord type. The chordekicon is composed of 7
chord families (maj, min, maj7, min7, dom7, aug, dim) and 21 oots (A, B, C, D, E, F,
G, Ab, Bb, ..., Gb, A#, B#, ..., G#). The sequence of chord name s (without chord
boundaries) is used as an input to the model. Both the model peameters for chords and
for chord transitions are unsupervisedly learned from at gart initializations using the
forward-backward algorithm. The Viterbi algorithm is used for forced alignment or chord
label recognition. The system is trained and evaluated on amall collection of 20 early
Beatles songs. Considering the rather large number of chosdand the small amount of
training data, the chord recognition accuracy is poor. Howeer, this work initiated the
use of HMM-based approaches for the purpose of audio chordt@mation. Since then, the
HMM approach for chord estimation has been followed by many ther researchers.

In the context of automatic structure detection for popular music, Maddage et al.
[MXKS04] [Mad06] employ a similar learning method for chordestimation using a HMM.
However, the chord model is di erent from [SE03]: 48 HMMs areused to model 12 major,
12 minor, 12 diminished and 12 augmented triads. Each modelds ve states, including
entry, exit and three Gaussian mixtures (GM) for each hiddenstate. The mixture weights,
means and covariances of all GMMs, as well as the initial andransition state probabilities
are computed using the Baum-Welch algorithm. The Viterbi algorithm is then applied and
gives a rst estimation of the chord progression. A post-pracessing step is incorporated to
correct possible misclassi cations. Key determination isperformed so that chords not in
the detected key are disallowed and replaced by other chordwith high probability or with
the previous chord. Time alignment of the chords is correctd using heuristics derived from
popular music composition knowledge. The model is trained vth real songs and additional
synthesized audio chord samples. Cross-validation experients on 40 popular music songs
in [MXKSO04] (50 in [Mad06]) show that the chord estimation results are improved thanks
to the music knowledge-based post-processing step.

Bello & Pickens [BPO05] improve the approach proposed by [SEB] by encoding musical
knowledge into the model. The feature extraction part is amdiorated in one part by a
tuning stage [HS05] and in the other part by the use of beat (t&tus)-synchronous features
that minimizes the e ect of local variations and transients. Finally, the chord lexicon is
limited to the 24 major and minor triads since the purpose of the work is to achieve a
robust mid-level representation that describes the harmoic character of an input signal,
rather than an academic chord transcription from audio. The chroma features are used
as observations on a 24-state hidden Markov model, where eacstate corresponds to
one of the major and minor triads. The observation distribution is modeled by a single
Gaussian. The parameters of the model are initialized usingsimple musical knowledge
about the key distance in a circle of fths. The model is then lectively trained in an
unsupervised fashion using the Expectation-Maximization(EM) algorithm, assuming that
a chord template or distribution is almost universal regardess of the type of music and thus
disallowing adjustment of distribution parameters. The chord progression is obtained by
decoding the model using the Viterbi algorithm. The model istested on two early Beatles
albums, Please Please Meand Beatles For Sale Experiments show that the use of musical
knowledge is crucial, that selective training introduces sibstantial gains into the approach
and that the use of a tactus-based feature set clearly outpdorms the frame-by-frame
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estimation.

This last result is also claimed by Maddageet al. [MKL06] who propose a hierarchical
approach to model the tonal characteristics of musical audd. Major, minor, diminished
and augmented chords are considered. The usual pitch class@le (PCP) features are
compared to psycho-acoustical pro le (PAP) features that are presented as the expansion
of PCP features. They consider e ects of the notes in all the ataves individually. Eval-
uation on 40 English songs (10 Michael Learns To Rock, 10 Brya Adams, 6 Beatles, 8
Westlife and 6 Backstreet Boys) shows that the e ects of f0, slb-harmonic, and harmonic
of the notes which comprise a given chord, are important clue for chord detection. It
is found that the best features are the PCP where note e ects {0, sub-harmonic, har-
monic) are averaged across the octaves. It is also found thatonal characteristics are
better extracted using tempo proportional signal segmentéion than using xed length
segmentation.

Ryymanen & Klapuri [RK08b] present a method for chord estimation related to [BP05]
in the sense that it uses a chord HMM where the states correspw to the major and
minor triads. The proposed chord estimation method is only me part of a global model
that attempts to provide a useful representation of polyphanic popular music songs. The
purpose is the automatic transcription of the chord progresion, the bass line and the key
signature of audio les. In the front end, the system extracts two frame-wise features:
a pitch-salience estimator and an accent estimator that indcates potential note onsets
based on signal energy. The chord transcription method uses 24-state HMM where
the observation likelihoods are obtained by mapping the pith salience into a pitch-class
representation, and comparing them with trained pro les for major and minor chords.
Two PCPs are used, one for low-register MIDI notes 26-49 andre for high-register MIDI
notes 50-73. Chord transition probabilities are estimatedfrom training and the chord
progression is found using the Viterbi decoding algorithm. The method is evaluated using
a two-fold cross validation on 8 Beatles albums.

4.2.2.2 Simultaneous Estimation of Chords and Musical Cont ext

Some HMM-based chord recognition systems use context infaration to improve the chord
progression. Additional musical attributes (such as key, neter or structure) may be mod-
eled simultaneously with the chords.

Lee & Slaney [LSO08] follow an HMM-based approach for chord draction similar to
[SEO3] and [BPO5] in that the states in the HMM represent chod types and that the
most probable chord sequence is found in a maximum-likelihod sense. However, they
use the tonal centroid feature instead of the chroma feature Moreover, the parameters
of the model are supervisedly learned without using an EM algrithm, but directly from
labeled training data. Symbolic data are used to automaticdly obtain a large set of
labeled training data, avoiding the tedious task of human amotation of chord names and
boundaries. The large amount of training data allows the bulding of key-speci c HMMs,
which not only increase the chord estimation accuracy but aso provide key information.
The model is evaluated on two pieces of classical music, Bashkeyboard piece Prelude
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in C Major and Haydn's string quartet Op.3, No.5: Andante measures 1-46, and on
two Beatles albums, Please Please Meand Beatles For Sale Experimental results show
that the approach compares favorably to the state-of-the-at [BP05]. The tonal centroid
feature is found to outperform the conventional chroma featire. Chord accuracy results
are improved considering musical key information.

Burgoyne & Saul [BS05] also present an HMM-based model thatracks key simulta-
neously with chords. It is claimed that transitions between chords are dependent of their
tonal context. On the contrary to [LS08], they do not assume that music remains in a
single key from start to end. The model considers chord and keto be inseparable prop-
erties of any given harmony. The model is restricted to majorand minor triads. Each
state of the HMM represents a chord in a possible key (C majorn the key of A minor for
instance). Simpli ed rules of tonal harmony are encoded in he transition matrix. The
traditional Gaussian emission distribution is replaced wih a Dirichlet distribution. The
model is unsupervisedly trained with the EM algorithm on ve Mozart symphonies (K.
134, K. 162, K. 181, K.182 and K.183) and tested on the Minuet bMozart symphony K.
550. The results reveal that a more advanced harmonic modekineeded to improve the
results.

Papadopoulos & Peeters [PP08b] present a method for simultaeously estimating the
chord progression and the downbeats from an audio le. A spec topology of hidden
Markov models that enables to model chords dependency on metal structure is proposed.
Each state is de ned as an occurrence of a chord at a \positiorin the measure". The model
relies on the idea that chords are more likely to change at thébeginning of measures than
on other beat positions in the measure. In this model, the chad progression bene ts from
the knowledge of the downbeats positions and conversely thdownbeats are estimated
relying on the chord progression. The model is evaluated on gest-set of 66 popular music
songs from the Beatles and shows improvement over the statefdhe art. The model is
further extended in [PP10] to more complex cases that inclué pieces with complex metric
structures such as beat addition, beat deletion or changesithe meter.

The work of Mauch & Dixon [MD10] is also concerned with the simiultaneous estimation
of chords and other musical attributes. A 6-layered dynamicBayesian network models
jointly key, metric position, chord and bass pitch class. The most probable sequence is
inferred from the beat-synchronous bass and treble chromagms of the whole song. The
model distinguishes between 109 di erent chords (7 chord elsses in root position: maj,
min, dim, aug, maj7, maj6, dom7, plus 24 major chords in # and 2"¥ inversion, plus one
no chord \N" chords) and is evaluated on 176 audio tracks fromthe MIREX 2008 Chord
recognition test-set.

In [MDO08], Mauch & Dixon present a new approach for chord labding in which a
chord is modeled as a mixture of di erent sonorities. A melod/ range and a bass range
chromagram are separately computed and simultaneously usieas observations in a hidden
Markov model. A sophisticated state duration modeling is proposed, in which chord
durations are gamma-distributed. The system also includesa bass model. In this work,
6 chord classes are considered (major, minor, dominant, dimished, suspended, and no
chord). The model is evaluated using a ve-fold cross-validtion procedure on 175 Beatles
songs. It is shown that the new duration modeling retains thelevel of accuracy while it
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reduces fragmentation.

The work of Mauch et al. [MNDQ9] also deals with the concept of uni ed music analysis
The baseline is the chord estimation method proposed in [MDQ]. They propose to improve
the chord progression estimation by exploiting the repetiive structure of songs. They rely
on the idea that the chord sequence is the same in all sectiorsf the same type (such as
chorus or verse). They thus assign the same chord progressido repeated sections. Four
types of chords are considered: major, minor, diminished, dminant or no chord. The
evaluation of the method on 125 Beatles songs shows improvemt in chord accuracy and
reveals that the chord transcription is more consistent with the repetitive structure of the
song.

4.2.2.3 Introducing Language Modeling, N-grams

Some approaches for chord estimation emploiianguage Modeling(LM) because sequences
of chord labels can be viewed as word sequences in natural lgmage. The previously
presented HMM-based works make the Markovian assumption tat each chord symbol
depends only on the preceding one, which is a simplifying assnption. Higher order prob-
abilistic N-grams are an interesting alternative to HMMs (t hat correspond to probabilistic
2-grams) because they can e ciently model the actual comple&ity of music.

Cheng et al. [CYL™* 08] claim that the information of two adjacent chords is insu-
cient for recognizing longer chord sequences. They thus ppmse to incorporate a N-gram
model that learns the common rule of chord progression into &d{MM framework for chord
estimation. Applications to music classi cation and retri eval are investigated. Two new
chord features are proposed: the longest common chord sultpgence and the histogram
statistics of chords. Experiments on the previously cited wo early Beatles albums indicate
that the N-gram-based approach outperforms the typical HMM-based approach.

Scholzet al. [SVB08] focus on two possible limitations of N-gram-basedtword estima-
tion models: the problem of over tting and the problem of using a single chord labeling
scheme. In order to overcome these limitations, they invesgate several model smooth-
ing and selection techniques for modeling the chord sequeacof a piece of music using
probabilistic N-grams. Several chord labeling schemes areonsidered. The various con g-
urations of the model are tested on 180 Beatles songs. The ndts show that the accuracy
of N-grams is increased by the proposed techniques. They alshow that it is possible to
accurately model more complex chord types than the usual miar/major chords.

The approach to chord estimation from audio proposed by Khadkevich & Omologo
in [KOO09] is based on a trained HMM combined with a Language Mdael. Pitch Class
Pro le vectors are used as input to the model. The method diers from most existing
approaches in the sense that a chord is not represented as addien state in one ergodic
HMM, but a separate left-to-right HMM is created for each chord. For a given analyzed
song, the most likely chord sequence is obtained using the Yérbi decoding algorithm. The
resulting chord lattice is then rescored by applying a langage model of high orders (3-
gram, 4-gram). The model is evaluated on 175 Beatles songsing a 5-fold cross-validation
procedure. Factored and standard language models are compad and it is found that the
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use of a factored LM results in a small increase in performare

The work of Schulleret al. [SHARQ9] is related to [KO09]. It shows that incorporating a
Musicological Model (MM) in an HMM-based approach for chordlabeling allows improving
chord accuracy. Temporal harmonic structure is incorporaed by using one \Chroma
Energy Distribution Normalized Statistics" (CENS) featur e [MKCO05] per bar. The model
is trained on 19 025 chord lead sheefs It is compared to a Cross-Correlation (CC)
with templates method and a Support Vector Machines (SVM) mehod. Experiments
on a database of 100 pieces of pop and rock music that have beannotated by trained
musiciang are conducted. The results indicate that data-driven appraaches are superior
to template-based approaches and that language modeling iproves chord estimation.

4.2.2.4 Other Statistical Modeling Approaches

Machine-learning-based methods for chord estimation alsinclude approaches other than
HMMs. For instance Paiement et al. [PEBBO5] present a graphical probabilistic model
where contextual information related to the meter is used tomodel the chord progression
in order to generate chords. The graphical model uses probdlities of chord substitu-
tions that are derived from a continuous distributed representation for chords. In this
distribution, perceptually similar chords tend to be close in Euclidean distance. In the
graphical models, the parameters are learnt with the EM algeithm and the Junction Tree
algorithm is used for inference. The model is validated usig 52 jazz standard excerpts
from Sher (1988) [She88] interpreted and recorded by one ohe authors in MIDI format
on a Yamaha Disklavier piano. Experiments show that chord pogression dependencies to
the meter can be better captured with a tree structure rather than with a HMM.

The use of HMMs is compared to the use of conditional random d&ds (CRFs) by
Burgoyne et al. [BPKF07]. Audio is modeled with PCP features and various congura-
tions of HMMs and CRFs models are implemented. Cross-valid@on and comparison of
the systems is conducted on the same set of Beatles songs th&meh & Ellis [SEQ3]. It
is demonstrated that the CRF-based method yields to resultsclose to the ones obtained
with the best HMM-based method, while using much fewer modeparameters.

Other statistically-based chord estimation approaches ilude hypothesis-search-based
methods. Yoshiokaet al. [YKK * 04] propose a method that concurrently recognizes chord
boundaries, chord symbols and keys. This approach allows tdng into account the mutual
dependency of chord-boundary detection and chord-symboldenti cation as well as the
mutual dependency of chord-symbol identi cation and key identi cation. The core of
this algorithm is a hypothesis-search algorithm that evaluates tuples of chord symbols
and chord boundaries. Three criteria are taken into account acoustic features, chord
progression patterns and bass sounds. Likely hypotheseseafollowed while highly unlikely
hypotheses are pruned after a while. At the end of the song, tB most probable path is
chosen as the chord progression. The accuracy of the chordanscription, measured on one-

"\The on-line guitar archive," in http://www.olga.net, 200 6.
2The list of the songs can be found at: \Songlist chord data-set,” in
http://iww.mmek.ei.tum.de/sch/chord.txt, 2006.
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minute excerpts from seven songs of RWC-MDBP-2001 [GHNOO2(No.14, 17, 40, 44, 45,
46, and 74), is improved considering chord progression pagrns and bass sounds. However,
the correctness is not improved because the proposed methadakes many insertion errors.

Although information about bass sounds is used in [YKK' 04], it is not integrated
into a probabilistic framework. Errors in estimating bass tones tend to produce errors
in the chord estimation. Sumi et al. [SIY*08] improve the hypothesis-search-based
method proposed in [YKK* 04] by probabilistically integrating bass pitch estimation into
the model to improve chord estimation. Evaluation of the proposed methods on 150
one-minute excerpts of Beatles songs shows that the baseéirmethod has been improved.

4.2.3 Pattern Matching Approaches

Alternative to the machine learning approaches for chord emation are the pattern match-

ing approaches. In such approaches, each feature vector cputed from the audio signal
is correlated with a set of chord templates that indicate the perceptual importance of the
notes within a chord. The estimated chord is obtained by seleting the template that gives
the maximum correlation coe cient.

Harte & Sandler [HS05] estimate chords by comparing prede ed chord templates that
are simple bit masks to chroma features. The originality of their work is that it p roposes
a tuning algorithm to accurately locate the boundaries between semitones. This allows
the calculation of a novel semitone-quantized chromagram.The model can distinguish
between 48 chords. The model is evaluated on two early Beatdealbums, Please Please
Me and Beatles For Sale

Oudre et al. [OGF09a] propose a chroma, template-based method for chordecog-
nition. They rely on the idea that in a given chroma vector corresponding to a chord,
the amplitudes of the notes that comprise the chord should bearger than the ones of
the non-played tones. They investigate the in uence of seveal parameters in the model.
They examine several chord templates that take into accountone or more harmonics for
the notes, as previously proposed in [PP07]. They compare #huse of several measures of
t between the chroma features and the chord templates. Theyalso explore the in uence
of the number and the types of the chords that are consideredn the model. Performance
of the system is evaluated on 13 Beatles albums.

Some template-based approaches include post-processirtgss to correct chord estima-
tion errors. Shenoyet al. [SMWO04] propose a symbolic inference-based chord estimati
method. Individual notes are identi ed from beat-synchronous chroma features by con-
sidering only the elements with the four highest values in the chroma vectors. Symbolic
inference is used to determine major and minor chords. The abrd estimation accuracy is
not su cient to provide a usable chord transcription. This m ethod is improved by Shenoy
& Wang in [SWO05] where a post-processing step similar to the iwe in [Mad06] is proposed.
Three rule-based chord accuracy enhancement steps based musical key and meter infor-

A bit mask is a 12-dimensional vector corresponding to the 12 semitones of the pitch classes with 1
when the note belongs to the chord, 0 otherwise.
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mation are used. Firstly, chords that do not belong to the keyof the song (assumed to be
constant over time) are eliminated. Secondly, the chord prgression is smoothed so that
if a chord is di erent from two same adjacent chords, it is replaced to match the adjacent

chords. Finally, chord changes are favored at the beginningf the measures instead of
other half-note time. Experiments are performed on 30 popudr English songs and show
that the chord estimation accuracy is spectacularly improved by the post-processing steps
based on music knowledge, increasing from a relatively lowcsre of 4813% to a score of
7891%.

Reinhard et al. [RSNO8] also introduce an approach to improve chord estimabn
accuracy. A post-processing step to chord estimation algithms is proposed to correct
possible misclassi cations caused for instance by the presmce of percussive sounds
or harmonics. The method is based on musical harmony princiles. It works with a
probability-based classi er that is solely based on the chobomagram feature extracted
in the previous step and that exploits the knowledge about thke distribution in the
neighborhood of a chord. The main assumption is that a chord § more likely to be
from a pool of chords in the neighborhood, than to be any otherarbitrary chord. The
classi er does not only predict the most probable chord, butalso returns a probability of
con dence for every possible chord considering the obserdechromagram. Three di erent
classi ers (scalar product pattern matching, Mahalanobis distance classi er, Naive Bayes
classi er) are used in order to demonstrate that the propose post-processing technique
can be used in combination with arbitrary classi ers.

As in machine learning approaches, some template-based apyaches are also based
on music theory. For instance the purpose of Zenz & Rauber [ZR7] is to incorporate
music theoretical knowledge in a chord extraction algorithm without restricting the input
data to a narrow range of musical styles. The algorithm distnguishes between major,
minor and diminished chords. This work uses Pitch Class Prole features computed on
beat-synchronous frames using the Enhanced Autocorrelatn (EAC) Algorithm [TKOO].
The generated PCPs are compared to a set of reference chord P8 that are empirically
determined from one-minute excerpts of 5 popular songs. A sgle key is estimated for
each song and key information is used to re ne the set of posie chords. The context of
each chord is analyzed for estimating the nal chord progresion. Evaluation is performed
on a set of 35 pieces of various music styles and indicates thanusic theory information
improves chord estimation accuracy.

4.2.4 Real-Time Implementation for Chord Estimation

Some recent works are concerned with real-time implement&n of chord estimation meth-
ods. Cho & Bello [CB09] propose a real-time implementation ® HMM-based chord es-
timation based on the model proposed in [BP05]. To overcomehte limits of the online
processing (limited memory capabilities and no access to fure observations), they pro-
pose a system of bu ers. Modi cations are introduced in the dandard Viterbi decoding
algorithm to approximate o ine results while minimizing th e system's latency. 12-fold
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cross evaluation on the MIREX 2008 169 Beatles songs show th#éhe results of realtime
decoding converge towards the non-realtime decoding reduil

Stark & Plumbley [SP09] propose a real-time chord recognitbtn system using a classi -
cation technique based on residual energy in the chromagramrhey develop a chromagram
calculation method in which unwanted energy such as noise isliscarded. Experiments
are carried on a set of 180 chord samples extracted from realorld guitar recordings.
108 di erent chords are considered (the 12 variations of magr, minor, diminished, aug-
mented, suspended %, suspended &, major 7", minor 7" and dominant 7" chords).
The proposed chroma computation method is shown to comparealorably with other
state-of-the-art methods [BP05] [SEO3].

Konoki et al. [KM10] describe a system that estimates in real-time chord &bels
from sounds generated by electric guitars. Two di culties related to chord estimation
are addressed: \omitting", \inversions" and \tension voic ing" notes as well as enhar-
monic equivalence. The system starts by computing chroma wors from which the
theoretically played notes are estimated. For this, the fou highest strong pitch classes
that have an intensity above a threshold are selected. PosBie chord labels are then
listed by using a \search tree". The model is evaluated in re&time using guitar chords
generated by a guitar player. 16 chord types are consideredThe chord types employed
in this study are the sixteen patterns frequently used in chaod guitar performances
(maj; min; 7"; m7;M 7; mM 7; aug; dim; 6" : m6; sus4; 7sus4; 7(b5); aug7; dim 7; andadd).
Ambiguous cases (such as enharmonic equivalence) are ressd by comparing the possible
chord progressions obtained from the chord labels with somehord progression patterns
extracted from a \chord progression database".

4.2.5 Summary of Chords Estimation Techniques
4.2.5.1 Summary of the Above-Presented Methods

Tables 4.1, 4.2 and 4.3 list the characteristic attributes d the above-presented chord
estimation methods. The systems are presented in the chroragical order. The column
\Method" indicates the main techniques that are used for chad estimation. The column

\Input features" indicates the type of input that are proces sed. The column \Comments"

underlines some interesting speci ¢ strategies that are adpted. The column \Chord

lexicon" indicates the chords lexicon that can be handled bythe systems. Finally, the
column \Evaluation material" indicates the musical materi al on which the systems have
been tested and possibly trained.

4.2.5.2 Summary of the MIREX Chord Recognition Systems

In this section, we present an overview of the chord estimatin algorithms submitted to
the MIREX 2008 and 2009 contests.
Introduction to MIREX Chord Recognition Task

The rst audio chord detection task in Music Information Ret rieval Evaluation eX-
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Table 4.1: Characteristics of some chord estimation methods 1999-260
Reference Method Input fea- Comments Chord lexicon Evaluation material
tures
Fujishima Pattern PCP nearest neighbor ora | 27 complex no training  testing
[Fuj99] Matching weighted sum method chords on synthetic sounds +
bit-mask chord tem- one real-audio excerpt
plates (50s)
Raphael HMM collection unsupervised training chord  consid- training on various
[Rap02] of features by EM ered as any | Mozart piano sonata
combination of movements testing on
simultaneous the 39 movement of
notes Mozart piano Sonata
18, K. 570.
Sheh & El- | HMM PCP unsupervised learn- | 147 complex training on 18 early
lis [SEO3] ing with EM random | chords Beatles songs testing
initialization Viterbi on 2 Beatles songs
decoding for forced
alignment or chord
label recognition
Maddage HMM PCP 48 HMMs, one for | 48 (maj, min, training: real songs
et al. each chord, 3 states | dim aug) + synthesized audio
[MXKSO04], per chord  supervised chord samples Cross-
[Mad06] training EM post- validation on 40 popu-
processing step base on lar music songs
key and meter
Yoshioka hypothesis- | beat- concurrent recogni- 48 (maj, min, training: 2592 audio
et al. | search synchronous | tion chord boundaries, dim, aug) samples of each chord
[YKK * 04] algorithm PCP chord symbols and played on a MIDI tone
keys generation of generator + 6 RWC
hypotheses about tu- songs (2-fold cross-
ples of chord symbols validation) testing:
and chord boundaries one-minute  excerpts
3 criteria taken from seven songs of
into account: acoustic RWC (No.14, 17, 40,
features, chord pro- 44, 45, 46, and 74)
gression patterns and
bass sounds
Bello & HMM beat- musical knowledge | 24 (maj, min) 2 Beatles albums,
Pick- synchronous | encoded into the model Please Please Me and
ens [BP05] PCP unsupervised selec- Beatles For Sale
tive training EM
Burgoyne HMM PCP simultaneous keys | 24 (maj, min) training: 5 Mozart
& Saul and chords estimation symphonies (K. 134, K.
[BS05] Simplied rules of 162, K. 181, K.182
tonal harmony en- and K.183) testing:
coded in the transition Mozart Symphony K.
matrix Dirichlet 550, Minuet
distribution  unsuper-
visedly trained with
EM
Harte template- PCP guantized chroma- 48 (maj, min, no training 2
& San- | matching gram  bit-mask chord dim aug) Beatles albums, Please
dler [HS05] templates Please Me and Beatles
For Sale.
Paiement graphical MIDI contextual informa- any group of | 52 jazz standards ex-
et al. | model tion related to the observed notes | cerpts
[PEBBO5] meter used to model | forming a chord
the chord progression
comparison tree struc-
ture/HMM
Shenoy symbolic beat- 3 rule-based chord | 24 (maj, min) no training test-
&  Wang inference synchronous | accuracy enhancement ing:30 popular English
[SWO05] PCP steps based on musical song
key and meter informa-
tion
Maddage hierarchical | beat- incorporate the note 48 (maj, min, synthetically gener-
et al. | model synchronous | e ects (FO, sub- dim, aug) ated music chords 40
[MKLO6] PCP/PAP harmonic, harmonic) English songs
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Table 4.2: Characteristics

of some chord estin

nation methods 2007-2@0

Reference Method Input fea- Comments Chord lexicon Evaluation material
tures
Burgoyne CRF PCP Dirichlet for modeling 48 (maj, min, 10-fold cross validation
et al. PCP distribution dim, aug) on 20 Beatles songs (18
[BPKFOQ7] for training, 2 for test-
ing)
Lee & | key-specic tonal cen- supervised training 24 (maj, min) training: 765 clas-
Slaney HMM troid with EM  training les or 36 (maj, sical music les +158
[LS08] generated from symbolic min, dim) Beatles songs testing:
data Bach Prelude in CM
and Haydn string quar-
tet Op.3, No.5, mea-
sures 1-46 + 2 Beatles
albums, Please Please
Me and Beatles For
Sale.
Zenz & | template beat- empirically-based ref- 36 (maj, min, no training  testing:
Rauber matching synchronous | erence PCP from one- | dim) 35 pieces of various mu-
[ZR0O7] PCP minute excerpts of 5 sic styles
popular songs  encode
music theoretical knowl-
edge about key
Cheng HMM + N- PCP Language Modeling | 24 (maj, min) training: 152 Beat-
et al. | grams observation proba- les songs testing: 2
[CYL * 08] bilities based on chord Beatles albums, Please
templates 2 new Please Me and Beatles
chord features: the For Sale
longest common chord
subsequence and the
histogram statistics of
chords
Mauch HMM melody sophisticated state du- 6 chord | 5-fold Cross-
&  Dixon range + ration modeling bass | classes (maj, | validation,175 Beatles
[MDO08] bass range | model min, dom, songs
chroma- dim, sus, no
gram chord)
Papadopoulos double- beat- simultaneous  esti- | 24 (maj, min) no training  testing:
& Peeters | states synchronous | mation chords and 66 Beatles songs
[PPO08b] HMM PCP downbeats observa-
tion probabilities based
on chord templates +
harmonics
Reinhard Classi er beat- post-processing step | 24 (maj, min) training: 2 Beatles
et al. | (Scalar synchronous | based on chord neigh- albums, Please Please
[RSNO8] product, PCP borhood Me and A Hard Day's
Maha- Night testing: 2
lanobis Beatles albums, Please
distance, Please Me and Beatles
Naive For Sale
Bayes)
Ryyranen HMM multi-fo observation likelihoods 24 (maj, min) 2-fold cross-validation,
& Klapuri PCP obtained by comparison rst 8 Beatles albums
[RKO8b] with trained pro les
2 chromagrams are used
(one for low and one for
high-register)
Scholz et | N-gram chord use model smoothing | various label- 13-fold cross-validation
al. [SVBO08] labels and selection tech- | ing schemes: | on 13 Beatles albums
niques initially designed Maj/min
for spoken language Short-
modeling hand types
Harte's  with
enharmonic
equivalence
Sumi et al. | hypothesis- beat- interrelationship be- 48 (maj, min, 5-fold cross-validation
[SIY * 08] search synchronous | tween bass lines and | dim, aug) on 175 Beatles songs
PCP chords
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Table 4.3: Characteristics of some chord estimation methods 2009-201
Reference Method Input fea- Comments Chord lexicon Evaluation material
tures
Cho & | HMM + PCP real-time processing | 24 (maj, min) 12-fold cross evaluation
Bello real-time system of buers on the MIREX 2008
[CBO9] decoding modied Viterbi de- 169 Beatles songs
coding for real-time
Khadkevich HMM  + PCP a separate left-to- 24 (maj, min) 5-fold cross-validation
& Omol- LM (HMM), right HMM for each on 175 Beatles songs
0go [KO09] beat- chord
synchronous
chord sym-
bols (LM)
Mauch dynamic beat- same chord progres- | 48 (maj, min, 5-fold cross-validation
et al. | Bayesian synchronous | sion to repeated sec- | dim, dom) + no on 125 Beatles songs
[MNDO09] network treble and | tions chord.
+ musical bass chro-
structure magrams
Oudre Pattern PCP investigate various 4 chord classes no training  testing:
et al. | Matching measures of t  study | (maj, min, 13 Beatles albums
[OGF09a] chord type in uence dom7, min7)
Schuller HMM  + one CENS learn typical chord 24  (maj, training: 19 ;025
et al. | MM per bar successions with mu- | min) 36 (maj, | chord lead sheets
[SHARO09] sicological model min, and | testing: 100 pieces of
comparison data- | \other") pop and rock music
driven/template-based
approaches
Stark & frame- PCP classi cation based 108 (maj, min, no training  testing:
Plumb- based upon chroma residual dim, aug, sus2, | 180 chord guitar audio
ley [SP09] classi- energy allows for in- sus4, maj7, | samples
er for harmonicity in signal min7, dom)
real-time
use
Konoki et | search PCP \omitting", \inver- 16 chord classes no training  testing:
al. [KM10] tree sions” and \tension guitar sounds
voicing" notes  enhar-
monic equivalence
Mauch dynamic bass and simultaneous estima- | 109 complex no training  testing:
&  Dixon Bayesian treble chro- | tion chords and musi- chords 176 Beatles songs.
[MD10] network magrams cal context
Papadopoulos double- beat- simultaneous estima- | 24 (maj, min) no training  testing:
& Peeters | state synchronous | tion chords and down- 169 Beatles songs
[PP10] HMM PCP beats in variable meter
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changé was organized in 2008. The MIREX 2008 Audio Chord Detection aisk was divided
into two subtasks. In the rst subtask the systems were pre-trained and tested against 176
Beatles songs. In the second subtask systems were trained @3 of the Beatles test-set
and tested on E3. An overlap score was calculated as the ratio between the evlap of the
ground truth and detected chords and ground truth duration. Four songs were excluded
from the original Beatles test-set because of problems whealigning the ground truth
chords to the audio data.

The MIREX 2009 audio chord detection® task description is similar to the one proposed
in 2008 except that the score computation is slightly di erent. A rst score is calculated
as the ratio between the overlap of the ground truth and deteted chords and ground
truth duration, then a weighted average is computed across lhie songs by weighting each
score by the song duration. In 2009, the test-set also inclued 37 popular music songs. A
total number of 13 algorithms were submitted to the pre-trained systems subtask, and 5
algorithms were submitted to the trained systems subtask.

Methods and Results

Tables 4.4 and 4.5 give a brief description of the various algrithms submitted to
MIREX 2008 and MIREX 2009 Audio Chord Detection task.

Figures 4.1 and 4.2 indicate the chord accuracy results obiaed by the various algo-
rithms submitted to the MIREX 2008 and MIREX 2009 Audio Chord Detection task.
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Figure 4.1: MIREX 2008 Audio chord detection results (in %) for the pre-trained systems
(left) and for the trained systems (right).

4 http:/Awww.music-ir.org/mirex/2008/
S http://www.music-ir.org/mirex/2009/
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Table 4.4: Summary of audio chord detection systems submitted to MIREX 2008.

Reference Method Input features Training | Comments
Bello & Pickens BP HMM beat-synchronous yes tuning, music
CQT-PCP knowledge
Ellis DE HMM beat-synchronous yes tuning, uses 2 chro-
IF-PCP magrams (including
one to emphasize the
bass line)
Khadkevich & | HMM DFT-PCP yes one separate HMM
Omologo KO for each chord, 512
12-dimensional GM
Lee KL, KL1 & KL2 HMM tonal centroid yes key-speci c HMM
Mehnert et al. MM HMM chromagram yes Symmetry  Model
mapped to cir- used as basis for
cular pitch spaces the chord analysis
(CPS) [GMABO08] system
Papadopoulos & | HMM DFT-PCP no tuning, music
Peeters PP knowledge and
chord templates
considering harmon-
ics
Pauwels et al. PVM | probabilistic frame- | multi-f0s PCP no simultaneous
work based on Ler- chords/keys
dahl's tonal distance
metric
Ryymanen & Kla- HMM multi-f0s PCP yes 2 chromagrams (low
puri RK and high registers)
Uchiyama et al. | HMM PCP yes Harmonic/Percussive
UMs sound separation
front-end
Weil & Durrieu HMM CQT-tonal Centroid yes tuning, attenuation
WD1 & WD2 of the main melody
Zhang & Lash ZL HMM DFT-PCP yes pre-processing

step which detects
silences
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Table 4.5: Summary of audio chord detection systems submitted to MIREX 2009. IF:
Instantaneous Frequency, HPCP Harmonic Pitch Class Pro le HCDF Harmonic Change
Detection Function.

WEJ2, WEJ3 and
WEJ4

tured prediction
approach (SVM-
struct)

PCP

Reference Method Input features Training Comments
Ellis DE HMM beat-synchronous pre-trained | tuning, key-relative
IF-PCP transition  matrix,
maximal gamma
values instead of
Viterbi path
Harte & Sandler | Template matching CQT-HPCP no tuning, chord
CH boundaries based
on an HCDF
Khadkevich & | HMM beat-synchronous pre-trained | separate models are
Omologo KO1 & DFT-PCP built for each chord
KO2 distinguished by the
system
Mauch et al. MD Bayesian network beat-synchronous no separate bass and
note salience repre- treble chroma-
sentation PCP grams, structure
repetitions used
to improve chord
estimation
Oudre et al. OGF1 | template matching CQT-PCP no systems 1 major &
& OGF2 minor chords and
2:  major, minor
and dominant 7"
chords
Papadopoulos & | HMM beat-synchronous no tuning, si-
Peeters PP CQT-PCP multaneous
chords/downbeats
estimation
Pauwels et al. | probabilistic frame- | multi-fOs-PCP no simultaneous
PVM1 work based on chords/keys
Lerdahl's tonal
distance metric
Pauwels et al. | template matching multi-f0s-PCP no binary templates
PVM2
Reed et al. | HMM dynamic features of yes harmonic/percussion
RUSUSL chroma vectors source separation,
tuning, minimum
classi cation error
learning
Rocher et al. | note segment graph, rule-based, no interaction
RRHS1 RRHS2 dynamic program- chords/key
RRHS3 ming
Weller et al. WEJ1, | large margin struc- | beat-synchronous yes MaxGamma decod-

ing
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Chord accuracy results (%)
Chord accuracy results (%)

CH DE KOl KO2 MD OGFl OGF2 PP PVML PVM2 RRHS1RRHS2RRHS3 RUSUSLWEJL WEJ2 WEJ3 WEJ4
Pre-trained Algorithms (MIREX 2009) Trained Algorithms (MIREX 2009)

Figure 4.2: MIREX 2009 Audio chord detection results (in %) for the pre-trained systems
(left) and for the trained systems (right).

4.3 Proposed Approach for Chord Estimation

As in most of the previous methods, we have chosen to use the @dma features as signal
observations and represent the chord progression using a diden Markov model. We
mainly rely on the above-mentioned approach [BP05] as we irarporate musical knowledge
in our model. Various ways of constructing the HMM are studied using either music
theory, results from cognitive studies, smoothed training multivariate Gaussian models or
normalized-correlation. We also pay attention to the problem of taking into account the
overtones produced by the musical acoustic instruments in e model.

4.3.1 Hidden Markov Models

Since their introduction in the late 1960s, the hidden Markor models (HMMs) have been
widely used in many di erent research areas, including speeh processing and more recently
music information retrieval. Real world is full of processe that we wish to understand

via observation. These processes produce observable outsuithat can be characterized as
signals. Markov models are statistical models used to desitre systems from which each
observation corresponds to a physical event, usually caltk state.

The hidden Markov models (HMMs) are an extension of the Marke models that are
used when the states cannot be directly observed (they are Hden), but can be observed
through another set of stochastic processes that produce #hsequence of observations (the
observation is a probabilistic function of the state). For a tutorial on hidden Markov
models, we refer the reader to the work of Rabiner [Rab89].
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4.3.2 On the Use of HMM for Chord Estimation

According to [Rap02], there are two major advantages when mdeling the chord progres-
sion using a HMM. First of all, the realization of a given state, for instance a C major
chord, depends on a wide range of parameters such as the insmentation, the dynamics,
the room acoustics etc. The realization of two CM chords prodiced in di erent conditions
may result into extremely di erent signal observations. This variability of con guration
of the data can be handled using statistical machine learnig approaches.

Secondly, the structure of musical data can be captured usig a probabilistic frame-
work. The major reason why we use HMM for chord estimation reles on this second
argument. We can exploit the structure of musical data (interaction between keys,
chords and downbeats) using a HMM. It allows us to incorporat in a simple manner
some information related to the inherent structure of Westan tonal music and build rich
models that are speci ¢ to music. In general, compositors t&e into account musical rules
to create a piece of music. The harmony is related to many othemusical attributes and
is part of a global musical context. For instance, chord trarsitions follow some musical
rules that can be embedded in the state transition matrix of the HMM. We will also see
in Chapters 5 and 6 of this dissertation that the use of an HMM dlows us to consider
interaction between harmony and other musical attributes such as the meter and the key.

4.3.3 The Problem of the Harmonics

We follow most of the previous works on chord estimation and se chroma features extrac-
tion as front-end of our system. Our observations thus congit of 12-dimensional vectors
that represent the intensity of the 12 semitones of the equatempered scale of Western
tonal music.

A weakness of most of the previously proposed methods is thathey operate a
direct mapping between the PCP/chroma values and the pitch d a note, i.e. a C note
is represented by a single non-zero value in the chroma veato In other words, the
assumption is made that what we observe in the spectrum is dectly the pitch of the
notes. As underlined in Section 3.5.1 of Chapter 3, in a specdl representation, we do not
observe directly the various pitches but a mixture of their harmonics that will result in a
mixture of non-zero values in the chroma vector. Thereforeyalues at pitch classes other
than those of the notes will occur in the chroma vectors. For his reason, we propose to
consider the presence of the harmonics in the parameters ohé model.

In [MKLO6], Maddage et al. experimentally show that the e ects of f 0, sub-harmonic
and harmonic of the notes, which comprise the chord, are impaant for chord estima-
tion. Some works related to chord or key estimation also focs on this problem. The
presence of harmonics is taken into account either when comying the chroma features
or in the model parameters. The rst approach is followed forinstance by Pauws [Pau04]
who computes the chromagram using an auditory perception iapired front-end so that
the perceptual pitch and the musical background are simultaeously taken into account.
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Zhu et al. [ZKGO05] extract from the constant-Q spectrum only the partials which are con-
sonant according to a diatonic scale, using a ltering methal, called consonance lItering.
Peeters [Pee06a] proposes the use of a Harmonic Peak Subtiiaa function which reduces
the in uence of the higher harmonics of each pitch. Lee [LeeBa] proposes a chroma
feature called the Enhanced Pitch Class Pro le that takes into account the overtones gen-
erated by the chord tones. The chromagram is not directly conputed from the DFT but
from the Harmonic Product Spectrum. The second approach isdllowed for instance by
Izmirli [lzm05] who measures the contribution of the harmorics on a piano database. The
contribution of the harmonics of a note is taken into accountin Paiement et al. [PEBBO05]
and Gomez [GO6b] using a theoretical spectral envelope. It relies on theroperty that
the amplitude of the h" harmonic f, = hfy of a note of fundamental frequencyf o can be
modeled with geometric decaying " , with 0 < < 1.

We propose to take into account the presence of harmonics inu model for chord
estimation relying on the model presented in [@6b]. This model extends the Pitch Class
Pro les (PCPs) to the Harmonic Pitch Class Proles (HPCPs). For this, a theoretical
amplitude is attributed to each harmonic composing the spetrum of a note with an
empirical decay factor set to Q6 in the experiments so that this contribution decreases wih
the frequency. The contribution for the rst 6 harmonics of a note is given in Table 4.6.
Therefore, higher harmonics contribute to the pitch class é their fundamental frequencies.
In spite of its over-simplicity, and even if this approach provides an extremely rough
approximation of the spectral envelope of musical instrumat sounds, it has empirically
been proved to be robust in the case of key estimation. For irtance [Pee06b] has compared
a template-based approach relying on the model proposed id06b] with an HMM-based
approach using a database consisting of 302 European baroguclassical and romantic
music extracts. It was found that the cognitive-based apprach performed better than the
HMM-based approach. This is why we propose to use this apprazn for chord estimation
purpose.

Table 4.6: First 6 harmonics of a note and given amplitudes.

4.4 Chord Estimation From the Chroma Vectors Using a
HMM

We describe here several methods to estimate the chord progssion of an audio signal over
time. All these methods are based on the hidden Markov model$HMMSs) [Rab89]. The
various methods di er in the way observation probabilities and transition probabilities are
computed.
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44.1 Model
4.4.1.1 Chord Lexicon

Following a large part of the previous works, we restrict our harmonic content analysis
to a limited set of chords composed of thd = 24 major and minor triads (C major, ...,
B major, C minor, ..., B minor). The notation for chord types w ill be the following:
CM, ..., BM, for major chords, Cm, ..., Bm for minor chords. We do not make any
distinction between enharmonic equivalent (C#/Db, E#/F,. ..). We did not include other
chords, neither simpler such as dyads, more complex such a& 7chords nor diminished or
augmented chords (even if this last categories of chords wansidered in several previous
works such as in [HS05]). We acknowledge that the harmonic mgression of a piece of
music cannot be fully described according to music theory wh such a limited chord
lexicon. However, we choose to limit our chord dictionary tothe 24 major and minor
triads for the following reasons:

Firstly, we nd it su cient to describe the harmonic charact eristics of a wide range
of music types. Previous works on music classi cation have lsown that this reduced
set of chords is su cient to describe the harmony content of music for similarity
applications such as cover version estimatioh See for instance [Lee06b] or [Bel07].

Secondly, we think that, by limiting the number of chords in the lexicon, we can
avoid over tting to a particular type of music during traini ng.

Moreover, a larger chord lexicon would require a larger amont of manually labeled
training data (in the case of supervised training), which isan extremely tedious task,
even for well-trained musicians.

Finally, limiting our chord dictionary to the 24 major and mi nor triads allows us to
incorporate some theoretical and experimental music knovddge in our probabilistic
model. This music knowledge we rely on is speci c to the 24 majr and minor triads
and could not have been applied to a more complex chord lexico

4.4.1.2 Overview of the Proposed Model

We consider an ergodic 24-states HMM, each state representj a single chord of our chord
lexicon. The hidden states correspond to the dierent chords (CM, ..., BM, Cm, ...,
Bm). The observations correspond to each signal frame repeented by a 12-dimensional
chroma vector. The chord progression is obtained by decodmthe underlying sequence of
hidden chords from the sequence of observed chroma vectorsing the Viterbi decoding
algorithm. Because we use an ergodic model, all possible dhibtransitions are allowed.
State transitions obey a rst-order Markov property, i.e., the future is independent of the
past given the present state.

8Cover versions consist of di erent performances of the same underlying piece of music performed with
variations in the style, the instrumentation, the tempo, et c.
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Figure 4.3 shows a simpli ed graph of the HMM we use for chord stimation. For
clarity, only three chords are represented in the gure (CM, C#M, DM). Each state
represents a chord. At each time step, the chord generates anbservable chroma vector.
Any chord can move to any other chord or remain the same.

Figure 4.3: Simpli ed graph of the chord estimation hidden Markov model considered
in this dissertation. The hidden states correspond to the clords and the observations
correspond to the chroma vectors.

Each state in the model generates an observation vector, thehroma feature, with
some probability. This is de ned by the observation probabilites . In part 4.4.3,
we study three approaches to de ne these probabilities. Therst one (Method 1) learns
these probabilities by training a Gaussian model on chord-ormalized chroma vectors. The
second one (Method 2) does not use the training set but de neprobabilities based only
on music theory, considering the presence of higher harmoos (using the HPCPs). The
third one (Method 3) is close to Method 2 but de nes probabilities based on a normalized-
correlation measure rather than a Gaussian model.

In music pieces, the transitions between chords result fronmusical rules that should
be re ected in the state transition matrix . This is one of the reasons why the problem
is modeled using a Markov model. In part 4.4.4, we study four pproaches to de ne
the transition matrix. Method A is based on music theory: the closeness of chords in
the doubly-nested circle of fths. Method B uses the results of cognitive experiments:
the closeness of chords using Krumhansl's key pro les. Methd C learns the transitions
probabilities from the HMM training. We nally propose a new method, D, which learns
the transitions from score transcriptions.

Figure 4.4 illustrates the general owchart of the consideed model and shows the
various studied con gurations. In what follows, we denote by and T, the initial state
distribution and state transition probability distributi on. Given the observations, we
estimate the most likely chord sequence over time in a maximm likelihood sense. We now
describe in detail the characteristics of our HMM: initial state distribution, observation
probability distribution and state transition probabilit y distribution.
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Figure 4.4: General owchart of the studied models for chord progressia estimation.

4.4.2 Initial State Distribution

The prior probability ; for each state is the prior probability that a speci c chord i;i 2
[1; 24] has been emitted. Since we do not know priori which chord the piece begins with,
we initialize  at 2i4 for each of the 24 states. This choice was also taken in [BP05]

4.4.3 Observation Symbol Probability Distribution

4.4.3.1 Method 1: Modeling by a Multivariate Gaussian Train ed on a Labeled
Test-set

In this method, the observation distribution is modeled by 24 (one for each state) 12-
dimensional single multivariate Gaussian distributions de ned by their mean vectors |
and covariance matrices ;, with i denoting the i!" state, i 2 [1;24].

In [SEOQ3], the model is trained using the standard expectathtn maximization (EM)
algorithm for HMM parameters estimation. The parameters and are initialized with
random values. According to [BPO5], on the one hand, the temfate for a chord is almost
universal and should not change from song to song. On the othiehand, it is unlikely
that every chord of the lexicon will be present in the training test-set. This is why it is
proposed to selectively train the model, disallowing adjusments of and while  and
T are updated. Experiments on 28Beatles songs show that selective training results in a
large increase of chord accuracy. We also believe that any asonably sized training set
will be insu cient to appropriately estimate the parameter s of the model. Indeed, since
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the number of observations in the test-set will likely di er among the 24 possible chords,
training directly the model on the test-set may lead to over t the model to a speci c type
of music (that means learning the characteristics of the tesset).

In order to learn the observation distribution for each of the 24 possible chords, we
propose to rstlearn the model for the CM chord and the Cm chord and then map the two
trained models to all possible chords by circular permutaton. This allows increasing the
training set of each chord type. A similar approach was propsed in [Pee06b] in the case
of key estimation and in [SEO3] in the case of chord estimatio. We proceed as follows:

1. All the chroma vectors of the labeled training test-set ae mapped to a root-note of
C using circular permutation.

2. The mean vector and the covariance matrix for the CM (Cm) chord are computed
from all CM (Cm) chroma vectors.

3. The mean vectors and covariance matrices for all chords arobtained from the two
trained models by circular permutation.

The mean vectors for the CM and Cm chords trained on the test-st presented in Section
4.5.1 are represented in the left part of Figure 4.5. Note thain this case we do not make
any assumption on the signal (instrumentation, harmonics,etc.) and we do not introduce
any musical knowledge. In what follows, we will call this mehod \Method 1".

4.4.3.2 Method 2: Modeling by a Multivariate Gaussian Based on Music
Theory Considering the Presence of Higher Harmonics

In this case, the observation distribution does not rely on ay training on a given test-
set. As in [BPO5], the observation distribution relies directly on music theory; however a
major di erence with [BP05] is that we consider the presenceof the higher harmonics of the
theoretical notes in the construction of the multivariate Gaussian models (by modifying
the parameters and ). This consideration allows us to signi cantly improv e the results
over the method proposed in [BPO5].

In [BPO5], the mean vectors and covariance matrices re ect msical knowledge. The
mean vectors are 12-dimensional vectors with 1 if the note Hengs tolthe chogd and
0 otherwise. For instance, if we consider a 12-dimensional ean vector  with* (1)
corresponding to pitch C; (2) corresponding to pitch C# and so on, the mean vector
corresponding to the CM chord (C-E-G) will be 100010010000 gee middle-left part of
Figure 4.5).

In the covariance matrices, pitches that comprise the triadare more correlated than
pitches that do not belong to the triad. The covariance between pitches that comprise the
triad is thus given a non-zero value. The value is attributed with respect to music theory
and empirical evidence from Krumhansl work [Kru90], that is to say that the dominant
(5th degree) is more important than the mediant (3d degree) in characterizing the root
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of a triad ’.

C major mean vector, Method 1 trained on 7 CDs from the Beates  mejormeanvector, Method 2, nbh = 1 C major mean vector, Method 2, nbh = 4 € major mean vector, Method 3, = 6
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Figure 4.5: Mean chroma vectors for the C Major (upper part of each gure) and C

minor (lower part) chords using [from left to right]: Method 1 (trained using 7 CDs

of the Beatles), Method 2 without harmonic contribution, Me thod 2 with 4 harmonics

contribution, Method 3 with 6 harmonics contribution (in th is case, the gures represent
the chroma templates instead of the mean vectors).

We now propose to take into account the contribution of the higher harmonics of the
theoretical notes into the Gaussian parameters. We do thisn the following way.

Mean vectors: For each note of a chord, we add the contribution of the harmorcs
in the mean vectors. The amplitude contribution of the h!" harmonic of a note is similar
to the one proposed by [@6b]: 06" 1. Table 4.7 indicates the considered harmonics
and the corresponding amplitudes for the CM and the Cm templdes. We represent
the corresponding mean vectors for CM and Cm (in the case of 4 drmonics) in the
middle-right part of Figure 4.5.

Table 4.7: The rst 6 harmonics and their amplitude for a CM (Cm) triad.

CM (Cm) chord
note harmonics
C C C G C E G
E(Eb) E(Eb) | E(Eb) | B(Bb) | E(Eb) | G#(G) B(Bb)
G G G D G B D
amplitude 1 0:6 0:6° 0:6° 0:6* 0:6°

Covariance matrices: [BPO05] only considers the correlation between the chroma
vectors corresponding to the pitch of the notes belonging ta given chord. In our method,
we also consider the correlation between the harmonics of el note. For example, for a
CM chord (C-E-G), D is the 3" harmonic of G. Hence, we attribute a non-zero value to

"In [BPO5], the covariance of the tonic with the dominant and o f the dominant with the mediant is
set to 0:8. The covariance of the tonic with the mediant is set to 0 :6. Since we both use songs from the
Beatles to evaluate our system, we will use the same values wien testing method [BPO5].
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the covariance between D and G. As in [BP05], the values we usare heuristic but we still
respect the rule that the dominant is more important than the mediant in characterizing
the root of a triad 8. The covariance matrices we propose for a CM and a Cm chord
are represented in Figure 4.6 above the covariance matricggroposed in [BP05]. In what
follows, we will call this method \Method 2".

(a) (b)

c c
c# c#

D 0.8 D 0.8
D# D#

E 0.6 E 0.6

F F
F# Fit

G 0.4 G 0.4
G# G#

A 0.2 A 0.2
A# A#

B Lo B 0

CCH#DD#E FF#GGH#AA#B CCH#DDH#E F F#GGH#AA#B
(c) (d)

c 1t c 1
c# c#

D 0.8 D 0.8
D# D#

E 0.6 E 0.6

F F
F# Fit

G 0.4 G 0.4
G# G#

A 0.2 A 0.2
A A#

B Lo B 0

CC#DD#E FF#GGH#AA#B CCH#DDH#E F F#GGH#AA#B

Figure 4.6: Covariance matrices for a CM (left) and a Cm (right) chord considering
the presence of 4 harmonics (upper part, (a) and (b)) and propsed covariance matrices
in [BPO5] (bottom part, (c) and (d)).

4.4.3.3 Method 3: Probability Derived from Correlation wit h Chord Tem-
plates

In this method, the observation probabilities are not modekd by a multivariate Gaussian
distribution. They are obtained by computing the correlation between the observation
vectors and a set of chord templates.

8The covariance of the tonic with the dominant is set to 0 :6; the covariance of the dominant with the
mediant is set to 0:5; the covariance of the tonic with the mediant is set to 0 :3; the covariance of a note
with its second harmonic is set to 0:1; the other non-zero values are set to Q05. The matrix needs to be
positive, semi-de nite, so we set the non-triad diagonal me mbers to 0:1.
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Chord templates:

The chord templates are the theoretical chroma vectors comsponding to the 24
Major and minor triads. A chord template is a 12-dimensional vector which contains
the theoretical amplitude values of the notes and their harnonics composing a chord.
We consider 24 chord templates corresponding to the 24 Majoand minor triads. The
amplitude of a note in the template is non-zero if the note bebngs to the considered chord
(fundamental or harmonic). As in the case of the mean vectorsn Method 2, we attribute
an amplitude of 0:6" 1 to the harmonic h. In Section 4.5, we will compare the system
results without considering any harmonic (hbh = 1), with 4 harmonics (nbh = 4) and
with 6 harmonics (nbh = 6). In the right part of Figure 4.5, the chord templates for
a CM and a Cm chord considering 6 harmonics in the model are repsented. The rst
six harmonics of the notes composing a CM and a Cm chord and the corresponding
amplitude are given in Table 4.7. It can be seen that higher hamonics contribute to the
pitch class of their fundamental frequencies. For instancethe amplitude of the G is very
high in the C major chord (C-E-G) because, besides being a netof the chord, G is a
strong harmonic of C. The chord templates for other chords (GtM, ..., BM, C#m, ...,
Bm) are obtained from the CM and Cm chords by circular permutation.

Observation probabilities: For each chroma vector, we compute the correlation
between the observation vector anq:,each of the 24 chord temptes. We obtain 24 values
P(c), i 2 [1;24], normalized so that , P(c) = 1. We now have 24 \pseudo-probabilities”
which are used as observation probabilities in the HMM. In what follows, we will call this
method \Method 3".

4.4.4 State Transition Probability Distribution

4.4.4.1 Method A: Theoretical Approach Using the Doubly-Ne sted Circle of
Fifths

This method was rst proposed by [PC02] for describing the hamonic content of poly-
phonic music in the symbolic domain. It was then applied in the audio domain in [BP0O5].
In this approach, the transition probability between two chords is derived from musical
knowledge relying on their distance in the doubly-nested daicle of fths (see Figure 4.7).

The doubly-nested circle of fths depicts relationships anong the 12 equal-tempered
pitch classes comprising the chromatic scale. The 24 majorral minor triads can be
represented as points on two overlapping \circles of fths", one for major triads, the other
for minor triads. The more consonant two chords are, the closr on the double circle of
fths. For instance the CM chord (C-E-G) has two notes in common with the Em chord
(E-G-B). It also has two notes in common with the Am chord (A-C-E). The CM chord
is thus placed between the Am and the Em chords on the double oile of fths.

The closer two triads are on the circle, the higher the corregonding chord transition
value is. Following [BP05], we give to the transition CM-CM a probability of 12, CM-Em =
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11, and then clockwise in a decreasing manner, until CM-FM# = 0. From this pair of

chord, the value of the corresponding chord transition protabilities starts increasing again,
starting with CM-Bbm = 1 until CM-Am = 11. These probabilitie s are normalized so
that they sum to unity.

Although we do not know which state is going to follow another, musical rules allow
us to make hypotheses that some chord transitions are more pbable than others. For
instance, especially in popular Western music, an AM chords more likely to be followed
by a F#m or DM chord than by a G#M chord. The corresponding stat e transition
matrix is represented in the left part of Figure 4.8.

Figure 4.7: Doubly-nested circle of fths. Adapted from [BPO5].

| |
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Figure 4.8: State transition matrix between the 12 major and the 12 minor chords. Dark

marks indicate high values in the transition matrix. Horizontal axis from left to right and

vertical axis from top to bottom: chords (CM, C#M, BM, ..., Cm , ..., Bm). From left
to right: method A, method B, and method D.
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4.4.4.2 Method B: Cognitive Approach Using Correlation Bet ween Key Pro-
les

In [Kru90], music-psychologist Krumhansl studies the proxmity between the various musi-
cal keys using correlations between key pro les obtained fsm perceptual tests. The probe
tone ratings [KK82] represent the stability of each semitore pitch-class relative to a given
key (see also Chapter 6, Section 6.2.1.1). These probe-tomeatings are used to obtain a
guantitative measure of the distances between keys. Krumhasl & Kessler compute the
correlation between pro les for each possible pair of majorand minor keys, relying on the
idea that two keys are close if they impose a similar pattern 6 relative stability on the
tones. Table 4.8 gives the numerical values correspondingptkey pro le correlations for
CM and Cm keys.

These key pro le correlations are used in [NMO06] to derive a ky transition matrix in
the context of local key estimation as described below. In ater to have probabilities, all
the values are made positive by adding 1, and then normalizedo sum to 1 for each key.
This results in 24-dimensional vectors that express how likly the music moves from a given
key to another at the next time step. The 24-dimensional vecors can be circularly shifted
to give the transition probabilities for keys other than CM and Cm. A key transition
matrix of size 24 x 24 is built from these 24-dimensional vedairs.

In our experiments, we obtained good results for chord estiration using the key tran-
sition matrix from [NMO6] as a chord transition matrix. This matrix is represented in the
middle part of Figure 4.8.

4.4.4.3 Method C: Trained Approach Using the EM Algorithm

This approach uses the transition matrix provided by the training of the HMM using the

Expectation Maximization (EM) algorithm, i.e. the system is trained using on the one
side the succession of chroma vectors extracted from the aim signal and on the other
side the corresponding chord labels.

The expectation maximization algorithm [GM99a] is an e cie nt iterative procedure
for nding maximum likelihood estimates of parameters in statistical models, where the
model depends on unobserved (hidden) variables. Each itetian of the EM algorithm
consists of two processes: the E-step, and the M-step. In thexpectation (E)-step, the
missing data Q (for us the unknown chord labels) are estimated given the obsrved data
O (the observed chroma vectors) and current estimate of the mdel parameters . In the
maximization-(M) step, the parameters are computed by maxmizing the expected log-
likelihood found in the E-step. Equation (4.1) expresses te complete-data log likelihood
as a function of old and new parameters, g and . At each step the old parameters are
xed and is adjusted to maximize I)(()gP(O; Qj ) in expectation.

EflogP(O;Qj )1=  P(QjX; oa)log(P(0jQ; )P(Qj ) (4.1)
Q

Convergence is assured since the algorithm is guaranteed tocrease the likelihood at each
iteration. The speci ¢ application of EM to nd maximum-lik elihood parameter estimates
for a hidden Markov model is known as the Baum-Welch, or forwad-backward algorithm.
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Table 4.8: Krumhansl's correlations between key pro les for CM and Cm keys, from
[Kru90].

C major | C minor
CM 1.000 0.511

C#M -0.500 -0.158
DM 0.040 -0.402

D#M -0.105 0.651
EM -0.185 -0.508
FM 0.591 0.241

F#M -0.683 -0.369

GM 0.591 0.215
G#M -0.185 0.536

AM -0.105 -0.654
A#M 0.040 0.237
BM -0.500 -0.298

Cm 0.511 1.000
C#m -0.298 -0.394
Dm 0.237 -0.160
D#m -0.654 0.055
Em 0.536 -0.003
Fm 0.215 0.339
F#m -0.369 -0.673
Gm 0.241 0.339
G#m -0.508 -0.003
Am 0.651 0.055
A#m -0.402 -0.160
Bm -0.158 -0.394
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4.4.4.4 Method D: Trained Approach Using the Chord Transcri ption

As opposed to the previous method, this approach is only bagkton symbolic information,
i.e. the chord labels transcription of the training set. From the succession of transcribed
chord labels over time, we derive an \annotation" transition matrix which is, as in the
previous case, speci ¢ to the training set (in our case the Batles corpus). We want to learn
from the training set the probabilities of transiting from o ne chord to another. We achieve
this by counting the number of occurrences of each chord trasition in the training set.
Our goal is to construct a 24-dimensional matrix T that indexes all the chord transitions.
However, because the distribution of musical keys is not homgeneous in the training set,
we are likely to favor speci ¢ chord transitions®, and therefore the transition matrix will be
unbalanced. In order to face this problem, we only considerelative chord transitions
(GM ! CM transition is considered as equivalent to CM! FM). We denote by T(i;j)
the value of the transition matrix that represents the probability of transiting between
chordi attime t 1to chordj attime t. The indexesi;j 2 [1;12] represent the Major
(M) chords, i;j 2 [13;24] the minor (m) chords. The matrix is therefore composed by
four sub-matrices that represent transitions between M to M, mto m, M to m and m to
M chords. These four cases are processed separately.

1. We rst select from the training set all chord transitions belonging to a speci ¢ case
(MM, mm, Mm, mM).

2. For each chord belonging to a given subset, we then computéhe relative chord
transitions. Each chord transition i | | is characterized by the equivalent transition
from/to a root-note of C. We denote it by f (i;] ).

3. We then form a 12-dimensional vector (k) by counting the number of relative chord
transitions f (i;j ) = k.

4. Using these vectors, we form theT (1;k 2 [1;12]) (MM), T(13;k 2 [13,24]) (mm),
T(1;k 2 [13,24]) (Mm), T(13;k 2 [1;12]) (mM).

5. The diagonal of the sub-matrices (self-transition) is pocessed in a separate way. We
set the diagonal values to 11 max( (k)).

6. The rest of the sub-matrices are constructed by circular grmutation.

7. We nally normalize the matrix T so that the sum of each row is equal to 1.

The resulting matrix trained on the test-set presented in Setion 4.5.1 is represented in
the right part of Figure 4.8. It is interesting to observe the predominance (high transition
values in the matrix) of typical transitions in the matrix, s uch as the II/V/I (transition
between Dm, GM and CM) that seems usual in this set of Beatles lbbums. However, the
amount of transitions between Major and minor chords is muchlower than the amount of
transitions between two Major chords in this training set. It can be noticed, for instance,
that the typical transition CM-Am, that frequently arises i n songs in the C major key,

9For instance, if 90% of the training set is in C Major we are mor e likely to observe a l1/V/l transition
in C Major, i.e. Dm/GM/CM, than a Il/V/l transition in F#M, i.e. G#mM/D#M/F#M.
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are not enhanced in this trained transition matrix. The consequence of that, is a lower
estimation rate for tracks with Major to minor chords.

4.4.5 Chord Progression Detection Over Time

In all cases (Method 1, 2, 3, A, B, C or D), the optimal successin of chords over time is
found using the Viterbi decoding algorithm [Rab89] which gives us the most likely path
trough the HMM states given our sequence of chroma observatns.

45 Evaluation and Results

This study was initially published in [PP07]. It was the rst large-scale evaluation of chord
estimation algorithms.

451 Test Set and Protocol

The system has been tested on a set of 110 hand-labeled lesofn the rst eight albums
of the hand-labeledBeatles test-setpresented in Chapter 2, Section 2.3.2. The chord label
accuracy is measured using the measure detailed in Section422 of Chapter 2.

452 Results

The chord estimation results obtained with the various methods are indicated in Table
4.9 and illustrated in Figure 4.9. Note that we present here arlier results published
in [PPO7]. They were obtained using a FFT-based chroma repreentation (and not using
a CQT-based chroma representation) and correspond to a fraerby-frame analysis (not
a beat-synchronous analysis). The purpose here is to comparthe various proposed
con gurations of the HMM 10,

In Table 4.9, we compare the various methods according to the@ature of the observa-
tion distribution and to the number of harmonics ( nbh)considered:

(Method 1) Gaussian observation distribution with trainin g. For this method, the
evaluation has been performed using a 8-folds cross-validan (each album was evaluated
using the seven remaining albums as training data).

(Method 2, nbh = 1) Gaussian observation distribution with music theory as pro-
posed in [BPO5].

(Method 2, nbh = 4) Our proposal: Gaussian observation distribution with music
theory considering the presence of four higher harmonics.

1To introduce chord dependency to the meter, we have later used beat-synchronous chroma features.
In the next chapter, we will present more recent chord estima tion results using beat-synchronous chroma
features.
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(Method 3, nbh = 1;4;6) Our proposal: Observation distribution from correlation
with templates combined with music theory considering the pesence of one, four or six
higher harmonics.

Note that we only present here the results obtained using métod B for the transition
matrix (see explanations Section 4.5.3.2).

Table 4.9: Chord estimation rate (mean and standard deviation) using nethods 1, 2 and
3 for the observation distribution and transition matrix B ( theoretical transition matrix
based on correlation between key pro les). Rex: exact chordestimation rate. Rct: chord

estimation rate including close triads. nbh: number of harnonics considered in the model.
Method1 Method2 Method3

nbh =1 nbh =4 nbh =1 nbh =4 nbh =6
Rex | 6995 1490 | 6157 1472 | 6928 1142 | 67.:54 1354 | 7022 17.01 | 70.96 19:23
Rct | 8408 9:87 | 7467 1047 | 81:82 991 | 8122 9:64 | 8257 1049 | 8618 8:67

1

M1 M2,nbh=1 M2, nbh= 4 M3 nbh=1 M3,nbh=4 M3,nbh=6

85

~ ~ ©
=} a =}

Chord recognition rate (in %)

o
a

Figure 4.9: Histogram of chord estimation results obtained using the tansition matrix

based on correlation between key pro les (method B) accordig to the various methods.

From left to right: method 1 (M1), method 2 considering 1 and 4 harmonics (M2, nbh =

1; M2, nbh = 4) and method 3 considering 1, 4 and 6 harmonics (M3nbh = 1; M3, nbh

= 4; M3, nbh = 6). In black: exact chord estimation rate. In gre y: chord estimation rate
including close triads.

Table 4.10: Statistical Signi cance (Stat. Sig.) of the dierence between the results
obtained with several pairs of methods. nbh: number of harmaics considered in the

model.
Compared Methods Stat. Sig.
Method1l - Method2, nbh = 1 yes
Method1 - Method2, nbh = 4 no
Method1l - Method3, nbh = 6 yes
Method2, nbh = 4 - Method3, nbh = 6 yes
Method3, nbh = 4 - Method3, nbh = 6 yes
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4.5.3 Analysis of Results
45.3.1 Chord Estimation Method

The results obtained with the various methods are pretty clese to each other. However,
we performed paired-sample t-tests at the 5% signi cance teel and we found that the
di erence between the results is statistically signi cant in most of the cases (see Table
4.10).

In our experiments, the best results were obtained with Mettod 3 (7096%). Note
that there was no training of the observation distribution in this case. Despite the fact
that Method 1 uses training (and is therefore likely to t ver y well to the characteristics
of the Beatles), Method 2 with nbh = 4 (which does not use training at all) gives very
close resultdl. Note that the dierence between the two methods is not statistically
signi cant.

4.5.3.2 Transition Matrix

The best results were obtained using the theoretical trandion matrix based on correlation
between key pro les (Method B). The transition matrix based on the doubly-nested circle
of fths (Method A) gives slightly lower results. We do not pr esent the results obtained
with the two trained matrices (Methods C and D). Although met hod C is the usual
approach and the one used for example in [SE03] [BP05], it dichot provide satisfactory
results in our evaluation. Method D did not perform well because, as explained in
Section 4.4.4.4 some typical transitions are not enhancedithis trained transition matrix.
In Chapter 6, we will show how this training method can be improved by taking into
account information related to the musical key.

4.5.3.3 Number of Harmonics

Considering the presence of higher harmonics in the model &hrly improves the results.
For instance, for Method 3, considering 6 harmonics in the teplates brings about 5%
relative improvement to Method 3 with nbh = 1. Note that the di erence in the results

considering 4 and 6 harmonics, although small, is statistially signi cant (see Table
4.10). This is even clearer in the case of Method 2 where comkgring harmonics in the
parameters of the model brings about 12.5% relative improvment (compared to Method
2 with nbh = 1).

1t should be noted however that, although Method 1 and nbh = 1 is very close to the one presented
in [BPO5], we did not recover the high results reported in [BP 05].
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4.5.4 Discussion
4.5.4.1 Chord Confusions Due to Ambiguous Mapping

As it can be seen in Table 4.9, the standard deviation of the rsults is relatively high (up
to 19%) independently from the chosen method. A deeper anakis of the results shows
that the errors come from a subset of songs which possess specharacteristics described
below.

Concerning partial chords, we obtain for instance less than3% of chords correctly
identi ed on the song Love You To from the Beatles albumRevolver. Provided annotation
indicates that almost all the chords of this song but a few areCmin(*b3) chords, i.e. a triad
without the third note (C-G). In such a case, it is dicult to m ake a decision between
major and minor chords in the absence of musical key informabn. For this song, our
system in fact recognized in all cases a CM chord instead of ar@ chord, resulting in a
low estimation rate.

As mentioned earlier, because of our limited chord dictionay, a mapping was
performed between complex chords and their root triad. The bord type distribution in
the test-set is unbalanced and, even if the majority of the sags in the evaluation test-set
are composed of triad chords, some of them contain many pawi or complex (non-triads)
chords. The system sometimes recognizes other triads tharhe root triad of the complex
chord analyzed, which decreases the estimation rate. For stance, the Beatles song
Ask Me Why contains many G#min7 chords (G#-B-D#-F#). This complex cho rd
comprises a G#m chord (G#-B-D#) and a BM chord (B-D#-F#). The  theoretically
correct answer depends on the tonal function of the chord in he harmonic progression.
Modeling chord sequences using longer dependencies betweghords, using for instance
probabilistic N-grams, would help characterize the compleities of harmonic progressions
in Western tonal music.

4.5.4.2 Neighboring Triad Confusions

It can be noticed that most of the chord errors correspond to tarmonically close triad
confusions:

Parallel Major/ minor chords (EM being confused with Em),
Relative chords (Am being confused with CM),

Dominant chords (CM being confused with GM),
Subdominant chords (CM being confused with FM).

If the system does not recognize exactly a chord but makes shcconfusions, the result
can still be useful for higher-level structural analysis seh as key estimation, harmony
progression or segmentation. Table 4.9 shows that if we coider close triads estimation
as correct, the estimation rate of method 3 reaches up to 86%lt also becomes now the
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method with the smallest standard deviation, 9%. This point will be further discussed in
the next chapter.

4.5.4.3 Passing or Missing Tones

In the Beatles songTill There Was You, there is a repeating pattern beginning by an
FM chord that has a duration of two beats. The system estimates the following chords:
FM-Dm. If we listen to the music, we can hear that on the rst tw o beats, the guitar
is playing a broken FM chord (F-A-C). On the second beat, the Cnote is not present
anymore. A musician would naturally label the two chords as aFM chord, ignoring the
fact that there are missing notes (because it is the same harony). However, the signal
features only take into account notes that are present in thesignal. As a result, the
estimated chords do not match exactly those of the ground trah. Conversely, non-chord
tones such as neighbor tones, anticipation, passing tonesuspension and escape tones
that occur in the melody and do not belong to the harmony may ako confuse the harmony.
This example leads to the relevant question of how to evaluat the performances of a
chord estimation system. The ground truth is provided by trained musicians who not
only take into account the notes present in the signal but al® the harmonic context to
label the chords, ignoring the addition or the deletion of sane notes in their annotation.
This complicates the evaluation of the algorithm.

4.5.4.4 Limitation of the Chroma-Based Approach for Inharm onic Sounds

It is interesting to notice that we obtain much better results for the ve rst Beatles
albums than for the others (from the Norwegian Wood (This Bird Has Flown) on 1965's
Rubber Soulalbum). The reason for this may come from the extended use ofhie Indian
sitar instrument 12 and various percussive instruments such as bells, wood blks or congas
that cause transients. Since the chroma-based approach singly relies on the presence
of harmonic sounds, the use of chroma-based signal featuresould ideally require a
pre-processing step that e ectively reduces transients ad noise. We plan to concentrate
on this point in future work.

4.6 Conclusion

In this chapter we have proposed and compared several methadfor the automatic esti-

mation of chord progression of an audio signal of music. All he methods are based on a
chroma representation of the audio signal and on modeling athe sequence of observation
using a hidden Markov model. The methods have been comparechtough a large-scale

2The sitar is a stringed instrument that uses sympathetic str ings in addition to regular strings. This
produces a very lush sound with complex, competing harmonic components.
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evaluation. We have presented here the results that were oginally published in [PPO7].
To our knowledge, it was the rst attempt to evaluate chord estimation algorithms on
such a large test-set. The best results are obtained with thenodeling of the observation
probabilities using a normalized correlation with a set of extended chord templates and
a cognitive-based transition matrix. The templates are exended by considering the pres-
ence of higher harmonics of each pitch note of a chord. The tmasition matrix is derived
from cognitive experiments on the perception of musical key

In our experiments, we have found that music knowledge-bask parameters work at
least as well as trained parameters. However, we believe thahe training could still
be exploited and yield to higher results. The best results fo the chord estimation task
obtained in the Music Information Retrieval Evaluation eXc hange (MIREX) contests were
obtained by trained systems. Moreover, the proposed music howledge-based parameters
can only be used for a chord lexicon reduced to the 24 major anchinor triads.

However, since we only consider these 24 triads, we will use the rest of the present
work the HMM-based approach relying on chord templates sine it gives satisfactory re-
sults without requiring any training data. We will use the tr ansition matrix based on
Krumhansl's key pro les because we believe that this matrix as well as the one based
on the circle of fths, characterizes well harmonic relationships in a large part of Western
tonal music styles including classical and popular music, whout requiring any training
data. This will allow us to work on other styles of music than popular music (see Chapter
6). It is important to note that the approaches that will be pr esented in the next chapters
can be extended to a larger chord lexicon and do not depend orhe choice of the chord
estimation method or the choice of the chord transition matrix.

A limitation of the model comes from the confusion between tte various interpretations
one can make about chords. A solution would be to integrate etxa (context) information
such as musical key information. The integration of metricd information could also in-
crease the robustness of the system. This is the points we Wibcus on in the next chapters.
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Chapter 5

Joint Estimation of Chords and
Downbeats

In this chapter, we present a new technique for joint estimabn of the chord progression
and the downbeats from an audio le. Musical signals are hidlg structured in terms of

harmony and rhythm. In this chapter, we intend to show that inegrating knowledge of
mutual dependencies between chords and downbeats allowsagmprove the estimation of

these musical attributes. For this, we propose a speci ¢ toglogy of hidden Markov models
that enables modeling chord dependency on the metrical strture. This model allows
considering pieces with complex metrical structures suchsabeat insertion, beat deletion
or changes in the meter. It is evaluated on a large set of pomd music songs from the
Beatles that present various metrical structures. We compa a semi-automatic model in
which the beat positions are annotated with a fully automati model in which a beat tracker
is used as a front-end of the system. The results show that thdownbeat positions of a
music piece can be estimated in terms of its harmonic structee and that, conversely, the
chord progression estimation bene ts from considering theinteraction between the metric
and the harmonic structures.
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5.1 Introduction

The previous chapter has been devoted to chord progressiors&mation. In this disserta-
tion, we are interested in understanding how various musichattributes may interact with
each other. In this chapter, we focus on the problem of estimiéng simultaneously two
musical attributes: the chord progression, which is relatel to the harmony, and the down-
beats, which are related to the metrical structure. A piece d music can be characterized
by its chord progression that determines the harmonic struture. The chord progression
is closely related to the metrical structure of the piece [Gt01]. For example, chords will
change more often on strong beats than on other beat positionin the measure. Most of
the previous studies deal with various musical attributes ndependently. However, har-
mony and meter are deeply related to each other and their autmatic estimation should
be improved by exploiting their interrelationship. In this chapter, we present a system
that allows the simultaneous estimation of the chord progression and the downbeats from
an audio le. Most of the previous works on downbeat detection have dealt with constant
meter pieces. A contribution of this chapter is that we consder the problem of complex
meter (e.g. changes in the meter, insertion or deletion of beats). We als consider the
problem of imperfect beat tracking. The model is evaluated o a large set of popular
music songs and gives very interesting results on pieces witcomplex metrical structure.
This chapter is based on publications [PP08b] and [PP10].

The major contributions of this chapter are the following:

1. We provide a detailed review of the previous works relatedo the problem of down-
beat estimation, including interaction between harmony ard meter.

2. We present an approach to the chord progression and the dawbeat tracking esti-
mation problems, which are jointly considered using a speai topology of hidden
Markov models.

3. The proposed model can be used for pieces containing chaewin the meter.

4. The system can handle real situations, when using an impéect beat tracking as a
front-end of the system.

5. We have annotated the beats and the downbeats of a large saif popular music
songs.

6. This allows us to provide a quantitative evaluation of our model considering various
cases of meter.

7. We provide a deep analysis of chords/downbeats interactin results.

8. We compare the newly proposed model with the state-of-thart and show that it
presents improvements.

9. We provide a discussion of the proposed model.
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Organization of the chapter:

This chapter is organized as follows. First, in Section 5.2we provide a review of
previous works related to the problem of downbeat tracking. We then introduce in Sec-
tion 5.4 a probabilistic model for simultaneous chord progession and downbeat position
estimation. This model encodes contextual information in he state transition matrix;
this is detailed in Section 5.4.5. In Section 6.3.3, we presg our approach to estimate
the two considered musical attributes (chords and downbeat) using the Viterbi decoding
algorithm. In Section 5.6, the proposed model is evaluated  a set of hand-annotated
songs from the Beatles. A conclusion that underlines the adantages and the limits of the
proposed model closes the chapter.

5.2 Related Work

The problem of tracking beat and tempo in audio signals is addessed in a large number
of previous works. Even if it has drawn less attention than bet tracking, downbeat
detection is an interesting problem that deserves to be caffelly studied and a nhumber of
contributions dealing with various aspects of this problemhave already been proposed.
This is not surprising since downbeat positions knowledge my be useful in various
applications within the context of music information retri eval. It may facilitate fully
automated rhythmic pattern analysis, as in the work of Ellis & Arroyo [EA04] where a
representation of the drum patterns is used as a space for gem classi cation. It can be
used for automated rhythmic transformation of musical audio, as in the work of Hockman
& Bello [HBO8] where a technique for automatic mixing and syrchronization between
two musical signals in a disc jockey application is presentd It may serve to partition
the signal into segments of lengths that have a musical meang in structural audio
segmentation, as in the work of Bartsch & Wake eld [BWO05]. It may also be used in
intelligent computer accompaniment, as in the work of Goto [Got01] where the downbeats
are used to produce an intelligent drum machine that can playdrum patterns in time to
input musical audio signals without drum-sounds.

The downbeat tracking problem has rst drawn the attention o f researchers working
with MIDI format. For instance Temperley & Sleator [TS99] pr opose a computational
system for analyzing metrical and harmonic structure. The pgrogram takes as input a
symbolic representation of music. The metrical structure poduced by the algorithm con-
sists of several levels of beats, including the downbeat pa®ns. The approach is based
on preference rules. The inference of the metrical structur relies on three rules: theevent
rule, the length rule, and the regularity rule. For a given piece, all possible analyses are
considered. The analysis that best satis es the rules is setted among the others. The
performances of the model are illustrated on some examples.

In this dissertation, we are interested in working directly on the audio signal. The
rst downbeat tracking system that works reasonably well on audio was presented by
Goto & Muraoka in [GM99b]. In this work, a complex agent-basal model for detecting
a hierarchical beat structure in musical audio signals wittout drum-sounds is proposed.

Joint Estimation of Musical Content Information From an Aud io Signal



110 Joint Estimation of Chords and Downbeats

The system tracks beat structure at the quarter-note, the hdf-note and the measure levels,
and operates in real-time. The analysis is restricted to piees having a 4/4 time-signature
and the tempo is assumed to be roughly constant within the rage of 60 to 120 beats per
minute (bpm). The hierarchical beat structure is identi ed relying on musical knowledge.
The system is based on an architecture where multiple agentsrack alternative meter
hypotheses. The provisional beat times are a hypothesis athte quarter-note level and
are inferred by an analysis of onset times. Short-term specél frames are peak-picked
and then \histogrammed" into beat length segments, where clord changes are used to
infer higher level metrical structure. In the same way that untrained music listeners, who
cannot identify chord names but are able to perceive harmonynd chord changes, the chord
changes detection method does not require chord names to bddnti ed. The approach
is tested on 40 popular music songs and estimates correctlyhe downbeat positions for
94:1% of the songs for which the quarter-note level and the halfiote level have been
correctly estimated. The experiments show that both chordehange possibilities based on
the eighth-note-level knowledge and on the quarter-notedvel knowledge are necessary for
determining the hierarchical beat structure. The method was further combined with a
previous beat-tracking system designed to process real-wld audio signals with drums
[GM94] [GM96]. Musical knowledge of chord changes and must knowledge of drum
patterns are selectively applied according to the presencer absence of drum-sounds.
This results in a single system that can recognize the hierathical beat structure of music
with drums and music without drums by using three kinds of musical knowledge: onset
times, chord changes and drum patterns.

Previous works that speci cally address the problem of dowtbeat tracking can be found
in the literature. Most of them rely on prior knowledge such as tempo, time-signature of
the piece or hand-annotated beat positions. Allan [All04] pesents a model that uses an
autocorrelation technique to determine the downbeats in mical audio signals for which
beat positions are known. The system relies on the assumptiothat a piece of music
will contain repeated spectrally similar patterns. The boundaries of those patterns are
assumed to fall on metrical hierarchical boundaries (bars) Bar boundaries are identi ed
from the known beat positions by measuring the Euclidean disance between grouped beat
length spectral segments of varying lengths at incrementab sets. It has been tested on
42 dierent pieces of music at various metrical levels, in seeral genres. It achieves a
success rate of 81% for pieces in 4/4 time-signature and negdnore testing on ternary
time-signatures.

Hand-annotated beat positions are not needed in the model mposed by Jehan in
[Jeh05]. This work proposes an unbiased and predictive appach for downbeat tracking
that combines psychoacoustic models of music listening wht time-lag embedded segment
learning. The model is tempo independent and does not requér beat tracking. It however
requires some fair amount of prior knowledge acquired throgh listening or learning during
a supervised training stage where downbeats are hand-label. The model has only been
applied to music in 4/4 meter. To demonstrate its performancaes, it is applied to two
complex musical cases for which the downbeat cannot be intereted through harmonic
shift or a generic \template" pattern: a song characterized by its repetitive single chord
and syncopated rhythmic pattern and a rhythmically complex piece of Brazilian music.
However, the model is not quantitatively evaluated.
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A recent method that segments the audio according to the posion of the bar lines
(downbeats) has been presented by Gainzat al. in [GBCO07]. The model does not depend
on the presence of percussive instruments and allows moddeatempo deviations. The
downbeat detection is based on three independent tasks: baline detection, anacrusis
detection and bar line alignment. The bar length and the anacusis beats are identi ed
using an audio similarity matrix. The bar length is determin ed by computing the length of
the most repeating segment within a range of bar length candiates, which are derived from
tempo and time signature ranges. A vector of anacrusis candates is generated, on which
an anacrusis detection function is applied. The position ofeach bar line is then predicted
by using on the one hand prior information about the position of previous bar lines, and
on the other hand the estimated bar length. Finally, each barline is estimated by aligning
the predicted bar line position to the most prominent value in an onset detection function
within a window centered at the predicted bar line. The approach is evaluated on a set
of 9 popular music excerpts from which the downbeats have beéemanually annotated. It
shows that the detection of the bar length is accurate but thedetection of the anacrusis
is not. The model has the advantage that it does not require tenpo estimation and that
the alignment of the bars allows moderate tempo deviation. Hwever, it may be badly
a ected by time signature or abrupt tempo changes.

Contrary to some previous mentioned methods such as [GM99Jeh05], Klapuri et
al. [KEAOQ6] propose an approach that allows tempo deviation andis not restricted to
a particular time signature (typically 4/4 in the previous a pproaches). This work is not
restricted to downbeat tracking but analyzes the musical meer into three di erent metrical
levels: tatum, tactus and measure level. A probabilistic malel that encodes prior musical
knowledge jointly estimates the period-length and phase ofeach level, by taking into
account the temporal dependencies between successive ewiites. The downbeats are
identi ed by matching rhythmic pattern templates to a mid-l evel representation. The
proposed downbeat tracking approach is evaluated on a mandig annotated database of
320 one-minute long excerpts of musical signals from variaigenres. It is noticed that
pitch analysis should be used to estimate more accurately th downbeats.

Ellis & Arroyo [EA04] also use a \template-based" approach n a drum-pattern clas-
si cation and generation task. For this a collection of drum patterns is created. The
downbeat of an input drum pattern is de ned as the beginning o a looping drum pattern.
To estimate this point, the input pattern is cross-correlated with reference patterns. The
method is evaluated on a corpus of 100 drum tracks from real jgices of di erent genres,
encoded as MIDI les. The algorithm estimates correctly the downbeat positions of half
of the tracks for which the tempo and the pattern length have been correctly estimated.
It is concluded that the downbeat detection would require a nore sophisticated approach
such as training.

The above-mentioned rhythmic pattern approach [KEAO06] is cmmpared with an ap-
proach based on a spectral di erence between band-limited eat-synchronous analysis
frames proposed by Davies & Plumbley in [DP06]. The sequencef beat positions of the
input signal is required and the time-signature is to be know a priori. The input sig-
nal is partitioned into band-limited beat length frames. Relying on the musical knowledge
that lower frequency bands are perceptually more important information within the range
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0 1:4kHz is preserved. The Kullback-Leibler divergence betwae successive beat frames
is computed in order to form a spectral di erence function. The beats that globally lead
to most spectral change are selected as downbeats. The model evaluated against the
one presented in [KEAO6] on a subset of the database originigl presented in [Hai04], that
consists of 181 excerpts of six musical genres (rock, dangazz, folk, classical and choral).
It obtains an overall accuracy of 53% rising to 81% for cases kere beat tracking is accu-
rate, comparing favorably with the state-of-the-art [KEAO 6], which obtains respectively
40:8% and 699%. This downbeat extraction method is employed in [HB08] fo the pur-
pose of automatic mixing and synchronization between two msical signals. We consider
this approach to be the state-of-the art. One of the drawbacls of this approach is that any
omitted beat or change in tempo or time-signature causes ears from which the model
cannot recover. Moreover, it is limited to cases where the the-signature does not change
and the tempo is approximately constant.

The strong relationship between the chord progression andhe metrical structure of
a musical piece has already been explored in previous work¥$99], [Mad06], [SW05],
[PEBBO5] or [RS03].

In the work of Temperley & Sleator [TS99], information about the metrical structure
is used during the analysis of the harmonic structure: the \drong-beat rule" stipends
that it is preferable to start chord spans on strong beat scoes. In this model, there is
no complete interaction between the harmonic and the metrial information. Indeed, if
harmonic analysis uses metrical information, the metricalanalysis process does not use
harmonic information. This is viewed as a drawback of the moel.

Drawing on the prior idea of Goto [Got01], Shenoy & Wang [SWO0% present a framework
that provides the hierarchical rhythm structure representation of a piece of music at the
quarter-note, the half-note and the measure levels. The ainof this work is to determine
the key, chords and hierarchical rhythm structure of a musicsignal by combining low-level
features with high-level music knowledge in a rule-based ggroach. Harmonic and metric
information are estimated in a mutually informing manner. A rst estimation of the chord
progression is provided using beat-length chroma featuresThe measures boundaries are
then estimated relying on the music knowledge that chords a& more likely to change at
the beginning of a measure than at other beat positions [Got]. Assuming a 4/4 time-
signature, all possible patterns of boundary locations tha have integer relationships in
multiples of four are computed. The pattern with the highest count is selected as the
one corresponding to the pattern of actual measure boundaes. Finally, the measures
boundaries are used to correct possible chord errors relyinon the rule that chord changes
are more likely to change at the beginning of the measures thaother positions of half-note
times. The system works reasonably well on popular music agsning a constant 4/4 meter
and a xed tempo constrained between 40 and 185 bpm. Tests on aet of 30 popular
English songs lead to an accuracy of 93% for the downbeat tr&king. However, it is noted
that the model cannot be used to analyze music more rhythmiclly and tonally complex.
Moreover, possible beat detection errors are systematicll propagated into the downbeat
tracking stage.

This is a typical drawback of rule-based approaches. One ofhte main drawbacks of
rule-based approaches is that errors are irreversibly propgated from one step to another.
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Statistical approaches, including graphical and Bayesianmodels, are more exible than
rule-based approaches and o er large opportunities to expre the interaction between
low-level features with high-level music information. An example of such a work related to
the issues addressed in this chapter is the one presented byalement et al. in [PEBBO05].
It considers the interaction between the harmonic and the mérical structures using a
graphical (probabilistic) model where contextual information is used to model the chord
progression. It is related to our work in the sense that infomation related to the meter
is used for modeling the chord progressions. However, the gpoach is di erent. It is not
based on a HMM but the strong relationship between the chord pogression and the meter
of the piece is embedded in a tree structure that captures thechord structure in a given
musical style. The main assumption behind the model is that onditional dependencies
between chords in a typical chord progression are stronglyied to the metrical structure
associated to it. In this model, a chord progression is seensaa two-dimensional
architecture. Each chord in the chord progression depends dth on its position in the
chord structure (global dependencies) and on the surroundig chords (local dependencies).

The various presented methods for downbeat estimation fromaudio les are summa-
rized in Table 5.1.

Table 5.1: Summary of downbeat estimation methods.

Reference Method Meter Knowledge applied Evaluation Material
Goto & agent-based constant 4/4 musical  knowledge of | 40 popular music songs
Muraoka model chord changes and mu-
[GM99b] sical knowledge of drum
patterns
Allan [All04] autocorrelation constant 4/4 Euclidian distance be- 42 dierent pieces in sev-
technique and 3/4 tween grouped beat length eral genres
spectral segments
Ellis & Ar- template-based nding the cross-correlation with ref- 100 drum tracks from real
royo [EAO4] approach beginning of a | erence drum patterns pieces of dierent genres,
looping  drum encoded as MIDI les
pattern
Jehan unbiased and | constant 4/4 prior knowledge acquired two complex musical songs
[Jeh05] predictive through listening or learn-
approach ing
Shenoy rule based constant 4/4 musical  knowledge of | 30 popular English songs
& Wang chord changes
[Swo5]
Klapuri et | probabilistic no restriction joint analysis at three dif- 320 one-minute long ex-
al. [KEAO6] model ferent time scales, encode | cerpts from various genres
musical knowledge
Davies & | spectral dif- constant 3/4 or musical knowledge that 181 les from [Hai04]
Plumb- ference be- | 4/4 lower frequency bands are | database
ley [DPO06] tween beat perceptually more impor-
synchronous tant
analysis frames
Gainza et al. | similarity ma- constant exploit the self-similarity 9 popular music excerpts
[GBCO07] trix nature of the structure of
music
Papadopoulos| double-state constant 4/4 simultaneous  estimation 66 Beatles songs
&  Peeters | HMM chords/downbeats
[PP0O8Db]
Papadopoulos| double-state no restriction, simultaneous  estimation 169 Beatles songs
&  Peeters | HMM variable chords/downbeats
[PP10]
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