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Chapter 1

Introduction

La linea consta de un numero infinito de puntos; el
plano, de un niimero infinito de lineas; el volumen,
de un numero infinito de planos; el hipervolumen,
de un numero infinito de volimenes... No,
decididamente no es éste, more geométrico, el
mejor modo de iniciar mi relato. Afirmar que es
veridico es ahora una convencion de todo relato

fantastico; el mio, sin embargo, es veridico.

Jorge Luis Borges [24]

1.1 Historical review

Geometry, as we know it today, can be defined as a field in mathematics dealing with
sizes, shapes, spaces and positions. This idea is the result of an evolution of thousands
of years. In the past, different cultures developed geometry independently, even before

settling the foundations of mathematics.

'Lines consist of an infinite number of points; planes an infinite number of lines; volumes an infinite number of planes,
hypervolumes an infinite number of volumes... No, this, this more geométrico, is definitely not the best way to begin my tale.

Affirming a fantastic tale’s truth is now a story-telling convention; mine, though, is true.



CHAPTER 1. INTRODUCTION

In the bronze age, cavemen formed a collection of empirical concepts dealing with
angles, lengths and areas. Egyptians and Babylonians knew approximate values of z
and formulas to compute some areas and volumes.

In the ancient Greek culture, geometry was one of the most important forms of
mathematics. They contributed to the beauty of the geometric problems by introduc-
ing the use of logical deduction instead of the trial-and-error methodology, as well as
new geometric entities as curves and surfaces. Thales (BaAfg), in the sixth century
BC, was the first man known to use deduction in mathematics. His disciple Pythagoras
(ITvBayopag) traveled to Egypt, Arabia, Phoenicia, Judea, Babylon and India with the
purpose of gathering all available knowledge, forming a group of students that founded
the basic geometry we learn today. Plato (ITA&twv), one of the most important Greek
philosophers, wrote in the fourth century BC “Let none ignorant of geometry enter
here” in the entrance to his school, showing the importance of geometry to the philos-
ophy given by Greeks. In the summit of Hellenistic geometry, in the third century BC,
Euclid of Alexandria (EdkAeidng) became the “father of the geometry” by writing his
Elements (Ztoiyeia), book which presented geometry in axiomatic form, establishing
what we know today as “Euclidean geometry”. Archimedes (Apyydng), finally, devel-
oped methods similar to coordinate systems, but he did not have at hand an algebraic
language to formulate his ideas three hundred years BC.

Written almost three thousand years ago, the Hindu text $atapatha brahmana, (792l
SIT&IUT, “Brahmana of one-hundred paths”) one of the prose texts describing the Vedic
ritual, shows some geometric knowledge spread along mythology. Appeared a few
hundreds years more recently, the Sulba Satras (e ¥, “Aphorisms of the Chords”)
contain geometry related to fire-altar construction. These are presumably the first refer-
ences to the Pythagorean theorem, some Pythagorean triples, geometric constructions,
such as squares and rectangles and approximate area-preserving transformations. The
classical period of the Indian geometry came with the Bakshali manuscript, which used
a decimal place value system with zero. In this period, the Aryabhatiya astronomical
treatise by Aryabhata described operations on cube roots, ratios, plane figures and el-

emental objects in space, and the Brahma Sphuta Siddhanta by Brahmagupta contains
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1.1. HISTORICAL REVIEW

results on cyclic quadrilaterals and rational triangles.

In China, the oldest known reference to geometry is the Mo Jing, written four hun-
dred years before current era, containing advanced geometrical concepts that suggest
that this culture had a mathematical knowledge prior to that book. It described ob-
jects such as points, lines, circumferences and planes and properties as lengths and
parallelism. Two hundred years later, the mathematical treatise Suan shu sha (&=,
“Book on Numbers and Computation”) introduced geometrical solutions to mathemati-
cal problems and carefully attempted to give estimations on the value of z. The Jiutzhang
Suanshu (JLEZAM, “Nine Chapters on the Mathematical Art”) summarizes Chinese
knowledge in geometry in the first two hundreds of years of our era. It shows solu-
tions to problems where geometry was applied and trying to find general methods to
solve problems, in contrast to the Greek axiomatic deduction. It also lists areas and

volume formulas for a wide range of figures.

Historically, starting in the seventh century before our era, Islamic mathematics was
more related to algebra and number theory than to geometry. Nevertheless, Muslims
developed algebraic geometry. Aba ‘Abdallah Muhammad ibn Masa al-Khwarizmi (5.
sogadll seze oo sovse sesslsed)s in the eighth century, invented the notion of algorithm,
concept which naturally exists independently of computer science even though it is
mainly used in that context now days. The connections between algebra, geometry,
arithmetics and other fields explored by the followers of al-Khwarizmi completed the

elements which today conform the foundations of computational geometry.

Until 16th century, all the knowledge of the different cultures was formalized and
unified. The 17th century saw the dawning of the modern geometry: René Descartes
and Pierre de Fermat created the analytic geometry, and Girard Desargues introduced
the projective geometry. The more recent history of geometry has seen the separa-
tion in many almost independent research fields, such as Euclidean and non-Euclidean

geometry, algebraic geometry, finite geometry and topology.



CHAPTER 1. INTRODUCTION

1.2 From geometry to computational geometry

Although mechanical calculators where invented in the 17th century, modern computer
science was born in the middle of the 20th century, with Alan Turing as principal con-
tributor. The algorithm analysis stated new challenges, and computational geometry
arisen in the mid-seventies as the discipline that studies algorithms stated in terms of
geometry [136]. This distinction sounds today very rough, since on each of the numer-
ous subfields of computer science, many problems can be stated in terms of geometry.
It turns out then that this thesis, as many other research work, cannot be categorized
in a single discipline.

The trend in the flourishing computer science consisting in using geometrical lan-
guage to express problems gained many followers, for it turned out to be a very elegant
and convenient way to state and solve problems. Lee and Preparata [113] described the
state-of-the-art of computational geometry in the early eighties by distinguishing five
classes of problems.

The problem of convex hull, which consists of finding the smallest convex set that
contains a given set of points, gave rise to the first class of problems to be considered.
This problem was thoroughly studied, giving solutions such as the Graham’s scan [87],
the Jarvis’ march [99] and many others. The many ramifications of this problem, each
one having numerous applications, are fundamental bricks in the construction of more
complex algorithms.

Another fundamental problem is the intersection detection, consisting in finding all
the intersections between a number of given objects. Among a myriad of different vari-
ations of this problem and solutions to them, the seminal Bentley-Ottman sweep-line
algorithm was presented [16]. This algorithm proved to be easily adaptable to many
types and shapes of objects in the plane or in the space, which turned it into a funda-
mental algorithm in computational geometry.

Geometric searching problems are another pillar of the discipline. A searching
problem is simply a query to a certain data base. The importance, from the geomet-

ric point of view, is that the geometric data is inherently complex, carrying the need of
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1.3. THE BURST OF COMPUTER ALGEBRA

optimal data structures. Research in this topic lead to the development of many data
structures during the seventies [15], but research in the field continues today.

The concept of proximity between objects is related to many practical problems.
The Voronoi diagram [161] and the related Delaunay triangulation [54] served in the
design of solutions to many problems of this class, from finding the closest pair among
a set of points, passing through neighboring problems and minimum spanning trees, to
construction of triangulations.

Many problems in operations research, such as linear programming, can also be
expressed in terms of geometry. These, along with purely geometric optimization prob-
lems, form a vast research topic. Finding the smallest circle enclosing a set of points or
finding the largest empty rectangle not containing points from a set belong to this last
class.

All the classes of problems described above form the core of computational geom-
etry research. They motivated in the seventies and eighties the creation of methods for
solving different variations and generalizations of these problems. These techniques are
general enough to attack many problems, but some of them are not sufficiently general
and others need some adaptation effort in order to handle complex objects. For instance,
the sweep-line algorithm can be used to construct arrangements in many contexts, but
it has to be provided with primitives such as intersection of the involved objects. If the
objects are complex, like algebraic curves or surfaces, computing intersections is not
trivial. In the last years, one of the emerging trends in computational geometry is the
development of algorithms that deal with complex objects. This was motivated by the
maturity of the basic geometric algorithms, as well as the algorithmic progress in other

areas such as computer algebra.

1.3 The burst of computer algebra

The development of computers and computer science created new approaches for solv-

ing geometric problems. One of these is computer algebra, area where mathematical
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CHAPTER 1. INTRODUCTION

tools and computer software are employed to obtain formal solutions to problems [81].
The present thesis addresses the application of computer algebra techniques to com-
putational geometry problems. In the light of the above historical brief review, this
thesis is far from being the first attempt to marry geometry with algebra. Much work
was done in the past, starting more than two thousand years ago. Modern research in
this direction validates the idea that state-of-the-art algebraic techniques extends the
application range of many geometric algorithms.

Perhaps the first area related to computational geometry that benefited from com-
puter algebra was motion planning. For instance, in the early eighties, Schwartz and
Sharir made one of the first studies of this kind of problems [146]. Canny studied few
years later such problems, making contributions both to the field of robotics and the
analysis of algorithms [37]. A survey on the advances in this field during those years is
given in [110].

One of the more recent and relevant examples of the application of computer al-
gebra to computational geometry was given by Everett et al. [72]. In this paper, they
used computer algebra programs to prove a conjecture on the Voronoi diagrams of three
lines in general position in three-dimensional space. This fact sketches one of the main
motivations of the present work: computer algebra tools permit geometric algorithms
to deal with complex objects. The cells of the Voronoi diagram of lines in three dimen-
sions are bounded by quadrics, and it is very hard to deal with the resulting equations

of degree two in three variables by using basic geometry.

1.4 Exact geometric computing

Geometric algorithms are often conceived under theoretical assumptions that are known
to be unrealistic. The numbers that algorithms handle are often real numbers, and com-
puters on which algorithms are implemented are not capable of representing all real
numbers. This gap between theory and practice would not necessarily be a big issue

if the implementations were to provide close approximations to the results. Unfortu-
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1.4. EXACT GEOMETRIC COMPUTING

nately, this kind of errors is extremely problematic in computational geometry because
it often conducts to incoherences in the decisions performed in the algorithms, leading
to totally wrong results, crashes, infinite loops or pretty much any bad scenario that
one can think of. Kettner et al. [105] give many such examples in which algorithms fail
in different ways.

Algorithms in computational geometry must be aware of these possible inconsis-
tencies. The parts of the algorithm that can lead to failures because of arithmetic errors
are usually encapsulated in predicates. A predicate is defined, in logic, as an operator
which returns either true or false. In computational geometry, a predicate refers to a
basic geometric question, based on which the algorithms make decisions. Predicates
are stated in terms of geometric objects. For example, a predicate may be: what is the
planar orientation of points p, ¢ and r? [105]. They either lie on a common line or form
a left or right turn. For instance, the Jarvis’ march algorithm [99] relies on the orien-
tation predicate to calculate the convex hull of a set of points. The correctness of the
algorithm’s output is guaranteed by the correctness of the answers to the orientation
predicate.

Answering predicates usually involves evaluating the sign of some expression with
real numbers. In simple settings, these expressions are polynomials in the input pa-
rameters. For instance, the orientation of three points in the plane can be determined
by evaluating the sign of their determinant (in homogeneous coordinates). Further-
more, calculating the determinant using naively computers arithmetic sometimes leads
to wrong results. Indeed, when the determinant is zero or close to zero, a small numeric
error may induce a wrong sign of the determinant which leads to a wrong orientation.
Some arithmetic techniques must be employed in order to guarantee the correctness of
geometric results, that is, correctness of the answers to predicates. This paradigm, in
which geometric results are always guaranteed to be correct, is referred to as exact geo-
metric computing paradigm. A small numeric error in geometric constructions is usually
accepted in many applications, but not wrong results to the geometric predicates be-
cause, as mentioned before, they lead to major errors. This fact makes this paradigm

the standard in geometric computations.



CHAPTER 1. INTRODUCTION

One approach usually taken in order to guarantee geometric results is to perform
exact computation using exact arithmetic. This is possible when the predicates can be
answered by evaluating the sign of a polynomial expression. The exact evaluation of
polynomial expressions is achieved by representing integer or rational numbers using
a memory array, and define arithmetic operations on these numbers. This is called
multiple-precision arithmetic. A major drawback of such approach is that such exact
computations tend to be extremely slow. The usual solution to this issue is to filter
computations, by using interval arithmetic. The idea behind interval arithmetic is to
work with intervals, which are guaranteed to contain the exact result (see Section 2.2
for details on interval arithmetic). This way, the sign of an expression can be deter-
mined when all the numbers contained in the interval which contains the result of the
computation have the same sign. This is not always the case, some results will be known
(and their correctness guaranteed) and others will be still unknown. In the latter case,
computations are performed again with the help of exact arithmetic. Besides interval
arithmetic, there exists other kind of filters, such as static filters.

Static filters assume that the input parameters are smaller than some constant (in
absolute value) and an upper bound on the maximum error that can occur when evaluat-
ing the expression appearing in the predicate is precomputed (by the scientist). During
the processing of the algorithm, as long as the evaluation of the expression is farther
away from zero from the computed bound, the sign is ensured (see Sylvain Pion’s the-
sis [133]).

Another approach to guarantee geometric predicates consists in using multiple-
precision interval arithmetic combined with separation bounds [35]. Instead of using
machines arithmetic to perform interval computations, intervals bounds are arbitrary-
size fixed-precision floating-point numbers. When an interval computation fails to en-
sure the sign of an expression (i.e., when the interval contains zero), the operation is
performed again using finer precision. This process ends when the result of the opera-
tion is an interval which either does not contain zero, or whose width is smaller than a
so-called separation bound. Such bound is a lower bound on the smallest (in absolute

value) non-zero value that the expression can take. One advantage of such bound is
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1.5. CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

that the implementation is rather transparent for the programmer (once appropriate li-
braries such as CORE [45, 102] are used), and that the expressions in the predicate do not
need to be polynomials. One big drawback is that when the expression to be evaluated
is actually equal to zero, this approach tends to be very slow.

Dubé and Yap [169] give a comprehensive study of the arithmetic aspects related to
the exact computing paradigm. Yap [167] considers specifically geometric issues in the
light of the exact computing paradigm. Mehlhorn and Yap [122] also consider algebraic
techniques to handle curves and surfaces. Schirra [145] describes geometric robust-
ness issues and shows techniques to overcome them. The book edited more recently by
Boissonnat and Teillaud [22] discusses the exact approach to many classical problems
in computational geometry.

Determining which approach to use in order to certify results depends on many
factors. Nonetheless, the current standard in computational geometry can be said to be
the approach combining exact arithmetic and interval arithmetic filtering. It should also
be stressed that obtaining efficient implementations in the exact computing paradigm
is far from trivial, even in simple cases such as the orientation predicate. The problem
turns even more complex when considering curved objects. Since curved objects are
defined by polynomials or polynomial systems, they involve algebraic operations such
as solving systems of polynomials. Certifying results in this case is thus more challeng-
ing. The algorithms in this thesis contain predicates involving curved objects, and the

challenges arising in their implementation are discussed.

1.5 Contributions and organization of the thesis

This thesis addresses one of the most basic problems of non-linear computational ge-
ometry, that is the determination of the topology of algebraic plane curves. The main
originality of this work is a new approach based on computer algebra techniques that
permit, in particular, to develop an algorithm whose main novelty is the elimination of

the requirement of input curves to be in generic position. The method also avoids in
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CHAPTER 1. INTRODUCTION

all cases the computation of sub-resultant sequences and computations with algebraic
numbers. This algorithm is presented in Chapter 3.

We implemented our algorithm using MAPLE [118]. This implementation was then
validated by comparing to other state-of-the-art methods. Implementation and experi-
ments are presented in Chapter 4. The MAPLE programming language is a natural choice
to implement the algorithms using algebraic machinery and, in particular, the algorithm
we presented in Chapter 3. On the other hand, this computer algebra system is not ex-
tensively used in the computational geometry community (and has no reason to be so).
The C++ Computational Geometry Algorithms Library, cGaL [38], provides a rich set of
geometric algorithms, as well as multiple-precision arithmetics. This library is the ref-
erence for the development of computational geometry algorithms. This library is thus
also a perfect candidate to implement our algorithms. However, algebraic curved ob-
jects are defined with polynomials and polynomial systems, and any algorithm handling
such objects must be able to work with polynomials. Before implementing algorithms
handling curved objects such as the one mentioned above, the library must thus be
equipped with some computer algebra machinery.

In the last years, there have been many discussions between European researchers,
about the specifications of which algebraic tools were needed in cGAL. In that context,
we implemented a so-called cGAL univariate algebraic kernel, a part of the library that
contains functions to isolate roots of univariate polynomials, as well as functions to
handle and compare polynomial roots. This kernel is related to the development of the
Rs library [139] by Fabrice Rouillier, and this work was done in close connexion with
him. Chapter 5 introduces our cGAL univariate algebraic kernel, and shows experiments
that demonstrate the efficiency of our kernel and validate the algebraic kernel approach.

Replacing computer native floating-point arithmetic by multiple-precision arith-
metic exposes an issue in the light of the analysis of algorithms. In computational ge-
ometry, algorithms are often quite involved and complexity is usually non-trivial to
calculate. This is the main reason why algorithms in computational geometry are often
analysed in the real-RAM model which assume that computation with reals can be per-

formed in constant time; see [136] for details. We adopt here the bit-complexity model
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of computation. In it, each operation is implemented using many single precision op-
erations, which turns the cost of performing an operation into a function of the size of
the operands. This has of course an impact on the complexity. We recall this notion,
introducing the different models of computation and present in Chapter 6 the analy-
sis of the complexity of the algorithm presented in Chapter 3, for the computation of
the topology of algebraic planar curves and of the sweep-line algorithm, used in Chap-
ter 5, for computing an arrangement of arcs of algebraic curves defined by univariate
polynomials.

Before presenting these contributions, we start in Chapter 2 by recalling some arith-
metic and algebraic techniques such as interval arithmetic, root isolation, rational uni-
variate representation and Grobner bases. Chapter 2 also discusses models of compu-
tation, justifying the choice of the bit-complexity model and describes some techniques

used in exact geometric computing.
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Chapter 2

Preliminaries

Existe una opinion generalizada segun la cual la matematica
es la ciencia mas dificil cuando en realidad es la mas simple de
todas. La causa de esta paradoja reside en el hecho de que,
precisamente por su simplicidad, los razonamientos
matematicos equivocados quedan a la vista. En una compleja
cuestion de politica o arte, hay tantos factores en juego y
tantos desconocidos e inaparentes, que es muy dificil
distinguir lo verdadero de lo falso. El resultado es que
cualquier tonto se cree en condiciones de discutir sobre
politica y arte -y en verdad lo hace- mientras que mira la

matemética desde una respetuosa distancia.”
Ernesto Sabato [142]

This chapter introduces the basic tools used in the rest in the thesis. It is far from

being self-contained, but it provides a brief exposition of the concepts needed to un-

derstand the other chapters. Before entering in mathematical details, we begin with an

exposition of different models of computation often used in the analysis of geometric

*There exists a widespread view which states that mathematics is the most difficult science when it is actually the simplest

of all. The cause of this paradox lies in the fact that, precisely for its simplicity, wrong mathematical reasonings are visible. In

a complex matter of politics or art there are so many involved factors and so many unknowns and inapparents, that it is very
difficult to distinguish the true from the false. The result is that any fool would believe himself in a position to discuss politics

and art, and indeed he does, while watching mathematics from a respectful distance.

13



CHAPTER 2. PRELIMINARIES

algorithms. Later, we discuss arithmetic issues relevant to exact geometric computing

and we finish by explaining the polynomial system solving strategies used in the thesis.

2.1 Models of computation

When an algorithm is developed, it is targeted to be executed by a certain type of ma-
chine. It can be, for instance, read and interpreted by a robot, by a personal computer
or even by a human being [46]. The instructions given to each entity differ in the op-
erations that each one can perform. Even when different machines can interpret equal
sets of instructions, each one can take a different time to perform each task. A personal
computer is able to calculate quite complex arithmetic operations quickly, while a hu-
man being may need hours to compute it. Moreover, each machine is able to work with
a certain type of data, such as integers, floating-point numbers, or even real numbers.
This data is stored in what is called registers, and each machine has a certain number of
registers.

The set of instructions accepted by the machine in which the algorithm is executed,
along with the time spent on each operation is known, in algorithmic, as the model of
computation. Each algorithm is designed for a specific model of computation. Thus, the
complexity of the algorithm is studied in the light of the adopted model of computation.

A widely used model of computation is named random access machine (RAM) model.
A random access machine consists in a fixed number of registers, each one holding
integers of arbitrary size. See [132, § 2.6], for a formal definition of a RAM, along with
the set of operations it executes. When analyzing algorithms under the RAM model,
it is commonly assumed that each instruction (arithmetic or access to memory) that
the RAM executes takes a constant time. This assumption is quite unrealistic in the
real world. Today, most of the algorithms are executed in personal computers. They
are able to handle integers of a fixed size, commonly 16, 32 or 64-bit. In this case, the
assumption that RAM registers can hold any integer is wrong. Arithmetic operations

between integers that do not fit in registers can be seen as multiple applications of
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2.1. MODELS OF COMPUTATION

the RAM arithmetic operations. In this case, each operation is not executed anymore
in constant time. The cost of operations turns out to be a function on the size of the
operands, since the size of the operands determines the amount of RAM operations
needed to complete the operation between big integers.

The idea of cost of operations as a function on the size of the operands is captured by
the logarithmic cost measure [121, § 1.1]. With this measure, the cost of each operation
is a function on the size of the operands. Since, in real computers, numbers are stored
in binary form, the size of an operand is its base-two logarithm. This logarithmic cost
measure is closer to reality than the unit cost measure, but it fails to represent other
aspects. For instance, multiplying integers takes more time than adding them.

In computational geometry, the principal model of computation used is the real-
RAM model [136]. Registers of a real-RAM machine are capable of holding real num-
bers, not only integers. As in a RAM, each operation is performed in a constant amount
of time. Storing and operating with real numbers gives the possibility, for instance,
of computing coordinates or lengths. While this aspect is very important in compu-
tational geometry, this model is farther to reality than the RAM model. The reason is
that real numbers cannot, in general, be represented in the registers of real computers.
Moreover, the cost of operating with them can be very hard to compute.

In algorithms that handle small size numbers, complexity analyses based on RAM
or even real-RAM models give reasonable bounds on the real execution time on a com-
puter. Algorithms presented in this thesis are based on algebraic techniques. Some
algorithms in computer algebra present a growth in the size of intermediate results.
For instance, calculating the greatest common divisor of polynomials introduces a phe-
nomenon called intermediate expression swell [81, § 6.1]. It means that, even calculating
the gcd of polynomials of small coefficients giving as a result another polynomial of
small coefficients, the computation may introduce huge numbers. The cost of operating
with these numbers is far from being constant. Analyzing such an algorithm under the
RAM or real-RAM model will correctly estimate the number of arithmetic operations,
but the real execution time of the algorithm will be far from the theoretical combinato-

rial complexity.
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The discrepancy between development, theoretical analysis and execution time of
an algorithm motivates the introduction of computing models that capture the behavior
of the algorithms being executed in a computer or in any real machine. This means, a
model capable of representing numbers that a computer can represent, providing in-
structions that a computer can perform and associating them the time that a computer
spends on them. But, since we are willing to work with big numbers that do not fit in
computers registers, it will be necessary to define algorithms that perform them. Each
number of arbitrary size must be stored in computers memory. Arithmetic operations
between big operands in memory must be performed by algorithms that use comput-
ers registers and native arithmetic. This approach to machine arithmetic is known as
multiple-precision arithmetic and it will be explained in the next section. Each multiple-
precision arithmetic operation algorithm has a cost, which is a function on the size in
memory of its operands. Real numbers cannot be directly represented in this model,
but it is possible to represent arbitrary size integer, rational and floating-point num-
bers. This model of computation is known as bit-complexity model. Its name reflects
the fact that the cost of operations on this model is a function on the size in bits of
the operands, referred to as bitsize. Note that the bit-complexity model is close to the
notion of logarithmic cost RAM. The cost of operations is, in both models, a function on
the bitsize of the operands. Nevertheless, the logarithmic cost RAM defines the cost of
all operations using the same function (base-two logarithm of the operands), whereas
the bit-complexity model defines the cost of each operation as a different function on
each case. For instance, under the bit-complexity model, the cost of an addition is lin-
ear in the bitsizes of the operands, while the cost of a multiplication is the bitsize of
the operands multiplied by their base-two logarithm. On the other hand, the cost of
these two operations (and of all arithmetic operations) under the logarithmic cost RAM
model is calculated by applying the same function to the operands.

Real computers have random-access memory. This means that accessing any mem-
ory cell (a datum that fits in a machine register) is done in constant time. Thus, accessing
a number represented in binary in the memory is a linear function on its bitsize, since

the number must be copied in registers in order to perform operations on it. Note that
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this random-access scheme differs from the memory access of Turing machines [157].
In a Turing machine, numbers are represented on a tape which moves one position at
a time, thus accessing a stored number is a function on its size, its position on the tape
and current tape position.

Algorithms presented in this thesis were analyzed following the bit-complexity
model of computation. Using the RAM or real-RAM models would incur in a com-
pletely inaccurate analysis. However, it should be stressed that the RAM and real-RAM
models provide in many cases an accurate measure of the combinatorial complexity of
algorithms. Since combinatorics are the most important part of many algorithms in

computational geometry, these computation models are extensively used in the field.

2.2 Computer arithmetic and exact geometric comput-

ing

In the last section, we motivated the fact of adopting the bit-complexity model from the
point of view of the algorithm analysis. In this section, we explain the need of multiple-
precision arithmetic in exact geometric computing. As mentioned in Section 1.4, basic
arithmetic operations in a computer are not able to guarantee in all cases the correctness
of geometric results. [105] contains examples in geometry where a minor arithmetic
error conducts to wrong geometric results.

Before detailing the arithmetic techniques used in exact geometric computing, we
will describe the arithmetic that modern computers provide. Arithmetic operations
use as operands numbers stored in registers, and computers have a finite number of
registers. The result of operations is also stored in a register. Registers have a limited
size, normally 32 or 64-bits. Thus, operands and results have a limited size.

Numbers are stored in binary representation. Some different representations can
be used to represent numbers in registers. Usually, the representation of a number
is called the type of the number. The most basic type is the unsigned integer, where

all the bits of the register are used to represent a number in binary form. Thus, the
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unsigned integer type can represent integer numbers between zero and 2° — 1, where
b is the size in bits of computer registers. Negative integers can be also represented
as numbers of the type signed integers, where the used representation is usually two’s
complement [108]. Different variants of signed and unsigned integer types are available
in computers, depending on the amount of bits used to represent them. For instance, the
computer may choose to use half a register to represent a short number. Some modern
computers can also represent an integer number using two registers. In any case, the
size of the numbers is still limited.

Integers are not enough for many applications. Computers also use to represent
numbers as floating-point. Modern computers follow the ANSI/IEEE 754 [130] standard
to implement floating-point types. These types are able to represent numbers in the
form s X 2/, where s is an integer known as significand and f is an integer referred
to as exponent. Due to the limited size of registers, s and f must fit in the same regis-
ter. The most commonly used floating-point types are the single-precision or float type,
which uses 32-bits to represent both s and f, and the double-precision or double for short,
which uses 64-bits to represent significand and exponent. Floating-point number types
also represent infinite values and results of illegal operations such as division by zero.
Nevertheless, this kind of arithmetic sometimes fail to provide correct results. Despite
the limited size of registers, rationals cannot be represented. For instance, the decimal
number 0.1 is not representable, since 74, presents a periodic binary decimal expansion.
Operations are neither exact: it may be the case that the exact result of an arithmetic
operation does not fit in the space destined to hold the result. The result will be approx-
imated, following certain criteria. This is known as rounding. When an operation fails
to provide an exact result and returns a rounded approximation, there exists a mecha-
nism to tell the user what happened. In modern computers, users can also control how
to round numbers (for instance, they may choose to round numbers towards infinity or
towards zero, or just forget the part of the significand that does not fit in the register).

It is common to use double-precision numbers to implement geometric algorithms.
One of the popular beliefs is that floating-point types represent any real number within

a certain range. If this were true, many implementations of geometric algorithms would
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be exact. Unfortunately, this is not the case. Let us consider again the orientation pred-
icate from [105] presented in Section 1.4. Implementing this predicate using double-
precision floating point arithmetic can lead to incorrect geometric results. The compu-
tation of the sign of the determinant will be correct when the result of the determinant
is far from zero. In this case, a minor error in floating-point arithmetic is hidden by
the fact that the sign of the result is correct. But this is not always the case when the
determinant is very close to zero. The first challenge is thus to know when the sign
of the determinant is correct. In this case, controlling how the computer rounds the
floating-point numbers is the key. It permits to perform operations twice, once round-
ing the result towards minus infinity and once rounding the result towards plus infinity.
This method is called interval arithmetic. It is possible that the two results are different,
but it is guaranteed that the exact result of the operation is contained between the two
rounded results. For instance, to add two numbers a and b, contained in intervals [c_z , 5}

and [l_a, E] respectively, interval arithmetic guarantees that the exact result of a + b is

contained in the interval {C_l +b,a+ E} . Here, a + b represents the result of a 4+ b

rounded towards negative infinity, and a + b represents the result of a + b rounded

towards positive infinity. In the same way, the exact result of ¢ — b is contained in

the interval [Q —b,a— Q} . Details on interval arithmetic can be found in [4]. Replac-

ing plain floating-point arithmetic in determinant computation by interval arithmetic
gives an interval as result, instead of a floating-point value. If both endpoints of the
interval have the same sign, the sign of the determinant is certified, despite the inexact

floating-point operations.

Nevertheless, this technique does not suffice to certify the results of all operations.
What to do when endpoints of the interval have different signs? The answer is not
easy, since this approach reveals that computer’s native floating-point arithmetic is not
enough to find the correct result but does not solve the issue. What is needed is an
exact computation of the determinant. But computers native arithmetic proved to be
insufficient for this task. In this case, multiple-precision arithmetic provides a central

tool for exact computing. This approach to computers arithmetic hides the limited size
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of registers. Each number is stored in computers memory, and its size is not limited to
one or two registers. Operations between multiple-precision numbers stored in memory
are performed in terms of operations between registers, using native arithmetic. The
size of numbers represented in memory is only bounded by the amount of memory
the computer has. Multiple-precision arithmetic is usually implemented by libraries on
which programs rely, like gmp [83].

Like computers native arithmetic, multiple-precision arithmetic provides different
number types, referred to as multiple-precision number types. The simplest multiple-
precision number type is the multiple-precision integer type, also know as big integer
type. The principal advantage of this number type is that the range of representable in-
teger is virtually unbounded. The direct consequence of this is that operations between
big integers never overflow.

The multiple-precision rational type, or big rational type, is built on top of multiple-
precision integer type. A big rational number is represented as two big integer num-
bers. Operations between rationals are performed as operations on the big integers that
form the operands. Rational arithmetic without overflows provides an exact arithmetic
as needed in the orientation example. When interval arithmetic fails to provide the sign
of the determinant, computing the determinant with exact rational arithmetic provides
the exact result. This is permitted by the fact that floating-point numbers are rational
numbers. Of course, exact rational arithmetic could be used instead of interval arith-
metic, but it is much slower. Switching between different kinds of arithmetic is a very
commonly used technique in exact geometric computing. Operations are performed
using some kind of fast arithmetic, and most expensive exact arithmetic is used only
when necessary.

Multiple-precision techniques are also used to implement floating-point arithmetic.
Commonly, a number is represented as a multiple-precision significand a single-preci-
sion exponent. Arithmetic operations between this kind of operands can be imple-
mented in two ways. One approach consists in determining the size of the resulting
significand when performing the arithmetic operation. The second approach consists

in fixing the size of the result of the operation, rounding it when the exact result does
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not fit in the assigned space. The latter approach, known as fixed-size floating-point
arithmetic, is widely used in exact geometric computing. In the scenario where in-
terval arithmetic with double-precision floating-point numbers fails to provide a certi-
fied result, the operations can be done again using interval arithmetic, using as bounds
fixed-precision floating-point numbers of a size bigger than hardware double-precision
numbers. The size in memory of the significand of a floating-point number is called its
precision. This procedure is thus known as increasing the precision of computations.

In the example of orientation in Section 1.4, increasing the precision of the de-
terminant computation does not necessarily solve the problem when the input points
have rational coordinates, since floating-point numbers cannot exactly represent ratio-
nal numbers whose denominator is a power of two. Increasing the precision can help to
find the sign of some cases, but not in general, unless the precision is increased until a
certain threshold does certify the results. This threshold is called separation bound, and
it refers to a lower bound on the absolute value of the smallest non-zero value that the
expression can take [34]. If the width of an interval that contains zero is smaller than a

separation bound, it is ensured that the evaluation of that expression is zero.

2.3 Polynomial system solving

As in most geometric algorithms that deal with curved objects, the algorithms presented
in this thesis need to find the solutions of systems of polynomials. Solving them is far
from trivial, and has been a wide subject of research of in the last fifty years. Reso-
lution strategies for systems of polynomials include numeric, geometric and symbolic
methods.

Numeric methods are classified in iterative and homotopy (semi-algebraic) meth-
ods [117]. Iterative methods, such as Newton’s method, usually work well when they
are given good initial guesses, but this is not always possible. Homotopy methods are
very demanding when the results need to be certified.

Geometric methods use the particular geometric information of each problem. Ex-
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amples of these techniques are subdivision methods [163] and ray-tracing [6]. These
algorithms are developed in view of specific application domains, thus they are not
suitable to be applied in a more general framework.

The most widely used symbolic approaches to polynomial system resolution are
resultant methods [152], triangular sets [9] and Grobner bases [32, 31]. A complete
study of symbolic polynomial system solving can be found in [162].

In this thesis, we chose to use the Grobner approach which, combined with a strat-
egy known as rational univariate representation [140], permits to express the solutions
of a zero-dimensional polynomial system (that is, a polynomial system having a finite
number of complex roots) as functions on the roots of univariate polynomials. It can
be argued that different approaches to polynomial system solving are just different tool
sets employed in geometric algorithms. While this is true from a theoretical point of
view, we show in Chapter 4 the benefit of our choice when computing with non-generic
curves.

Before proceeding to describe the steps of system solving, it is necessary to intro-

duce some geometric and algebraic notions.

Definition 1 ([48] Chapter 1, § 2, Definition 1). Let K be a field, and let f,, . . . ,f, be

polynomials in the polynomial ring K[x,, . .., x,]. Then we set

V(fiy. o f) = {(al,...,an) e K":f(ay,...,a,) =0foralll <i< s}.
We callV(f,, ... ,f.) the affine variety defined by f,, . .. .f.

Definition 2 ([48] Chapter 1, § 4, Definition 1). A subset] C Kl[x, ... ,x,] is anideal if

it satisfies:
(i) 0 €1,
(ii) if f,g €1, thenf+ g € 1, and

(iii) if f€ Tandh € K[xy, ..., x,], then hf € 1.
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Lemma 3 ([48] Chapter 1, § 4, Definition 2 and Lemma 3). Letf;, . ..,f, be polynomials
in K[x, ..., x,|. Then, the ideal generated byf,, . .. ,f.

(fi,f) = Zhifi:hl,...,hSEK[xl,...,xn]

is an ideal of K[xy, . . ., x,].

Geometrically, a variety is a curve or surface defined by polynomial equations.
Ideals are needed to algebraically manipulate these equations. The relation between
varieties and ideals becomes then evident. Given a system of equations in the form
{f, = O},-:Lm’s where f; € K[xl, ce ,xn], one can derive other equations using linear
algebra. For example, being h; € K[xy, ..., x,], hifi + ...+ hyf, = 0is a consequence
of the original system. This illustrates the fact that and ideal of (f;,. . .,f,) consists of
all the equations one can derive from the system of equations { f; = 0},—; ;. The rela-
tion between varieties and ideals is a strong connection between geometry and algebra,

which must be exploited to solve systems associated to geometrical objects.

2.3.1 Grobner bases

Grobner bases were introduced by Buchberger in his 1965 doctoral dissertation [30].
One of their many applications is multivariate polynomial system solving: they permit
to reduce the study of polynomial ideals to the study of monomial ideals, allowing to
apply in higher dimensions techniques analogous to Gaussian elimination.
Throughout this section, we will note Z~, the set of non-negative integers, and

thus Z2, the n-ary cartesian power of Zx. For x = (X1, -5 %) € Klxy,y ..., x,] and

Ay
n

a=(ay,...,a,) € Z.,, we will refer to (x{", ..., x3") as the monomial x“.

Definition 4 ([48] Chapter 2, § 2, Definition 1). A monomial ordering on K[x,, ..., x,] is

any relation > on Z~,,, or equivalently, any relation on the set of monomials x*, a € Z~,,
satisfying:

(i) > is a total (or linear) ordering on ano’
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(ii) ifa > fandy € 7%, thena +y > f + vy, and

(iii) > is a well ordering on 7, meaning that every nonempty subset of 7% has a

smallest element under >.

Important and commonly used monomial orderings are the lexicographic order,
graded lexicographic order and graded reverse lexicographic order. What follows is the

formalization of some common ideas.

Definition 5 ([48] Chapter 2, § 2, Definition 7). Letf = Za a.x” be a nonzero polynomial

in K[x,,...,x,] and let > be a monomial ordering.

(i) The multidegree of f is multideg(f) = max(a € 2L : aq # 0), the maximum
being taken with respect to >,

(ii) the leading coefficient of fis LC(f) = Armutiideg(f) € K,
(iii) the leading monomial of fis LM(f) = xmultideg(f) 454 coefficient 1, and
(iv) the leading term of fis LT(f) = LC(f) x LM(f).

Definition 6 ([48] Chapter 2, § 5, Definition 1). LetT € Klxi, ..., x,] be an ideal other
than {0}.

(i) LT(1) denotes the set of leading terms of 1, thus

LT(I) = {cxa : there exists f € 1with LT(f) = cx“}, and

(ii) (LT(1)) denotes the ideal generated by the elements of LT(I).
The previous definitions permit to formally define what a Grobner basis is.

Definition 7 ([48] Chapter 2, § 5, Definition 5). Given a monomial ordering, a finite subset
G=1{g,---,8,} of an ideal1 is said to be a Gribner basis if

(LT(g)), - -.,LT(g,)) = (LT(I)).
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2.3.2 Rational univariate representation

In this thesis, Grobner bases are used in the light of the rational univariate represen-
tation, RUR for short [140]. This modern solving technique permits to express the ze-
roes of a zero-dimensional system of multivariate polynomials as a function of rational
functions of univariate polynomials. Briefly, the RUR of the zero-dimensional ideal
I € K[x,...,x,isa set set of (n+2) polynomials {f, g, g, - - -, &,} < K[T] with the

property that the roots of the system are exactly { (%, cee ‘2‘8) ‘ flr) = O}. A

more formal definition is given in [140, § 3].

All these univariate polynomials, and thus the RUR, are uniquely defined with re-
spect to a given polynomial y € Klx,,...,x,] which is injective on V(I); y is the
separating polynomial of the RUR. In general, separating polynomials are defined as

follows.

Definition 8 ([140] § 2). A polynomialt € Klx,, ..., x,| separates a variety V, if

Va,p € V,a # p = tla) # t(B).

A random degree-one polynomial in xy, ..., x, is a separating polynomial of the
RUR with probability one. For details, including how to calculate a separating polyno-
mial (also called separating element), see [140].

The RUR defines a bijection between the (complex and real) roots of the ideal I and
those of f. Furthermore, this bijection preserves the multiplicities and the real roots.
Computing a box for a solution of the system is done by isolating the corresponding root
of the univariate polynomial f (see Section 2.3.3) and evaluating the coordinate functions
with interval arithmetic. To refine a box, one just needs to refine the corresponding root
of f and evaluate the coordinates again.

There exists several ways of computing a RUR. The strategy adopted throughout
thesis is the one from [140, § 5], consisting in computing a Grébner basis of I and then
to perform linear algebra operations in order to compute a full expression of the RUR.

This method is very efficient in practice, specially when working with polynomials with
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integer coefficients. Other strategies consist, for example, in replacing the Grobner
basis computation by the generalized normal form from [127], or more or less certified
alternatives such as the geometrical resolution [82] (this method is probabilistic, since
the separating element is randomly chosen and its validity is not checked, one also loses

the multiplicities of the roots) or resultant-based strategies such as in [107].

2.3.3 Univariate polynomial root isolation

Grobner bases and rational univariate representations permit, once they have been com-
puted, to reduce the problem of solving a multivariate polynomial system to the problem
of finding roots of univariate polynomials. This section discusses the methods that solve
this problem.

The problem of solving univariate polynomial equations started to be studied by
ancient cultures more than four thousand years ago. [131] contains a brief historical
and technical review on polynomial solving. During history, research on this topic
motivated the development of fundamental concepts of mathematics, such as irrational
and complex numbers. Many attempts were done, starting in the sixteenth century, to
find solutions to general polynomial equations of low degree. However, all attempts
failed to provide a general solution of the equation of degree bigger than four.

In 1824, Abel showed that, in general, the quintic equation cannot be solved in terms
of radicals [2]. This means that, in general, the algebraic numbers (roots of polynomi-
als) of degree at least five can only be expressed in terms of polynomials of which they
are roots. The main implication of this result is that operating with algebraic num-
bers implies operating with the polynomials that define them. For instance, to add two
algebraic numbers a and f, roots of polynomials p and g respectively, one needs to cal-
culate the polynomials of which @ + f is root, that is, the resultant with respect to y
of p(x — y) and ¢(y) [116]. Even though, arithmetic operations can be done in terms
of polynomials. But comparison of algebraic numbers, a central problem in exact geo-
metric computing, cannot be done easily without approximating them. Operating only

with the polynomials defining algebraic numbers is in general not sufficient to compare
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algebraic numbers. Only in cases where approximation do not suffice, it is necessary to
fall back to polynomial operations.

Algebraic numbers can be approximated in various ways. In exact computing, ap-
proximation is accomplished by isolation. This technique consists, in enclosing every
root of a polynomial inside a real interval, in order to certify computations. Each in-
terval contains one and only one root of the polynomial. Once isolated, each algebraic
number can be approximated as much as desired, using one of the many refinement
techniques. Today, the algorithms used for real root isolation can be classified in two
groups: those based on the Sturm sequences and those based on the Descartes’ rule of
signs.

Descartes formulated, in the seventeenth century, a fundamental result in polyno-
mial solving [55]. He established an upper bound on the number of positive roots of
a polynomial. He observed that the difference between the number of sign changes
in the coefficients and the number of positive real roots of a polynomial is even and

nonnegative. This rule is formally stated as follows.

Definition 9. The sign of an element a € R is defined as sg(a) = 0 ifa = 0 and

a .
sg(a) = m otherwise.

Definition 10. The number of sign changes V(L) in the list L = (Iy, . .. ,1,) of elements
of R\ {0} is defined by induction as

V(ly) =0

V(lgy ... h1) + 1 if sg(lily) = —1

V(l(), ce ,lk) ==
V(l, .- L) otherwise.

The number of sign changes of a list M of elements of R, is defined as V(M) = V(L),

where L is the list obtained by removing all the zeroes from M.

Theorem 11 (Descartes’ rule of signs). Let a polynomial p(x) = Z?:o ax' € R[x], V(p)
the number of sign changes in the list (ay, . . . , a;) and pos( p) the number of positive roots

of p, counted with multiplicities. Then, pos(p) < V(p) and V(p) — pos(p) is even.
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Though Descartes’ rule of signs only gives the exact number of roots when the
difference is zero or one, it is of vital importance for root isolation.

Fourier’s theorem [77, 78] introduced the Fourier sequence and, in 1829, Sturm re-
placed them with the Sturm series and used them to conceive the first root isolation
method [123]. This algorithm computes a signed polynomial remainder sequence, eval-
uating it over the endpoints of the intervals. Based on Budan’s theorem [33], Vincent
presented in 1836 the continued fractions method [160]. This method computes the con-
tinued fraction expansion for each real root of the polynomial. Uspensky [158] extended
Vincent’s method in 1948. Based on Descartes’ rule and in Vincent’s theorem, Collins
and Akritas [43] presented a faster version of Uspenky’s algorithm. Many variations of
this method were presented, but Rouillier and Zimmermann proved in 2004 that all of
these were in fact instances of a generic algorithm [141]. They described the existing
methods using a unified framework, and presented an algorithm which is optimal in
memory usage, and does not perform more computations than other algorithms based
on Descartes’ rule of signs. Due to its memory optimality and its practical performance,
this algorithm is the one used in this thesis to perform isolation of univariate polyno-
mial roots (Sturm sequences have a lower complexity bound in the worst case, but in
practice Descartes’ algorithm tends to perform better).

A generic Descartes’ algorithm can be seen as a recursive subdivision in intervals of
the real axis. Each interval is checked for the presence of roots. If there are no roots in
the interval, it is thrown away. If there is exactly one root, the interval is output since
it is one isolating interval for a root. If there is an uncertain number of roots in the
interval, this procedure of subdivision is applied recursively. This process ends when
there are no more intervals in the real axis that contain an uncertain number of roots.
The output of the algorithm is a list of isolating intervals, each one containing exactly
one root of the input polynomial.

Note that Descartes’ rule of signs in Theorem 11 counts the roots with multiplici-
ties. In the case of an interval containing a multiple root, the rule of signs will fail to
assert that there is only one (multiple) root. Then, before applying a Descartes-based

algorithm, it will be necessary to compute the square-free part of the polynomial, that is,
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to eliminate the multiple roots of the polynomial. The square-free part of a polynomial

wd(P.P) d(f,’ Py Thus we do not lose generality by requiring that

the input polynomial is square-free.

P is computed as sfp(P) =

To check the presence of roots of a square-free polynomial fin a given interval us-
ing the Descartes’ rule of signs, f is transformed into another polynomial g having as
many roots in the positive real axis as f'in the given interval. Thus to find all the roots
of f, it would be first necessary to find an interval containing all the roots of the poly-
nomial, that is, lower and upper bounds to polynomial roots. There are many methods
to compute such bounds on the values of roots. For instance, being m the maximum
absolute value of polynomial’s coefficients, the interval [—m, m| contains all the roots
of the polynomial. Finer bounds also exist, see [138]. Once found an interval bounding

all the roots, the polynomial transformations that are applied are the following.

Definition 12. Let P € R(x), deg(P) the degree of P and ¢ € R. The transformations R,
H. and T, are defined as follows:

The transformation H,_,T, maps the interval ]0, 1[ to the interval ]a, b[, that is,
the polynomial g(x) = H,_,T,(f(x)) has as many roots in |0, 1| as f has in |a, b|.
Analogously, T\RH,,_,T, maps the positive real axis to the interval |0, 1[. The objective
of algorithms based on Descartes’ rule of signs is to divide the real axis in intervals,
such that each interval has exactly zero or one root. The interval division of the real
axis spans a tree, where each node is an interval and its siblings are its subintervals.
Different methods construct this tree using different strategies. The reader is referred
to [141] for details on the algorithms.

Our final consideration about univariate polynomial solving is related to the re-

covering of roots of the original polynomial system. The output of the root isolation
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algorithms is a list of isolating intervals. According to the strategy adopted in this thesis
to solve polynomial systems, the roots are plugged in the RUR, in order to obtain the
solutions of the original system. Plugging intervals in the RUR means that the evalua-
tion of the RUR is done with interval arithmetic. Thus, each component of the solution
of the original system will thus be, in general, a box containing the solution. It may
happen that two boxes containing solutions of the same system overlap. Each one is
certified to contain a different solution, but they are usually expanded by interval arith-
metic. Thus they need to be refined, by refining the univariate isolating intervals which

were plugged in the equations of the RUR, and evaluating the RUR again.
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Chapter 3

Computation of the Topology of

Planar Algebraic Curves

A single curve, drawn in the manner of the curve of
prices of cotton, describes all that the ear can
possibly hear as the result of the most complicated
musical performance.... That to my mind is a

wonderful proof of the potency of mathematics.
Sir William Thompson (Lord Kelvin) [154]

This chapter presents an algorithm aimed to determine the topology of algebraic
curves in the plane. Moreover, it gives geometrical information on critical points, cru-
cial in applications such as arrangement computation. A challenge is to compute ef-
ficiently this information for the given coordinate system even if the curve is not in
generic position.

Previous methods based on the cylindrical algebraic decomposition [3, 7, 8, 28, 56,
61, 86] use sub-resultant sequences and computations with polynomials with algebraic
coefficients. A novelty of the proposed approach is to replace these tools by Grobner
basis computations and isolation with rational univariate representations. This has the

advantage of avoiding computations with polynomials with algebraic coefficients, even
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in non-generic positions. The algorithm isolates critical points in boxes and computes
a decomposition of the plane by rectangular boxes. This decomposition also induces a
new approach for computing an arrangement of polylines isotopic to the input curve.

The algorithm introduced in this chapter is the result of a long research project that
started in 2007 and involved several people, including two postdoctoral fellows in the
early stages of the project. These results were presented in 2009, during the annual
Symposium on Computational Geometry [42], and has been accepted for publication in
the journal Mathematics for Computer Science [40].

We also discuss in this chapter (Section 3.4) the problem of the embedding of the
vertices of the output graph on a grid. Using a result from Milenkovic and Nackman,

we show that this problem is in NP.

3.1 Introduction

Let € be a real algebraic plane curve defined in a Cartesian coordinate system by a bi-
variate polynomial f with rational coefficients, i.e, € = {(x,y) € R* : f(x,y) = 0}
with f € Q[x, y]. We consider the problem of computing the topology of & with addi-
tional geometric information associated to the given coordinate system. By computing
the topology of €, we mean to compute an arrangement of polylines &, that is topo-
logically equivalent to & (see Figure 3.1). Note that this arrangement of polylines € is
often identified to a graph embedded in the plane, where the vertices can be placed at
infinity and the edges are straight line segments. We first define formally what we mean
by topologically equivalent, before discussing the additional geometric information we
consider and their relevance.

Two curves € and & of the Euclidean plane are said to be (ambient) isotopic if
there exists a continuous map F : R* X [0,1] — R?, such that F;, = F(-,¢) is a
homeomorphism for any ¢ € [0, 1], Fy is the identity of R* and F,(%¥) = €. This
notion formalizes the idea that one can deform one curve to the other by a deformation

of the whole plane. Isotopy is stronger than homeomorphy, for instance, (i) two nested
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Figure 3.1: Curve of equation 16 x> — 20x> + 5x — 4y + 3y = 0 plotted in MAPLE and
its isotopic graph computed with our algorithm.

loops and (ii) two non-nested loops are not isotopic.?

We now discuss the relevance of adding geometric information to the graph &.
From the topological point of view, the graph & must contain vertices that correspond to
self-intersections and isolated points of the curve. However, in order to avoid separating
such relevant points from other singularities (e.g., cusps), all singular points of €, that
is, points at which the tangent is not well defined, are chosen to be vertices of the graph.

While singular points are needed for computing the topology of a curve, the ex-
treme points of a curve are also very important for representing its geometry. Precisely,
the extreme points of € for a particular direction, say the direction of the x-axis, are the
non-singular points of € at which the tangent line is vertical (i.e., parallel to the y-axis);
the extreme points in the direction of the x-axis are called x-extreme. These extreme
points are crucial for various applications and, in particular, for computing arrange-
ments of curves by a standard sweep-line approach [60]. Of course, one can theoreti-

cally compute an arrangement of algebraic curves by computing the topology of their

*Note that in two dimensions, the notion of ambient isotopy is equivalent to the notion of ambient homeomorphy, that is,
to the existence of an orientation preserving homeomorphism of R? that maps % onto € [21, Thm. 4.4 p.161].
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product. However, this approach is obviously highly inefficient compared to comput-
ing the topology of each input curve and, only then, computing the arrangement of all
the curves with a sweep-line algorithm. Note that the x-extreme and singular points
of € form together the x-critical points of the curve (the x-coordinates of these points
are exactly the positions of a vertical sweep line at which there may be a change in the
number of intersection points with &).

It is thus useful to require that all the x-critical points of € are vertices of the graph
we want to compute. To our knowledge, almost all methods for computing the topology
of a curve compute the critical points of the curve and associate corresponding vertices
in the graph. (Refer to [3, 36] for recent subdivision methods that avoid the computation
of non-singular critical points.) However, it should be stressed that almost all methods
do not necessarily compute the critical points for the specified x-direction. Indeed,
when the curve is not in generic position, that is, if two x-critical points have the same
x-coordinate or if the curve admits a vertical asymptote, most algorithms shear the curve
so that the resulting curve is in generic position. This is, however, an issue for several
reasons. First, determining whether a curve is in generic position is not a trivial task
and it is time consuming [84, 144]. Second, if one wants to compute arrangements of
algebraic curves with a sweep-line approach, the extreme points of all the curves have
to be computed for the same direction. Finally, if the coordinate system is sheared, the
polynomial of the initial curve is transformed into a dense polynomial, which slows
down, in practice, the computation of the critical points.

In this paper, given a curve € which is not necessarily in generic position, we aim
at computing efficiently its topology, including all the critical points for the specified
x-direction. In other words, we want to compute an arrangement of polylines that is
isotopic to € and whose vertices include the x-critical points of €. In terms of efficiency,
our primary goal is the practical efficiency rather than worst-case complexity. In par-
ticular, we want to avoid computations with non-rational algebraic numbers or, equiva-
lently in this context, algebraic computations such as Sturm sequences, Sturm-Habicht
sequences (which are a generalization of Sturm sequences, with better specialization

properties [85]), and sub-resultant sequences.
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After a brief overview of our algorithm, we review below previous work on the

problem and then present our contributions.

3.1.1 Previous Work

There have been many papers addressing the problem of computing the topology of
algebraic plane curves (or closely related problems) defined by a bivariate polynomial
with rational coefficients [3, 8, 47, 13, 61, 75, 84, 86, 97, 126, 143, 28, 7, 120, 151, 56].
Most of the algorithms assume generic position for the input curve. As mentioned
above, this is without loss of generality since we can always shear a curve into generic
position [144, 84] but this has a substantial negative impact on the time computation.

All these algorithms perform the following phases, depicted in Figure 3.1.1.

(i) Project the x-critical points of the curve on the x-axis using sub-resultants se-
quences, and isolate the real roots of the resulting univariate polynomial in x.

This gives the x-coordinates of all the x-critical points.

(ii) For each such value x;, compute the intersection points between the curve € and

the vertical line x = x;.

(iii) Through each of these points, determine the number of branches of € coming from

the left and going to the right.
(iv) Connect all these points appropriately.

The main difficulty in all these algorithms is to compute efficiently all the critical
points in phase ii because the x-critical values in phase i are, a priori, non-rational. Thus
computing the corresponding y-coordinates in phase ii amounts, in general, to solving
a univariate polynomial with non-rational coefficients and at least a multiple root (cor-
responding to the critical point). To this end, most algorithms [8, 47, 13, 75, 84, 86, 97,
126, 143, 7, 151] rely heavily on computations with real algebraic numbers, Sturm se-

quences or sub-resultant sequences. Most implementations of these algorithms, despite
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9% '

(i) projection (ii) lifting
——
(iii) intermediate fibers (iv) adjacencies

Figure 3.2: The four usual phases of Cylindrical Algebraic Decomposition methods.
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good theoretical bounds, have an arguable performance. However, handling cleverly
algebraic expressions may yield algorithms with very good performances, as in the case
of ca, the algorithm presented in [61] (see also [60, 64] for related results).

An approach using a variant of sub-resultant sequences for computing the critical
points in phase ii was proposed by Hong [97]. He computed this way (xy-parallel) boxes
with rational endpoints and separating the critical points. Counting the branches in
phase iii can then be done by intersecting the boundary of the boxes with the curve
which only involves univariate polynomials with rational coefficients. This approach,
see also [7, 120, 28] and the software package cAD2D [27, 96], does not assume that the
curve is in generic position.

In a more recent paper, Gonzalez-Vega and Necula [86] use Sturm-Habicht se-
quences which allow them to express the y-coordinate of each critical point as a ra-
tional function of its x-coordinate. They implemented their algorithm in MAPLE with
symbolic methods modulo the fact that the algebraic coefficients of the polynomials in
phase ii are approximated in fixed-precision arithmetic. The algorithm takes as a pa-
rameter the initial precision for the floating-point arithmetic and recursively increases
the precision. This approach is however not certified in the case where the curve is
not in generic position because the algorithm checks for the equality of pairs of poly-
nomials whose coefficients are evaluated. This initial precision can be selected by the
user, but no guarantee is given that it is leads to the correct result. Hence their im-
plementation, ToP, is not completely certified, in particular in non-generic positions,
and incorrect results have been reported in [147] when critical points are crowded and
the floating-point precision is not large enough. Note that there exists one variant of
Gonzalez-Vega and Necula algorithm that handles, without shearing, curves that are
not in generic position [126]. This approach, however, requires substantial additional
time-consuming symbolic computations such as computing Sturm sequences.

More recently, Seidel and Wolpert [147] presented an alternate approach for com-
puting the critical points avoiding most costly algebraic computations but to the ex-
pense of computing several projections of the critical points. They project, in phase i,

the x-critical points on both x and y-axes and also on a third random axis. After isolat-
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ing the roots on each axis, they can recover (xy-parallel) boxes with rational endpoints
that contain each exactly one critical point. From there, all computations only involve
rational numbers but they, however, still need to compute Sturm-Habicht sequences
for refining the boxes containing the singular points until each box interests only the
branches of the curve incident to the singular point. Their approach assumes that the
curve is in generic position by a pre-processing phase in which the curve is sheared if
needed. They also present a MAPLE implementation, INSULATE, which is an implemen-
tation of a certified algorithm for curves in arbitrary positions. Note that their imple-
mentation does not report x-extreme points in the original system when the curved is
sheared.

Even more recently, Eigenwillig et al.[61] (see also [103]) presented a variant of
Gonzalez-Vega and Necula approach, in which the roots of the polynomials with non-
rational coefficients are efficiently isolated using an implementation of a variant of an
interval-based Descartes algorithm [62]. This variant, as [86], does not assume that the
curve is in generic position but detects such configurations online. More precisely, if the
bit-stream Descartes algorithm is, in a sense, unlucky then, rather than refining down to
a separation bound (e.g. [35, 114]), the algorithm shears the input curve and starts again.
Note that this approach still computes Sturm-Habicht sequences for determining the
polynomials appearing in phase ii and the multiplicity of its multiple root. Also, if the
curve is sheared to a (x',y’) coordinate system, they compute extreme points both for
the x'-direction and the direction corresponding to the x-axis. This approach has been
implemented in C++ and is an implementation of a certified algorithm that handles
curves that are not necessarily in generic positions and that reports x-extreme points
for the original coordinate system.

Note finally that another approach that avoids expensive algebraic computations
is to compute the critical or singular points using subdivision methods. These methods
consist of subdividing the plane in sections, and iteratively subdivide the interesting sec-
tions. Different methods have different criteria to choose the regions to be subdivided,
and how to subdivide them. Figure 3.3 shows a typical subdivision of the plane, consid-

ering in this case a nonsingular curve used as example in [36]. The major drawback of
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these methods is that, in order to certify the results, the subdivision has, in general, to
reach a separation bound (certification can also be achieved by solving algebraic sys-
tems by other means). It follows that, if no certification is required, these methods are
very fast in practice, however, they can become very slow on difficult instances when
certification is required. To our knowledge, no implementation of such a certified algo-
rithm is available. Subdivision methods are the plane equivalent to the marching cubes
methods, introduced by Lorensen and Cline in 1987. Later, Snyder [149] and Plantinga
and Vegter [135] formulated some subdivision algorithms. See [3] and [36] for detailed

description of some modern subdivision methods.

3.1.2 Novelty of the algorithm

We present an algorithm for computing the topology of an algebraic plane curve which
is possibly in non-generic position. The algorithm handles curves in non-generic posi-
tions in the Cartesian coordinate system in which they are defined. In particular, the
algorithm never shears the coordinate system, which avoids the associated extra costs
discussed above.

Another specificity of our approach is that we succeed to avoid, in all cases, the com-
putation of sub-resultant sequences and computations with algebraic numbers. Instead,
we compute, in particular, Grobner bases and rational univariate representations. We
show in the experiments in Chapter 4 the benefit of our choice when computing with
non-generic curves. Furthermore, the philosophy of our approach is to avoid, as much
as possible, computations that are time consuming in practice. This leads to various al-
gorithmic choices such as avoiding the computation of y-critical points and allowing the
curve to intersect the top and bottom sides of boxes isolating x-extreme points (which
avoids substantial subdivisions since the tangent at an extreme point is vertical).

The novelty of our algorithm mainly relies upon the use of three new ingredients for
this problem. First, we use some of the state-of-the-art techniques to isolate the roots
of bivariate systems, i.e., we use (i) Grobner basis computations [74], (ii) Rational Uni-

variate Representations (RUR) [140] which represent the roots of the system as rational
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Figure 3.3: Typical behavior of subdivision methods.
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functions of the roots of a univariate polynomial, and (iii) a subdivision technique based
on Descartes’ rule of signs (and filtered with interval arithmetic for efficiency) for iso-
lating the roots of the univariate polynomials [141, 63, 70]. Even though this approach
is well known for system solving, it was not used before for computing the topology of
algebraic curves.

Second, we compute and use the multiplicities in fibers (see Definition 13) of critical
points to compute the topology at singular points and to determine the connections
at extreme points. For extreme points, we get these multiplicities by the RUR and a
special case of a formula of Teissier [153]. For singular points, we solve the system of
singular points with additional constraints. Note that the overall method to compute the
topology at critical points is not new, it is described in full details in [147], see also for
example [7, 97, 28, 120, 126, 3] for closely related approaches for curves in non-generic
position. The novelty appears in the way we compute multiplicities in this context; once
again we avoid computing sub-resultant sequences.

Third, we present a variant of the standard combinatorial part of the algorithm for
computing the topology. We compute a decomposition of the plane (which is not a
cylindrical algebraic decomposition) by rectangular boxes containing at most one crit-
ical point. Since we allow crossings on the top and bottom of extreme point boxes
to avoid costly refinement of boxes, the connection is not always straightforward. To
achieve the connection near such points, we use the multiplicities in fibers of extreme
points. Note that one advantage of this variant is that, even when the curve is in generic
position, the algorithm does not require to refine these boxes until they do not overlap
in x.

With these tools, our algorithm for computing an arrangement of polylines ¥ iso-

topic to a curve € can be summarized as follows (see Section 3.3 for details).

(i) Isolate the x-critical points in two dimensional rectangles, called critical boxes,
using algebraic tools (Grobner bases, RUR and Descartes’ algorithm). Compute
also the multiplicity of the critical points in their fibers. Refine the critical boxes

until the restriction of € to each critical box is guaranteed to be a set of x-monotone
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non-crossing arcs connecting the critical point to a point on the boundary of the

box.

(i) Compute a rectangular decomposition of the plane by extending the vertical sides
of the critical boxes either to infinity or to the first encountered critical box (see
Figure 3.4). (Note that, for visualization purposes, a geometrically accurate picture
of € can be easily obtained by further subdividing vertically the non-critical rect-
angles of the decomposition.) For every edge of this decomposition, determine
its intersection with @, that is, determine separating intervals each containing

exactly one intersection point.

(iii) The vertices of & consist of the x-critical points of & and intersections of € with
the edges of the rectangular decomposition. For every critical box of &, connect
(with a straight line segment) the critical vertex to the vertices on the boundary
of the box. For every other rectangle of the decomposition, connect the vertices
on its boundary using, if needed, the multiplicity of the extreme points in the

neighboring rectangles combined with a greedy approach.

The output of the algorithm is an arrangement of polylines represented by the embedded
graph €. The vertices of & hence represent points whose coordinates are, in general,
non-rational. Associated to each vertex, the algorithm also computes a box containing
the represented point (the critical box for a critical point or the separating interval
determined in Step ii for an intersection between the curve and a wall of the rectangular
decomposition). These boxes can be refined, and any choice of point (for instance, with

rational coordinates) in these boxes gives a graph isotopic to the curve.

3.2 Notation and definitions

The main algebraic tools, related to polynomial system solving, were already introduced
in Chapter 2. This section introduces some concepts which are needed to understand

the algorithm, as well as notation used along this chapter.
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-

Figure 3.4: Example of rectangle decomposition of the plane induced by the isolating
boxes (critical and asymptotes). There are boxes for the asymptote, the singular point,
and the three extreme points, two of them with even multiplicities and one with odd
multiplicity.

Let &, also denoted &, be a real algebraic plane curve defined by a bivariate polyno-
mial fin Q[x, y]. Since the geometry of the curve is not modified by taking the square-
free part of f, we can assume without loss of generality that fis square-free. Note that &
may consist of several algebraic components, that is, f is not necessarily irreducible in
R[x, y]. The algebraic components of the curve that are vertical lines (i.e., lines parallel
to the y-axis) can be easily computed since their abscissa correspond to the real roots
of the polynomial in x obtained as the gcd of the coefficients of f seen as a polynomial
iny.

Partial derivatives are denoted with subscripts: for instance, f, denotes the deriva-
tive of f with respect to x and fx (sometimes also f;) denotes the k™ derivative with
respect to y. A pointp = (a, ) € C* is called x-critical if f(p) = f,(p) = 0, singular
if f(p) = f.(p) = fy(p) = 0, and x-extreme if f(p) :fy(p) = 0andf,(p) # 0 (ie, it
is x-critical and non-singular). Similarly are defined y-critical and y-extreme points. As

x-critical and x-extreme points are more often used in the following, we often simply
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refer to them as critical and extreme points.

As mentioned in Chapter 2, the ideal generated by polynomials Py, ..., P; is de-
noted (Py,...P;, ). In the following, we often identify the ideal and the system of
equations {P; = 0, ..., P; = 0} (or any equivalent system induced by a set of gener-
ators of the ideal). We consider, in particular, the ideals I, = (/. f,) and I, = (f, . /,);
their roots are, respectively, the x-critical and singular points of 6.

We now recall the notion of multiplicity of the roots of an ideal, then we state two
lemmas using this notion for studying the local topology at critical points. Geomet-
rically, the notion of multiplicity of intersection of two regular curves is intuitive. If
the intersection is transverse, the multiplicity is one; otherwise, it is greater than one
and it measures the level of degeneracy of the tangential contact between the curves.
Defining the multiplicity of the intersection of two curves at a point that is singular for
one of them (or possibly both) is more involved and an abstract and general concept of

multiplicity in an ideal is needed.

Definition 13 ([49] §4.2). Let be an ideal of Q[x, y] and denote @ the algebraic closure of
Q. To each zero (a, ) of I corresponds a local ring (@[x, y] /1) (a,p) obtained by localizing
the ring @[x, y|/I at the maximal ideal 1(x — a,y — ). When this local ring is finite
dimensional as Q-vector space, we say that (a, j3) is an isolated zero of I and this dimension
is called the multiplicity of (a, ) as a zero of L

Letf,g € Q|x,y| be such that the intersection of G and 6, in C? contains a zero-
dimensional component equal to point p = (a, ). Then (a, ) is an isolated zero of
(f, g) and its multiplicity, denoted by Int(f, g, p), is called the intersection multiplicity
of the two curves at this point.

We call a fiber a vertical line of equation x = a. For a pointp = (a, 8) on the curve
€, we call the multiplicity of B in the univariate polynomial f(a,y) the multiplicity of p
in its fiber and denote it as mult( (@, y), f3).

The next lemma, due to Teissier [153], relates the multiplicity of a point in a fiber
with the multiplicity in the critical ideal /.. We will use it to deduce the multiplicity in

the fiber knowing multiplicity in the ideal. More precisely, we will use the multiplicity
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in fibers of extreme points during the connection step of our algorithm.

Lemma 14 ([153][14, Lemma D.3.4 p.314]). For an x-extreme pointp = (a, ) of f, one

has

mult( f(a, y), f) = Int(f,f,,p) + 1. (3.1)

To compute the local topology of the curve at a singular point, we aim at isolating
the singular point in a box so that the intersection of its border and the curve determines
the topology. Indeed for a small enough box, the topology is given by the connection of
the singular point with all the intersections on the border. So the box shall avoid parts of
the curve not connected to the singular point. Knowing the multiplicity of the singular
point in the fiber enables to isolate the singular point from other crossings of the curve
in this fiber. Requiring in addition that intersections with the curve only occur on the

left or right sides of the box leads to the following.

Lemma 15 ([147]). Letp = (a, ) be a real singular point of the curve € of multiplicity
k in its fiber. Let B be a box satisfying

(i) B contains p and no other x-critical point,
(ii) the function fy does not vanish on B, and
(iii) the curve G; crosses the border of B only on the left or the right sides.

Then the topology of the curve in B is given by connecting the singular point with all the

intersections on the border.

The proof of lemma 15 is based on a recursive application of the mean value theorem
stating that the roots of the derivative of a polynomial P lie between those of P.

To conclude this section, it will be described how the tools introduced in Chapter 2
are used in the algorithm, to find roots of univariate and bivariate ideals.

In many places of the algorithm, it is necessary to count and/or isolate the real roots
of univariate polynomials, possibly in a given interval. This is, in particular, needed for

computing the intersections between % and the sides of the boxes isolating the critical
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points. Only polynomials with rational coefficients will be considered. The square-free
part of the considered polynomials is first computed. The real roots are then isolated
using recursive subdivision and the Descartes’ rule of signs (see [63, 70, 141] for details).

It is needed to represent solutions of zero-dimensional ideals depending on two
variables by boxes containing them. The rational univariate representation of the roots,
introduced in Chapter 2, is used. This can be viewed as a univariate equivalent of the
studied ideal. The key feature of this RUR is the ability to isolate solutions in easily

refinable boxes and to compute multiplicities.

3.3 The algorithm

Neither the algorithm nor its implementation require assumptions about the existence
of vertical components of the curve, but the processing of vertical lines is rather tech-
nical and, for clarity, its description will be postponed to Section 3.3.2. In other words,
we first present our algorithm with the assumption that the input curve has no vertical
components. A proof of correctness of the algorithm is presented in Section 3.3.3 and

the algorithm is illustrated on an example in Section 3.3.4.

3.3.1 Curve without vertical lines

The input of this algorithm is, as discussed in Section 3.2, a real curve & without vertical
lines and defined by a square-free polynomial f € Q[x,y]. In a few words, the algo-
rithm first focuses on critical points, their rational univariate representations enable to
compute multiplicities and boxes isolating each point with known topology inside the
box. Then a sweep method computes a rectangular decomposition of the plane induced
by the boxes of critical points. Eventually the connection is processed in all rectangles
with a greedy method using multiplicities in fibers for extreme points. The algorithm

is detailed in six steps.

Step 1. Isolating boxes of the singular points and of the x-extreme points. As a gen-

eral practical rule, the smaller the number of solutions of a system, the easier it
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is to work with. Hence we split the system of critical points into the system of
singular points and the system of extreme points. The system of singular points
is the one of critical with in addition the equation f, = 0. The system of ex-
treme points, denoted /,, is computed by saturation. Indeed, the extreme points
are critical for which f, # 0, thus we add to the critical system the equation
1 — uf, = 0 with a new variable « that we eliminate afterwards. We then com-
pute the RURs of these systems /; and /, and isolating boxes for the solutions
(see Lemma 23 in Section 6.1.3 for details on interval analysis). We may need

to refine the boxes of extreme and singular points to avoid overlaps.

Step 2. Multiplicities of critical points in fibers. For extreme points, we use the Teissier
formula: the multiplicity of an extreme point in /. is the same than in /, because
precisely f, does not vanish at these points. The multiplicity in /, is given by the
RUR, and hence the multiplicity of an extreme point in its fiber is this number

plus one according to the equation of Lemma 14.

For singular points, we use the definition of univariate multiplicity, namely the
smallest integer k such that the k™ derivative no longer vanishes. Let I, ; be the
system of singular points with in addition the equations f; = 0 for i from 2
to k. Hence we solve, for k increasing from 2, the systems /; ; until it has no
solutions. At each step, a singular point which was a solution of I, ;_; but is no
longer solution of /; ; has its multiplicity in fiber equal to k.* Note that the data
of the systems I, ; will not be used later, they are only useful for the multiplicity
computation. Theoretically, the complexity of solving these systems is analyzed
in Chapter 6. In practice, as k increases, the systems have less and less solutions
and hence tend to be easier to solve. Note also that the number of systems to

solve is the highest multiplicity of the singular points of the curve.

Step 3. Refinement of the isolating boxes of the x-extreme points. Consider each such

“We also refer the interested reader to a more elegant way to compute the multiplicity in fibers with the Teissier for-
mula [41]. Experimentally, it appears that this alternative was less efficient because even if it usually needs to work with less
systems, these systems are larger (i.e. with more solutions).
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Step 4.

Step 5.

43

box, B, in turn. For each vertical or horizontal side of B, isolate its intersections
with € and refine the box until there are two intersection points. We further
refine until there is at most one crossing on the top (resp. bottom) side of B.
Note that, unlike comparable algorithms, we do not require that & intersects
the boundary of B on its vertical sides. This is important in practice because,
since the curve has a vertical tangent at an x-extreme point, refining until the

curve intersects the vertical side is time consuming.

Refinement of the isolating boxes of the singular points. We refine these
boxes exactly as in [147] (see Lemma 15) except for the way the multiplicity &
of each singular point in its fiber is computed. In [147], k is computed using
Sturm-Habicht sequences under the assumption of generic position while we
deduce k as explained in Step 2. Then, as in [147], every box is refined until the
evaluation of fx with interval arithmetic does not contain 0 (see Chapter 6 for
details on interval analysis). Further refine the x-coordinates of the box until €

only intersects the vertical boundary of the box.

Vertical asymptotes. To determine the topology of a curve, it is required to
know how many branches are going to infinity. However, it is not required,
in general, to know which branch is related to which asymptote. Nevertheless,
for our next connection step, we need to determine for each vertical asymptote

which branches are related to it and if they are on its left or its right.

The x-coordinates of vertical asymptotes are the roots of the leading coefficient
V,(x) of the polynomial f(x, y) considered as a polynomial in y. To deal with an
asymptote x = a, the idea is, informally, to isolate the point (a, oo) in a box
la,b] X [M, ... 00,...,—M]| whose vertical sides do not intersect the curve
€. Moreover, we want that every branch that intersects a horizontal side of
the box is a branch going to £00 with this asymptote (see Figure 3.4). First,
compute an upper bound M, on the absolute value of the y-coordinates of the

y-critical points (this is of course done without computing these critical points,
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Step 6.

but only the discriminant with respect to y and an upper bound of the roots of
this univariate polynomial). Compute also a bound M, on the absolute value of
the y-coordinates of the x-critical points (for which we have already computed
boxes). Isolate the roots of the polynomial V,, hence each root a has an isolating
interval |a, b]. Substitute x = a (resp. x = b) in fand deduce an upper bound,
M, on the absolute value of the y-coordinates of the intersection of € andx = a
(resp. x = b). Set M = max(M;, M,, M,). Then, a branch crossing the segment
Ja, b[X M (resp. |a, b[x — M) goes to +00 (resp. —00) with asymptote x = a.
Finally, we determine whether a given branch is to the left or to the right of the
asymptote by comparing the x-coordinates of the asymptote and the crossing

point.

Connections. For simplicity, all the boxes computed above are called critical
boxes and the points at infinity on vertical asymptotes are also called critical.
First compute, with a sweep-line algorithm, the vertical rectangular decompo-
sition obtained by extending the vertical sides of the critical boxes either to
infinity or to the first encountered critical box (see Figure 3.4). On each of the
edges of the decomposition, isolate the intersections with €.” Create vertices in
the graph corresponding to these intersection points and to the critical points.
For describing the arcs connecting these vertices in the graph, we assimilate, for
simplicity, the points and the graph vertices. Inside each critical box, the topol-
ogy has been made as simple as possible: one has just to connect the critical

point to the points on the boundary of the box.

There are several approaches to do the connections in the other rectangles of
the decomposition. The usual and conceptually simplest is to refine boxes of
extreme points so as to avoid top and bottom crossings; then, the number of
left and right crossings in rectangles always match and the connection is one-

to-one. Since we allow some top/bottom crossings for efficiency reasons (see

°For simplicity, we use refinements to ensure that the curve never intersects an endpoint of an edge, that is, a corner of

a rectangle. Note also that the intersections are already isolated on the sides of the critical boxes; an isolating interval may;,

however, need to be refined if it contains a vertex of the rectangle decomposition.
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Figure 3.5: Possible connections involving extreme points depending on their multiplic-

ities.
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above), this straightforward method does not apply. Another approach (see [3,
143]) is to compute the sign of the slope of the tangent to the curve at the
top/bottom crossings (this yields whether the top/bottom crossing should be
connected to vertex to the right or to the left of its rectangle). We however

want to avoid such additional computations.

For computing the connections in the non-critical rectangles of the decomposi-
tion, we use the multiplicities in fibers of the extreme points and a greedy algo-
rithm. The geometric meaning of the parity of this multiplicity is the following:
if it is even, the curve makes a U-turn at the extreme point, else it is odd and
the curve is x-monotone in the neighborhood of the extreme point. Still, there
are some difficulties for connecting the vertices, as illustrated on Figure 3.5: on
the left is the information we may have on the crossings for two extreme points
with x-overlapping boxes; the second and third drawings are two possible con-
nections in the middle rectangle for different parities of the multiplicities. To
distinguish between these two situations, we compute the connections in rect-
angles starting from the top such that the connections in a rectangle below a
critical box are computed once the connections in all the rectangles above the

box are done.
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The connections can easily be computed as follows. First, if there are vertical
asymptotes, we have already determined in Step 5 whether a point that lies on
the boundary of an asymptote box belongs to a branch that lies to the left or
to the right of its asymptote; recall that such a point lies on a horizontal side
of the box. Consider a rectangle R of the decomposition that is adjacent to an
asymptote box, say below it (the case where it is above is similar); note that the
top wall of R is a subset of the bottom wall of the asymptote box. The vertices
on the top wall of R split into k; vertices that are left of the asymptote and &,
vertices that are right of it. Each of the k; vertices necessarily connects to a
vertex on the left or bottom side of R. Moreover, among these k; vertices, the
i-th vertex starting from the left, connects to the i-th vertex on the left-bottom
sides of R starting from the top. Similarly, among these k, vertices, the i-th
vertex starting from the right, connects to the i-th vertex on the right-bottom

sides of R starting from the top (see Figure 3.4).

Once these connections for asymptotes are done, due to requirements on ex-
treme point boxes, there is at most one, not already connected, vertex on the
top or bottom of any rectangle. The problem now is to determine if such a vertex
should be connected to a vertex on the right or on the left side of the rectangle.
The connections in the unbounded rectangles above critical boxes are straight-
forward: the ones between the vertices on the two vertical sides are in one-to-
one correspondence, starting from infinity, and if a vertex remains on a vertical
side, then there is a vertex on the horizontal side which it has to be connected
with. Now, once all the connections have been computed in the rectangle(s)
above the box of an extreme point, these connections and the multiplicity of
the extreme point allow us to compute the connections in the rectangle(s) be-
low, see Figure 3.5. Indeed, if there is a vertex on the bottom side of the critical
box, then it lies on the top side of a rectangle. Inside this rectangle, the vertex
is connected to the topmost vertex on the left or on the right side, depending

on the multiplicity of the extreme point and on the side of the connection of the
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branch above the extreme point. The other connections in this rectangle and in
the other rectangles below the critical box, if any, are performed similarly as for
unbounded rectangles. Note that the two unbounded rectangles (the leftmost
and the rightmost) that are vertical half-planes are treated separately: for each

vertex on the vertical side we associate an arc that goes to infinity.

The output of the algorithm is a graph isotopic to the curve. In addition, x-extreme
points, singular points and vertical asymptotes are identified and their position is ap-

proximated by boxes, hence refinable to any desired precision.

3.3.2 Curve with vertical lines

It was assumed in the previous section that the curve € has no vertical line. In order to
generalize the algorithm, it is explained now how to calculate the topology of a curve
@ defined by a rational bivariate polynomial F(x,y) = 0, which has vertical lines. The
idea is first to process the curve without its vertical lines, then study the intersections

of this curve with the vertical lines. Technically, these two processings are intertwined.

Step V1. The vertical lines have as x-coordinates the roots of V,, the gcd of the coef-
ficients of F seen as a polynomial in y. V; is an univariate polynomial in x,
its roots are isolated (vertical lines can be thought of as vertical stripes). The
curve G with f = 5 which has no vertical line, is processed as explained

before, until Step 4 inlcluded.

Step V2. Intersections between 6 and the vertical lines generically occur on non-criti-
cal points of 6. Nevertheless, this may not always be the case and we need to
identify critical points of &; that also are on vertical lines. Solving the singular
and extreme ideals of &; with the additional polynomial V; enable to identify
which critical point of € is on which vertical line. Note that these points are

singular for &.

52



3.3. THE ALGORITHM

Step V3. New relevant points of € must be enclosed in boxes, and all boxes (old and
new) need to be refined again to meet the criteria of the connection step of the
former algorithm. In more details, the x-intervals of critical points of & and
vertical line stripes are refined until a vertical line stripe overlaps a critical

box if and only if this critical point is on the line.

Create new boxes, called vertical, that contain every point that is an intersec-
tion between a vertical line and 4 and that is not a critical point of 6. Refine
the extreme point boxes of & and vertical boxes until there is at most one

crossing with @y on top (and bottom).

Step V4. Then, Step 5 for vertical asymptotes of the previous algorithm is performed,

with the following modifications:
(i) for the computation of the bound M,, consider all vertical boxes in addi-
tion to critical boxes,

(ii) identify which vertical lines are also asymptotes, by computing the ged

of V;and V,,

(iii) refine then the stripes corresponding to vertical lines and asymptote
boxes, so that a vertical stripe, whose line is not an asymptote, does

not overlap any asymptote box, and
(iv) add crossing points on asymptote boxes whose asymptote is also a ver-

tical line.

Step V5. Finally, Step 6 of the previous algorithm performs the connection. The output

is a graph isotopic to the curve %;.

3.3.3 Correctness of the algorithm

All algebraic computations are certified, hence the only thing that has to be proved is

that the output graph & is isotopic to the input curve €. Our proof is constructive
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and elementary, we define the ambient isotopy F as follows. On the skeleton of the
rectangle decomposition F; is chosen to be the identity for any . It remains to define
F on each rectangle. In a rectangle that is not a critical box, € is a set of x-monotone
non-crossing arcs and & is a set of straight line segments connecting the same pairs of
points on the rectangle’s boundary, as € does. F| is defined on each section x = a by
mapping the points of € to that of & so that their ordering on x = a is preserved, and
by linear interpolation on the other points. F; is then defined by linear interpolation
F;, = t1d+(1 — t)F,. To handle critical boxes, note that once cut vertically at the
critical point, they behave like other rectangles (by Lemma 15).

3.3.4 Example

In this section, the algorithm is illustrated by an example. The chosen curve is f(x,y) =
vy — 6y*x + x* — 4y*x? + 2443, as in [86]. The numeric results shown in this section
were obtained with our implementation of this algorithm, which will be described in

Chapter 4.

Before starting, one has to eliminate from the curve the vertical components. These
vertical components are the ged of the coefficients of f seen as a univariate polynomial
in y. This ged is 1: the curve has no vertical components and the algorithm will behave

as in Section 3.3.1.

Step 1 of the algorithm calculates boxes for the critical points of the curve f. First,

the system of singular points I is solved.

I, = <f7fy7f;c>
= <y4 — 6y2x + X — 4yzx2 + 24x3, 4y3 — 12xy — 8yx2, —6y2 + 2x — 8y2x + 72x2>

The Grobner basis of the system /; with respect to the lexicographic ordering is

calculated, giving (3y* — x, xy, x*). The RUR of this basis is the following; recall that
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Figure 3.6: (a) Critical boxes of f. The small square at the origin contains the only sin-
gular point, p,. Each other rectangles contains one of the x-extreme points p,, . . . , p;.
(b) Rectangular decomposition of the plane induced by the critical boxes. (c) Topology
inside the critical boxes. (d) Graph isotopic to the curve.
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G(t
Go(t

,y = gzgg) for ¢ solution of F(¢) = 0,

~— =

the solutions of the system are (x =
F(r)=7, Go(t)=3, G(t)=0, Gy(t) =3t

As F has only one root, t = 0, the system /; of singular points has only one solution
p; = (0,0). Accordingly, our implementation reports that I, has only one root in the

box [0, 0] % [0, 0].

The system I, of extreme points is given by I, = <fafy, 1 — uf,); here the new
variable u is added, ensuring that f, 7 0 for any solution of the system (indeed if f, = 0
then 1 — uf, = 1 for any u in C). The system 1, is then

I, = <y4 —6yzx—|—x2 —4y2x2+24x3 , 4y3 —12xy— Syxz , 1—u ( —6y2—|—2x— 8y2x+72x2) > .

To solve this system, we compute a Grobner basis eliminating # and with lexicographical
ordering on the other variables, giving (72x2 + 4 — 35y* 4+ 99x, y® — 9xy + 4y, 3y’x +
2 — 13y* + 48x). The associated RUR is

F(r) = £ — 197 + 701, Go(t) = 1680 + 1201 — 13687,
Gy (1) = —70 + 143" — 11337, G, (1) = 912 — 6720

F has five real roots, and each one of them maps to a root of the system /,. The
software reports (small) boxes containing each one of these extreme points p,, . . ., p.
For clarity of the exposition, we consider enlarged versions of these critical boxes, as

shown in Figure 3.6 (a).

At this point, the isolating boxes of the extreme points are pairwise disjoint (and
similarly for the singular boxes if there were more than one) but nothing ensures that
the extreme boxes do not overlap with the singular boxes. The algorithm thus refine the
boxes (by refining the isolating intervals of the roots of polynomials F(¢) in the RURs
of I, and I;, and using interval arithmetic to obtain the refined 2D boxes) until all the

boxes are pairwise disjoint. In this example, no refinement is needed because the boxes
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do not overlap.

The fact that the solver found exact coordinates for some points, here p,, is actually
a difficulty because, for instance, the number of intersection points of the curve with the
boundary of a singular box does not yield the number of branches that are incident to

1 1

the singular point. Point boxes are thus enlarged, initially to [—ﬁ, @} X [—ﬁ, 1%} :

and refined until they intersect no other critical boxes. This yields a box for p; which is
[_L L] [_L L]

4096 4096 4096 40961 °

In Step 2, the algorithm calculates the multiplicities of the critical points in fibers.
For the singular point p,, it calculates the smallest integer k such that the k" derivative
does not vanish. This is done by considering the systems I, obtained by adding fi to
the system /; ;— with I;; = I (for efficiency purpose, we actually add fx to the Grébner

basis of I, ;_; which has already been computed when considering / ;).

Starting from k = 2, the solutions of /;; are computed via a Grébner and RUR
calculations. Note that the solutions of /;; are also solutions of /,;_;. The isolating
boxes of the solutions of /;;_; and I ; are then refined until every box of each system
intersects at most one box of the other system. This ensures that two intersecting boxes
necessarily correspond to the same root of the two systems. We can thus easily decide
whether a root of /; ; is also a root of I, ,, I, 3, . . . In our example the situation is quite
simpler because /; ; has only one root, and thus any root of /; ; is necessarily that one.
Still, computing the solutions of / ; starting from k& = 2, yields that the solution p; of
I; | is a solution of I, and I 3, but not of I, 4. Hence, p, has multiplicity 4 in its fiber.

Here, the systems /; ; and their Grobner bases Gb;, , are:

I, =1, Gb,, = {3y* —x, xy, x°}
Ly =1(3y" —x, xy, ¥, 12> — 12x — 8x°)  Gby,, = {x, ¥’}

L; = I(x, y°, 24y) Gby,, = {y, x}

L4 =I(y, x, 24) Gb;,, = {1}

On the other hand, the multiplicities of the five x-extreme points are computed
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using Teissier formula (see Lemma 14): the multiplicity of each point in its fiber is the
multiplicity of the corresponding roots in the RUR of /, plus one. In this case, p,, . . . , py
have multiplicity one in the RUR, which implies that they all have multiplicity 2 in their
fibers.

Step 3 of the algorithm deals with the refinement of the boxes containing x-extreme
points, that is, the boxes containing p,, . . ., ps. The goal of this step is to obtain boxes
such that the curve intersects every box’s boundary at most twice, with at most one
intersection on the top (resp. bottom) of the box. Each box is treated independently.

The intervals defining the box enclosing the point p,, computed during the first step

of the algorithm, are

4611611823926328587 461176103935218815
X, — )
P2 2305843009213693952  2305843009213693952
and
B 8627721659600529273 8627594605412894855
I = 2305843009213693952"  2305843009213693952 |

The algorithm isolates the roots on the vertical walls, f(xpmlef,, y) and f(prr,-ght, y) in the
interval y, , and similarly for the horizontal walls. Two intersection points are found,
one on the top wall, the other on the bottom wall. This means that the box containing
P, does not need to be refined.

The situation is identical for the boxes containing ps, ps and p¢. The box containing
p, has also two intersections with the curve, here both on the left wall, which again
does not require further refinement.

In Step 4, the algorithm refines the boxes enclosing singular points. The method
uses the multiplicity & of each singular point (in this case, the only singular point is p,)
and the k" derivative of the curve with respect to y (both were calculated in Step 2).
Every singular point is treated independently; here with have only one.

We use interval arithmetic to ensure that fx does not vanish in a box: computing

with interval arithmetic, if the image of the box by fx does not contain zero, then fx
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does not vanish in the box (the converse is not true). We thus refine the box until its
image by f,« does not contain zero.

We then refine the box in x until the curve % intersects neither the top nor the
bottom of the box. Actually, before doing this last refinement, for efficiency purposes,
we actually enlarge the box in y as much as we can, under the two constraints that it
should continue to avoid the curve f x and all the other critical boxes. The final resulting
box of p, is [—@, ﬁ} X [—i, ﬂ and it was not necessary to refine the box in x.

Step 5 deals with vertical asymptotes. Their x-coordinates are the roots of the lead-
ing coefficient of f(x,y) view as a polynomial in y. The leading term of f is y*, what
means that the leading coefficient is 1, that is, the curve fhas no vertical asymptotes.

Step 6 is the last stage of the algorithm, in which the graph isotopic to the input
curve ¥ is computed. The boxes containing critical points induce a subdivision of the
plane in rectangles, as shown in Figure 3.6 (b), and the intersection points between
% and every wall of this subdivision are computed. As explained in Section 3.3.1, we
connect vertices in a straightforward manner inside the critical boxes (see Figure 3.6
(c)). In this example, the connections in the other rectangles of the subdivision are also

straightforward (see Figure 3.6 (d)) and we do not need to use the multiplicity of the

extreme points nor to use a greedy approach.

3.4 Embedding the graph on a grid

The output of the algorithm in Section 3.3.2 is a graph isotopic to the input curve. The
vertices of this graph represent points of the curve, whose coordinates are given as
algebraic numbers. This information is given by disjoint boxes containing each vertex.
Choosing any point inside each box will maintain the isotopy of the graph and the curve.
Our graph can thus be seen as a graph where the vertices have algebraic coordinates
and lie on the curve, or where the vertices are chosen anywhere in the isolating boxes

(with rational coordinates). Note that algebraic coordinates can also be rational.

An important problem consists in computing approximate positions for the vertices
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with fixed precision while preserving the topology (actually, the isotopy) of the graph.
This problem can be described as the embedding of the graph vertices on a grid. Given a
grid, all vertices of the geometric graph are moved to distinct grid crossings. In practice,
a grid can be determined by the pixels of a screen or by the numbers that fit in a double-
precision floating-point number.

A similar problem was studied by Milenkovic and Nackman [124]. They considered
the problem of finding fixed-size approximations of families of polygons. They showed
that rounding the real numbers which define the family of polygons to a fixed precision
while preserving the combinatorial structure of the family is in NP-complete.

We first recall Milenkovic and Nackman’s result. It is stated in terms of (P, K)-
approximations to numbers, that is, P-bit approximation to numbers in which the first
P—K digits are correct (identical to the original number). They consider approximations
of sets of non-intersecting simple (non-self-intersecting) polygons. These polygons are
defined by ordered sequences of the lines that contain their edges, and the approxima-

tion applies to the coefficients of these lines. We will call such polygons line-based.

Theorem 16 ([124]). The language of sets of line-based simple polygons with at least one
(P, K ) -approximation is NP-complete.

Milenkovic and Nackman prove that the problem is in NP-complete by proving that
it is in NP and in NP-hard. Nevertheless, there is a small issue in the statement of the
result, because the coordinates of the lines are given by real numbers, and they claim
that a candidate solution can be verified in polynomial time. This is not quite true in the
Turing model of computation (which is implicitly used by Milenkovic and Nackman),
since verifying that the first P — K bits of a rational number are equal to the first P — K
bits of a real number cannot be done in polynomial time. It was proven that some real
numbers cannot even be computed [157] (see also [39] for an example of a real number
that can be defined but cannot be computed). Nevertheless, their proof is correct if we
state that lines are defined by algebraic coefficients instead of real coefficients. Algebraic
numbers can be computed and approximated as much as desired in polynomial time.

The second part of the proof in [124] is very elegant. They reduce a graph coloring
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problem, known to be in NP-hard, to their problem. The elegance of the proof comes
from the fact that the reduction consists in transforming the input graph into an elec-
tronic circuit. All the constructions of the proof are done with real numbers. However,
all these constructions can be done with algebraic numbers. In conclusion, Theorem 16
is valid if lines are defined by algebraic coefficients and not by real coefficients.

Though very useful, this result does not apply directly to our problem, since poly-
gons in [124] are defined by the lines that contain their edges. They consider approx-
imations to the coefficients of those lines, and not approximations to the points as we
want. Finding a (P, K)-approximation to the coordinates of a point given as algebraic
numbers means to embed it in a particular grid. Figure 3.7 shows a geometrical interpre-
tation of a (P, K)-approximation of a point. Given a point g with algebraic coordinates,
the coordinates of the point g, are the first P — K bits of the coordinates of g. The thick
grid represents all the points whose coordinates are the first P — K bits of an algebraic
number. Finding a (P, K)-approximation means to construct a P-bit number, by adding
K bits to the numbers of P — K bits. Those numbers are the x and y-coordinates of the
thin grid. Finding (P, K)-approximations of a point means to embed it on a square grid
as described. There are, on the grid of figure 3.7, 2F choices for each coordinate, and thus
2%" different choices for each point. Finding a (P, K)-approximation of a simple poly-
gon given by the coordinates of its vertices thus means to find (P, K)-approximations
of the coordinates of its vertices, while maintaining its topology. As each point has
2% possible (P, K)-approximations, a polygon with n vertices has 2% possible (P, K)-
approximations.

Milenkovic and Nackman point out that this difference in representation is “of little
consequence’, since these are equivalent under a dual transform (for instance, the stan-
dard duality that maps a line of equation ax + by + ¢ = 0 to a point (a, b)). See [59,
§ 15.2] for details on duality. Nevertheless, there is an issue because the simplicity of
polygons is not necessarily preserved under this transformation.

Another approach to check whether approximating lines is equivalent to approxi-
mating point coordinates consists in observing the expression of point coordinates in

terms of line coefficients. In particular, when a polygon is given by the equations of the

61



CHAPTER 3. TOPOLOGY OF PLANAR ALGEBRAIC CURVES
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Figure 3.7: Geometrical interpretation of (P, K) -approximations to point coordinates.
For simplicity, the point g, has positive coordinates.

lines that contain its edges, each vertex is the intersection of two of these lines. In our
case, in order to maintain the isotopy, each intersection point of approximated lines
must be close to the intersection point of the original lines. Nevertheless, this is not
always the case. For instance, two almost-parallel lines, when approximated, may give
an intersection point which is far away from the original intersection point. Thus, this
approach does not suffice to show that approximating line coefficients is equivalent to
approximating coordinates of points.

Despite these considerations, we believe that these two problems are equivalent.
We thus state it as the following conjecture. We call a polygon point-based if it is defined

by the coordinates of their vertices.

Conjecture 17. The language of sets of point-based simple polygons with at least one
(P, K) -approximation is NP-complete.

As pointed out before, vertices coordinates must be given as algebraic numbers for
Conjecture 17 to be valid.

We return to the problem of embedding the geometric graph, output by the algo-
rithm in Section 3.3.2, on a grid. Each vertex of this geometric graph represents a point
of the curve, whose coordinates are algebraic numbers. However, the information as-
sociated to each vertex of the geometric graph consists in a box containing the point

that this vertex represents and the associated polynomial system, so that the box can
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be refined as much as desired. In particular, they can be smaller than the given size of
the grid in which the graph vertices must be embedded, and so boxes may contain no
grid point.

Note, however, that any set of simple polygons is an instance of our geometric
graph. We can thus formulate a new natural conjecture, and prove that it is valid if
Conjecture 17 is valid. We will consider the bounding box (in which the algebraic curve

was considered) as a part of the graph, and the isolated vertices as degenerate polygons.

Conjecture 18. The language of point-based geometric graphs with at least one (P, K)-

approximation is NP-complete.

Proof. The proof consists of two parts. In the first part, we show that our problem is in
NP-hard, while in the second we show that it is in NP.

Demonstrating that our problem is in NP-hard is straightforward, and is done by
reducing in polynomial time a problem known to be in NP-hard to our problem. As
said before, any set of simple polygons is an instance of our problem. The answer to
our problem will be affirmative for this input if and only if the answer to the problem
in Conjecture 17 is affirmative for this input. Thus, Milenkovic and Nackman’s problem
is reducible to our problem in constant time, and our problem is in NP-hard if Conjec-
ture 17 is valid.

Our problem is in NP if and only if a candidate solution can be verified in polynomial
time. This is done in two steps: verifying that the coordinates of each vertex are (P, K)-
approximations of the algebraic numbers and checking that the combinatorial structure
of the graph is maintained.

Verifying that the coordinates of each one of the n vertices are (P, K)-approxima-
tions to the algebraic coordinates is done in various steps. First, compute (in polynomial
time) the first P bits of each coordinate. Then, compare these P bits with the approxi-
mated number, in linear time in P.

Checking the combinatorial structure of the graph is done in two steps. First, a stan-
dard sweep-line algorithm [16] is used to check in polynomial time whether there are

no new intersections between the segments of the embedded graph (the only permitted
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intersections are those between endpoints of segments).

The final step consists in constructing the combinatorial structure of both graphs
(the original and the embedded one) and check that they are the same. The combinato-
rial structure consists in a forest of trees, analogous to that of [124]. The nodes of the
trees are simple polygons, with the property that if a polygon L shares an edge with a
polygon M geometrically included in L, then L and M are the same polygon. A polygon
K is a descendant of a polygon J in some tree if and only if J is geometrically included
in K. This combinatorial structure is computed by using again the standard sweep-line
algorithm, updating the forest of trees at each event point. Each update is done in loga-
rithmic time, and comparisons are done in linear time. Finally, both forests of trees can
be compared in linear time because nodes are labelled and thus the siblings of each node
can be sorted when constructing and updating the trees. Since a candidate solution can

be verified in polynomial time, the problem is in NP.

Since the problem is in NP-hard and in NP, we conclude that the problem is in

NP-complete, as long as Conjecture 17 is valid. [l

In other words, this conjecture states that it is not easy to round the geometric
information of the output geometric straight-line graph of our algorithm and preserve
at the same time the topology. For instance, it may be the case that critical points
of the curve are very close to each other, thus having points of a big bitsize becomes

unavoidable.

This has an impact on visualization. A direct implication of this result is that posi-
tions of points cannot be easily altered in order to make a plotted graph clearer. When
facing a curve of which the topology is unknown, it would be nice to visualize a graph
showing its topology, and all its critical points at the same time. But our conjecture
claims that, roughly speaking, displaying the “farthest” critical points in their correct
position (using a rounded value, for instance) and to move the “closest” critical points

so as to clearly display their topology is a NP-complete problem.
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3.5 Conclusion

We introduced in this chapter a new algorithm to compute the topology of plane alge-
braic curves. This algorithm makes use of algebraic techniques such as Grobner bases,
rational univariate representations, Descartes’ univariate polynomial root isolations
and interval arithmetic.

A natural question would be how these algebraic techniques can be applied to com-
pute the topology of algebraic curves in three dimensions. The algebraic part of the
algorithm in space, that is the computation of the critical points of the curves, can also
be solved by means of Grébner bases, rational univariate representations and Descartes’
isolations. The application of these techniques for solving systems in three dimensions
permits, in particular, to compute the critical points of the curves without computing
all the critical points of some projection of the curves. It also permits to avoid special
treatment of non-generic cases. Solutions of the systems would be enclosed in par-
allelepipeds instead of in rectangular boxes. However, connecting the critical points
remains a challenge in three dimensions.

The complexity analysis of this algorithm is deferred to Chapter 6. The reason is that
another algorithm is considered in the sequel, and all complexity analyses are grouped
in the same chapter. The next chapter presents an implementation of the algorithm we
have presented in this chapter and comparisons with other implementations based on
different techniques. The most relevant aspect of these comparisons is that they validate
our approach, proving the claim that our algorithm performs very well either in generic

and non-generic cases.
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Chapter 4

Maple Implementation and Exper-

Iments

I conclude that there are two ways of constructing a software
design: One way is to make it so simple that there are
obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies.

The first method is far more difficult. It demands the same
skill, devotion, insight, and even inspiration as the discovery
of the simple physical laws which underlie the complex
phenomena of nature. It also requires a willingness to accept
objectives which are limited by physical, logical, and
technological constraints, and to accept a compromise when

conflicting objectives cannot be met.
C.A.R. Hoare [95]

This chapter presents an implementation of the algorithm to compute the topology
of planar algebraic curves. Some considerations on efficiency are given. The behavior
of the implementation is depicted with examples. A thorough comparison with im-
plementations of other algorithms confirms that modern tools and libraries make this

implementation very competitive.
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The experiments presented in this chapter appeared in [42] and [40]. We also
present here a description of the software.

The chapter is organized as follows. Section 4.1 presents the interface of 1soToP, the
MAPLE implementation of our algorithm. Section 4.2 discusses the software used for the
development. Section 4.3 shows the execution of an example with 1sotop. Section 4.4
describes thorough experiments we did to compare 1sotop with other existing imple-
mentations. The results of these comparisons are then summarized, since the amount
of data obtained is not easy to interpret. Nevertheless, a complete description of the

tested curves and experimental results are presented in Appendix A for completeness.

4.1 lIsoTtor interface

To introduce 1soTopr, we begin by describing its user interface. This section is based on
the documentation shipped with 1soTop. As this software was developed in MAPLE [118],
we assume that the reader is familiar with this computer algebra system. If not, we refer
to [119].

The only function available to the user is topology_real_curve. It should be called
with a bivariate rational polynomial in x and y as mandatory parameter. The function
call topology_real _curve(®) returns a graph encoding the topology of the real curve
defined in the plane by the equation € = 0. It also displays a plot of this graph in a
region of the plane such that all connected components and critical points are shown, or
in a user-defined region. Singular points of the curve (points where the tangent is not
defined) are displayed in red, and x-extreme points (points where the tangent is vertical,
that is, parallel to the y-axis) are displayed in green. For convenience, the input curve
is not assumed to be square-free and 1soTOP starts by computing its square-free part.

The function topology real _curve can also be called with some of the following

optional parameters:

« verbosity: integer in the range 0, ..., 3 (default is verbosity=0, the minimum

verbose level);
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- precision: integer which specifies a lower bound on the number of digits of the
significand of the decimal floating-point representation of the vertices coordi-

nates correctly computed (default is precision=2);

« plot_graph: boolean; the output graph is visualized when plot_graph=true (which
is the default setting);

« nb_splits: positive integer; the graph is computed from a rectangular decompo-
sition of the plane induced by the critical points and for a better visualization we
split vertically each rectangle nb_splits—1 times, resulting in nb_splits rectan-

gles (default is nb_splits=10);

« view: a list containing two ranges, in the form [x_min..x_max,y_min..y_max]
specifying the region of the plane where to visualize the plot (when not spec-
ified, these values are determined in such a way that all points of the output

graph are shown in the plot).

When one is only interested in the topology of the curve, but not in its display, the
options plot_graph=false and nb_splits=1make the computation more efficient. On the
other hand, if one wants to increase the quality of the approximation of the displayed
graph, the value of the option nb_splits can be increased, but this slows down the
computations.

The vertices of the returned MAPLE graph have information defining an embedding
in the real plane. The point type attribute of each vertex is set to sinqular for vertices
representing singular points, to extreme for vertices representing x-extreme points and
regular for other vertices representing regular points of the curve. The coordinates
(x,y) of each vertex, stored in the attribute coordinates, are approximations of the
coordinates of the corresponding point of the curve; the number of correct digits is
controlled, and bounded from below, by the optional value precision. The resulting
embedding of the graph and the curve are isotopic in a bounding box witnessing all

connected components, singularities, and x-extreme points.
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4.2 Implementation

We used the MAPLE computer algebra system [118] to implement our algorithm, re-
ferred to as 1sotop. This choice was motivated by the availability of the needed tools.
MApPLE provides multiple-precision arithmetic, as well as heavy machinery to work with
polynomials. In the last few years, it incorporated the libraries FGB and rs [73, 139] to
perform multivariate and univariate roots isolation by means of Grobner bases, rational
univariate representations and Descartes’ univariate root isolation, described in Chap-
ter 2. Additionally, MAPLE offers a reliable visualization interface, which makes it an
appealing choice as implementation platform.

In more detail, the rGB library calculates Grobner bases of a given multivariate
polynomial system, using the state-of-the-art algorithm F, [74], and was developed in
C by Jean-Charles Faugeére. The rs library performs RUR calculations and Descartes’
univariate real root isolation. It focuses on zero-dimensional systems (those with a
finite number of complex solutions). The algorithms, described in [140] and [141], were
developed in C by Fabrice Rouillier.

The development of FGB and Rs libraries started more than fifteen years ago, and
they are still under development. During their lifetime, they were thoroughly tested
and debugged. Debugging such huge pieces of code is known to be a very difficult task.
Moreover, another critical difficulty is that there is, to our knowledge, no method for
verifying the result, that is verifying if the computed isolating boxes correspond indeed
to the root of the considered system. During 1soTop tests, we discovered that FGB/Rs
failed to solve correctly many bivariate systems. These errors became evident during the
execution of the algorithm. Such inconsistencies exposed a bug in the system solving
software, which bug resulted in the fact that some critical points were very slightly
outside of the isolating boxes supposed to be in. This precise bug was caused by an
error in the algorithm used to recover the solutions of the original system from the
roots of the univariate polynomials of the RUR. This algorithm was later modified in
Rrs and these modifications are now part of the version 14 of maPLE. This shows how

critical the consistency of intermediate results is in geometric algorithms. In general,
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geometric problems produce valuable challenges and test cases for solvers.

The implementation of 1soTop follows the sequential steps of the algorithm given
in Section 3.3.2. Of course, we also addressed many considerations related to efficiency
issues and details not in the algorithm had to be addressed. For instance, as mentioned
before, we experimentally found good values for precisions of isolations and refine-
ments. Due to the bug discovered in Rrs, explained in the above paragraph, we also
implemented temporarily our own version of the recovering of system solutions, based
on interval arithmetic. We used these functions until the bug was corrected in rs.

Debugging had to be kept in mind during development, since 1soTop is a reasonably
large program (8000 lines of code). As MAPLE’s programming language is untyped and
we created data structures to deal with different entities of our algorithm (for instance,
RUR of each system of equations, rectangles in the vertical planar decomposition of the
plane or event points during the sweep), we used MAPLE’s type-checking strategies to
help in the debugging. We mined our code with assertions and warnings. We also wrote
a set of debugging functions, aimed to print the content of data structures, import and
export polynomial systems, and to plot portions of the rectangular plane subdivision.

As pointed out in Section 3.3, the output of the algorithm is a geometric graph. The
implementation permits to consult and traverse this graph, for example with functions
that enumerate or count connected components. But, as one of the direct applications
of the algorithm is curve plotting and MAPLE provides a robust plot interface, we de-
veloped plotting functions. They convert the data structure representing the output
geometric graph into a MAPLE plot structure, which permits to display the curve using
MAPLE functions. The advantage of this is that we do not have to deal with graphic
primitives such as displaying or zooming. In graphical mode, 1soTopr outputs, besides
the geometrical graph, a drawing. By default, the graph is drawn, by plotting all its
vertices and edges. But, in order to obtain a better visualization of the curve, 1soTop
offers the possibility of vertically subdividing the empty rectangles (those that do not
contain critical points), calculating regular points on fibers in their interior. Letting the
user choose in how many parts to split the empty rectangles, the plot of the curve is a

very good approximation to it. Figure 4.1 shows the graph of a curve, plotted without
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(a)

Figure 4.1: Graphs isotopic to the curve B A0y oyt at 4+ 4y0x7 P —4xb —
12y*x* — 12y*x* — 4y° + 16y*x* = 0, plotted (a) without and (b) with vertical
subdivision of empty rectangles (nb_splits=1and nb_splits=100 respectively).

and with vertical splits. Note that the graph in Figure 4.1 (a) is correct, that is, isotopic

to the input curve, although Figure 4.1 (b) gives a better approximation of the curve.

4.3 Program output

The curve used as example in Section 3.3.4 is introduced as input of the MAPLE worksheet.
The example is ran on a MacBook Pro, Intel Core Duo, 2 GHz with 2Gb RAM. The
printout is slightly modified for readability.

# The input curve.

f o= yMo- BFYADRX 4 XND - AXYADEXAD + Q4FXA3:

# Optional parameters fix the verbosity of the output, as well as the accuracy
# of the output graph: the precision for root isolations (107{-precision}) and
# the number of additional vertical subdivisions of non-critical rectangles.

ISOTOP:-topology_real_curve(f,

72



4.3. PROGRAM OUTPUT

6_
51 Z{ii/////////// 0.041
4
3_
0.021
2-%77
T T T T T T T T T T T 1 0'
-5 -4 -3 -2 -1 _§§< 23 45 6 7
_2-
-0.02-
_3_
_4-
-5 -0.04+ : : .
. -0.06  -0.04  -0.02 0 0.02
(a) (b)

Figure 4.2: (a) Graph drawn with 1soTop (with refinements) of the curve y* — 6 y* x +
x> — 4y?x* + 24 x°. (b) Detail of the graph near the origin.

verbosity=2,
precision=10,
plot_graph=true,
nb_splits=10);

The program produces the following output with the graph shown in Figure 4.2 (a).
Figure 4.2 (b) shows the details of the graph near the origin (this zooming was obtained
with MAPLE plot interface options). The singular point is marked by a (red) diamond,

and the extreme points are marked by (green) squares.

1. Compute boxes:

Vertical asymptotes (@ found) and vertical lines (@ found) computed in
0.000000 seconds

Extreme Grobner basis obtained in 0.018000 seconds

RUR calculated in 0.002000 seconds

Univariate isolation done in 0.008000 seconds

Singular Grobner basis obtained in 0.014000 seconds
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RUR calculated in 0.003000 seconds

Univariate isolation done in 0.002000 seconds

Computed 1 singular and 5 x-extreme points in 0.048000 seconds

Boxes of critical points refined to avoid overlap in 0.001000 seconds

Compute singular points of multiplicity k in the fiber for k=2

Compute singular points of multiplicity k in the fiber for k=3

Compute singular points of multiplicity k in the fiber for k=4

Multiplicities of singular points in fibers computed in ©.048000 seconds

Multiplicities of singular points in fibers are: [4]

Boxes of extreme points refined for topology in 0.041000 seconds

Boxes of singular points refined for topology in 0.008000 seconds

Total time for computing the boxes of critical points (1 singular and
5 extreme) = 0.1749000 seconds (including 0.096000 seconds for Gb/RS)

2. Sweep:
Partitionned the plane into 49 rectangles in 0.185000 seconds

Flapsed total computation time: 0.334000 seconds

3. Construct graph: done in ©.002000 seconds
Total computation time: 0.336000 seconds

4.4 Experiments

We believe that comparing MAPLE and C/C++ implementations is fair for our problem

when the running time is not too small because then, most of the time is usually spent

on algebraic computations which are coded in C/C++ (possibly in the kernel of MAPLE).

When the running time is too small, the MAPLE part of the code and, in our case, the

interface to GB/RS is not negligible and comparing MAPLE and C/C++ implementations

becomes meaningless. This is why we focused our tests on examples for which the
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running time exceeds 1 second. We measure the running time for computing the iso-
topic graph, but not the drawing. All the experiments were performed using 2.6 GHz
single-core Pentium 4 with 1.5Gb of RAM and 512kb of cache, running 32-bit Debian
GNU/Linux.

We compared our code, 1soTop, with two C++ implementations, ca [61] (formerly
known as ArLcix) and cADp2D [29, 27] and two MAPLE implementations, Tor [86] and
INSULATE [147]. Another promising software is AXEL [3, 11], but no implementation of
the certified subdivision algorithm is currently available.

Ca is a C++ code, part of the cGAL library [38], since version 3.7. Following the
recommendation of Michael Kerber, the ca author, we ran two versions of the code
with the flag CGAL_ACK_RESULTANT _FIRST_STRATEGY set to 1 and 0. One being optimized
for generic cases, while the other is optimized for singular curves. We always compare
to the better running time. CAD2D is a stand-alone C++ code which can also be compiled
in combination with the sINGULAR library [88] (used for polynomial factorization). In
our tests, CAD2D appears to be much more efficient when ran with siINGULAR [53] (and
we report these tests). Finally, recall that Top requires an initial precision, which we set
to 50.

As discussed in Section 3.1, the various implementations do not compute exactly the
same thing and comparisons should thus be taken with care. Recall that when the curve
is not in generic position, ToP and INSULATE shear the curve to perform calculations,
but they do not shear back the results, thus not computing the critical points (and,
in particular, the x-extreme points) in the original coordinate system. Isotop, ca and
cAD2D always output the critical points in the original coordinate system.

We ran large scale benchmarks on over a thousand of curves during several weeks.
In particular, we considered curves suggested in [109, 29, 86] and several classes of non-
generic curves. We considered about 1300 curves from [109], which are classified in
18 challenges covering a large variety of interesting cases such as isolated points, high
multiplicity of tangency at singularities, large number of branches at singularities or
many singularities. This set contains curves of degree up to 90 that are both in generic

and non-generic position. As suggested in [29], typical curves in generic position can
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be generated (i) as a random bivariate polynomial (which usually do not have singular
points) or (ii) as resultants of two random trivariate polynomials (which usually have
singular points, including isolated points). In both cases, we considered random poly-
nomials with 50% non-zero coeflicients of bitsize 32 in Case (i) and initial bitsize 8 in
Case (ii). We generated such curves with degrees up to 25. We also generated classes
of curves in non-generic position in two different ways. First, we considered products
of a curve with one or several of its vertical translates. Second, we considered curves
of the type g = f*(x,y) + f*(x, —y); such curves are usually irreducible and consist
of isolated points which are the intersections of the curve €; with its symmetric with
respect to the x-axis. We generated such curves with degrees up to 24.

We set in our experiments a limit of 30 minutes for the computation of the topology
of one curve. We report as time out instances that exceed this running time. Also, cAD2D
which uses Singular for modular arithmetic, often reports on difficult instances that the
table of primes has been exhausted, which results in an interruption of computation;
this is reported in the tables as aborted. This happens because it was designed to work in
16-bit environments. There are roughly six thousand prime numbers that fit in a 16-bit
register, it is reasonable to think that all of them can be hardcoded in order to avoid
implementing efficient primality testing functions. Thus, when intermediate results
need more prime numbers to perform modular computations, the program stops. Thus
not the subject of this discussion, some considerations on efficient primality testing are
given in Section 5.4.4.

In summary, we ran our benchmarks on a total of 1500 curves. As mentioned above,
it is not significant to compare C++ and MAPLE implementations when the running time
is too small. We thus only report experiments on 650 curves whose running times
exceeded 1 second for 1soTop. The distribution of degrees and number of critical points
of these 650 curves is shown in Figure 4.3.

Figure 4.4 shows the ratio of running times between each of the competing imple-
mentations and 1soToP over our set of 650 curves. It appears difficult to analyze the
benchmarks globally because there are always particular examples that are processed

faster by a given implementation. We note, however, that INSULATE is almost always
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10 < d <20

c <20
d <10

50 < d <90
40 < d < 50

c < 121

30 < d < 40
20 < d < 30 20 < <4 A0S <60

() (b)

Figure 4.3: Distributions of (a) degrees and (b) number of critical points in our 650
examples.

slower than 1sotop, except for random curves with no singular points. In addition,
INSULATE and ToP reached the time limit on more than half of the examples and, in par-
ticular, on difficult examples. We can, nevertheless, comment on the general behavior

of the different approaches depending on the classes of examples.

To illustrate the behavior on curves in generic positions, we report the running
times for random curves in Table 4.1 and for resultants of surfaces in Table 4.2. Ran-
dom curves have no singular points and few extreme points. In this case, we observe
that 1soTop is the least efficient implementation. This can be explained by the fact that
1soToP computes the Grobner basis of a large system without multiplicities, which is
the worst case in practice. On the other hand, the other implementations benefit from
interval arithmetic filters in the lifting phase, which speed up computations by avoiding
expensive symbolic computations, see for example [29]. Generic curves generated as
resultants have many singularities and extreme points. IsoTop benefits from splitting
the critical system in two smaller (singular and extreme) systems and hence it performs
relatively better than in the completely random case. We observe that 1soTop is typi-

cally a bit slower than ca but faster than Top, and that cap2p aborts.

To illustrate the behavior on curves in non-generic position, we consider different

classes of curves. The first class of non-generic curves are constructed with one curve
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B<r<i
1 <r<3
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B<r<l1 0<r<i

r<is

aborted timeout
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1<r<3 3 <
(a) (b)
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r<is J
r<l
timeout timeout

() (d)

Figure 4.4: Distributions of running time ratios for (a) cAp2p, (b) ca, (c) ToP, and (d)
INSULATE over ISOTOP. r gets larger (in other words, the picture gets lighter) as 1sotop
performs better than the competitive algorithms. Timeout means that the limit of 30
minutes was reached for the competitive algorithms.
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multiplied by one or several of its vertical translates. The initial curve is taken either
randomly, in Table 4.3, or it is a resultant of two surfaces, in Table 4.4. Table 4.5 reports
results on the second class of non-generic curves of the type f*(x,y) + f*(x, —y) for
random polynomials f. For these non-generic curves, 1SOTOP is typically faster than
other implementations.

As a general rule, we observe that, except for random curves, that is, curves in
generic position and without singular point, the ratio of the running times between
other implementations and 1s0TOP is increasing with the degree of the curve. Kerber’s
thesis [104] also presents tests comparing cA, CAD2D and 1soToP. Results of these tests
also show that 1sotop behaves badly with random generic curves. In other words, ex-
cept for random curves, 1soTOP tends to perform better, compared to others, when the
degree increases. In particular, this implies that 1soTop can push forward the complex-

ity of the curves one can study.

4.5 Conclusion and perspectives

This chapter presented 1s0TOP, a MAPLE implementation of the algorithm of Chapter 3.
We described its interface and design considerations, and we presented and discussed
experiments and comparisons with other similar implementations. As usual in most
implementations, many aspects can be reworked to obtain better performance.

The experiments presented in Section 4.4 also served as profiling. The detailed re-
sults of these benchmarks are shown in Appendix A. They present the time spent on
each step of the algorithm, as well as some information about the characteristics of
each curve. We mainly used this information to understand why 1sotop is slower than
others in some cases. For the case of random curves, the computation of the Grob-
ner bases of the resulting systems is very slow, while the other steps are performed
very quickly. For the case of curves with high tangency at isolated singularities, the
most time-demanding step is the computation of the RURs. One possible approach to

improve the efficiency of our algorithm in the latter case is to compute a radical decom-
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position of the original systems. Another approach that would improve the efficiency
in random curves is to detect such situations and to avoid solving these systems us-
ing Grobner bases in these cases. These observations led to the development of a, yet
experimental, version of a bivariate solver. In preliminary tests, this solver showed to
be capable of solving these complicated systems hundreds of times faster. We expect
that this approach will make 1soTop the fastest implementation in all cases, generic and
non-generic.

The curve visualization in MAPLE is very fast but it is not certified in the case where
the curve has very close critical points. The routines also fail to distinguish branches of
the curve that are close but non-intersecting from those that do intersect. We believe
that 1soTop is a perfect candidate to replace the current implementation of algebraic
curve visualization.

It should be stressed that we focused here on computing graphs isotopic to one
algebraic curve. When we are given a set of curves, or said in other words, one curve
whose equation is factorized or partially factorized, it is more efficient to compute the
topology of every curve and then to combine them. This approach has been studied in
detail by Eigenwillig and Kerber [60, 104] and led to a very efficient implementation [66].
Combining such approaches would be of substantial interest.

We conclude this chapter by mentioning that 1sotop code is available in our web-

page, http://vegas.loria.fr/isotop.
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Chapter 5

CGAL Univariate Algebraic Ker-

nel

More seriously, even perfect program verification
can only establish that a program meets its
specification. The hardest part of the software task
is arriving at a complete and consistent
specification, and much of the essence of building a
program is in fact the debugging of the

specification.
Frederick P. Brooks, Jr. [26]

The program presented in the previous chapter, 1soTop, was implemented on top
of a computer algebra system. From the programmer’s point of view, this has enor-
mous advantages, since MAPLE provides a complete framework for the implementation
of algebraic algorithms. However, MAPLE programs cannot be used as library in some
other program, as can be easily done with C or C++ implementations. Nevertheless,
before implementing a program analogous to 1s0ToP in C or C++, there must be an
algebraic framework providing, in one hand, geometric operations and, on the other

hand, real solving and handling of algebraic numbers. Such framework would permit

33



CHAPTER 5. CGAL UNIVARIATE ALGEBRAIC KERNEL

the implementation of 1soTop, but also most of the geometric algorithms that deal with
non-linear objects.

The open-source C++ Computational Geometry Algorithms Library, cGAL [38], is
an open-source project which became a standard platform for the implementation of
geometric algorithms, see Section 5.1. This library follows strict design patterns, and
employs cutting-edge features of C++. Since CGAL is a standard in the computational
geometry community, our aim is to make this library capable of dealing with algebraic
objects, such as polynomials of arbitrary degree and algebraic numbers.

The initiative of equipping cGAL with the tools needed to handle curved objects
in most geometric algorithms started around ten years ago. Before, the library was
able to handle curved objects only in particular algorithms. For instance, it was able
to compute arrangements of conics, but this functionality was implemented inside the
cGAL arrangement package and other cGaL algorithms were not able to handle conics.
The aim was to create kernels that handle curved objects. In the cGAL terminology, a
kernel encapsulates the geometric objects and arithmetic operations, and algorithms are
parameterized with kernels (see Section 5.1 for details).

In a first step, the construction of a kernel capable of handling circular arcs was con-
sidered [134]. Later, a kernel handling spheres was developed [52]. These kernels handle
specific curved objects, but they are not able to handle curves defined by polynomials
of arbitrary degree. This is more involved, because handling such polynomials in the
context of geometric algorithms essentially requires to be able to compute the real roots
of univariate polynomials and systems of polynomials, and to handle (e.g., compare) the
corresponding algebraic numbers. Moreover, efficiency is of course critical. Efforts to
develop a kernel capable of handling curved objects defined by arbitrary degree curves
started in the beginning of the last decade [69]. In the last years, the specification of
such a kernel, named algebraic kernel were discussed [19] and some experimental al-
gebraic kernels were developed [18, 68]. These specifications reached a mature state in
2009, and were incorporated to the version 3.6 of cGAL in 2010.

This chapter presents an implementation of a CGAL univariate algebraic kernel, that

follows the cGAL specifications. It is capable of handling univariate polynomials of ar-

34



5.1. THE COMPUTATIONAL GEOMETRY ALGORITHMS LIBRARY

bitrary degree with integer coeflicients, by providing functions for root isolation, pro-
vided by the library Rrs described in Section 4.2, and functions for comparing algebraic
numbers and refining approximations of such numbers. The chapter is organized as
follows. Section 5.1 describes the cGAL library. Section 5.2 explain the concept of cGaL
algebraic kernel. Some work related to our implementation is discussed in Section 5.3.
The implementation itself is presented in Section 5.4. We compare in Section 5.5 our
kernel with other comparable kernels and demonstrate the efficiency of our approach.
We perform experiments on large data sets including polynomials of high degree (up to
2000) and with very large coefficients (up to 25000 bits per coefficient). Finally, in Sec-
tion 5.6, we apply our kernel to the problem of computing arrangements of x-monotone
polynomial curves and demonstrate its efficiency compared to previous solutions avail-

able in CGAL.

The work presented in this chapter was published in 2009 at the annual Sympo-
sium on Experimental Algorithms [112]. We also distribute corresponding implementa-
tions with the ccaL library. First, our algebraic kernel itself is now part of cGaL [20,
§ 8.2.1, § 8.3]. We also contributed two new number types, Gmpfr and Gmpfi, to the
cGAL library [91, § 5.4, § 5.7, § 5.9]; these new number types interface the two multiple-
precision libraries MPFR and MPFI [129, 128]. We originally designed these number types
for our algebraic kernel, but we later integrated them into the cGAL number types, which

now make them available to all cGAL users.

5.1 The Computational Geometry Algorithms Library

cGAL [38] is designed in a modular fashion following the paradigm of generic program-
ming [5, 10, 79]. It relies on the C++ Standard Template Library [150] and on the BoosT
libraries [23]. Algorithms are typically parameterized by a traits class which encapsu-
lates the geometric objects, predicates and constructions used by the algorithm. Algo-
rithms can thus typically be implemented independently of the type of input objects.

For instance, the core of a line-sweep algorithm for computing arrangements of plane
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curves [51] can be implemented independently of whether the curves are lines, line
segments, or general curves; on the other hand, the elementary operations that de-
pend on the type of the geometric objects (such as, comparing x-coordinates of points
of intersection), which depend on the type of the objects, are implemented separately
in traits classes. Similarly, the model of computation, such as exact arbitrary-length
integer arithmetic or approximate fixed-precision floating-point arithmetic, are encap-
sulated in the concept of kernel. An implementation is thus typically separated in three
or four layers, (i) the geometric algorithm which relies on (ii) a traits class, which itself
relies on (iii) a kernel for elementary (typically geometric) operations. cGAL provides
several predefined Cartesian kernels, for instance allowing standard Cartesian geomet-
ric operations on inputs defined with doubles and providing approximate constructions
(i.e., defined with double) but exact predicates. However, a kernel can also rely on
(iv) a number type which essentially encapsulates the type of number (such as, dou-
ble, arbitrary-length integers, intervals) and the associated arithmetic operations. A
choice of traits classes, kernels and number types is useful as it gives freedom to the
users and it makes it easier to compare and improve the various building blocks of an

implementation.

5.2 Algebraic kernel

cGAL has algorithms specialized in handling curves of low fixed degrees. In the last
years, the cGAL community put efforts towards handling arbitrary degree curves. The
concept of the algebraic kernel, which includes, in particular, its specification introduced
in version 3.6 of the library in 2010 [20]. Nevertheless, the specifications evolved during
a long time before reaching a mature state, generating long discussions among different
groups involved in the development of the specifications, notably between the ccaL
Editorial Board, the Max Planck Institut fiir Informatik (MPII), INRIA Sophia-Antipolis,
the National and Kapodistrian University of Athens (NKUA) and us. The notion of

algebraic kernel for ccaL was first proposed in 2004 [69].
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Formally, an algebraic kernel is defined as a set of functions aimed to handle and
solve polynomials and polynomial systems, and handling the algebraic numbers result-
ing from these root isolations. The current CGAL specifications [20] are split in univariate
and bivariate kernels though, in the future, multivariate kernels may be specified and
developed.

The ccaL-compliant univariate algebraic kernel presented in this chapter provides
real-root isolation of univariate integer polynomials and basic operations, e.g. compar-
isons and sign evaluations, of real algebraic numbers. This open-source kernel follows
the ccAL specifications for algebraic kernels, and it was the first algebraic kernel shipped
with cGAL, in 2010. The root isolation is based on the interval Descartes algorithm [44]
and uses the library rs [139]. Moreover, our kernel provides various operations for
polynomials, such as greatest common divisor (gcd), which are crucial for manipulat-
ing algebraic numbers. This modular ged, in particular, was implemented at early stages
of the project, since cGaL did not provide at that moment efficient functions on poly-

nomials. The development of this cGAL algebraic kernel started in 2006.

5.3 Related work

Combining algebra and geometry for manipulating non-linear objects has been a long-
standing challenge. Previous implementation include, but are not limited to, MApc [106]
a library for manipulating points that are defined algebraically and handling curves in
the plane. More recently, the library Exacus [17], which handles curves and surfaces in
computational geometry and supports various algebraic operations, was developed and
partially integrated into cGaL. In [69], the underlying algebraic operations were based
on the synaps library [125].

One cGAL algebraic kernel was developed at mp11 [93] following the generic pro-
gramming paradigm using the C++ template mechanism. This kernel is templated by
the representation of algebraic numbers and by the real root isolation method, for which

two classes have been developed; one is based on the Descartes method and the other
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on the Bitstream Descartes method [62]. This approach has the advantage to allow, in
principle, using the best instances for both template arguments.

A related software was developed at INRIA and relies on the synaps library [125].°
In this program there are several approaches concerning real root isolation, i.e., meth-
ods based on Sturm subdivisions, sleeves approximations, continued fractions, and a
symbolic-numeric combination of the sleeve and continued fractions methods (see [94]).
Moreover, there are specialized methods for polynomials of degree less or equal than
four [156]. On the other hand, this implementation is not formally a ccaL algebraic
kernel, since it does not implement comparison of algebraic numbers, as required in
the ccaL algebraic kernel specification. Nevertheless, for uniformity on the nomencla-
ture of the compared software, it will be referred to as synaps kernel throughout this
chapter.

Emiris et al. [94] presented some benchmarks of these various approaches in these
two kernels as well as some tests on the kernel we present here. The authors mention
that our kernel based on interval Descartes performs similarly to one approach (refer
to as NCF2) based on continued fractions [155] for coefficients with (very) large bitsize
but NcF2 is more efficient for small bitsize. They conclude that, first, dedicated algo-
rithms for polynomials of degree less than (or equal to) four is always the most efficient
approach and, second, that NcF2 always perform the best except for low-degree and
high-bitsize polynomials, in which case the kernel based on the Bitstream Descartes

method performs the best. We moderate here these conclusions.

5.4 Implementation

We describe in this section the implementation of our univariate algebraic kernel. The
two main requirements of the cGAL specifications, which we describe here, are the iso-
lation of real roots and their comparison. We also describe our implementation of two

operations, the gcd computation and the refinement of isolating intervals, that are both

SYNAPs is currently integrated as the package REALROOT in MATHEMAGIX [159], which is an open source computer algebra
system that combines symbolic and numeric computations.
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needed for comparing algebraic numbers.

5.4.1 Representation of numbers and polynomials

Our algebraic kernel handles univariate polynomials and algebraic numbers. The poly-
nomials have integer coefficients and are internally represented by arrays of cmp arbi-
trary-length integers [83]. We implemented in the kernel the basic functions for poly-
nomials, including basic arithmetic, evaluation, and input/output. During the develop-
ment phase of our kernel, experimental versions of cGAL incorporated functionalities
on polynomials with coefficients of arbitrary type. These functionalities were incorpo-
rated to CGAL in version 3.6 [90]. Because of that, we modified our kernel to now accept
cGAL polynomials and our implementation of polynomial arithmetic is now only used

internally.

An algebraic number that is a root of a polynomial F is represented as a data struc-
ture containing F and an isolating interval, that is an interval containing this root but no
other root of F. We implemented intervals using the mpr1 library [128], which repre-
sents intervals with two MPFR arbitrary-fixed-precision floating-point numbers [129];
note that MPFR is developed on top of the omp library for multiple-precision arith-
metic [83].

ccal did not have interfaces to efficient state-of-the-art floating-point arithmetic
libraries such as MpFR. The choices were CORE and LEDA; the first one not efficient for
our intended use, and the second one is not free. We chose to implement interfaces to
MPFR and MPFI libraries. In the cGAL terminology, this is stated as creating two number
types. Each number type must fulfill some requirements, in particular, it must specify
the properties of the algebraic structures it represents [89]. We implemented the new
number types Gmpfr and Gmpfi [91], based respectively on the libraries MPFR and MPFI.
Besides their fulfillment of cGAL requirements, they are very efficient and they were
incorporated into the version 3.6 of cGAL in 2010 [91], not only for the algebraic kernel

internal use but for all cGAL users.
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5.4.2 Root isolation

For isolating the real roots of univariate polynomials with integer coefficients, we de-
veloped an interface with the library rs [139]. This library is written in C and is based
on Descartes’ rule (see Section 2.3.3 for details) for isolating the real roots of univariate
polynomials with integer coeflicients. In particular, we use the C interface of rs, which
is exactly the same interface that is linked to MAPLE (see Section 4.2 for details).

For ease of reading, we recall here the general design of the rs library; see [141]
for details. Rs is based on an algorithm known as interval Descartes [44]; namely, the
coefficients of the polynomials obtained by changes of variable, sending intervals [a, b]
onto [0, +00], are only approximated using interval arithmetic when this is sufficient
for determining their signs. Note that the order in which these transformations are
performed in Rrs is important for memory consumption. The intervals and operations
on them are handled by the mpr1 library. Another characteristic of Rrs is its memory
management: it implements a mark-and-sweep garbage collector, which is well suited
to RS needs.

Since the applications in computational geometry are not normally a priority when
designing computer algebra software, the development of the algebraic kernel was also
a challenge for the rs author. That is, Rs benefited from the data produced by our bench-
marks and from bug reports. On the other hand, we benefited from the fact that rs was
optimized for some cases. In particular, rs was originally designed to work with poly-
nomials of high degree and bitsize. Our tests showed that the performance of rs with
small polynomials was not optimal, and some internal parameters of the library were

changed according to our needs.

5.4.3 Algebraic number comparison

One of the main requirements of the cGAL algebraic kernel specifications is to compare
two algebraic numbers r; and r,. If we are lucky, their isolating intervals do not over-

lap and the comparison is straightforward. This is, of course, not always the case. If
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we knew that the two algebraic numbers were not equal, we could refine both isolating
intervals until they are disjoint; see below for details on how we perform the refine-
ments. Hence, the problem reduces to determining whether the algebraic numbers are
equal or not.

To do so, we compute the square-free factorization of the greatest common divisor
of the polynomials P, and P, associated to the algebraic numbers (see below for details).
The roots of this ged are the common roots of both polynomials. We calculate the
intersection, /, of the isolating intervals of r| and r,. The gcd has a root in this interval
if and only if r| = r,.

To determine whether the ged has a root in interval /, it suffices to check the sign
of the ged at the endpoints of I: if they are different or one of them is zero, the gcd has
arootin I and r;, = r,; otherwise, r; # r, and we can refine both intervals until they

are disjoint.

5.4.4 Gcd computations

Computing greatest common divisors between two polynomials is not a difficult task,
however, it is not trivial to do so efficiently. Indeed, a naive implementation of the
Euclidean algorithm works fine for small polynomials but the intermediate coefficients
suffer an exponential growth in size, which is not manageable for medium to large size
polynomials. One common approach to this issue is to use modular gcd computation.
This technique consists in calculating the ged of polynomial modulo some prime num-
bers and reconstruct later the result with the help of the Chinese remainder theorem.
Details on these algorithms can be found, for example, in [166]. Note that modular gcd
is always more efficient than regular ged and it is much more efficient when the two
polynomials have no common roots.

The specification of the algebraic kernel does not require ged functions, because
they are currently provided by the polynomials package. Some benchmarks on our
algebraic kernel showed that a naive gcd implementation was the bottleneck of our im-

plementation. Nevertheless, efficient gcd computations were only recently introduced
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in cGAL [90, 92]. We thus implemented a modular ged function; we did not use some ex-
isting implementations mainly for efficiency because converting polynomials from one
representation to another is substantially costly as soon as the degree and bitsize are
large. Our ged function uses computers unsigned integers as prime type. We opted to
avoid having a list of prime numbers for some reasons. First, there are roughly 2 x 10®
prime numbers of 32-bits and 4 X 10'” prime numbers of 64-bits. This amount of num-
bers cannot be hardcoded in a list, and storing a subset of this list will reduce the size
of the polynomials that the algorithm can handle. The considered approach consists in
perform the Miller-Rabin primality test [137], using the Jaeschke variation [98] which
states that a small set of witnesses suffice to test primality numbers up to a certain
limit. Our modular ged function is slower than the more recent cGAL’s implementation
for small (degree and bitsize) polynomials. The reason is that cGAL’s implementation
uses a table of prime numbers, which avoids calling primality testing functions for small
numbers. Nevertheless, we do not use the cGaL ged function in our algebraic kernel,
since a conversion of data structures is needed. This conversion introduces an important

overhead in computations we want to avoid.

A third implementation of a modular ged function is provided by rs. This function
is extremely fast for polynomials of big degree and bitsize, as Rs was conceived to work
with that kind of polynomials. For technical reasons, this function remained internal
to Rs for a long time (previous versions of it worked with the internal data structures
representing polynomials). Currently, the rs ged function is only used internally by
Rs and not by our algebraic kernel. The reason is that our ged function performs very
well with small polynomials and reasonably well with big polynomials, while the rs gcd
function performs extremely well with very big polynomials, but for small polynomials

it adds a constant computation time that we want to avoid.

The primary goal of Rs is the resolution of algebraic systems and thus the isola-
tion of the roots of univariate polynomials defined by the RUR of the systems. Such
polynomials usually have (very) big bitsizes and degrees. This also explains the need of

implementing functions that can handle polynomials of very large bitsizes and degrees.
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5.4.5 Refining isolating intervals

As we mentioned in Section 5.4.3, refining the interval representing an algebraic number

is critical for comparing such numbers. We provide two approaches for refinement.

Both approaches require that the polynomial associated to the algebraic number is
square free. The first step thus consists in computing the square-free part of the poly-

nomial. This is easily done by computing the gcd of the polynomial and its derivative.

Our first approach is a simple bisection algorithm. It consists in calculating the sign
of the polynomial associated to the algebraic number at the endpoints and midpoint of
the interval. Depending on these signs, we refine the isolating interval to its left of right

half.

Our second approach is a quadratic interval refinement [1]. Roughly speaking, this
method splits the interval in many parts and, based on a linear interpolation, guesses
in which one the root lies. If the guess is correct, the algorithm divides in the next

refinement step the interval in more parts and, if not, in less.

Unfortunately, even with our careful implementation this approach turns out to be,
on average, only just a bit faster than the bisection approach. Our experiments showed
that the bottleneck of the refinement is the evaluation of polynomials. Fine-tuning the

evaluation considerably improved the two refinement functions.

It should be noted that Rs also provides an experimental refinement function for
algebraic numbers. At the cost of fulfilling a preliminary condition (Kantorovich crite-
rion [101]), it provides a method in which the number of refined bits grows quadratically
in each iteration. This function was not fully tested because its implementation is cur-

rently still experimental.

When asked to refine algebraic numbers, our algebraic kernel only uses the bisection
method, since it is the more stable implementation and performs reasonably well. We
plan, in the future, to adopt the Rrs refinement function, since preliminary tests showed

very good performances.
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5.5 Kernel benchmarks

In this section, we analyze the running time of the two main functions of our algebraic
kernel, that (i) isolate the roots of a polynomial and (ii) compare two algebraic numbers
that is, compare the roots of two polynomials. We also compare the performance of
our kernel with the one based on the Bitstream Descartes method [62] and developed
at the Max-Planck-Institut fiir Informatik [93] (referred to as mpir’s kernel)” and with
a kernel based on continued fractions [148, 155] and developed at INRIA on top of the
SYNAPS library [125] (which we refer to as syNAPS’ kernel).

cGaL algebraic kernels had also been previously tested. [93] presents tests on the
MPII's kernel, but without comparing it to other algebraic kernels. We tried to reproduce
their tests on isolations in next section. [68] presents tests comparing sYNAps’ kernel
using various algorithms to isolate roots, mpi1’s kernel using two different implemen-
tations of Descartes’ algorithm to isolate roots and our kernel. They test diverse sets
of polynomials, but all of them with degrees and bitsizes smaller than those considered
here. We believe that considering higher degrees and bitsizes is important in geometric
applications. For instance, the rotation of an object may drastically increase the bitsize
of the coefficients of its equation. Moreover, the RUR of polynomial systems usually in-
volve univariate polynomials of high degree and bitsize, despite the size of the original
polynomials of the system.

All tests presented on this chapter were ran on a single-core 3.2 GHz Intel Pentium

4 with 2 Gb of RAM and 2048 kb of cache memory, using 64-bit Debian GNU/Linux.

5.5.1 Root isolation benchmarks

We consider two suites of experiments in which we either fix the degree of the polyno-

mials and vary the bitsize of the coeflicients or the converse; see Figures 5.1 and 5.2. In

"To compare both algebraic kernels with the same inputs, we parameterized mp11’s kernel to use Bitstream Descartes as
root isolator, algebraic_real_bfi_rep as algebraic number representation and core integers and rationals to represent the
coefficients of the polynomials and the isolation bounds of algebraic numbers, respectively. The choice of CORE (vs. LEDA)
was induced by the need of testing the kernels in the same conditions, that is, relying on Gmp. The pure GMP support in MPII’s
kernel is still in experimental stage.

94



5.5. KERNEL BENCHMARKS

op 40

A Qur kernel f
o MPII’s kernel .

o SYNAPS’ kernel

W
o

isolation time [ms]
[\
isolation time [ms]
%)
o

[
o

4 Qur kernel
o MPII’s kernel
¢ SYNAPS’ kernel

o =
0 400 800 1200 1600 2000 0 10000 20000 30000 40000 50000

coefficient bitsize coefficient bitsize

(a) small bitsizes (b) medium to high bitsizes

Figure 5.1: Running time for isolating all the real roots of degree 12 polynomials with
12 real roots in terms of the maximum bitsize of their coefficients.

each experiment, we report the running time for isolating all the roots per polynomial,
averaged over different trials, for our kernel, mpir’s and syNAPs’ kernel. Due to a current
bug in the 64-bit version of cOrg, mPII’s kernel fails to find all the roots of a polyno-
mial in some cases. This explains, in particular, the erratic results of the experiments in

Figure 5.2 for mp1r’s kernel. This is discussed in detail at the end of the chapter.

Varying bitsize

We study here polynomials with rather low degree (12) but with no complex root and
polynomials with reasonably large degree (100) with random coefficients (and thus with
few real roots).

The first test sets comes from [93]. See Figure 5.1. It consists of polynomials of
degree 12, each one being the product of six degree-two polynomials with two roots, at
least one of them in the interval [0, 1]; every polynomial thus has 12 real roots. We vary
the maximum bitsize of all the coefficients of the input polynomial from 100 to 50 000
and average each test over 250 trials.

Secondly, we consider random polynomials with constant degree 100 and coeffi-
cients with varying bitsize. See Figure 5.2. Note that such random polynomials have few

roots: the expected number of real roots of a polynomial of degree d with coefficients in-
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Figure 5.2: Running time for isolating all the real roots of degree 100 polynomials in
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Figure 5.3: Running time for isolating all the real roots of random polynomials with
coefficients of fixed bitsize and depending on the degree.

dependently chosen from the standard normal distribution is % In(d)+C+ %1 +0(1/d%)
where C = 0.625735 [58]; this gives, for degree 100 an average of about 3.6 roots (note
that this bound matches extremely well experimental observations). We vary the max-
imum bitsize of all the coefficients from 2 000 to 25000 and average each test over 100

trials.

Varying degree

We consider two sets of experiments in which we study random polynomials and Mignotte

polynomials (which have two very close roots).
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Figure 5.4: Running time for isolating all the real roots of Mignotte polynomials of the
form f = x! — 2(kx — 1)? in terms of the degree d.

We first consider polynomials with random coefficients of fixed bitsize for various
values between 32 and 1000. We then vary the degree of the polynomials from 100 to
2000 and average our experiments over 100 trials (see Figure 5.3). Note that the above
formula gives an expected number of roots varying from 3.6 to 5.5. We observe that the
running time is almost independent of the bitsize in the considered range.

Finally, we test Mignotte polynomials, that is nearly degenerate polynomials of the
form x? — 2(kx — 1)%. Such polynomials are known to be challenging for Descartes
algorithms because two of their roots are very close to each other; the isolating intervals
for these two roots are thus very small. For these tests, we used Mignotte polynomials
with coefficients of bitsize 50, with varying degree d from 5 to 50. See Figure 5.4. We
averaged the running time over 5 trials for each degree. We observed essentially no
difference between our kernel and MPII's one; they take roughly 0.2 and 5.5 seconds
for Mignotte polynomials of degree 20 and 50, respectively. However, syNAPS’ kernel
is much more efficient as the continued fractions algorithm is not so affected by the

closeness of the roots.

Discussion

We observe (Figure 5.1 (a)) that syNAPS’ kernel is more efficient than both our and mp11’s

kernel in the case of polynomials of small degree (e.g., twelve) and small to moderately
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large coefficients (up to 2 000 bits per coeflicient). However, for extremely large coeffi-
cients Mp11’s kernel is substantially more efficient (by a factor of up to 3 for coefficients
of up to 50 000 bits) than both our and synaPs’ kernels, which perform similarly.

For polynomials of reasonable large degree, both our and synaps’ kernels are much
more efficient that mpir’s kernel; furthermore these two kernels behave similarly for
degrees up to 1500 and our kernel becomes more efficient for higher degrees (by a
factor 2 for degree 2 000).

We also observe that the running time is highly dependent of the various settings.
For instance, our kernel is up to 5 times slower when using approximate evaluation for
high-degree and high-bitsize polynomials. Also, mP1r’s kernel is in some cases about
10 times slower when changing the arithmetic kernel to LEDA, the representation of al-
gebraic numbers and some internal algorithms such as the refinement function. This
explains why our benchmarks on both mp11’s and synaPps’ kernels are substantially bet-
ter than in Emiris et al. experiments [94].

We also observe that the running time of Mpir’s kernel is unstable in our experi-
ments (Figures 5.1 and 5.2); surprisingly, this instability occurs when the experiments
are performed on a 64-bits architecture, but it is stable on 32-bits architecture as shown
in previous experiments [94]. As noted before, this is caused by a current bug in the

implementation of CORE in 64-bits.

5.5.2 Benchmarks on comparison of algebraic numbers

We consider three suites of experiments for comparing algebraic numbers; see Fig-
ure 5.5. Recall that an algebraic number p is here represented by a polynomial F that
vanishes at p and an isolating interval containing p but no other root of F. Recall also
that the comparison of two algebraic numbers is done by (i) testing whether the inter-
vals are disjoint; if so, report the ordering, otherwise (ii) compute the gcd of the two
polynomials and test whether the gcd vanishes in the intersection of the two intervals;
if so, report the equality of the numbers, otherwise (iii) refine the intervals until they

are disjoint.
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Figure 5.5: Running time for comparing two distinct close roots of two almost iden-
tical polynomials of degree 20 with (a) no common roots and (b) a common factor of
degree 10.

First, we analyze the cost of trivial comparisons that is, when the two intervals
representing the numbers are disjoint. For that we compare the roots of two random
polynomials. We observe that, as expected, the comparison time is negligible and inde-
pendent of both the degree of the polynomials and the bitsize of their coefficients.

Second, we analyze the cost of comparing roots that are very close to each other
but whose associate polynomials have no common root. This case is expensive because
we need to refine the intervals until they do not overlap; this is, however, not the worst
situation because the ged of the two polynomials is 1 which is tested efficiently with
a modular gcd. We perform these experiments as follows. We generate pairs of poly-
nomials, one with random coefficients and the other by only adding 1 to one of the
coefficients of the first polynomial. Such polynomials are such that the i-th roots of
both polynomials are very close to each other. We generate such pairs of polynomials
with constant degree (equal to 20) and vary the maximum bitsize of the coefficients. As
the bitsize increases, the pairs of roots that are close become even closer and thus the
comparison time increases. The results of these experiments are presented in Figure 5.5
(a), which reports the average running time for comparing two close roots.* We show

in this figure three curves, one corresponding to our bisection algorithm, and two cor-

*According to our first set of experiments, we can neglect the time for comparing two roots that are not close.
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responding to the two refinement methods implemented in the mp1r’s kernel: the usual
bisection and a quadratic refinement algorithm [1].

Third, we consider the, a priori, most expensive scenario in which we compare roots
that are either equal or very close to each others and such that their associate polyno-
mials have some roots in common. In this case, we accumulate the cost of computing
a non-trivial ged of the two polynomials with the cost of refining intervals when com-
paring two non-equal roots. In practice, we generate pairs of degree-20 polynomials
each defined as the product of two degree-10 terms; one of these factors is random and
common to the two polynomials; the other factor is random in one of the polynomi-
als and slightly modified in the other polynomial where, slightly modified means, as
above, that we add 1 to one of the coeflicients. We then vary the maximum bitsize of

the coefficients and average each test over four trials.

Discussion

We see in Figure 5.5 that the MPII’s quadratic refinement algorithm largely outperforms
the two bisection methods. However, our bisection method is faster than mp1r’s one, by
a factor up to 10. We also observed that the running time for comparing equal roots
is negligible compared to the cost of comparing close but distinct roots. (The running
time reported in Figure 5.5 (b) is actually the total time for comparing all pairs of roots
divided by the number of comparisons of close but distinct roots.) This explains why our
kernel behaves similarly in Figures 5.5 (a) and 5.5 (b). Overall, it appears that comparing
algebraic numbers that are very close is fairly time consuming and that the most time-
consuming part of the comparison is the evaluation of polynomials performed during
the interval refinements.

We mentioned in Section 5.4.5 that we implemented two refinement algorithms, but
they behave similarly in our tests. It should be stressed that the mp11’s kernel provides
the same two approaches, and their quadratic refinement clearly outperforms their bi-
section algorithm. We do not have at the time an explanation for this discrepancy in

the behavior of similar algorithms other than a maybe better implementation.
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Figure 5.6: Arrangements of five polynomials, shifted four times each, (a) of degree 20
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and varying bitsize and (b) of bitsize 32 and varying degree.

5.6 Arrangements

As an example of possible benefit of having efficient algebraic kernels in cGaL, we used
our implementation to construct arrangements of polynomial functions. Wein and Fo-
gel [164, 165] provided a cGaL package for calculating arrangements of general curves
which requires as parameter a traits class containing the data structures to store the
curves and various primitive operations, such as comparing the relative positions of
points of intersection. We implemented a traits class which uses the functions of our
algebraic kernel and compared its performance with another traits classes which comes
with cGAaL’s arrangement package and uses the CORE library [45].

In order to generate challenging data sets we proceed as follows. First we generate
n random polynomials. To each of them we add 1 to the constant coefficient, m times,
thus producing a data set of n(m -+ 1) univariate polynomials. Notice that the arrange-
ment of the graphs of these polynomials is guaranteed to be degenerate, i.e., there are
intersections with the same x-coordinate. The arrangements generated this way have
four parameters: the number 7 of initial polynomials, the number m of “shifts” that we
perform, the degree d of the polynomials, and the bitsize 7 of their coefficients. We ran
experiments varying the values of the last three of these parameters and setting n = 5.

Figure 5.6 (a) shows the running time in terms of the bitsize 7 for a data set where
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Figure 5.7: Arrangement generated from five random polynomials of bitsize 1000 and
degree 20, varying the number of shifts performed.

d = 20 and m = 4 (giving 25 polynomials). Figure 5.6 (b) shows the running time in
terms of the degree d for a second data set where 7 = 32 and m = 4. We see from these
experiments that running time using CORE is considerably higher than when using our

kernel. We also make the following observations.

Figure 5.6 (a) shows that the running time depends on the bitsize. When we change
the bitsize of the coeflicients of the random polynomials, the size of the arrangement
does not change; that means that the number of comparisons and root isolations the
kernel must perform is roughly the same in all the arrangements of the test suite. The
isolation time for random polynomials does not depend much on the bitsize (as shown
in Figure 5.2), but the comparison time does. It follows that the running time increases

with the bitsize.

Figure 5.6 (b) shows that the running time depends also on the degree of the input
polynomials. As we saw in Section 5.5, the formula that approximates the expected
number of real roots of a random polynomial depends on its degree. The size of the
arrangement thus increases with the degree of the input polynomials: each vertex is
the root of the difference between two input polynomials, therefore there will be more
vertices. Thus, when we increment the degree of the inputs, the number of comparisons
and isolations increases; furthermore, the running time for each of these operations

increases with the degree of the input.
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We ran additional tests to see the impact of the input shifts in the calculation time.
We generated five random polynomials of bitsize 1000 and degree 20. We calculated
arrangements, then, varying the number of shifts we perform to each polynomial. As
Figure 5.7 shows, we were only able to solve, using CORE, the first arrangement, gener-
ated without shifts (note the point on the vertical axis). We note that the running time
increases fast with the number of shifts. This is reasonable since, each time we increase
by 1 the number of shifts, we add to the arrangement n polynomials, hence increasing
the number of vertices of the arrangement. Since the root isolation and comparison
time remains the same (because the degree and the bitsize are constant), the running
time increases with the number of these operations.

Note that these experiments on arrangements were performed before Kerber’s the-
sis [104]. He presents the cGaL implementation of the computation of arrangements
of algebraic plane curves, based on a bivariate algebraic kernel and using the cGAL ar-

rangements package.

5.7 Conclusions and perspectives

We presented in this chapter a cGAL univariate algebraic kernel, which is now part of
the ccaL library. We described its implementation and performed thorough experi-
ments, comparing it to other similar implementations. Finally, we validated the alge-
braic kernel approach by comparing the performance of our algebraic kernel applied to
the computation of arrangements of curves defined by univariate polynomials.

Our experiments exposed an erratic behavior on mp11’s kernel when running in 64-
bit architectures. This permitted the discovery of a bug in the 64-bit version of CORE.
This proved again, as shown in Section 4.2, that thorough and competitive testing pro-
vide a framework to expose bugs in algebraic software. It is worth pointing out that
CORE is a widely used tool in exact computing, and this bug was, up to our knowledge,
not reported before.

The natural sequel of our work is the implementation of a cGAL bivariate algebraic
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kernel. Such kernel would give ccaL the ability to handle curves defined by bivariate
polynomials. That is, cGAL would provide the framework for the implementation of
algorithms like 1sotop. Currently there exists a bivariate algebraic kernel developed at
MPII. CA, tested in Chapter 4 was developed on top of this bivariate algebraic kernel.
Future efforts of the cGAL community include the development of algebraic kernels ca-
pable of handling curves defined by polynomials on any number of variables, as well
as interoperating existing kernels, with the aim of obtaining more efficient implemen-

tations.
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Chapter 6

Complexity Analysis

It was noted so far that the bit-complexity model offers a way of analysing algorithms
whose complexity is closer to the reality than analyses based on the real-RAM model.
This closeness to the reality is given by the cost of arithmetic operators used in the anal-
ysis, which reflects more accurately the time spent by computers in multiple-precision
arithmetic operations. It should be stressed, nevertheless, that the bit-complexity anal-
ysis of algebraic algorithms often produces important overestimations. They are pro-
duced by the fact that one usually analyzes worst-case execution of algorithms, and
algebraic algorithms perform in practice much better than the worst-case. For instance,
it is assumed in worst-case analyses that a univariate polynomial of degree n has n
roots, while in practice it often has much less roots (see Section 5.5.1 for details on this
fact). This gap is very common in the bit-complexity analysis of algebraic algorithms.
Note however that (worst-case) real-RAM analyses also often overestimate because of
worst-case considerations. One standard technique to reduce the gap between standard
worst-case analyses and practical performances is to perform output-sensitive analy-
ses, that is, analyses based on the size of the output of the algorithms. Unfortunately,
output-sensitive analyses tend to be harder to realize. Note that such analyses are also

done in the worst-case.

This chapter introduces output-sensitive bit-complexity analyses of two algorithms
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considered in this thesis. Section 6.1, states that the complexity of the algorithm for
computing the topology of planar algebraic curves is 5B(R d* %), where s denotes
the bit-complexity in which (poly-)logarithmic factors are ignored, R is the number
of critical points of the curve and d and 7 are the degree and maximum bitsize of the
polynomial which defines the curve. In Section 6.2, we prove that the complexity of
computing an arrangement of n curves defined by univariate polynomials of degree
at most d and bitsize at most 7 is 53((11 + k) d* u(t + du)), where k is the number of
intersection points between the curves and u is a bound on the bitsizes of the separation
bounds of the differences between two of the input polynomials.

The bit-complexity analysis presented in Section 6.1 appeared in [40]. The bit-
complexity analysis introduced in Section 6.2 was done in collaboration with Elias Tsi-

garidas and has not been published yet.

6.1 Topology of planar algebraic curves

The main algorithmic contribution of this thesis is the algorithm to compute the topol-
ogy of curves presented in Chapter 3. In this section, the complexity of this algorithm

is stated as follows.

Theorem 19. Let an algebraic curve € be given by a square-free polynomial f € Z[x, y]

of total degree bounded by d and coefficients of bitsize bounded by ©. Let R be the number
of critical points of the curve. The bit complexity of our algorithm for the computation of
the topology of the curve € is 5B(R d* %), which is 5B(N26), where N = max{d, 7 }.

6.1.1 Overview of the complexity analysis

In order to derive the bit complexity of the algorithm presented in Section 3.3, we ana-
lyze the complexity of each step. The first two steps consist of computing the isolating
boxes of the critical points and multiplicities. The analysis of these steps is presented

in Section 6.1.4. In the third step, we refine the isolating boxes of the x-extreme points.
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The complexity of this step is bounded by the complexity of the next one, so we do not
consider it explicitly. During the first part of the fourth step we refine the isolating
boxes of the singular points with respect to their isolating curve. The analysis of this
step is done in Section 6.1.5. During the second part, we refine the isolating boxes of
the singular points, until the curve does not intersect them on the top and on the bot-
tom. The analysis of this operation is done in Section 6.1.6. We conclude the proof of

Theorem 19 in Section 6.1.7.

6.1.2 Definitions and notation

Throughout this chapter, combinatorial and bit complexities will be denoted by 0 and @,
respectively. The 6 and O notations refer to complexities in which (poly-)logarithmic
factors are ignored.

The bitsize of a rational number is defined as the maximum bitsize of its numerator
and denominator. The bitsize of a polynomial is the maximum bitsize of its coefficients.
Bitsizes of numbers and polynomials will be denoted with the Greek letter z. The de-
grees of polynomials will be denoted with the letter d. In order to simplify notation, we
assume in the sequel that d = 0(z). However, we still express complexities in terms
of d and 7 when it is simple enough since d is often much smaller than z. We may also
assume that the univariate polynomials that we compute with, are square free. This
assumption does not change the complexity since the computation of their square-free
part and computations with their square-free part, is of no extra cost. Indeed, for a
polynomial of degree d and bitsize 7, its square-free part has degree O(d) and bitsize
0(d+t) = O(7) and it can be computed in 53(0121) [115]. We use the notion of separa-
tion bound of a polynomial (or of a zero-dimensional system of polynomial equations)
which is a lower bound on the minimum distance between any two (possibly complex)
roots. We call the bitsize of a separation bound s the minimum integer 6 > 0 such
that s > 277, In other words, the bitsize of the separation bound is the number of bits
needed to represent the largest lower bound of the form 27 that is smaller than s.

Isolations of roots of systems via a RUR require some machinery from interval anal-
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ysis, we briefly recall the basics and refer to [4] for additional details. For an inter-
val A = [a;, a,], let its width be w(A) = a, — a; and its absolute value be |A| =
max(|a;|, |a,|). For a two-dimensional box A X B, let w(A X B) = max(w(A), w(B))
and |A X B| = max(|A|, |B|). We denote by I(R") the set of products of n real intervals.
A polynomial in n variables has a natural extension to a function over I(IR") by a pro-
cess we call evaluation with interval arithmetic. More precisely, for a polynomial £, we
denote by the bold letter f the corresponding interval function defined over I(R") by
replacing the usual operations 4, —, X by interval operations (note that the order in
which the operations are processed can change the result, but this issue is irrelevant for
our computations). In the sequel, we bound the number of times we refine the isolating
intervals of the roots of the univariate polynomial of the RUR. We assume that every

refinement divides by at least two the interval width.

6.1.3 Preliminaries

Before analyzing each step of the algorithm, we state the bitsize complexity of some
recurrent basic computations. Let f be a univariate integer polynomial of degree d and

bitsize 7, and x be a rational of bitsize o.

Lemma 20 ([166]). The bitsize of the separation bound of f is in O(dz). Similarly, the
bitsize of the endpoints of isolating intervals of the roots of f is in ©(dz). Moreover, the
absolute value of the roots of f is in O(27).

The following lemma will be proven using Horner’s scheme. Note that the com-

plexity also holds for other schemas.

Lemma 21. The evaluation of f over x has complexity 53(61’(7 + do)), while the number
f(x) has bitsize O(z + do).

Proof. Evaluating the polynomial f = Z?:o a;x' using Horner’s method gives raise to
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the sequence

bd:ad

bg—1 = ag—1 + byx

b() = dy —|—b1x

where by = f(x) is the desired evaluation.

Given that the coefficients of f have bitsize ©(7) and x has bitsize O(s), we see that
by_; has bitsize 6(z + ic) for 0 < i < d. Thus, by has bitsize O(7 + do).

To bound the complexity of the evaluation, note that each step introduces the com-
putation of a multiplication and an addition. The latter will be neglected in the analysis
since, in this case, it is majored by the cost of the multiplication. The cost of the com-
putation of b;_; for 1 < i < d is the cost of multiplying b, ;1| times x. That is, it
is the cost of multiplying numbers of bitsize 7 + ic and o. Since this operation is re-
peated O(d), the cost of this operation is d times the complexity of the multiplication
of numbers of maximum bitsize O(7 + do). This yields, using FFT multiplication [81,
Chapter 8], 5B(d(f + do)). [

Since the interval evaluation of the operations 4, —, X are a constant time more

expansive that their usual counterparts we obtain the corollary:

Corollary 22. The evaluation of f using interval arithmetic over an interval I with end-
points of the same bitsize as x, i.e. the computation of £(I), has complexity 53(41(1 +do)),
while the interval £(I) has endpoints with bitsize O(t + do).

In our algorithm we need, several times, to evaluate univariate and bivariate poly-
nomials over intervals. This is done using classical interval arithmetic operations. The-
oretically, we need to control how large an interval becomes when a polynomial opera-
tion is performed. The following lemma bounds the increase of the width of an interval

by evaluation by interval arithmetic of a polynomial.
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Lemma 23. Let P be a univariate rational polynomial of degree d and bitsize T, and A be

an interval such that |A| < 27 witho > 0; then
w(P(A)) < 27t (A).

Let Q be a bivariate rational polynomial of total degree d and bitsize t, and B be an interval

such that |B| < 2° witho > 0; then

w(Q(A, B)) < 27t @w(A x B).

Proof. We apply the basic formulas for the sum and the product of intervals [4, Theo-

rem 9, p.15], which are for any real number a and integer n > 1:

w(A + B) = w(A) + w(B), w(aA) = |a|lw(A),
w(AB) < w(A)|B| + |A|w(B), w(A") < n]A|"'w(A).

Let P(x) = ijo cix' with |¢;] < 27 and Q(x,y) = Z:}g%d c;x'y with |c;| < 27 We

have:

w(P(A)) = Z leilw(d) < 2f Z A" w(a) < ZTW(A)dZ 4]

< 2'w(A)d*max(1,]A]7") < 2w(A)d2 < 27PPdw(A).
w(Q(4,B)) = D leglw(aB) < 27 w(A)|BY +w(B)A|

< 27y iw(a)|AlBY + jw(B)|Al'|Bl !

< 2°dP2w(A X B)max(1,2°¢7Y) < 2ttt B4 x B).
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6.1.4 Computation of the isolating boxes

The first step of the algorithm is the computation of the isolating boxes of the singu-
lar and the extreme points. For the complexity of this step it suffices to compute the
complexity of solving the system of critical points I. = I(f, fy)

The steps for solving the system are the followings. We compute the Grobner basis
of 1. and the RUR of the system. We solve the univariate polynomial of the RUR and,
using the isolating intervals of its real roots, we compute boxes that contain the real

solutions of the systems. Finally, we refine the boxes until they are all disjoint.

Grobner basis and RUR

We compute the Grobner basis of /. with the degree reverse lexicographic order in
@(dgr) [111]. Next we compute the RUR representation of the solution of the system
and multiplicities in 5B(d13 7), the reader may refer to [140] for more details. Besides /.
we have to solve the systems I, for 1 < k < d, to determine the multiplicities of the
singular points. We may assume that each of them could be solved in 53(6113 7), as in
the case of 1., since the polynomials have degrees bounded by d and the bitsize of the
coefficient is bounded by 5(1) Hence the total complexity is 5B(a’141’). However, this
is an overestimation since the systems are over-determined and thus the Grobner bases
could be computed faster [12] and in practice we don’t need to solve all d of them.

The RUR representation has the following form: A(T) = 0,x = iogg yy = i‘(‘)’ Eg,
where , g, g, 8, € Q|T]. The polynomial i(T) is actually the so called u-resultant [37].
It has degree O(d”) and bitsize O(d*> + dr) = O(dr). One way to see this is to consider

a curve (and thus the system /.) in generic position, this is without loss of generality
since shearing the curve in generic position does not increase the bitsizes more than by
a factor in O(lg(d)). In this case we can consider as the polynomial 4(T) the projection
of the system on the x-axis or, in other words, the resultant of the system with respect
to y. Under this notion, g, and g,, respectively g, and g, could be seen as the coefficients
of the first non-vanishing sub-resultant of f'and f,, with respect to y, respectively with

respect to x. Thus, the degree of these polynomials is @(d*) and their bitsize is O(dz).
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We can simplify the expressions of x and y, if we take into account that 4(T) and
go(T) are relative prime. Indeed, we can compute a polynomial g(7) such that g-g, = 1
mod h and thus express the coordinates of the solutions as x = h,(T) = g,(T) g(T) and
y = h(T) = gy(T) g(T). The degree of g is ©(d”) and its bitsize is O(d’7), as g is a
Bézout coefficient of the extended Euclidean division of g, and 4 [81]. The same bounds
hold for £, (T) and h,(T).

Computation of the boxes

In order to solve the system, it suffices to compute the isolating intervals of the real
roots of i, and substitute them in 4, and 4, using interval arithmetic. This gives isolating
boxes that contain the real roots of the system. Finally, we refine these boxes until they

become disjoint.

Lemma 24. To ensure that the boxes of the critical points are disjoint, it is sufficient to refine
O(d’t) times each isolating interval of the corresponding root of the univariate polynomial

of the RUR of the critical points.

Proof. One needs to refine the isolating intervals of the real roots of / until the corre-
sponding boxes of the system, computed by interval evaluation with 4, and ,, become
disjoint. In other words, the isolating boxes should have width smaller than 27, where
s¢ is the separation bound of the system of critical points. If 27# is a lower bound on the
width of the isolating intervals of s, Lemma 23 yields a value y, so that the evaluations
by h, and h, give intervals of width at most 27*. We consider only the polynomial #,,
since the computation is similar for /,. Lemma 23 applied with A, of bitsize 6(d’7) and

degree O(d”) evaluated at the roots of & of absolute value 6(2¢%) (by Lemma 20) yields:

2@(d3r)+@(d2)@(dr)d22—y < 27

Thus, it suffices to consider x in O(s, + d’7).
On the other hand, the separation bound of the critical points is larger than the

separation bounds of the x (or y) coordinates of these points. The coordinates are roots
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of the resultant of fand f, with respect to y (or x), which is a polynomial of degree o(d*)
and bitsize O(dz). Hence the separation bound of the coordinates is of bitsize O(d’7)
(by Lemma 20). This is also a bound for the separation bound of the critical points thus
5. is in @(d31) and O(s. + d31) is also in @(d3’l').

By Lemma 20, the isolating intervals of & have initial width 0(2%). Thus, to re-
duce them to the width 27#, it suffices to perform O(dr + d’t) = O(d’t) refinements,
provided that the refinements divide the interval widths by at least two. ]

6.1.5 Refinement with respect to the isolating curve

We require that the isolating boxes of singular points avoid their associated curve f;, =
0f/Oy*. This is ensured by refining the isolating boxes of the singular points so that
the evaluation of f;, using interval arithmetic, results an interval that does not contain
zero.

Before stating the main lemma of this section, we need to compute the separation
bound needed for the proof of Lemma 27. We first need a refinement, due to Yap [166],
of the Gap theorem by Canny [37].

Theorem 25 ([166] Gap theorem 11.45). Let L = {A,,...,A,} C Zlx;,...,x,] bea
system of n polynomials, not necessarily homogeneous. Suppose that  has finitely many

complex zeros and (£, . .., &,) is one of these zeros. Assume d; = deg(A;) and
K :=max{vn + 1,max{||A;]|,| 1 <i<n}},

where ||A; ||, is the usual Euclidean norm of the vector of coefficients of the polynomial A,.

If|&] #0,i=1,...,n, then
] > (2w P -,

where

v (1+Zn:?:1di>’ D= <1+§:$> ﬁd,-.
i=1 ' 1

=
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We now prove, following closely [168], the lemma we use in the proof of Lemma

27.

Lemma 26. Let p be a critical point of a curve €y, without vertical lines, defined by a
square-free polynomial f of degree d and bitsize 7. Letf, = 0*f/0y*, where2 < k < d. If
p is not a point on f,, then |f,(p)| > 27* withs, in 5((141).

Proof. We consider the following system for k € {2,...,d}
Al : f(p) — 07

Az . f;,(p) = 0,
A; + h—f(p) = 0.

The system is zero-dimensional because the number of critical point is finite, and we

can apply Theorem 25, where

dlzd, dzzd—l, d3§2(d—k),

4d — 2k
N§< ; >§16d3, D<(d+2)(d—1)(2d — 1) < 4d".

The bitsize of the norm of a polynomial is the bitsize if the polynomial itself. Since
the bitsize of f and f, is in O() and that of f; is in E(dr), we conclude that the bitsize
of K is in E(dr). The factor that gives the bitsize in the lower bound of Theorem 25 is
thus K~ and / is bounded by a value of bitsize in 5((14 7). [

We are now ready to introduce the lemma that bounds the number of refinements

needed to avoid box overlaps.

Lemma 27. To ensure that the boxes of singular points do not overlap their associated
curve f;, it is sufficient to refine O(d't) times the corresponding roots of the univariate

polynomial of the RUR.

Proof. Consider a box B = I X J that isolates a singular point p. Assume, without loss

of generality, that the width of B is 27#. Let k be such that f, is the isolating curve for
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p. We need to ensure that the evaluation of f;, over B does not contain 0. A sufficient

condition is that w(f(B)) < & with § < | f,(p)|. Defining s, as the maximum bitsize
fi(p)| >

of the values of f; at the singular points of f (more precisely s, = max;en+{
27%, p singular point of fand £, ( p) # 0}), we can choose § = 27".

f; is of degree O(d) and bitsize E(dr) (by Stirling formula). The absolute value of
a box of a singular point is ©(2¢%) since the x or y coordinates of a box are roots of
the resultant of f and f, with respect to y or x, and such a resultant has bitsize © (dr)

(Lemma 20). Lemma 23 applied for the evaluation of f;, over a singular point box yields:

25(dr)+@(d)@(dr)+ld32—u <2

Thus, it suffices to consider x in O(s, + d°7).

On the other hand, Lemma 26 gives that s, is in 5(d4 7), hence y is in 5(414 7).

Let 27 be the width of the isolating interval of 4 that corresponds to the singular
point via the RUR. Then v should be such that the box computed via the RUR has width
27#. Applying Lemma 23 again, for the evaluation of &, of degree O(d*) and bitsize

O(d’z) over this isolating interval of absolute value 0(2%7), v should satisfy:

2@(d37)+@(d2)@(d1)d2271/ S H

Thus, it suffices to consider v in 5(4141).
We conclude, as in the proof of Lemma 24, that it suffices to perform 5((14 1) refine-

ments. O

6.1.6 Refinement of the singular points to avoid top/bottom cross-
ings

The last step that we need to consider is the analysis of the refinement of the isolating
boxes of the singular points, until there is no intersection between the curve and their

top and bottom sides.
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Lemma 28. To avoid top/bottom intersection between the curve and the boxes of singu-
lar points, it is sufficient to refine E(dgr) times the corresponding roots of the univariate

polynomial of the RUR.

Proof. Consider a singular point and its isolating box refined according to Lemmas 24
and 27. We further refine the x-coordinate of the box until the top (or equivalently the
bottom) side does not intersect the curve. The line supporting the top side is of the form
y = ¢, for some constant c. Hence, the x-coordinates of the intersections of the curve
with the top side are among the roots of f(x, ¢). Consider the polynomial P whose roots
are the roots of f(x, ¢) and the x-coordinates of the critical points. A sufficient condition
to avoid intersection on the top side is to ensure that the x-width of the box is smaller

than the separating bound of P.

The bitsize of c is the same as that of the evaluation of 4, over an end-point @ of an
isolating interval of a root of A. From Lemmas 24 and 27, the bitsize of a is in 5(614 7).
Since h, is of degree O(d”) and bitsize 6(d’7), ¢ has bitsize 5(6161) (Lemma 21). Hence
f(x,¢) is a polynomial of degree O(d) and bitsize 5(6177). The polynomial P is the
product of f(x, ¢) and the resultant with respect to y of f and f,, thus its degree is in
0(d*) and its bitsize is in 5(0,’71'). The bitsize of the separation bound of P is thus § in
(7).

Let 27# be the width of the isolating intervals of & corresponding to the singular
point by the RUR. Lemma 23 applied with £, of bitsize 6(d’7) and degree O(d*) yields:

2@(d37)+@(d2)@(dr)d22—;4 < P

Thus, it suffices to consider y in 5((19 7).

We conclude, as in the proof of Lemma 24, that it suffices to perform 5(419 7) refine-

ments.
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6.1.7 Overall complexity

Combining the results from Section 6.1.4, 6.1.5 and 6.1.6 we can now prove Theorem 19.

Proof of Theorem 19. Combining the results of Lemmas 24, 27, and 28, we prove that the
algorithm performs 5((19 7) refinements. Each refinement consists of an evaluation of &,
h, and h, over a rational number of bitsize 5(519 7). Using Horner’s rule, each evaluation
of these polynomials of degree O(d*) and bitsize G(d’7) has complexity 5B(d2 (&7 +
did7)) = 53(61131) (Lemma 21). The complexity of the 5(d9 7) refinements is thus in
@(d”rdg T) = @NB(d2212). If there are R singular points the total cost is thus 5B(Rd2212).
Note that the costs of Grobner and RUR computations are dominated. Finally, the
complexity of dealing with vertical asymptotes (Step 5), vertical lines and the connec-
tion part of the algorithm (Step 6) is dominated by the complexity of the other steps.
Finally, if N = max{d, r}, note that R is in 6(d*) = O(N?), and so the total
complexity of the algorithm is 53(N26). ]

6.2 Arrangements of x-monotone algebraic curves

In this section we present an output-sensitive analysis of the bit complexity of the stan-
dard sweep-line algorithm [16] for computing arrangements of graphs of univariate
polynomial functions. Kerber’s thesis [104] introduces an algorithm to compute ar-
rangements of algebraic plane curves defined by bivariate polynomials. He also proves
an output sensitive worst-case bit-complexity bound of this algorithm. His algorithm
is based on the analysis of a pair of curves, and the total complexity of the algorithm
is given in function of the amounts of pairs of curves that need to be analyzed. On
the other hand, our bit-complexity bound is given in terms of the size of the arrange-
ment and of separation bounds. The main result of this section is stated in the following

theorem.

Theorem 29. The arrangement of n curves, defined by univariate polynomials of degree

at most d with integer coefficients of bitsize at most t can be computed in time Op((n +
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k)d* u(z + du)), where k is the number of intersection points between the curves and u is
a bound on the bitsize of the separation bounds of all differences between two of the input

polynomials.

Note that, if N = max{n, k, d, 7, u}, thisbound is in 53 (N®) which is quadratic in the
size of the input in the worst case. Before proceeding to the proof, some auxiliary results
need to be stated. First, we note that the results of [63, 70] can easily be generalized
to express the complexities of isolating the real roots of a polynomial in terms of the
separation bounds of the considered instances of polynomials rather than in terms of

worst-case separation bounds.

Proposition 30. The real roots of a univariate polynomial of degree d with integer coef-
ficients of bitsize at most © and separation bound of bitsize s can be isolated, with their
multiplicities, in 5B(d2 s(t+ds)) time. The bitsize of the endpoints of the isolating inter-
vals is in O(s).

Proof. In [63], it was proven that the worst-case complexity is 53(616 + d* 7%). For com-
pleteness, we show a proof of this result.

Let s; be the bitsize of the local separation bound of k-th root of the polynomial,

that is s, = —log|r, — 7.(x)
e.g. [50, 57, 155],

, where 7, is the closest root to y,. Then it holds,

d d
D se==) toglr = 1)
k=1 k=1
d
= — IOgH 76 — 7o)l
k=1
= O(d* + dv).

To isolate y,, one needs to perform s, shift operations. At each step we perform

a polynomial shift with a number of bitsize O(s;). Each shift operation costs 5B(d‘lf +
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d’s;) [80]. We sum over all the roots to get the total complexity,

@B(d sk—l—d Zsk)
G+ ar) + (f; 2))

d
Z 5B(drsk + dzsi

k=1

O (7 + d*2* + d*(d* + dr)?)
= G(d° + d*7?).

To derive an output sensitive result, we now replace the worst-case separation

bound by s. We let s = max,(s; ), then the complexity becomes

d
Z @(drs + dzsz) = 5B(d21s + d3s2).

k=1

]

We also recall an output-sensitive result on the complexity of comparing the roots

of two polynomials, whose proof will be shown for completeness.

Proposition 31 ([70]). Two real algebraic numbers defined as roots of polynomials of de-
gree at most d with integer coefficients of bitsize at most = and separation bounds of bitsize

at most s can be compared in 53(012(1 +5)) time.

Proof. Let y, and y, be the two real algebraic numbers, f; and f, the two defining poly-
nomials, and /; and I, the isolating intervals.

Let J = I, N I,. When J = (), or only one of y, and y, belongs to J, then we can
easily compare them. If y,,y, € J, theny, > v, < £(r)) 'f/z(Vz) > 0. The sign of
f,z(yz) is know from the root isolation process. It remains to compute the sign of £, (7, ).
For this, we need to evaluate the Sturm-Habicht sequence of f; and f, over the endpoints
of J. The evaluation of such a sequence, of polynomials of degree d and bitsize z, over

a number of bitsize s costs 53(012(1 +5)). [
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These complexity results yield, almost directly, the output-sensitive bit complexity
of the standard sweep-line algorithm for computing arrangements of graphs of univari-

ate polynomial functions, stated in Theorem 29.

Proof of Theorem 29. Recall first that the combinatorial complexity (i.e., the complexity
in the real-RAM model) of the standard sweep-line algorithm [16] for computing ar-
rangements of n algebraic curves of bounded degree is O((n + k) logn), where k is the
number of intersection points (see, e.g., [51, 76]). To evaluate the bit complexity of the
algorithm, we split the analysis in two parts. In the first part, we consider the complex-
ity of the construction of the intersection points of the curves. In the second part, we
consider the cost of comparing the x-coordinates of the intersection points.

In order to compute (that is, to isolate) the intersection points of two curves y =
fi(x) and y = f,(x), represented by polynomials f;, f, € Z[x] of degree at most d with
integer coeflicients of bitsize at most 7 and separation bound of bitsize at most s, we can
first isolate the real roots of the polynomial f(x) = f,(x) — f,(x), which can be done
in time 53(612 u(t + du), where u is a bound on the bitsize of the separation bound of
f(x) = fi(x) — f,(x) (by Proposition 30). We can then compute the image by f of these
intervals in time @NB(d(r + du)), by Corollary 22. In the sequel, we will denote by u a
bound on the bitsize of the separation bounds on all pairs of polynomials.

To begin the algorithm we need to compute a vertical line that is to the left all the
intersection points between the curves. The x-coordinates of the intersection points of
a pair of polynomials f; and f, are the roots of f; — f,. A simple bound on the roots of
a polynomial can be obtained by taking the greatest absolute value between its coeffi-
cients. The biggest absolute value of the coefficient of f; — f, will be smaller or equal
than two times the maximum absolute value of the coeflicients of these two polynomi-
als. Thus the x-coordinate of such a vertical line can be obtained by taking minus two
times the absolute biggest absolute value of the coefficients of the n polynomials. To
compute a lower bound on the roots of the n polynomials, it suffices thus to compare
all the nd coefficients. The cost doing this is 53(11 d ) and is dominated by the other
steps of the algorithm.
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We then compute the intersection points of this line with all the curves, so that
to order the curves along the sweep line. The intersection of a vertical line with one
curve is obtained by evaluating the polynomial defining the curve in the value of the
x-coordinate of the line. The x-coordinate of the line has bitsize 7 + 1 since it corre-
sponds to a coefficient times two, thus each evaluation can be done in time 53(612 r), by
Lemma 21. Thus, computing all the intersections is done in time 53(1@ d* ). Moreover,
sorting all these intersection points can be done in 53(1’ + d u) since the bitsize of their
y coordinates is in O(z + du) by Lemma 21.

We then compute the intersection between the n — 1 pairs of adjacent curves along
the sweep line. Thus, we initially perform @(n) intersections between pairs of curves.

Then, during the sweep, every time an intersection point is encountered by the
sweep line, we exchange two curves is the list of curves intersected by the sweep line
and we compute the intersection between (at most) two new pairs of adjacent curves
in this list. Hence, we perform, in total, @(n + k) intersections between pairs of curves
in 53((11 + k) d* u(r + du)) time.

We now consider the cost of comparing the x-coordinates of the intersection points
when updating the event list. Every time two curves become adjacent along the vertical
line of sweep, we insert their first intersection point that is to the right of the line.
Since we only insert one intersection point (rather than d), this requires in total O((n +
k) log n) comparisons which can be done in @((n-i—k) d*(z+u)) time by Proposition 31.

]

Note finally that the same analysis, and thus the same complexity bound, applies

also in the case of rational univariate functions.

6.3 Conclusion

We derived in this chapter output-sensitive bit-complexity analyses of the algorithm for
computing the topology of algebraic planar curves introduced in Chapter 3 and of the

standard sweep-line algorithm for computing arrangements of algebraic x-monotone
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curves defined by univariate polynomials.

As mentioned at the beginning of this chapter, bit-complexity analyses often intro-
duce important overestimations due to worst-case considerations. Average-case com-
plexity analyses are more difficult to perform in the bit-complexity model than on the
real-RAM model. For instance, an average-case bit-complexity analysis would imply to
consider expected values on the number of roots of the involved polynomials. These
statistic analyses are known to be hard, see for example [100, 71]. More recently, Emiris
et al. [67] used these results to study root separations, and the expected number of
roots of Bernstein polynomials. These statistical analyses would permit to obtain tight
average-case complexity bounds based on average-case separation bounds. However, it
should be stressed that, even though such bounds would be of real interest, they would
likely underestimate the complexity of the algorithms on real instances because the ex-
pected number of roots of random polynomials is very small [58], which tends not to

be the case for input coming from real geometric problems.
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Chapter 7

Conclusion

The main problem tackled in the thesis was the computation of the topology of plane
curves, defined by bivariate polynomials with rational coefficients. We presented an al-
gorithm based on Grobner bases, rational univariate representations, univariate poly-
nomial root isolations and interval arithmetic. These techniques permitted to avoid
computations with algebraic numbers, and to be insensitive to the non-genericity of

the curve.

We also addressed the implementation of this algorithm. First, we presented an im-
plementation in MAPLE. Thorough experimentations and comparisons with other simi-
lar programs showed that our algorithm, and in its implementation, 1soToP, permits to
push forward the classes of curves that one can study. In particular, curves with many
degeneracies, such as high-degree curves with many critical points with the same x-
coordinate, represented a challenge to other algorithms, whether they shear the curve
of not. Benchmarks thus validated our approach, as well as exposing weaknesses of our
algorithm in some classes of examples, such as random curves. However, these cases
are usually the simplest in other approaches. The study of the classes of curves in which
1SOTOP is slow is currently leading to the development of a bivariate solver, that detect
the cases where Grobner bases or RUR computations are slow and solves the system

using other techniques, see [25] for details.
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It must be noted that our algorithm deals with single curves. More precisely, even if
an input curve can be factorized, that is if it is the union of several algebraic curves, our
algorithm considers it as a unique curve. However, as discussed previously, comput-
ing the topology of every (algebraic) component and combining them afterward using
a sweep-line algorithm, is more efficient than directly computing the topology of the
product. It should be stressed that this is the reason why we required that the x-extreme
points of every curve should be computed in the original coordinate system. This prob-
lem of computing the topology of the arrangement of algebraic curves knowing their
topologies was studied in detailed by Michael Kerber in his thesis’ [104] (see also [61]).
Another important related problem is the visualization of the curve from its topology.

This problem has also been recently studied in Kerber’s thesis (see also [64, 65]).

A natural extension of our algorithm is the development of an algorithm capable
of handling curves in three dimensions. This assertion is founded in the fact that the
algebraic techniques used in our algorithm in the plane extend directly to finding and
identifying boxes containing all critical points of the curve without performing projec-
tions. Avoiding projections is important because it avoids the consideration of all the
critical points of the projection which correspond to two branches of the curve that do
not intersect in space but intersect in projection. However, determining the topology

of the curve in space after computing such boxes remains an open problem.

Since MAPLE is not a standard for software development in the computational geom-
etry community, we addressed the problem of the implementation of algebraic-based
geometric algorithms in cGar. We contributed an univariate algebraic kernel which
constitute a first brick toward the completion of an algebraic framework in cGaL by
implementing an univariate algebraic kernel. We presented extensive benchmarks for
this algebraic kernel and other similar software, as well as an example of application of
this algebraic kernel to the computation of arrangements of x-monotone curves defined

by univariate integer polynomials.

Our algebraic kernel represents a step toward making cGAL able to handle general

°M. Kerber also addressed in his thesis the problem of computing the topology of a single curve.
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algebraic non-linear objects. Future directions include the development of a bivariate
algebraic kernel, which would permit to implement 1soToP in cGAL. More generally,
the development of an algebraic kernel capable of handling systems of polynomials in
many variables would be an interesting challenge. However, such a kernel is not yet
part of the cGaAL specifications.

Throughout this thesis, experimentations helped considerably in the development
process. Benchmarking exposed issues in implementations, providing means to choose
which parts of the algorithm should be optimized, changed, or even rewritten. This
happened, for instance, with the computation of the multiplicity of critical points in
vertical fibers in the topology algorithm. It also showed the necessity of writing an effi-
cient ged function in the algebraic kernel. On the other hand, experimentation exposed
flaws in some libraries used by our implementation (namely, it led to the discovery of
a bug in the rs library, a bug in the 64-bit version of the core library and, of course, of
many bugs in our implementations).

Finally, we presented output-sensitive bit-complexity analyses of the algorithm to
determine the topology of a planar curve and of the standard sweep-line algorithm to
compute arrangements of x-monotone curves defined by univariate polynomials. Alge-
braic techniques often need multiple-precision arithmetic, and the bit-complexity model
of computation reflects the real cost of multiple-precision arithmetic operations better
than the real-RAM model. However, output-sensitive analyses are usually hard and
they are often skipped. Such analyses are important since they give tighter bounds
than the standard worst-case complexity analyses when the algorithms depend on the
size of the output (or other specific parameters such as separation bounds).

In a general context, we addressed in this thesis the problem of the computation
of the topology of planar algebraic curves. We tackled this problem from three points
of view, that are fundamental and complementary in computer science: algorithmic
development, implementation and complexity analysis. In other words, implementation
and benchmarking validated the approach taken in the design of the algorithm, while
complexity analysis is theoretically interesting, since it provides another insight on the

performance of algorithms.
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Appendix A

Benchmarks

This appendix details the results of the experiments in the 1Isorop benchmarks, discussed
in Section 4.4. These benchmarks produced large text files. We show in Section A.1 the
result of parsing these files and eliminating some irrelevant data. Section A.2 shows the

polynomial equations defining the tested curves.

A.1 Benchmark results

Each set of benchmarks is presented as a table. Each row of a table contain information
about one curve. Columns of the table show information about the tested curve and the
time spent for each implementation to compute its topology.

The first column, labelled &, specifies the name of the curve. For reasons of read-
ability, polynomials defining curves are not shown in the tables. They are presented in
Section A.2.

The six columns of each table containing information about the curve are labelled

as follows:
« d is the degree of the curve,

« 7 is the bitsize of the curve,
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« s is the number of singular points of the curve,
« Eis the number of x-extreme points of the curve,
« v is the number of vertical lines in the curve, and

« A is the number of vertical asymptotes in the curve.

The remaining columns shows the time spent on the computation by each implementa-
tion, either total or partial. The column labeled IsoT shows the total 1soTOP computation
time. The eight following columns contain a detail on the time spent by 1sotop on each

stage of the algorithm. These columns are labeled as follows:

« IB is the total time spent by 1soToP to isolate the critical points in boxes,
« IG is the time spent by FGB to calculate the Grobner bases,

« IR is the time spent by Rs to calculate the RURs,

« Ir is the time spent in refinement of boxes,

« Iv is the time spent in processing the vertical lines,

« Ia is the time spent in processing the vertical asymptotes,

« Is is the time spent in the sweep-line algorithm that computes the vertical sub-

division of the plane in rectangles, and
« Ic is the time spent in the connexion of the points.
The last five columns detail the time spent by the rest of the implementations, as follows:
« INs is the total time spent by INSULATE,
« Tor is the total time spent by ToP,

« CAO is the total time spent by ca, optimized for generic curves by setting to 0

the parameter CGAL_ACK_RESULTANT _FIRST_STRATEGY,
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« CA1is the total time spent by ca, optimized for non-generic curves by setting to

1 the parameter CGAL_ACK_RESULTANT _FIRST_STRATEGY, and

« C2p is the time spent by cAD2D without considering initialization.

A.1.1 Benchmarks of the ACS and F series

The following table shows the results of the benchmarks of the curves contained in the

ACS and F suites.
€|d = s E va|lsor|IB I IR Ir Iv Ia Is Ic| Ins | Torp | CA0 | CA1 |C2D
A5 0 1 4 0 0(0.17]|0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ©0.16| 0.08| 0.03| 0.04|0.32
Ay |7 25 4 3 0 0(0.32|0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 3.81| 0.22| 0.08| 0.11(0.42
A3 |8 6 0 11 0 0(0.55|0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0 1.86| ©.58| ©.29| 0.29|0.41
Ay |8 2 2 4 0 0(0.34/0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.53| 0.29| 0.32| 0.43(0.35
As|4 8 3 2 0 0(0.19(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ©0.21| 0.08| 0.03| 0.03(0.32
Ag |5 4 4 0 0(0.16]0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ©.37| 0.05| 0.02| 0.02(0.32
A;7|7 8 0 10 0 0(0.46|0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.61| ©.39| 0.20| 0.19(0.37
Ag |6 46 4 3 0 0(0.45/0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0| ©0.62| 0.17| 0.08| 0.09(0.38
Ag|6 25 0 6 0 0(0.33/0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 1.44| 0.15| 0.05| 0.06(4.87
Apl12 8 6 4 0 0(|0.66(0.1 0.0 0.0 0.0 0.0 0.0 0.2 9.0| 1.80| 0.41| 0.16| 0.21|0.40
F, |8 6 217 00/(1.27/0.1 0.0 0.0 0.1 0.0 0.0 0.3 0.0 3.84| 1.19| 0.41| 0.46|0.40
F,|5 0 0 4 00(0.13/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11| 0.07| 0.03| 0.03]0.32
F;3/5 0 1 4 00(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.16| 0.08| 0.03| 0.03|0.33
F,|4 5 1 5 00(0.21|0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ©.14| 0.97| 0.09| 0.09(0.32
Fs|4 1 1 6 00(0.14/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.12| 0.05| 0.06| 0.07]0.32
Fe|8 2 2 4 00(0.32/0.7 0.0 0.00.00.00.00.70.0[ 1.57 0.28 0.33| 0.40(0.35
F;/5 0 0 2 0 1(0.13/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.22| 0.07| 0.06| 0.07|0.32
Fg|6 25 0 6 0 0(0.34/0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 1.44| 0.14| 0.06| 0.06(4.82
Fo|8 3 5 2 00(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.9 0.0 1.36| 0.27| 0.26| 0.28]0.32
Fyl6 0 1 8 00(0.27/0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.56| 0.15| 0.26| 0.28(0.33
Fjy|11 3 0 4 0 0(0.68{0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.0 1.57| ©.36| 0.14| 0.15(0.38
Fil|9 30 0 4 0 0(0.57|0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 9.97| 1.07| 0.29| 0.28(1.84
F3|8 0 1 2 00(0.30/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ©0.12| 0.05| 0.02| 0.02]0.32
Fi4|9 0 2 3 0 2(0.52/0.2 0.0 0.0 0.1 0.0 0.1 0.1 0.0 2.31| 0.56| 0.46| 0.55(0.36
Fis|3 0 2 1 00(0.14/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ©.09| 0.03| 0.01| 0.01(0.32
Feglo6 2 1 0 0(0.30|0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 ©.39| ©.13| 0.13| 0.16|0.32
F;/4 5 1 5 00(0.20/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15| 0.08| 0.09| 0.09|0.32

Benchmarks of the ACS and F series (continued on the next page).
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€|d t s E va|lsor|IB I IR Ir Iv Ia Is Ic| Ins | Tor | CA0 | CA1 |C2D
Fig|6 104 2 8 0 0(0.40(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 2.06| ©.41| 0.31| 0.36(0.36
Fig|8 21 4 18 0 0[1.00(/0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 3.38| 1.59| 1.02| 1.10(0.44
Fy|8 3 5 8 00(0.50(0.7 0.0 0.0 0.00.00.00.20.0[ 1.76| 0.47| 0.44| 0.52|1.40
Fy |8 23 0 14 0 0(0.78/0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 2.92| 0.75| 0.78| 0.88(0.42
F»|8 23 0 16 0 0(0.71/0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 3.70| 0.82| 0.99| 0.94|0.41
Fp;|8 20 9 8 0 0(0.94/0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.0 ©6.32| 0.87| 0.82| 0.92| ERR
Fp |16 22 9 8 0 0(4.08|/0.6 0.4 0.0 0.3 0.0 1.0 0.6 0.0[243.27|64.04|12.20|15.40| ERR
Fys|9 36 0 4 0 0[0.55/0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0| 11.49| 1.21| 0.36| 0.36|2.16

Benchmarks of the ACS and F series.

A.1.2 Benchmarks on Labs’ tough curves

Labs [109] gives a list of curves that are difficult to visualize. The following tables show

the results of the benchmarks performed on those curves. The curves are named L;

where i is the challenge number on the paper and j is a subindex.

€ |d v s Evallsor|IB Ic Ir Ir Iv Ia Is Ic| Ins | Tor |CA0|CA1|C2D
Lij|4 33 100(0.12/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.16]0.05(0.02{0.02|0.33
Lip|5 4 6 10 0(0.24/0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0| 0.43|0.20(0.11]0.13|0.32
Liz{6 41 10 0(0.34/0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.72|0.32(0.26(0.28|0.34
Li4{7 61510 0(0.72/0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0| 2.07|0.96(0.49|0.54|0.39
Lis|8 72110 0(1.15/0.1 0.0 0.0 0.0 0.0 0.1 0.3 0.0| 4.75|1.38|0.96|1.03|0.44
Lig|9 72810 0(1.92/0.10.10.00.00.00.2060.0f 9.04 X{2.52|2.08|0.58
Li7|/10 8 36 1 0 0(3.08(0.1 0.7 0.0 0.0 0.0 0.3 0.9 0.0|20.24 X14.9713.98)0.86
Benchmarks L.
€ |d s EV A| Isor |IB I IR Ir Iv Ia Is Ic |Ins|Tor| CAO CA1 C2p
L;|2 01000 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.01| 0.00 0.00| 0.32
L[4 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.33
Ly3/6 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.32
L,|8 01000 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.32
Ly5|10 0100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.01] 0.32
L6 |12 0100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.01] 0.91
L7144 0100 0 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.01] 0.33
Lyg|4 01000 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00 0.00| 0.33
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€ |d s EV A| Isor |IB I IR Ir Iv Ia Is Ic |Ins|Top| CA0 CA1 C2p
Lyo|4 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.32
Lyio| 6 01000 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.32
Ly1;/8 01000 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.01] 0.34
Lr2/10 0100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.01] 0.32
L13/12 0100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.01] 0.33
Ly14/14 0 100 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.02] 0.33
Ly;s/6 01000 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00 0.00| 0.32
Ly 6 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.01] 0.32
L1706 01000 0.07|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.01] 0.32
L1318 01000 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.01] 0.32
Lr19/10 010 0 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.02] 0.33
Ly2[12 0100 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.02] 0.32
Lr51(14 0100 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.02] 0.33
Ly>» |8 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00 0.00| 0.32
Ly»3/8 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.56
L2488 01000 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.01] 0.33
Ly>s/8 01000 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.01] 0.33
Ly (10 0 10 0 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.02] 0.33
L»7/12 0 10 0 0 0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.02] 0.33
L3014 0 10 0 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.02 0.04] 0.35
Ly2[10 010 0 0 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00 0.00| 0.34
Ly3[10 010 0 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.00| 0.32
Ly31{10 0100 0 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.01] 0.32
L;3(10 0100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.02] 0.33
Ly3(10 010 0 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.03] 0.33
Lr34)12 010 0 0 0.11]0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.04] 0.34
Ly35(14 0 10 0 0 0.12]0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.05| 0.36
Lr3(12 0 10 0 0 0.07]0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.01| 0.00 0.00| 0.33
Ly3(12 0100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.01] 0.32
L3312 0 10 0 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.07] 0.32
L3120 100 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.02] 0.33
Ly4[12 010 0 0 0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.04] 0.34
L4 (120100 0 0.13]0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| .01 0.05| 0.32
L4140 100 0 0.15(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.02 0.07] 0.38
Ly43(14 0 10 0 0 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.01| 0.00 0.00| 0.32
L4414 0 100 0 0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.01] 0.32
Ly4s(14 0 10 0 0 0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00 0.02] 0.32
Ly4[14 0 100 0 0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.03] 0.34
Ly47014 0 100 0 0.12]0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.05| 0.34

Benchmarks L, (continued on the next page).
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€ |d s EV A| Isor |IB Ic IR Ir Iv Ia Is Ic |Ins|Tor| CAO CA1 C2p
Ly43(14 0 10 0 0 0.16(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01 0.06| 0.36
Ly49[14 0 1.0 0 0 0.20(0.0 0.1 0.0 0.0 0.0 0.9 0.0 0.0|INT| ERR| 0.02 0.09] 0.38
Lyso| 8 0100 0 0.1210.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| 0.01 0.03] 0.33
Lrs51|16 310 0 0 0.37(0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.12 0.50| 0.64
Lysp[24 4100 0 2.73|0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| 0.88 4.29| 0.78
Lys3(32 7 100 0| 13.52(0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| 4.24| 24.30| 18.19
L5440 8 10 0 0| 47.70(0.0 47.4 0.0 0.0 0.0 0.0 0.1 0.0|ERR|0.08| 15.70| 104.00| 23.50
Lys55(10 0 1.0 0 0 0.1410.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.03 0.06| 0.34
Lys56(20 3 10 0 0 0.97]0.0 0.8 0.0 0.0 0.0 0.9 0.0 0.0|ERR|0.05| 0.32 1.28] 1.16
Lys57(30 4 100 0 9.19(0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| 2.22| 12.50| 1.55
Lrsg|40 7 10 0 0| 47.45/0.0 47.1 0.0 0.0 0.0 0.0 0.7 0.0|ERR|0.07| 11.20| 78.50| 55.48
Lys59[50 8 10 0 0| 174.61|0.1 174.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.09| 43.30| 353.00| 67.57
Lryep[12 0 10 0 0 0.22]0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.06 0.141 0.39
Ly |24 31000 2.65(0.0 2.50.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.64 2,96 2.49
Ly (36 4100 0| 25.74/6.0 25.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| 4.96| 31.80| 3.35
Lye3(48 7 1 0 0 0| 138.48(|0.0 138.0 0.0 0.0 0.0 0.7 0.0 0.0|ERR|0.08| 23.60| 206.00|134.40
Ly4|60 8 10 0 0| 514.90(0.0 514.3 0.0 0.0 0.0 0.0 0.0 0.0|INT|0.08| 89.10| 937.00|165.65
Lyes[14 0 1.0 0 0 0.31]0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.12 0.25] 3.72
Lr66|28 3100 0 6.24(0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| 1.36 6.30| 6.84
Lyer|42 4 10 0 0| 62.96|0.0 62.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| 10.10| 72.70 ERR
Lye3|56 7 1 0 0 0| 341.61(|0.0 341.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.70| 46.90| 479.00|292.96
Lyeo |70 8 1 0 0 01285.41(0.0 1284.7 0.0 0.0 0.0 0.1 0.1 0.0|INT|0.12|170.00|2200.00 ERR
Ly70[16 0 1.0 0 0 0.56(0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR[0.02| 0.22 0.51] 0.60
L7132 3100 0| 13.15/0.0 12.8 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| 2.71| 12.60| 11.31
Ly7,[48 4 10 0 0| 137.70|0.0 136.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.08| 19.00| 145.00| 18.90
Lr73/64 7 100 0| 759.13/0.0 758.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.70| 83.60| 989.00|563.50
L7418 8 1 0 0 0(2829.81|0.0 2828.4 0.0 0.0 0.0 0.7 0.1 0.0| X|0.16|298.00|4560.00 ERR
L75(18 010 0 0 0.78(0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.42 0.81] 0.84
L7636 3100 0| 25.82/0.06 25.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| 5.10| 23.30| 18.84
Ly77(54 4100 0| 275.25(0.0 274.7 0.0 0.0 0.0 0.0 0.1 0.0|ERR|0.08| 31.40| 277.00| 26.27
L7872 7 1 0 0 0[1537.19]0.0 1536.3 0.0 0.0 0.0 0.0 0.1 0.0|INT|0.10|1744.00|1890.00 ERR
Ly 79190 8 10 0 0 ERR | ERR ERR ERR ERR ERR ERR ERR ERR| X |0.18|507.00|8590.00 ERR
Ly5)[20 0 10 0 0 1.40(0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.78 1.491 1.15
Lrg |40 3 10 0 0| 47.86/0.0 47.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| 8.69| 40.90| 33.64
Ly |60 4 10 0 0| 523.52(0.0 522.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.08| 54.90| 501.00| 43.38
L3318 7 1.0 0 0(2906.49|0.0 2905.0 0.0 0.0 0.0 0.7 0.1 0.0|INT|0.14|249.00|3360.00 ERR

Benchmarks L,.




A.1. BENCHMARK RESULTS
€ |d 7 s Eva|llsor|IB Ic IR Ir Iv Ia Is Ic| Ins | Tor |CA0|CA1| C2D
L;; |4 50 8 00| 0.18/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.25| 0.08|0.04|0.04| 0.33
L3, |4 100 9 0 0| 0.19(0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 0.23| 0.10(0.05|0.05| 0.34
L33 (4200 9 00| 0.22(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 0.47| 0.11/0.05|0.06| 0.33
L34 |4 340 9 00| 0.23/0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0| 0.51 .1210.06(0.06| 0.32
L3545 0 9 00| 0.26/0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.51| 0.12|0.06|0.06| 0.32
Ly |5 4 014 0 0| 0.35(0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0| ©.55| 0.22(0.17|0.11| 0.34
L;7(5 10015 0 0| 0.37/0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 0.59| 0.23|0.12|0.13| 0.35
Lzg |5 200 16 0 0| 0.38(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 0.60| 0.27|0.14|0.74| 0.35
L39|5 34016 0 0| 0.4310.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.73| 0.30|0.74|0.14| 0.36
L3 10|550 016 0 0| 0.42(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.82| 0.31|0.16|0.15| 0.37
L;;|6 6 0220 0 0.65(0.10.00.00.0 0.0 0.00.20.0|1.82| 0.45/0.26/0.26| 0.38
L3126 12 0 23 0 0 0.71(0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0| 1.94| 0.55/0.26|0.28| 0.39
L3316 22 0 24 0 0| 0.78/0.71 0.0 0.0 0.0 0.0 0.0 0.2 0.0| 2.10| 0.64|0.28(0.29| 0.41
L3146 36 0250 0| 0.98(0.1 0.0 0.0 0.1 0.0 0.0 0.3 0.0 2.27| 0.75/0.31]0.34| 27.15
L;5|6 520250 0 0.87(0.10.10.00.00.00.00.30.0(5.73| 0.80/0.34/0.33| 63.75
L3i6|7 7 0320 0| 1.13/0.1 0.0 0.0 0.0 0.6 0.1 0.4 0.0| 3.33| 0.98(0.46/0.50| 0.44
L3177 14 033 0 0| 1.24/0.1 0.7 0.0 0.0 0.0 0.1 0.4 0.0| 3.64| 1.18|0.49|0.52| 0.47
L3137 24 034 0 0| 1.40(0.2 0.7 0.0 0.0 0.0 0.1 0.4 0.0| 3.95| 1.38]|0.53|0.54| 0.50
L319|7 37 0350 0 1.86(0.2 6.7 0.0 0.2 0.0 0.2 0.5 0.0| 4.47| 1.72]/0.58|0.60(182.52
L320(7 54 0 36 0 0| 2.19/10.2 0.7 0.0 0.5 0.0 0.2 0.5 0.0| 4.96| 2.05|0.64|0.64| PRIM
L3> |8 7 044 0 0| 2.32(0.2 6.2 0.0 0.2 0.0 0.1 0.7 0.0(14.59| 2.05|0.89|0.89| 0.66
L35 |8 11 0 45 0 0| 2.34(0.2 0.2 0.0 0.0 0.0 0.1 0.8 0.0(14.98| 2.41]|0.89|0.96| 0.65
L5318 210 46 0 0 2.60(0.3 0.2 0.0 0.0 0.0 0.2 0.8 0.0(15.58| 2.95|0.94|0.99|363.05
L374]8 34 0 47 0 0| 3.65/0.3 0.4 0.0 0.6 0.0 0.2 0.8 0.0|17.05| 3.65[1.09(1.07| 2.13
L;>5|8 51048 0 0 4.95(0.4 0.7 0.0 1.3 0.0 0.3 0.9 0.0(18.42| 4.49|1.22|1.19| 2.37
L32|9 7 058 0 0| 3.68/0.3 0.3 0.0 0.0 0.0 0.2 1.2 0.0/21.68| 3.99(1.52|1.70| 0.84
L3709 14 059 0 0| 3.92(0.4 0.4 0.0 0.0 0.0 0.2 1.3 0.0(22.66 4.86|1.61|1.70| 3.06
L3819 24 0 60 0 0| 4.39|0.4 0.6 0.0 0.0 0.0 0.3 1.3 0.0|23.59| 6.20]1.75(1.78| 3.10
L329(9 37 0 610 0| 6.24(0.6 1.0 0.0 0.9 0.0 0.4 1.3 0.0(24.98| 7.74|1.80|1.94| 3.59
L33|9 540620 0| 8.45(0.7 1.5 0.0 2.0 0.0 0.5 1.4 0.0(27.52| 10.08|2.00|2.30| 3.68
L3319 290650 0 7.06(0.81.9 0.0 0.0 0.0 0.2 2.0 0.0(33.22| 14.01|3.42|3.67| 3.38
L33(9 35066 0 0 7.50(0.8 2.7 0.0 0.0 0.0 0.3 2.0 0.0|33.97 X12.92]3.14| 3.92
L;33]|9 45067 0 0| 8.13(0.8 2.4 0.0 0.0 0.0 0.4 2.1 0.0(37.29(593.87|3.08|3.20| 3.93
L334(9 59 0 68 0 0(10.70/0.9 2.9 6.0 1.5 0.0 0.5 2.3 0.039.31 X13.70]3.51| 4.26
L33519 75 0 69 0 0(13.47(0.9 3.6 0.0 3.0 0.0 0.6 2.3 0.0|39.00 X13.23]3.41| 4.76

Benchmarks Ls.
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€ |d 7 sEvVvAllsor|IB Ic IR Ir Iv Ia Is Ic |Ins |Top|CA0|CA1|C2D
Ly;|4 11 040 0(0.70/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.10|0.06|0.02(0.02|0.32
Ly>|4 21 040 0(0.13/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.11/0.06|0.02(0.02|0.32
Ly3|4 11 040 0(0.12/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.12|0.06|0.02|0.02|0.33
Lys|4 21 040 0(0.12(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.13]0.07|0.02(0.02|0.33
Lys|4 15 0 4 0 0(0.12/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.74|0.06(0.02|0.02|0.33
Lyg|4 21 040 0(0.14/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0[0.15|0.06|0.02|0.02|0.33
Ly7|6 22 040 0(0.14/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.16|0.08|0.03|0.04|0.34
Lyg|6 42 04 0 0[0.14/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0[0.78|0.08|0.03|0.04|0.34
Lyo| 6 22 040 0[0.16/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.17|0.08/0.03|0.04|0.34
Lyio| 6 42 04 0 0(0.15/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.21|0.08|0.03|0.04|0.35
Ly 6 22 060 0(0.18/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.29(0.12/0.04|0.05|0.34
Lyp| 6 42 04 0 0(0.17|0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.25|0.09|0.03|0.04]0.35
Ly308 36 020 0(0.20(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.27(0.13|0.02(0.06|0.39
Ly14/8 70 04 0 0(0.30|0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0|0.49|0.20|0.06(0.09|0.45
Lyi5/8 36 040 0(0.25/0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0|0.38(0.16|0.04|0.08|0.39
Lyi6| 8 70 04 0 0(0.30|0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0]0.51{0.20/0.05|0.09|0.45
Ly17]8 36 040 0(0.26/0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0|0.44|0.16/0.04|0.08|0.39
Lyi3/8 70 04 0 0(0.30|0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0]0.56(0.22|0.05|0.08|0.46
L9010 54 02 0 0(0.33|0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0|0.51(0.36|0.05(0.14]0.59
Ly [10 103 0 4 0 0(0.53|0.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0|0.96|0.68|0.10|0.25|0.85
Ly (10 54 0 4 0 0(0.33|0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0|0.67(0.41/0.08|0.17|0.60
Ly |10 103 0 4 0 0(0.52|0.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0|1.00{0.65|0.10|0.26|0.86
Ly»3|10 54 0 4 0 0(0.41/0.7 0.0 0.0 0.0 0.0 0.7 0.1 0.0(0.73(0.41|0.07|0.17|0.61
L4p4(10 103 0 4 0 0/0.54|0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0(1.06|0.66|0.10|0.26|0.85
Ly»s(12 75 0 2 0 0(0.66|0.3 0.1 0.0 0.0 0.0 0.2 0.0 0.0]0.91(1.24|0.12|0.40(1.23
Ly |12 144 0 4 0 0(1.25|0.5 0.1 0.0 0.0 0.0 0.4 0.1 0.0|1.88|2.50|0.26(0.84|2.15
L4012 75 0 4 0 0(0.72|10.2 0.1 0.0 0.0 0.0 0.2 0.1 0.0|1.16(1.27|0.16{0.43]1.23
Lypg|12 144 0 4 0 0(1.25/0.5 0.1 0.0 0.0 0.0 0.4 0.1 0.0(1.96|2.48|0.26(0.84|2.18
Lyr[12 75 0 4 0 0(0.72|0.2 0.1 0.0 0.0 0.0 0.2 0.1 0.0|1.28(1.28/0.16|0.42|1.24
Ly |12 144 0 4 0 0(1.27|0.5 0.1 0.0 0.0 0.0 0.4 0.1 0.0]|2.10|2.48|0.25|0.83|2.18
Benchmarks L,.
¢ |d = seva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO0O | CA1 | C2p
Ls; |2 4 000 0| 0.04/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(ERR|0.07| 0.00| 0.00| 0.32
Ls, |2 7 000 0| 0.05/0.0 ©0.0 0.0 0.0 0.0 0.0 0.0 0.0(ERR|0.02| 0.00| 0.00| 0.35
Ls3 |2 10000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(ERR|0.07| ©0.00| 0.00| 0.33
Ls4y |2 1400 0 0| 0.04(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.32
Lss |4 4 000 0| 0.05/0.0 ©.00.0 0.0 0.0 0.0 0.0 0.0(ERR| ERR| 0.00| 0.00| 0.32

Benchmarks Ls (continued on the next page).




A.1. BENCHMARK RESULTS
€ |d 7 seEva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Lsg |4 7 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(ERR| ERR| ©0.00| 0.00| 0.32
Ls7; |4 10000 0| 0.06/0.0 ©0.0 0.0 0.0 0.0 0.0 0.0 0.0(ERR| ERR| ©0.00| 0.00| 0.32
Lsg |4 14000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(ERR| ERR| ©0.00| 0.00| 0.32
Lsg |6 4 000 0| 0.05/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.33
Lsio|6 7 000 0| 0.06/0.0 0.0 0.0 0.00.00.00.00.0/ERR| ERR| 0.00| ©0.00| 0.32
Ls;; |6 10000 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Lsi, |6 14000 0| 0.65/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Lsi3(8 4 000 0| 0.04/0.0 0.0 0.0 0.00.00.00.000|ERR| ERR| 0.00| ©0.00| 0.32
Ls14 |8 7 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR| ERR| 0.00| 0.00| 0.32
Ls;s|{8 10000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Lsi |8 14000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.33
Lsi7 110 4 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Ls;3 |10 7 00 0 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Lsi9 {10 10 0 0 0 O| 0.07|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Ls» [10 14 0 0 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.33
Lsy |12 4 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Lsy (12 7 00 0 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Ls>; 1210 0 0 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| ©.01| 0.33
Lsr, (12 14 0 0 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.33
Lsps |4 4 000 0| 0.05(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| 0.00| 0.34
Lsys |4 7 000 0| 0.04/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/ERR|0.02| 0.00| ©0.00| 0.32
Ls>; |4 10 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.33
Lsys |4 14000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.01| 0.00| ©0.00| 0.32
Lspo |4 4 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR| ERR| 0.00| 0.00| 0.32
Ls3 |4 7 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Ls3 |4 10 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.33
Ls3 |4 14000 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Ls33 |6 4 000 0 0.05/0.0 0.0 0.00.00.00.00.00.0/ERR| ERR| 0.00| 0.00| 0.32
Ls3s |6 7 000 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Ls3s |6 10 0 0 0 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Ls3 |6 1400 0 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.01| 0.33
Ls3; |8 4 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/ERR| ERR| 0.00| ©0.00| 0.32
Ls33 |8 7 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.33
Ls3 |8 10 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.33
Ls4 |8 14000 0| 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Ls4 |10 4 000 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.33
Ls4 [10 7 00 0 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.33
Ls43 {10 10 0 0 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.33
Ls44 |10 14 0 0 0 O 0.06|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.34
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€ |d 7 sEva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Ls4s |12 4 00 0 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.33
Ls4 |12 7 00 0 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.35
Lsy4; |12 10 0 0 0 0| 0.09(/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.34
Ls4g |12 140 0 0 0| ©0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.01| 0.34
Ls4 |6 4 000 0| 0.06/0.0 0.0 0.00.00.00.00.00.0|/ERR|0.02| 0.00| 0.00] 0.6
Lsso |6 7 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/ERR|0.02| 0.00| ©0.00| 0.32
Lss; |6 10 0 0 0 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.32
Lss |6 1400 0 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.32
Lss3 |6 4 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Lss4 |6 7 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.00| 0.32
Lsss |6 10 0 0 0 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.00| 0.32
Lsss |6 14 00 0 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Lss; |6 4 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Lssg |6 7 000 0| 0.65/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.32
Lsso |6 10 0 0 0 0| ©0.07/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.00| 0.33
Lsgo |6 1400 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.00| 0.33
Lsg1 |8 4 000 0| 0.07(0.0 0.0 0.0 0.0 0.00.00.00.0/ERR| ERR| 0.00| ©.01| 0.32
Lsg |8 7 000 0| 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/ERR| ERR| 0.00| ©.01| 0.33
Lse3 |8 1000 0 0| ©0.07/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.07| 0.33
Lses |8 1400 0 0| 0.05(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| ©0.01| 0.34
Lses |10 4 00 0 O| 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.33
Lsgs [10 7 00 0 O 0.07|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.34
Lsg; |10 10 0 0 0 0| 0.067(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.02| 0.34
Lseg |10 14 0 0 0 O| ©0.08|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.34
Lsg [12 4 00 0 O 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.02| 0.34
Ls79 (12 7 00 0 0| 0.09(/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01| 0.01| 0.34
Ls71 (12 10 0 0 0 0| 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| ©0.01| 0.36
Ls7 |12 14 00 0 O 0.09|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.02| 0.37
Ls73 8 4 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/ERR|0.03| 0.00| ©0.00| 0.32
Ls74 |8 7 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.02| ©0.00| 0.00| 0.32
Ls75 18 10000 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.32
Ls76 |8 1400 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.32
Ls77 |8 4 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.32
Ls73 {8 7 000 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.33
Ls79 {8 10 000 0| 0.65/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.00| 0.33
Lsgo |8 1400 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.00| 0.32
Lsg; |8 4 000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.01| 0.32
Lsg |8 7 000 0| 0.65(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©0.01| 0.32
Lsg3 |8 10 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.33
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A.1. BENCHMARK RESULTS

€ |d 7 seEva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Lsgs |8 14000 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| ©.01| 0.33
Lsgs |8 4 000 0| 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/ERR| ERR| 0.00| ©.01| 0.33
Lsgs |8 7 000 0| 0.09/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| ©.01| 0.33
Lsg; |8 10 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01| 0.01| 0.34
Lsgs |8 1400 0 0| 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.02| 0.34
Lsgo [10 4 00 0 0| 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.02| 0.34
Lsgy [10 7 00 0 O 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01| 0.02| 0.34
Lso; [10 10 0 0 0 0| 0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.02| 0.36
Lso, |10 14 0 0 0 O ©0.09|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01| 0.02| 0.37
Lso3 (12 4 00 0 O 0.12/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01| 0.02| 0.36
Lsos (12 7 00 0 O 0.12/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.01| 0.02| 0.36
Lsos {1210 0 0 0 0| 0.12|0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.03| 0.38
Lso |12 14 0 0 0 O ©0.10|/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.03| 0.4
Lso; |10 4 00 0 O 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.32
Lsos [10 7 00 0 O 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| 0.00| 0.33
Lsgo [10 10 0 0 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| ©0.00| 0.33
Ls 00|10 14 0 0 0 O ©0.03|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| ©0.00| 0.00| 0.32
Lsi01 |10 4 000 0| ©0.07|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Ls102|10 7 00 0 O ©0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.00| 0.32
Ls 03|10 10 0 0 0 O ©0.07|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.32
Ls 04|10 14 0 0 0 O| ©0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.32
Ls10s{10 4 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.07| 0.33
Ls 06|10 7 00 0 O 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.33
Ls 07|10 10 0 0 0 O| ©0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.07| 0.34
Ls 03|10 14 0 0 0 O| ©0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.07| 0.34
Ls100{10 4 00 0 O 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.02| 0.33
Ls1i0|/10 7 00 0 0| ©0.70(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.02| 0.34
Lsy11{10 10 0 0 0 0| 0.08/0.0 ©.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.02| 0.35
Ls;12(10 14 0 0 0 0| ©0.07|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.02| 0.36
Ls3{10 4 000 0 0.17/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.02| 0.34
Lsy4|/10 7 000 0| ©0.70(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0/ERR| ERR| ©0.01| 0.02| 0.36
Ls ;5|10 10 0 0 0 0| ©.11(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.03| 0.38
Ls 16|10 14 0 0 0 0| ©0.13|0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.03| 0.39
Lsy;7(12 4 00 0 0 0.15/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.03| 0.36
Lsyg|12 7 00 0 0| ©0.16(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0ERR| ERR| ©0.01| 0.03| 0.40
Lsji9|12 10 0 0 0 O| ©0.16(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.04| 0.41
Ls |12 14 0 0 0 O 0.16/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.02| 0.04| 0.44
Lsi|12 4 000 0 0.05/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.02| ©0.00| 0.00| 0.32
Lsi»|12 7 00 0 0O ©0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| 0.00| 0.32
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€ |d 7 sEva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Ls3|12 10 0 0 0 O ©0.04|0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| ©0.00| 0.00| 0.32
Ls 24|12 14 0 0 0 O ©0.05(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| 0.00| 0.00| 0.32
Lsps{12 4 00 0 O 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.00| 0.32
Lsi|12 7 00 0 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.00| 0.33
Ls 7|12 10 0 0 0 O ©0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.01| 0.32
Ls 3|12 14 0 0 0 O ©0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.00| 0.00| 0.33
Lsio|12 4 00 0 0| 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.07| 0.32
Lsjp(12 7 00 0 0| 0.08|/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.00| 0.01| 0.32
Lsj3|12 10 0 0 0 0| ©0.08(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.01| 0.33
Lsi» |12 14 0 0 0 0| 0.083|/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.02| 0.38
Lsy33(12 4 00 0 0| ©0.12/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.02| 0.33
Ls34|12 7 00 0 0 ©0.70(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.02| 0.35
Lsj35|12 10 0 0 0 0| ©0.11(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.02| ©.36
Ls 3|12 14 0 0 0 0| ©0.10|0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.02| 0.36
Ls)37(12 4 00 0 0| 0.16/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.04| 0.36
Ls3s|12 7 00 0 0 ©0.16(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.04| 0.37
Lsj39|12 10 0 0 0 0| ©0.16(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.03| 0.40
Ls 40|12 14 0 0 0 O 0.16|/0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.04| 0.41
Lsj41 {12 4 00 0 0 0.23/0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.07| 0.04| 0.38
Ls4|12 7 000 0 ©0.24/0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.05| 0.42
Ls 43|12 10 0 0 0 O ©0.22(0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| 0.02| 0.05| 0.45
Ls 4412 14 0 0 0 O 0.22/0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0|ERR| ERR| ©0.01| 0.06| 0.49
Lsj4s|2 5 000 0| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.07| 0.00| 0.00| 0.32
Lsis|2 8 000 0 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.02| ©0.00| 0.00| 0.32
Lsj4702 1100 0 0| 0.05/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| 0.00| 0.32
Ls4s|2 1500 0 0 0.05(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.01| ©0.00| 0.00| 0.32
Lsjis9|4 6 000 0 0.05/0.0 0.0 0.00.00.00.00.00.0/ERR|0.03] 0.01 0.02| 0.33
Lsiso| 4 1000 0 O ©0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.01| 0.02| 0.32
Lsisi|4 13000 0| 0.08|/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.07| 0.01| 0.32
Ls)s| 4 16 00 0 0| 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.01| 0.07| 0.32
Ls;s3/6 8 000 0 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.03| 0.02| 0.03| 0.33
Lss4/6 1100 0 O ©0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| ©0.03| 0.03| 0.33
Ls)ss|6 15000 0 0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.04| 0.08| 0.04| 0.33
Ls)s¢| 6 18 0 0 0 0| 0.07/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| 0.02| 0.04| 0.34
Ls)s7|4 5 000 0 0.07(0.0 0.0 0.00.00.00.00.00.0/ERR|0.02| ©0.00| 0.00| 0.32
Lsiss|4 8 000 0 0.06(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.03| 0.00| 0.00| 0.32
Lsyso|4 1100 0 0| 0.05(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.00| 0.00| 0.32
Lsieo| 4 1500 0 0| 0.06|/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.00| 0.00| 0.32
Lsi1|8 6 000 0 0.70(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| ©0.04| 0.06| 0.35
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€ |d 7 seEva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Lsi2|8 1000 0 0 ©0.12(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.04| ©0.04| 0.07| 0.36
Lsi63/8 13000 0| ©0.11(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.04| 0.06| 0.36
Lsjes|8 16 00 0 0| 0.10|/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| 0.04| 0.06| 0.38
Lsyes[12 8 00 0 0| 0.44|/0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0(ERR|0.04| 0.39| 0.47| 0.64
Lsie6|12 11 0 0 0 O ©0.44|0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| ©0.35| 0.46| 0.69
Lsi67|/12 150 0 0 0| ©0.49(0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| ©0.38| 0.48| 0.70
Ls 6312 18 0 0 0 0| ©0.51(/0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| ©0.35| 0.46| 0.79
Lsieo|6 5 000 0 0.08/0.0 0.00.00.00.00.00.00.0/ERR|0.02] 0.01 0.02| 0.33
Lsi70/6 8 000 0 ©0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.03| 0.01| 0.02| 0.33
Lsi71|6 1100 0 0| ©0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| ©0.01| 0.02| 0.33
Ls ;2|6 1500 0 0 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| ©0.01| 0.02| 0.33
Ls173|/12 6 00 0 0O ©0.40(0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| ©0.35| 0.40| 0.62
Ls174(12 10 0 0 0 0| 0.42{0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0(ERR|0.04| ©0.32| 0.42| 0.70
Lsj75(12 130 0 0 0| ©0.44|/0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.05| 0.32| 0.42| 0.69
Ls 7612 16 0 0 0 0| 0.45/0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| 0.39| 0.44| 0.71
Ls77|18 8 00 0 0| 3.60(0.0 3.40.00.00.00.00.00.0ERR|0.10| 3.81| 4.44| 3.36
Ls73|18 110 0 0 0| 3.79(0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.14| 3.91| 4.57| 2.54
Ls;79(18 150 0 0 0| 3.77|0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.11| 3.74| 4.39| 3.16
Ls)g[18 18 0 0 0 0| 4.04|0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0(ERR|0.18| 3.82| 4.62| 4.16
Lsi3|8 5000 0| 0.70(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.03| 0.03| 0.04| 0.34
Lsi3|8 8 000 0 ©0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| 0.04| 0.05| 0.35
Lsg3|8 1100 0 0 0.09(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.04| 0.04| 0.35
Lsig4|8 1500 0 0| ©0.12(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.03| 0.05| 0.36
Lsigs|16 6 00 0 0 1.92(0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.04| 2.04| 2.10| 1.50
Ls 36|16 10 0 0 0 0| 1.98(0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.08 78| 2.05] 1.93
Lsg7{16 130 0 0 0 2.12|10.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.08| 1.80| 2.18| 1.74
Ls 83|16 16 0 0 0 0| 2.07(0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.06| 1.71| 2.06| 2.34
Lsg0(24 8 000 0| 19.40/0.0 17.8 0.0 0.0 0.0 0.0 0.0 0.0 |ERR|0.72| 27.09| 28.41| 42.13
Ls 90|24 11 0 0 0 0| 18.16|0.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.74| 24.02| 27.12| 13.71
Ls 01|24 150 0 0 0| 19.39(/0.0 18.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.55| 26.91| 30.56| 15.99
Ls 92|24 18 0 0 0 0| 19.31({0.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 |ERR|0.34| 24.37| 27.46| 17.76
Lso3/10 5 00 0 O ©0.18(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0[ERR|0.04| ©0.12| 0.16| 0.41
Lsjo4{10 8 00 0 0| ©0.19|0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.02| 0.13| 0.74| 0.46
Ls o510 11 0 0 0 0| 0.18|0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| 0.10| 0.13| 0.45
Ls 06|10 150 0 0 O| ©0.20(0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| ©0.10| 0.14| 0.44
Ls197/20 6 000 0 6.32(0.0 5.6 0.00.00.00.00.00.0/ERR|0.29| 7.52| 8.18| 5.34
Ls,108{20 10 0 0 0 0| 6.06(0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.12| 7.27| 8.16| 4.42
Ls 199|120 130 0 0 0| 6.48(0.0 5.9 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.22| 7.94| 8.28| 5.59
Ls200|20 16 0 0 0 0| 6.25(0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.08| 7.62| 8.41| 5.26
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€ |d 7 sEva|lsor |[IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Ls201|30 8 000 0f 73.20(0.0 71.6 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.72]123.65|134.61| 63.25
Ls2|30 11 0 0 0 0| 73.55/0.0 72.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.70|122.00|129.66|117.97
Ls203{30 150 0 0 0| 74.54|/0.0 73.2 0.0 0.0 0.0 0.0 0.0 0.0 X|0.69|127.74|132.31| 59.91
Ls204{30 18 0 0 0 0| 75.48(0.0 74.9 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.45|120.74|131.57| 62.97
Lsps|12 5 000 0 0.41(0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0{ERR|0.04] ©0.34| 0.41| 0.61
Lss|12 8 00 0 O ©0.37(0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0/ERR|0.04| ©0.30| 0.38| 0.54
Lsp7{12 11 0 0 0 0| 0.42|/0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.03| 0.35| 0.42| 0.66
Lspps{12 150 0 0 0| ©0.42(0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.04| ©0.28| 0.36| 0.65
Lsopo|24 6 000 0f 21.84/0.0 20.9 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.40| 24.65| 26.48| 11.05
Ls»10(24 10 0 0 0 0| 21.46|0.0 21.3 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.08| 29.14| 27.84| 16.73
Lsp1 |24 1300 0 0| 22.39(0.0 21.8 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.30| 24.13| 28.78| 15.43
Lsp12|24 16 0 0 0 0| 22.40(0.0 22.1 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.16| 23.76| 25.89| 18.50
Ls»i3|36 8 00 0 0(256.13(0.0 253.7 0.0 0.0 0.0 0.0 0.0 0.0|ERR|1.18|503.75|509.83|239.50
Ls»14(36 11 0 0 0 0[263.11|0.0 256.6 0.0 0.0 0.0 0.0 0.0 0.0| X|2.86|506.05|534.93|164.84
Lsi5(36 15 0 0 0 0[259.94(0.0 259.5 0.0 0.0 0.0 0.0 0.0 0.0|ERR|0.55|528.12/511.02|152.70
Ls 16|36 18 0 0 0 0(266.87(0.0 264.3 0.0 0.0 0.0 0.0 0.0 0.0| X|1.55 INT INT|158.70
Benchmarks Ls.

€ |d v s Evallsor|IB Iec Ir Ir Iv Ia Is Ic| INs Tor |[CAO0|CA1| C2p
L¢y |3 50 4 00| 0.110.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.07| 0.04|0.02|0.02| 0.33
L¢3 9 0 4 00| 0.70(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.07| 0.05/0.02|0.02| 0.32
L¢3 |3 120 4 0 0| 0.10/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.07| 0.06(0.02|0.02| 0.32
Lgs |3 150 4 0 0| 0.70(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.08| 0.04]|0.02(0.02| 0.33
L¢s|4 6 0 7 00| 0.16/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.22| 0.08]0.04|0.05| 0.32
Les |4 100 7 0 0| 0.17/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.22| ©0.09(0.04]0.05| 0.32
Lg7 |4 130 7 0 0| 0.17(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.21| 0.08|0.04|0.04| 0.33
Lgg |4 16 0 7 0 0| 0.17/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.22| 0.09(|0.04|0.04| 0.32
Lo |5 7 012 0 0| 0.33|10.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.71| ©0.20(0.11]0.12| 0.34
Lejo|5 10 0 12 0 0| 0.34|0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.0 ©.73| 0.20(0.11|0.70| 0.34
Le11|5 14012 0 0| 0.34/0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.72| 0.20]0.10(0.11| 0.35
Lgi,|5 17 0 12 0 0| 0.32(0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 ©.72| 0.20]0.10(0.11| 0.34
Lej3/6 8 0190 0| 0.76/0.1 0.0 0.0 0.1 0.0 0.0 0.2 0.0 1.94| 0.44|0.24/0.25| 0.52
Lejs| 6 110 19 0 0| 0.75|0.7 0.0 0.0 0.1 0.0 0.0 0.2 0.0| 1.92| 0.43|0.23|0.24| 0.52
Leis| 6 15019 0 0| 0.75(0.1 0.0 0.0 0.1 0.0 0.0 0.2 6.0 1.93| 0.44]0.24|0.27| 0.52
Leig| 6 18019 0 0| 0.76(0.1 0.0 0.0 0.1 0.0 0.0 0.2 0.0 1.92| 0.45]0.25(0.24| 0.53
L¢i7|7 9 0260 0f 1.88(0.1 0.0 0.0 0.6 0.0 0.1 0.4 6.0 7.61| 0.96]0.47(0.49| 0.72
Lejg| 7 12 026 0 0| 1.83/0.7 0.1 0.0 0.6 0.0 0.0 0.4 0.0 7.79| 0.98]0.47|0.49 ERR
Leio|7 16 0 26 0 0| 1.89(0.1 0.1 0.0 0.6 0.0 0.1 0.4 0.0 7.73| 0.99(0.47(0.49| 0.71
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A.1. BENCHMARK RESULTS
€ |d v s Evallsor|IB Iec Ir Ir Iv Ia Is Ic| INs Tor |[CAO0|CA1| C2p
L |7 19026 0 0f 1.90(0.1 6.1 0.0 0.6 0.0 0.1 0.4 0.0| 7.77| 0.98/0.50(0.47| 0.74
L |8 10 0 37 0 0 5.00(0.2 6.7 0.0 2.3 0.0 0.1 0.8 0.0| 27.04| 2.00(1.02(1.10| 1.40
L¢» |8 13037 0 0f 5.02(0.2 6.7 0.0 2.3 0.0 0.1 0.8 0.0| 27.64| 2.02|1.00(1.00| 1.38
Lgr3| 8 17 0 37 0 0 5.00(0.2 6.7 0.0 2.3 0.0 0.1 0.8 0.0| 27.84| 2.05|1.04(1.05| 1.40
Leos| 8 20 037 0 0| 5.08/0.2 0.1 0.0 2.3 0.0 0.1 0.8 0.0| 28.20| 2.07|1.05|1.01| 1.38
Lgrs| 9 11 0 46 0 0(11.77(0.3 6.3 0.0 6.3 0.0 0.2 1.2 0.0| 83.47|144.42|2.24|2.29| 3.09
Lgr| 9 14 0 46 0 0(11.72(0.3 0.3 0.0 6.3 0.0 0.2 1.2 0.0| 83.35|149.21|2.24|2.30| 3.15
Ler7| 9 17 0 46 0 0(11.76(0.3 6.3 0.0 6.3 0.0 0.2 1.2 0.0| 82.99|152.91|2.37|2.33| 3.16
Lepg| 9 21 0 46 0 0(11.92|10.3 0.4 0.0 6.3 0.0 0.2 1.2 0.0| 82.83|155.93|2.31|2.32| 3.12
Lg9|10 12 0 61 0 0(34.12(0.6 0.8 0.0 23.1 0.0 0.3 2.4 0.0|210.56 INT|{4.92|5.01| PRIM
Le30 |10 15 0 61 0 0|34.01/0.6 0.8 0.0 23.0 0.0 0.3 2.5 0.0(209.25 INT|5.06|5.07| PRIM
Le31 |10 18 0 61 0 0(33.94(0.6 0.8 0.0 23.2 0.0 0.3 2.4 0.0|212.15 X|5.04(5.06| PRIM
L¢3 (10 22 0 61 0 0(34.13/0.6 0.8 0.0 23.7 0.0 0.3 2.4 0.0|213.55 X15.1415.19| PRIM
L¢33|3 500 00 0.06(0.00.00.0 0.00.00.00.00.0 ERR| 0.04/0.00|0.00| 0.32
L33 9 0 0 0 0| 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| ©.02/0.00|0.00| 0.32
L¢3s|3 120 0 0 0| 0.07(0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| ©0.04]0.00|0.00| 0.32
L¢zs|3 150 0 0 0f 0.05(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| ©0.03/0.00|0.00| 0.32
Lgz;|4 6 01 00 0.10(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| ©.0410.01]0.01| 0.32
Lesg|4 100 1 0 0| 0.09/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| 0.04(0.01]0.01| 0.32
Lezo| 4 130 1 0 0| 0.03/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| ©0.06(0.01]0.01| 0.32
Lgao| 4 16 0 1 0 0f 0.07(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| ©.05/0.01]0.01| 0.32
Lgs|5 7 0 2 00| 0.15(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.28| 0.06]0.03(0.03| 0.33
L4 |5 100 2 0 0f 0.15(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.28| 0.06]0.03(0.03| 0.33
Lesz|5 140 2 0 0| 0.16|0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ©0.28| 0.07(0.02|0.03| 0.34
Lg4s|5 170 2 0 0| 0.16(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.27| 0.07|0.03/0.03| 0.34
Less|6 8 0 3 0 0| 0.30(0.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.65| 0.14|0.06|0.07| 0.4
Le4s| 6 110 3 0 0| 0.30(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.64| 0.12]0.06(0.07| 0.40
Le47{6 150 3 0 0| 0.32|10.71 0.0 0.0 0.0 0.0 0.0 0.7 0.0 ©0.64| 0.12|0.06|0.07| 0.40
Leus| 6 180 3 0 0| 0.30(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 0.64| 0.14|0.08(0.08| 0.40
Leao|7 9 0 6 0 0| 1.08{0.1 0.1 0.0 0.4 0.0 0.0 0.1 0.0 4.65| 0.35/0.18/0.20| 0.57
Lgso|7 120 6 0 0f 1.07(0.1 0.7 0.0 0.4 0.0 0.1 0.1 0.0] 4.59| 0.36/0.20(0.20| 0.56
L¢si|7 16 0 6 0 0 1.09(0.1 6.7 0.0 0.4 0.0 0.1 0.1 0.0| 4.67| 0.36/0.19(0.20| 0.58
Lgsp|7 190 6 0 0f 1.17(0.1 0.7 0.0 0.4 0.0 0.1 0.1 0.0| 4.78| 0.37]0.19(0.20| 0.58
L¢s3| 8 100 7 0 0f 1.86(0.2 6.7 0.0 0.6 0.0 0.1 0.1 0.0| 15.72| 0.68|0.36|0.38|271.00
Less| 8 130 7 0 0| 2.21|0.2 0.1 0.0 0.9 0.0 0.1 0.1 0.0| 15.77| 0.68|0.38|0.39|278.14
L¢ss| 8 170 7 0 0f 1.87(0.2 6.7 0.0 0.6 0.0 0.1 0.1 0.0| 15.94| 0.70|0.38|0.39|289.49
L¢ss| 8 200 7 0 0f 1.97(0.2 6.7 0.0 0.6 0.0 0.1 0.1 0.0| 16.02| 0.72|0.37|0.39|308.80
Lgs7| 9 110 12 0 0| 8.05(0.4 6.3 0.0 4.6 0.0 0.2 0.3 0.0| 64.73| 1.85[1.24(1.32| 2.46
Lesg|9 14 0 12 0 0| 7.96|0.4 0.3 0.0 4.6 0.0 0.2 0.3 0.0| 64.02| 1.90|1.32|1.32| 2.49

Benchmarks Lg (continued on the next page).
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€ |d v s Evallsor|IB Iec Ir Ir Iv Ia Is Ic| INs Tor |[CAO0|CA1| C2p
Lgso| 9 17 0 12 0 0| 7.99(0.4 6.3 0.0 4.6 0.0 0.2 0.3 0.0| 64.66| 1.96|1.28(1.32| 2.52
Lego| 9 21012 0 0| 8.12(0.3 0.4 0.0 4.6 0.0 0.2 0.3 0.0| 64.38| 2.03|1.27(1.34| 2.61
Lee |10 12 0 13 0 0(15.08(0.6 0.8 0.0 8.7 0.0 0.2 0.5 0.0(159.42| 7.94|2.89(2.90| PRIM
Leer (10 15 0 13 0 0|15.07|0.6 0.8 0.0 8.6 0.0 0.3 0.5 0.0(158.97| 7.98|2.78|2.90| PRIM
Leg3 |10 18 0 13 0 0(15.05(0.6 0.8 0.0 8.6 0.0 0.3 0.5 0.0(157.90| 8.26|2.97(2.79| PRIM
Legs|10 22 0 13 0 0(14.99(0.6 0.8 0.0 8.5 0.0 0.3 0.5 0.0|158.44| 8.55|2.87(2.79| PRIM
Benchmarks L.

€ |d s EvAllsor|IB Ic Ir Ir Iv Ia Is Ic|Ins |Tor|CA0|CA1|C2D

L;; |4 1120 0/0.14/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.05|0.04|0.01|0.01]0.32

L;p|6 1120 0/(0.13/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.10|0.06|0.02|0.03|0.32

L;3|8 1120 0/0.16/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.14]0.06|0.04|0.06|0.32

L; 4010 1120 0(0.21/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.17|0.07|0.06(0.10|0.33

L5012 1120 0(0.27/0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0(0.22(0.08|0.12/0.20|0.34

Lyjg|14 1120 0/0.36/0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0(0.31]0.09|0.22|0.35|0.37

L;7|16 1120 0(0.56/0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0|0.66|0.10|0.38|0.63|0.39

L;g (18 1120 0(0.80(0.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0|17.56(0.15/0.71]1.19|0.46

L9020 1120 0(1.43/0.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0{1.99(0.17{17.26/1.85/0.48

L;0(22 1120 0[2.27(0.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0|2.68|0.22(2.00|2.98|0.80

L11(24 1120 0[3.70{0.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0(3.79|0.30(3.11]4.32/|0.73

Benchmarks L.

€ |d 7 s Eval|llsor|IB I IR Ir Iv Ia Is Ic| INns |Top| CAO0 | CA1l| C2Dp
Loy;|4 1 2 4 00| 0.16/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.22]0.08| 0.07| 0.06| 0.32
Loy, |6 2 2 4 00| 0.18|/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.30(0.10| 0.14| 0.14| 0.32
Loz |8 3 4 4 00| 0.33|0.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 1.40(0.32| 0.30| 0.38| 0.33
Lo4 |10 4 4 4 0 0| 0.43(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 2.25/0.32| 0.55| 0.77| 0.37
Lys|12 8 6 12 0 0| 1.05/0.7 0.1 0.0 0.0 0.0 0.0 0.3 0.0| 5.98(1.07| 1.46| 1.80| 0.38
Lo |14 9 6 8 0 0| 1.22|10.7 0.1 0.0 0.0 0.0 0.0 0.3 0.0 9.42(1.30| 1.82| 2.17| 0.75
Lo7 |16 7 8 12 0 0| 2.15|0.4 0.2 0.0 0.0 0.0 0.0 0.6 0.0| 31.52|2.80| 4.60| 4.46| 0.50
Log |18 7 8 8 0 0| 2.45(0.5 0.3 0.0 0.0 0.0 0.0 0.6 0.0| 47.61|3.01| 4.58| 6.63| 1.76
Loo |20 13 10 20 0 0| 5.46|0.7 1.0 0.0 0.1 0.0 0.7 1.3 0.0| 77.50| ERR|15.80(19.70| 1.98
Lo 0|22 14 10 12 0 0| 6.64|0.1 1.7 0.0 0.2 0.0 0.1 1.4 0.0|116.39| INT|18.7015.80|10.20
Loy |24 14 12 20 0 0(11.99(1.2 2.5 0.0 0.6 0.0 0.1 2.4 0.0|300.38 X|34.10|61.10| 6.44

Benchmarks Lg.




A.1. BENCHMARK RESULTS

€ d v s Evallsor|IB Iec Ir Ir Iv Ia Is Ic |Ins|Top| CA0 | CA1 | C2D
Lipjo|4 3 3 2 00| 0.17/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X| 0.02] 0.02| 0.33
Liop0|6 3 2 2 00| 0.15/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X| 0.02] 0.03| 0.32
Lipzo|6 6 5 2 00| 06.29(0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| X X| 0.04] 0.06| 0.32
Lio40|8 8 2 2 00| 0.27(0.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0| X X| 0.06] 0.07| 0.33
Lioso|8 6 3 2 00| 0.24/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X| 0.04] 0.06| 0.33
Lioso |8 10 4 8 0 0| 0.43|10.71 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X| 0.14] 0.15| 0.34
Lio7,0|10 8 2 2 0 0| 6.32(0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| X X| 0.06] 0.09| 0.34
Liggo |10 6 3 2 0 0f 0.27(0.1 0.0 0.0 0.0 0.0 0.6 0.1 0.0| X X| 0.07] 0.10| 0.34
Lo, [10 10 4 8 0 0| 0.52|0.17 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X| 0.20] 0.22| ERR
Lio,100|10 14 5 10 0 0| 0.72|0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0 X X| 0.27] 0.32| 0.49
Lio,11,0[12 13 2 0 0| 0.55(0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0| X X| 0.18] 0.26| 0.36
Lip,120|12 15 3 2 0 0| 0.60|0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 X X| 0.22] 0.30| 0.38
Lio,130(|12 10 4 6 0 0| 0.60(0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 X X| 0.22] 0.24| 0.39
Lig40|12 14 5 10 0 0| 0.85|0.7 0.1 0.0 0.0 0.0 0.0 0.2 0.0 X X| 0.36] 0.41| 0.56
Lip,150(12 19 6 12 0 0| 1.22|0.1 0.7 0.0 0.7 0.0 0.1 0.2 0.0| X X| 0.571] 0.60| 0.61
L1600 |14 13 2 2 0 0| 0.64|0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 X X| 0.28] 0.40| 0.41
Lip,170|14 15 3 2 0 0| 0.74|0.71 0.2 0.0 0.0 0.0 0.0 0.1 0.0 X X| 0.30] 0.42| 0.44
Lip,180|14 10 4 6 0 0| 0.66|0.7 0.1 0.0 0.0 0.0 0.0 0.1 0.0 X X| 0.28] 0.32| 0.46
Lio,10,0 |14 14 5 10 0 0| 1.00|0.1 0.7 0.0 0.7 0.0 0.1 0.7 0.0| X X| 0.48] 0.50| 0.61
Lio00|14 19 6 12 0 0| 1.42(0.1 0.2 0.0 0.7 0.0 0.1 0.2 0.0| X X| 0.68] 0.78| 0.69
Ligp10|14 24 7 14 0 0| 2.06|0.7 0.3 0.0 0.2 0.0 0.1 0.2 0.0 X X| 0.87] 1.16| 0.75
Lio2,0[16 18 2 2 0 0| 1.33|0.1 0.6 0.0 0.0 0.0 0.1 0.0 0.0| X X| 0.69] 0.95| 0.55
Lig3,0|16 15 3 2 0 0| 0.89|0.1 0.3 0.0 0.0 0.0 0.7 0.0 0.0 X X| 0.41] 0.57| 0.48
Liopa0|16 23 4 6 0 0| 1.79(0.1 0.6 0.0 0.7 0.0 0.1 0.1 0.0 X X 1.03] 1.11| 0.69
Lig2s0|16 14 5 10 0 0| 1.15|0.7 0.2 0.0 0.1 0.0 0.0 0.2 0.0 X X| 0.59] 0.64| 0.64
Lio6,0[16 19 6 12 0 0| 1.67|0.1 0.3 0.0 0.7 0.0 0.1 0.2 0.0| X X| 0.92] 0.96| 0.72
Liop70|16 24 7 14 0 0| 2.39|0.7 0.4 0.0 0.3 0.0 0.7 0.3 0.0 X X| 1.28] 1.44| 0.82
Lions,0]|16 29 8 16 0 0| 3.20(0.1 0.6 0.0 0.4 0.0 0.2 0.3 0.0 X X| 1.66] 1.80| 0.90
Lig29,0|18 18 2 2 0 0| 1.63|0.7 0.9 0.0 0.0 0.0 0.7 0.0 0.0 X X| 0.88] 1.26| 0.57
Lip30,0[18 23 3 2 0 0] 2.29|0.1 1.2 0.0 0.7 0.0 0.1 0.1 0.0| X X| 1.28] 1.70| 0.64
Lios,0|18 23 4 6 0 0| 2.18|0.17 0.9 0.0 0.1 0.0 0.7 0.1 0.0 X X| 1.18] 1.48] 0.74
Ligs,0|18 14 5 10 0 0| 1.35|0.17 0.2 0.0 0.1 0.0 0.1 0.2 0.0 X X| 0.74] 0.88| 0.61
Ligs30|18 19 6 12 0 0| 1.95|0.17 0.4 0.0 0.1 0.0 0.1 0.2 0.0 X X1 1.18] 1.21| 0.76
Lip340|18 24 7 14 0 0| 2.76|0.7 0.6 0.0 0.3 0.0 0.7 0.3 0.0 X X| 1.38] 1.64| 0.90
Lip3s50(|18 29 8 16 0 0| 3.80(0.1 0.9 0.0 0.4 0.0 0.2 0.3 0.0| X X1 2.141 2,421 1.07
Liose0|18 34 9 18 0 0| 5.32|10.7 1.3 0.0 0.7 0.0 0.3 0.4 0.0 X X| 2.76] 3.45| 1.35
Li37,0[20 23 2 2 0 0| 3.45|0.1 2.2 0.0 0.1 0.0 0.1 0.0 0.0| X Xl 2.13] 2.76| 0.78
Lip38,0(20 23 3 2 0 0| 2.92|10.1 1.7 0.0 0.1 0.0 0.7 0.1 0.0 X X| 1.76] 2.31| 0.72
Lio390/20 23 4 6 0 0| 2.69(0.1 1.2 6.0 0.7 0.0 0.1 0.1 0.0 X X| 1.56] 1.92| 0.80

Benchmarks L, (continued on the next page).
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€ d v s Evallsor|IB Iec Ir Ir Iv Ia Is Ic |Ins|Top| CA0 | CA1| C2D
Lio,40,0(20 31 5 10 0 0| 5.00|0.7 2.4 0.0 0.2 0.0 0.2 0.2 0.0 X X| 3.35] 3.79] 1.29
Lip410(20 19 6 12 0 0| 2.26|0.7 0.5 0.0 0.1 0.0 0.7 0.2 0.0 X X1 1.24]1 1.46| 0.72
Lio42,0(20 24 7 14 0 0| 3.24|0.1 0.9 0.0 0.3 0.0 0.1 0.3 0.0| X X| 1.84] 2.11] ERR
Lio43,0[20 29 8 16 0 0| 4.49|0.1 1.2 0.0 0.5 0.0 0.2 0.3 0.0| X X| 2.66] 3.20] 2.59
Li0440(20 34 9 18 0 0| 6.31(0.1 1.7 0.0 0.8 0.0 0.3 0.4 0.0 X X| 4.65] 5.29] ERR
Li,450(20 39 10 20 0 0| 9.71|0.17 2.4 0.0 2.2 0.0 0.5 0.5 0.0 X X| 7.70] 8.37| 4.10
Lio46,0(22 23 2 2 0 0| 4.38/0.1 3.0 0.0 0.2 0.0 0.2 0.1 0.0| X X| 2.86| 3.72| 1.17
Lio47,0(22 23 3 2 0 0| 3.66/0.1 2.3 0.0 0.7 0.0 0.2 0.1 0.0| X X| 2.37] 3.08] 1.26
Lios0|22 23 4 6 0 0| 3.26(0.1 1.6 0.0 6.7 0.0 0.1 0.1 0.0 X X| 2.37] 2.58] 1.27
Lig490(22 31 5 10 0 0| 6.04|0.7 3.1 0.0 0.3 0.0 0.2 0.2 0.0 X X| 5.06] 6.18] 3.18
Lips0,0(22 19 6 12 0 0| 2.58|0.1 0.7 0.0 0.1 0.0 0.1 0.3 0.0| X X| 1.50] 1.86| 0.92
Liosi,0(22 24 7 14 0 0| 3.78|0.7 1.1 0.0 0.4 0.0 0.2 0.3 0.0 X X| 2.68] 3.02| 2.12
Lios20(22 29 8 16 0 0| 5.31{0.1 1.7 0.0 0.6 0.0 0.2 0.3 0.0| X X| 4.19] 5.18] 3.48
Ligs30|22 34 9 18 0 0| 7.61|0.7 2.4 0.0 1.0 0.0 0.3 0.4 0.0 X X| 6.96] 7.60| 3.72
Lio,54,0 (22 39 10 20 0 0[11.60|0.1 3.2 0.0 2.7 0.0 0.5 0.5 0.0| X X| 7.97] 9.09| 4.16
Lio,s5,0|22 45 11 22 0 0(15.34|0.7 4.2 0.0 3.9 0.0 0.8 0.5 0.0 X X[11.10110.50| ERR
Lipseo|24 28 2 2 0 0| 8.67|0.7 6.6 0.0 0.2 0.0 0.3 0.1 0.0 X X| 7.02] 8.14] 2.50
Lips7,0[24 32 3 2 0 0] 9.21|0.1 6.7 0.6 0.3 0.0 0.3 0.7 0.0| X X| 6.88] 8.49| 2.38
Lioss,0(24 36 4 6 0 0[10.05/0.1 6.9 0.0 0.3 0.0 0.3 0.2 0.0| X X| 7.98] 9.67| 3.36
Lios00/24 31 5 10 0 0| 7.30(0.1 4.1 0.0 6.3 0.0 0.3 0.2 0.0| X X| 6.68] 7.68] 3.31
Ligeo,0 |24 41 6 12 0 0(11.78|0.1 7.1 0.0 0.5 0.0 0.5 0.3 0.0 X X] 9.78]11.50| 4.05
Lioei,0(24 24 7 14 0 0| 4.4110.1 1.5 0.0 0.5 0.0 0.2 0.3 0.0| X X1 3.71] 4.27] 2.52
Lio,62,0(24 29 8 16 0 0| 6.32|0.1 2.2 0.0 0.8 0.0 0.2 0.4 0.0| X X| 6.04] 6.49] 3.63
Lioe3,0|24 34 9 18 0 0| 8.97(0.1 3.1 6.0 1.2 0.0 0.4 0.5 0.0| X X| 6.70| 7.47| 4.10
Lige4,0|24 39 10 20 0 0(13.74|0.7 4.2 0.0 3.2 0.0 0.6 0.5 0.0 X X| 9.23110.10| 4.12
Lio,e5,0 |24 45 11 22 0 0[18.39|0.1 5.6 0.0 4.7 0.0 0.9 0.5 0.0| X X[13.60(14.30] 9.83
Lioes,0|24 50 12 24 0 0(24.50|0.7 7.2 0.0 6.8 0.0 1.1 0.6 0.0 X X[17.50(19.50(12.38

Benchmarks L.

€ |d 7 s Eva|lsor|IB Ic IR Ir Iv Ia Is Ic| Ins Torp |[CA0| CA1 |C2D
L[4 2 2 4 00| 0.17/0.00.00.0 0.00.00.0000.0 0.18| 0.08{0.02| 0.03]0.32
Ly,|6 2 2 4 00| 0.2000.10.00.0 0.0 0.00.00.00.0 0.200 0.09/0.03| 0.05|0.34
Lysz|6 5 3 6 00| 0.28/0.10.00.0 0.0 0.0 0.00.10.0( 0.41 0.15/0.06| 0.07|0.32
Lijgs|8 2 4 00| 0.36/0.10.000 0.00.00.00.100 037 0.14/0.07| 0.09[0.32
Lys|[8 5 3 6 00| 0.31/0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.47| 0.16(0.08| 0.09|0.34
Ljes|8 7 4 8 00| 0.40/0.1 0.0 0.0 0.00.00.00.10.0 0.70| 0.24{0.13| 0.14]0.33
Liy7|10 5 2 4 00| 0.41/0.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.47| 0.18/0.09| 0.12|0.33
Lijg|10 5 3 6 0 0| 0.37/0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 0.56| 0.20(0.11| 0.12]0.32

Benchmarks L;; (continued on the next page).
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€ |d v s Evallsor|IB I IR Ir Iv Ia Is Ic| INs Tor |[CAO0| CA1 |C2Dp
Lijo|10 7 4 8 0 0| 0.42/0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.85| 0.30(0.17| 0.19/0.34
Lij0/10 10 5 10 0 0| 0.63|0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.0 1.60| 0.42/0.23| 0.26|0.34
Lijn|12 8 2 4 00| 0.64/0.7 0.1 0.0 0.0 0.0 0.0 0.1 0.0 1.07| 0.29/0.24| 0.32/0.33
Ly,2(12 10 3 6 0 0| 0.73/0.1 6.1 0.0 0.0 0.0 0.0 0.1 0.0| 1.25| ©0.33|0.30| ©.39(0.36
Lyj3(12 7 4 8 0 0| 0.52(0.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0| 1.03| 0.38/0.28| 0.28|0.34
Lij4|12 10 5 10 0 0| 0.80(0.7 0.1 0.0 0.0 0.0 0.1 0.1 0.0 1.89| 0.53]0.34| 0.40|0.36
Ly,5(12 12 6 12 0 0| ERR|ERR ERR ERR ERR ERR ERR ERR ERR| 2.81| ©0.75|0.52| ©.57(0.36
Lije|14 8 2 4 00| 0.76/0.71 0.2 0.0 0.0 0.0 0.0 0.1 0.0 1.52| 0.36/0.30| 0.42/0.36
Lyji7|14 10 3 6 0 0| 0.91(0.1 0.2 0.0 0.0 0.0 0.0 0.7 0.0| 1.65| 0.42|0.34| 0.46|0.36
Lijg|14 7 4 8 0 0| 0.59/0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 1.41| 0.46(0.32| 0.36|0.35
Lij,i0(14 10 5 10 0 0| 0.94/0.0 0.1 0.0 0.0 0.0 0.7 0.1 0.0| 2.62| 0.62|0.44| 0.52(0.37
Lijp|14 12 6 12 0 0| 1.14(0.71 0.2 0.0 0.0 0.0 0.0 0.2 0.0 3.62| 0.93/0.62| 0.72/0.39
Lijp |14 15 7 14 0 0| 1.58(0.1 0.2 0.0 0.1 0.0 0.7 0.2 0.0| 6.25| 1.20/0.81| 0.94|0.50
Lij»|16 11 2 4 0 0| 1.62|0.7 0.5 0.0 0.0 0.0 0.0 0.1 0.0 3.84| 0.59/0.58| 0.86| ERR
L3016 10 3 6 0 0| 1.10/0.1 0.3 0.0 0.0 0.0 0.0 0.1 0.0| 2.30| 0.47|0.51| 0.66(0.40
Lijp4|16 15 4 8 0 0| 1.68(0.7 0.5 0.0 0.0 0.0 0.0 0.1 0.0 6.79| 1.04{0.75| 0.97|0.62
Lijps|16 10 5 10 0 0| 1.16(0.7 0.1 0.0 0.0 0.0 0.1 0.2 0.0 3.43| 0.75/0.58| 0.67|0.38
Lijg|16 12 6 12 0 0| 1.34|0.71 0.2 0.0 0.0 0.0 0.0 0.2 0.0| 5.30| 1.171|0.74| 0.90| ERR
Lijp7|16 15 7 14 0 0| 1.89|0.7 0.3 0.0 0.1 0.0 0.2 6.3 0.0| 7.64| 1.44/0.95| 1.13| ERR
Lijps|16 17 8 16 0 0| 2.29(0.1 0.5 0.0 0.1 0.0 0.7 0.3 0.0| 10.18| 2.02|1.25| 1.52| ERR
Lijo|18 11 2 4 0 0| 1.86(0.7 0.8 0.0 0.0 0.0 0.0 0.1 0.0 5.23| 0.70(0.80| 1.10|0.47
Lij3[18 16 3 6 0 0| 2.67/0.1 1.0 0.0 0.0 0.0 0.2 0.1 0.0| 7.96| 13.50|1.24| 1.45(0.57
Lij3|1815 4 8 0 0| 2.19(0.71 0.8 0.0 0.1 0.0 0.0 0.1 0.0 8.44| 1.29/0.92| 1.38/0.52
Lij3|18 10 5 10 0 0| 1.42|0.0 0.2 0.0 0.1 0.0 0.7 0.2 0.0| 3.94| 0.85/0.71| 0.78|0.41
Lij33|18 12 6 12 0 0| 1.64(0.7 0.3 0.0 0.1 0.0 0.0 0.2 0.0 6.06| 1.33({0.87| 1.06/0.42
Lij34(18 15 7 14 0 0| 2.23|0.1 0.5 0.0 0.1 0.0 0.2 0.3 0.0| 9.92| 1.74|1.24| 1.40(0.48
Lij35|18 17 8 16 0 0| 2.78|0.1 0.7 0.0 0.7 0.0 0.1 0.3 0.0| 13.47 X[11.62] 1.96|0.54
Lij3(18 20 9 18 0 0| 3.68(|0.1 0.9 0.0 0.1 0.0 0.3 0.4 0.0| 19.89| 55.42|2.10| 2.60|0.71
Lij37|20 14 2 4 0 0| 3.41/0.1 2.0 0.0 0.0 0.0 0.1 0.1 0.0| 13.16 X11.59] 2.16]0.68
Lijj3s(20 16 3 6 0 0| 3.21|0.1 1.3 0.0 0.1 0.0 0.2 0.1 0.0| 10.24 X[1.43] 1.86]0.83
Lij39(20 15 4 8 0 0| 2.76/0.7 1.0 0.0 0.7 0.0 0.1 0.2 0.0| 12.06 INT|1.24| 1.66(0.52
Lij40(20 20 5 10 0 0| 4.77/0.7 2.0 0.0 0.1 0.0 0.1 0.2 0.0| 21.23 X12.39] 2.70]0.79
Lij 41|20 12 6 12 0 0| 1.94(0.7 0.5 0.0 0.1 0.0 0.0 0.2 0.0 7.86| 1.53|1.06| 1.30/0.73
Lij420 15 7 14 0 0| 2.61/0.7 0.6 0.0 0.1 0.0 0.2 0.3 0.0 12.38| 10.94/1.39| 1.72/0.86
Li143(20 17 8 16 0 0| 3.50(0.1 1.0 0.0 0.1 0.0 0.7 0.3 0.0 17.60 X11.92] 2.34]10.99
Li144)20 20 9 18 0 0| 4.46(0.7 1.3 0.0 0.2 0.0 0.4 0.4 0.0| 28.52 X12.48| 3.45]1.37
Lij45(20 22 10 20 0 0| 6.02|10.1 1.9 0.0 0.8 0.0 0.7 0.4 0.0 40.77|504.99|2.99| 3.60(1.45
Lij46|22 14 2 4 0 0| 4.19/0.7 2.7 0.0 0.0 0.0 0.1 0.1 0.0 17.68 X]2.08| 2.86(0.91
Lij47(22 16 3 6 0 0| 3.76(0.1 1.8 0.0 0.0 0.0 0.3 0.7 0.0 13.42 X|1.74| 2.46(1.06
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€ |d v s Eva|lsor|IB Ic IR Ir Iv Ia Is Ic| Ins Tor |[CAO0| CA1 |C2Dp
Lij48|22 15 4 8 0 0| 3.40(0.7 1.4 0.0 0.1 0.0 0.1 0.1 0.0| 13.45 X[1.55] 2.02|1.00
Lij49(22 20 5 10 0 0| 5.92|10.7 2.6 0.0 0.1 0.0 0.1 0.2 0.0| 34.26 X12.67| 3.32|1.29
Lyso(22 12 6 12 0 0| 2.30|0.1 6.6 0.0 0.1 0.0 0.0 0.2 0.0 12.30| 1.78|1.34| 1.57(0.86
Lysi|2215 7 14 0 0| 3.19/0.1 6.9 0.0 0.1 0.0 0.2 0.3 0.0 15.96| 14.28|1.72| 2.20(1.03
Lijs:|22 17 8 16 0 0| 4.24|0.1 1.4 0.0 0.1 0.0 0.1 0.4 0.0| 22.55 X12.60| 2.81]1.22
Lijs3(22 20 9 18 0 0| 5.27/0.0 1.7 0.0 0.2 0.0 0.4 0.4 0.0| 39.07 X12.74] 3.75]|1.72
Lis4(22 22 10 20 0 0| 7.31|0.1 2.7 0.0 1.0 0.0 0.7 0.4 0.0 45.57 X13.85| 4.59(2.01
Lyjss|22 2511 22 0 0| 8.84/0.1 3.0 0.0 1.0 0.0 0.8 0.5 0.0 60.61 X14.85| 6.02|2.64
Liise|24 17 2 4 0 0| 8.17(0.1 6.0 0.0 0.0 0.0 0.7 0.1 0.0| 41.42 X13.88| 5.59|1.48
Lijs7|2421 3 6 00| 9.04/0.715.9 0.0 0.1 0.0 0.20.20.0[ 37.60 X|4.20] 5.62|1.66
Liss|24 23 4 8 0 0| 9.64/0.1 6.0 0.0 0.1 0.0 0.2 0.2 0.0 44.66 X14.52| 6.82|1.84
Lijs9|24 20 5 10 0 0| 7.22|10.7 3.5 0.0 0.1 0.0 0.1 0.2 0.0| 34.99 INT|3.02| 4.46|1.48
Liigo|24 25 6 12 0 0[10.31(0.1 6.0 0.0 0.2 0.0 0.2 0.3 0.0 59.05 X|5.70| 7.24]2.62
Lije |24 15 7 14 0 0| 3.74/0.1 1.1 0.0 0.1 0.0 0.2 0.3 0.0| 20.85| 18.74(2.08| 2.93|1.22
Ly |24 17 8 16 0 0| 5.00/0.1 1.8 0.0 0.2 0.0 0.7 0.4 0.0 28.62|575.03|2.59| 3.14(1.37
Lije3|24 20 9 18 0 0| 6.34/0.7 2.3 0.0 0.2 0.0 0.5 0.5 0.0| 41.70 X[3.78| 4.32|1.84
Lije4|24 22 10 20 0 0| 8.56(0.7 3.4 0.0 1.1 0.0 0.1 0.5 0.0| 55.15 X|4.60| 5.48]2.18
Lyjes|24 25 11 22 0 0(10.44|/0.1 4.0 0.0 1.1 0.0 0.9 0.5 0.0 75.11|586.40|6.81| 8.76(2.66
Lije6|24 27 12 24 0 0[34.90|0.1 5.8 0.0 10.8 0.0 0.2 0.6 0.0|102.16 X19.79]10.60|2.78
Benchmarks L;;.
€ |d 7 s E vallsor|IB Ic Ir Ir Iv Ia Is Ic| Ins | Top |CAO0|CA1|C2D
Lp;|[2 000 10(0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.00|0.00|0.32
Lz>|3 2 10 00(0.110.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.00|0.00|0.32
Lpsz|4 010 10(0.15/0.10.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.00|0.00|0.32
Lps|5 4 10 00(0.20(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.01|0.01]0.33
Lps|6 4 10 10(0.22(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR|0.02|0.01|0.01]0.32
Lipe|7 6 1 0 0 0(0.30/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.07|0.03|0.32
Li7|/8 310 10(0.35(0.2 0.0 0.0 0.0 0.00.00.0 0.0/ ERR|0.03/0.02/0.03|0.32
Lpg|9 7 10 00(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR|0.03|0.02|0.07|0.32
Lizo |10 7 1 0 1 0(0.50|0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.03|0.03|0.07|0.32
L0111 9 1.0 0 0(0.66(0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.03|0.04|0.15|0.38
Li;{12 8 1.0 1 0(0.68|0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 ERR|0.04(0.04|0.15(0.32
Lpin|4 112 00/(0.16(0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.18|0.05|0.00(0.07|0.32
Lipi3[4 11 4 00(0.17]0.7 0.0 0.0 0.00.00.00.00.0|/ 0.13/0.05/0.02(0.02|0.33
L6 2 1 4 00(0.30(0.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0| 0.40(0.07|0.04|0.04|0.34
Lipis|6 2 16 0 0(0.33|10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.28]0.10(0.05/0.06|0.33
L8 51 6 0 0[0.53/0.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0| 1.11/0.11(0.09]0.12/0.35
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A.1. BENCHMARK RESULTS

€ |d v s Evallsor|IB Ic IR Ir Iv Ia Is Ic| Ins |Top|CA0|CA1|C2Dp

Lij;7{8 318 00(0.52/0.30.00.00.00.00.00.10.0f 0.63/0.15/0.11/0.14{0.35

Li>3/10 6 1 8 0 0(0.77/0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 2.57|0.19/0.18|0.26|0.40

Lip19|10 4 110 0 0(0.80(0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 1.33|0.24]0.22(0.30|0.41

Lipp|12 8 110 0 0(1.24|0.6 0.7 0.0 0.0 0.0 0.0 0.2 0.0| 6.27|0.27|0.34]0.52|0.53

Lippi |12 5 112 0 0(1.37/6.7 0.1 0.0 0.0 0.0 0.0 0.3 0.0| 2.55/0.38|0.40]0.60{0.58

Li»|14 10 1 12 0 0(1.81/0.9 0.2 0.0 0.0 0.0 0.0 0.4 0.0(13.62/0.43|0.61|1.02|0.82

Benchmarks L,.

d s E v A| Isor Is Ic Ir Ir Iv Ia Is Ic| Ins | Top CA0 CA1 C2p
214 00| 030 0.2 0.00.0000.00.00.10.0[ 038 0.12 0.13 0.14 0.32
314 00| 0.38/ 0.2 0.00.0000.00.00.00.0{ 0.65 0.15 0.20 0.26 0.32

10 4 1 4 0 0| 0.47| 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.10| 0.18 0.37 0.48| 0.36

12 51 4 00| 0.62| 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 5.44| 0.20 0.50 0.82| 0.34

14 6 1 4 0 0| 0.80| 0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 10.85| 0.21 0.76 1.431 0.50

16 7 1 4 0 0| 0.99| 0.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 20.25| 0.24 1.29 2.23| 0.36
318 00| 0.43] 0.2 0.0 0.0 0.00.00.00.10.0| 097 0.18 0.32 0.40 0.33

10 4 1 8 0 0| 0.54| 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 2.27| 0.20 0.54 0.72 0.37

12 51 8 00| 0.58| 0.2 0.0 0.0 0.0 0.0 0.00.10.0 574 0.24 0.82 117 0.34

14 6 1 8 0 0| 0.70| 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0| 13.31| 0.26 1.28 1.98( 0.55

16 7 1 8 0 0| 0.82| 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.0 25.39| 0.28 1.50 3.36( 0.37

18 7 1 8 0 0| 0.96| 0.2 0.1 0.0 0.0 0.0 0.0 0.3 0.0 46.96| 0.34 2.89 4.28| 1.14

10 4 1 8 00| 0.72| 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 2.79| 0.32 0.60 0.77| 0.37

12 518 00| 0.8 0.5 0.10.00.00.00.00.100 8.09] 0.36 0.94 1.19( 0.34

14 6 1 8 0 0| 1.09/ 0.6 0.1 0.0 0.0 0.0 0.0 0.2 0.0| 18.62| 0.43 1.41 2.18| .56

16 7 1 8 0 0| 1.27| 0.7 0.1 0.0 0.0 0.0 0.0 0.2 0.0| 39.60| 0.48 1.97 3.45( 0.36

18 7 1 8 0 0| 1.57| 0.8 ©0.10.00.00.00.00.200 77.09| 0.52 3.73 4,660 1.23

20 818 00| 1.8 1.0 0.10.00.00.00.00.30.0{142.03] 0.59 5.81 6.75| 0.44

12 5 1120 0| 1.06| 0.5 0.1 0.0 0.0 0.0 0.0 0.3 0.0 4.79| 0.44 1.12 1.49| 0.35

14 6 1120 0| 1.16| 0.4 0.1 0.0 0.0 0.0 0.0 0.3 0.0| 14.76| 0.52 1.98 2.57| 0.61

16 7 112 0 0| 1.34| 0.4 0.1 0.0 0.0 0.0 0.0 0.3 0.0| 30.85| 0.58 2.98 4.38] 0.40

18 7 1120 0| 1.59| 0.4 0.2 0.0 0.0 0.0 0.0 0.4 0.0| 67.03| 0.67 4.46 5.89| 1.32

20 8 1120 0| 1.87| 0.5 0.3 0.0 0.0 0.0 0.0 0.50.0[{124.45] 0.74 4,321 12.00| 0.48

22 9 1120 0| 2.34) 0.5 0.40.00.00.00.00.60.0[213.66| 0.87 6.52| 19.50| 3.20

14 6 112 0 0| 1.57| 0.8 0.1 0.0 0.0 0.0 0.0 0.3 0.0| 14.30| 0.74 2.00 2.74| 0.65

16 7 112 0 0| 1.83| 0.9 0.2 0.0 0.0 0.0 0.0 0.3 0.0| 41.35| 0.87 2.88 4,80 0.40

18 7 1120 0| 2.20f 1.0 0.2 0.0 0.0 0.0 0.0 0.4 0.0| 82.85| 0.97 5.97 8.18| 1.41

20 8 1120 0| 2.8 1.2 0.3 0.0 0.0 0.0 0.0 0.40.0{166.21] 1.13 9.14| 10.20| 0.50

22 9 1120 0| 3.48/ 1.3 ©0.50.0 0.0 0.0 0.0 0.5 0.0(298.47| 1.25| 12.80| 16.70| 3.34

Benchmarks L; (continued on the next page).
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€ |d 7 s E v A| Isor Is Ic Ir Ir Iv Ia Is Ic| Ins | Tor | CAO CA1 C2p
Lizz|24 10 1 12 0 0 3.98| 1.6 0.50.0 0.0 0.0 0.0 0.7 0.0(539.39| 1.38| 16.90| 37.30| 0.68
Lizz |16 7 16 0 0| 2.17| ©.9 0.3 0.0 0.0 0.0 0.0 0.5 0.0| 18.74| 0.96 4.76 6.30 0.41
Lz |18 7 16 0 0| 2.38| ©.9 ©0.30.00.00.00.00.60.0| 60.64| 1.14 7.571 10.80| 1.67
Liz33|20 8 16 0 0| 2.70| ©.8 0.4 0.0 0.0 0.0 0.0 0.7 0.0]122.79| 1.29 6.741 17.10| 0.56
Liz34(22 9 16 0 0| 3.26| ©.8 0.6 0.0 0.0 0.0 0.0 0.8 0.0]234.38| 1.46 9.51| 24.50| 3.88
Liz35|24 10 1 16 0 0| 3.90| 0.9 0.3 0.0 0.0 0.0 0.1 1.0 0.0(433.36| 1.50| 24.20| 22.90| ©.76
Liz3|26 11 1 16 0 0| 4.93| 0.8 1.3 0.0 0.0 0.00.01.20.0 INT| 1.70| 32.00| 31.70| 9.46
Liz37|18 7 16 0 0 3.18| 1.5 0.6 0.0 0.0 0.0 0.0 0.5 0.0| 51.23| 1.57 8.96| 12.00| 1.88
Liz3s(20 8 16 0 0| 3.53| 1.5 0.7 0.0 0.0 0.0 0.0 0.6 0.0|146.45| 1.75| 10.60| 24.40| 0.55
Lizz9|22 9 16 0 0| 4.14| 1.7 0.8 0.0 0.0 0.0 0.0 0.7 0.0]262.48| 1.98| 18.60| 30.50| 4.30
Li340|24 10 1 16 0 0 5.00/ 1.9 1.0 0.0 0.0 0.0 0.1 0.9 0.0|517.24| 2.25| 23.90| 39.90| 0.78
Liz4|26 11116 0 0| 6.25 2.1 1.40.060.00.00.11.20.0 INT| 2.53| 34.50| 51.40| 9.97
Liz4 |28 12 116 0 0 7.22| 2.3 1.8 0.0 0.0 0.0 0.1 1.2 0.0 INT| 2.86| 55.10| 93.20| 1.20
Liz43|20 8 200 0| 4.61] 1.8 1.10.0 0.0 0.0 0.0 0.8 0.0| 57.96| 1.88| 14.50| 21.90| 0.62
Lizas|22 9 200 0| 4.98) 1.6 1.3 0.0 0.0 0.0 0.0 1.0 0.0[180.50| 2.14| 13.80| 34.80| 5.14
Liz4s|24 10 120 0 0| 5.42| 1.5 1.50.0 0.0 0.0 0.0 1.2 0.0(338.30| 2.38| 30.70| 44.10| 0.89
Liz46|26 11 120 0 0| 6.54| 1.3 1.9 0.0 0.0 0.0 0.0 1.5 0.0 INT| 2.68| 32.50| 63.80| 12.45
Li347|28 12120 0 0| 7.5 1.4 2.4 0.0 0.0 0.0 0.1 1.7 0.0/580.78| 3.00| 57.20| 121.00 .48
Li343(30 13120 0 0| 9.22| 1.4 3.2 0.0 0.0 0.0 0.1 2.0 0.0 INT| 3.35| 78.60| 170.00| 24.74
Lizao(22 9 2000/ 6,87 2.8 2.1 0.0 0.0 0.0 0.0 1.9 0.0[158.06| 3.33| 19.10| 32.20| 6.68
Lizs0|24 10 120 0 0| 7.38) 2.7 2.3 0.0 0.0 0.0 0.0 1.2 0.0(447.12| 3.78| 30.90| 56.10| 0.95
Lizs1|26 11120 0 0| 8.56| 2.8 2.7 0.0 0.0 0.0 0.1 1.4 0.0 INT| 4.28| 40.80| 93.30| 13.55
Lizs>|28 121200 0 9.89) 2.9 3.2 0.60.00.00.11.5080.0 INT| 4.86| 53.30| 101.00| 1.49
Li3s3(30 13 120 0 0| 11.50| 3.1 3.8 6.0 0.0 0.0 0.1 1.7 0.0 INT| 5.48| 94.60| 135.00| 26.53
Lizs4|32 14 120 0 0| 14.44| 3.4 5.2 0.0 0.0 0.0 0.1 2.2 0.0 INT| 6.19] 111.00| 219.00| 2.39
Li3s5|24 10 1. 24 0 0| 9.85| 3.3 3.7 0.0 0.0 0.0 0.0 1.5 0.0(153.27| 3.55| 31.40| 67.00| 1.08
Lizse|26 11 1 24 0 0| 10.13| 2.6 4.0 0.0 0.0 0.0 0.0 1.8 0.0(458.02| 3.91| 46.70| 78.70| 15.56
Lizs7|28 12 1 24 0 0| 10.98| 2.4 4.6 0.0 0.0 0.0 0.1 2.0 0.0 INT| 4.52| 48.00| 91.90| 1.69
Lizs3(30 13 124 0 0| 12.59| 2.3 5.2 0.0 0.0 0.0 0.1 2.4 0.0 INT| 5.05| 112.00| 228.00| 30.54
Lizso|32 14 1 24 0 0| 14.89| 2.1 6.50.0 0.0 0.0 0.1 2.9 0.0 INT| 8.72| 164.00| 267.00| 2.94
Lizeo|34 15 1 24 0 0| 18.65| 2.2 8.3 0.0 0.0 0.0 0.1 3.7 0.0 X| 6.25| 185.00| 439.00| 54.00
Lize |26 11 1 24 0 0| 14.64| 4.9 6.3 0.0 0.0 0.0 0.0 1.7 0.0|404.36| 6.58| 58.20| 111.00| 17.91
Lizer|28 121 24 0 0| 14.64| 4.2 6.8 0.0 0.0 0.0 0.0 1.8 0.0 INT| 7.31] 90.90| 131.00| 1.79
Li363|30 13 1 24 0 0| 16.14| 4.3 7.5 0.0 0.0 0.0 0.1 2.1 0.0 INT| 8.14| 97.30| 280.00| 34.32
Lizes|32 14 1 24 0 0| 18.85| 4.4 8.6 0.0 0.0 0.0 0.1 2.6 0.0 INT|13.88| 149.00| 322.00| 3.09
Lizes|34 15 1 24 0 0| 22.09| 4.7 10.0 0.0 0.0 0.0 0.1 3.1 0.0 INT|10.32| 233.00| 408.00| 61.09
Lize6|36 16 1 24 0 0| 25.18| 4.9 11.5 0.0 0.0 0.0 0.2 3.6 0.0 X[11.76| 272.00| 655.00| 4.74
Lize7|18 6 118 0 0| 8.76| 4.6 1.8 0.0 0.0 0.0 0.2 0.6 0.0]162.58|13.52 4.14 5.421 3.30
Lizes|26 6 122 0 0| 18.78| 3.5 8.8 0.0 0.0 0.0 0.9 1.4 0.0 X116.62| 33.50| 46.70 ERR
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A.1. BENCHMARK RESULTS
€ |d 7 s E v a| Isor Is Ic Ir Ir Iv Ia Is Ic| Ins | Tor | CAO CA1 C2p
Lizgo|34 6 1 18 0 0[380.57|174.2 173.9 6.0 5.1 0.0 2.9 2.2 0.0 X1 INT| 203.00| 316.00 ERR
Lizz0|42 6 122 0 0[540.52(123.3 353.7 0.0 6.4 0.0 6.9 3.4 0.0 X X| 584.00(1120.00|169.23
Liz7 |50 6 1 - 00 ERR| ERR  ERR ERR ERR ERR ERR ERR ERR X X12920.00|4850.00|519.78
Li37(58 6 1 - 00 ERR| ERR  ERR ERR ERR ERR ERR ERR ERR X X INT INT ERR
Lizz3|66 6 1 - 00 ERR| ERR  ERR ERR ERR ERR ERR ERR ERR X X INT INT ERR
Benchmarks L5.

€ |d tsEva|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Top|CA0|CA1|C2D

Ly |7 3110 0/(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0{0.14]/0.05/0.01/0.02|0.32

Ly |7 4110 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.16(0.04|0.01{0.01]0.32

Lz |7 4110 0(0.26/10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.15|0.04|0.01{0.02]0.32

Ligs |8 3120 0/0.32/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0{0.24/0.12/0.07/0.08|0.32

Lyus |8 4120 0/(0.32(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0{0.26/0.12/0.06(0.08|0.33

Lise |8 4120 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.26|0.12|0.07|0.080.32

L7 |9 3110 0/(0.34/10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.25(0.05|0.01{0.02|0.34

Lisg |9 4110 0/(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0{0.24]/0.05|0.01/0.02|0.32

Liso |9 4110 0|0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0{0.26|0.04|0.02/0.02|0.33

Li10(10 3120 0(0.41/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.45|0.14(0.10|0.12{0.33

Lig1 |10 4 12 0 0(0.42/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.47|0.15|0.10(0.12|0.33

Ly, |10 4 120 0(0.38/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.46/0.16(0.10|0.12|0.32

Lig3(113 110 0(0.42/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.50|0.04|0.02/0.02/|0.32

Lig4 (11 4110 0(0.42/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.50|0.04(0.02|0.02{0.33

Ligis |11 4110 0(0.43/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.51]|0.05|0.02(0.02|0.33

Lis6 |12 3120 0(0.49|0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.89/0.26(0.14|0.16|0.33

Ligi7(12 4120 0(0.47/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.82|0.20(0.12/0.14|0.34

Ligis|12 4120 0(0.46/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.84|0.22(0.12/0.14|0.32

Ligi9(13 3 110 0(0.52/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.02|0.05|0.03|0.04|0.33

Lig |13 4110 0(0.51/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.95/0.04|0.02|0.03|0.33

Ligp |13 4110 0(0.49/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.95|0.05|0.02/0.04|0.33

Lig2n |14 3 12 0 0(0.55/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.51/0.35|0.15/0.18|0.33

Lisp3 |14 4120 0(0.58|0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0(1.57/0.33(0.16|0.19|0.33

Ly |14 4120 0(0.56|0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0(1.58/0.34{0.16|0.19|0.32

Lisps (153 110 0(0.57(0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.81|0.06/0.03|0.04|0.34

Lig2 |15 4 110 0(0.56(0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.82|0.05|0.03|0.04|0.33

Ligp7 |15 4110 0(0.58|0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.83]0.04|0.03|0.04|0.34

Ligp3 16 3 1.2 0 0(0.66/0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.58|0.42{0.19]0.23|0.34

Ligp [16 4 1 2 0 0(0.65(0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0]|2.57|0.43/0.17/0.21|0.34

Lig3 |16 4 12 0 0(0.63]0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.61|0.46|0.17|0.22|0.34

Benchmarks L4 (continued on the next page).
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¢ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Top |CA0|CA1|C2D
Lig3 (17 3 110 0(0.66/0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.16|0.06|0.03|0.05|0.34
Lig3 |17 4 110 0(0.67(0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0(3.22|0.06|0.03|0.05|0.34
Lis33 (17 4 11 0 0(0.65(0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.20|0.05|0.04|0.06|0.36
Lis34 |18 3120 0(0.74|0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0]4.40|0.55|0.28/0.33|0.34
Lis35 (18 4 1.2 0 0(0.76/0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0|4.34]|0.57|0.24|0.33|0.35
Lis36 |18 4 1.2 0 0(0.76/0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0|4.40|0.58|0.27|0.28|0.34
Lis3|5 3120 0/(0.22(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0[0.18|0.04|0.01|0.02]0.32
Ligss |5 4120 0(0.21/0.10.0 0.0 0.0 0.0 0.0 0.0 0.0/0.183|0.04|0.02/0.02|0.32
Lig39 |5 4120 0(0.22/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.13/0.05|0.07/0.02|0.32
Ligs0| 6 3140 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.23]|0.07|0.08/0.09|0.33
Ligs1 |6 4140 0(0.29|10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.22/0.08|0.08|0.08|0.32
Ligar |6 4140 0(0.27/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.21|0.07|0.08/0.09|0.32
Liys3 |7 3120 0(0.28/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.23|0.06(0.02/0.02(0.32
Ligas |7 4120 0/(0.28(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0[0.22|0.06|0.02(0.02]0.32
Ligss |7 4120 0(0.29(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00.25|0.04/0.02(0.02|0.33
Lisss |8 3140 0(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.31]|0.08|0.11/0.12|0.32
Ligs47|8 4140 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.32|0.09|0.10(0.12|0.33
Lisss |8 4140 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.34/0.09(0.11/0.12/0.33
Ligs0 |9 3120 0(0.37|0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.30|0.06(0.03|0.03|0.32
Lisso|9 4120 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.30|0.05|0.02/0.03|0.32
Ligs1|9 4120 0(0.36(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.30|0.06|0.02(0.03|0.32
Liss5 |10 3 1 4 0 0/0.46(/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0]0.41|0.70|0.74|0.16]0.33
Ligs3 |10 4 1 4 0 0(0.43/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.42/0.09|0.14/0.15|0.33
Ligs4 10 4 1 4 0 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.41]|0.09|0.13/0.16|0.32
Ligss |11 3 12 0 0(0.45/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.34|0.06|0.03|0.05|0.33
Liss6 |11 4120 0(0.42|10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.33/0.06(0.03|0.04|0.33
Ligs7 |11 4 12 0 0(0.46/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.36|0.06|0.03|0.04|0.34
Lisss (12 31 4 0 0(0.52(10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.46|0.10(0.17|0.21{0.33
Liss0 |12 4 1 4 0 0/0.53|0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.46|0.70|0.18|0.20(0.33
Liggo (12 4 1 4 0 0(0.52(0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00.47)|0.10|0.17|0.20|0.34
Ligg |13 3 12 0 0(0.49/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.40|0.07|0.04|0.06|0.34
Liger |13 4 12 0 0(0.52/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.44|0.07|0.04|0.06|0.34
Lige3 |13 4 12 0 0(0.51/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.45|0.06|0.04|0.06|0.34
Lies |14 3 1 4 0 0(0.61|0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.51]0.11(0.22|0.26|0.35
Liges |14 4 1 4 0 0(0.62/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.55]|0.12|0.27/0.26|0.35
Liges |14 4 1 4 0 0(0.60(0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.52|0.11|0.22|0.26|0.34
Lise7|153 120 0/0.59(0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0[0.46(0.07|0.05|0.07|0.34
Liges |15 4 12 0 0(0.67(0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.50|0.07|0.05[0.06|0.35
Liggo |15 4 1.2 0 0(0.58/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.43|0.06|0.05|0.07|0.36
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A.1. BENCHMARK RESULTS

€ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Topr|CAO0|CA1|C2D
Lig70(16 3 1 4 0 0(0.7210.5 0.0 0.0 0.0 0.0 0.0 0.7 0.0|0.63|0.11]0.26(0.31/0.35
Lig7 |16 4 1 4 0 0(0.72/0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.0|0.67|0.11|0.26]0.37/0.36
Lig7> |16 4 1 4 0 0(0.73/0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.0/0.67|0.12{0.26(0.30|0.35
Li73|5 3110 0(0.21/0.10.0 0.0 0.0 0.0 0.0 0.0 0.0/0.17/0.05(0.01|0.02|0.32
Lig74|5 4110 0(0.22/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.16/0.04|0.01/0.02/|0.32
Lig75(5 4110 0(0.21/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.14|0.03|0.01/0.02/|0.32
Lig76 |6 3120 0(0.24|0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.30/0.12(0.10|0.12|0.32
Liy77|6 4120 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.31/0.12{0.09(0.12|0.32
Liy73(6 4120 0(0.24(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.31(0.13]0.10/0.12|0.31
Lig79|7 3110 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.30|0.05|0.02(0.02|0.32
Lisg0 |7 4110 0(0.28/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.32/0.05(0.01|0.02|0.32
Liygi |7 4110 0(0.29/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.24|0.04|0.02/0.02|0.32
Lisg |8 3120 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.51(0.17(0.11|0.74{0.32
Lisg3 |8 4120 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.51]/0.18(0.11/0.13|0.32
Ligg4 |8 4120 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.50/0.18(0.13|0.15|0.33
Liygs |9 3110 0(0.37/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.65|0.06|0.02/0.03|0.33
Liggs |9 4110 0(0.37/0.3 0.0 0.0 0.0 0.00.00.00.0/0.66/0.06|0.02|0.03|0.34
Lisg7|9 4110 0(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.67|0.06|0.02|0.02|0.34
Lisg3 |10 3 12 0 0(0.42|10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0]1.05|0.28|0.18/0.22(0.34
Liggo |10 4 12 0 0(0.43/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0(1.07|0.29|0.16|0.20|0.34
Ligo0 |10 4 12 0 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.04|0.28|0.20(0.22|0.33
Ligo; |11 3 110 0(0.44|0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0]1.40|0.05|0.03|0.04|0.34
Ligo2 |11 4 110 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0(1.45|0.06|0.03|0.04|0.34
Ligo3 (11 4 110 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0]|1.42|0.05/0.03|0.04|0.34
Ligo4 12 3 12 0 0(0.48/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.09|0.40|0.28|0.28|0.34
Lisos |12 412 0 0(0.49|0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0]2.21(0.41]0.23/0.28|0.34
Ligos |12 4 12 0 0(0.48/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.18|0.41|0.22/0.28|0.34
Ligo7 (6 3100 0(0.19(0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.04(0.00|0.01|0.32
Ligos |6 4100 0(0.17/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.20|0.03|0.00(0.01|0.32
Ligo0 |6 4100 0(0.20/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.19/0.04|0.00|0.07|0.32
Ligi00/6 3100 0(0.22/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.32|0.10(0.02|0.02{0.33
Ligi01|6 4100 0(0.22/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.24|0.09(0.02|0.02(0.32
Ligi00| 6 4 100 0(0.24/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.26/0.08|0.02(0.02|0.32
Lig03|7 3100 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.25/0.02|0.07/0.02|0.33
Ligio4|7 4100 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0]0.26|0.04(0.01|0.02{0.33
Ligios|7 4100 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.27|0.03(0.01|0.02{0.32
Lisi06| 8 3100 0(0.31/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.49/0.04|0.01(0.02|0.32
Lig07]8 4100 0(0.33/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.43/0.03|0.01(0.02/0.32
Ligi0s|8 4100 0(0.30/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/0.52|0.03(0.01|0.02{0.33

Benchmarks L4 (continued on the next page).
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¢ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Top |CA0|CA1|C2D
Lisi00|9 3100 0(0.36/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00.78|0.04(0.02|0.03{0.33
Ligi0]9 4100 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.80|0.03|0.02(0.03|0.33
Lig111|9 4100 0({0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.81|0.03|0.02/0.02|0.34
Lig112[10 3 1.0 0 0(0.42/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.94|0.75|0.04|0.05|0.34
Li4113(10 4 10 0 0(0.40/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.04|0.18(0.03|0.05|0.33
Lig114(10 4 10 0 0(0.42/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.08|0.76|0.03|0.05|0.34
Ligs(11 3 10 0 0(0.44/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.56|0.02|0.03|0.04|0.34
Ligne|11 4 10 0 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.69|0.04|0.02/0.04|0.34
Lig17(11 4 10 0 0(0.43/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.70|0.03(0.02|0.04|0.35
Ligng|12 3 10 0 0(0.50(0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.04|0.04|0.02|0.04|0.34
Ligi19(12 4 10 0 0(0.50(0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0|2.15|0.05|0.02|0.04|0.34
Ligi20(12 4 10 0 0(0.50(0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0|2.22|0.04|0.02/0.04|0.34
Ligi21|7 3110 0(0.22/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00.25|0.04(0.01|0.02{0.32
Ligi22|7 4110 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.35/0.05|0.01(0.02/|0.32
Ligip3|7 4110 0(0.20(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.36/0.04|0.07(0.02/|0.32
Ligi24|7 3120 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00.52|0.20(0.14|0.17{0.32
Ligips|7 4120 0(0.24/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.52(/0.19|0.12/0.16|0.33
Ligio6|7 4120 0(0.26(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.50/0.19|0.12/0.15|0.33
Lis7/7 3110 0(0.28/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.41/0.05(/0.02/0.03(0.34
Ligi28|7 4110 0(0.27/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00.42|0.05(0.01|0.03{0.33
Ligio|7 4110 0(0.28/0.2 0.0 0.0 0.0 0.0 0.00.00.0/0.41/0.05|0.02(0.03|0.32
Ligi3|8 3120 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.93/0.28|0.22(0.22/|0.32
Ligp31|8 4120 0(0.33/0.2 0.00.00.00.00.00.00.00.90/0.30(/0.17/0.22/0.36
Ligi|8 4120 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.94/0.30(0.21/0.26|0.34
Lig3309 3110 0(0.38/0.30.00.00.00.00.00.00.0/1.17/0.05/0.02(0.05|0.35
Ligi3409 4110 0({0.38/0.30.00.00.00.00.00.00.0/1.24/0.05/0.03/0.04|0.34
Lig3509 4110 0(0.36/0.2 0.0 0.0 0.0 0.0 0.00.00.0(1.22/10.05/0.03/0.04|0.34
Lisi3(10 312 0 0(0.43/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.90|0.27(0.26/0.32|0.34
Lig137(10 4 1.2 0 0(0.43]0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.00|0.22|0.25[0.35|0.33
Lis3(10 4 1.2 0 0(0.43]0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.98]0.22|0.25[0.34|0.35
Ligi39(11 3110 0(0.45/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.76|0.07(0.06|0.07{0.35
Ligp4 |11 4 11 0 0(0.46(0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.77|0.05|0.05(0.07|0.37
Ligp41 |11 4 110 0(0.46(0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.76|0.06|0.05(0.07|0.35
Ligy4p[12 3 12 0 0(0.571]0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.80|0.85|0.42(0.50|0.35
Ligi43(12 4 1.2 0 0(0.52/0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0]3.93]0.89(0.41|0.46{0.39
Ligp4s 12 4 1.2 0 0(0.571]0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.94|0.87|0.35(0.44|0.35
Ligss| 8 3100 0(0.22/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.04|0.07(0.01|0.32
Lisj46| 8 4 100 0(0.20(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.41/0.03|0.07/0.01|0.32
Ligi47(8 4100 0(0.21/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.39|0.04(0.01|0.02{0.32
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A.1. BENCHMARK RESULTS

€ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Topr|CAO0|CA1|C2D
Ligu43(8 3100 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.65/0.15(0.02|0.03|0.32
Ligi49|8 4100 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.66|0.15(0.02|0.03{0.33
Lisis0| 8 4 100 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.69/0.16|0.02(0.03|0.33
Lig51|8 3100 0[0.26(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.70(0.04|0.02(0.02|0.34
Ligi52|8 4100 0(0.28/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|/0.67|0.03(0.01|0.02{0.33
Ligis3|8 4100 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.69|0.04(0.01/0.02|0.34
Ligis4| 8 3100 0(0.32/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.82|0.04|0.01(0.03|0.33
Ligyss| 8 4100 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.62|0.03|0.07(0.02|0.32
Lisi56|8 4100 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.68|0.03(0.01|0.03{0.33
Lisis709 3100 0(0.37/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.35|0.04|0.03|0.04|0.34
Ligisg|9 4100 0(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.40|0.03|0.02|0.04|0.34
Ligi50|9 4100 0(0.38/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.40|0.04(0.02/|0.04{0.35
Lisi60(10 3 10 0 0(0.47/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0/1.95/0.30(0.05/0.07|0.34
Lis161 (10 4 10 0 0(0.45/0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0(1.99|0.30|0.04|0.06|0.36
Lis162[10 4 1 0 0 0(0.48/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|1.96|0.28|0.04|0.06|0.34
Lisie3(11 3 10 0 0(0.47/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.38/0.03(0.05/0.08|0.36
Ligies|11 4 10 0 0(0.45/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.36|0.04(0.03/0.06|0.36
Lises|[11 4 10 0 0(0.46(0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.50|0.03|0.04|0.07|0.36
Lisie6(12 3 10 0 0(0.61(0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0|4.66(0.04|0.02{0.05|0.36
Ligi67(12 4 10 0 0(0.62|0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0|4.61|0.04/0.03/0.05|0.36
Lisies|12 4 10 0 0(0.64|0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0|4.63|0.04(0.03|0.05|0.35
Lisieo|9 3110 0(0.23/0.10.0 0.0 0.0 0.0 0.0 0.0 0.0/0.75/0.05|0.01(0.02/0.33
Ligg70]9 4110 0(0.22/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.73/0.04|0.07/0.02/0.32
Ligim|9 4110 0(0.21/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.76|0.04(0.02|0.02{0.33
Lisi72]9 3120 0(0.25/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.06/0.33|0.26(0.27|0.32
Ligy73]9 4120 0(0.27/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.04/0.32|0.18{0.25|0.32
Ligi74|9 4120 0(0.27/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.07|0.34/0.18/0.26|0.34
Ligi7s|9 3110 0(0.33/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.18|0.05(0.03/0.04|0.34
Lisi76]9 4110 0(0.29/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.18|0.05|0.03|0.04|0.33
Ligi7709 4110 0(0.32(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.24/0.05|0.02(0.04|0.33
Ligi7s|9 3120 0(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.67|0.55(0.34/0.43|0.34
Ligi79|9 4120 0(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.52|0.56(0.26/0.34|0.34
Lisig0|9 4120 0(0.36/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.68|0.57|0.34/0.43|0.33
Ligis1|19 3110 0(0.40(0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.68(0.06|0.04|0.07|0.34
Ligis2(9 4110 0(0.38/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.65/0.06(0.04/0.06|0.34
Ligis3/9 4110 0(0.41/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.63|0.06(0.04/0.06|0.34
Lis84(10 3 12 0 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.96|0.93|0.53|0.64|0.34
L8510 4 1.2 0 0(0.47/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.09|0.94|0.48]0.59|0.34
Lisi86(10 4 1.2 0 0(0.47|0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.18|0.94(0.52/0.64|0.36
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¢ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Top |CA0|CA1|C2D
Ligi87(113 110 0(0.49/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/3.75/0.05(0.09/0.12|0.38
Ligs(11 4 11 0 0(0.50(0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/4.03/0.06|0.08(0.10|0.39
Ligig |11 4 11 0 0(0.50(0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0/3.95/0.06|0.07(0.12|0.39
Lisi9(12 3 12 0 0(0.55/0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0/6.22|1.66|0.64(0.85|0.37
Ligio1|12 4 12 0 0(0.55/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|6.36|1.65(0.68|0.97(0.37
Ligp92(12 4 1.2 0 0(0.54]0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0/6.64|1.72|0.78(0.79|0.37
Lis193(10 3 1.0 0 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.94|0.02|0.01(0.02|0.32
Li494(10 4 10 0 0(0.20/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.92|0.04|0.07/0.02|0.32
Lig105(10 4 1.0 0 0(0.19/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0]0.92|0.04(0.00|0.02(0.32
Li4196[10 3 1.0 0 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.18]|0.19|0.03|0.04|0.32
Lis197(10 4 1 0 0 0(0.25/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.19]0.20|0.02(0.04|0.33
L0810 4 1 0 0 0(0.24/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.22/0.21|0.02(0.04|0.33
Lis,109(10 3 10 0 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.54|0.03(0.02|0.04|0.33
Ligp00[10 4 1 0 0 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.56|0.04|0.02|0.04|0.36
Ligp01 {10 4 10 0 0(0.27]0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.63]|0.03|0.02|0.04|0.34
Lig202(10 3 10 0 0(0.42/0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0|2.00|0.03(0.02|0.03|0.33
Ligp03[10 4 10 0 0(0.39/0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0|2.14|0.03|0.07(0.03|0.33
Ligp04[10 4 1 0 0 0(0.40(0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0|2.14|0.04|0.02|0.03|0.34
Ligps[10 3 10 0 0(0.38/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.04|0.04|0.04(0.06|0.37
Lis206|10 4 1 0 0 0(0.38/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0]/3.24|0.04(0.04|0.05|0.36
Ligp07[10 4 1 0 0 0(0.38/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.25|0.03|0.04|0.06|0.36
Lispg[10 3 10 0 0(0.56(0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0|2.81]0.21|0.06(0.09|0.35
Ligp00[10 4 1 0 0 0(0.55/0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0|2.56/0.76|0.06(0.09|0.35
Lis210(10 4 10 0 0(0.57|0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0]|2.55/0.16(0.06/0.09|0.34
Ligp1 |11 3 100 0(0.47/0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0|6.69(0.04|0.08|0.10|0.41
Ligpip|11 4 10 0 0(0.46/0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0|6.43|0.04|0.08|0.11|0.41
Ligp3|(11 4 10 0 0(0.47/0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0|6.56|0.04|0.06|0.09|0.41
Lig214(12 3 10 0 0(0.84|0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0|5.49|0.04/0.04|0.08|0.38
Ligpi5(12 4 10 0 0(0.83/0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0|5.76|0.04|0.03|0.07|0.38
Lispi6)12 4 10 0 0(0.83/0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0|5.72|0.03|0.03(0.07|0.37
Ligp17(113 110 0(0.24/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.55|0.04(0.02/0.02|0.34
Ligpig|11 4 11 0 0(0.23/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.53/0.04|0.02(0.03|0.32
Ligpio|11 4 11 0 0(0.230.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.55/0.05|0.02(0.02|0.33
Ligpo|11 3 12 0 0(0.28/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/1.99/0.50|0.33(0.43|0.32
Ligp |11 412 0 0(0.29/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.00|0.51(0.33|0.47|0.34
Ligpn |11 4 12 0 0(0.25(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.04|0.50|0.28/0.42|0.33
Ligp3|[11 3 110 0(0.31/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.32|0.05|0.04|0.06|0.36
Ligps|11 4 11 0 0(0.34/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/2.42/0.05|0.04(0.05|0.35
Ligs|11 4110 0(0.32|10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0]2.55|/0.04(0.03/0.05|0.34
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A.1. BENCHMARK RESULTS

€ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Topr|CAO0|CA1|C2D
Lig26|11 312 0 0(0.35/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0]3.35/0.95(0.39/0.54|0.34
Lig27(11 412 0 0(0.38/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.49|0.97(0.42|0.60(0.33
Ligpg|11 4 12 0 0(0.40(0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.50|0.98|0.46|0.58|0.34
Lig0|11 3110 0(0.42(0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0|3.85/0.06|0.06(0.09|0.38
Lig23|11 4 110 0(0.44/0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.93|0.06(0.07|0.10{0.39
Ligp31(11 4110 0(0.44/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0/3.98|0.05(0.07/0.10|0.38
Ligp3 |11 3 12 0 0(0.49/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|5.43|1.72|0.66|0.80|0.36
Ligps|11 4 12 0 0(0.50(0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0|5.59|1.70|0.60|0.86|0.36
Lig234|11 4 12 0 0(0.49/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|5.50|1.73(0.61|0.82(0.37
Ligps|11 3 110 0(0.54/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|5.06|0.07|0.12/0.15|0.40
Ligps |11 4 11 0 0(0.53/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0/4.93/0.07|0.12(0.17|0.42
Ligp37(11 4 110 0(0.52|16.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0|4.88|0.07(0.12/0.15|0.41
Ligp(12 312 0 0(0.61/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|7.92|2.68(1.64|1.85{0.39
Lisp |12 4 12 0 0(0.58(0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0/8.25/2.72|1.82(1.51|0.39
Lisps|12 4 12 0 0(0.60(0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0|8.44|2.75|1.78(1.87|0.39
Lig241(12 3100 0(0.21/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.95|0.04(0.01|0.02{0.33
Ligr4(12 4 10 0 0(0.20/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|1.96|0.02(0.01|0.02{0.33
Ligps3(12 4 10 0 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.01|0.02|0.01(0.02|0.33
Lis44(12 3 10 0 0(0.29/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0(2.49|0.28(0.03|0.05|0.32
Ligp45(12 4 10 0 0(0.27/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|2.32|0.30(0.03|0.04|0.33
Lig26|12 4 10 0 0(0.29/0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0|2.38|0.30(0.03|0.04|0.33
Ligps7(12 3 10 0 0(0.28/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.28|0.03|0.03(0.05|0.35
Ligpsg(12 4 10 0 0(0.29/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0/3.20(0.03|0.03/0.05|0.35
Lig249|12 4 10 0 0(0.26/0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0|3.28|0.04(0.04|0.05|0.35
Lispso[12 3 10 0 0(0.49/0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0|4.34]|0.02|0.02|0.04|0.34
Ligpsi |12 4 1.0 0 0(0.46(0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0|4.30|0.03|0.02|0.04|0.34
Ligps2(12 4 10 0 0(0.47/0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0|4.37|0.03/0.02/0.04|0.36
Ligrs3(12 310 0 0(0.41/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|5.15|0.04(0.06/0.08|0.36
Ligpss |12 4 10 0 0(0.43]0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|5.40|0.04|0.06(0.10|0.36
Ligpss|[12 4 1.0 0 0(0.40(0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|5.70|0.03|0.06|0.08|0.36
Lisps6|12 3 10 0 0(0.74/0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0|6.27|0.92(0.08|0.11{0.37
Ligs7(12 4 10 0 0(0.73|0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0/5.93/0.90(0.07/0.12|0.38
Ligpsg|{12 4 10 0 0(0.77]0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0|6.03|0.92|0.08]0.12|0.36
Lisps0(12 3 10 0 0(0.52(0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|7.76(0.04|0.11(0.16|0.44
Lige0(12 4 1 0 0 0(0.52|10.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|7.73|0.04(0.12/0.18|0.46
Lig21|12 4 10 0 0(0.571/0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0|8.00|0.04(0.10|0.14|0.46
Lispe |12 3 10 0 0(1.08/0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0|7.31/0.04|0.04(0.10|0.39
Ligpe3|[12 4 10 0 0(1.08/0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0|7.03|0.04|0.04]0.09|0.40
Lig264|12 4 10 0 0(1.07|0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0/6.97|0.04(0.05/0.10|0.40

Benchmarks L4 (continued on the next page).
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¢ |d tsEvVvaA|lsor|IB I IR Ir Iv Ia Is Ic | Ins |Top |CA0|CA1|C2D
Ligres| 4 4020 0(0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.03/0.01/0.01|0.70
Ligpes| 4 402 0 0(0.08/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR|0.04|0.01/0.01/0.70
Lispe7| 4 4020 0(0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.04|0.01/0.01|0.70
Lispeg| 4 4 120 0(0.17/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.02|0.02|0.84
Ligpeo| 4 4120 0(0.18/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.04(0.02/0.02|0.84
Ligp0| 4 4120 0(0.16/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.04|0.07/0.01|0.85
Ligp7i|4 4110 0(0.18/0.10.00.00.00.00.00.00.0 ERR|0.04/0.07(0.01/0.33
Ligppn|4 4110 0(0.17/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.03|0.07/0.01|0.32
Ligp;3|4 4110 0(0.16/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR|0.03(0.01|0.01{0.32
Ligp4| 4 4100 0(0.15/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.00(0.01|0.32
Ligps| 4 4100 0(0.16/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.00(0.00|0.32
Ligp6| 4 4100 0(0.16/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| ERR|0.02|0.00(0.01|0.32
Ligpr7|5 4110 0(0.18/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.16|0.04(0.00|0.01{0.32
Ligpg|5 4110 0(0.17/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.16/0.03|0.07(0.01/0.33
Ligp9|5 4110 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.15/0.03|0.07(0.01/0.32
Ligps0| 6 4120 0(0.18/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.26|0.04(0.02/0.01|0.86
Ligpgi |6 4120 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.24/0.04|0.01/0.02|0.84
Ligpgp| 6 4120 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.24|0.03|0.01|0.02|0.84
Lispg3|7 4110 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0(0.24/0.04|0.00/0.02(0.70
Ligps4|7 4110 0(0.16/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.24|0.05/0.01/0.02|0.71
Ligpgs|7 4110 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.23/0.04|0.07(0.01/0.79
Ligpgs| 8 4 120 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.36|0.05|0.01]0.02|1.34
Ligpg7| 8 4120 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.39/0.04|0.07(0.02|1.32
Lispss|8 4120 0(0.19/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.38|0.04(0.02/0.02|1.34
Ligpgo|9 4110 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.32(/0.03|0.07(0.02/0.95
Ligpoo|9 4110 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.32|0.05|0.00/0.02|0.96
Ligpo1 |9 4110 0(0.20(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.32/0.05|0.07/0.02/0.95
Ligr92(10 4 1.2 0 0(0.21/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.47|0.04(0.02|0.02(1.82
Ligp3[10 4 12 0 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.48|0.04|0.01/0.02|1.81
Ligp04[10 4 12 0 0(0.20(0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.48|0.05|0.07(0.02|1.77
Ligps5(11 4 110 0(0.20/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.40|0.04(0.01|0.02{1.19
Ligpo|11 4 11 0 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.41)|0.05|0.01/0.02|1.34
Ligpo7|[11 4 11 0 0(0.18/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.44|0.04|0.01]0.02|1.18
Ligpog|12 4 1.2 0 0(0.19]0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.59(0.05|0.02(0.02|2.63
Ligpo9(12 4 12 0 0(0.20/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/0.60|0.04(0.01/0.02|2.20
Lig300[12 4 12 0 0(0.19/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0|0.61|0.03|0.02|0.02|2.26
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A.1. BENCHMARK RESULTS
€ |d 7 s Evallsor|IB I Ir Ir Iv Ia Is Ic |Ins|Topr|CA0|CA1|C2D
Lis,1 {90 176 16 0 0 1| ERR|ERR ERR ERR ERR ERR ERR ERR ERR| X| X | INT| INT| ERR
Benchmarks Ls.
€ |d 7 sEV A| Isor |IB Ic IR Ir Iv Ia Is Ic| Ins Tor CA0 CA1 C2p
L1 |9 3 4000 0.31]0.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0 2.31| 0.86 0.31 0.38 0.36
Ligp (17 7 400 0 1.8710.2 1.1 0.0 0.0 0.0 0.1 0.1 0.0(106.49 X 6.04 11.70 1.28
Lig3 |25 10 4 0 0 0| 15.80(0.5 13.6 0.0 0.0 0.0 0.3 0.4 0.0 INT X| 156.00| 106.00| 10.66
Ligs [33 14400 0| 89.29(1.9 83.8 0.0 0.0 0.0 0.8 0.7 0.0 INT X| 2120.00| 1320.00| 57.88
Ligs |41 18 4 0 0 0| 351.01(3.9 339.0 0.0 0.0 0.0 1.9 1.2 0.0 X X111200.00(12300.00 | 227.09
Lige |49 22 4 0 0 0[1143.58|7.9 1115.5 0.0 0.0 0.0 4.4 2.4 0.0 X X INT INT| 603.54
Lig7 (17 3 400 0 1.7910.1 0.9 0.0 0.0 0.0 0.0 0.2 0.0| 76.34 X 11.80 10.20 1.23
Ligg [33 7 400 0| 62.29/0.3 58.0 0.0 0.0 0.0 0.4 0.9 0.0 X INT| 2000.00| 2170.00| 45.76
Ligo [49 10 4 0 0 0| 803.51|0.8 788.4 0.0 0.0 0.0 2.4 2.1 0.0 X X INT INT| 469.25
Lis10|65 14 4 0 0 0 ERR | ERR ERR ERR ERR ERR ERR ERR ERR X1595.21 INT INT | 2505.38
Lig,11|81 18 40 0 0 INT | INT INT INT INT INT INT INT INT INT X INT INT ERR
Lig,12(97 22 4 0 0 0 INT | INT INT INT INT INT INT INT INT X X INT INT ERR
L1325 3 400 0] 12.01]0.1 9.6 0.0 0.0 0.0 0.7 1.0 0.0 X X INT INT ERR
Benchmarks L.
¢ |d 7 sEvaAa|llsor |[IB I I Ir Iv Ia Is Ic| Ins Top CAO0 CA1 C2p
Li7i |9 16 200 0| 0.28(0.1 0.0 0.0 0.0 0.0 0.00.00.0/ 2,08 0.15 0.06 0.10 0.42
Li7p|9 30 200 0| 0.31/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.57| 0.20 0.06 0.12 0.46
L7319 43 200 0| 0.34/0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 3.18| 0.24 0.08 0.14 0.51
L7419 56 200 0| 0.28/0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 3.66| 0.26 0.09 0.16 0.57
Ly75|9 70 200 0| 0.31|0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.23| 0.28 0.11 0.18 0.66
Li7g |9 16 6 00 0| 0.50(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 2.44| 1.04 0.38 0.48 0.42
L7719 30 600 0| 0.50(0.1 0.0 0.0 0.0 0.00.00.10.0/ 2.87| 1.33 0.51 0.63 0.46
L7839 43 600 0| 0.57|0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 3.51| 1.57 0.54 0.81 0.52
Li7o|9 56 6 00 0| 0.59(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| 3.94| 1.85 0.74 0.90 0.59
Li710/9 70 6 00 0| 0.62(6.17 0.0 0.0 0.0 0.0 0.0 0.1 0.0 4.60| 2.12 0.82 1.04 0.64
L7117 33 200 0| 1.98/0.2 1.0 0.0 0.1 0.0 0.2 0.1 0.0(102.57| 12.55 1.69 2.90 3.83
Li712|17 60 2 0 0 0| 2.37(6.2 1.1 0.0 0.0 0.0 0.3 0.1 0.0(151.90| 20.77 3.43 5.43 7.37
L7317 86 2 0 0 0| 3.04/6.2 1.3 0.6 0.2 0.0 0.5 0.1 0.0|206.64| 29.20 5.68 8.49| 10.23
Li7,14(17 113 2 0 0 0 INT|INT  INT INT INT INT INT INT INT|260.16| 38.17 8.68| 12.50| 14.27
Li7,15|17 140 2 0 0 0 INT|INT ~ INT INT INT INT INT INT INT|374.01| 47.25| 11.80| 16.80| 17.71
Li746|17 33 6 0 0 0| 2.45(6.2 1.0 0.0 0.1 0.0 0.2 0.2 0.0(108.97|132.87| 20.00| 18.90 3.75

Benchmarks L7 (continued on the next page).
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€ |d 7 sEvaA|llsor |[IB I I Ir Iv Ia Is Ic| Ins Tor CA0 CA1 C2p
Li7,17|17 60 6 0 0 0| 2.85(6.2 1.1 0.0 0.1 0.0 0.4 0.2 0.0(159.06|213.57| 34.20| 35.50 7.36
Li7,8|17 86 6 0 0 0| 3.61(6.2 1.3 0.0 0.2 0.0 0.5 0.3 0.0(211.97{301.29| 59.70| 64.50| 10.23
Li7,10|17 113 6 0 0 0 INT|INT  INT INT INT INT INT INT INT|260.70(387.83| 80.40| 93.80| 14.23
Li7,20|17 140 6 0 0 0 INT[INT ~ INT INT INT INT INT INT INT|318.76|468.95| 106.00| 108.00| 17.74
Li7p |17 16 2 0 0 0| 1.52(6.1 0.8 0.0 0.0 0.0 0.1 0.1 0.0| 51.78| 1.01 0.60 1.26 2.33
Li7» |17 30 200 0| 1.67(6.17 0.9 0.0 0.0 0.0 0.1 0.1 0.0| 61.90| 1.57 0.72 1.53 3.20
Li7p3(17 43 20 0 0| 1.87{0.1 ©.9 0.0 0.1 0.0 0.1 0.1 0.0| 76.47| 2.00 0.92 1.89 4.40
Li7,24|17 56 2 0 0 0 INT[INT ~ INT INT INT INT INT INT INT| 89.03| 2.46 1.06 2.16 6.47
Li725|17 70 2 0 0 0 INT[INT ~ INT INT INT INT INT INT INT[100.44| 2.94 1.26 2.60 7.60
Li72|17 16 6 0 0 0| 2.23(6.17 0.8 0.0 0.1 0.0 0.1 0.2 0.0| 63.53 X| 11.00| 21.00 2.49
L7717 30 6 0 0 0| 2.30(6.7 0.8 0.0 0.0 0.0 0.7 0.2 0.0| 66.58(595.12| 22.20| 25.40 3.50
Li728|17 43 6 0 0 0 2.59(6.1 0.9 0.0 0.1 0.0 0.1 0.3 0.0| 79.66 X| 31.10| 31.90 4.60
Li729(17 56 6 0 0 0 INT[INT ~ INT INT INT INT INT INT INT| 91.25 X| 36.40| 43.80 6.67
Li73 (17 70 6 0 0 0 INT|INT  INT INT INT INT INT INT INT|106.24 X| 46.40| 42.70 7.50
Li731(33 33 200 0| 54.4410.2 43.6 0.0 1.0 0.0 1.0 0.3 0.0 INT|154.33] 28.50| 68.50| 111.29
Li73|33 60 2 0 0 0| 63.70(6.3 54.4 0.0 1.9 0.0 1.2 0.3 0.0 INT|282.62| 62.30| 120.00| 181.95
Li733|33 8 2 0 0 0| 74.50(0.3 61.0 0.0 3.5 0.0 1.5 0.4 0.0 X1409.53| 106.00| 185.00| 251.79
Li734|33 113 2 0 0 0 INT|INT  INT INT INT INT INT INT INT X[543.52| 154.00| 256.00| 326.43
Li735(33 140 2 0 0 0 INT|INT  INT INT INT INT INT INT INT X X| 217.00| 344.00| 404.08
L7333 33 6 0 0 0| 58.05(0.2 48.8 0.0 1.1 0.0 1.0 0.9 0.0 X X|3370.00 INT| 12117
Li737|33 60 6 0 0 0| 66.29(0.3 54.5 0.0 2.0 0.0 1.2 1.0 0.0 X X INT INT| 180.65
Li733(33 8 6 00 0| 77.90(0.3 61.5 0.0 3.5 0.0 1.6 1.0 0.0 INT X INT INT| 252.22
Li7,39|33 113 6 0 0 0 INT[INT ~ INT INT INT INT INT INT INT X X INT INT| 326.28
Li7.40|33 140 6 0 0 0 INT[INT ~ INT INT INT INT INT INT INT INT X INT INT| 407.72
Li741|25 16 200 0| 9.73|6.17 7.8 0.0 0.2 0.0 0.2 0.1 0.0 X| 3.52 4.63 8.61| 18.22
Li74(25 30 200 0| 10.33/6.17 8.4 0.6 0.2 0.0 0.3 0.1 0.0 X| 5.38 5.021 10.10| 25.90
Li743|25 43 200 0| 11.87(6.17 9.0 0.0 0.4 0.0 0.3 0.2 0.0 Xl 7.13 5.741 11.60| 33.89
Li744(25 56 2 0 0 0| 11.87|0.17 9.4 0.0 0.4 0.0 0.3 0.2 0.0 X1 9.09 6.55| 13.70| 42.67
Li745(25 70 2.0 0 0 INT|INT  INT INT INT INT INT INT INT X1 11.36 7.461 15.90| 48.77
Li746(25 16 6 0 0 0| 11.46(0.1 7.9 0.0 0.2 0.0 0.2 0.5 0.0 X INT| 323.00| 353.00| 18.77
Li747|25 30 6 0 0 0 12.17(6.17 8.3 0.0 0.2 0.0 0.2 0.5 0.0 X INT| 499.00| 439.00| 24.80
Li743|25 43 6 0 0 0| 13.93|6.17 8.8 0.0 0.4 0.0 0.3 0.5 0.0 X X| 605.00| 733.00| 34.26
Li749|25 56 6 0 0 0| 14.16(0.7 9.2 0.0 0.4 0.0 0.3 0.7 0.0 X1411.80| 784.00| 908.00| 42.54
Li7,50|25 70 6 0 0 0 INT[INT ~ INT INT INT INT INT INT INT X X| 923.00| 892.00| 50.81
Li751|49 33 2 0 0 0{596.97(0.3 564.1 0.0 7.3 0.0 5.1 0.5 0.0 X X| 167.00| 495.00| 918.56
Li75,|49 60 2 0 0 0(662.72(06.3 613.1 0.0 15.8 0.0 4.8 0.5 0.0 X X| 325.00| 762.00|1384.76
Li753(49 7 2000 ERR|ERR  ERR ERR ERR ERR ERR ERR ERR X X| 538.00|1100.00|1861.54
Li7,54|49 113 2 0 0 0 ERR[ERR  ERR ERR ERR ERR ERR ERR ERR INT X| 786.00|1510.00 | 2355.65
Li755/49 7 600 0 ERR[ERR  ERR ERR ERR ERR ERR ERR ERR X X'|1040.00|1920.00|2849.34
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A.1. BENCHMARK RESULTS
€ |d = sEvaA|llsor |[IB I I Ir Iv Ia Is Ic| Ins Tor CA0 CA1 C2p
Li756|49 33 6 0 0 0(606.97(06.3 557.5 0.0 8.3 0.0 5.0 1.3 0.0 X X INT INT| 917.28
Li757|49 60 6 0 0 0(683.17(6.3 617.2 0.0 15.8 0.0 4.7 1.5 0.0 X X INT INT|1374.69
Li753|49 86 6 0 0 0 ERR|ERR  ERR ERR ERR ERR ERR ERR ERR X X INT INT | 1850.53
Li7,50(49 113 6 0 0 0 ERR|ERR ~ ERR ERR ERR ERR ERR ERR ERR INT X INT INT|[2347.76
Li760|49 7 60 0 0 ERR[ERR  ERR ERR ERR ERR ERR ERR ERR X X INT INT | 2861.47
Li761|33 16 2 0 0 0| 48.73|6.17 43.9 0.0 0.5 0.0 0.7 0.2 0.0 X| 9.44| 22.50| 39.40| 81.97
Li762(33 30 200 0| 51.82/16.7 46.4 0.6 0.7 0.0 0.8 0.2 0.0 X| 14.96| 23.90| 46.20| 120.22
Li763|33 43 200 0| 52.26(0.17 46.1 0.0 1.0 0.0 0.9 0.4 0.0 X| 20.64| 26.50| 49.90| 145.41
Li7,64(33 56 20 0 0 INT[INT ~ INT INT INT INT INT INT INT X| 26.62| 29.80| 57.40| 182.59
Li765|33 70 2 0 0 0 INT|INT  INT INT INT INT INT INT INT X X X X X

Benchmarks L.

A.1.3 Benchmarks on resultants

The curves R;; are the resultants in z of two surfaces of degree i, with coefficients of

bitsize 32 and 50% of nonzero coefficients. Each experiment is repeated five times, and

Jj reflects the experiment number.

€ |d = s E v A| Isor Is Ic IR Ir Iv Ia Is Ic |Ins| Tor | CA0 | CA1 |C2D
Ryp|16 56 4 6 0 0| 30.10| 23.8 2.3 0.0 0.0 0.0 2.6 0.4 0.0|INT|57.55| 16.00| 18.50 |PRIM
R4p|16 53 14 12 0 0| 32.07| 23.7 2.3 0.0 0.3 0.0 2.6 1.1 0.0 X|62.83| 17.00| 19.00 |PRIM
Ry3|16 44 4 6 0 0| 27.86| 21.9 2.3 0.0 0.1 0.0 2.1 0.5 0.0 X|50.53| 12.80| 14.70 |PRIM
Rys4|16 47 4 4 0 0| 28.02| 22.3 2.0 0.0 0.1 0.0 2.3 0.3 0.0| X|49.33| 12.70| 14.80 |PRIM
Rys|16 49 12 6 0 0| 29.14| 21.7 2.2 0.0 0.2 0.0 2.1 0.8 0.0|INT|52.78| 13.80| 16.10 |PRIM
Rsi|24 54 11 12 0 2|542.14|498.5 19.3 0.0 1.8 0.0 14.2 2.3 0.0| X X1245.00|266.00 | PRIM
Rs» |25 66 14 12 0 0]698.42/633.6 32.8 0.0 2.3 0.0 18.6 3.3 0.0 X X1553.00|597.00 | PRIM
Rs3|23 53 5 5 0 1(255.86(230.0 13.9 0.0 0.0 0.0 8.6 0.8 0.0 X X1154.00(168.00 | PRIM
Rs4|25 72 8 10 0 0]736.30|662.8 43.4 0.0 0.7 0.0 22.2 2.1 0.0| X X|656.00|702.00 | PRIM
Rss|25 60 10 12 0 1|727.56|665.2 32.5 0.0 2.0 0.0 19.1 2.3 0.0| X X 1456.00|492.00 | PRIM

Benchmarks of resultants.

A.1.4 Benchmarks on translated curves

The curves shown in this section are obtained as a product of one curve and one or more

of its vertical translates. The curves M; ; are the product of a random curve of degree
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i, with 32-bit coefficients and 50% of nonzero coefficients, and j of its vertical translates
(note that j may also be equal to zero). Each experiment is repeated five times, and the
experiment number is specified by «.

The curves L;; are the product of the curve L;; shown above and k of its vertical
translates.

The curves R; ; are the product of a resultant in z of two surfaces of degree i and j
respectively and k of its vertical translates. Each experiment is repeated five times, and

[ specifies the experiment number.

€ |d t s E v A| Isor Is Ic IR Ir Iv Ia Is Ic| Ins | Tor | CAO CA1 C2p
Myp,| 4 31 0 7 0 1| 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13| 0.08 0.13 0.13| MULT
Mypo| 4 32 0 4 00| 0.13] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10| 0.06 0.02 0.02| 0.32
M,os3|4 32 0 5 01| 0.18| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.17| 0.07 0.03 0.03| MULT
Myps| 4 32 1 2 00| 0.16| 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.16| 0.06 0.02 0.02| 0.33
Myps| 4 32 0 0 00| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| 0.04 0.00 0.01| 0.33
My |8 64 2 4 0 1| 0.8 0.3 0.0 0.0 0.0 0.0 0.3 0.1 0.0| 17.18| 0.4 0.58 0.67| MULT
My 1,8 65 2 4 00| 0.79| 0.3 0.0 0.0 0.0 0.6 0.2 0.1 0.0| 14.80| 0.67 0.48 0.67| 0.43
My, 3|8 65 0 0 0 0 0.68 0.3 0.10.0 0.0 0.0 0.2 0.0 0.0| 39.83| 0.33 0.11 0.12] 0.33
My 4|8 64 8 4 00| 0.8| 0.2 0.0 0.0 0.1 0.0 0.0 0.1 0.0 7.46| 1.06 0.76 0.90| 0.42
Myis|8 64 2 4 00| 1.14| 0.5 0.1 0.0 0.0 0.0 0.2 0.1 0.0 44.64| 0.92 0.65 0.83| 1.03
My 012 99 6 9 0 1| 495 1.9 ©.50.0 0.2 0.6 1.2 0.3 0.0/138.40 X 7.25 8.20| MULT
Myp0(|12 94 5 3 0 0 3.05 1.2 0.2 0.0 0.1 0.0 0.8 0.3 0.0(249.84 X 6.26 8.02| 0.94
Myp3|12 96 12 6 0 1| 4.94] 1.8 0.2 0.0 0.1 0.0 1.4 0.4 0.0(163.16(10.34 6.63 8.49| 0.61
Myr4|12 96 8 6 0 0| 3.58| 1.5 0.2 0.0 0.1 0.0 0.9 0.3 0.0{155.86| 9.71 5.46 6.58] 0.55
Mps(12 96 10 6 0 0| 3.95 1.2 0.2 0.0 0.3 0.6 0.7 0.5 0.0|234.62|14.60 6.64 7.600 1.16
M3,|16 129 6 0 0 0| 15.74| 9.1 1.4 0.0 0.2 0.0 3.9 0.3 0.0 X X| 88.10| 97.10| 0.44
M;3,|16 128 16 8 0 0| 21.81| 10.2 1.6 0.0 0.5 0.0 5.9 1.1 0.0 X X| 94.60| 106.00| 1.54
M,33|16 130 6 8 0 0| 19.00| 10.2 1.5 0.0 0.3 0.0 5.1 0.7 0.0 X X| 93.20| 106.00| 2.19
M;34|16 127 12 8 0 1| 20.89| 10.8 1.0 0.0 0.6 0.0 5.0 1.1 0.0 X X| 67.80| 71.60| MULT
M;35|16 129 26 16 0 0| 26.36| 10.1 3.3 0.0 0.9 0.0 5.1 2.4 0.0 X X| 81.50| 97.40| 1.44
Msp |5 32 0 5 0 1| ©.20 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ERR| 0.07 0.13 0.14| MULT
Msp,|5 32 0 4 02| 0.27 0.1 0.0 0.0 0.0 0.0 0.0 0.10.0| 0.26| 0.16 0.04 0.04| MULT
Msp3|5 32 0 2 00| 077 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.16| 0.06 0.02 0.03| 0.33
Msp4|5 32 0 2 00| 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.30| 0.06 0.02 0.02| 0.34
Msos|5 32 0 4 0 1| 0.19| 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0| 0.25| 0.09 0.03 0.04| MULT
Ms, ;|10 65 4 4 0 1| 2.41| 1.2 0.1 0.0 0.0 0.0 0.6 0.1 0.0 X X 1.82 1.89| MULT
Ms;,|10 65 6 8 0 0| 2.52| 1.2 0.2 0.0 0.0 0.0 0.5 0.2 0.0 X X 2.13 2.47| 2.88
Ms;3|10 64 6 12 0 0| 3.05( 1.4 0.2 0.0 0.1 0.0 0.4 0.4 0.0 X X 2.7 2.82| 11.55
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€ |d © s E v A| Isor Is Ic IR Ir Iv Ia Is Ic| Ins | Tor | CAO CA1 C2p
Ms; 4|10 65 4 8 0 0| 2.94 1.5 0.2 0.0 0.0 0.0 0.5 0.3 0.0 X X 2.26 2.841 8.43
Ms;5(10 62 2 8 0 0| 2.21| 1.1 0.2 0.0 0.0 0.0 0.4 0.2 0.0 X X 1.97 2.25] 8.49
Ms,,|15 95 23 6 0 0 9.75| 3.1 1.3 0.0 0.6 0.0 0.9 1.4 0.0 X X| 34.20| 38.70| 1.82
Ms;,(19 95 23 6 0 0 ERR| ERR ERR ERR ERR ERR ERR ERR ERR X X| 40.80| 48.00| 18.56
Ms,3|15 95 20 12 0 1| 14.90| 7.8 0.6 0.0 0.3 0.0 2.7 1.1 0.0 X X| 32.30| 37.00| MULT
Ms, 4|15 96 10 18 0 0| 13.98| 7.3 0.7 0.0 0.3 0.0 2.8 0.9 0.0 X X| 33.60| 33.20| 4.37
Ms;,s|15 97 16 18 0 0| 20.12| 11.2 6.9 0.6 0.5 0.0 3.2 1.5 0.0 X X| 46.50| 53.20| 11.34
Ms;3,(20 130 26 8 0 1| 86.11| 56.2 5.2 0.0 2.3 0.0 13.7 2.3 0.0 X X| 444.00| 475.00| MULT
Ms3,|20 128 18 12 0 1| 54.16| 35.8 3.9 0.0 0.7 0.0 7.8 1.8 0.0 X X| 307.00| 307.00| MULT
Ms33|20 132 18 12 0 0| 70.83| 40.3 14.7 0.0 1.3 0.0 8.0 2.0 0.0 X X| 291.00| 318.00| 3.53
Ms34(20 129 16 12 0 0| 77.35| 53.6 6.1 0.0 1.4 0.0 8.7 2.7 0.0 X X| 432.00| 515.00| 22.79
Ms35|20 130 16 12 0 0 ERR| ERR ERR ERR ERR ERR ERR ERR ERR X X| 562.00| 594.00| 12.78
Msp |6 32 0 3 0 1| ©0.30| 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 X X 0.04 0.05| MULT
Msop| 6 32 0 2 0 1| 0.40| 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 X X 0.13 0.14| MULT
Msos| 6 32 0 10 0 1| 0.44| 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.12 0.13| MULT
Msps| 6 32 1 3 0 0| 0.36| 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.06 0.07| 0.36
Msps|6 32 0 2 0 1| ©0.29] 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 X X 0.05 0.05| MULT
My, |12 65 6 12 0 0| 6.8 4.3 0.50.0 0.1 0.0 0.8 0.4 0.0 X X 6.42 6.17] 34.92
Mg (12 65 2 4 0 1| 7.53| 5.2 0.50.0 0.20.0 1.00.10.0 X X 5.95 6.79| MULT
M 3|12 64 0 8 0 1| 6.16| 4.2 0.5 0.0 0.0 0.0 1.0 0.2 0.0 X X 5.46 4.68| MULT
M1 4|12 66 3 6 0 1| 4.27| 2.7 0.3 0.0 0.0 0.0 0.7 0.2 0.0 X X 4.05 4,50 MULT
Ms, 5|12 65 3 6 0 1| 5.61| 3.9 0.3 0.0 0.0 0.0 0.9 0.2 0.0 X X 4.69 5.67] 6.25
Mgy, |18 97 18 18 0 0| 27.97| 17.0 1.5 0.0 0.9 0.0 3.3 1.8 0.0 X X| 87.50| 98.60| 21.59
Mgy, |18 100 6 12 0 0| 65.75| 49.7 4.8 0.0 0.8 0.0 7.1 1.1 0.0 X X| 161.00| 186.00|158.76
Ms>3|18 98 16 18 0 1| 62.36| 45.1 4.0 0.0 1.1 0.0 6.4 1.8 0.0 X X| 150.00| 166.00| 68.86
Mgr4(18 96 9 15 0 1| 51.05| 39.6 2.1 0.0 1.0 0.0 4.7 1.2 0.0 X X| 123.00| 88.30| MULT
Meo5|18 99 13 9 0 1| 40.42| 31.0 1.9 0.0 0.4 0.0 4.0 0.9 0.0 X X| 75.60| 90.40| 10.73
Mg |24 128 24 12 0 1 ERR| ERR ERR ERR ERR ERR ERR ERR ERR X X11560.00(1610.00| 63.34
M3, |24 128 24 12 0 1(276.69(219.8 20.7 0.0 2.7 0.0 20.9 3.6 0.0 X X11810.00|1780.00| MULT
M 33|24 130 30 32 0 1(224.57|160.2 17.0 0.0 4.3 0.0 23.3 6.6 0.0 X X|1460.00|1780.00| 69.07
Mg 34|24 129 20 24 0 0|189.43|130.6 18.5 0.0 6.7 0.0 19.4 4.6 0.0 X X11350.00|1320.00| 53.84
Me35|24 130 24 8 0 1(139.14]762.8 9.1 0.0 1.9 0.0 16.2 2.2 0.0 X X11230.00|1330.00| MULT
Mo |7 32 0 8 00| 0.40 1 0.10.0 0.0 0.0 0.0 0.10.0 X X 0.12 0.14| 0.39
M70|7 32 0 1 0 1| 0.8| 0.2 0.50.0 0.0 0.0 0.1 0.0 0.0 X X 0.23 0.22| MULT
M;p3|7 32 0 8 0 1| ©0.82| 0.3 0.10.0 0.0 0.0 0.1 0.1 0.0 X X 0.14 0.16| MULT
M;p4|7 32 0 5 00| 0.44 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 X X 0.11 0.11] 0.39
M;os|7 32 0 7 00| 0.65| 0.3 6.1 0.0 0.0 0.0 0.10.10.0 X X 0.12 0.12| 0.38
M;,,|14 65 6 8 0 0| 14.76| 10.6 1.1 0.0 0.1 0.0 1.6 0.4 0.0 X X| 16.60| 18.20]234.45
M;,,|14 64 2 4 0 0| 16.13| 12.3 1.3 0.0 0.1 0.0 1.7 0.2 0.0 X X| 18.20| 21.70|530.40
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€ |d t s E v A| Isor Is Ic IR Ir Iv Ia Is Ic| Ins | Tor | CAO CA1 C2p
My 3(14 64 4 8 0 1| 17.56| 13.7 1.1 0.0 0.2 0.0 1.8 0.4 0.0 X X| 14.90| 20.40| MULT
M;,4|14 63 8 6 0 1| 16.33| 11.8 0.9 0.0 0.1 0.0 2.0 0.4 0.0 X X| 17.80| 19.90| MULT
M; 5|14 64 4 8 0 2| 1417 9.7 0.9 0.0 0.6 0.6 1.6 0.3 0.0 X X| 15.10| 16.50| MULT
M;5,121 97 14 12 0 0(153.34|120.0 11.6 0.0 1.7 0.0 13.0 2.2 0.0 X X| 601.00| 543.00]610.35
M;5,]21 97 18 18 0 0|137.65(105.3 10.0 0.0 2.2 0.0 11.3 2.5 0.0 X X| 434.00| 428.00|356.27
M;53]21 98 8 12 0 1|154.27(124.4 10.3 0.0 1.5 0.0 12.7 1.4 0.0 X X| 559.00| 599.00|411.75
M;54]21 96 14 9 0 0(120.64| 97.0 8.0 0.0 1.0 0.6 8.5 2.0 0.0 X X| 531.00| 501.00|647.14
M;,5(21 97 12 18 0 1|149.76(117.8 10.2 0.0 2.2 0.0 12.7 2.0 0.0 X X| 500.00| 550.00| MULT
M;3,]28 127 30 16 0 0|826.84|687.8 62.6 0.0 6.7 0.0 43.4 7.2 0.0 X X INT INT | 452.55
M;3,|28 131 24 20 0 1[732.11|582.9 62.8 0.0 11.5 0.0 46.1 7.5 0.0 X X X X X
Benchmarks random with traslations.
€ |d © s EvaAa|llsor|IB I Ir Ir Iv Ia Is Ic |Ins|Tor| CA0 | CAl1 |C2p
Lig,|8 7 7 20 0| 0.47|0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0] X| X| 0.33| 0.41]0.33
Li>;|10 8 122 0 0| 1.14|0.7 0.1 0.0 0.0 0.0 0.7 0.3 0.0| X| X| 0.86| 1.36/0.35
Ly3,|12 10 21 2 0 0| 2.54/0.4 0.1 0.0 0.0 0.0 0.3 0.6 0.0| X| X| 3.88| 3.93)|0.40
Li4,|14 12 30 2 0 0| 6.34/0.4 0.8 0.0 0.4 0.0 0.8 1.2 0.0| X| X| 9.07| 9.27]|0.55
Lis:|16 14 43 2 0 0(13.33]|0.6 2.6 0.0 1.1 0.0 1.6 2.3 0.0 X| X| 27.00| 33.70|0.80
Lis1|18 16 56 2 0 0|28.88|1.2 8.0 0.0 3.6 0.0 3.3 3.9 0.0| X| X| 76.70| 79.80|1.41
Li7,(20 18 73 2 0 0| ERR|ERR ERR ERR ERR ERR ERR ERR ERR| X| X |290.00|303.00|2.41
Benchmarks L; with one traslation.
€ |d 7 s E v a| Isor | Is Ic Ir Ir Iv Ia Is Ic| INs Tor | CA0 | CA1 | C2p
L;;;|8 10 1 16 0 0| 0.74| 0.1 0.0 0.0 ©.0 0.0 0.1 0.2 0.0 4.42| 1.46| 0.92| 0.81| 0.35
L;»;|8 21 1 18 0 0| 0.93| 0.2 0.0 0.0 ©.0 0.0 0.1 0.3 0.0 6.47| 2.48| 0.83| 0.72| 0.39
L33,(|8 4 1 18 0 0| 1.5/ 0.2 0.0 0.0 0.0 0.0 0.2 0.3 0.0 10.76| 4.07| 1.24| 0.80| 0.49
L3418 67 1 18 0 0 1.18| 0.2 0.0 0.0 0.0 0.0 0.2 0.3 0.0| 16.64| 6.21| ©0.76| 0.86| 0.61
Lys;|8 101 1 18 0 0| 1.38| 0.3 0.1 0.0 0.0 0.0 0.3 0.3 0.0| 24.94| 9.62| 1.22| 1.44] 0.9
Ly, |10 8 6 27 0 0| 2.47| 0.4 ©.10.0 ©.10.0 0.2 0.7 0.0 32.08| 6.19| 2.42| 3.21| 0.50
L37,]10 22 6 30 0 0| 2.86| 0.4 ©0.10.0 ©.30.0 0.2 0.8 0.0 74.08| 10.46| 2.78| 2.90| 0.90
L33,]10 42 6 32 0 0| 3.46| 0.5 0.1 0.0 0.3 0.0 0.4 0.9 0.0|166.52| 22.38| 3.30| 3.66| 2.76
Lzo; |10 68 6 32 0 0| 4.03| 0.8 ©0.10.0 0.4 0.0 0.5 0.9 0.0(355.29| 37.63| 3.79| 4.06| 5.64
L3 10,110 101 6 32 0 0| 4.47| 1.0 0.10.0 0.40.0 0.7 0.9 0.0 X| 59.02( 4.26| 4.97| 11.69
Ly, |12 12 9 44 0 0| 6.04] 1.0 0.3 0.0 0.4 0.0 0.4 1.60.0 X| 33.44| 8.64| 9.29| 1.88
L3112 25 9 46 0 0 7.70| 1.2 0.4 0.0 0.50.0 0.6 1.8 0.0 X X X X X
Ly3,:|12 45 9 48 0 0| 9.05| 2.0 0.7 0.0 0.6 0.0 0.9 1.9 0.0 X1108.43| 10.80| 12.20| 22.40
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€ |d 7 s E Vv a| Isor | Is Ic Ir Ir Iv Ia Is Ic| Ins Tor | CA0 | CA1 | C2p
L3412 72 9 50 0 0| 10.47| 2.4 0.4 0.0 1.3 0.0 1.3 2.0 0.0 X1193.85( 13.40| 14.30| 70.37
Lss,1 |12 105 9 50 0 0| 12.61| 4.5 0.6 0.0 0.8 0.0 1.6 2.0 0.0 X1297.87| 15.80| 17.20|568.69
Ls 6,1 |14 15 16 64 0 0| 13.60| 2.4 0.7 0.0 1.4 0.0 1.0 3.3 0.0 X X X X X
L37, |14 28 16 66 0 0| 17.09| 4.3 1.40.0 1.6 0.0 1.3 3.50.0 X X| 23.40| 24.00|261.16
L3181 |14 48 16 68 0 0| 20.73| 5.1 2.6 0.0 2.0 0.0 1.9 3.6 0.0 X X| 27.00| 30.70|877.19
L3 9,114 75 16 70 0 0| 29.77| 9.6 5.0 0.0 2.6 0.0 2.7 3.9 0.0 X X| 34.00| 35.70 ERR
L32,1 (14 108 16 72 0 0| 30.23|11.3 1.6 0.0 3.2 0.0 3.7 4.1 0.0 X X| 45.50| 47.20| PRIM
L3pp, |16 14 25 88 0 0| 33.95| 7.4 3.7 0.0 3.40.0 2.0 6.6 0.0 X X| 39.90| 69.60 ERR
L3116 23 25 90 0 0| 45.67|14.1 6.0 0.0 4.7 0.0 2.5 6.6 0.0 X X| 55.10| 66.40 ERR
L33, |16 43 25 92 0 0| 55.88(16.17 11.2 0.0 5.5 0.0 3.5 6.8 0.0 X X| 67.10| 78.40 ERR
L3p41 |16 70 25 94 0 0| 82.29(29.9 20.0 6.0 7.1 0.0 4.9 7.1 0.7 X X| 84.50(103.00| PRIM
L3ps,1 |16 103 25 96 0 0(111.25/39.0 34.7 0.0 8.6 0.0 6.7 7.4 0.0 X X[116.00| 95.90| PRIM
L306,:(18 - 0 116 0 0| 93.35/28.4 14.1 0.0 12.4 0.6 4.1 12.5 0.1 X X1109.00(126.00 ERR
L3>, |18 - 0 118 0 0(109.60(31.1 21.8 0.0 14.8 0.0 5.2 12.8 0.0 X X[138.00(145.00| PRIM
L3pg1 (18 - 0 120 0 0|161.31{67.4 36.9 0.0 17.5 0.6 6.9 13.2 0.0 X X[168.00(179.00| PRIM
L3201 |18 - 0 122 0 0(207.54|71.3 65.6 0.0 21.8 0.0 9.2 13.8 0.0 X X1223.00(241.00| PRIM
L330,1 |18 - 0 124 0 0(304.00(83.0 107.3 0.0 54.3 0.0 12.4 15.0 0.0 X X1294.00(335.00| PRIM
L3310 (18 - 0 130 0 0]203.04|64.9 65.4 0.0 20.3 0.0 5.4 18.2 0.7 X X[177.00(171.00 C2d
Benchmarks L; with one traslation.
€ |d 7 s Eva|lsor|IB I Ir Ir Iv Ia Is Ic|Ins|Tor| CAO CA1 | C2p
Ly |8 2308 00| 0,38 0.10.00.00.00.0 0.00.10.0[ X X 0.41| 0.43] 0.34
Ly>;|8 43 0 8 0 0| 0.46| 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 X X 0.43| 0.51] 0.34
Ly3, (8 23 0 8 00| 0.40| 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.39| 0.44] 0.34
Lys1|8 43 0 8 00| 0.43| 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 X X 0.42| 0.48] ©0.35
Lysi |8 30 0 8 00| 0.43| 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 X X 0.40| 0.47] ©.37
Ly61|8 43 0 8 0 0| 0.43| 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 X X 0.44| 0.50| 0.34
Ly7,|12 45 0 8 0 0| 1.03| 0.2 0.0 0.0 0.0 0.0 0.3 0.2 0.0 X X 1.45| 2.03] 0.53
Lyg1 |12 85 0 8 0 0| 1.46| 0.4 0.0 0.0 0.0 0.0 0.5 0.2 0.0 X X 2.83| 2.94] 0.80
Lyo |12 45 0 8 0 0| 1.02| 0.2 0.0 0.0 0.0 0.0 0.3 0.2 0.0 X X 1.63| 2.22] ©.49
Lo, |12 8 0 8 0 0| 1.46| 0.4 0.0 0.0 0.0 0.0 0.5 0.2 0.0 X X 2.75| 2.98] 0.79
Lyji, |12 45 012 0 0| 1.24] 0.2 0.0 0.0 0.0 0.0 0.3 0.3 0.0| X X 2.08| 2.56| 0.49
Lyp1(12 8 0 8 0 0| 1.441 0.4 0.1 0.0 0.0 0.0 0.5 0.2 0.0 X X 2.54| 3.36] 0.76
L3116 73 0 4 0 0] 3.09] 1.4 0.2 0.0 0.0 6.0 1.1 0.2 0.0 X X| 10.30| 11.80| 3.98
Ly4, |16 140 0 8 0 0| 6.03] 2.9 0.2 0.0 0.0 0.0 2.2 0.3 0.0| X X| 26.20| 26.30| 13.15
Lyys,i|16 73 0 8 0 0 3.36] 1.4 0.1 0.0 0.6 6.0 1.1 0.4 0.0 X X| 10.80| 12.30| 3.40
Lyje,1(16 140 0 8 0 0| 4.83| 1.7 0.2 0.0 0.0 0.0 2.2 0.3 0.0 X X| 26.10| 25.70| 12.21
L7116 73 0 8 0 0| 2.81| 0.8 0.1 0.0 0.0 6.0 1.1 0.3 0.0 X X1 12.30| 12.50| 3.12
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¢ |d 7 s Evallsor| B I Ir Ir Iv Ia Is Ic |Ins|Tor| CA0 CA1 | C2p
Ly, |16 140 0 8 0 0| 4.86| 1.7 0.2 0.0 0.0 0.0 2.2 0.4 0.0 X| X| 25.40| 26.40| 11.41
Ly 10,120 108 0 4 0 0[11.42| 6.8 0.4 0.0 0.0 0.0 3.6 0.3 0.0 X| X| 73.60| 68.80| 43.54
L4201 (20 208 0 8 0 0(23.87(14.7 0.7 0.0 0.0 0.0 7.3 0.4 0.0 X| X| 189.00|172.00|196.87
L4pi,1(20 108 0 8 0 0(11.76| 6.8 0.4 0.0 0.0 0.0 3.5 0.5 0.0| X| X| 83.50| 72.80| 38.38
L42r,1 (20 208 0 8 0 0[23.68(14.6 0.7 0.0 0.0 0.0 7.2 6.5 0.0 X| X| 197.00|160.00|184.90
L4531 (20 108 0 8 0 0[11.62| 6.7 0.4 0.0 0.0 0.0 3.5 0.4 0.0 X| X| 79.80| 70.70| 34.88
L4p41(20 208 0 8 0 0(23.58(14.5 0.7 0.0 0.0 0.0 7.2 0.5 0.0 X| X| 197.00|171.00(173.92
Lyps, |24 150 0 4 0 0(41.03128.9 1.4 0.0 0.0 0.0 9.8 0.4 0.0| X| X| 459.00|310.00|356.39
Ly, |24 289 0 8 0 0/91.27(65.6 2.7 0.0 0.0 0.0 21.7 0.8 0.0| X| X|1060.00|871.00| PRIM
Ly>71|24 150 0 8 0 0(41.41(28.6 1.4 0.0 0.0 0.0 9.7 0.9 0.0 X| X| 433.00|336.00|320.12
Lypg1 (24289 0 8 0 0(90.70(65.2 2.4 0.0 0.0 0.0 21.0 0.8 0.0 X| X|1080.00|868.00| PRIM
L4201 |24 150 0 8 0 0[41.26128.5 1.4 0.0 0.0 0.0 9.6 0.9 0.0 X| X| 417.00|340.00{293.25
Ly 30,1 (24 289 0 8 0 0(89.72(64.7 2.4 0.0 0.0 0.0 20.7 0.8 0.0 X| X|1740.00|870.00| PRIM
Benchmarks L, with one traslation.
€ |d trseEvaA|llsor [IB Iec Ir Ir Iv Ia Is Ic |Ins|Tor| CA0 CA1 |C2p
Ly, |8 22400| 0.35/0.1 0.00.00.00.00.0 0100 X X 0.29 0.38(0.32
L;p1 (122240 0| 0.67(0.17 0.10.00.00.00.0 0.20.0 X X 1.37 1.8410.33
Ly3: |16 2240 0| 1.83/0.2 0.7 0.00.00.000 0.30.0] X| X 7.42 9.40(0.33
L74,120 2240 0| 3.93/10.2 2.10.00.00.00.1 0.70.0] X| X| 31.20f 29.30(0.35
Lys) 2422400 9.79/0.3 6.6 0.0 0.0 0.00.2 1.10.8] X| X| 174.00| 216.00|0.37
L761(28 2240 0| 25.92(0.4 20.6 0.0 0.0 0.0 0.4 2.1 0.0 X| X| 719.00| 740.00|0.46
Ly71 13222 4 0 0| 52.73|0.7 43.1 0.0 0.0 0.0 0.6 4.1 0.0| X| X|1360.00|1210.00|0.54
Lyg, |36 2240 0[115.31|0.5 98.2 0.0 0.0 0.0 1.4 6.6 0.0] X| X INT INT|0.77
Lo, |40 2 2 4 0 0(253.46|0.6 223.3 0.0 0.0 0.0 2.7 11.4 0.0 X| X X X[1.07
Ly0,1|44 2 2 4 0 0]431.71(1.0 386.3 0.0 3.3 0.0 4.6 18.5 0.0 X| X X X[11.78
Ly11,1|48 22 4 0 0(812.63(1.6 744.3 0.0 0.0 0.0 6.4 31.5 0.0 X| X X X12.26
Benchmarks L, with one traslation.
€ d tseEvaA|lsor|IB Iec Ir Ir Iv Ia Is Ic |INs|Tor| CA0 CA1 |C2p
Ly, |4 000 10| 0.06/0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X| X 0.00 0.00| ERR
Lgr; |6 000 1 0| 0.08/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X| X 0.00 0.00(0.32
Lg3, |3 000 10| 0.08/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0/ X| X 0.00 0.00(0.36
Lg41 |3 000 10| 0.09/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| X| X 0.00 0.00|0.32
Lgs; |3 000 10| 0.08/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| X| X 0.00 0.00|0.32
Lgsi |3 000 1 0| 0.08/0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0| X| X 0.00 0.00|0.32
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€ d tseEvaAallsor|IB I Ir Ir Iv Ia Is Ic |Ins|Tor| CA0 CA1 |C2p
Lg71 (3 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00|0.32
Lggi |3 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00|0.32
Lgo i |3 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00]0.33
Lg 0,1 |3 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00(0.32
Lg11,1 |3 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00|0.32
Lg 1213 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00|0.32
Lgi310 (3 000 0 0.08(0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 X X 0.00 0.00(0.32
Lgis1 |9 224 10| 0.44/0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.15 0.4110.33
Lg)s1 |13 22 4 10| 0.85(6.2 0.10.0 0.0 0.10.0 0.30.0| X X 1.46 1.60(0.34
Lg 6,1 (17 2 2 4 1 0| 2.53|0.2 0.7 0.0 0.0 0.7 0.0 1.0 0.0 X X 7.16 7.68(0.34
Lgy7,0 |21 2 2 41 0| 5.75(0.2 2.1 0.0 0.0 0.1 0.1 2.40.0| X X| 30.30| 28.60(0.35
Lg g1 (25 2 2 4 1 0(14.81(0.3 6.6 0.0 0.0 6.7 0.7 6.2 0.0 X X| 136.00| 138.00|0.39
L3191 |29 22 4 1 0(38.10(0.3 20.8 0.0 0.0 0.2 0.1 14.2 0.0 X X| 584.00| 590.00|0.47
Lgro,1 (33 224 1 0(79.33/0.8 43.5 0.0 0.0 0.2 0.1 30.6 0.0 X X ERR ERR X
Lgpii |9 22410 0.45(0.2 0.0 0.0 0.0 0.1 0.0 0.10.0| X X 0.30 0.36(0.32
Ly (13224 10| 0.88(0.2 0.1 0.0 0.0 0.170.7 0.30.0 X X 1.46 1.83(0.34
Lgr31 (17 2 2 4 1 0| 2.5310.2 0.7 0.0 0.0 0.7 0.7 0.9 0.0 X X 7.17 9.7410.34
Lgos1 (21 2 2 4 1 0] 5.80(0.3 2.1 0.0 0.0 0.7 0.7 2.40.0[ X X| 21.70| 41.70|0.36
Lgps, |25 2 2 41 0[15.01(0.3 6.6 0.0 0.0 0.1 0.2 6.2 0.0| X X| 86.30| 162.00(0.41
Lgoe1 (29 2 2 4 1 0(37.92(0.4 20.6 0.0 0.0 0.7 0.2 14.2 0.0| X X| 784.00| 735.00|0.48
Lgr7,1 (33 224 1 0(79.17]0.8 43.5 0.0 0.0 0.2 0.3 30.3 0.0| X X ERR ERR|0.57
Lgorsi |9 224 10| 0.48(0.1 0.0 0.0 0.0 0.0 0.7 0.1 0.0 X X 0.29 0.37]0.33
Lgoo1 (13224 10| 1.01(0.2 0.1 0.0 0.0 6.7 0.7 0.3 0.0 X X 1.76 1.86(0.34
Lg30,1 |17 2 2 4 1 0| 2.68/0.3 0.7 0.0 0.0 0.1 0.2 0.9 0.0| X X 7.18 8.31]0.35
Lgsi,1 (21224 10| 6.11(0.3 2.1 0.0 0.0 0.7 0.3 2.4 0.0 X X| 30.80| 46.00|0.38
Ly, |25 2241 0(15.09(0.3 6.6 0.0 0.0 0.1 0.5 6.1 0.0| X X| 135.00| 183.00(0.42
Lg33,1 (29 2 2 4 1 0(38.64(0.4 20.7 0.0 0.0 0.2 0.6 14.5 0.0 X X| 791.00| 595.00|0.54
Lgs41 33224 1 0(79.31(0.8 43.1 0.0 0.0 0.2 0.8 30.4 0.0 X X ERR ERR[0.65
Lgssi |9 224 10| 0.45(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.46 0.38(0.32
Lgss, |13 22 4 1 0| 0.80(0.2 0.1 0.0 0.0 0.1 0.1 0.2 0.0| X X 1.34 1.5910.34
Lg37,1 (17 2 2 4 1 0| 2.5210.2 0.7 0.0 0.0 0.7 0.0 1.0 0.0 X X 6.78 7.9210.34
Lg3si (21 2 2 4 1 0| 5.82(0.2 2.1 0.0 0.0 0.7 0.0 2.4 0.0 X X| 33.80| 42.00]0.35
Lg301 (25 2 2 4 1 0[14.84/0.3 6.6 0.0 0.0 0.7 0.7 6.2 0.0 X X| 198.00| 182.00|0.58
Lg 4,1 |29 2 2 4 1 0(37.88(0.3 20.7 0.0 0.0 0.2 0.1 14.1 0.0| X X| 784.00| 670.00|0.46
Lga1,1 (33 224 1 0(78.54/0.8 43.2 0.0 0.0 0.2 0.7 30.2 0.0 X X ERR ERR[0.56
Lga1 |9 224 10| 0.46(0.2 0.0 0.0 0.0 0.7 0.0 0.1 0.0 X X 0.30 0.40|0.33
Lgu31 (132 2 4 1 0] 0.92(0.2 0.1 0.0 0.0 0.7 0.7 0.3 0.0 X X 1.43 1.83]0.33
Lgas1 (17 2 2 4 1 0| 2.550.2 0.7 0.0 0.0 6.7 0.7 0.9 0.0 X X 4.92 7.4210.34
Lgusi (21 2 2 4 1 0| 5.89(0.3 2.1 0.0 0.0 0.7 0.7 2.4 0.0 X X| 43.00| 38.10]0.37
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€ d tseEvaAllsor|IB I Ir Ir Iv Ia Is Ic |Ins|Tor| CA0 CA1 |C2p
Lg 6,1 (25 2 2 4 1 0(15.06(0.3 6.6 0.0 0.0 0.7 0.2 6.2 0.0 X X| 116.00| 182.00|0.40
Lgu7,1 (29 2 2 4 1 0(37.84]0.4 20.6 0.0 0.0 0.2 0.3 14.0 0.0 X X| 300.00| 373.00(0.51
Lgag, |33 2 2 41 0(80.37(0.8 44.3 0.0 0.0 0.2 0.3 30.6 0.0| X X ERR|1150.00|0.60
Ly, |9 224 10| 0.43(0.1 0.0 0.0 0.0 0.0 0.7 0.1 0.0| X X 0.47 0.38(0.33
Lgson (1322 4 1 0] 0.98(0.2 0.1 0.0 0.0 0.7 0.2 0.3 0.0 X X 1.46 1.61]0.35
Lgsi,i (17 2 2 4 1 0| 2.66(0.2 0.7 0.0 0.0 6.7 0.3 0.9 0.0| X X 6.76 8.90|0.35
Lgsp1 |21 224 10| 6.04/0.2 2.10.00.00.104 2.40.0 X X| 44.50| 42.40|0.40
Lgs3,i (25 2 2 4 1 0(15.16(0.3 6.6 0.0 0.0 6.7 0.5 6.1 0.0 X X| 135.00| 138.00(0.41
Lgsan (29 2 2 4 1 0(38.14]0.3 20.6 0.0 0.0 0.2 0.6 14.1 0.0 X X| 617.00| 672.00|0.54
Lgss,i (33 224 1 0(80.14]0.8 43.1 0.0 0.0 0.2 0.8 31.3 0.0 X X ERR ERR|0.62
Lgss, |9 224 10| 0.46(0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0| X X 0.34 0.36(0.32
Lgs7,1 (1322 4 1 0| 0.84/0.2 0.1 0.0 0.0 6.7 0.0 0.2 0.0 X X 1.20 1.8210.33
Lgsg1 |17 2 2 4 1 0| 2.49/0.2 0.7 0.0 0.0 0.1 0.0 0.9 0.0 X X 7.27 9.21(0.34
Lgso; |21 224 10| 5.86(0.2 2.10.00.00.10.0 2.50.0] X X| 30.70| 28.80(0.35
Lgeo,1 |25 2 2 4 1 0(14.85/0.3 6.6 0.0 0.0 0.1 0.7 6.2 0.0 X X| 135.00| 111.00|0.38
Lgei,1 (29 2 2 4 1 0(37.77]0.3 20.7 0.0 0.0 0.2 0.7 14.0 0.0 X X| 776.00| 812.00|0.47
Lger,i (33 2 2 4 1 0(78.96(0.8 43.4 0.0 0.0 0.2 0.1 30.4 0.0 X X11350.00 ERR|0.55
Lge3 |9 224 10| 0.47(0.2 0.0 0.0 0.0 0.1 0.0 0.1 0.0| X X 0.33 0.35]0.33
Lges |13 2 2 4 1 0| 0.90(0.2 0.1 0.0 0.0 0.1 0.7 0.3 0.0| X X 1.36 1.7610.33
Lges, (17 2 2 4 1 0| 2.5210.2 0.7 0.0 0.0 6.7 0.7 0.9 0.0 X X 7.55 8.82(0.34
Lgee,i (21 2 2 4 1 0] 5.85(0.3 2.1 0.0 0.0 6.7 0.1 2.4 0.0| X X| 33.90| 52.30|0.36
Lge7,1 1252 2 4 1 0(15.09/0.3 6.6 0.0 0.0 0.1 0.2 6.2 0.0 X X| 156.00| 228.00|0.40
Lges,1 (29 2 2 4 1 0(38.11(0.4 20.7 0.0 0.0 0.2 0.3 14.2 0.0| X X| 591.00| 914.00|0.48
Lgeo,1 (33 2 2 4 1 0(79.39(0.8 43.4 0.0 0.0 0.2 0.3 30.4 0.0 X X ERR ERR[0.58
Lg701 |9 224 10| 0.48{0.1 0.0 0.0 0.0 0.0 0.7 0.1 0.0 X X 0.16 0.21]0.33
Lg71,0 |13 224 10| 1.02(0.2 0.1 0.0 0.0 0.10.17 0.30.0| X X 1.20 1.95(0.35
Lg7p,1 (17 2 2 4 1 0| 2.7210.2 0.7 0.0 0.0 6.7 0.3 1.0 0.0 X X 6.17 9.78|0.35
Lg731021 224 10| 6.12/10.3 2.1 0.0 0.0 0.1 0.4 2.50.0| X X| 30.80| 38.40|0.39
Lg741 25 2 2 4 1 0(15.32(0.4 6.6 0.0 0.0 0.1 0.5 6.2 0.0 X X| 111.00| 244.00|0.44
Lg7s,1 129 2 2 4 1 0(38.24|0.4 20.6 0.0 0.0 0.2 0.6 14.2 0.0| X X| 731.00| 377.00(0.52
Lg 6,1 (33 2 2 4 1 0(79.52(0.7 43.0 0.0 0.0 0.2 0.8 30.7 0.0 X X ERR ERR | 0.64
Lg77,1 (10 2 4 4 0 0| 0.66(0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.70 0.80(0.34
Lg7g, |14 2 4 4 0 0| 1.2210.2 0.3 0.0 0.0 0.0 0.0 0.3 0.0| X X 2.31 3.13]0.35
Ly, |18 2 4 4 0 0| 2.7110.3 1.2 0.0 0.0 0.0 0.0 0.4 0.0| X X 9.66| 13.20(0.36
Lggo,1 (22 2 4 4 0 0] 6.05/0.4 3.3 0.0 0.30.00.0 0.80.0 X X| 88.40| 91.00|0.37
Lggi,i [26 2 4 4 0 0(13.8110.5 9.7 0.0 0.0 0.0 0.0 1.3 0.0| X X| 347.00| 400.00|0.41
Lggr 1 |10 2 4 4 0 0| 0.64/0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.70 0.90(0.34
Lggsi (14 2 4 4 0 0| 1.26(0.2 0.2 0.0 0.0 0.0 0.7 0.3 0.0 X X 3.15 3.76(0.34
Lggsa1 (18 2 4 4 0 0] 2.82(0.3 1.2 0.0 0.0 6.0 0.7 0.4 0.0 X X 9.86| 20.60(0.37
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€ d sEvaA|llsor|IB Ic IR Ir Iv Ia Is Ic |Ins|Tor| CAO0 CA1 |C2p
Lggsi (22 2 4 4 0 0] 6.2610.5 3.4 0.0 0.3 0.0 0.7 0.8 0.0 X X| 52.10| 98.00|0.36
Lgge1 [26 2 4 4 0 0(13.9210.5 9.7 0.0 0.0 0.0 0.2 1.3 0.0 X X| 157.00| 370.00|0.41
Lgg71 (10 2 4 4 0 0| 0.66(0.2 0.0 0.0 0.0 0.0 0.7 0.1 0.0 X X 0.39 0.8410.33
Lgsgg, |14 2 4 4 0 0| 1.36(0.2 0.2 0.0 0.0 0.0 0.7 0.3 0.0| X X 2.99 3.53(0.36
Lggo1 (18 2 4 4 0 0| 2.94/0.3 1.2 0.0 0.0 0.0 0.2 0.4 0.0| X X 9.67| 13.10(90.36
Lgoo,1 (22 2 4 4 0 0] 6.43]0.5 3.4 0.0 0.3 0.0 0.3 0.8 0.0 X X| 100.00| 98.10|0.40
Lgor, |26 2 4 4 0 0[14.19]10.5 9.7 0.0 0.0 0.0 0.5 1.4 0.0| X X| 217.00| 338.00|0.44
Lgoy,1 (10 2 4 4 0 0| 0.64{0.3 0.1 0.0 0.0 0.0 0.0 0.1 0.0 X X 0.60 0.85(0.33
Lgo31 |14 2 4 4 0 0| 1.23/6.2 0.2 0.0 0.0 0.0 0.0 0.3 0.0| X X 2.99 4.2910.34
Lgos1 (18 2 4 4 0 0| 2.73|0.3 1.2 0.0 0.0 0.0 0.0 0.4 0.0| X X| 13.70| 16.40|0.34
Lgos, |22 2 4 4 0 0| 6.12(0.4 3.4 0.0 0.3 0.0 0.0 0.8 0.0| X X| 87.30| 91.10]0.37
Lgoe,1 [26 2 4 4 0 0(13.93]0.5 9.8 0.0 0.0 0.0 0.0 1.3 0.0| X X| 431.00| 428.00|0.40
Lgo7,1 |10 2 4 4 0 0| 0.66(0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0| X X 0.72 0.88(0.33
Lgogi (14 2 4 4 0 0| 1.2410.2 0.2 0.0 0.0 0.0 0.7 0.3 0.0 X X 3.76 3.69(0.35
Lgoo, |18 2 4 4 0 0| 2.82(0.3 1.2 0.0 0.0 0.0 0.7 0.4 0.0| X X| 13.70| 22.50(0.36
Lg 100,122 2 440 0| 6.26/0.4 3.40.00.30.00.1 0.820.0| X X| 76.80| 91.60|0.38
Lg 01,1126 2 4 4 0 0(13.94|0.5 9.7 0.0 0.0 0.0 0.2 1.3 0.0| X X| 324.00| 398.00|0.42
Lg 02,1110 2 4 4 0 0| 0.69(0.2 0.1 0.0 0.0 0.0 0.7 0.1 0.0| X X 0.70 1.03(0.34
Lg 03,1 |14 2 4 4 0 0| 1.38(0.2 0.2 0.0 0.0 0.0 0.7 0.3 0.0| X X 2.81 3.53(0.36
Lg 104118 2 4 4 0 0| 2.96/0.3 1.2 0.0 0.0 0.0 0.2 0.4 0.0| X X 9.71] 13.20(0.38
Lg 105,122 2 4 40 0| 6.40/0.5 3.3 0.0 0.3 0.0 0.4 0.80.0| X X| 87.90| 95.20(0.41
Lg 106,1 |26 2 4 4 0 0(14.17|0.5 9.7 0.0 0.0 0.0 0.5 1.4 0.0| X X| 334.00| 200.00|0.46
Lg 107,110 2 4 4 0 0| 0.60(0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0| X X 1.02 0.83]0.33
Lg08,1|14 2 4 4 0 0| 1.20/10.2 0.2 0.0 0.0 0.0 0.0 0.3 0.0| X X 3.05 3.75(0.34
Lg 100,118 2 4 4 0 0 2.69(0.3 1.2 0.0 0.0 0.0 0.0 0.4 0.0| X X| 11.00| 17.30]0.35
Lg 10,1122 2 440 0| 6.09/0.5 3.3 0.00.30.00.0 0.80.0| X X| 81.70| 74.80(0.37
Lg 11,1126 2 4 4 0 0(13.87|0.5 9.8 0.0 0.0 0.0 0.0 1.3 0.0| X X| 285.00| 335.00(0.41
Lg 112,110 2 4 4 0 0| 0.67/0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0| X X 0.66 1.06(0.34
Lg 13, |14 2 4 4 0 0 1.30(0.2 0.2 0.0 0.0 0.0 0.1 0.3 0.0| X X 2.69 3.5110.34
Lg 14,118 2 440 0| 2.81(0.3 1.2 0.0 0.0 0.0 0.1 0.4 0.0| X X| 14.70| 13.10(0.36
Lg 115,122 2 440 0| 6.23/0.5 3.40.00.30.00.1 0.820.0| X X| 60.20| 65.40]0.39
Lg 116,126 2 4 4 0 0(13.97|0.5 9.7 0.0 0.0 0.0 0.2 1.3 0.0| X X| 208.00| 336.00|0.43
Lg 17,1110 2 4 4 0 0| 0.72(0.2 0.1 0.0 0.0 0.0 0.7 0.1 0.0| X X 0.72 0.5210.34
Lg s, |14 2 4 4 0 0| 1.40(0.3 0.2 0.0 0.0 0.0 0.2 0.3 0.0| X X 3.06 4.00)0.35
Lg 110,118 2 4 4 0 0| 2.90|0.3 1.2 0.0 0.0 0.0 0.2 0.4 0.0| X X| 12.90| 17.50|0.38
Lg120,1]22 2 440 0| 6.40/0.4 3.40.00.30.004 0.820.0| X X| 67.90| 97.60(0.41
Lg 21,1126 2 4 4 0 0(14.29/0.5 9.8 0.0 0.0 0.0 0.5 1.4 0.0| X X| 349.00| 325.00(0.47
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€ |d © s E v A| Isor I8 Ic I Ir Iv Ia Is Ic |Ins|Tor|CA0|CA1| C2D
Loy |8 3 2 400 ERR| ERR  ERR ERR ERR ERR ERR  ERR ERR| X X X X| 0.33
Lyr |12 5 6 8 00| 1.00f 0.1 0.0 0.0 0.0 0.0 0.0 0.30.0] X X X X| 0.37
L3 |16 7 16 8 0 0| 2.90| ©.3 0.10.0 0.10.0 0.1 1.00.0| X X X X| 0.40
Lo4y (20 8 10 8 0 0 3.66( 0.5 0.40.0 0.10.00.1 1.20.0 X X X X| 0.59
Losy |24 17 20 24 0 0| 16.42| ©.6 1.50.0 1.0 0.0 0.4 6.1 0.0| X X X X| 0.63
Logy |28 19 14 16 0 0| 18.79| ©.9 3.5 0.0 1.1 0.0 0.8 5.2 0.0| X X X X| 3.67
Lo7, |32 14 40 24 0 0| 70.78| 4.3 8.7 0.0 4.50.0 0.9 22.8 0.0 X X X X| 1.46
Log, |36 16 18 16 0 0| 74.09| 6.5 16.4 0.0 3.9 0.0 1.4 23.1 0.0| X X X X121.27
Loo |40 27 44 40 0 0(223.68| 13.3 37.6 0.0 20.2 0.0 4.3 62.9 0.0| X X X X| ERR
Lo 10,1 |44 29 22 24 0 0(241.63| 17.0 72.8 0.0 19.3 0.0 6.2 56.5 0.0 X X X X| ERR
Lo 1,1 |44 29 20 24 0 0|787.08|173.9 332.8 0.0 33.3 0.0 9.3 102.5 0.0| X X X X127.34
Benchmarks Ly with one traslation.
€ d v s Evallsor |[IB Iec Ir Ir Iv 1Ia Is Ic| Ins | Tor | CAO CA1 |C2p
Lig,11 6 6 4 00| ©0.52/0.17 ©0.00.00.000 0.0 0.10.0] 2.24] 0.5 0.36 0.43]0.32
L1 |12 6 4 4 0 0| 0.78(0.2 0.1 0.0 0.00.0 0.6 0.20.0| 9.70| 3.00 0.98 1.2010.33
L3, |12 10 10 4 0 0| 1.83|0.3 0.2 0.0 0.1 0.0 0.1 0.5 0.0| 25.17| 8.46 2.32 2.7210.36
Lo, (16 12 4 4 0 0| 3.60(0.4 1.1 0.0 0.0 0.0 0.2 0.9 0.0| 85.22(52.14 7.56] 10.50(0.34
Lips, |16 10 6 4 0 0| 2.45/0.2 0.5 0.0 0.0 0.0 0.1 0.7 0.0| 64.64|36.47 5.48 6.35(0.34
Liog,1 |16 14 8 16 0 0| 5.09(0.4 1.1 0.0 0.0 0.0 0.2 1.5 0.0|145.31|84.01| 11.50| 14.50|0.36
Lio7,1 (20 12 4 4 0 0| 5.47|0.6 1.8 0.0 0.0 0.0 0.3 1.6 0.0|373.73 X| 25.80| 20.90|0.36
Lipg,1 [20 10 6 4 0 0| 3.76(0.5 ©.9 0.0 0.0 0.0 0.2 1.1 0.0{236.77 X X X10.36
Ligo1 |20 14 8 16 0 0| 9.42(0.5 2.1 0.0 0.2 0.0 0.3 2.8 0.0| 0.00( 0.00 27.20| 32.20/0.40
Lio,10,1 |20 19 10 20 0 0| 15.90(0.7 4.4 0.6 0.2 0.0 0.5 4.5 0.0| 0.00| 0.00| 86.90| 92.90|0.72
Lo, 11,1 |24 19 4 0 0| 29.86|1.0 10.1 0.0 0.9 0.0 1.0 13.6 0.0 X X| 136.00| 322.00|0.49
Lip,12,1 |24 21 6 4 0 0| 30.34{1.3 11.5 0.0 0.0 0.0 1.0 10.5 0.0 X X| 290.00| 295.00|0.53
Lig13,1 |24 14 8 12 0 0| 13.48/0.9 3.8 0.0 0.2 0.6 0.5 3.9 0.0 X X| 62.80| 116.00|0.55
Lio,14,1 |24 19 10 20 0 0| 26.12(0.8 8.1 0.0 0.3 0.0 ©.8 7.2 0.0 X X| 139.00| 143.00(0.92
Lio,15,1 |24 25 12 24 0 0| 39.49/1.3 15.0 0.0 0.5 0.0 1.1 9.4 0.0 X X| 336.00| 295.00|1.09
Lio6,1 |28 19 4 4 0 0| 50.7412.7 19.1 0.0 0.0 0.0 1.3 22.5 0.0 X X| 459.00| 506.00|0.59
Lig17,1|28 21 6 4 0 0| 51.27(2.6 22.3 0.0 0.0 0.6 1.4 18.2 0.0 X X| 424.00| 630.00|0.68
Lio,18,1 |28 14 8 12 0 0| 21.01(1.9 7.1 0.0 0.2 6.0 0.6 5.7 0.0 X X| 115.00| 180.00|0.70
Lio,19,128 19 10 20 0 0| 41.22|1.8 15.9 0.0 0.4 0.0 1.0 11.4 0.0 X X| 365.00| 704.00|1.05
Lig20,1 |28 25 12 24 0 0| 69.20(1.9 28.7 0.0 0.5 0.6 1.5 15.4 0.0 X X| 553.00| 942.00|1.36
Liop1,1 {28 31 14 28 0 0[118.96(3.0 48.8 0.0 1.6 0.0 2.3 23.5 0.0 X X|2080.00|2330.00(1.72
Lip2,1|32 26 4 4 0 0|185.4513.9 62.8 0.0 0.7 0.0 3.6 103.1 0.0 X X INT|1780.00|1.02
Lipp3,1(32 21 6 4 0 0| 74.50/2.9 31.8 0.0 0.5 0.0 1.8 28.5 0.0 X X|1460.00|1070.00|0.78
Ligp4,1 |32 31 8 12 0 0|183.35(4.5 84.1 0.0 0.9 0.0 8.5 49.7 0.0 X X X X11.52

168

Benchmarks L, with one traslation (continued on the next page).




A.1. BENCHMARK RESULTS
4 d s Evallsor |IB Iec Ir Ir Iv Ia Is Ic| Ins | Tor | CAO CA1 |C2p
Ligps,1 (32 19 10 20 0 0| 60.24|2.3 22.5 0.0 0.4 0.0 2.6 19.2 0.0 X X X X|1.20
Lioe,1 (32 25 12 24 0 0[104.23|3.5 42.3 0.0 0.6 6.0 4.3 23.1 0.0 X X X X[1.61
Lipn7,1 132 31 14 28 0 0[184.68(2.6 73.4 0.0 2.1 6.0 6.7 33.4 0.0 X X X X[2.34
Ligps, |32 31 8 32 0 0/336.27(4.2 119.9 0.0 3.6 0.0 9.8 75.6 0.0 X X X X[3.74
Liopo,1 |36 26 4 4 0 0/292.76|6.8 102.0 0.0 1.1 0.0 9.8 159.3 0.0 X X X X[1.10
Lio30,1 (36 33 6 4 0 0[360.93(5.3 170.7 0.0 1.5 0.0 14.7 125.5 0.0 X X X X[1.52
Lioa1,1 |36 33 8 12 0 0|282.76(7.7 132.9 0.6 1.2 0.0 11.1 75.1 0.0 X X X X[1.63
Lio,1(36 19 10 20 0 0| 87.83(2.8 35.0 0.0 0.5 0.0 3.4 29.1 0.0 X X X X[1.11
Lio33,1 |36 25 12 24 0 0159.76|6.2 67.4 0.0 0.9 0.0 5.7 34.9 0.0 X X X X[1.68
Benchmarks L, with one traslation.
€ d v s EvaAallsor|IB I Ir Ir Iv Ia Is Ic |Ins|Tor| CAO | CA1 | C2p
Rys., |14 37 14 16 0 1| 9.52| 4.7 0.6 0.0 0.5 0.6 0.5 1.0 0.0 X| X| 17.60| 14.58| MULT
R33,1(18 73 12 16 0 0(32.23|22.1 2.7 0.0 0.3 0.0 2.3 1.7 0.0 X| X|129.00|142.00|178.38
R3313|18 65 14 12 0 1[26.02(17.9 1.7 0.0 0.9 0.0 1.8 1.0 0.0 X| X| 69.50| 92.20| MULT
R3314(18 78 10 12 0 036.23|25.2 4.3 0.0 0.3 0.0 2.4 1.3 0.0 X| X|143.00|163.00|172.57
R3315(18 - - - 0 0| ERR| ERR ERR ERR ERR ERR ERR ERR ERR| X| X|108.00|120.00|134.50

Benchmarks of resultants of degree-3 surfaces with one translation.

€ d 7 s E v aA| Isor Is Ic Ir Ir Iv Ia Is Ic |Ins|Tor| CAO0 | CA1 |C2D
R3411(24 91 10 12 0 0(268.30(221.8 25.0 0.0 3.9 0.0 9.0 2.5 0.0| X X INT INT | PRIM
R3412(24 96 14 8 0 0]268.16(223.7 25.0 0.0 1.7 0.0 9.7 2.4 0.0 X X INT INT | PRIM
R341,3(24 100 18 20 0 0]280.86(224.06 25.0 0.0 6.2 0.0 9.3 4.9 0.0| X X INT INT [ PRIM
R3414(24 87 14 16 0 0(263.06(217.4 24.8 0.0 1.8 0.0 8.5 3.1 0.0| X X INT INT | PRIM
R341,5(22 66 20 12 0 0(163.91(134.0 13.8 0.0 1.4 0.0 4.5 3.0 0.0| X X1613.00|508.00 | PRIM

Benchmarks of resultants of degree-3 and -4 surfaces with one translation.

A.1.5 Benchmarks on symmetrized random polynomials

The curves on this section are obtained as Si,j(X, y) = f2(x,y) + f*(x, —y), where fis a

random polynomial of degree i.
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€ |d 7 s Ev A| Isor Is Ic Ir Ir Iv Ia Is Ic|Ins|Tor| CA0 | CA1 | C2D
S10,1/20 65 2 0 0 0| 35.15| 24.5 9.0 0.0 0.0 0.0 1.0 0.1 0.0 X X1163.00(222.00|24.59
S102/20 64 6 0 0 0| 48.15 22.8 22.8 6.0 0.0 0.0 1.2 0.3 0.0 X X1187.00(223.00| PRIM
S103/20 65 8 0 0 0| 34.76| 23.4 8.6 0.0 0.0 0.0 1.1 0.5 0.0 X X|177.00(203.00| PRIM
Si2,1(24 65 400 0 ERR| ERR  ERR ERR ERR ERR ERR ERR ERR| X X| 84.50(108.00| PRIM
S1p|24 66 4 0 0 0|244.29(700.9 138.5 0.0 0.0 0.0 3.1 0.3 0.0 X X1821.00(940.00| PRIM
S1p3|24 65 400 0 ERR| ERR  ERR ERR ERR ERR ERR ERR ERR| X X| 88.80(113.00| PRIM
Si4,1(28 65 4 0 0 0(386.36(306.2 72.3 0.0 0.0 0.0 4.7 0.4 0.0 X X INT INT| PRIM
S142(28 65 40 0 1 ERR| ERR  ERR ERR ERR ERR ERR ERR ERR| X X INT INT| PRIM
S143(28 65 4 0 0 1|318.30(237.3 73.3 6.0 0.0 0.0 5.2 0.4 0.0 X X INT INT| PRIM

Benchmarks of symmetrized random polynomials.

A.2 Tested curves

We present in this section the equations of curves that are referred to in Section A.1.
For reasons of space, some curves are not shown. Labs’ curves can be found on the
paper [109]. Translated curves can be easily computed: the polynomial resulting from

k translations of a given polynomial P equals Hf:o P(x,y + i).

A.2.1 ACS and F polynomials

This section shows the polynomials defining the curves whose benchmarks are shown
in Section A.1.1.

Ar=y =0t =yt =y x4y 2xy —y —x -

A, = — 26886144y*x* + 45313024x° + 16384x° + 631918592x% + 372736x* — 676666512y* + 928499520y° — 420114176y*
+ 77229056y° — 405504y® — 16384y” + 1561393008x — 264033244y + 975939072y + 22183936y°x*> — 245073920y°x +
66400256xy* + 4374528y*x> — 1697953344xy — 2695168yx> — 344064xy° + 409600yx* + 130729984yx> + 503455579

Ay =2 — 148 +76° — x7 — 35x* — 16y> + 14y> + 20y* — 7y° — 8% + 37 + ¥ + 7x — Ty — 42)°x — 70y°»® + 35xy* +
7092 x° — 35x°y* + 7x6y — 21Xy + 21x%y° + 35y3x% + 42yx% — Txy®

Ag = — 3+ 120* + 2y — 12y% + 8 + 1207 — 28y%x% + 12y*x% + 4y%x% — 18x* + 20y°x* + 2y*x* 4 12x° — 4x0y? — 328
As = 102y* + 150y*x — 150y° + 43y + 48y°x*> — 144y*x + 52xy — 48yx* + 8x — 4y — 2

Ag = 16x° — 20x° + 5x — 4y* + 3y
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A7 = 105y°x* — 80y® + 140y°x> — 140y°x + 35y* — 105y*x® + 48y° + 42xy° — 42x% + 35x* — 725 + 32y + 84xy — 140yx°
4 42yx° 4 2109247 — 42y — Ty0 — 8y’ 4+ 7

Ag = 503745158400000y°x* + 1071172241025921 + 5190521760000000x° + 616320000000000x° + 6145719528600000x>
+ 2453784000000000x* 4 64000000000000x° + 1222596581848560y> — 865873043485440y° + 185942031773440y* —
461482272768y + 481890304y° + 3867042171121200x — 964421897260968y + 941052996288000y*x + 368793600000y x>
-+ 18816000000000y*x* — 118029260800000y°x> — 419460195584000y°x + 15000761856000xy* + 144862720000000yx>
— 1744221527208000xy — 3512320000000y°x> — 1267367040000000yx° — 20652441600xy° — 53760000000000yx° —
405824000000000yx* — 2025865699200000yx>

Ay = 27975600x + 27993600xy* — 55969200y°x — 1558300x> + 21700x° + 2604360x> — 230390x* + 3590x° + 37065600y*
— 74528640y> — 7277400y%x> + 258940y%x* + 129600y° + 4672800y" x> 4 1558800y%x + 37333439

Ajp = 176 — 28y*x> — 32x° + 24x% + 27x* + 32 — 1552y — 752y* + 1200y° + 568y° — 80y’ — 28y® — 384x + 576y +
608y*x — 108y*x? + 162y°x* — 244y°x® + 192y°x + 64xy* — 144xy + 108y°x> — 36yx® — 56xy° + 144yx* — 392xy° —
180y° — 36y'0 + 27y!2 — 108y"x + 108xy°

Fy =2 —42y°x — 14x° + 706 — &7 — 16y + 14y* +20y* — 7y° — 8y5 + 37 + % + 7x — Ty — 70y°x® + 35xy* + 42yx* +
70y%x% — 3563y — 2100y — 35yt + 21x%y° + Taly + 35y x* — Ty

Fy=y —n' =y =2yx+y + 2+ +2xy -y — 2x — |

Fi=y =o' =y = 2yx +y +2°x + ¥ + 2xy —y —x — 1

F, = y4 — 6y2x + 22— 4yzx2 + 24x3

Fs — +2y2x2 — 2 +y4 o 4y2

Fo=—3412y" +2y* — 12)° +)% 4+ 127 — 28y"x% + 12y, + 4°% — 18x* + 20°x* 4 2p"x* + 12x° — 4x®y® — 318
Fr=xX—y2+x' - +y¥x—y+ 2+ +yx— 2% —y* +x

Fg = 27975600x + 27993600xy* — 55969200y*x — 1558300x° + 21700x° + 2604360x> — 230390x* + 359045 + 37065600y*
— 74528640y% — 7277400y°x* + 258940yx* + 129600y° + 4672800y*x* + 1558800y°x” + 37333439

Fo = x% 4+ 4x%y% 4 6y*x* + 4y5x% + ¥ — 4 — 12y%x* — 12y*% — 4y5 + 16y%4°

Fio=x"+yx* —y' — 2 =y + 2 + % —y* +xy

Fii=—2-2x+2°7+6° —x —6x —6x* — X% + 3y + 4° + 4" +5° +)° — 5x — 3y — 3" — 1yt +
it —3x%? — 3y3x% — yPx — 6yt + dyx® — 6y%x° + 3xy — ¥¥xP + Tyt — sy — Ty — 7%y — 4wy’ — 6y + Syxt —
3x6y3 + 5x6y4 _ 3x2y5 + 4x5y4 _ x6y5 _ 4x5y5 + 2x4y5 _ ery + 5x3y5 + 2y3x4

F1> = 10000000y® 4 250000000y*x* 4+ 610000000y°® + 620000000x°y* + 10000000x° — 50000000x%y> — 110000000xy + y

Fi3 ZYS_XY+x2
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Fiy = — 2x6y3 + x5y4 + x7y + y4x4 + y6x2 _ 2y3x4 _ 2x2y5 _ xy6 + y2x4 _ y4x2 _ y2x3 _ yx?a + y4 _ yx2
Fis=—2+y =& —yx+x+)y =y —y+1
F16 — X6 + 3y2x4 + 3y4x2 + y6 _ 4y2X2

Fi; = y4 - 6y2X + 2 — 4y2)c2 + 2453

Fig = 125000000000000000000000000000y* — 12749999999900000000000000000000y>x> +
18999999999600000000000000000000yx — 10999999999525000000005000000000y” +
180124999999100000000000000000000x* — 480999999992800000000000000000000x°
+ 722999999978375000000090000000000x> — 579999999971100000000360000000000x
+ 193999999985500000000361249999997 — 500000000000000000000000000000y*x* +
4000000000000000000000000000000y*x + 3000000000000000000000000000000x° —

36000000000000000000000000000000x
Flo = 3889197 4 35414400y*x — 24085600y°x> — 33036800x° — 2880000x° + 40724680x% + 13729600x* -+ 240000x° —

3074760y* — 10545600y° + 10118200y* — 4432000y° + 1116000y° — 160000y’ + 10000y® — 21484320x + 16791840y

1012000y*x* — 952000y°x* — 40000y*x* + 8096000y*x*> — 11904000y°x + 1488000xy* + 31574400yx> + 7616000y*x> —
46425600xy — 2560000y°x> + 320000x>y* — 9984000yx> + 1248000yx* + 320000y’ x*

Fao = 9 — 116y°x* — 52x% — 2x* — 4x® + 4y? — 40y> — 34y* + 8y° + 20y% + 8y” + ¥ + 24y + 36y*x® + 4y°x% + 12y%x*
+ 6y*x* + 4x%y? — 16y°x* — 136yx% — 24yx* + 24x%y° + X + 8%y + 24y%x*

F>1 = 8999999 — 116000000y*x*> — 52000000x> — 2000000x* — 4000000x° -+ 4000000y* — 40000000y* — 34000000y* +
8000000y° -+ 20000000y° -+ 8000000y’ + 1000000y® -+ 24000000y -+ 36000000y*x* + 4000000y°x* + 12000000y*x* +
6000000y*x* + 4000000x°y* — 16000000y°x> — 136000000yx> — 24000000yx* -+ 24000000x*y° + 1000000x® + 8000000x°y
-+ 24000000y x*

F>, = 9000001 — 116000000y*x*> — 52000000x> — 2000000x* — 4000000x° -+ 4000000y> — 40000000y* — 34000000y* +
8000000y -+ 20000000y° + 8000000y’ -+ 1000000y + 24000000y -+ 36000000y*x> + 4000000y°x*> + 12000000y*x* +
6000000y*x* + 4000000x°y* — 16000000y°x> — 136000000yx> — 24000000yx* -+ 24000000x*y° + 1000000x® + 8000000x°y
-+ 24000000y°x*

Fy; = 899997 — 4y’x — 11599998y*x> — 12x° + 2x° — 5199983x> — 199997x* — 400001x° + 400005y — 3999992y
— 3400001y* + 799996y° + 1999999y° + 800000y’ + 100000y® + 2x + 2399996y -+ 3599997y*x* + 400000y°x* -+
1199997y%x* -+ 600000y*x* + 400000x5y> — 1600008y*x> + 2xy* — 13599976yx* + 4y*x> — 2400004yx* + 2400000x%y° +
100000x* + 800000x°y + 2400000y°x*

Fay = — 64y*x — 51199808)°x% + 64x> + 48x° 4 25600096x* — 12800008x° + 64y> + 25600096y" + 48y° — 12800008y° +
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14400020y% — 448000440y*x> — 70400120y°x* — 448000440y x* + 35199848y*x* — 70400120x%y* — 352y°x* — 192y°x —
272xy* — 64yx? — 352y%x° — 384y°x3 — 320x°y* — 192yx — 224x°y — 33607y — 224xy° — 224yx° — 272y — 112x%y° —
32000020x%y* — 336x%y° — 56x°y* — 56x*y° + 14400020x% — 112x%y — 224x°y° — 320y°x* — 3247y — 112x0)° + 12)° —
6400002y'% + 2399999y'2 — 32y7x — 112x°y% — 4x*y® — 32000020x*y® — 48y"x? — 8x*y’ — 48x7y* — 4y®x — 327y} +
12x° — 4x'!' — 6400002x'° — 8x"y* + 7199997y3x* — 51200018y%x* — 51200018y*x® + 7199997y*x® — 41600000y°x® +
4800000y'%x% — 4y'! 4+ 2399999x'? — 32,3y — 4x®y® — 4xy + 4800000x'%y* + 800000x'%y* + 4000000x%y® — 800000y
-+ 100000y'® — 800000x'* + 100000x'® 4+ 800000y'°x* 4 400000y'2x* + 2400000y'%x> + 4000000x%y° + 600000y%x® +
2400000y*x'% + 400000y*x!2

Fas = 1000000000y® + 25000000000y*x* -+ 61000000000y® + 62000000000x°y* -+ 1000000000x° — 5000000000x%y° —

11000000000xy + y

A.2.2 Resultants

This section shows the polynomials defining the curves whose benchmarks are shown
in Section A.1.3.

Ry; = — 3204585761197660x’y + 3350823374458840x — 601079220575120y +  14896847244459988x> —
6570955599802608x%y — 4123557051985672x* — 607154654235978x* — 5855834724117062x>y* — 1950992951697496y* —
13227572133843177y* — 1853981814550348xy + 12232930427590842xy> — 1497297529313628y" + 2521118398372771y°x
—  16722336708205328x° 4+  22545720388740052x*y —  8802113188185197y*x +  4429206015042170x°y* —
10464271751664979x%y°  +  1452680074935499y°  +  10655990441588686x*y> +  8163777596263678x°y°  +
5724366091291728y° — 23953746403992260x° + 9570075082788107yx + 9448812122819188x%y* + 14159018049536329xy
+ 3703974977594532y7 + 24041624609433485x*y’ — 33897438972748944xy® —  50243653489157731x°y* —
32376430246859608x°y*  +  14738367332180176x°y° -+  6146698809743264x%y°  +  4460223444447946x*y*
33053572472214274x5y*  —  4809569347914943y°x* 4+  6118692285215861y'x +  20884383236961522y°x>  +
32014481161340009x%y — 1152698873647610x"y + 15851936053184863x” — 13939370113685234x% + 19351265413842757y"
—  5948371401652143x%y  +  27314264788261409x7y> —  11958928823532724x*y> +  11121299366243278x%°
+  7562625154452461x°y"  —  18942057499465854x°y0  —  3016440980676604x’y’ 4+  15578899618033140x° —
1482300027776904y° + 7652946202603089x'° + 17609236106072672x'! — 14840765556352028x'% — 5543193267121072y"°

—  2550998246625043y'!  —  11705304186847352y'> + 93619025313470386x°y* —  41461115419797176x°y —
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4942576361143444x*°  —  84024798595860056x°y° +  53030828038550732x%y* +  58761488499050823x°y%  +
86911102022456140x"y* 22997770286955248x*y” 143008067725717402x%y° 58630588989646212x%y*  +
35057558781919095x%y*  +  4917757705092632x°y" +  58009010403293945x7y°  +  33135591009703542x°y*  +
51457794272760623x°y° 25238805994202881x*y® 8047420334432430x5y% 4+ 53832957297228488x°y*  +
18135202945677879x'%y*  —  24922102066171632x'%y  —  4403965690408945x''y  +  1198051142127797x°y° +
19859030890630697y"x>  +  10890343015474746xy° —  12301543866602639x>y’ —  15446610725516880x%y° 4

22643259045973428x%y°  —  11055890680348140x%y"° 16638698844636419y°x -+  33758936971837665y''x  —

16371342752542071y''x 4+ 37940033069933746x'%y* 7087404306097790x"y®  —  41920098613409297x°y*  —

5148225146868163x'y? 56886556379208093x% 4+  41322569925167274x%y° 4+  22195582555795487x'%y  +

26324428092170870x°y®  —  33580589938352678x*y° 4+  37265452722004300y' x> 17605687793056415y' x> —

4350928210527568y'2x + 2435484446581215x"% + 422341671045264y'® — 5840160462081208x'* + 7572486275783469x"3y

—  30373202004655651x'%y? 4 55132887056768808x°y° -+ 25287026619201071x''y? 4316941210294396x'%y*

+  27739654289770972x%y®  +  13215997495110479x°y° —  52585622607193077x"y’  —  9347309957882964x%y3

+  21518245365702287x*y1%  +  8200765929070391y'*x 5672512424104302y ' 4+ 13221021293198900y'2x2

+ 1810378275992631y'*  +  493695992259180y"° 6557656914226565x'2y>  —  41376679699176146x°y'°  +

6708511988747042x!1y* 4+ 3356447941220162x"y  —  29393493784999622x°y° 4+  57889912012347067x'%y°  —

7450976905574736x'3y2 4+ 67004605467912814x%y7 —  91688077592098684x"y® -+  103407888397653340x%)° —

1663863836939973x*y!!  —  12225013847882460y'*x —  8861260070168542y'2x> —  16256438590123730y"3x* +

2614839706342848x" 4278017769789080x'4y?  +  13530423471811460x%y'* —  19507417075360849x'%y°  —

21086578018578532x"y° 4 3066040854582449x°y’ 4+ 44635061379472618x''y> 4+ 27892282644480562x%y'0  —

27876096647154334x%y  +  4668747112518957x'2y*  +  10765460297698126x'%y  —  47862137079809516x°y"!

+  41558978952484878x"*y!? 27719492345214638x%y!®  +  7743143193151416y°x  —  541904871768853x'¢ +

2519398052814249y'® — 1694107169167618x'%y + 3200802986149776
Ry, = — 1252519552523009x'y + 87480866200x + 5464761993699806x" + 335186119189118x%y — 57754839322096x

— 925330127352055x* — 6325692879190430x°y> — 57719334400y> + 78358697268920y* — 7178681270460xy —

38534907354680xy° + 4344553068800y° + 612266217684479y°x — 7676699403607645x° + 515958600229993x"y

+  7162499850893997y*x  —  16579327682607195x°y*  +  7217798390740975x*y° 4+  286998365653220y°  +

3930149646013408x*y> — 6847385462634277x°y* + 1218823436739616y° + 21463121284393096x° + 1524270368247309y°x

—  3494384601146459x°y*  +  10494108469026404x°y +  5786130665555067y’ 52487335106542400x*y°  +

25054353871166177xy° 4+ 17504450292378565x°y*  —  19774121043437362x°y* 4+ 12077078787021437x°y°  +
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43709146063393902x%y°  —  13892110745009792x*y*  —  18213256599626301x%y* 4  3036423807294708y°x> —
1023698793088196y"x + 14633597360905368y°x> + 205823793882702x°y — 1954580263576866x"y + 5518356183441985x7
—  23075440488281093x* —  3368056300122225y + 25783838083215113x%y +  22599147538671702x"y* +
9703960597504587x"y°  —  24567082366198024x5y°  —  49738389272164238x°y*  —  17365589701224646x>y°
— 30000278054022664x7y> -+  21804491460710289x° 4+  1724831267930027y° +  15147231588228627x™°

18277541902790778x"! + 4225146381478719x'2 — 15559110443838163y'° + 509872549992063y'' + 671495281494010y'2
+  7657944631538768x%y*  + 2162675060877299xy +  66791909207356862x*y° —  65273659233201741x°y°

23090510134897100x%y*  +  70717602578328893x*y® —  44490706390563270x"y* —  1832398603365336x"y’ +

43269787656739311x%° +  8060884951758296x°y° 4+  15041808857249478x%y* +  62879724223139551x°y7 —

35893119911539706x"y° —  29137896356049638x°y> —  1487351770200597x°y% —  14344906876357247x*y% —
37812529201404247x5y®  +  4483061516292066x°y* +  14633150554966822x'%y?  —  9410791964505743x'%y  +
16602017082877857x''y  +  35970472935668327x%y° 4+ 53687307499603725y’x> +  3997958118778854xy®  +
45116587439936634x>y’ 4+ 4025181112192826x*y° —  29160359634874227x°yY —  3966249286215688x*y'"  +
10694781662496228y°x  —  4878544130414203y'%x  —  13408824369790895y''x -+ 20773743758426766x'"y° 4
43293843391447527x7y%  —  29121453312637460x°y*  —  8685465963334675x!'y?  —  45107746838723850x5y"

—  32371685612796608x%y°  +  3551211902636932x'%y +  31477166777875667x°y% +  33434194143041390x%)°

—  32230954156273889y'%x 4+ 19454651863651074y''x* —  17768789519172605y'*x +  8380085535129748x"3
+  5321398955054510y"2 —  3306711552113289x'% —  5096373490908693x"%y +  4592190978169000x'%y*  +
19721508867025550x7y°  —  3741528650477253x''y}  —  2161364782477452x'%*  —  20388655607077757x5y°

28841796946332551x°yY  +  7818509250639541xy’ 4+ 17320182642472046x°y%  +  19695341029187257x*y!°
4+ 9909648068770399y"3x  —  3446384150516634y''x> —  12801756015970726y'%x> —  1794803584492235y'*
—  1066744662200312y"° — 1886442416485437x'2y>  —  2857179203405034x°y'0 4+ 5828862828777893x''y*  +
269922889603937x'y — 2478246589825058x°y° + 1615813908662x'"y° 4 686258005865128x'*y? 4 3397311874551436x%y”

—  5791208186417172x"y®  +  1869713790431494x%y° +  93578527652784x*y!! +  3578104985371476y*x  +

2455349718701531y'2x  —  3826513212601492y3x*  —  1313592160474464x">  —  38592331122218x'%y*  +
1861991210989451x*y™*  +  2616375002235284x'%y  +  2308345172029518x"y" —  5260356813731240x°y"  —
473928769394134x'1y>  —  4715098982563709x5y1°  +  1763182819837315x%y% —  1827616236505141x"%y*  +
1825071895830566x'%y>  +  4174655993754714x°y!!  —  543499674411917x*y'2  —  1649226399200234x°y'®  —

1106234628246384y x + 516546210888409x' + 261352618291216y'°

Ryz = — 50628272220306x°y — 9761486570685x — 217919062800y — 27029843555085x° + 29801644220979xy
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+ 21303666504486x> + 6732052650252x* + 23546305320678x%y* + 33000252525y + 10635449799375y* —
11123698425660xy — 1649235122100xy> — 5206280358150y -+ 17205021503820y°x +  12668204437749x°
62765922305106x"y — 6475278321405y*x — 42068040619527x*y* — 44301632768406x%y° — 4782458700y

71098088900589x*y? + 30607395667272x*y> — 2010008864250y° — 19074725099820x° — 27613946340720y°x

+ o+ o+ o+

3685168822761x%y* — 40814500616271x°y — 19074075736500y" + 36942953975109x*y> — 10100070492840xy5
17693705707317x°y* — 61315016344533x°y> — 130907346138135x°y° + 71497556827029x%y% — 56216040719148x*y*
+ 60376516450227x%y* + 32053701594114y°x* + 35770560846570y'x — 27457020318186y°x> — 9737863893504x%y
+ 45616543648830x"y + 36381516279003x" — 13735113304572x° + 19447466624550y° — 111622097559438x°y +
61144075005228x7y* + 70813056679722x*y° + 55400139468009x°y> + 20440731939336x°y* — 127199793156669x’y°
—  49427362693665x"y° — 3404865890268x° + 6709424679450y° + 6423041127078x'0 — 26023158115686x'! 4
8619138872640x'> — 3538415060550y'° — 20343043493100y'' + 19273282981200y'2 — 21342344609925x°y* +
37278781354611xy + 67034724651792x*y° + 25329076752231x°y° — 41615158527243x%y* + 10404729389673x°y% +
56177395471215x"y* + 125732832691248x*y’ — 64297698220647x5y° — 107712002043891x%y> + 153414766931562x%y*
— 87867408789909xy’ -+ 104353152235110x"y° — 33644147306805x°y> 4 19952356452408x°y® — 35750973052512x*y®
— 134279448160068x%y° + 61210042283664x°y> — 10788593838831x'%y? + 30256269796647x'%y — 21405830915448x''y
+ 24190939704159x°y° — 54099400116069y"x*> + 23118538273560xy° — 15479736323661x°y" — 2085649330833x%y% 4
12131772689979x%y° 4+ 69585347285505x°y'" — 49413879046530y°x — 25474174220700y'"x + 16706205090360y''x —
8892998925021x'%* + 17658821784411x"y® + 9638028671346x°y* — 19215188776872x!'y? + 60843549313719x%y7 —
90262778469534x%y° + 30775127433534x'%y + 16038496640268x°y® — 41289358170915x*° — 65905422517458y'%x>
— 7161119973369y' x> + 21987279925110y'%x + 8119339478532x!3 + 7858383933600y'> — 7742927461788x'* +
6058502963100x}y — 4015307838123x'2y> — 109517128601067x°y° + 30256578538686x''y> + 19539800971695x'%y*
+ 40493380100148x%y5 — 5973491475234x°y° + 75407154263145x7y" — 70247517809112x5y® + 3377832457320x*y!°
— 30946848498405y3x — 1629251464608y'1x — 9866213952975y'2x* — 546669913275y'% + 2714241141900 —
9048816060525y'% + 4444065854847x'2y> + 127038111121575x°y'% + 19667056850334x''y* — 3707230386420x'*y +
40736838396627x°y% — 3758588361846x'%y° — 14234187334050x"3y> — 6648509216844x%y’ — 131494228033914x7y% +
22771298636919x%° — 2520944107605x*y'! — 13138313694300y'*x — 14881629404664y"%x> + 15776120253510y'3x
— 206406391752x'5 — 2215202328495x'4y? — 4237944713100x°y'* + 8523205348878x'%y% + 57704235378606x"y° —+
5858738539686x"y" — 11079414073845x!!y> + 29392174282104x%y'° — 6925538847852x%y® — 6149990171169x'%y* —
5163545568438x13y> — 82436065157772x°y!! — 16113533931972x*y'? + 50337082630845x°y'> — 3127339485450yx +

1709204583060x' + 11142493558875y'% + 1603783512396x'%y
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Ry4 = 196897788421950x°y + 151829206534275x — 332015090506272y + 124473585991105x° — 232088723205499xy
— 73774806459468x" + 59324853301446x" + 341729798670915x2y% + 129365466777197y° — 225946538614454y" —
275491124376510xy — 130842411750291xy> + 213081007565657y° + 34546090541132y°x — 160470033674126x° +
360058904781529x'y + 542394475808547y*x — 589387487783419x°y% — 550458894113092x%y° + 46408594081812y° —

12610138830494x*y? + 567699638736747x°y> + 227318510868472y° + 184219830788180x° — 390042849998696y°x -+

22176077743218x%y* — 1055045070916752x°y — 174898921138550y" — 591999194325753x*y> 4 110239016133040xy°
184724311144734x3y* — 170092640248967x°y 4 751132915268950x°y° — 411572001177938x*y° + 1330630952856418x*y*
— 827500087553234x%y% + 424763540651024y°x> + 210245117799540y"x — 997776720169472y°x> + 458456204173133x°y
+ 602171945906509x"y — 63504634836013x7 — 314759946960411x° — 23931214928330y° — 960314104662102x%y +
1287092721506594x7y? + 506702364203608x*y° — 1001545332567511x%y> — 948887447151166x°y* + 940965045666332x>y°
+ 528549165249361x7y° + 282374819140793x° + 73553657813138y° — 81423948597105x'° — 229754646390742x'! +
218823612046685x'> — 43391705241216y'0 — 19362743885187y!! + 30570194767339y'? + 544519831557451x%* +
423146922757315x y — 880062340798424x*y® + 329332497968699x°y> — 1149313804959055x%y? — 223606546877767xy® —
211758421635220x"y* + 514119124612780x*y’ — 1080246054272950x%y° + 425162513480513x%y> + 786824847273076x5y*
—  811324844424169x°y 4+  1423617911763566x"y° —  1495984284397554x°y> 4+  811795650556235x°y% —
93772086232062x*y® — 450951492294450x°y® — 16771581852695x°y* + 556226541315178x'%y% + 190360844099136x'y —
434151854533330x'y + 256000724376479x°y" — 161788815935612yx> — 160677871202846xy" — 232969246829903x%y” +
547716080745527x%y% — 319288156315780x%y° + 126983085173047x°y'" — 78510144199170y°x + 108899216614205y'%x —
79326875407556y''x + 1549178278105283x'%y* + 57846634481106x"y® — 1104655952953747xy* — 497633315881100x'!y?
+ 767040214174901x5y” — 979377712865003x%y° + 316727675371860x'%y + 377037003155497x7y® — 279139068743200x*y°
— 90039979209170y'%x> — 60121989455820y''x* + 61990439059206y'?x — 130803658647480x' — 10980070787250y"> +
22264101709200x' — 127956292937460x'>y + 180046665513708x'2y? -+ 473393201373028x°y° — 931595416688487x''y* +
971326780145183x'%y* + 85723644094323x%y® + 63658126681360x°y° — 653212895514161x"y’ — 189388182258329x5y® +
203218890763974x*y!10 — 45308869725780y%x — 16543339794308y' x> + 17981972123513y'2x* + 5154191900775y —
4086377059500y'° -+ 278018588008620x'2y° — 155024118363547xy'® — 469928136600795x'1y* + 18397207436400x"y —
17467169316348x°y® — 102534649071870x'%y° — 55506806086680x'%y* + 371559229966891x%y7 + 95320344053798x"y®
+ 11867676988206x5y° — 58743361445960x*y'! + 22920755481900y'*x + 36794278714761y'%x* — 8262873361845y"3x>
+ 745212733200x"° + 4753475134200x'*y* + 6098780162250x%y'* + 11797165860840x'%y° — 65917675067550x7y° —
138102078292635xy” + 34031275587000x'!y> + 65803764102695x°y'% + 2469691253970x%y® + 129327730319025x2y* —

33659394490800x"3y° + 6155107532780x°y'! + 23540401403870x*y'? — 19931098635765x°y'> — 6190830567000y x —
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5010913206000x'® + 1406514375000y'° + 150276253187993

Ry s = — 1935474426212x°y — 2859080328 + 39427770564x + 62368431840y — 22153348038x° — 492106648896xy +
136645992888x7 — 518409772772x* — 9390183674664x7y* + 557247361952y* + 51174637035648y" + 283835203680xy
— 10313558030240xy> — 14713819773312y° + 13408916780760y°x — 848824624652x° — 310487661320x'y +
81969774704626y*x  + 27958513996800x°y* -+ 61320435378610x%y — 34050893295056y° -+ 48521959517612x*y”
+ 36620300039792x%y° — 43531277545136y° — 667115037848x° — 91473320261792y°x — 52313258605752x°y* +
2806158824068x°y — 64098365015504y7 — 53672668223754x"y} — 64591710404600xy° — 228892899207946x°y* +
60553748104416x°y* — 204765796353128x°y° — 89031800586866x%y° — 96336857569744x*y* + 7108785176968x°y*
— 128846165947712y°x> — 142075059692220y"x + 120286177479868y°x> -+ 5989134099880x°y + 5897235290468xy
+ 4304147652x7 + 528617709926x° + 197052492598722y% + 2184594877888x%y — 23098772971480x’y* +
392258113940648x*y° — 234098524966674x%y> — 110275542908218x°y* — 225093063494216x>y° — 195678704289540x7y?
+ 572923540668x° + 21881975516736y° + 397437682816x'0 + 147682609030x'! + 69536580296x'> — 147851175636672y"°
— 109874326188032y!! + 150073389559808y'? — 46323006147356x°y* + 549196608044x°y — 236783977050676x*y° —
277690097249644x>y° — 42878958940992x%y? — 72829172387072xy® — 250882117073702x"y* + 551465246992944x*y” —
517082105506448x5y° — 128722957035054x%y® — 43974693125608x%y* — 148017349662648x°y” — 218222367000276x"y> —
43810728742008x°y> — 538287725291728x°y° — 340896084358052x*y® + 305532134339848x%y° — 33589249023848x"y*
— 17001864604112x'%y* — 1410375497176x'%y — 329827179056x''y + 440458042118080x*y° — 36389902375616y x> +
412785036754992xy% — 20965571018160x>y” + 375635988110760x%y® — 108894069210816x%y° + 167249641675456x%y'° +
79375694624128y x — 22405294171904y'%x — 410640487620480y''x — 26350028893512x'%* + 514873494563160x"y5
— 53899396841536x"y* — 8994545307672x''y* + 4721778142624x%y7 + 151976584521192x%y° — 544434386232x'%y
—  502806442257552x°y®  +  1105332873076224x*y’ 4+ 154594014532992y'%x*  —  479309003582464y''x>  +
134284510753792y"%x + 10297300696x"* + 92210791170048y"* + 7927241300x'* — 4316529504x'%y — 1607011848036x'%y?
+ 274595797008828x°y° + 7503097660260x''y* + 78770183316820x'%y* 4 588425937481012x%y° + 495728824575552x°y°
+ 61259975023152x"y" — 36546828873752x5y® + 71875055423296x*y'0 + 156526816951296y"*x — 518917266314880y" x>
+ 179868346417152y"2x* — 95162339082240y'* + 4026853712x'Sy — 32378419298304y"° — 4767240256960x'%y> —
340616424474368x°y'0 — 18041215103704x''y* — 86835488328x'*y — 35394858719176x°y° — 27383174918096x'%y° —
1220120214424x3y* 4+ 35101089007680x°y’ 4 340489018291872x7y® + 213552449718784x%)° + 386954831594496x*y!!
+ 47559622680576y'*x + 64944593927168y'2x> — 109854982010880y* x> — 1852897680x"° + 26050468280x'4y* +
137841236407296xy'* + 349039047921082x'%y% 4- 12083591652352x7y° + 565926571617300x°y” + 107664967914888x!!y°

+ 256545135601088x%y'% 4- 408421843242322x%y® 4- 21318102511124x'2y* + 2493150460724x"3y* 4 340099639135680x°y'!
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— 203741265749568x*y'2 + 21731486739456x°y'3 — 96026134818816y"°x + 73407194x'® 4 36164095930368y"°

Rs; = — 6870692411499298x°y + 3017034827173375yx*> — 1100923349343750x +  159458462656665y''x
58126750918072673y"3x® + 10191139488881700y"3x” — 6589468967495y'® + 17949326444796895x — 8371721947184965x*y
— 2689748395796975x% — 3430804899033701x* — 6186477867955526x>y* + 224364892257900y* + 727241076159600y" —

327968244013425xy + 2299130542914445xy* — 1231054637752050y° — 876114196976212x*° + 8696168889079538y"*x”

+  25992787326344063y'*x®  +  563131902139615x*! —  5648196008638490y°x —  77406743485637075x° +
69314519245752941x"y  —  4312724885372415y*x  —  19164066444608451x*y> 4+  15362939143195052x%y°
+  2676337964777580y° +  8081074957676278yx®  +  84818830101213009x*y* —  12938141668601406x>y°
—  1838352172876400y° +  279794439831466332x° 4+  3762581723882522y°x  —  25271175258950810x%y*
— 106997244897382847x°y  —  858756588471760y7 —  55388824044453236x*y° -+  7968049992512125xy° 4
25944832468559733x°y"  —  229136225091793329x°y*  —  16144872614671205y"5x°  +  252687674355002359x°y°
+  1115247459658964x%y° +  33316704793368375x*y* +  464151842655637017x%y° —  16421540271352784y°x>

—  4315248427984544y'x  +  61981731552864162y°x> +  98310641562519054x%y 4+  129969993767847417x"y

—  563509653205390548x" -+ 759197691455610761x° —  781685704855060y° —  640690345212238550x°y —
545976099830935945x7y7  —  220544843544155903x*y° —  627810999427308995x%y° —  246872334185938140x°y*
—  27840316598518642x%y° 4 1255710297636783821x7y° —  754179476778709420x° 4  1281706551435645)°
+  547521969911239686x'0  —  263844504053474408x'"  +  90336478290702731x'2 4+ 1972577566785840y'°
—  1926645280265355y'!  —  556862870716105y'2 +  755710603908893055x5y* 4+  997587634485032052x°y  +
164338666588625090x*y° +  419819324579523589x°y° + 547489007492768590x%y* — 100283376908250500x"y*

1132288745171833560x"y* — 300393614802085413x%y’ — 660897219469799306x%y° — 1706309897851312626x%y° +
1301504696676691220x%y* 4  492343281623809169x°y 4+  1294129617589459752x7y° + 1691186944642143211x%y°
—  640625100071938530x°y° + 196183033516171071x*y® + 1108919361433803998x%y° — 673144327388420962x°y*

+ 696289125708976774x'%? — 1032215968381335073x'%y + 572455757163824533x''y + 142160481908150876x"y°

—  13869024105824630y"x> —  2900795745472464xy® +  62173642894943848x>y"  +  40027956889555419x%y"
+ 1729705383268871x%y° + 50776810384902148x*y'" + 3187766100336878)°x —  3614700188504704y'x +
4949679641059253y! 'x  +  4186126846051560x° —  1280325473524809720x'%y} —  1026554562612167172x7y% —
1365149326340492552x°y*  —  780652942636870878x''y?  —  627682473375084019x%y" — 1636696559491814519x%y°
—  6273039103772887y'x° + 221785592490921627x'%y — 535418846782367306x°y® — 321929638143715849x*y°
— 109783199651477093y'%>  —  11539905090870632y''x> —  10110659974453447y"?x 4+  6896219946943638x">
—  642190248646295y"*  —  97203542599555583y*x!® 4+ 6895010967776072y*x"® + 90727895874037741x'8y?
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27085914500848984x'* —  635111521374306563x>y + 560026029110762974x'2y* + 1312405217495110042x°y° +
424907733130623515x''y?  +  971035389434047293x'%y* +  896955769244855104x%y°  +  179177998083683610x°y°
+ 964016138863569597x"y’ + 714793326192046087x°%y® + 86575096955596648x*y!0 + 10300694475507257y"*x
+  57388398321236190y''x> -+  41805635495421801y2x*  +  1348424292386380y'* +  3027160146740259y' x>
—  601460074726097116x>y  + 3841530137262093y'Sx* —  618705403389340y> + 31663181195948483y%x° +
2033811051734489y3x10  —  21065660876671820yx® 4  4815959435531237y'*x” —  13153264327192045x'%y> —

214526599679022784x°y'" —  536777983869369653x''y* 4+ 731915157191853005x'y — 614188022979332719x°y% —

711975088950469061x'%° 4+ 163226154530552354x13y* —  896133714981860791x%y7 — 277331515062464225x"y®
—  73077360412192320x%° —  125525161614715578x*y!!  + 1781213866419437y"¥x —  8479021027722536y"%x*
+  2283561626957703y3x* 4+ 2245615271651090x*% — 280627458862015362x''y’ -+ 23125423108289262yx*! 4
61020220740996899y*x%°  —  3126271014299188x"> —  407770857082232330x'4y* +  2423046198557622x°y'*  +
367847343662485404x'%° 4+ 292137342278427854x7y°  +  405080206775160482x°y"  —  201320889162183730x'!y’
+  287120732037681722x5y'0  —  44040940440563358x%y® — 149351879131321851x'%y* 4+  76686122150224960x'3y?
—  4254068313468808x°y!!  —  31789337932336495x*y'2 4+  3653855716073766x°y'3 4+ 1484871253042159y'%x
— 103805584123471466y°x"Y —  6430445260075343x'® —  92032330001170y' -+ 8063880124423884y'2x!°

14948072477471776y'"2x"" +  6287217547698386y%x'®  +  198583666145531y x> —  2138994681332779y' x4

31922880697666809y°x'®  +  95618147261381249y°x'7  —  122288288263831383x'7y> —  135101822703822576y°x'*
—  2302163686686240y% x> —  96912904254446580y7x'5  +  44841508283162929y'x'¢ —  5034566841378762yx*
—  3720364532266257y"3x!! +  1252129631889896y°x!°  —  280152382002228y'7x* + 190177976291952y'8x

1550277193305323y'8x> — 4760568108046085x'® 4 11532201964082045x" + 8859173339513703y°x'® — 31069499110425y""

—  40261365259513936x'7y>  +  6872385804875752x"7  —  42107369254041557y x4+ 10612927838637862y! ! x'?
-+ 261475279373037xy'®  —  4604096033160161x%y">  —  2365020277506515x*y'C  —  2185421097769873x°y!*  +
2344355821490326x°y">  —  11754291107316705y"x'7  —  1983048478398902y''x!* —  36985614621661770x*y!> —
2328308990989038x*y!4  —  70519371377914169x°y'>  —  2190854074283717x°y'®  +  49148702206698144x°y!!  +
85765342209163943x%y12  —  24184185157564249x7y'" 4 138296562215020994x7y!!  — 233285849967596663x%)° —
47649608702266187x°y'10  +  51266260632360792x°y% 4+  116896119515837029x°y° — 10988119631405948x'%y7 —

86656979688517598x'%¢ —  453180058355041609x'1y® + 13969091121032923y*x*! + 500897499442842642x'2y> +
135012555683315124x'2y5 + 665120950434470687x13y* — 194680278504200514x3y° — 519598424610545667x'4y* +
126519159026279613x'4y> 4 374563568460408734x15y*  —  129381245810496308x°y> —  173893389484084158x!6y?

+  66648904051930510y°x'® —  330220678325316900y°x!> — 109090748241240420y"x"* 4 260680186591380326yx'°
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—  61655734931014428yx'®  —  75997432008654979yx'”  —  5935614093693100y*x*> -+  3561558811921917y°x*!
+  269087093727643y*x*° 4+ 82581007241051426x"%y —  84804868554880974y°x'®  +  132069583441539728y*x"7
4+ 20890261678355y'° 4+  434981130344841y"°x’ —  1260519064412529y°x® 4+  4070867084428716y'°x°

1564255546516172y'%x7  —  2521884943330045y'7x> +  1965108832221897y'7x® —  41478170692582y'8x*  +
1757005327453851y!8x®  +  113170827456124673y°x'®  —  24433215156030480y°x7  —  820241338085557y'8x°
-+ 307906229094850y'8x%  +  274434529085702y"°x 4+  363114753000798y°x> —  711669401086286y°x*> 4

153461686784507y"°x* — 124501908929081y'°x° — 168129689419482y*°x% + 12304145665548y*°x> + 160226304911336y*°x
+ 29123232139758y*°x* — 13802365906200y*'x> + 32369902321400y*'x — 2860467004800y*'x> + 1882970865000y**x
—  14658655000y*2x% +  20926641461579254y*x° —  15760186390119493y°x® 4+  1022581752223055y"4x!°
64428902410484yx° + 226716633977313y'0x® — 428710310346929y'7x7 — 18709542879310y%° — 9236827575800y*' —
1070081815000y + 5046344117753307y"2x'2 — 625375062981016x>* — 1979903786732470x%y"7 + 2520729832774173x°y'°
+ 11106263590513719x*y">  —  21826074158742727x°y'*  + 39866322314569119x%y'®  + 29416089477118172y'"x"2
+ 16278182238159183y'%x!3 4+ 30503667506162118x7y'> — 139595650809055379x3y!!  —  66248622800079299x°y!2
—  42529557947387557x°y!% 4+ 29565191980457x°y!! 4 24855963841919623x'%° -+ 140070582711931141x'%y1°
118244654798522414x'y3  —  266158894408087531x'!y? — 28115104903001269x'%y7 — 68205012742862180x'2y® +
271008569538543439x'3y%  +  417557002402460193x'%y7 +  84807587242772170x'*y® + 208082796478522532x'y5 —
332515158526285937xy°  + 154024668994662912x'%y* 4+ 10568661145982929x'%y* + 152712934557608583x'%y
26801138397149424yx*°  + 90421389253460539y°x'> — 32267178399506761y°x'* 4+ 332204462885057124y°x'3 +
82711722293940939y°x'2 — 159831146739948067y'%x!! + 64335533136868867y' ' x10 + 32811273919089642y'%x°

Rs, = 13344590082223714784y*x’ — 106193116189461879x"y — 50923254470218920yx™* + 4714292053898550x +
1406541592250586y + 3464467340919480097y''x — 32619108691611666765y°x® -+ 171173681831979462722y"x
—  4969246804436653594y'®  —  29510158848356628x° —  26307613427243184x’y —  6941113070239800x>
+  139551031610823123x* +  809489530748858478x%y> +  85446047259604503y> 4+  250933910689126800y"
+  3624937035216129xy  —  453276973471239522xy> —  138017255771428956y —  54727059056400x%
73447090949142474521y"x”  +  142300259757659345207y'4x® —  85361207992414538x*! + 864890788738955664y°x
— 300603850924261824x° + 322216796243066538x*y + 767401607085558606y*x + 106674526618770051x°y> +
673169352568658151x%y° + 433052590522724280y° + 67143821072407633752y19x5 —  535374357825593817x"y?
1404821138403870918x°y°  +  2966237669928334161y° + 250763331591331083x° + 9905303116120962458y°x  +

7284098036467365008x%y* —  706002177188987865x°y + 1916983685906243183y" +  75310535530854236x"y° —

3883731391681220477xy® — 10592050346822981928x>y* — 4091752282795817907x°y* — 211582945002692903333y'x°
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12586299121316871886x°y° + 26413968875429832266x*y° — 20850063929328571891x*y* + 5661854321888329994x%y?
— 20032906044005914288y°x> + 12177325900012318375y"x + 16865496005390108916y°x> + 904337791526673315x°y
—  1775609863229109927xy -+ 40465355720988546x" — 194714925695720676x° + 3178457531225605631y% +
2582810389958743325x%y — 6028593999401743841x"y* + 13061759593335032480x"y° + 15834002288745121900x5y°
+ 50264485754213598313x°y* — 41029761688404804180x>y® + 5341257472009637066x"y* — 316291090017968389x°
+ 3626449381852284517y° + 1429393090805146015x'0 — 2352190872971754235x"" 4 3072892545814304555x'2 —
961809972376033072y'° + 8756726013002291319y''  + 3440532741953157616y'2 — 47659593346449769956x°y* —
4011667561577289269xy — 19257130733199489319x*y5 — 77608293991319327359x°y° + 7451285267407234787x%y* —
52072152015692492329x°y° + 24482461751156498x7y* — 30957012716156081481x*y’ + 72208046184257033882x°y° —
23501012244554667066x%y> 4 54608646390974087333x%y* — 20184522301799952805x y” — 10289740201628985882x"y> +
44712606592723063306x°y + 66169121732915872122x°y° + 23509172871502734240x*y® — 59033427020218439217x%y° +
4943158723827201353x°y* + 1303651772191169536x'%y? + 8429864204152192209x'%y — 4243778709275230931x''y —
45177199393622307922x°y° — 28301606075997008855y"x* + 1835196692163251327xy° + 22758007600386759549x°y" +
1252489647455000860x%y® -+ 22414389964821244446x7y° — 65892567492545067552x%y'0 — 7595158452411746446y°x -+

36035551550213118964y'%x — 11850713267785964397y!!x + 1426355554860913917x%° — 44581976910673314486x'%y* +

46604342726297750541x7y° — 48154372409839952652x°y* — 21004595051181953801x''y? + 78610892903842977787x5y’
22431462209519881637x%y + 31007807527273603037y'%x° — 2464441861171059694x'%y — 32325501042443900159x°y®
119366246889220588354x*y’ — 24180025524478778235y'%x* + 50820209271177670267y" 1 x* + 29152096026641446415y'?x
— 2457724805608249770x" + 5118231195517016139y" + 3055672666920259658y*x'® + 726290256984149570y*x'® +
7985057886730975320x'8y* + 772383770423397808x'* — 4732330723379600904y**x — 5254095499466804878x'3y —
200178140028166078x'2y? + 72623980331316802570x"y° + 21517502510234952969x''y> + 63876364876007732018x'0y* —

31480092263497263557x%y° + 169057355686491120420x°y° — 32909838529888279258x"y’ + 94835204915018021250x°y®
+ 42673334079675881537x*y!° + 14367035282824611135y"%x - 102055744547486257612y' ' x* -
51811425205516815885y'2x* + 8211408502314345058y'* + 39938356037513043353y"°x® — 2125731163125609504y> +
92509715697773520636y"7x> + 542240298673380118x'2y!3 — 10448486215131078933x"!y!* — 8107627329046061753x'y —
229369028536070040y°x — 128305108637214406534y'0x* — 7427454274612507298y"° — 84831360518117845512y"3x° —
4066920852463738477y"3x'% + 41343322532925709888y'*x® + 46677388503183257872y'*x° + 32385704452078613813x'%y
- 109469892911427373951x°y'° - 58919367523458301180x"!y* + 11725465437407464539x'4y -
26287692670256004624x°y% — 97980080709564905027x'%y% + 41318528359200798310x'%y* — 12472980446386901283x%y’

+ 37693355041595440198x7y® + 27895078726520439276x%y° — 64399381462799056361x*y'! — 31173381145835410654y"*x
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+ 30196826751790816273y'2x> — 13647395596308457405y'3x> — 44880847895694456x*2 — 332273133100711382x'!y7
— 5138494237208120504y*® + 235591858128148900yx°! — 3167023509928944484y*x*° — 1355687917112321652x" +
620465905331097024y** — 50823643934613870990x'y? + 22131141142022395516x>y'* + 94633172570991491792x'%y0 —
75412417033734167507x7y° — 11466888479506849233x°y" + 66215568148821112874x'!y> + 190126347221972546524x5y'°
- 172173440008586658602x%y® —  40020036759825992680x'y* - 97760518699927668822x"3y? +
204734042951143328317x°y'! — 21988545483500038017x*y'2 — 72146143857576755246x>y'> 4 27393697522732666814y7x
-+ 4907141785115033728y*x"° 4 93331135252296000y*x%' — 136683480143000124y°x'° + 3628492893378775878x'0 +
3726310835231960095y'¢ + 11670024760824834106x°y'S — 62233506026698059713y2x!0 — 62639141833027009907y'2x!!
+ 5225003326873610274y8x'® — 51217659633550875y°x> — 13377939768843613199y'%x!4 — 442190776944969311y°x'8 +
3677974601359595653y°x!7 — 29483367520134918900x'7y* — 6741164067893267403y3x'* — 30455987425352360395y%x"
-+ 19443903513046654615y" x> — 20229183590796329464y"x'® — 24280516782129533571y*'x* — 891561028032000yx%>
+ 14692141728303056181y"3x!" — 11224033920000x>*y + 2464315602110872808xy'? — 88455403916909785x'y!! —
2944196597266856088x'y!® — 83429305547849632x'%y° + 1084158428391074118y°x!° — 63888527160480788398y'"x* +
13690185184898078623y'8x + 38081607567953090539y'8x*> + 5865142393129438886x'% — 4107273157351859220x"° —
2242497674412156908y5x'® — 18548591460445788312y*°x° — 3344299391452637295y'7 + 3187132481183706126x'7y

5461858988435563049x'7 + 76240800944556599418y' ' x'! + 4355922243983975310y''x'2 — 33421036844964755808xy'6 —
62290174589609635181x%y'> + 57882028862075014470x%y'® + 40179071279497330613x°y'* + 7426977739538910635x>y'
+ 6502298517361977059y"x'7 — 14065850579336011765y"'x'* + 419675913396000x>y* + 103843958462698135966x*y'> —

143599622209371599711x*y™* — 44569316000572067374x°y'2 — 1253215888609725463x°y'> — 64471236226295796949x°y!!
+ 194316186113094298242x5y2  +  25157820548650975258x7y'"  —  23079361042092473951x"y"! +
55075524130468094850x%y" — 235405141723252565212x°y'0 + 79452926642487096305x"y® — 80580412373501049411x°

— 455978982360692864x'%y7 + 32143989304219499614x'%y® — 72334308577067963732x1y® — 11686546404156600x*2y* —
205252349642260020x%°y° -+ 466452617234223888y*x*! + 21252607977876997021x'2y° — 12218287501985460085x'2y° +
97401012232175159053x'3y* — 87114498177968279162x3y° — 56122503325526604591x'4y* + 62521797613080753050x4y°
+ 16761192365449586961x'3y* + 19661231907296800815x'y° -+ 23272484489277404364x'%y> — 7018300068987984y"x'3 —

19876511732362295344y°x' — 49769933818622091027y°x'> — 23824690928002906556y"x'* + 283218222166016739yx'°
— 15321885022112417794yx'® 4+ 10411946036688114069yx'” — 5368075032319200y*x* + 85506046337019060y°x>! —
702393987520842948y*x*° + 9032578351268259987x'%y — 4189342542675424446y°x'8 — 5429185413221233124y*x!7
-+ 159432300000x>° 4 4743712344718791025y" + 164846225462562161980y5x” — 79355919405245531997y15x% 4

14149981169938448899y'0x5 — 24263305907870807485y'0x” — 148348457876611114334y'7x° + 96387524374039050890y"7x°
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— 11868681254815922907y"8x* — 12254952978035392697y'8x> + 12909194357899656724y°x'® + 9197814026997244935y°x"7
— 23219700606180882592y'8x> — 8677070585513992439y'8x5 — 23077027646302747032y'x + 70483390247133314184y'°x3
-+ 38988873667293058199y'7x* — 79937947876231449546y"°x* — 18262180717817788838y'°x> + 5682369227377878871y*°x>
+ 15425193292561474014y*°x> + 14902069881621381546y*x + 9770781809383632051y%°x* + 28568085134902584924y2!x2
— 13558280184161240351y*'x + 10432059065841305410y*'x*> — 5425397615604735028y**x — 1457467095665985521y**x>
— 2516434234600838970y°x%° 4- 7972069449489909639y°x'? ++ 11049290118787600015x'0y'> — 36589812407225258248y'"x®
+ 2886776315136492364y"8x” — 55954212740574827775y"*x'® + 1570226714539044689y ' x” + 34567614364045323220y'°x®
+ 21334831858226502403y'7x7 — 8303245675919409487y° — 632712405459673298y*' — 2196756197639150984y** +
55218491937093079423y'2x'2 4+ 15532839450000x** — 9777475266015449706x°y'7 — 9940000368099812347x°y'® -+
78789146291233514710x*y'> + 58510872115537778328x°y!* — 47219103079639638935x%y'3 + 84882506609144921523y'0x!2
+ 15661278806276527887y'x!3 —  42699936130043119649x7y'2 4+ 79945092467799215872x%y!!
132910473711911919640x% ' + 148689181731162765058x°y'° - 133853241662687870991x°y"!
34547273940644392104x'%y° — 2223511414972646275x'%y'% — 94020297899329776258x!!y® + 48582389730366548794x!y°
+ 34448881497277445964x"2y7 + 54673126895969529274x!2y8 + 62969405946116946132x'3y5 +
6452467205393597713x3y" — 1069068841247987785x'4y + 47539884415426750626x'y° + 12688070673015342786x"3y° +
4173253261129094546x15y* + 5428467955888673164x'%y* — 29209618358703323001x'%y> — 2119162792630311582yx*° —
15308271359297385911y°x'3 + 3119794820299397914y°x™ + 44950809985166693144y°x'® + 28718327141457454430y°x'?
— 1278410685042393 — 121107931499614899813y'x!! — 40205507963370868534y'1x10 + 115591783831958644051y'2x° +
7575164908459365698y>3 x> + 2062971615934699539y5x!7

Rs; = — 86756181343880963x°y + 8486492048952984x + 5541974659295388y + 33161579674001372y'"x
—  8014589270427027y3x® 4 114666389170512346y"3x” + 1056163081012416y'%  +  761125129076036x° —
9085897930576919x%y -+ 15472187334130122x% — 6943557630221943x* — 92468387651133049x°y* + 18448160902796220y>

+  38867388082222617y" +  14193844488203397xy +  6806754125056093xy* +  32895062771698343y° +

8217258162778692y"x” 4+ 173714540459526655y' x5 —  59335959566027578y°x  —  4793183669838007x° —
71673253007038335xy  —  215342533721173084y*x  —  165394531365783294x°y> —  220226681270606214x%y> —
39592436463837330y° 4+ 109085804250833473y°x® 4 120144238671266760x*y* —  134988012020580174x°y*
—  162036856245533138y° — 1710023311683111x° — 377492963340560225y°x — 261409850517648021x%y* +
27824955872638904x°y  —  238236545608705024y’ +  622620379884885639x*y°  —  347990514507210669xy° +
498675792595471522x°y*  +  366065028398724155x°y* — 125087961232129518y°x° 4+ 595783955268257205x°y° +

1245453918574180912x%°  +  1377535973588380566x*y* + 212360739048318256x%y* + 117117660050267745y° x>
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+ 70190513662332700y"x  +  1555301079432218642y°x> +  74476889535332003x°y +  35736451621278558xy

+  1206103576299430x7 -+  1821235655714571x —  224821350512313092)® 4+  19094063929012853x%y  —
37778480916136487x7y* + 1237183127499638168x*y° —  263255541981020559x%y° +  173808139385678570x°y*
+  1975892079167666255x*y°  —  384799550205581706x7y* 4 2437961697782021x° — 17572159393297631y° +

1886041694408699x'0 — 358923999382824x!! — 309501064225714x'% + 233650378130292344y' + 284170443999870211y"!
+ 155581886411741986y'2 — 1074867513078739944x%y* + 15481526673508650x°y — 644539859606190946x*y° —
1798236446828582908x°y° — 53226567665250538x%y> — 2388146250032083087x°y° — 397912564700202822x7y* —

3649007416141421094x*y’

1791160084550170692x5y° — 56539870185027155x%y° + 166160423786680088x%y* —

3421208257543069381x°y7 4+ 248503372094252595x"y° — 31060440720805183x°y° — 3484551847994190539x°y° —

4809043290578928066x*y® 753187538838934540x%y% — 17135915570361009x°y* — 40529011216337439x'%y? —
4369589443055795x'%y  —  7748628631019839x''y —  5068096126058489884x’y’ + 2319700194238100897y'x* +
997891986786449037xy® +  673933146046915463x°y” + 2145749656671841100x°y% + 164573249253878677x%° —
2278735274978597437x*y!®  + 1561941448033398716y°x + 1141625745270079290y'%x +  146912402310457116y''x
+ 99049307841x*° —  3101910493441546x'%* 4+ 1387769426315633056x"y® —  22110393587860113x°y*

2187549113574298x!1y?  +  1424364329995406524x%y  +  265839987515183635x%y° +  58855960093944581y0x>

—  86479993777402x'%y — 672697736692157239x°y% —  2608859395231037685x*y’ —  4465042965869428177y'"x}
—  3347183930013301496y' x>  —  709448982558187852y'%x 4+  295994551538185x'  —  19707249602224670y"3
+  53057269767478x'8y*  —  39300385622398x'* +  2769664626407647x"3y  +  35452210894778351x'%y*  +

14250819065672905x°y°  + 121882617700289392x!!y* + 123737432767808275x'%y* + 174814310943622684x%y5 +
2598333236051846993x°y° + 1388312404893338772x7y" + 3277455203458339655x%y + 1255323670179627253x*y'°
— 851623737322776424y"%x — 1565743982510738756y''x> — 2416710864982287210y'2x> — 92605293503446212y'
— 99072120095132648y'"x®> +  1587233905656140xy —  249973468530112884y'x* —  72930287881101694y'
—  16273438376456870y3x° 4+ 490243002196500y'3x!° —  17465494425413860y*x® — 323658909887250y'4x° +

116406583353270808x'2y* 4 3370687327803530008x°y'0 + 280598242250573023x''y* + 2139789907825876x''y +

145927886562228381x°y° + 398780588397175262x'%y° + 25598653309150532x'%y? — 197877930434357802x%y7 +
651177205584197650x7y®  +  2511603847234483616x°y° + 3445944858200696444x*y!!  —  545369768229609829y"x
+ 1325837166046888426y'%x* — 813448902242872262y'%x* + 8888901442996487x''y’ + 51725335201145x +

14080143360423928x'4y? 4+ 298713558342303841x%y!* 4+ 542499297583673613x'%y° — 696655762641087224x7y° -+
485609811615973156x°y” -+ 334905195413860893x!1y° + 713133663635149657x5y1% — 249975395945986976x%y® +

146029635450411232x'2y*  +  56453527595549149x"%y®  + 1621046685891289817x°y!!  + 2739040978139968878x*y!?
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+  2103950993712591669x°y*3

1007408651892006y'2x'° 773555615920500y'2x!!

97118955928750y%x'5  +  408585279456550y x'3

2588340301528646y'8x* + 8691556972647x'% + 1588360648394x"° —

15204928572236x"

+ 3211050251534776y" Lx!!

171355248250079638y'%x

_|_

4+ 119634535615913x° 30132657643717016y"°

+  561433122314148x'7y*  +  1450349677418460y%x'

40774028419305688y'"x*  +  13482695626510138y"'¥x

5046824088841892y'7 -+ 355680809232903x'7y

945441459732000y' %12+  4355933463779646xy'%  +

471222282915181255x°y"5 + 271343991757625748x%y'® 4+ 1420855826446866115x°y!* 4 431825800512364291x°y'> +

915158229325515310x*y"3 335318823264808823x*y!4

849333146231411755x5y!!  — 617817885503408785x5y!?
74916876680872278x%y° 4+ 229737309198380176x%y!°
454679177602968786x'%y7 4+ 164462300963014041x'%8
16665201448505602x'%y%  +  57894713755107862x'3y*

+
+
+
+  28978116288452681x'y* 4+ 8211124056263385x'%y?
+ 577163354053236y°x'¢  +  2370614045638873y%x!>

+  6607181837454910y"x'*

315353713910995561x°y'2 1031788734366848832x '
— 827713165934372181x7y'" — 370264959065146121x7y!!
+  541568858176106580x°y® -+  407029004047775068x°y°
+ 197407579201422610x'y® + 93695750327972541x'%y
+  45396730973187736x"3y°  +  33631000236315459x'y*

+  14099663302691493x%y®  +  3014533976814917x'6y?

+  1061063798491938yx'® +

58451458165220yx'8 4+ 318695005961704yx'7 + 4219592853168x"%y + 8542149513975y x'® + 72262664524962y*x"

+  695880678554880y"° 7646166555754636y"x7

3429872512290000y'%x”  +  37872446132843714y"7x°
—  31714978288160786y'%x° 21689656565150y%x'°
—  2328308716888014y"x* —  7451343704605010y'°x*
+  1390853367461250y*x° 154369718735232y"x

34421283114764051x>y'° 529158706290016699x*y!3

+  2429949109522480y'°x'2 4+ 49666771775250y'x"3

+ 54689191343869690x°y'?  +  88013458299969546x°y'°

74700875054093968x'0y!0 79939007161608505x!1y®

5886702554361495x'%y®  +  33080365899308171x"y°

+  28751451935053528x%y°  +  7634669471463023x"5y

+  3532503084724972x'%y*  +  1510605994923531 +

9202931941328310y*x'*  +  2717293330635731y°x'?

40335049078264757y'2x°

+

+

4+ 57415380230793164x7y'?

-+ 20999011476516387x"3y’

19457955770902723y'0x!!

4060676332734000y'°x®  +  22165809832124574y'x°

867932069289250y'x° 4+ 11917335198710438y'8x*

+  5694612977424000y'8x° 4+ 1646426486654432y"x

-+ 5111133458508000y"x* 506186945011440y%°x>

113234798989312y°  +  59708776194312906x7y""

598722366132868085x° y'* 116230705747362073x%y"3

+  275553937616918849x%y!!

34002400543337386x°y'! 58162036366163447x'%y°

64314395114033903x' 1y’ 7110129071566728x'2y’

+  17587037796568531x4y°

+  12355150308937776x'%y* -+  1746277813479810x'6y*

2066430427258120y°x'3  +  273125275400250y°x'*  +

36099123772653944y" | x'°

Rs 4 = 43267353965738294940x°y — 9526567654666088676x — 60068896862916747224y — 3383465420438421116610y'"x

4+ 4843775614797471230040y "33
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194329634100974134965x> — 185859894192822178636x%y + 57395991719120667324x* + 111064605669703506744x* —
322653532211028174434x%y* + 13349950966029352668y> — 293931269357906047400y* — 86884820564762769561xy
+ 154948991299842407302xy” — 197471209889799269964y° +  4732875502346242331221y"x +
20429919013502802998028y'#x® + 456141442396943367312y°x — 29957058020358148000y>° — 411406188988322634714x°
+  918280954543722215961x'y  —  651263868152218562934y*x  — 1049391926770454485443x°y>  +
1133989266219862064416x7y° + 475495312424655051140y° - 5377616921984826204143y"3x —

1733113263148303100186x*y* + 2743429224197996975933x°y> — 426039709605701771862y° — 436224866315725141932x°

+ 1430427305796389068771y°x - 2011039267438964741021x°y* + 1155071129852195055972xy
—  691983713415834828210y’  —  2564085057099261146239x*y> -+ 2821398868659225296350xy°  +
2417755926630299945182x° y* + 1423866171491741246922x° - 9830473604965171815176y'x° -

8510313896657262128585x°y* + 8178852438365036473365x%y° + 9375089839573465202905x"y* +
3368335275437762699893x%y” - 2800661728666500378942y° x* - 4012003079509228532443y’x -
9838032096193377788315y°x> — 49752157114461378392x%y — 1464403135547961597468x7y — 53440422370057969428x" +
554966822868402178464x" + 2076138121468474828266y° — 1671224953093103201374x%y + 1528709308350541622925x"
—  11225238273568889976574x*y°  —  5268736673115588988629x%y° 4+ 8033423829277061092682x°y*  +
12610727663911758076274x°y% — 716557763500086791023x"y> + 483289876993382366637x° — 1143030988268695033374y°

— 303898362202347168960x'° — 408898236600151893060x'" — 128115817892149341186x'2 — 1047907393149461360386y'°

+  3317896423431431088891y'! —  2643573345315579148745y'2  — 1781390710732762767560x°y*  —
642768194753710903332x°y - 10641498045904078946092x*y5 + 8542223332490470665688x°y° +
799181040579517001712x%y* - 30259788517301194612662x°y® - 8913699385973040481085x"y* +
34880128277713698768275xy’ + 21033582609711894089007x°y° + 8032690145501275961471x%y

— 2160552186060014849600x%y* + 26450683287945595019407x°y" + 4938941440309834401192x7y°

+ 258842594520769821193x°y° — 34567970407092312526690x°y° - 30957479805996013869704x*y®
- 14763922310510283427175x5y° - 1613072081590445529403x°y? + 4096797488807738848640x'%y”
+  521189120592362481488x'%y  —  156678556190890340481x''y 4+ 29260977939035056894105x°y°  —

9150686219873262318443y"x” + 4628680870840226792583xy" + 8743398358627006448526x"y’ —

8129956373780568840441x%y® + 20586856363964780153787x%y° — 21601312877534741383063x%y'°
+ 3524934104178739730484y°x - 11136705292129240459554y'x + 8404695637340463115937y!'x
+  158146601456715150825x°  —  6835926405085497596722x'%y  —  924078639463366559577x'y%  +
3832017005383690737867x"y* + 5164508129562536939619x"!y? — 3731281777661952384524x5y" —
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2478901206433388851169x%y° - 3567504521443314438129y'0x° — 1011019674518844928091x'%y +
11594542389762588278537x°y® — 6823296786819966205369x*y° + 1887458740850539810280y' x>
—  2232662041253023309095y''x2  —  4341053669073204802035y'x 4+ 674511528045434532840x"° 4

395459499658167353140y'% — 162487130736840753744y**x + 1892720870421933823596x'8y? + 933353470441147295961x'

—  651364776878776552644x3y  —  1178580107322475770161x'%> 4+ 12372388136944825410039x°y°  +
5125397228716782109080x'!y? — 17758843934156140343652x'0y* — 6802750075376492614444x3y° —
44042040141534556143418x°y° - 1141548270868341773741x7y’ + 29438700031337874838288x%® +
41535605192797418312190x*y!° - 5073823417467049506131y"x - 30864975436440139966892y' ' x>

+  15961643127206992564151y'2x2 4+ 504609256983584250989y'*  +  668368443600394415730y' 7%  +

20353589027347713732x% + 129350134061653445928x* + 2114009896847366386416x'>y — 4108656690964056788719y'0x*

—  494508176333727387217y"%  +  8643439378273456617341y3x°  —  886851530343348927665y'3x!°

8650032208178867192547y'*x® — 1177938333081697066561y'4x”  + 13385121254436052103634x'2y> -+
19775814317619254343739x°y'° - 33101545464964644071633x!1y* + 834889806925685295282x!Yy  —
44076853444295987989623x°y*  +  45067685712845997890724x'0y° - 8071571899101276321464x"3y? +
43348371681024063163506x%y’ - 30571048863042370716051x7y® +  7229580461517617943944x°y° -
26450151636078918883542x*y!! + 5632139286837828745116y'*x + 27127439552189094102088y"%x>
- 13458622865255195744646y"3x - 384120382511437815595y°x° - 34393735245841421074651x'y’
—  251356068793948958723y'7x®  —  913228379177608696814y'8x”  —  156744610898790218646y°x®  +

165677480881015410627y"x'® + 398763400488043757526x'> + 972767284567158762x*2y* + 472965332714842780710x%!y*

+  4193625377936714962169x'%y7  —  5046505214605549994988x'7y°  +  2293119275199561388788x'%y° 4
422960339095041663147x'%y* - 1316256987045034064115x%%y — 12153285926157784622405x'y? +
8853370204179443049165x%y™*  —  62358096646947764953911x'%y%  +  54414978645947702655603x7y°  +
66476205307216633952137x°y 4+ 50344102397769450479823x'1y>  —  47939424255118267948925x%y!0  —
58988362996634448725863x%y° - 32715366687904052821173x!2y* + 20447720655362580824046x"3y
+  25224255836077491731713x°y"! - 10408312943538926008342x*y!2 —  962083314063980462280x7y'?
—  5395467681013965243965y'5x  +  248274232286304965679x*%y  —  495160566681977823888x'0  +
1095244264836537520354y"° + 36139636861484216620y'%x'° + 5053415079682074682701y'%x!! +
1242820467415552845138x'2y13 + 881868797421762303534x! 1yl - 687312643183033211873x'%y15
+ 719133344638758968907x'7y* - 2204218162596518918112)83x4 - 1303887772867324842085y5x1
- 4820947239468606993500y” x'3 - 208509584333902228472y% x* + 1935123779833817082834x'%y’
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- 2974595192690899026515y' 7 x* + 2424149909237402440008y'8x - 7524681757270277977212y'3x
—  325181906903985228441xy  +  1853366229361880862480x'°y*  —  175270432645974306420y°x"
1038510438384254099652x'® — 340657846751124733032x'% + 145782110176389418140x>y* — 2210924579323290454183y"”
—  3218404140448039090776x'7y®  —  1148944240075726627128x"7 4+ 1043064229944770546138y" ' x!!
5388557737030986538698y! ! x!2 +  7085312754840271022216xy' + 1043265805034237824212x°y' +
3039044777081930798105x%y"® - 12763229575653114893046x°y' + 16044396357379039525388x y'3
—  191068429011600638072y  +  246089172508736544567x*'  +  32579407519242787204461x*y"3
18233061001096721564444x*y*  —  60195514031417496924289x°y!>  +  33486857125363401572404x°y!>  +
62486929497845323807667x°y!! - 30358666751461239348636x°y!2 — 52302042928342749079775x"y'°

+  6061026307199057918869x7y'! -+  22478073638005480182075x%y°  +  2633619392921084220487x%y'0  —

13555057461916664775407x°y® — 18175223061665521941258x°y° + 7268075048001769869817x'0y7 +
32659648815986003342606x'%y® — 10606799545871378968890x' ! y° + 24171412578303476479372x'2y°
-+ 23195410806138267460207x'2y5 - 19878321256717001156556x"y* —  7832028488615002112281x'3y°
+ 446961852852778711521 1x'4y* + 16953495663346985737722x'4y? — 9128660811106183076607x'%y?
+  6606491327741650745196x"y? —  3526420601949462642438x'6y2  — 18058255991461147752784y°x'6
+ 10138907950102119610943y5x"> —  7149924557643877031165y'x!*  + 1372930804736875574063x>y°
+  2518905596878580946777yx'®  +  1211762353339904169951yx'® 4+ 2248423920516096897579yx'7  +

349582341915118089738x %y - 6759216901967749935894y>x!8 + 10248840036435632861320y*x!” -
1714783309157468630879y"° + 7723232880742446678716y"x + 5679488763145788462164y"x8 +
1483881053595633073010y'0x% — 3640380760173882865597y'0x” + 1226033989140566826690y'7 x> +
992113944547987248591y'7 x° + 1623804081249750095563y'8x* — 5104019966150886642138y'8x> —

32041837581214208901 + 518336606461096558308y** — 4460534482207071881529x"°y* + 4835581083461279317296x'8y*

- 8365164748103491408159x'7y° + 5197773089902837663455y5x'6 — 1176624609535270872250x8 y'°
+ 1420113418187232352602y'8x° - 1650785027863588900024y'%x + 750644994488864419347y"x°
+ 506614741590518947004y" x + 1014666016786173698442y'%x* — 832176548500381455381y%°x?
4+ 2025590779925088133365y°x*  —  787205171290885269986y’x  —  406227680295360401334x°y">  +
1513757364923542739080y*° — 930371404607850917502x'3y!! + 3270597264935377456406x'2y'2 +
1576648882402854685148x!1y!13 - 667434523219338678738x !0y + 3902299297592100781824x4y!°
—  280247139640565363636y*'x*  —  98560214421903924824y* x>  +  2398260685158576856955x%y"

5182794778595081190195xy'6 + 7092406123834113303881x*y!3 — 142101920616216076780x°y**
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3852773328889978791235x5y!3 + 3313869126091902701569y'*x!2 + 7837224157074575432395y'0x"3
—  960550493982564372092y*!  +  1856375698010482345018x'7y* 4+ 22447179526066232052794x7y'2 4
753996913467306854187x"y'® - 23115168587341159514000x%y"! +  4473482499555230608264x%y"? +
21432254430503144039959x°y!®  +  11531756725047518956575x°y!!  —  28867860615911445289353x10y°

18145045280502921842053x 010 + 24004776489979963763577x!1y® + 13158462745079346723065x' 1y’

17925320683016106510092x'2y” —  7976958059808987738481x2y® + 18535330547931327679259x'3y°

- 9532737434454981715907x'3y’ 4+ 9899295245470731104332x!*y° - 12243772747461029712256x'4y°

9848644403897375309690x"y + 5867299990067753548368x"y* + 5515576544899916569738x'6y*

+ 1696209208006810783932x!%y3 - 545246283507171129084x'6y® + 5280075378193780783992x'7y’
+  929412646100634741344y*'x  —  485269955195230855359x’'y 4+ 1054661938326294616251x*y*

2615459803152320466678x'8y° — 3576933068398169927107y°x"3 + 447874168845876731617y°x™

11929276745054322162840y%x"3 + 17292765423203646810342y°x'? - 25504231251080855639181y'%x!!
+ 13429151161339681980594y''x10  —  6564279566563660718584y'2x° 4+ 2023522207671932950010x'°y°
- 663707791027787834982x%y* - 745699128581489917767x* y* - 284728727457615097348y"*x
+ 1563993761871230757522y' x* + 335130725839464610650x>'y? - 299138336447884073442x%y
—  134036755490340787968xy  —  70956998338447793988x*'y  —  596829515014028656605x'%y'?  +
2491502383984318071554x'4y!! + 914204709876921844466x'%y!° - 264089852650673886989x'6y’ +

62764085342700880944y>* — 79336573159652447342x7y"° — 233353396803267927038x*y?" 4 108228628250665853304xy*!
+  276213661380020280320yx  —  741840252463693868754xy!7  —  530803198642684581056x°y'® 4
235969628472023228468y%2 x>

Rss = — 3927922708133883282xy — 462696125077267130x — 31695111533956471y — 9063802100420642528y""x
— 7933066594651978391y"3x® — 25955885313541751540y'%x7 — 3684080826170368896y'® + 1188629740022703014x°
—  1374548807434647315xy -+ 428651275126455250x> -+ 234097402722937128x* + 2577484576114553146x%y*
+ 2932910627289208996y + 469564813665288181y* + 65598937420314306xy + 5500368736020605660xy> —
4194955946689359371y° + 2708504428664432462y'*x’ — 30410358687891253237y'x® — 4275502992815816162y°x
— 534391656780023161x° — 1489663868061076448x*y — 4510254286412644051y*x — 1732984473517456992x°y* +
4611653437108334268x*y* — 6000001152385749441y° + 1053456485198124960y"°x5 — 647295734814830821x*y* +

13593870813388179265x°y° + 10177807734010498250y° + 50875350864337366x° — 13262664287939817072y°x

9697967662729930414x%y*  + 3600434869218929421x°y + 9302021338303855367y" + 246278459351759547x%y° +

16634788580149299513xy° — 12980093524527016693x°y* — 5367008523798100967x°y> — 39309158564621660630y"°x°

190



A.2. TESTED CURVES

— 477636208935777103x°y> + 31407911443246929624x%y5 + 13009828772909400393x*y* — 7199599368328465193x%y>
— 18355038903048230809y°x> -+ 15775421664507907250y'x + 93510580354694919y° x> + 881973980165225309x°y
— 2052306208657905176x"y -+ 478060254582552546x" — 103507996946793258x% — 10275323896092512084y° +
2794510560787045246x%y — 3001591817750443218x"y* — 12312777588178715376x*y° + 15237349429012885687x%y°
+ 14426536294715528698x°y* — 7355984531563774630x°y5 + 14778321758190942869x"y* — 977690598543933745x°
— 1890353749832877128y° — 452229454937713327x'" + 466004921485321536x'' — 176838013794473585x'> —
21163797498558146368y'" + 28158412219790809712y'! — 11965665547735605024y'> — 19411580720482958550x°y* +
5172008923350108889xy — 22559636671679180299x*y5 — 15826877265421118456x°y° — 5806871845197528981x%y* +
17785161657197334363x°y® — 18906934278496533101x"y* + 74217205459847127875x*y” + 15534418119870818461x%y°

8296148648276149087x%y® + 43676024917615754326x%y* + 51910685493001450022x°y" + 37770112201916264420x"y> —
3107961429912849686x"y® — 10758351559529087385x°y° — 109050712207470473506x*y® — 12754865609182031519x5y°
— 8279136652174874733xy* + 5735030386689756886x'%y% + 404013978584560610x'%y — 2270221936871651185x''y —
11200825086614062100x°y” — 18011241677573914148y"x* + 12862090519264226415xy° + 17799357409472016793x°y" +
81240018257067931492x%y® — 113689235789434458644x%y° + 35270849611877492592x%y'0 — 42142174805917930586y°x
— 2773920995936930319y'%x — 6522551273657861116y''x + 114756009218898141x° — 9270251026646601387x'%y> —
67269832195829383826xy° + 19665928054456430353x°y* + 6458821787617435282x'1y? — 5769548238993993679x%y" —
41322663124917202731x%y° + 15697359225304448800y'%x> + 203719819456580180x'2y — 64187009708111079885x°y® +
133858912629196103151x*y’ — 37557308516329819397y'%x* — 44655541098695941506y' x> + 47254281990319127292y'2x
—  442021317635108531x'®  + 19208654288647520032y' — 21829251840000y**x — 283491553952539791x'8y* +
177441262458004213x'*  +  1830470996417276955x'3y + 30879114797494407x'%y* — 13579369034295768339xy° —
9794985325046889526x''y* — 7051942059884385593x'0y* + 2868419324900517232x%y° + 47225454628192269049x°y° +
45654238846610270989x7y" + 82047181721000871288x%y® — 138577778459692354675x*y!® — 23000448731773187836y"*x
— 9061578269464774984y 1 x* + 82034604095611801362y'2x* — 21637545703468417184y"* — 8726389685073423568y" x>
+ 54871960708149871x% — 44828389501794506x% — 2564271739487966671x>y — 9965522139246974160y'Cx* +
12262128454308733824y"> — 1686291894650397275y'3x° — 679883534932037375y"3x'0 — 541865740679584990y"x® +
457909471663349456y"*x° — 3231387026053815491x'%y* — 34761138717014600222x°y'0 + 6103022852084411215x!y* —
1421517895410865678x'*y + 7144842724982408940x°y° + 44182717712517981418x'%y° + 2111571639738189796x'%y* +
4791172776747852469x%y’ + 35577458783758343276x7y% — 135829939901239945159x%y° + 74467358362782995825x*y!!
+ 9558553078916865800y'*x + 49021825105656939144y'2x> — 17776352304395762026y'3x*> + 72451014748321614y*°x°

— 28613435989248262710x''y" — 36968572458021534y'7x® 4+ 78163115676229012y"8x7 + 158740202807197825y"x°
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— 402414964352735735yx'® 4+ 215692475549678634x'> — 297220446405490557x*2y* + 408056940434266902x*'y* —
2401407762655050104x'%y7 4 5471559705822746937x'7y% — 2028583598800268184x'%y° — 185456049007213204x'%y* +
853481120281123015x%°y* + 5686176009146814084x'*y* — 13754473070876946208x*y'* — 55883103035853191179x'%)5 —
86914943163534293588xy° — 51243452223765088554x°y + 6001426437469747314x!1y> + 76187741083573726733x5y'° —

10706273107943235571x%y® + 2110476242824608437x'%y* — 6865841510118961555x'%y® + 1686224301509603728x°y!! —
41592689537275109200x*y'? — 2384403747231446603x°y'> — 24789622369010316960y'°x + 122054765980681217x*%y
+ 260295967229512504x' — 10591034218736974784y' — 271530232957802315 + 16424255948979201854y'2x'0 +
8951644165204842162y"2x!! — 13299080533211527x'2y!3 — 123593236342410887x!'y!* + 142566558767045691x'0y"> —
868640093160533903x'7y? — 4590499900184114911y%x!* — 2236466063603474414y3x> — 4680788015809749042y x"
+ 287634719820800y%x* + 3014495633117771704x'5y° + 10207493331179105339y"x* + 5800948061440613504y'3x
— 9246381804336709744y'8x> + 268238936114929244xy — 683433335811816448x'%y* + 444172793232455132y%x"
— 191043796448172658x' 4+ 79093103812144062x"° — 47528865626964137x%y* + 7776331657977001280y"7 +
2093127447452962919x'7y® + 123154369909768153x'7 — 7003225048335675748y' 'x!! — 4580090415606191713y'1x!2 +
19524728515137412528xy'® — 2471504294059943456x%y"> — 4583188174348211180x°y' — 2093910258679296887x>y'*
— 28687139057357653282x°y"> — 712253476915200y%> — 143716584675129568x>" + 68578472453229762663x*y!> —
44275554203604836424x*y'* ++ 14175549147184374668x°y'> — 3302369271016117112x°y"> — 1114121556267240179x%y'" —

33961252419454563817x°y'2 + 50576576145787871082x7y'0 — 27008115839597042006x7y"" + 62709064025821762795x5y

117153306295941953702x%y!% + 65136947983350121636x°y® + 1204429468021402257xy° + 8042463906017195154x'0y7
+ 12515177127748296237x'%y® + 868800680521369394x!'y® — 5671030453544111643x'2y° + 27641852933812187046x'2y°
+ 380771977376084336x*y* + 2005724307919159055x'%y° + 228547520352482831x'y* — 6516003251052108971x'4y?
+ 2773388813174335410x"3y* + 1428980436433251412x"y° — 624218816080335781x'%y* — 860717140497857449y°x'°
+

7720352416482183062y°x'> — 9058399177024485653y"x'* — 103604260137627645x*°y°> — 275042602553427811yx"®

360992473412073793yx'® + 239401459776560609yx'7 — 108409785441480599x"y + 1440699147335453771y°x'8 —
464733794763754694y*x'7 + 2206676264225011968y"° — 902767186558186169y°x” + 3187686600337998792y'%x® -+
1924894190843660449y'%x° 4 3174706086836363855y'%x7 — 1274021658159612444y'"x° + 848943403490691099y'7x°
— 3340009137963699201y'8x* 4+ 3820078185362775640y'x> — 9220962867966382x>* -+ 8086147984727040y*> +
1359771117303346260xy* + 121042554345959497x'3y* — 3825673222172106002x'7y> + 6147693277107898316y°x'6 —
768355203016784472x%y16 + 655106184844762408y'8x° — 2891550467358696192y"x — 1871340948866434336y" x> +
3654643516241063536y'°x* 4 481920409931589642y"°x* — 720724903884842208y°x> 4 537276323260831680y*°x> +

927719461804651456y°x  — 753428300013856584xy!> — 855096039445754368y° — 1190727069493750145x13y!1 +
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2082790238258049107x'2y'2 — 1831953150444062584x''y!3 — 2032326710284731709x'%y!* — 3538497400705965351x'4y!°
— 3965930309915336y*'x* — 2395178889987840y*2x> + 13058766346202845648x%y'7 + 23707062207959239212x3y'® +
8830119471853468513x*y!> + 26516018572132175674x°y'* + 53605052961536245286x°y"? — 2865317614049242778y'x'?
— 5098351781031300987y'%x!'3 4 57099565493762560y*' — 188395407154576524x'7y® + 42326275092534708821xy'? +
423470558680727036x°y'¢ + 91239779078649580648x3y!! — 17919797152135909844x3y12 — 48441516683609073180x°y* +
32810533820282986653x y!! 4 18679301072779241963x'%y° — 12706067161278976373x'%y10 4 11148010804852982720x'!y?
+ 33127226453290692100x'y’ — 46433517981949837712x'%y” 4 25139159330337742445x'2y® + 7869701994366213599x'3y°
— 8864937452016963130x'3y” + 14078840331117565253x'4y® — 3145255561978813061x'4y° + 3108764848218210580x"y°
— 7668973383357228234x15y* — 3726429725787957501x'0y* + 2634828737206720976x'6y* — 1554082263981873925x!6y®
— 1953190371493372172x"y’ — 212378443115034752y*'x + 319481824802857664x*'y — 635450008081223105x*°y* +

1773301740408950136x'8y® + 15659524371986120606y°x'> + 9132802190865525968y°x'* — 7340399096419683346y5x!> +

5797344307050385909y°x'2 — 22564166556022166410y'%x'! — 17990657223535547185y" ' x'0 — 4072516830429319288y'2x°
—  876767582230944453x%y°  — 11241925743117615x> — 331575499058196390x*%y* — 143173759819332224x%y*
+ 1448097349994240y*2x + 56781493549208512y*'x* —  453095895620253502x*'y* +  158034851530777483x%y

+ 9845257992083267x%y + 12690339134062616x*'y + 405612850936027297x'3y'? 4 52078274968581174x'4y!!
—  660277747776766569x'5y'  +  825964193373142534x'%yY + 15717061324800y** — 507036319845113538x°y"? —
118127895354274748x*y®  —  35840360271379488x°y*! + 571718685852160yx — 1540796278729557620xy!”

629435390735123897x°y!® — 1388356274964736y>2x>

A.2.3 Symmetric polynomials

This section shows the polynomials defining the curves whose benchmarks are shown
in Section A.1.5.

Sy = —  45941245096106962128x'y  +  28148016341223743488x%y°  +  32882480264245876330x%y  —
14714524224898937408x%y° — 50911997212513593300x%y + 43863600291456442304x*y> -+ 7390938768914190848y>
+ 9106056470547085088x> — 13070611285018568704y° + 1488131979405002496y° + 12459375657309904336x° —
1315854132455867904y5 —  8037250654592234174x% + 5778727327663720448y* + 16011799912421105198x'0 +
20793002657205782832x%y* + 2813381248092530384x%y> — 10581688806066419562x3y* — 21834277564341129464x'%y +

27383195955584346984x%y’ — 124912248385265710988x'%y* — 16628001295944637120y'! + 21675426228468933534x2

193



APPENDIX A. BENCHMARKS

+ 1411502019635362848y% — 1181860144260748800y° + 14821994344172039680y'% + 28305470374714524258x'* +
27766327107374010752x*y* + 34404766018638022728x>y* + 98432987279208320x°y — 72109403527916632056x*y* +
33317862093710855408x*y* + 45852820471280378624x%y° — 69142057514668141924x%y* + 51864968698451826656x>y”

— 35492769124505655680x*y® — 1627104442071244320y'* + 20589325158199431200x'® — 1515690512855304000y'7 +

9504320929236807200y*° — 26516051788272358688x%y® + 52656526925655862012x'%y* + 29541758060768059900x%y

8342382943991484732x'2y* + 72327656673066344508x'%y — 7961076827877404984x*y® — 14558767557122736128x%y°
43835080154834036128x%y° + 12752961155191878052x°y7 — 24820386056710861326x°y'? — 29247209864908295200x'%y” —

8520523849344508100x%y° + 39174098631060057060x'%y® — 6903252770167962048x*y'* + 39974226375994749248x%y°

46963602088579151104x°y'* — 4080095422734638280x'%y7 + 13240864102635779024x'4y5 4 17862388508457980316x'2y* —

86555589371104381288x'*y> — 20064590459988249168x*y” — 77628385565736871040x%y° 4- 60030105785089053100x'%y>

23268510676397920448x%y° + 27907892146139797410xy® + 11504387764653329344x°y'0 + 34028149798751393824xy!!
14097433048744068142x%y'* — 18133716155235357656x'%y® — 18643611668580573136x'%y7 — 20115223489573218992y'3x*
- 63254752942200908256xy"° + 39392487165769434948x5y® - 11304569552797145856x*y!° +
22519903458520722624x*y'2 — 13693492762162326744x%y° — 19115022786641778860x%y'! + 50011840055093540140x5y!*
+ 475486850918487456x*y'> — 30560953781797881088x>y'7 — 24528716279615356784x*y'! + 49666738431695346976x5y'!
+  25656185030391542968x%y'°  + 146259742324347405452x'%y° - 11775222288600945066x'2y%  —
36729956467827056176x'2y® + 13398113152111444658x'%y'0 + 52613453559211308748xy'2 — 12050796707786253392xy°
- 115543881317424146968x'%y° + 38107190681198262260x'2y? - 6344217484606337692x'4y? +
46144263121196121280x'*y* + 54675966261767474400x*y — 18953164091001117040x'%y? + 2082402981562534688x>y'2
+ 12748795646071081152xy'% + 7657624313458779748x™y> + 29074196926752330528x%y'® + 4361755743574705442x'6y*
— 11285083125938338704x*y'% 4+ 19512528538463403552x%y'8

S = 2399395100411790936x%y° 4+ 42281643635234735760x°y* — 29979411107934646536xy5 +
15484077898375189572x%y  + 25144705405129749260x*y° + 53320850368828873380x%y’ + 1883067727958338082y>
+ 1260173535556005000y° + 3080903839091815800y* + 20308684277027947808x'0 — 12920454694755742384x5y* +
43844347583935412032x%y* + 94955538835544980308x%y* + 42775651033757808788x'%y + 106559231206168418416x*y° +
100513170951804931508x'"y* + 10898190929422611780y'" — 13372578656246853652y'! — 17451569775601956960x'2
+ 8915313500172891000y'2 — 50338133368360144200x'* + 6813394769936853364x*y> + 22007055751503988050x7y* +
38353647478453331096x*y* 4 13186149270105001232x°y° + 28386826968093368410x%y> — 5136900687895198892x*y° +
55069598626397474778x'® + 23741294227292038418y*° + 72310405473031440798x°y% — 80176660245955552356x0y* +

18757821425972899512x%y" — 9648672201798694516x'2y* + 1388693460393637784x*y® — 1585642388940114512x%y> —
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74968506826490900800x%y> + 2891442126364298136x5y’ — 74253299812673420536x°y'? + 25397013326078264556x'0y° —
70555980360889138472x%y° 4 39583228161623876588x'%y° — 74323667353333040240x*y!* — 20973474833178527088x%y° +
3334702742665510350x%y'* — 118848828427828580332x'%y7 -+ 9009680518588089218x'4y5 — 74710346308827377632x'%y* +
70633192622455578664x'4y> + 46036386545026326336x*y” + 51989061010428102828x%y° -+ 6997920661694968064x'%y
5121492335718676048x5y° + 73376156204592260346x%y% — 100204923256304339336x°y'0 + 44359059280399174784x°y!! +
16867293248979769764x%y'* 4 25717898513063311302x'%y® — 67328148849245528780x'%y7 4 51283428712864807116y"x*
- 14443951355602300714x%y'  —  31841165956498595628x%*  + 109517798748025613182x*y'"
51799404905128428480x*y'? — 69633491227766901828x%y° + 139591919210514616x%y!" — 13746262932173645460x°y"3 +
69467907435124214828x*y!> — 24381105514935530284x*y!! — 9751121435836689036x5y!! — 26006681183362332878x%y!% —
77613890528119288004x'%y + 35212845930428950276x'%y + 35948799385590416874x'%y® + 23105015585731735296x'%y!°
+  4119709257082883912x°y!2 + 115206045282791110288x5y° - 133541150526567703412x'%y° -
1105772125066274896x'2y* + 46056467941224925280x'4y? — 1523719235767829142x'4y* — 6343072861735686960x'*y —
70149033509314369500x'%y? + 61294803603885843166x>y'? — 15536635408078854132x%y"> + 30793907971880427556x' 4y’
— 19779507537176292808x*y'® — 10939497371466749400y'* + 36012044810025281250x'% — 38696673850523403540y"° -+
15768228058228534050y'% — 19658934816616953000x'%y + 33680601227287333284x%y"? + 36025380972831145500x'y°
Sios = 28960748518986510380x'y  —  9571379036789726528x7y° +  27879647442925534504x%y*  +
34556035191034405398x%y° -+ 27013287456637939072x%y — 38991427843377134612x*y° + 26247033066128032876x°y"
— 29003772271430669800y* — 13938249153137309180x> + 19229677143633241042x* — 9229666712482907312x° —
28499602208184131420y° — 2832527973323921516x® + 35759589122418744200y* + 7641793834640155876x'0 +
8389208370504934638x%y* + 21431674319769151844x%y> — 4148140114765894952x%y* — 20499268071474828x"%y +
53996362539660533756x"y’ — 20116015248058391984x'%y* + 25914619271927158200y'° + 27816137158605385000y"!
— 2641590049098851680x'> + 70275966559074878360y° — 11280511429496282500y° — 29374583451361222078y'2 —
1115864769186013104x'* — 2256427948436192324x*y? — 52892687137490625432x*y* — 34318756921806290164x°y —
42482922356217654768x*y> — 5798884369459082946x*y* + 67742397011445852320x5y° + 43686903604990392406x3y>
+ 67290159178107861620x%y* — 68706425911957045808x%y® + 514867895774838162x'0 + 28547837270988640200y%° +
31383477725960945126x°y + 730305341503027832x'%y? + 43214451778717592368x%y" + 32451975391035588x'2y* +
16833540967537563664x'%y — 22000146365685223352x*y® — 15378657202693509400x%y> -+ 9060785624882340152x%y° +
29602161683047766532x%y" + 36726082284889719262x%y'2 — 37902212109136794064x'%y° + 41125482660855212836x%y° +
29369563095624779634x'%y5 + 26284542570465486840x*y!* + 21095525915704294156x%y° + 26255346770808793800xy'*

— 21379903570907779516x'%y" — 4456214266639318824x'*y® — 13797140020794611112x'%y* 4 8041833516522076144x'y>
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— 47404148921005723000x*y” + 12926693916072356588x%y° + 1929640820822783644x'%y* + 12619382611882864512x5y° +
17557460979004236638x%y® — 3797705049022611216x%y'" — 57289995292972983300xy!! 4 22320021119604395760x°y'* +
30180428403444275588x'%y® — 13142988172951693368x'%y7 + 9262515783917518980y"*x* — 50760953236349137752x%y'* +
92933062472773241948x%y® — 75938788203244384804x*y'0 — 52295867196316395568x*y'? + 14994789157092942104xy° +
11351260310641485460x%y'! — 26496971702928693840x°y'* — 25606563830934638000x*y'> + 16343976832897478400xy"”
+ 54036429636262938528x*y!! — 653156082926208240x%y!! + 492508933793790544x%y'0 + 14357793939682137540x'y° +
2305653699123871666x'2y® — 7381909175112933800x'%y® + 22996340995364948832x'%y!0 + 18904899105382634888x%y!2
— 48966930758992122174x%y° + 27467315990162659300x'%)° + 2620901623953590340x'%y? — 1658905814851491344x'4y?
+ 372409965852552050x'4y* + 5317861958390995704x'%y? + 30559656612957098320x%y'% + 6712343722951382828x'4y° —
7114455957554640000x*y'® + 1137931552063672802x'%y* + 58825732918973093280x*y'® + 770102131775157122x'% —
24853477586810715000y'° + 5409300731739031250y'® — 39631228789395762000x°y'> — 62790967336997271240y'6 +
27332611653740541500y"° + 5881071529465824050

Sy = —  55886728734578830388x%y 4+  44528210337591820280x'y 4+  99270636997546831000x%y°  —
88518836532733645556x5y* — 40520186116030145864x>y° + 70598197685237724716x%y — 50071396151996961472x*y°
+ 57557594005782688784x°y" 4 2316208128080052322x> 4 57705212917149009768x* — 60058050481799265844x°
— 67192828751545365000y° — 12893458849832196834x° + 75221880575157388970x'" — 21987354741071154262x%y*
+ 12892727182131128144x%)3 + 189100425700640082576x%y* - 117909384493322206520x'2y ~ —
18779062368107572804x%y + 162505357791452800942x'%y* — 45215244445017209200y"" + 92333615383210859304x'2 +
36281821850999561250y'2 + 58656197644452137498x'* + 4001601069286697356x*y* + 20837532308156153984x%y* +
61268466957713279640x%y + 60232738062325045748x*y® + 12769233032457910402x*y* + 92243233696003437724x5y* —
1974906794256987780x%y + 103787143694495920442x%y — 47024189880246646076x*y° + 194412440608014680x'° +
48829360941759199800y!7 — 55484360117127377196x°y® + 136741405069770262798x'%y? — 47904462871296881812x5y"
+  211494538309588735292x'%y* — 109142026664000224996x'%y  +  21015611087145467676x*y® -
32283835342306505816x%y° — 186417273736951973448x%y° + 37030855021060136196x°y + 86942345519756930584x5y'?
+ 33740204223192655648x'%y° 4 85138983048336230854x%y° — 5582464340323213088x'0y® + 28017193462874380568x*y'*
— 15408303135884068424x%y° + 5665335919019576560x°y'* — 22237131504335640000x'%y" — 67206097264981481934x'4y5
— 96682329701960569540x'2y* + 9449509735562185920x'4y® — 84029119739943723148x*y” 4 105213154268385681884x5y°
- 194244445260472201956x'%y* + 1372237426228766460x5y° — 159075400421528947092x3y® +
94041164644707105596x°y'" — 34275563340551508968x>y'! + 69490954750947783378x%y!* — 2527557846650993456x'%y8

+  80553742055298220464x'2y’ - 12918351360152422888y'3x*  + 19946548295642819608x%y'°  +
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20338449040782634188x%y® — 25514077458290398768x*y'® + 69488733201165167848x*y'? + 83910642009399562364x%y° +
63991060706380786964x%y!! + 6236847604807071692x%y'3 4 40386489663799588568x*y"> 4 17099641583974723208x*y!!
- 23542969749393836056x5y!! - 119397503195094227264x5y'° - 1306362521601907220x'2y°
85882194793356691488x'2y° — 90816636275915688188x'%y® + 2624437612030348468x'%y!0 4 38469195828462668106x°y'
+  128863262249570496368x5y°  —  158560281032911856152x'%° 4+ 163713747032875393926x'%y*  +
172477288501946605604x'4y* -+ 43297002320399944132x'4y* — 25974561626475026092x'*y + 71434056838316088316x'6y?
+ 18506838908238366848x%y'? — 35915030118693326808xy'> + 46911652071300026760x'4y° —
94527146785196103100x%y'® — 10838045295274701052x'6y* — 2740394486143087200x*y'6 — 13248523884169844256x%y'8
— 30863338829877170724x'8 — 44108727832505645336x'%y — 46289781446862628680x%y'> — 11189319581609189052x'6y?
— 8675757814046144948x'3y — 50935786707575960176x'"y!! — 56125313302067371516x'y” — 14041970673901112556x'8y?
+ 23791871551237239896x*° + 50518217994443704450x>> + 38335235602229766992x'8y* — 24541521100425418562x'%y°
+ 5933607491091956104x'%y" — 36856868595261674240x'*y® + 6191356460643731528x'%y® + 16429070870340758792y** +
11335828020611126258x** + 55052926775176790170x'8y> — 29039123224526988976x'%y° — 44293599195510855040x%y'3 +
42643139754067606796x'%y” + 30970639713413147800x*y'" + 53119165619707051640x'"y'? 4 9496886912497455876x"y +
45156857746259224184x'?y1% — 9665679966668608168x%y'* + 8028835023917689124x*y* + 8400717355965671604x'%y!3 —
27549306094085155264x'8y° — 17800819189475029192x'*y? — 20171091599163193552x%y!> + 16755196453895363336x0y*
+  24542576503029649544x'%y!* 4+ 24303736025050786080x>%y  —  27293744479247606312y"'x?  +
6796551165874570800y°x* — 41664361567166393512y*'x* + 56583930031783768484x'4y'0 — 19307927444705025476x°y'°
+ 2931290256913565400x%y'5 + 9506297764211829280x*"y* + 9549418066935555200x72y* — 28511998280517624320x'8y°
-+ 12571701077245472x5y'8 4~ 702917226952605000x*y'® — 8618076074404049400x*y" + 26415356024993015858x*y*° 4
31109767958841605000

Spnp = —  3306291159080417320x'y ~ +  8583492427940479536x%y°  +  4588450492068274184x°y*  —
18018780817192383676x%y% — 89294351053441825800x%y — 46813014452996402912x*y° — 48732288232094893816x%y"
+ 7074482712205117568x* + 28109140167386804744x5 + 22561340778315394952y5 — 31157273368680370184y" +
28771284986543776424x° — 14120227434608085176x'° — 50585898154257127776x%y* — 49715709835691427880x%y* +
134759377248056177780x%y* — 51050432040942998688x'%y + 5014701688631369508x*y® + 38382629434639570164x'%y*
+ 28677342761880010432y"" + 4490861418011617634x'2 + 10757069951087861282y° — 71933184689109565504y'> -+
142298143703526096x'* — 5400130983774862632x*y> + 42837754588958464184x7y* + 2773694400905295184x%y +
29774460105859993416x*y* + 25223826529303650566x*y* — 102562864986636474728x5y® — 1812204972063096180x%)?

-+ 811491588843572450x%y* — 30207077541897671764x*y® — 26562021821024387032x' — 33131700722857840256y'7 —
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34325412496784925472y*° + 24004929060470392380x%y® + 23060403760779364176x'%y* — 15198843039795087160x%y” +
21207321731182309120x'2y* + 404521390411455272x'%y + 137659209382619756766x*y® — 24956694444201212952x%y> +
52654858125954996968x%y° + 101857372650873994364x°%y” — 59163872913449069416x°y'> — 34328130694272421636x'%y°
+ 24901541934232995096x3y® -+ 63906181291416333802x'%y° + 47166788617672224130x*y!* 4 52624422817651011892xy°
- 18562010458257074964x%y' - 135212146563473669224x'%y7  +  56481214848289922696x'*y°

65989480819013952772x'2y> — 49573765289598745540x'4y® + 6281310342436235680x*y’ — 26276630618232697524x5y° +
10483897840319625712x'%y* 4 67570800718395417012x%y° — 44403502509156088472x%y% — 28286753925892778732x5y'°
- 64249264902685105020xy'! + 91397692950483708022x5y'* — 129401144909873317078x'0y8
+ 47920567588929674776x'2y’ + 10747901374800845880y"3x* + 33601918748395553472x%y'0

19696169607207919304x%y® — 10994161007903993616x*y'® — 99777863300706101000x*y'? 4 65980325550178459416x3y°

+ 19959061480059368952x%y!! — 20080280423654212696x5y'3 + 62289339701359844804x"y!3 +
3377047932282052896x%y'7 — 98243968076711271748x*y"! — 99855936827483350160x°y!'! + 6934651629279505652x°y'°
+ 31938867204405996400x'%y° + 125096316233012043242x!2y° - 12330507285371129678x'%y® —+

39549857428231694764x'%y1% — 18318353735010676132x%y'2 + 77273149532116951402x5y% — 38733200914348256748x'%y°
+ 13312746829141837252x'%y? + 87683378959496415168x'*y> - 71922446023494731988x!4y* +
76406753285223390288x 'y — 60983179703630326608x'%y* + 1290774523274864376x%y'? + 52749930774434692256x>y"> —
59555230726620311356x'4y> + 15720779364210252022x°y'® — 27559574439479061146x'%y* + 2971341076934152728x*y'°
+ 35996830848762793072y'® — 28202405560313999676x'8 + 30114423282694173728y'® + 5687465625082225368x'%y +
25945952470967625208x°y'3 + 54048716518383235536x'%y> 4 46406593874511299692y'® — 54009699233754333784y"
+  136364000527409619760x'°y!  +  111396991480105883780x'%y7  +  47150165268421318572x'%y} 4
11068751946519469872x° + 18806294334546938304x72 + 84463345994032267772x'8y* + 19597713814571483078x'6y5
+  14569794004558658288x'%y" 4+ 105041973418755939274x'y®  +  106964769821786766382x'%y% -+
7000219304844568002x** -+ 35770942911043009784x'3y* — 42665823675655921360x'%y> — 61987925505601737268x5y'* —
8936816875966833660x'2y’ — 81648611401367715000x*y'7 — 92253304060830374044x'%y'2 — 21200964997881328332x'2y!°
+ 55563147050969958594x5 !4 + 13526696220433221996x°%y° + 37634587899224795020x'8y°
30458339749199995380x'*y” 4 19079719422358105356xy'> — 9410867547904507316x%°y* + 5465090040901492898x'%y'4 +
91408316808340214008y!1x'? + 3498720583849258152y*%x* — 5429948840292963430x'4y'" — 8212532289581666132x%y'6 +
5860133273550743600x5y'° — 56717323450025946244x*°y* + 20410491525689102450x*2y* — 16871264607910114900x'8y°
— 47394184848861765508x*y!? — 65673059491729077520x*y*° + 62398849363510641872y*! + 32323517914816196882y**

— 54045181872680047060x%y"° — 24485532204065376236x%y'® 4 11581383124607700184x'2y"?
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Sz = —  28851974154423511168x7y ~ —  27132443879102729504x'y ~ —  45106904424498875128x%y°  +
71858421870162826740x%y> — 57099582291684511950x°y° — 55105527454582735940x%y + 41144891402705159552x*y
+ 4181371139641058144x°y" + 23366669694566923648y* + 7971803600784261842x> -+ 8810589157985382760x* +
23174115485018451080x° + 26407591194748927460y° — 11181321868027823616x° + 35860901011910921458y* +
9663832841671202592x'% + 40406861733205616482x%y* — 21030974648208667400x%y> + 24259943978963080468x%y* +
39141468876487124084x'%y + 9150181368063592040x*y° + 24417952743483486472x'%y* + 16326143497966815744y'°
— 26915656039686403356y'! + 17169690963126381474x'> + 8096735434741608050y° — 21185128637486273152)° +
30088769128393926768y'> — 22158044322059125236x'* + 77875248006143185006x*y> — 20683144448643555166x°y* +
4442794572142904864x5y — 32862667884617720232x*y® + 25536979498421007308x*y* — 34906780562777978692x°y* —
94380437984008528336x%y> + 17900226518749660604x>y*> — 90300790383252473808x*y5 + 18450816009153440880y'*
-+ 6783894951761338450x'® — 9753692166330883612y*° — 27273344340027423272x%y% + 7312364674255525388x'0y> —
38412451143916376840x%y" — 17192990248103298584x'2y* ++ 17333639670307659604x' y + 112234538166392657820x*y® —
64307435893315586624x7y° — 2118378408086816236x%y° + 31489807700848476248x%y + 16811379375813403704x°y'? +
28099636835683074432x'%y7 — 82671029791756612788x%y + 26495364053362657084x'%y5 + 81317146504614279272x*

— 58875702261758028464xy° + 29747633972068893540x%y'* + 52369024139837555468x'%y7 — 22176567400597020958x'4y5
— 37086416257620336868x'%y> + 2400287476351904152x'*y® + 102060417990545697004x*y" + 51043420224282998496x%y°
— 2243307907514759564x'%y° — 37627947283827748344x%y" — 2995073079117399016x%y® + 47643428362760317926x°y'°
- 119589208080092484032x%y"! + 18794868176609231780x%y!*  +  24552366100252640262x'%¢  +
55941164030543062764x'%y" + 56847109776472461924y"3x* — 19220486433489718716x°y'" + 63643116764507075112x%y8

-+ 64093976830601438628x*y!" — 66930192959590020212x*y'? — 2584541328108908864x%y° — 43016990039367096396x°y'!

- 12189842986953189204x5y'3 + 68352798237310829892x*y!3 - 45073447556290336308x>y"7 -
43651259588026221844x*y'! + 10780263409076050348x%y!! — 34345411023614255880x%y!% + 56059932655717224572x'%y°
+ 52474483611220325022x'2y° + 19274426424075089198x'2y® - 23375034780058576944x!0y1° -

80891079950170781900xy'? — 89248199441815697776x°y® — 119561471371834877120x'%)° + 60884306514188111630x'2y>
- 42450133694013189160x'4y? + 61965361679796040260x"y* - 40528227999347260992x'4y -
15701356223209467758x'%y?* — 63596606507315805900x%y'? + 42323697446548489328x°y"> + 65461876099539831432x'4y°
+ 7275341677675989096x%y'® + 24710671656060289106x'0y* + 70922598501481263490x*y'® — 3894198289892309836x%y'®
— 1590236162660918104y"3 + 3388200454202560656x'8 — 27279644590382662032y'° + 17699304796142920178y'® —
33289905510815572016x'%y — 12017086125053672508x%y'3 — 3559469301731332692x'%y* + 13706475442582248260y'% +

23018137052630503404x'3y — 81084523000554592424x'0y!1 — 83276385783224370532x'*y” + 29177843716011974740x'8y?
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— 1830508841810758736x*° — 13002179457816997720x'8y* — 75393643320679507380x'0y° + 17985236293498200376x'6y’
+ 45307363279098607960x'*y® + 28047267927917181682x'%y® + 5800716553365611858y*> + 139952127523063328x** +
5131023981508107172x'8y? — 35896539936568349320x'6y> — 63846548491920162404xy'3 + 46515909608411062844x'%y° +
6252608086186179204x*y!7 — 77933148736218303076x'%y!2 — 477446881676193968x%y + 64333239918010783726x'2y'0 +
11559644508156670298x%y'* 4 1335986691045269472x%°y* — 62041765498197635288x'0y!% — 40748111612807327508x'8y°
+ 49390038366279305604x'4y” + 31792066535649982548x%y'° + 4046845934458101808x%y* + 396993236598715596x'y!4
— 3008073778020546224x*%y — 17152489098496057132y''x'2 — 13581313128386884610y°x> — 1679168262561771324y*' x?
+ 62793783491268546576x%y'S + 80801271862367669844x5y'5 + 13128213294303918818x%°y? + 405305090835416738x'8y5
— 23970171859048284018x*y'® — 4813104358761157528x*y!® + 15617137213100487408y*' — 38483852029251610604x%y"°
+ 2603745478346208800x%y!'6 — 17455254401398279120x'%y'? + 97212959736251058x%y*> + 13957195275810242320x°y"7
+ 6339368700580923392

Sy = 20344516069268379348x"y  +  23163722318216555296x7)° —  3297084204990269590x°y?
78961623858736529540x%y° + 8809105578171586208x"y + 7984948208101804620x*y° — 23786492036175638952xy’
+ 47858994265760244132y° + 5073457227707723640x* 4 24049194849380208860y° -+ 4046886773685209840y -+
347392448636128200x® + 30912882480940155858y* — 45084867652740671152x'0 —  6230292883126584900x°y* —
52451117031681045056x%y° — 49263151978451466076x%y* — 19065847857409700540x'%y + 4872127471252226260x*y°
+ 18991491299263265752x'%* + 1936861038633325766y'0 + 37071217742709367424y"! — 4543059046832726668y° —
34906099398586749420y° — 17540351583798814100y'2 + 8366260034868039552x'* + 76035774308525121966x*y> —
23581869741879069782x°y* + 2786080944970707480x°y — 27639577791017603300x*y> + 52468000953818096472x*y* +
10495592323979643168x°y* — 106740061156130040988x%y? + 22135233567181934738xy* — 21017206889665493034x*y® +
4381841560820819330y'* + 36819171259493410704x'® — 16525630000286832552x>y® — 151201158660684635076x'%y* +
47271092631581810928x%y” + 87530650701970373492x'2y* + 99663365448508983136x'%y + 13242773059510478064x"y® —
2512701315116772484x%y* + 72622792314815067624x%y> — 44190372900719340784x%y” — 79792450736402871206x°y'? —
97997827018574332044x'%y° + 79304246585382483532x%y + 113857624959502154296x'%y° + 27405395127529293942x*y'
— 46307851608185592828x%y° + 390142544436124024x*y'* + 128932112720337731164x'%y7 + 4034900952405717372x'4y5
+ 22673596205660007092x'%y® — 46543839069869354636x'*y> — 8516937591826545292x*y” + 26112893792748017348x°y°
— 20276548949996548440x'%y + 27701381401623354340x°y° — 575935073868382788x%y® — 89236535586364364996x°y'® —
30103808771143105508x*y!! + 2082266353183423218x°y!* — 36759281549755216656x'%y® + 31006019308688616240x'%y’
+ 35337082712622819036y"x* - 29379288221686901712x°y'° - 48165214450781155228x%8

92850199039998998090x*y'" 4- 7969759414134904728x*y'? + 69719659845272952560x%y° — 7624001662163779416x%y'! —
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93865600977375160496x°y'> + 15204022962532907920x*y"> + 3446091792713929308x%y!7 + 18817875615277645384x*y!!
+ 14385626199081938616x°y"! - 17625639989116359392x5y° + 51299097945450923980x "2y’ +
10881294855059075108x'%y% — 41113107266741918752x'2y® — 61178730258097216072x'%y'" — 45397250235536689356x%y!
+ 28088375970482375962x5y5 - 110169709590322790860x'%y° + 35054981549432103680x'2y>

14614706348527180664x'4y? — 1889259853113951892x'*y* — 117158216660729930632x'*y + 23389281410894254928x'%y?
+ 52383861613140825036xy"> - 53145430135397035716xy' + 71530742587176862620x'y° -
5813158320141158372x%y'® + 15566816310651150682x'0y* + 27423204346088091896x*y'® + 15060078382885899832x°y'®
+ 44940661364488055692y'% — 10484873051789107822x'% — 8098076198186269088y'° — 27038002599219693440y'% —
83573203509837972504x'%y — 8794788601323097228x>y'> — 10273173650231531376x'%y° + 17274383458556066658y'° +
3313493588724348580y"° + 23041290385253563296x'%y + 16013956449441162324x'%y!! — 84633200250584387248x'4y +
76108442902753195340x'%y> — 60029058664614445640x° — 36930312771655847472x*2 + 28758659497087061312x'8y*
—  148031580922290564576x'6y°  —  122558028855324359188x'%y7  +  33285592899218533080x'*y®  +
12391240327318549816x'%y® + 19218544911754243232y*% + 51916180430494734704x>* + 85810376822878974672x'8y* —
91946371226242963624x'%y° — 27566075039808986368x%y!® — 117481778634298212848x'2y° — 1394221491615333324x*y!"
+  108559876318365199236x'%y!2  —  28320638098324803232x%"y  +  37834394249111476314x'2y!°

31676156449481016724x3y'* — 50040788928603506132x%%y + 27222741576107976680x'°y'> — 94018890782796624388x'%y°
+  57427485138556991936x'y’ —  35200144834503132064xy'3 - 120008169977569838540x2 y*

67829014629326829684x'%y'* + 34518564719289223136x%%y + 49791195987019596972y" ! x12 — 31285807061947334126y°x*
- 152128981239987360y*! x* + 136020683893321091284x'4y!0 + 31456575644916590348x5y!6 +
13235494307882279116x%y'5 + 29480271894946777986x*"y* — 8325314764051084464x*2y* + 536469762762797416x'8y5
+ 33820447224779227426x°y'3 + 13264453199633908346x*y'8 + 6888946069851414804x*y!° +
9838048186050439368x*y* + 3990979262862967200y*! + 4505939775901390488x*y!° + 9881979060419506788x5y'6 —
34492331179325975100x'2y'2 — 9000788023932059904x7y*2 — 5778425793666935296x5y!" — 12118826962554301024x'%y"
—  70843293475804484828x'%y!3 4+ 16575652526301050568x'8y®  +  50245278218573514216x'6y10 4+
96792653296743997260x'%y" — 15336580176265744586x'4y'?> — 1209836897993570444x'6y!! + 60206576737844520536x5y'8
—  15635561496199574996x'*y! 4+ 35386787173809373948x°y%  +  30472741304665722894x'8y° 4
24176271209637910856x*°y° — 5475464065265617920y° + 31762658852444494848x*2y* — 39533023953017442952x%y° +
43547854254127290108x'%y7 + 431565246326645760x*y* + 25208483679831436488x'%y!® + 32707055393628089432x%2y°
4+ 20159161074358602524x%y'7 4+ 20765511359559563528x5y!°  + 134578517057540285360x'%y°  +

81229030489306908240x>y” + 21725305288693150924x2y!* + 31029171178001513444x'0y!6
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10269765432217054072x 23 + 10155549212440532000x%y° + 28590629343307268336x'%y!7 +
49604290976905320980x'0y!? + 40449902089075539938x72y° — 988220462751854092x'4y!'! + 44702673610918105658x'4y'*
— 15560405021726013308x*2y® + 34318089034806924872x*0 + 404106469382044800y*® + 45635528945595966496x**y +
48583268890469470136x>*y> + 8553800015091160032x%*y* + 32112229118255083056y'°x® + 4673888562647166240y**x* +
1328572930678499520y> x> + 2542984413580551360y**x5 + 49198615435488800288y'0x'2 + 1091980805721099912x*y** +
8183585653990155362x**y* + 18523695853519216082
Sup = —  41246170357736977220xy  +  14336855389823519392x'y  —  49643649885990819988x%)°  —
5748784963083378816x°y* + 55200695437884098106x%y° — 17704399696426839788x%y — 13796558800180632480xy
— 53276857072682145752x%y7 + 27716431180138958978y” — 191655527572208448y° + 15345108449591264450x*
—  62347349262729871396y° — 10667686181521147040x° + 215561917730587968y° -+ 1854003326878547072x° +
331318280212992y* 4 13173389481751942060x'° — 74393622399812603284x°y* 4 24202786397329687828x%y° -+
12184876730290786084x%y* + 21353001336913322660x'%y + 116433490297492368x*° -+ 10233621631018355234x'%y*
+ 51448455377122412728y" + 49945871910025776664y'" — 4578970080267643616x'> + 35062161636400605218y° -+
59922582344645542920y'? — 46842398467536258020x* + 16489299608453167824x*y* + 46467912557196807524x°y* +
25269759028768066900x*y* 4+ 22220323641867521044x%y* — 79042603733583938604x%y% 4 142605959780093760x%y* +
31338008811292766624x*y® + 5740715503149602316y™* + 19109317603944062034x'® — 69864921114521662084y'7 +
78437867975995460024y%° + 94466217598865362876x%y° + 65468533085501247534x'%y* — 137656415547682529500x°y" —
102881991194521087850x'2y* 4 46556912091480398360x'’y + 93220725605490388342x*y® — 22227440881047975888x%y° +
49326829664216823576x%y° + 18553283538558297120x%y7 + 53621031670859281084x°y'? + 46803704428671888512x'%y° +
67029974612321020908x%y° 4 73574248985496622212x'%y% 4 21166426868592620866x*y'* — 143119843507345625512x%y°
— 14097240867202594508x*y™* + 20803187390700996420x'"y” + 63359854121908244560x'*y® + 662255667635326872x'%y
— 107901004156822516x'*y®> — 29980400160024353412x*y” + 40855868560685456956x°y° + 24759698712748447156x'%y?
+ 48953621983255782568x5y° — 101223243595822915968x%y® + 4432961490204486812x5y'0 — 79488354822519554424xy!!
+ 57080255820018891292x5y!* - 19074838069250942088x%y8 + 28684634533132939964x'2y’ +
34675397798147550860y°x* + 16823683627434881030x°y'® + 70999378760629408516x°y® + 961370719219935924x*y'0 +

17738259902121826528x*y'? — 67588169307449418676x%y" — 83031491299137202084x%y'! — 53544084531299763396x°y"

+  29782674128741336668x*y" - 108622073668927088144x2y!” +  58595330790694843744x*y!!
104925319237831049524x5y!! — 77070896198539970624x%y'* + 2924336761670720380x'%y° + 40283200154426750388x!2y°
+ 12422494002231976820x'%y% — 3330885994319099148x'0y1° — 110795242642641600300x3y"2

23319869046567070624x%y° — 10716482401549990972x'%y° — 25799977167833293736x'%y* — 7336850555734780480x'4y? +
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62253515267834316504x"y* + 28653611689484471744x'y + 62339127316839070940x'%y* + 78380561760649212540xy"?
- 34990404064228524640x°y' 4+ 51131837766922883612x'*y° - 101291870295383948756x%y'°
27228036230954812486x'%y* — 79579887587399396872x*y'® — 33955725299367512912x%y'® — 58073719943701602040y"* +
46520953242827972944y"° + 39493740642119059520y' + 13095217169964927752x'%y — 135171524253764243396x%y"?
+ 6085321535117586200x'%y® + 48011276531804544y' — 81693166135451007744y"> — 10910396482255039936x'%y +
31678047370043258656x'%y'! — 69361907234242001180x'*y” + 14133124185807330052x'8y* — 20106510204843548108x%° -+
9920449031138927828x'8y* + 911666322881435984x'%y° + 145846076014339034876x'y7 — 140753226944438979830x'4y®
— 39835582305418682564x'%y® + 90227463763136200960y* + 35747715654787187618x** — 48485088315776903582x8y?
- 24315303624408463104x'%y° + 19728445408867606072x° y'3 +  66581845231342552404x%y°
68326689790199120564x*y!” + 32852410718093747224x'"y'? — 62552862785486753560x>"y + 42049298899161378448x!2y'°
- 119586690592338912874x%y!4 —  5928312484835159112x%"y3 —  78249120996942007856x'0y!? -
9048187013306374608x'%y° + 5841803523984732220x'y° — 8655646259694801712x%y'> + 10988858238830493744x%°y*
+  131126427995509728272x'%y 4+ 38795568913265659712x%2y  +  31019576314815507336y''x'2  —
23847400260401496252y*°x> — 37982330861448118992y*' x* + 9252165858763848900x4y'% 4 118387231785940250508x5y'°
+ 53715242355198541648x5y'% + 53213459722104314044x%y* + 298126300800855740x>%y* + 94245927965761888534x'8y°
4+ 107233065086509077176x%y'® 4 48164881349774297630x*y'®  —  101868343601908702624x*y""  —
34931125934063997086x*y?° + 54340168126226786352y*! + 54785572132817939832y* — 47956143238246861952x°y"°
+ 31097409472578604310x3y'6 — 117511269509634997880x'2y"? + 101631955297184186428x%y*
+ 83317061561603573484x5y"7 - 91314412003628323064x'*y!3 + 4025225540941033984x!2y"? +
5791458122600383612x'8y® — 3792797352758903546x'%y'" — 11150781868921615568x'%y° + 38662511294653761796x'4y!2
- 11783281762250702584x'6y!! 4+ 85019310635776898928xy'® —  37455025991875225932x!4y!3 +
35180526755925570320x*°y® + 6305913311765124978x'8y'% ++ 84349472592295824928x*°y° — 15054509744864965872y* —
11303846993098080644x>%y* — 91392951321296294928x*°y® + 11655211799885855416x'%y7 — 49733445175183538296x*y*
—  46844848345349824280x'0y!®  —  28141858394685289936x7%y°  —  113443539164914272388x%y!7  +
41917767995278092596x°y'" + 70126723400680071276x'%y" + 6274684350989743432x*"y’ — 1505148770411616856x'%y'*
—  38572723985545238332x'%y1  —  58506956713365869388x'2y!> 4+ 34544431703611840256x%y° = —
28713608589913106096x'°y!” + 56011131059035243072x'6y!2 — 19936939700238811668x>%y° —
50055778884172019220x"y!! — 29215840929261861400x'4y™* — 21132312555067517440x%%y* + 1739326511603551752y*% —
30248888267626370496x>*y + 16757133067838655360x>*y* — 65837938694749973976x>*y* — 32308588627136565440y"x®

+ 22588799674106708876y*> x> + 52098766604980179236y> x> — 37026318145076677460y>2x° +
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53322035712628466728y'0x'2 — 6999636641798239682x*y?2 + 10970562503814705800x>*y* + 19092279629573148086x>y**
+ 43279196601627556168y*> — 45504504516287259596y*' x* — 15560745064878582072y% + 34803239265137740898y%0 —
11332375056604392756y*1x% + 15758286903078955202x%5y* + 31628369483466821234y°%x® + 30523294069671613562y**x*
— 11633074290381073320y%x*

Sius= — 30912910777041905496x'y 4+  22934015689725858528x%y°  +  106762141745625627060x°y*  +
20742749518357353992x%y° + 2169693902287260152x%y — 54483925525378992096x*y° 4 60584090961682315792x° —
40472113879961574944x% + 52573847698925947370x'° + 82303523078232856352x%y* — 18795090005767040336x%y* —
106720092083505444304x%y* — 90511212779891041072x'*y + 113831123909582409364x*y + 44091191925143149712x'%y*
+ 20505972854333904072y'0 4 4245476701457896536x'2 — 18678580835710053848y° + 10991349534599333400y° -+
12247587177052202208y'? + 65225763524455588860x'4 — 60934788703341333232x*y* + 25609328208264088178x°y* +
15075658501641423552x%y — 36333985675381129408x*y> — 71693827448705469024x*y* + 46210340268796887512x5y° —
47315109020136985182x%y* — 21239133801222939704x*y® + 45103095827653553676x'® — 7277197821719381700y"7 —
656466062836360302y° — 24375575860989542344x%y% + 38143237385025822708x'%y* + 54880807795710645000x%y” +
55941328113768507936x'%y* — 16375345158349198168x'%y + 10084847456742602400x*y® + 85629458389064184140x%y°
- 54130566784845227068x°y + 126891854547319288700x%y"2 +  26642354930554678328x'%)° +
34557141724965580288x%y° — 93164137491430184612x'%y% — 97599282570738889172x*y'* — 19416989462463130040x%y° +
60199266278246637848x>y'* — 127201727536179622964x'%y’ — 81585285270010317958x'4y® + 45573732394473847508x'2y*
— 41708064227611031812x*y* + 29539061521038180480x*y” -+ 41855489838760685440x5y° + 35996646652087630700x'%y
— 68515690735730657928x%y° — 64149230821568945636x%y® — 30038717049875895852x%y!% — 39766102537938118980x%y"!
+ 71596048701248071884x°y'* + 12954456467034726468x'%y® — 25167267687414984308x'2y” + 8021588341825204072y"x*
— 35582582922201883744x%y'" — 31219965863587063272x°%y% — 2724390384816818370x*y'" — 9470086926519753668x*y'
+ 97954132911734179672x%y° + 15821944377898753008xy!! ++ 6271083183501028596x°y"* — 31062886013712724784x*y">
— 36743849173566491644x%y'7 — 9148553980611788048x*y!'! — 42882082380609859400x°y!! -+ 7250769551333338840x5y!°
—  41112324787706345628x'2y - 113581074491106062460x'2y° — 93084216964344869212x'%y*  +
118120613586751178958x'0y!0 — 31787464703398630548x%y'2 — 9144839136127640356x%y° — 35846788896344633812x'%y°
- 14843690707138142656x'%*  +  93701562304031195144x'y? - 145259918434615782536x'4y*  —
23487495747097534096x!*y + 30966767507985996542x'6y* — 43802093090046118384x°y'2 + 77277392240197987024x%y"
— 56478083702923249380x'4y’ + 62289194683821307704xy'6 + 51841585094171024420x!%y* -
54771795263502052168x*y'6 + 6006945318888922758x7y'8 + 17483433738894778146x'% + 7989151975748736300y"° —

11435557112336932986y'8 + 85725828845279430136x'0y + 29820978038369050484x%y'3 + 89947254937671972708x'6y* +
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6183395739647613362y'6 — 100258345614470708464x'8y + 28183620238807569108x'"y!! + 77145141237536152852x"4y’
— 34740105870908672420x'%y> + 56905054287120187118x*° + 901823023551761994x** — 32591469833404464392x'8y* —
85293526858402296620x'%y% — 60220067426336715076x'%y7 — 84921079165439586080x'y® — 96116582142940686232x'%y?
+ 8902258543019606256y*> + 25292549284542305228x>* — 18921162484347171790x'8y? + 154351351226356673912x'0y° —
74162644973295239864x% 13 + 19368505002707127232x'2y° — 16031647619263934424x*y'7 + 64829046186947147348x0y!2
+  64289527759494141900x°y  —  103732469241278746840x'%y!®  —  104138178351197211784x%y!*  +
69711541179181545712x%°y* 4 75150284979262897988x'y'3 — 35457474533775552920x'%y° — 59672679949197585532x'4y°
-+ 48095958701713883760x%y" —  25370972087846157548x%y*  + 161050861339496440782x'0y14
72412163939616022188x>%y + 19893390236015056464y' ' x'? — 18765583911084567488y°x* — 30291755214193681548y*' x?
4+ 46423354244875348292x'4y10 +  76375084645791202260x°y' +  8000866478072689332x%y"> +
136319928420661295860x°y* — 23616075603309497068x>2y> — 12100644537425139828x'8)% 4 8173543544299290494x%y'8
+ 26206900932682318450x*y'® + 38460988951210452696x*y'" — 30185830756917027668x*y*° + 4771674867063013200y"!
+ 2658522674169218592y** — 26104977658670019204x>y"? + 24458812454204675388x%y'6 + 63081263890384076596x'%y!?

— 32373738316054147404x>y** — 25059592388410620244x°y!7 + 14105897338864074248 — 57509817390542217664x'0y!3

+ 38359688936513719416x'2y!3 + 106723038790692201284x'8y8 + 1785105784878581692x6y!°
+ 25667739781903979056x'%y° + 50164189685947098242x'4y!2 — 116158831632528055800x'y!!
— 26593800902971529340x° '8 — 75241509697099416236x'4y'3 — 33811520322083502248x%y® +

16470114413945493548x'8y10 — 41820735292123144080x°y° — 14577274557987220392x2y* — 14201262114192030104x%°y°
+  43374308223823088288x'8y’ +  7267895511591408300x*y* +  25478997696482803000x!0y'8 +

61718554131740431296x72y° + 10855752416826995036x%y!7 — 33272735812715517468x%y"° + 91318345941312336732x'%y°

+ 78616252143439289112x%0y7 + 36079496090495913872x 2y — 67170155139958826548x'0y!°
— 11478111704588931704x'2y" — 34067133514805491090x°y° + 3254102509772238952x'0y!7 +
13155483363918642642x 6y — 51128779090978695964x>2y° + 39706143611067348096x'4y!! -

15844680947297867116x!4y!* — 66717108486953969720x*2y* + 827608743656469320x>° — 3954983042176066788x>*y +
4230606737032989984x>*y® — 46632635512370986166x>*y> + 18643014458547846836y'°x® + 32636881362863076180y™ x>
— 4983351546613311152y*2x° — 10940838213088958756y'°x'? + 22527797213962122888x*y?2 +
12509037985494800432x>*y* + 23456320270258932162x*y** — 13175540077982610660y* x* — 24183124900669296872y* x°
+ 28542108090699007890x%%y? + 23518991039553578938y°%x® + 2323984640128581152y**x* + 9367363259735390450y?%x>

— 31894778572929595260xy + 12515310035074772450x%
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Résumeé

Nous abordons dans cette thése le probleme du calcul de la topologie de courbes
algébriques planes. Nous présentons un algorithme qui, grace a 'application d’outils
algébriques comme les bases de Grobner et les représentations rationnelles univariées,
ne nécessite pas de traitement particulier de cas dégénérés. Nous avons implanté cet
algorithme et démontré son efficacité par un ensemble de comparaisons avec les
logiciels similaires. Nous présentons également une analyse de complexité sensible
a la sortie de cet algorithme. Nous discutons ensuite des outils nécessaires pour
I'implantation d’algorithmes de géométrie non-linéaire dans CGAL, la bibliothéque de
référence de la communauté de géométrie algorithmique. Nous présentons un noyau
univarié pour CGAL, un ensemble de fonctions nécessaires pour le traitement d’objets
courbes définis par des polynémes univariés. Nous avons validé notre approche en la
comparant avec les implantations similaires.

Mot clés: géométrie algorithmique, géométrie non-linéaire, courbes algébriques,

topologie, isotopie, bit-complexité, CGAL, noyau algébrique.

Abstract

We tackle in this thesis the problem of computing the topology of plane algebraic
curves. We present an algorithm that avoids special treatment of degenerate cases,
based on algebraic tools such as Grobner bases and rational univariate representations.
We implemented this algorithm and showed its performance by comparing to simi-
lar existing programs. We also present an output-sensitive complexity analysis of this
algorithm. We then discuss the tools that are necessary for the implementation of non-
linear geometric algorithms in CGAL, the reference library in the computational geom-
etry community. We present an univariate algebraic kernel for CGAL, a set of functions
aimed to handle curved objects defined by univariate polynomials. We validated our
approach by comparing it to other similar implementations.

Keywords: computational geometry, non-linear geometry, algebraic curves, topology,

isotopy, bit-complexity, CGAL, algebraic kernel.
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