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Introduction

Les corps finis sont au cœur de la technologie moderne, à tel point que la dernière
génération de processeurs Intel Core possède une instruction matérielle (CLMUL)
pour la multiplications dans F2m [GK08]. Cela tient au fait que les corps finis
apparaissent partout dans le génie des télécommunications, en particulier en
Codes Correcteurs d’Erreurs et Cryptographie. Cette thèse applique des techniques
algorithmiques et algébriques avancées aux calculs dans les tours d’extensions sur
les corps finis, avec pour but des applications à la cryptographie à base de courbes
elliptiques.

Courbes elliptiques. En cryptographie à base de courbes elliptiques, afin de con-
struire un système de chiffrement sûr, il faut sélectionner une courbe au nombre de
points divisible par un grand nombre premier. La méthode préférée consiste à sélec-
tionner une courbe au hasard et à appliquer un algorithme de comptage de points
pour déterminer sa cardinalité. Le premier algorithme de comptage de points de
courbes elliptiques de complexité polynomiale fut donné par Schoof [Sch85], puis
amélioré par Atkin et Elkies [Atk88, Elk98, Sch95], et par la suite nommé SEA.

L’algorithme SEA suscita de l’intérêt pour l’utilisation effective des isogé-
nies : ce sont des morphismes de groupes algébriques entre courbes elliptiques.
Lorsqu’on calcule des isogénies sur des corps finis, il faut distinguer entre la ca-
ractéristique grande et la caractéristique quelconque. Dans le premier cas, on peut
utiliser des algorithmes conçus pour la caractéristique 0, et ensuite réduire le résul-
tat ; les méthodes de Elkies [Elk98, Mor95], Atkin [Sch95] et Bostan, Morain, Salvy
et Schost [BMSS08] appartiennent à cette famille. Quand la réduction modulo la
caractéristique introduit des divisions par 0, ces algorithmes ne s’appliquent plus.

Les deux premiers algorithmes pour calculer des isogénies en caractéristique
quelconque furent donnés par Couveignes [Cou94, Cou96] ; les deux ont com-
plexité polynomiale en la caractéristique, ce qui les rend peu pratiques pour des
valeurs supérieures à 2 ou 3. Un algorithme spécifique pour la caractéristique 2
fut donné par Lercier [Ler96] : en pratique il est plus rapide que l’algorithme de
Couveignes, mais sa complexité n’est pas bien comprise.

Après la découverte de méthodes p-adiques alternatives à SEA [Sat00, FGH00],
l’intérêt pour le calcul d’isogénies s’est estompé. Pourtant, deux algorithmes p-
adiques pour le calcul d’isogénies en caractéristique quelconque ont récemment été
proposés par Joux et Lercier [JL06] et Lercier et Sirvent [LS08] ; ils montrent qu’il
est possible d’éviter les divisions par 0 en liftant les courbes dans les p-adiques.
Le second algorithme est actuellement celui qui a la meilleure complexité dans
le cas de la caractéristique quelconque, sa dépendance en la caractéristique est
seulement logarithmique.

Il est tout de même intéressant de remarquer qu’aucun algorithme pour le
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calcul d’isogénies n’a une complexité optimale ou quasi-optimale, avec la seule
exception de [BMSS08] dans un cas très spécifique.

Le point de départ de ce travail a été le deuxième algorithme de Couvei-
gnes [Cou96]. Il calcule une isogénie par interpolation sur les points de pk-torsion
de la courbe, pour k assez grand ; quand ces points ne sont pas définis sur le
corps de base, il faut travailler dans des extensions de corps pour les trouver. Les
extensions qui apparaissent naturellement dans ce calcul sont des corps de rupture
de polynômes de la forme

Xp − X− α ;

de telles extensions sont appelées d’Artin-Schreier.

Tours de corps finis. Mis à part l’addition, la multiplication et l’inversion, les
opérations arithmétiques importantes dans une tour d’extensions finies sont sans
aucun doute les traces relatives, les polynômes minimaux et les inclusions de
corps. Pour les corps finis, il est possible d’ajouter des groupes de Galois effectifs
à la liste, puisqu’il est relativement facile de calculer avec ces objets.

L’arithmétique des tours de corps finis est une question de première im-
portance pour tout système de calcul formel, pourtant elle a reçu peu ou pas
d’attention. On sait que Magma permet de gérer des diagrammes quelconques
de corps finis depuis longtemps [BCS97a], mais il est difficile de dire quels al-
gorithmes y sont implantés de nos jours et avec quelles complexités. Tous les
autres résultats qui peuvent éventuellement s’appliquer aux tours de corps finis
ont été obtenus dans le contexte plus général de la résolution de systèmes poly-
nomiaux et de la géométrie algébrique effective, en particulier pour la résolution
des ensembles triangulaires [DTGV01, GLS01, BSS03, PS06, LMMS07, DJMMS08,
BLMM01, FGLM93, Rou99, ABRW96].

Dans le cas spécifique des tours d’Artin-Schreier, il n’y a pas énormément de
littérature non plus. En s’appuyant sur des idées contenues dans [Con00], Can-
tor [Can89] construisit une tour d’Artin-Schreier avec des propriétés spécifiques,
qu’il appliqua à la multiplication par FFT dans F2[X]. Dans [Cou00], Couveignes
donna un algorithme pour le calcul d’isomorphismes entre tours d’Artin-Schreier ;
néanmoins, son algorithme nécessite une multiplication rapide dans une tour, ap-
pelée « tour de Cantor » dans [Cou00], ayant la même forme que celle de [Can89].
Un tel algorithme n’est malheureusement pas dans la littérature, ce qui rend les
résultats de [Cou00] difficiles à exploiter en pratique.

Le principe de transposition. Un des outils algorithmiques que nous allons étudier
en détail et appliquer tout le long du document est le principe de transposition, qui
est à la théorie des langages ce que la dualité est à l’algèbre.

Le principe de transposition fut découvert dans la théorie des circuits électri-
ques par Bordewijk [Bor57], puis prouvé dans sa forme générale par Fiduc-
cia [Fid73] ; mais ce n’est que bien plus tard, à travers les travaux de Kaltofen,
Yagati, Shoup, von zur Gathen et autres [KY89, vzGS92, Sho94, Sho95, Sho99,
HQZ04], qu’il est devenu populaire en calcul formel. L’un des énoncés possibles
est le suivant :

Soit P un ensemble quelconque. À tout algorithme R-algébrique, qui
calcule une famille de fonctions linéaires (fp :M→ N)p∈P, correspond
un algorithme R-algébrique A∗ qui calcule la famille duale (f∗p : N∗ →
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Introduction

M∗)p∈P. Les complexités algébriques en temps et espace de A∗ sont
bornées par la complexité en temps de A.

Le principe de transposition est important en calcul formel car il permet
d’obtenir des algorithmes asymptotiquement bons qui n’auraient pas paru évi-
dents autrement. Un grand pas en avant dans sa compréhension fut fait par
Bostan, Lecerf et Schost [BLS03] qui, en généralisant un travail de Shoup [Sho95],
remarquèrent que la transposition peut être appliquée de façon systématique
à un langage de programmation restreint. Il est aussi intéressant de remarquer
que le principe de transposition a des liens importants avec la différentiation
automatique [BS83, KY89, Kal00, GG05, Ser08].

Dans ce document nous enquêtons plus en détail sur les rapports entre la
transposition et les langages de programmation. Nous travaillons dans le cadre
de la théorie des langages purement fonctionnels typés [Pie02], car sa structure
mathématique élégante nous permet de raisonner sur les programmes à un niveau
algébrique.

Organisation du document, résultats. Ce document est divisé en quatre parties.
Dans la partie I nous revenons sur les notions fondamentales d’algèbre et calcul
formel dont nous allons nous servir par la suite.

La partie II a pour objet le principe de transposition. Au Chapitre 3 nous
rappelons le modèle des circuits arithmétiques et le modèle des programmes sans
branchements, puis prouvons le théorème de transposition pour chacun. Ensuite
nous évoquons les liens avec la différentiation automatique. En complément, dans
l’Annexe A, nous donnons une nouvelle preuve du théorème de transposition, à
base de sémantique catégorique, et étudions ses implications pour l’implantation
d’un DSL en Haskell ; il s’agit un travail commun avec Mathieu Boespflug.

Le Chapitre 4 est une collaboration avec Éric Schost. Nous étudions les liens
entre les circuits arithmétiques et les langages fonctionnels, puis montrons que
la transposition peut être appliquée algorithmiquement à un langage fonctionnel
générique.

La Partie III est dédiée à l’arithmétique dans les tours d’extensions. Nous
commençons par rappeler la théorie des idéaux zéro-dimensionnels et la représen-
tation univariée rationnelle au Chapitre 5. Ici, les résultats de la Partie II sont la
clef pour obtenir des algorithmes asymptotiquement rapides. Les algorithmes
de ce chapitre sont ensuite appliqués au Chapitre 6, où nous fournissons des
algorithmes asymptotiquement bons pour les tours d’Artin-Schreier (fruit d’une
autre collaboration avec Éric Schost).

Enfin, la Partie IV applique les résultats des chapitres précédents au calcul
d’isogénies. Après quelques rappels sur les courbes elliptiques au Chapitre 7,
nous passons en revue les algorithmes asymptotiquement meilleurs pour le cal-
cul d’isogénies sur les corps finis. Nous commençons par rappeler l’algorithme
BMSS pour le cas de la grande caractéristique [BMSS08] et sa généralisation à la
caractéristique quelconque de Lercier et Sirvent [LS08] ; puis nous rappelons l’al-
gorithme original de Couveignes [Cou96] et présentons des variantes améliorées
avec un meilleur comportement asymptotique : les clefs pour ces résultats sont le
Chapitre 6 et de nouvelles idées algorithmiques pour l’interpolation dans les tours
d’extensions. Nous présentons aussi en Section 8.9 une généralisation surprenante
de l’algorithme de Couveignes, qui permet le calcul d’isogénies de degré inconnu
au même prix que le calcul d’isogénies de degré prescrit. Cette découverte éclaire
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davantage la (sous)optimalité de l’algorithme de Couveignes et pourrait avoir des
applications en cryptologie [GHS02b, GHS02a, Hes03, Tes06].

La théorie ne suffirait pas sans pratique. De la même façon, ce manuscrit ne
serait pas complet s’il n’était accompagné par les paquets logiciels que nous avons
développés. La grande majorité des algorithmes présentés ici a été implantée,
paquetée et distribuée avec des licences open source. Ainsi, tous les algorithmes du
Chapitre 6 sont disponibles dans la bibliothèque FAAST, écrite en C++ et disponible
à l’adresse http://www.lix.polytechnique.fr/~defeo/FAAST/. Au moment où
nous écrivons, le compilateur pour le langage transalpyne du Chapitre 4 n’est
pas encore distribué ; nous travaillons en ce moment à la première stable release et
espérons commencer la distribution au début de 2011. Il sera disponible à l’adresse
http://transalpyne.gforge.inria.fr/.
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Introduction

Finite field arithmetic is at the heart of modern technology; this is so true, that the
last generation of Intel Core processors supports a hardware instruction (CLMUL)
for multiplication in F2m [GK08]. The reason is that finite fields appear everywhere
in telecommunications engineering, in particular in Error Correcting Codes and
Cryptography. This thesis applies advanced algorithmic and algebraic techniques
to computations in towers of extensions of finite fields, in view of applications to
elliptic curve cryptography.

Elliptic curves. In elliptic curve cryptography, in order to build a secure cryptosys-
tem, one must select a curve whose number of points contains a large enough
prime factor. The preferred method for doing this is to randomly select a curve and
then use a point-counting algorithm to determine its cardinality. The first polyno-
mial time point counting algorithm for elliptic curves was due to Schoof [Sch85],
then improved by Atkin and Elkies [Atk88, Elk98, Sch95], henceforth named SEA.

The SEA algorithm raised interest in explicit computations with isogenies, i.e.
algebraic group morphisms of elliptic curves. When computing isogenies over
finite fields one must distinguish between the large and arbitrary characteristic.
In the first case, one can use algorithms that work for characteristic 0, and then
reduce the result; the methods of Elkies [Elk98, Mor95], Atkin [Sch95] and Bostan,
Morain, Salvy and Schost [BMSS08] belong to this family. When the reduction
modulo the characteristic introduces division by 0, these algorithms are not of
help.

The first two algorithms to compute isogenies in arbitrary characteristic are
due to Couveignes [Cou94, Cou96]: both have a polynomial dependency in the
characteristic, which makes them unpractical for values higher than 2 or 3. An
algorithm specific to characteristic 2 was given by Lercier [Ler96]; in practice
it performs faster than Couveignes’ algorithms, but its complexity is not well
understood.

After the discovery of p-adic alternatives to the SEA algorithm [Sat00, FGH00]
interest in computing isogenies in small characteristic was lost. Nevertheless, two
p-adic algorithms were recently proposed by Joux and Lercier [JL06] and Lercier
and Sirvent [LS08] to solve the isogeny problem in arbitrary characteristic. They
show that it is possible to avoid divisions by 0 by lifting the curves in the p-adics.
The last algorithm is currently the one having the best asymptotic complexity
for the arbitrary characteristic case; its complexity in the characteristic is only
logarithmic.

It is interesting to remark, however, that no algorithm to compute isogenies
has optimal or quasi-optimal complexity, with the only exception of [BMSS08] on
a very special case.
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The starting point of this work was Couveignes’ second algorithm [Cou96]. It
computes an isogeny by interpolating it over the pk-torsion points of the elliptic
curves for a large enough k; when those points are not defined on the base field,
one has to take towers of field extensions to find them. The field extensions that
naturally arise when doing this computation are splitting fields of polynomials of
the form

Xp − X− α;

such extension are called Artin-Schreier extensions.

Towers of finite fields. Besides addition, multiplication and inversion, the arithmetic
operations of interest in a tower of finite extensions arguably are relative traces,
minimal polynomials and embeddings. For finite fields one could add explicit
Galois groups to the list as these are relatively easy to compute with.

The arithmetic of towers of finite fields is a central question for any computer
algebra system, however it has received little attention, if any. Magma is known
for having had support for lattices of finite fields for a long time [BCS97a], but it is
hard to tell which algorithms it implements nowadays and what their complexities
are. All other results that can possibly apply to towers of finite fields were derived
in the more general context of polynomial system solving and effective algebraic
geometry, in particular in the resolution of triangular sets [DTGV01, GLS01, BSS03,
PS06, LMMS07, DJMMS08, BLMM01, FGLM93, Rou99, ABRW96].

In the specific case of Artin-Schreier towers, the literature is not extensive either.
Using ideas from [Con00], Cantor [Can89] constructs a particular Artin-Schreier
tower that he applies to FFT multiplication in F2[X]. In [Cou00], Couveignes
gives an algorithm to compute isomorphisms between Artin-Schreier towers;
however, his algorithm needs as a prerequisite a fast multiplication algorithm in
a tower, called a “Cantor tower” in [Cou00], having the same shape as the one
in [Can89]. Such an algorithm is unfortunately not in the literature, making the
results of [Cou00] non practical.

Transposition principle. One algorithmic tool that we shall study in depth and
apply throughout the whole document is the transposition principle, which is the
language-theoretic counterpart to algebraic duality.

The transposition principle was discovered in electrical network theory by
Bordewijk [Bor57], then proved in its general form by Fiduccia [Fid73]; but it only
became popular in computer algebra much later through the works of Kaltofen,
Yagati, Shoup, von zur Gathen and others [KY89, vzGS92, Sho94, Sho95, Sho99,
HQZ04]. One possible statement is:

Let P be an arbitrary set. To any R-algebraic algorithm A computing a
family of linear functions (fp :M→ N)p∈P corresponds an R-algebraic
algorithm A∗ computing the dual family (f∗p : N∗ → M∗)p∈P. The
algebraic time and space complexities of A∗ are bounded by the time
complexity of A.

The transposition principle is important in computer algebra because it al-
lows to derive asymptotically good algorithms that were not otherwise evident.
One big step forward in the understanding of it was done by Bostan, Lecerf and
Schost [BLS03] who, extending work of Shoup [Sho95], remarked that transposi-
tion can be systematically applied to a restricted programming language. It is also
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remarkable that the transposition principle has a strong connection with automatic
differentiation [BS83, KY89, Kal00, GG05, Ser08].

In this document we investigate more in depth the relationships between
the transposition principle and programming languages. We use the theory
of typed purely functional languages [Pie02] as framework, because its elegant
mathematical structure permits us to reason at an algebraic level on programs.

Outline of our contributions. This document is divided in four parts. Part I recalls
the basic notions from algebra and computer algebra that we will use later.

Part II studies the transposition principle. In Chapter 3 we review the arithmetic
circuit model and the straight line program model, and prove the transposition
theorem in them. Then we discuss the relationships with automatic differentiation.
As a complement, in Appendix A we also give a new proof of the transposi-
tion theorem, using categorical semantics, and discuss its consequences on the
implementation of a DSL in Haskell; this is joint work with Boespflug.

Chapter 4 is a collaboration with Schost. We study the relationships between
the arithmetic circuit model and functional programming languages, then we show
that transposition can be applied algorithmically to a generic functional language.

Part III is devoted to arithmetics in towers of extensions. We start by reviewing
the general theory of zero-dimensional ideals and rational univariate representa-
tions in Chapter 5. Here, the results of Part II are the key to obtain asymptotically
fast algorithms. The algorithms of this chapter are then applied in Chapter 6,
where we provide asymptotically good algorithms for Artin-Schreier towers (fruit
of another collaboration with Schost).

Finally Part IV applies the results of the previous chapters to isogeny computa-
tion. After some general references on elliptic curves in Chapter 7, we review in
Chapter 8 the asymptotically fastest algorithms to compute isogenies over finite
fields. We start by reviewing the BMSS algorithm for large characteristic [BMSS08]
and its generalization for arbitrary characteristic by Lercier and Sirvent [LS08]; then
we review Couveignes’ original algorithm [Cou96], and present some improved
variants with better asymptotic behavior: the key to this results are Chapter 6 and
new ideas on interpolation in towers of extensions. We also present in Section 8.9
a surprising generalization of Couveignes’ algorithm that allows to compute isoge-
nies of unknown degree at the same cost of computing an isogeny of a given degree.
This discovery sheds new light on the (sub)optimality of Couveignes’ algorithm
and can possibly find applications in cryptology [GHS02b, GHS02a, Hes03, Tes06].

Without practice, theory would not be as valuable. Similarly, this manuscript
would not be complete if it was not accompanied by the software packages we
developed. The great majority of the algorithms we present here have been
implemented, packaged and distributed under open source licences. So, all the
algorithms of Chapter 6 can be found in the C++ library FAAST, available from
http://www.lix.polytechnique.fr/~defeo/FAAST/. At the moment we write,
the compiler for the language transalpyne of Chapter 4 is not distributed yet; we
are currently working on the first stable release and hope to start distributing it
by the beginning of 2011. It will be available from http://transalpyne.gforge.

inria.fr/.
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Chapter1

Algebra

Here we recall the concepts from abstract algebra that will constitute the back-
ground for all the chapters that follow. One chapter is certainly not enough to
present such a vast subject, hence we just recall the few definitions and properties
that will help the reader understand the results presented in this document. The
material of this chapter is mainly drawn from [Lan02, LN96, Sil86].

1.1 Linear algebra

In Part II we shall apply some classical linear algebraic tools to free modules over
non-commutative ring. We recall here the fundamental concepts.

1.1.1 Bra-ket notation

It will be convenient to (ab)use Dirac’s bra-ket notation to represent elements
of modules. If (M,+, ·) is a left R-module and x ∈ (M,+) is an element of its
underlying group, by |x〉R we mean the element obtained by lifting x in (M,+, ·).
We call |x〉 a ket and read it as “ket x”.

The external multiplication by an element a ∈ R will be written a |x〉R; if
f :M→ N is a left module morphism, we write f |x〉R for f(|x〉R). By a slight abuse
of notation we may write |ax〉R and |f(x)〉R for a |x〉R and f |x〉R respectively. When
R is clear from the context, a ket can be simply written as |x〉.

In a symmetric way, elements of right R-modules will be written R〈x|, which
we call a bra and read as “bra x”. External multiplication will be written as R〈x|a
and application of a right module morphism as R〈x| f.

Let M be a right module and N a left module. A bilinear form on M×N is a
map f :M×N→ R such that for any x ∈M, the map

|y〉 7→ f(x,y)

is a left module morphism, and for any y ∈ N, the map

〈x| 7→ f(x,y)

is a right module morphism. If f is a bilinear form, we write 〈x|y〉f for f(x,y),
or simply 〈x|y〉 when f is clear from the context. Note that textbooks usually
define bilinear forms only when R is commutative, in our more general setting
some common properties of bilinear forms fail to hold, for example 〈xa|y〉 is not
necessarily equal to 〈x|ay〉.

If M is a left (right) module, we denote by M∗ = hom(M,R) the dual module
of M, it is a right (left) module. Any bilinear form f gives rise to a morphism
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φf :M→ N∗ of right modules where 〈x|φf is the linear form y 7→ 〈x|y〉. Similarly,
f gives rise to a morphism φf : N→M∗ of left modules. The maps f 7→ φf, f 7→ φf

and their obvious inverses induce group isomorphisms between hom(M,N∗),
hom(N,M∗) and the group of bilinear forms on M×N. A bilinear form f is said
to be non-degenerate if φf and φf are module isomorphisms.

1.1.2 Matrices and morphisms

M =M1 ⊕ · · · ⊕Mn be a left module and N = N1 ⊕ · · · ⊕Nm be a right module.
Let ιi be the injections Mi →M and let πj be the projections N→ Ni, then a linear
map f : M → N is uniquely determined by the maps πj ◦ f ◦ ιi. If we consider
m× n matrices whose (j, i)-th coefficient is in hom(Mi,Nj), then we verify that
there is a group isomorphism between hom(M,N) and this group of matrices.
Furthermore, let f : M → N and g : N → O and let Mf and Mg be the matrices
that are associated respectively, then the matrix associated to g ◦ f is MgMf, where
the product of two entries is defined as composition of morphisms. This induces a
ring isomorphism between End(M) and the ring of square matrices with entries
in hom(Mi,Mj).

Consider R as an R-module over itself, a linear map from R to itself is uniquely
determined by the image of 1, hence End(R) ∼= Rop. As a consequence, there is
a group isomorphism hom(Rn,Rm) ∼= Mm×n(R

op), and matrix multiplication is
equivalent to composition as above. Hence, if M is a free module, for any fixed
basis B of cardinality n we have an isomorphism of rings EndR(M) ∼= Mn(R

op);
in particular Aut(M) ∼= GLn(R

op) as groups.
Let R be commutative, then Rop = R. We denote byMB(f) the matrix associated

to f ∈ EndR(M) with respect to the basis B. If B ′ is another basis, it has the same
cardinality as B. Then, there is an invertible matrix B such that A 7→ B−1AB is
the automorphism of Mn(R) that sends MB(f) over MB′(f). Hence, any property
of matrices that is invariant by similarity, can be defined for linear operators.
We define the trace of a linear operator as Tr f = TrM(f), and its determinant as
det f = detM(f).

1.1.3 Duality

We fix a non-degenerate bilinear form f on M×N. Let g ∈ End(M), then the map

(x,y) 7→ 〈g(x)|y〉f

is a bilinear form. On the other hand, let h be a bilinear form on M×N, for any
x ∈M the map hx : |y〉 7→ 〈x|y〉h is a linear form on N, thus hx ∈ N∗. From the
non-degeneracy of f we deduce that there is an unique element x ′ ∈M such that
〈x ′|y〉f = 〈x|y〉h and it is clear that the map 〈x| 7→ 〈x ′| is an endomorphism of M.
It is evident that the two maps are each other’s inverse, thus we have a group
isomorphism between End(M) and the group of bilinear forms. An analogous
argument shows that End(N) is isomorphic to the group of bilinear forms and
ultimately End(M) ∼= End(N).

A consequence of this is that for any linear operator g ∈ End(M) there is an
operator g∗ ∈ End(N) such that

〈g(x)|y〉f = 〈x|g∗(y)〉f
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1. Algebra

for any x ∈ M and y ∈ N. We define similarly h∗ when h ∈ End(N), obviously
(g∗)∗ = g. The operator g∗ is called the dual of g with respect to f. In general,
whenever it is clear from the context that g belongs to End(M) (or to End(N)), we
simply write

〈x|g|y〉 def≡ 〈g(x)|y〉 = 〈x|g∗(y)〉 .

More generally, Let f :M×M ′ → R and g : N ′×N→ R be two non-degenerate
bilinear forms, by the same technique as above we can show that there is a group
isomorphism between homR(N,M ′), hom(M,N ′) and the bilinear forms onM×N.
Then, for any h : N→M ′ there is an unique h∗ :M→ N ′ such that

〈x|h|y〉 def≡ 〈x|h(y)〉f = 〈h∗(x)|y〉g .

We also call h∗ the dual of h.
The canonical example of non-degenerate bilinear forms is obtained by consid-

ering the family of forms on M∗ ×M defined by

〈ℓ|x〉 = ℓ(x).

For any f :M→ N, we define the dual map f∗ : N∗ →M∗ as the map that sends a
form ℓ ∈ N∗ over the form ℓ ◦ f in M∗; it is easy to verify that

〈ℓ|f|x〉 = 〈ℓ|f(x)〉 = 〈f∗(ℓ)|x〉 = ℓ(f(x)).

If M is a free module and B = {e1, . . . ,en} a basis, the dual basis B∗ is the
unique basis {e∗

1 , . . . ,e∗
1 } of M∗ such that

〈e∗
i |ej〉 =

{
1 if i = j,
0 if i 6= j.

If elements of M and M∗ are represented, respectively, as vectors over B and B∗,
then the bilinear form 〈ℓ|x〉 = ℓ(x) is given by the inner product

〈
ℓ1 · · · ℓn

∣∣

∣∣∣∣∣∣∣

x1
...
xn

〉
=

∑

i

xiℓi

(notice how the product is swapped, this is because End(R) ∼= Rop). Now, if M
and N are free modules with a fixed basis, a linear map f :M→ N is isomorphic
to a matrix with entries in Rop. Then the application f |x〉 is just matrix-vector
multiplication, while 〈ℓ| f∗ is vector-matrix multiplication by the same matrix. This
justifies the notation 〈ℓ|A|x〉 where A is the matrix associated to f.

1.2 Basic Galois theory

In Parts III and IV we shall need some basic Galois theory of finite fields. We recall
here the general concepts.
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1.2. Basic Galois theory

1.2.1 Galois extensions

Let K be a field. The splitting field of a family of polynomials (Qi)i∈I in K[X] is
defined as an extension L of K where all the Qi’s factor completely into linear
factors, and such that L is generated over K by the roots of the Qi; the splitting
field is unique up to isomorphism. An algebraic field extension L/K such that L
is the splitting field of a family of polynomials in K[X] is called a normal extension.

Let L/K be an algebraic field extension, an element x ∈ L is said to be separable
over K if its minimal polynomial over K has no multiple roots in L. L/K is said to
be separable if every x ∈ L is separable over K. An algebraic field extension is said
to be a Galois extension if it is both separable and normal.

Theorem 1.1 Let L/K be a finite Galois extension, then there exists an element x ∈ L,
called a primitive element, such that L ∼= K[x].

Let L/K be a Galois extension, the group of automorphisms of L that fix K is
called the Galois group of L/K and is denoted by Gal(L/K). Let G be a group of
automorphisms of a field K, by KG we denote the subfield of K consisting in the
elements such that σ(x) = x for any σ ∈ G. Obviously, K = LGal(L/K).

Theorem 1.2 Let L/K be a finite Galois extension. Let H be a subgroup of G =

Gal(L/K), the map H 7→ LH is a bijection between the subgroups of G and the subfields
of L containing K. The extension LH/K is Galois if and only if H is a normal subgroup of
G; in this case its Galois group is isomorphic to G/H.

Let L/K be a Galois extension and let x ∈ L. The elements σ(x) for σ ∈
Gal(L/K) are called the conjugates of x under the action of Gal(L/K); they are the
roots of the minimal polynomial of x over K.

Let K be a field, an element x ∈ K such that xn = 1 is called an n-th root of
unity. If the characteristic of K does not divide n, the polynomial Xn − 1 has
n distinct roots in K̄ and they form a multiplicative group, denoted by µn; it
is a cyclic group, its generators are called the primitive roots of unity. If K has
characteristic p > 0, then Xpm

− 1 has only one root, namely 1, thus µpm is the
trivial group.

The Euler function ϕ : N→ N is defined as

ϕ(1) = 1,

ϕ(pr) = pr−1(p− 1) for p prime, r > 1,

ϕ(nm) = ϕ(n)ϕ(nm) when gcd(n,m) = 1.

The Euler function counts the number of generators of the cyclic group with n
elements, thus, when the characteristic of the field does not divide n, the number
of primitive roots of unity is equal to ϕ(n).

Theorem 1.3 Let x be a primitive n-th root of unity in an algebraic closure of Q, then

[Q(x) : Q] = ϕ(n).

If x is an n-th root of unity, its minimal polynomial over Q is called the n-
th cyclotomic polynomial and is denoted by Φn; it is a monic polynomial with
coefficients in Z. Φn is an irreducible factor of Xn − 1 over Q, its roots are all the
primitive n-th roots of unity, hence degΦn = ϕ(n).
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1. Algebra

Let L/K be a finite extension and let x ∈ L, the map Mx : a 7→ xa is an
automorphism of the K-vector space L. The minimal polynomial of its matrix with
respect to any basis is equal to the minimal polynomial of x over K. The trace of
Mx is called the trace of x and is denoted by TrL/K(x); its determinant is called the
norm of x and is denoted by NL/K(x).

Proposition 1.4 Let L/K and K/k be finite extensions and let G = Gal(L/K). We
have the following identities

TrL/K(x) =
∑

σ∈G

σ(x), TrL/k = TrK/k ◦TrL/K ,

NL/K(x) =
∏

σ∈G

σ(x), NL/k = NK/k ◦NL/K .

The trace is a morphism of K-vector spaces from L to K, the norm is a multiplicative
morphism of groups from L∗ to K∗.

1.2.2 Finite fields

Let K be a finite field. It has necessarily characteristic p > 0, thus it must contain
Z/pZ as a subfield. Z/pZ is called the prime field of K and is denoted by Fp. Since
K is a vector space over Fp, it must have cardinality q = pn for some n, hence its
multiplicative group has order q− 1.

As a consequence, the elements of K∗ must be roots of the polynomial Xq−1 −1.
The fact that p does not divide q− 1 implies that K is isomorphic to Fp[ζ], where ζ
is a primitive (q− 1)-th root of unity in F̄p. This implies that, up to isomorphism,
there is an unique finite field containing q elements, we denote by Fq this field.

Using the same arguments, it is easy to show that for any m > 1, Fqm contains
a subfield isomorphic to Fq. The map ϕq : Fqm → Fqm sending x 7→ xq is a
morphism of fields that fixes Fq, it is called the Frobenius automorphism of Fqm/Fq.
We now give the main result about the Galois theory of finite fields.

Proposition 1.5 The Galois group of Fqm/Fq is a cyclic group of order m; it is
generated by the Frobenius automorphism ϕq.

1.3 Basic algebraic geometry

1.3.1 Noetherian rings

A ring R is called Noetherian if any ascending chain of ideals eventually terminates.
Being Noetherian is a very stable condition: fields and principal ideal domains,
quotients of Noetherian rings, rings of polynomials in finitely many variables over
a Noetherian ring, are all Noetherian. In particular, all the rings we will work with
in this document are Noetherian.

A proper ideal I is maximal if it is not strictly contained in any proper ideal,
this is equivalent to R/I being a field. A proper ideal is prime if R/I is an integral
domain; primary if ab ∈ I implies that a ∈ I or bn ∈ I for some n. The radical of
an ideal I is the ideal

√
I = {f | fr ∈ I for some r > 0.}. (1.1)

An ideal is said to be radical if
√
I = I. The radical of a primary ideal is prime.

18



1.3. Basic algebraic geometry

An ideal I is said to be reducible if it is strictly contained in two ideals I1, I2
such that I = I1 ∩ I2, irreducible otherwise. Any primary ideal is irreducible; we
have the following two fundamental results about reducibility.

Proposition 1.6 Let R be Noetherian. Any radical ideal I admits an unique decomposi-
tion

I = P1 ∩ · · · ∩ Pn (1.2)

with Pi prime and Pi 6⊂ Pj for i 6= j.
Theorem 1.7 (Primary decomposition) Let R be Noetherian. Any ideal I admits a
decomposition

I = Q1 ∩ · · · ∩Qn (1.3)

into primary ideals. Furthermore,
√
Qi is uniquely determined.

Now we state a fundamental lemma that we will repeatedly use in the next
chapters.

Lemma 1.8 (Chinese remainder theorem) Let I1, . . . , In be pairwise coprime ideals (i.e.
Ii + Ij = R if i 6= j). Then the canonical morphism A→∏

jA/Ij gives an isomorphism
of rings

A/I1 ∩ · · · ∩ In ∼=
∏

j

A/Ij; (1.4)

and the intersection I1 ∩ · · · ∩ In equals the product I1 · · · In.

1.3.2 Algebraic varieties

We now consider the polynomial ring K[x1, . . . , xn], where K is a perfect field with
algebraic closure K̄. To any ideal I, we associate its set of zeros

V(I) = {x ∈ K̄n | f(x) = 0 for any f ∈ I}. (1.5)

Reciprocally, to any V ⊂ K̄n we associate the ideal vanishing at V

I(V) = {f ∈ K̄[x1, . . . , xn] | f(x) = 0 for any x ∈ V}. (1.6)

A subset of K̄n is called an affine algebraic set if it is the set of zeros of an ideal
of K̄[x1, · · · , xn]. The affine space of dimension n, denoted by An, is the affine
algebraic set associated to the zero ideal.

An algebraic set V is defined over K if I(V) has a set of generators in K[x1, . . . , xn];
in this case we denote by V(K) the subset V ∩Kn.

An algebraic set is irreducible if it cannot be written as the union of two proper
algebraic sets; equivalently, it is irreducible if I(V) is prime. An irreducible affine
algebraic set is called an affine variety.

There is also an equivalent notion of projective variety for homogeneous ideals.
The projective variety associated to the zero ideal is called the projective space of
dimension n, and is denoted by Pn.

In the sequel we shall drop the qualificatives “affine” or “projective”, and
simply speak of algebraic varieties whenever definitions/theorems are identical.
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Theorem 1.9 (Nullstellensatz) Let I be an ideal and V an algebraic set. We have the
following identities

I(V(I)) =
√
I, V(I(V)) = V . (1.7)

If V is a variety defined over K, its coordinate ring is

K[V]
def≡ K[x1, . . . , xn]/I(V); (1.8)

the function field K(V) is its field of fractions.
The dimension of a variety V is the length d of the longest chain of distinct

non-empty subvarieties of V

Vd ⊂ · · · ⊂ V1 ⊂ V . (1.9)

Equivalently, it is the length of the longest strictly decreasing chain of prime ideals
in K[V]. Yet another way of defining it, is the degree of transcendence of K(V)

over K.
If V1 and V2 are two varieties, an affine rational map is a map

φ : V1 → V2,

x 7→ (f1(x), . . . , fn(x)),
(1.10)

with f1, . . . , fn ∈ K̄(V1) and such for any point P at which f1, . . . , fn are defined,
φ(P) ∈ V2. An equivalent definition exists for projective rational maps.

A rational map that is defined at any point of V1 is called a morphism. A
rational map (a morphism) is defined over K if f1, . . . , fn ∈ K(V).
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Chapter 2

Algorithms and complexity

2.1 Asymptotic complexity

We shall measure the complexity of the algorithms that appear in this document
using the classical O (big-Oh) notation. Given two functions f,g : N → N, by
f ∈ O(g) we mean that there are an x0 and a constant M such that

f(x) < Mg(x) for any x > x0. (2.1)

Similarly, we shall use the Ω and Θ notations to state lower bounds and tight
bounds: the definition of f ∈ Ω(g) is like Eq. (2.1), but with the inequality turned
the other way. The definition of Θ is f ∈ Θ(g) if and only if f ∈ O(g) and f ∈ Ω(g).

We shall also make use of the notation Õx (soft-Oh of x) that forgets polyloga-
rithmic factors in the variable x, thus O(xy log x logy) ⊂ Õx(xy logy) ⊂ Õx,y(xy).
We simply write Õ when the variables are clear from the context.

Many algorithms below rely on fast multiplication; thus, we let MR : N→ N be
a multiplication function, such that polynomials in R[X] of degree less than n can be
multiplied in MR(n) arithmetic operations. We drop the index R when the ring is
clear from the context. To simplify expressions, following [vzGG99, §8.3], we shall
assume that M(n) is

• superlinear: M(n)/n > M(m)/m if n > m,

• at most quadratic: M(mn) 6 m2M(n).

We shall see soon that these assumptions are reasonable ones.
The cost of modular composition –that is computing f◦g mod h, for f,g,h ∈ R[X]

of degrees at most n, and h monic– will be written C(n). We shall make the
assumption that C(n) > M(n) for any n; the next section will review algorithms
for modular composition.

2.2 Fundamental algorithms

In this section we review some fundamental algorithms that we will repeatedly
use in the rest of the document. Most of the algorithms we present are taken
from [vzGG99]; another source of inspiration is [BCG+10].

2.2.1 Polynomial multiplication

Multiplication of polynomials with coefficients in a ring is a fundamental under-
pinning to which most of the algorithms in computer algebra reduce.
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2. Algorithms and complexity

In the previous section we introduced the notation M(n) to denote the number
of operations in R required to multiply two polynomials of degree at most n in
R[X]. Using the school-book algorithm, we have M(n) ∈ O(n2). The first major
step forward in the complexity of multiplication was done by Karatsuba [KO63].
He observed that using the formula

f = f1X
n + f2, g = g1X

n + g2,

fg = f1g1X
2n +

(
(f1 + f2)(g1 + g2) − f1g1 − f2g2

)
Xn + f2g2,

multiplication can be computed recursively using only 3 recursive calls. It follows
that M(n) ∈ O(nlog2 3).

When the base ring R is a field containing a primitive n-th root of unit ω,
polynomials can be multiplied by evaluating at the powers of ω, multiplying each
evaluation, and interpolating back. The map that sends a polynomial of degree n
over its evaluations at the n-th roots of unit is called discrete Fourier transform, there
are many algorithms of complexity O(n logn) to compute it, they all go under the
generic name of fast Fourier transform (FFT).

Thus, multiplication in certain fields can be carried out inO(n logn) operations.
Schönhage and Strassen’s method [SS71], along with its generalizations [Sch77,
CK91], adjoins enough roots of unit to any ring R by taking an extension of it; this
yields an algorithm of complexity O(n logn loglogn) to multiply polynomials of
degree n in R[X].

2.2.2 Formal power series

We denote by R[[X]] the ring of formal power series on R. Its elements are the
sequences (fi)i>0 of elements of R, they are denoted by

f(X) =
∑

i>0

fiX
i. (2.2)

Multiplication and evaluation are defined in the obvious way. An element f ∈ R[[X]]
is invertible if and only if f0 is an unit of R.

Since formal power series are infinite objects, to be used in a discrete algorithm
they must be approximated. We denote by f mod Xn the polynomial

f mod Xn =
∑

06i<n

fiX
i. (2.3)

We write f = g+O(Xn), where g is a polynomial or a power series, whenever

f mod Xn = g mod Xn,

and we say that g approximates f to the precision n.
Using polynomial multiplication, the product of two series known up to

precision n can be computed in M(n) operations.

Derivative, integral. We define the derivative of a power series as

f ′(X) =
∑

i>0

(i+ 1)fi+1X
i; (2.4)
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2.2. Fundamental algorithms

if R contains Q, we also define the integral as
∫

f(X) =
∑

i>0

fi

i+ 1
Xi+1. (2.5)

Derivatives and integrals up to precision n can be computed in O(n) operations
by their definition.

Logarithm, exponential. In what follows, we suppose that R contains Q. The
logarithm of a power series f such that f(0) = 1 is defined as

log f =
∫
f ′

f
. (2.6)

The exponential of a power series f such that f(0) = 0, is defined as

exp(f) = 1 + f/1! + f2/2! + · · · (2.7)

First order linear differential equations. All the usual identities involving multipli-
cation, derivatives, integrals, logarithms and exponentials are verified on power
series. An immediate consequence of this is a formula to solve first order linear
differential equations due to Brent and Kung [BK78].

Let f,g ∈ R[[X]], the equation

y ′ = f(X)y+ g(X) (2.8)

with initial condition y(0) = a has solution

y(X) =
1
j(X)

(
a+

∫

g(X)j(X)

)
, (2.9)

where j = exp(−
∫
f); the verification is immediate.

In the next subsection we shall see that multiplicative inverses, logarithms,
exponentials and powers up to precision n can all be computed in O(M(n))

operations, thus formula (2.9) can also be applied at the same cost.

Note. If R does not contain Q, but has characteristic 0, it is easy to use the
previous definitions by working in R[2−1, 3−1, . . .] and taking the result back in R
when needed. In characteristic different from 0, these definition do not make sense
anymore because Eq. (2.5) introduces a division by 0. However, when 2, 3, . . . ,n
are invertible in R, we can still do computations on power series truncated to the
order n.

2.2.3 Newton’s iteration

Let Φ : R → R be a C1 function, Newton’s iteration is a classical method to
approximate a root x of Φ. Start from an approximation x0, and linearize Φ to
compute

x1 = x0 −
Φ(x0)

Φ ′(x0)
, (2.10)

then iterate this step until the desired precision is obtained. When x0 is taken
close enough to a root, and when the derivative at this root is non-zero, Newton’s
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2. Algorithms and complexity

iteration converges quadratically to the solution, meaning that at each iteration the
distance to the solution is squared.

In computer algebra, Newton’s iteration is applied to operators Φ : R[[X]]→
R[[X]] on formal power series; in this context, quadratic convergence means that
the number of correct terms is doubled at each iteration. Many fast algorithms for
some fundamental operations on power series and polynomials are obtained by
this method, here we summarize the most important ones.

Inversion. If f ∈ R[[X]] is invertible, the operator Φ(y) = 1/y− f applied to y0 =

1/f(0) converges quadratically to the inverse of f. Since the iteration associated to
Φ is

yi+1 = yi(2 − yif), (2.11)

the cost of inverting a power series is O(M(n)). From Eq. (2.6) we deduce that
computing the logarithm of a power series has the same cost.

Another important consequence of this algorithm is that the Euclidean division
of polynomials of degree at most n can also be performed in O(M(n)) operations.

Exponential. If f is such that f(0) = 0, we compute its exponential using the
operator Φ(y) = f− logy, which gives the iteration

yi+1 = yi(1 + f− logy). (2.12)

Thus, the cost of computing an exponential is O(M(n)) too. Using the formula

fα = exp(α log f), (2.13)

we deduce that, in characteristic 0, computing arbitrary rational powers of power
series costs O(M(n)) too.

2.2.4 Modular composition

Given polynomials f,g,h ∈ R[X] of degree at most n with h monic, the modular
composition requires to compute

f(g(X)) mod h(X); (2.14)

the special case where h = Xn permits us to compute the composition of power series
truncated to the order n.

Modular composition is a fundamental algorithm with lots of applications, the
most relevant being polynomial factorization [vzGS92, KS98] and computation of
minimal polynomials (see Remark 5.23).

Since many algorithms in this document make use of modular composition,
we introduced the notation C(n) for its complexity. A naive algorithm implies
C(n) ∈ O(nM(n)). The first improvement to this bound was given by Brent
and Kung in [BK78]: they devised a baby step-giant step algorithm of complex-
ity O

(√
nM(n) + n(ω+1)/2

)
; in the same paper they also gave an algorithm of

complexity O
(√
n lognM(n)

)
for composition of power series. Bernstein [Ber98]

found the bound O(M(n) logn) for the composition of power series in case the
characteristic of the base ring is small, however for a long time Brent and Kung’s
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2.2. Fundamental algorithms

Algorithm 2.1: Iterated Frobenius
Input : 0 < i < d, a ∈ Fq[X]/f(x), Φ1(X) = X

q mod f(x).
Output : ϕi

q(a).
1: let i =

∑
bj2j be the binary expansion of i;

2: k← 1;
3: for j = ⌊log2 i⌋− 1 to 0 do

4: if bj = 0 then

5: Φ2k ← Φk ◦Φk mod f;
6: k← 2k;
7: else

8: Φ2k ← Φk ◦Φk mod f;
9: Φ2k+1 ← Φ2k ◦Φ1 mod f;

10: k← 2k+ 1;
11: return a ◦Φi mod f.

algorithm and its variants [HP98, KS98] have stood as the only generic algorithm
for modular composition. A major breakthrough has been recently achieved by
Kedlaya and Umans [Uma08, KU08], who give an algorithm for modular com-
position over a finite field Fq of binary complexity n1+o(1) log1+o(1) q, using a
reduction to multivariate multipoint evaluation.

Computing iterated Frobenius and pseudotrace. Fast modular composition can be
used to compute Frobenius automorphisms and pseudotraces in finite fields. This
algorithm is due to von zur Gathen and Shoup [vzGS92], who applied it to
polynomial factorization. We will repeatedly use it in Chapters 6 and 8.

Consider the field extension Fqd/Fq, its Galois group is generated by the
Frobenius automorphism

ϕq : Fqd → Fqd ,

x 7→ xq.
(2.15)

For any n < d, we also define the n-th pseudotrace1 as

Tn : Fqd → Fqd ,

x 7→
n−1∑

i=0

xq
i

.
(2.16)

Notice that, when n = d, the pseudotrace coincides with the trace TrF
qd/Fq

; in this
case one can use much faster algorithms.

We suppose that elements of Fqd are represented as residue classes in Fq[X]/f(X)

for some irreducible polynomial f, then the Frobenius automorphism can be com-
puted with O(logq) multiplications in Fqd plus one modular composition as

Φ1(X) = X
q mod f(X), (2.17)

ϕq(a) = X
q ◦ a mod f = a ◦ Xq mod f = a ◦Φ1 mod f. (2.18)

1In [vzGS92], this map goes under the name of trace map.
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2. Algorithms and complexity

Algorithm 2.2: Pseudotrace
Input : 0 < i < d, a ∈ Fq[X]/f(x), Φ1(X) = X

q mod f(x).
Output : Tn(a).

1: let n =
∑
bj2j be the binary expansion of n;

2: Θo ← 0, Θ1 ← a ◦Φ1;
3: k = b0;
4: for j = 1 to ⌊log2 n⌋ do

5: Φ2j ← Φ2j−1 ◦Φ2j−1 mod f;
6: Θ2j ← Θ2j−1 +Θ2j−1 ◦Φ2j−1 mod f;
7: if bj = 1 then

8: Θ2j+k ← Θ2j +Θk ◦Φ2j mod f;
9: k← 2j + k;

10: return Θn.

Iterating i times ϕq can be done with only O(log i) modular compositions via
square-and-multiply as shown in Algorithm 2.1.

Thus the cost of computing the i-th iterated Frobenius is

O(C(d) log i) (2.19)

operations in Fq plus a precomputation costing O(M(d) logq).
In Algorithm 2.2 we apply the same idea to compute the n-th pseudotrace in

O(C(d) logn) operations; note that we use a dynamic programming technique to
keep the complexity into this bound. The key equation is

Tn+m(a) = Tn(a) +ϕ
n
q(Tm(a)). (2.20)

2.2.5 Interpolation and Chinese remainder algorithm

Let K be a field, and let x1, . . . , xn ∈ K be distinct points. Let f be the polynomial
that vanishes on x1, . . . , xn, by the Chinese remainder theorem we know that

K[X]/f(X) ∼=
∏

i

K[X]/(X− xi). (2.21)

If a is an element on the left side of the isomorphism (i.e. a polynomial modulo f),
moving it to the right is evaluation at the points x1, . . . , xn. The inverse operation
is interpolation.

We now give two algorithms to perform this change of representation efficiently.
We suppose for simplicity that n = 2k. The first step is to construct the subproduct
tree.

Computing the subproduct tree takes O(M(n) logn) operations and requires
an equivalent storage. Having precomputed it, it is immediate to evaluate a
polynomial at the points x1, . . . , xn.

If a has degree at most n, computing the multipoint evaluation also takes
O(M(n) logn) operations using a fast Newton iteration for Euclidean division.

For the inverse operation, we use the Lagrange interpolants

si =
∏

j 6=i

(X− xj)

xi − xj
. (2.22)
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Algorithm 2.3: Subproduct tree

Input : n = 2k, x1, . . . , xn ∈ K.
Output : The subproduct tree.

1: let f(k)i = (X− xi) for 0 < i 6 2k;
2: for j = k− 1 to 0 do

3: for all i ∈ [1, . . . , 2j] do

4: f
(j)
i ← f

(j+1)
i f

(j+1)
2i .

Algorithm 2.4: Multipoint evaluation

Input : The subproduct tree, a ∈ K[X]/f(X).
Output : a(x1), . . . ,a(xn).

1: for j = 1 to k do

2: for all i ∈ [1, . . . , 2j−1] do

3: a
(j)
i ← a

(j+1)
i mod fj+1

i ;
4: a

(j)
2i ← a

(j+1)
i mod fj+1

2i ;
5: return a(k)1 , . . . ,a(k)n .

They have the property that

si ≡ 0 mod (X− xj) if i 6= j,
si ≡ 1 mod (X− xi);

(2.23)

so that

a ≡
∑

i

a(xi)si mod f. (2.24)

The key observation is that

f ′ =
∑

i

∏

j 6=i

(X− xj), (2.25)

hence

si =

∏
j 6=i(X− xj)

f ′(xi)
. (2.26)

To interpolate the polynomial a from the values a(xi), we start by computing
the values f ′(x1), . . . , f ′(xn) by the previous algorithm. Then we reconstruct a
using the subproduct tree.

Thus, interpolation too can be computed with O(M(n) logn) operations in
K. These algorithms can be generalized to compute the Chinese remainder
isomorphism and its inverse for arbitrary moduli f1, . . . , fr ∈ K[X] such that
gcd(fi, fj) = 1 for i 6= j. The complexity is again O(M(n) logn), where n is the
sum of the degrees of f1, . . . , fn. See [vzGG99, §10] for details.

2.2.6 Euclidean algorithm, Cauchy interpolation and rational fraction reconstruction

Let K be a field, given two polynomials f,g ∈ K[X] of degrees m,n, the Euclidean
algorithm permits us to compute their GCD using O(mn) operations in K. Let r
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2. Algorithms and complexity

Algorithm 2.5: Interpolation

Input : a(x1), . . . ,a(xn), the subproduct tree.
Output : a =

∑
i a(xi)si.

1: compute f ′(x1), . . . , f ′(xn) using multipoint evaluation;
2: p

(k)
i ← a(xi)/f

′(xi) for 0 < i 6 2i;
3: for j = k− 1 to 0 do

4: for all i ∈ [1, . . . , 2j] do

5: p
(j)
i ← p

(j+1)
i t

(j+1)
2i + p

(j+1)
2i t

(j+1)
i ;

6: return p0.

Algorithm 2.6: Extended Euclidean algorithm

Input : f,g ∈ K[X].
Output : u, v, r ∈ K[X] such that fu+ gv = r.

1: let r0 ← f, u0 ← 1, v0 ← 0;
2: let r1 ← f, u1 ← 0, v1 ← 1;
3: i← 1;
4: while ri 6= 0 do

5: compute ri−1 = qiri + ri+1 by Euclidean division;
6: compute ui+1 ← ui−1 − qiui, vi+1 ← vi−1 − qivi;
7: i← i+ 1;
8: return ui, vi, ri.

be the GCD of f and g, a Bézout relation is an equation of the form

fu+ gv = r, (2.27)

with u, v ∈ K[X]. If we ask deg(ur) < deg(g) and deg(vr) < deg(a), the Bézout
relation is unique; computing it is called the extended GCD problem (XGCD) and
can be computed by the extended Euclidean algorithm.

One important application of XGCD’s is computing modular inverses: let
f,g ∈ K[X] with deg(g) < deg(f) and f prime to g, then r is a unit in K, and a
Bézout relation implies

g
v

r
≡ 1 mod f. (2.28)

More generally, the polynomials computed at each iteration by the extended
Euclidean algorithm satisfy

fui + gvi = ri for any i; (2.29)

each of these is also called a Bézout relation. These relations have two major
applications: Cauchy interpolation and rational fraction reconstruction.

Given n pairs (x, e) ∈ K×K with all x distinct and an integer ℓ < n, Cauchy
interpolation computes, if it exists, a rational fraction r

v
∈ K(X) with deg r < ℓ and

deg v 6 n− ℓ, such that r(x)
v(x)

= e for any (x, e). Let f =
∏

(X− x), by interpolation
one obtains the unique polynomial g ∈ K[X]/f such that g(x) = e for any (x, e).
Then a Bézout relation for f and g gives

ri

vi
≡ g mod f for any i, (2.30)
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thus in particular ri(x)
vi(x)

= e for any (x, e); this phase often goes under the name of
rational fraction reconstruction too. It can be proven that a solution to the Cauchy
interpolation problem exists if and only if one of the intermediate results of the
extended Euclidean algorithm is such that deg(ri) < ℓ and deg(vi) 6 n− ℓ.

Rational fraction reconstruction (RFR) is very similar to Cauchy interpolation,
and it can be viewed as a generalization of it using multiplicities. Let g ∈ K[[X]] be
a power series, we want to compute a rational fraction r

v
∈ K(X) with deg(r) < ℓ

and deg(v) 6 n− ℓ, such that r
v
= g+O(Xn) in K[[x]]. Such a rational fraction is

called a Padé approximant of type (ℓ− 1,n− ℓ) of g. Again, it can be shown that a
Padé approximant of type (ℓ− 1,n− ℓ) exists if and only if

ri

vi
≡ g mod Xn+m+1 (2.31)

is one of the intermediate results computed by the extended Euclidean algorithm.
The extended Euclidean algorithm is not optimal. We address the reader

to [vzGG99, §11.1] for the description of an algorithm that takes f,g ∈ K[X] of
degree at most n and ℓ 6 n, and computes, using O(M(n) logn) operations, the
rows ui, vi, ri and ui+1, vi+1, ri+1 of the Extended Euclidean algorithm such that
deg(ri) > n − ℓ and deg(ri+1) < n − ℓ. A consequence of this algorithm is that
both Cauchy interpolation and rational fraction reconstruction can be computed
in O(M(n) logn) operations.

2.2.7 Multivariate polynomials

Computing with multivariate polynomials has many complications, compared to
the univariate case. Part III will be dedicated to some advanced algorithms for
some specific instances of quotient rings of multivariate polynomials. Here, we
just recall the basic techniques that permit us to reduce the multivariate to the
univariate case.

Multiplication of polynomials in R[X, Y] can be reduced to univariate multipli-
cation by Kronecker substitution [Kal87, vzGG99, vzGS92, Har09]. If f,g ∈ R[X, Y]
have degree at most m in X and at most n in Y, the product fg can be computed as

fg ≡ f(X,X2m−1) · g(X,X2m−1) mod Y − X2m−1. (2.32)

Observing that the reduction modulo Y − X2m−1 comes for free, the cost of the
previous computation is O(M(mn)).

Kronecker substitution also allows to do multiplication in
(
K[X]/f(X)

)
[Y] by

multiplying in K[X, Y] first and then reducing modulo f. TheO(M(mn)) operations
in K (m being the degree of f and n being a bound on the degree in Y). The same
idea can be applied to multiply elements of K[X, Y]/I, where I is a triangular ideal

I = 〈f(X),g(X, Y)〉 with g monic in Y, (2.33)

using O(M(mn)) operations, where m = deg f and n = degY g; the algorithm and
the complexity analysis can be found in [PS06, Proposition 4].

All the algorithms presented previously that use multiplication as a black
box, can be generalized to the bivariate case using Kronecker substitution. Thus,
for example, Euclidean division in (K[X]/f(x)) [Y] can be done in O(M(mn))

operations, inversion in K[X, Y]/I in O(M(mn) logmn) operations, etc.
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Unfortunately, Kronecker substitution does not scale well with the number of
variables. For an analysis of the problem and alternatives, see [Sch05, LMMS07].
In general, no quasi-linear time algorithm is known to multiply elements of a
finite dimensional algebra K[X1, . . . ,Xn]/I, even in the case I is triangular.

2.2.8 Transposed algorithms

Finally, we shall recall some known results about transposed algorithms. The theory
of transposition will be studied in detail in Part II; for the moment we shall just
recall that an algorithmic principle, known as the transposition principle [Sho94,
Sho95, Sho99, Kal00, HQZ04, BLS03], states that

Let P be an arbitrary set. To any R-algebraic algorithm A computing a
family of linear functions (fp :M→ N)p∈P corresponds an R-algebraic
algorithm A∗ computing the dual family (f∗p : N∗ → M∗)p∈P. The
algebraic time and space complexities of A∗ are bounded by the time
complexity of A.

In Part II we shall see that this principle has an algorithmic content and that
the dual algorithm can be inferred automatically. For the moment, we are just
interested in its existential aspect. We consider two problems for which the
transpose problem has been studied.

Transposed multiplication. The first one is polynomial multiplication. Let a ∈ R[X],
the map Ma : b 7→ ab is a linear map. As usual, we identify the dual module of
R[X] to R[[1/X]] via the bilinear form

〈α|b〉 = [αb]0, (2.34)

where α ∈ R[[1/X]], b ∈ R[X] and [β]i is the coefficient of Xi in β.
Then, the dual map to Ma is given by

〈α|Ma|b〉 = 〈α|ab〉 = [αab]0 = 〈a · α|b〉 = 〈M∗
a(α)|b〉 , (2.35)

where the product a · α is defined as the usual product, with coefficients of Xi

discarded if i > 0.
In particular, let a have degree m. If we restrict Ma to R[X]n (the polynomials

of degree at most n), the image ofMa is in R[X]m+n. Then, we identify (R[X]m+n)
∗

to R[1/X]m+n and (R[X]n)
∗ to R[1/X]n.

Hence, the map

M∗
a : R[1/X]m+n → R[1/X]n,

α 7→ a · α (2.36)

is defined by truncating the power series at 1/Xn:

a · α =

m∑

i=0

aiX
i ·

m+n∑

j=0

αj

Xj
=

n∑

k=0

∑

i−j=k

aiαj

Xk
. (2.37)

Observe that the coefficients of a · α are the same as the coefficients of a(αXm+n)

between Xm and Xm+n, thus any algorithm for polynomial multiplication can
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be used to compute a · α in M(2m+ n) operations. This is the reason why trans-
posed polynomial multiplication is also called middle product in the literature [BLS03,
HQZ04]. The generalization to the multivariate case is straightforward.

Observe, however, that this algorithm has nothing to do with the transposition
principle: it is just a property of multiplication. Applying the transposition
principle, one obtains a tighter bound of M(max(m,n)). The univariate case is
treated in [HQZ04, BLS03], it is applied to speed up some Newton iterations on
power series; the bivariate case appears in the proof of [PS06, Corollary 2].

Transposed Euclidean division. We now study the dual of Euclidean division with
remainder; it is actually only the remainder that we are interested in. Let f be a
monic polynomial in R[X], the map

modf : R[X]→ R[X]n,

a 7→ a mod f
(2.38)

is a linear map.
Suppose f has degree n+ 1, then the dual map

mod∗
f : R[1/X]n → R[[1/X]] (2.39)

is such that, for any α ∈ R[X]n and any i > 0,
〈
β
∣∣Xif

〉 def≡
〈

mod∗
f(α)

∣∣Xif
〉
=
〈
α
∣∣Xif mod f

〉
= 0, (2.40)

where we have set β
def≡ mod∗

f(α).
Using what we saw previously on transposed multiplication,

〈
Xi · β

∣∣f
〉
=
〈
β
∣∣Xif

〉
= 0 for any i > 0. (2.41)

Equivalently, the coefficients of β satisfy a linear recurrence with minimal polyno-
mial f. If

α =

n∑

i=0

αi

Xi
, β =

∑

i>0

βi

Xi
(2.42)

the initial conditions for β are

βi =
〈
β
∣∣Xi
〉
=
〈
α
∣∣Xi mod f

〉
=
〈
α
∣∣Xi
〉
= αi (2.43)

for any i 6 n.
Thus, the dual of modular reduction consists in extending a linear recurring

sequence of order n from its first n elements. Any algorithm for such task
(for example, [Sho99, §3]) can be used to compute mod∗

f , however one can also
directly obtain one such algorithm by applying the transposition principle to any
algorithm for Euclidean division. In any case, transposed modular reduction to the
order N can be computed using O(M(N)) operations2.

Finally, the composition modf ◦Ma gives an algorithm for multiplication in
the ring R[X]/f(X). Hence, the dual to this is simply M∗

a ◦ mod∗
f . This is called

transposed modular multiplication and we shall use this repeatedly in the next
chapters. The generalization of this to the case of K[X, Y]/I, where I is a triangular
ideal, is straightforward but technical; we address to [PS06, Corollary 2] for the
details.

2One can do better when N is much larger than n, but we shall not need such an improvement in
this document.
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The transposition principle
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Chapter 3

Algebraic Complexity and duality

The complexity of algebraic algorithms is often more easily described in a non-
Turing model where one assumes that any algebraic operation can be done in a
unit of time and any other operation is free. Algebraic complexity studies precisely
the computational models that behave this way.

For algorithms over finite rings, the algebraic complexity gives a precise esti-
mate for the complexity in the Turing or RAM model (also called binary models).
For other rings, the algebraic estimate may be way off target, but it can nevertheless
give useful information.

In this chapter we study models that allow one to study the algebraic complex-
ity of linear operators. We first present the arithmetic circuit, then the straight line
program. Because of their algebraic structure, these models support some algebraic
manipulations. Our principal interest will be the transposition theorem, stating that
it is possible to apply classical duality (in the sense of Section 1.1.3) to programs,
while preserving some complexity invariants. The interest for the transposition
theorem comes from the applications we have seen in Section 2.2.8 and other more
advanced applications that we will see in the next chapters.

Finally, in Section 3.4, we study the relationship between the transposition
theorem and the classical theory of automatic differentiation.

3.1 Arithmetic circuits

In this section we briefly present the arithmetic circuit model. Since we have in
mind applications to the theory of transposition, our presentation slightly deviates
from textbooks; for a more classical and extensive treatment see [BCS97b, Vol99].

3.1.1 Basic definitions

In the whole chapter, by R we shall denote a (non necessarily commutative) ring
with unit. Unless otherwise stated, we consider Rn with its natural structure of
left R-module; when needed, we shall use kets |x〉 to remove any ambiguity about
the fact that we are talking about elements of a left module. We set R0 = 0, the
zero module, and we denote by ⊥ (or |⊥〉) its unique element.

The dual space (Rn)∗ = hom(Rn,R) has a natural structure of right R-module
(equivalently, of left Rop-module) by the assignment

〈ℓ|a : |x〉 7→ 〈ℓ|x〉a, (3.1)

where we have used bras to denote elements of (Rn)∗ and a bracket to denote the
natural bilinear form that results by applying linear forms to elements.
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3. Algebraic Complexity and duality

Definition 3.1 (Arithmetic operator, arity) An arithmetic operator over R is a
morphism of left modules f : Ri → Ro for some i,o ∈ N. Here i is called the
in-arity of f or simply arity, o is called the out-arity of f.

Definition 3.2 (Arithmetic basis) An arithmetic R-basis is a (not necessarily finite)
set of arithmetic operators over R. A basis is said to be commutative if all its opera-
tors are invariant under the natural action of Sn over Rn (i.e. under permutation
of coordinates).

The arithmetic basis we will work with is the standard left-linear basis, denoted
by L. It is composed of

+ : R⊕ R→ R, ∗a : R→ R, & : R→ R⊕ R,

(a,b) 7→ a+ b, b 7→ ba, a 7→ (a,a),

0 : 0→ R, ω : R→ 0,

⊥ 7→ 0, a 7→⊥ .

(L)

Arithmetic circuits are directed acyclic multigraphs carrying information from an
arithmetic basis; the formal definition follows.

Definition 3.3 (Arithmetic node) Let B be an R-basis. A node over (R,B) is a
tuple v = (I,O, f) such that

• I and O are finite ordered sets,

• f is either an element of B or the special value ∅.

• If f = ∅, one of the two following conditions must hold:

– I is a singleton and O is empty, in this case we say that v is an input
node;

– I is empty and O is a singleton, in this case we say that v is an output
node.

• If f 6= ∅, the cardinality of I matches the in-arity of f and the cardinality of O
matches the out-arity of f; in this case we say that v is an evaluation node.

+ & ∗a 0 ω

x

y

Figure 3.1: Nodes over the standard linear basis: round ones are evaluation nodes,
square ones are input and output nodes.

We call input ports the elements of I and output ports the elements of O, which
we denote respectively by in(v) and out(v). The cardinalities of I and O are called,
respectively, the in-degree and out-degree of v. We call f the value of v and write
β(v) for it.
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3.1. Arithmetic circuits

Nodes over the linear basis are pictured in Figure 3.1.1. We do not explicitly
represent the orderings on in(+) and out(&) because they are not relevant for the
linear basis: in fact, all operators are commutative.

Definition 3.4 (Arithmetic circuit) Let B be an R-basis. A (linear) arithmetic circuit
over (R,B) is a tuple C = (V ,E,6,6i,6o) such that

1. V is a finite set of nodes over (R,B);

2. < is a total order on V , <i is a total order on the input nodes in V , <o is a
total order on the output nodes in V ;

3. let I =
⊎

v∈V in(v) and O =
⊎

v∈V out(v), then E is a bijection from O to I
such that E(o) = i implies that o ∈ out(v), i ∈ in(v ′) and v � v ′.

In practice, the definition says that C is a directed acyclic multigraph (also
called multiDAG), where V are the vertices, E the edges, and where the degrees
of each vertex are prescribed by the arities of the underlying arithmetic node.
Moreover, we add an ordering on input nodes (vertices of in-degree 0) and on
output nodes (vertices of out-degree 0).

In what follows, we shall call (V ,E) the underlying graph of C, and use classic
graph theoretic terms to refer to its properties. We shall often implicitly make this
identification. Thus, we shall represent E as a set of edges (o, i), and make use of
the classic concepts of incident edge, nodes connected by an edge, paths, etc.

Figure 3.2 shows two examples of arithmetic circuits. Input and output nodes
are ordered from left to right; ports are not ordered because the basis is commuta-
tive.

x1 x2 x3

+ &

+ ∗2

y1 y2

x∗1 x∗2 x∗3

& +

& ∗2

y∗1 y∗2

Figure 3.2: Two arithmetic circuits over L. The linear map y1 = x1 + 3x2,y2 = x3

is computed by the circuit on the left and its dual is computed by the circuit on
the right.

Definition 3.5 (Size, depth) Let C be a circuit over (R,B). The size of C, denoted
by size(C) is the number of evaluation nodes in V ; the depth of C, denoted by
depth(C) is the length of the longest directed path –in a graph-theoretic sense– in
(V ,E).

Sometimes it is useful to only count certain nodes. Let X ⊂ B, the X-weighted
size of C, denoted by sizeX(C) is the number of nodes v ∈ V such that β(v) ∈ X.
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3. Algebraic Complexity and duality

3.1.2 Semantic of a circuit

Circuits would be meaningless if they had no semantic attached to them. Intuitively
the semantic corresponds to recursively feed inputs to the nodes, evaluate β(v) at
the inputs and collect the outputs.

Definition 3.6 (Evaluation of an arithmetic circuit) Let C be an arithmetic circuit
with i inputs and o outputs, then its evaluation is a morphism evalC : Ri → Ro.

In order to define it, we simultaneously define the evaluation evalv of each
v ∈ V and the evaluation evale of each e ∈ E. We will denote by <v the orders on
the input and the output ports of v.

• Let v ∈ V have out-degree n, let its evaluation be evalv : Ri → Rn and let
π1, . . . ,πn be the canonical projections from Rn to R. Let o1 <v · · · <v on
be the output ports of v and let ej =

(
oj,E(oj)

)
be the corresponding edges

stemming from v, then evalej
= πj ◦ evalv for any j.

• Let x1 <i · · · <i xi be the input nodes and let π1, . . . ,πi be the canonical
projections from Ri to R, then evalxj

= πj for any j.

• For every evaluation node v with in-degree m, let i1 <v · · · <v im be the
input ports of v and let ej =

(
E−1(ij), ij

)
be the corresponding edges incident

to v, then

evalv = β(v) ◦ (evale1 , · · · , evalem
). (3.2)

• For every output node y, let e ∈ E be the only edge incident to y, then
evaly = evale.

We can finally define evalC : Ri → Ro. Let y1 <o · · · <o yo be the output
nodes, then

evalC = (evaly1 , · · · , evalyo
) . (3.3)

We also say that C computes evalC.

It is immediate to verify that evalC is a morphism of left modules, because we
only used compositions and direct sums to define it. The converse is partially true.

Proposition 3.7 Any morphism of free finite-dimensional R-modules can be computed
by an arithmetic circuit over (R,L).

Proof. Take the matrix associated to such morphism and create a circuit that
performs the matrix-vector product.

This also gives an upper bound of O(mn) on the circuit size of a linear operator
Rm → Rn.

We now define a way of substituting nodes, first syntactically, then semantically.

Definition 3.8 (Syntactic substitution) Let C = (V ,E,6,6i,6o) be a circuit over
(R,B) and let C ′ = (V ′,E ′,6 ′,6 ′

i,6
′
o) be a circuit over (R,B ′). Let C ′ have i inputs

and o outputs and let v ∈ V have in-degree i and out-degree o.
Let I and O be monotone bijections respectively from in(v) to in(C ′) and from

out(C ′) to out(v). We denote by C[C ′/v] the circuit (V ′′,E ′′,6 ′′,6 ′′
i ,6 ′′

o) over
(R,B ∪B ′) defined as follows:
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3.1. Arithmetic circuits

• V ′′ = V ⊎ (V ′ − in(C ′) − out(C ′));

• 6 ′′
i =6i, 6 ′′

o=6o;

• v ′ 6 v ′′ if and only if one of the following conditions hold:

– v ′, v ′′ ∈ V and v ′ 6 v ′′;
– v ′, v ′′ ∈ V ′ and v ′ 6 ′ v ′′;
– v ′ ∈ V and v ′′ ∈ V ′ and v ′ 6 v;
– v ′ ∈ V ′ and v ′′ ∈ V and v 6 v ′′;

• E ′′(o) =






E ′(o ′) if E(o) ∈ in(v) and I(E(o)) = v ′ and out(v ′) = {o ′},
E(o ′) if E ′(o) ∈ out(C ′) and O(E ′(o)) = o ′,
(E ⊎ E ′)(o) otherwise.

Definition 3.9 (Semantic substitution) Let C be a circuit over (R,B ∪ {f}) and let
F be a circuit over (R,B) such that evalF = f.

We denote by C[F/f] the circuit over (R,B) where any node v of C such that
β(v) = f has been syntactically substituted by F.

The proof of the following proposition is immediate.

Proposition 3.10 Under the conditions of the previous definition,

evalC[F/f] = evalC .

As a shorthand notation, we will draw octogones to signify that a node has
been syntactically substituted by a circuit, without giving the actual shape of the
substituting circuit. Figure 3.1.2 shows an example.

x1 x2

&F

y1 y2 y3

Figure 3.3: Arithmetic circuit where a node has been syntactically substituted by
a circuit F with 3 inputs and 3 outputs.

3.1.3 The transposition theorem

We are now ready to state and prove the transposition theorem for arithmetic circuits.
We fix a family (Mi)i∈N of free left R-modules, with Mi

∼= Ri. Via the iso-
morphisms, it is straightforward to extend the definition of arithmetic circuit so
that evalc is a morphism Mi → Mo. We also fix a family (Ni)i∈N of free right
R-modules, and a family of non-degenerate bilinear forms

(〈|〉i : Ni ×Mi → R)i∈N
. (3.4)

One can think of Mn being Rn, Nn being (Rn)∗, and the bilinear forms being the
natural ones.

We define the notion of dual circuit, that intuitively corresponds to turn all the
arrows around.
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3. Algebraic Complexity and duality

Definition 3.11 (Dual arithmetic basis) Let B be an arithmetic basis over R. The
dual basis B∗ (with respect to 〈|〉i) is the basis over Rop

B∗ = {f∗ | f ∈ B}. (3.5)

In particular, the dual basis to (R,L) is

+ = &∗ : (R⊕ R)∗ → R∗, & = +∗ : R∗ → (R⊕ R)∗,

〈a,b| 7→ 〈a|+ 〈b| , 〈a| 7→ 〈a,a| ,

∗a = (∗a)∗ : R∗ → R∗,

〈b| 7→ 〈b|a,

0 = ω∗ : 0∗ → R∗, ω = 0∗ : R∗ → 0∗,

〈⊥| 7→ 〈0| , 〈a| 7→ 〈⊥| .

(L∗)

Definition 3.12 (Dual circuit) Let C = (V ,E,6,6i,6o) be a circuit over (R,B).
For any v ∈ V define

v∗ =






(O, I, f∗) if v = (I,O, f) with f 6= ∅,
(O, ∅, ∅) if v = (∅,O, ∅),
(∅, I, ∅) if v = (I, ∅, ∅).

(3.6)

The dual circuit (with respect to 〈|〉i) of C, denoted by C∗, is the arithmetic
circuit over (Rop,B∗)

C∗ = (V∗,E−1,6 ′,6 ′
i,6

′
o),

where V∗ = {v∗|v ∈ V} and the orderings are defined as follows:

v 6 v ′ ⇔ v ′∗ 6
′ v∗, (3.7)

v 6o v
′ ⇔ v∗ 6

′
o v

′∗, (3.8)

v 6i v
′ ⇔ v∗ 6

′
i v

′∗. (3.9)

In particular, this makes (V∗,E−1) the reverse graph of (V ,E) in a graph-
theoretic sense. Figure 3.2 shows two circuits that are each other’s dual. We can
now state the transposition theorem.

Theorem 3.13 (Transposition theorem) Let C be a circuit that computes a morphism
f, then C∗ computes the dual morphism f∗.

In order to maintain this chapter at the level of elementary linear algebra, we
give here a quite tedious proof: it amounts, in a hidden way, to write down the
matrices of f and f∗ and check that they are the same. In Appendix A we will give
a conceptually simpler proof, using category theory.

Definition 3.14 (Evaluation of a path) Let x and y be nodes of C and let p =

(e1, . . . , ek) be a path from x to y.
If k = 1, we define evalp as the identity map R→ R. If k > 1, for any 1 6 i < k

let the node
· · · ei // v

ei+1 // · · ·
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3.1. Arithmetic circuits

have ni inputs and mi outputs, and let ι : R→ Rni be the injection corresponding
to the position of ei in in(v) and π : Rmi → R the projection corresponding to the
position of ei+1 in out(v), then we define

fi = π ◦ β(v) ◦ ι. (3.10)

Finally, we define evalp as

fk−1 ◦ · · · ◦ f1. (3.11)

Lemma 3.15 (The electrical network lemma) Let C be an arithmetic circuit, let
x1 6i · · · 6i xn be its input nodes and y1 6o · · · 6o ym its output nodes. We have the
following identity

πj ◦ evalC ◦ιi =
∑

p∈xi yj

evalp for any 1 6 i 6 n, 1 6 j 6 m, (3.12)

where the sum ranges over all the distinct paths from xi to yj.

Proof. We start by proving that for any node v and any edge v e→ v ′

evale =

n∑

i=1

∑

p∈xi v
e→v′

evalp ◦πi, (3.13)

where πi : Rn → R is the i-th projection, and the second sum ranges over all the
distinct paths from xi to v ′ passing through e. We do this by induction on the
length of the longest path to v.

If the longest path to v has length 0, then v is one of the input nodes, say xi.
Then by definition evale = πi, and Eq. (3.13) is verified.

Then, let v be an evaluation node, let e1 6v . . . 6v ek be the edges incident to
v, and let v1, . . . , vk be the corresponding nodes. Then, by definition

evale = πe ◦ β(v) ◦ (evale1 , . . . , evalek
) =

k∑

j=1

πe ◦ β(v) ◦ ιj ◦ evalej
, (3.14)

where πe is the projection corresponding to the position of e in out(v). By
induction, this is equivalent to

k∑

j=1

n∑

i=1

∑

p∈xi vj

ej→v

πe ◦ β(v) ◦ ιj ◦ evalp ◦πi =
n∑

i=1

∑

p∈xi v
e→v′

evalp ◦πi, (3.15)

where the equality comes from Eq. (3.10).
Now, by the definition of evalC we have

πj ◦ evalC = evalyj
=

∑

i=1

∑

p∈xi yj

evalp ◦πi, (3.16)

and composing on both sides with ιi gives Eq. (3.12).
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3. Algebraic Complexity and duality

Proof of the transposition theorem. The proof of the transposition theorem is now
straightforward. By linearity it is enough to prove that

πj ◦ evalC ◦ιi = (πi ◦ evalC∗ ◦ιj)∗ for any 1 6 i 6 n, 1 6 j 6 m, (3.17)

but this is evident by Eqs. (3.12), (3.11) and (3.10).

Corollary 3.16 A linear function f : Rn → Rm and its transpose can be computed by
arithmetic circuits on (R,L) of same sizes and depths. In particular if C computes f and
C∗ computes f∗,

size{+}(C) = size{&}(C
∗), size{&}(C) = size{+}(C

∗),

size{∗a}(C) = size{∗a}(C
∗) for any a ∈ R,

size{0}(C) = size{ω}(C
∗), size{ω}(C) = size{0}(C∗).

Remark 3.17. The name “transposition theorem” is somehow misleading. In fact,
the theorem says that if evalC is the map x 7→ xM for some matrix M, then evalC∗

is the map y 7→My. If R is commutative, this is equivalent to transpose M, but
in the non-commutative case this is not true anymore. For this reason, we shall
always prefer the formulation in terms of bilinear forms instead of the one in
terms of matrices.

It is also worth noticing that the transposition theorem stays true if instead of
a bilinear form we had used a sesquilinear form (in this case (∗a)∗ = ∗ā).

Note. The name “The electrical network lemma” is ours, but it could well have
been original. The transposition theorem was first discovered in electrical network
theory by Bordewijk [Bor57]; he only showed the case R = C. Some attribute
the discovery to Tellegen [BCS97b, BLS03], Bordweijk’s advisor, but this is de-
bated [Ber].

The first complete algebraic proof, treating the case of an arbitrary non-
commutative ring, is due to Fiduccia [Fid73]. There have been many rediscoveries
of the theorem (see [Ber]), but Fiduccia’s statement stays the most general.

Canny, Kaltofen and Yagati [CKY89, Kal00] pointed out that the transposition
theorem can be proven as a special case of Baur and Strassen’s differentiation of
circuits [BS83]. We shall come back to this question in Section 3.4.

3.1.4 Circuit families

A circuit is limited to compute one specific function with inputs and outputs of
fixed size (in terms of elements of R). However complexity theory is interested in
algorithms that compute on inputs of variable size. This leads to study families of
circuits.

Definition 3.18 (Circuit family) Let B a basis over R and P a set. A circuit
family over (R,B,P) is a family of circuits over (R,B) indexed by P. P is called
the parameter space of the family. When the mapping from P to the circuits is
Turing-computable, the family is called uniform.

Algebraic complexity textbooks usually take P = N and force Cn to have
n inputs. Our construction is more general and lacks some of the interesting
complexity theoretic properties of circuit families, but its interest will be clear in
the next sections.
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3.2. Multilinearity

Definition 3.19 (Size and depth functions) Let C = (Cj)j∈P be a circuit family, we
define the size and depth function as

sizeC : P→ N depthC : P→ N

j 7→ size(Cj) j 7→ depth(Cj)

respectively.
As in definition 3.5, for X ⊂ B we also define

sizeCX : P→ N

j 7→ sizeX(Cj) .

We are mainly interested in uniform circuit families since they are equivalent
to computable functions, the transposition theorem easily generalizes to them. We
will not study uniform circuit families more in depth; what we shall do instead,
is directly work on computer programs implicitly representing circuit families
and automatically deduce the transposed family without actually using the circuit
model. More details on uniform circuit families can be found in [Vol99].

3.2 Multilinearity

In this section we develop an extension of the transposition theorem to the multilin-
ear case. The subject has already been treated by Hopcroft and Musinski [HM73]
and Fiduccia [Fid73]; this section restates their results in terms of arithmetic cir-
cuits1 and generalizes them to the case where a path may contain more than one
multiplication by an element of a non-commutative ring.

3.2.1 Multilinear circuits

We shall consider multilinear circuits, i.e. circuits that, besides the operators of L,
also contain binary multiplication nodes. The definitions of the previous section
must be adapted to deal with operators that are not module morphisms, but this
generalization is straightforward (see also Appendix A for a clean way of defining
arithmetic circuits that supports both linear and arbitrary circuits).

Multilinear circuits are constructed using the standard multilinear basis S

+ : R× R→ R, ∗ : R× R→ R, & : R→ R× R,

(a,b) 7→ a+ b, (a,b) 7→ ab, a 7→ (a,a),

ηa : {⊥}→ R, ω : R→ {⊥},
⊥ 7→ a, a 7→⊥ .

(S)

We are going to define a transformation process that transforms a circuit over
(R, S) into a (uniform) circuit family over (R,L); the idea is to make any bilinear
multiplication node linear by fixing one of its inputs (see Figure 3.4). We call
this process linearization, a special case of it has been used in [GG05, Ser08] to
transpose circuits that compute differentials.

1Note that [Fid73] already used a model very close to ours.
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3. Algebraic Complexity and duality

Definition 3.20 (Zero edge, null edge) Let C be a circuit over (R, S), a zero edge is
any edge e in C such that one of the following conditions holds:

• e stems from a node v with β(v) = η0, such an edge is also called a normal
zero edge;

• e stems from a node v with β(v) = + and whose incident edges are both
zero;

• e stems from a node v with β(v) = ∗ and such that at least one of the incident
edges of v is zero;

• e stems from a node v with β(v) = & and whose input edge is zero.

A null edge is any edge e such that one of the following conditions holds:

• e is incident to a node v with β(v) = ω, such an edge is also called a normal
null edge;

• e is incident to a node v with β(v) = & and whose stemming edges are both
null;

• e is incident to a node v with β(v) ∈ {+, ∗} such that its stemming edge is
null.

An output node whose incident edge is zero is called a zero output, an input node
whose stemming edge is null is called a null input. A normal circuit is a circuit
whose zero and null edges are all normal.

Notice that the evaluation of a zero edge or output is the zero function, the
converse is not true. There is an obvious normalization technique that takes a
generic circuit and transforms it in a normal circuit having the same evaluation;
clearly, the normalization does not increase the size and the depth of the circuit (it
generally increases size{η0,ω}, though). When necessary, we will restrict ourselves
to normal circuits.

Definition 3.21 (Linearization) Let C = (V ,E) be a circuit over (R, S). Let 0 =

{v ∈ V |β(v) = η0}, a linearization of C is a subset ℓ ⊂ in(C) ∪ 0 such that:

• for every v ∈ V with β(v) = + either none of its incident edges is reachable
from ℓ, or both are;

• for every v ∈ V with β(v) = ∗ at most one of the edges incident to v is
reachable from ℓ; if R is non-commutative, such edge is always the right (left)
edge and the linearization is called a left (right) linearization.

If ℓ = ∅, the linearization is called trivial.
The elements of ℓ ∩ in(C) and s = in(C) − ℓ are respectively called the linear

and scalar inputs. An edge reachable from ℓ is called linear, scalar otherwise.

Definition 3.22 (Linearized circuit, scalar part) Let C = (V ,E,6,6i,6o) be a
normal circuit over (R, S) and let ℓ be a left (resp. right) linearization; without loss
of generality, we suppose that all the scalar inputs precede the linear inputs in the
order 6i (one can always permute inputs).
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3.2. Multilinearity

Let n be the number of scalars for the linearization ℓ and let x1, . . . , xn be
distinct indeterminates over R. The linearized circuit

Cℓ = (Vℓ,Eℓ,6ℓ,6i,ℓ,6o,ℓ)

is the circuit over (R[x1, . . . , xn],L) (resp. (Rop[x1, . . . , xn],L∗)) obtained from C as
follows:

• Eℓ is the subset of E containing the linear edges,

• Vℓ are the nodes of V adjacent to Eℓ, where β(v) has incurred the following
substitutions:

– η0 becomes 0; +, &,ω are preserved;

– if β(v) = ∗, let e be the only non-linear edge incident to v and let
a = evale(x1, . . . , xn, •, . . . , •), then ∗ becomes ∗a;

– The orders 6ℓ,6i,ℓ,6o,ℓ are the restriction to V of the original ones.

The sets V − Vℓ and E− Eℓ are called the scalar part of C.

Observe that non-linear edges do not depend on linear inputs, thus the substi-
tution for ∗ is well defined. The trivial linearization gives the trivial linear circuit
with no nodes, hence, its evaluation is the trivial map 0→ 0. Figure 3.4 shows an
example of linearized circuit (in the case R is commutative), we gray out the scalar
part of the circuit.

x1 x2 x3

∗

∗

y1

x1 x2 x3

∗x1

∗x3

y1

x1 y∗1 x3

∗

∗

x∗2

Figure 3.4: A circuit over a commutative ring, its linearization for ℓ = {x2} (scalar
edges are grayed out), and its ℓ-dual.

Any linearized circuit obviously defines an uniform circuit family over (R,L)
(resp. (Rop,L∗)), thus we can apply the transposition theorem to the family. But
there is more: from a linearized circuit we can deduce a new circuit over (R, S)
that computes the same function as the transposed family.

Definition 3.23 (ℓ-dual) Let C be a normalized circuit over (R, S) and let ℓ be
a linearization. The ℓ-dual of C is the circuit over (R, S) obtained by dualizing
the linearized circuit Cℓ, then connecting back the edges of the scalar part to the
corresponding nodes in Cℓ: in doing this, nodes with β(v) = ∗a are changed back
to β(v) = ∗. The order on the nodes of the ℓ-dual is arbitrary.

By abuse of notation, the ℓ-dual will also be denoted by C∗
ℓ . Figure 3.4 shows

an example of ℓ-dual; notice that C∗
ℓ is only defined up to reordering of the nodes,

we will adopt the convention of preserving the ordering of the linearized circuit,
while we take the freedom to permute the scalar part as it will be more convenient.
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3. Algebraic Complexity and duality

Proposition 3.24 The size of the ℓ-dual is the same as that of C, more precisely

size{+,&}(C) = size{+,&}(C
∗
ℓ), size{∗}(C) = size{∗}(C∗

ℓ),

size{η0,ω}(C) = size{η0,ω}(C
∗
ℓ), size{ηa|a 6=0}(C) = size{ηa|a 6=0}(C

∗
ℓ).

Its depth is at most twice that of C.

Proof. The statement on the size follows immediately from Corollary 3.16 and the
fact that the scalar part is left unchanged. For the depth, observe that any path
in C∗

ℓ cannot exit the linearized circuit once it has entered it, thus it is at most
composed of a path p in the scalar part of C and a reverse path p ′ in Cℓ; since
both p and the reverse of p ′ are paths of C, the sum of their lengths is at most
twice the depth of C.

3.2.2 Bilinear chains

The case of bilinear circuits has received particular interest because it allows to
give lower bounds on the complexity of matrix multiplication [Fid73]. In this
section we just point out how the results of Hopcroft and Musinski [HM73] and
Fiduccia [Fid73] reduce to ours.

Definition 3.25 (Linear chain) Let R be non-commutative and let S ⊂ R be a
subring of its center. A circuit C over (R,L) such that no directed path in C
contains two nodes v 6= v ′ with β(v) = ∗a and β(v ′) = ∗a′ where a,a ′ 6∈ S is
called an S-linear chain.

We have seen in Remark 3.17 that in the non commutative case the transposition
principle does not transpose matrices. It is however possible to transpose linear
chains.

Definition 3.26 (Opposite circuit) Let C = (V ,E) be a circuit over (R,L), the
opposite circuit of C, denoted by Cop, is the arithmetic circuit over (Rop,L) where
any β(v) = ∗a has been changed to ∗aop .

Proposition 3.27 Let C be a linear chain and let evalC(x) = x⊤M for some matrix
M, then evalCop(x) =M⊤x.

Proof. This is a consequence of the electrical network lemma. The matrix M
associated to evalC is given by

mij = πj ◦ evalC ◦ιi(1) =
∑

p∈xi yj

evalp(1) =
∑

p∈xi yj

p1p2 · · ·pnp
, (3.18)

where ∗p1 , . . . , ∗pnp
are the scalar multiplication nodes on the path p.

Now, by the definition of linear chain, on any path there is at most one element
not in the center of R, thus

(p1p2 · · ·pnp
)op = p

op
1 p

op
2 · · ·p

op
np

, (3.19)

and the claim follows.

Thus, to any linear chain one can associate the four circuits C,C∗,Cop,Cop∗.
Hopcroft and Musinski [HM73], consider bilinear chains, i.e. bilinear circuits
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3.3. Straight Line Programs

whose only two non-trivial linearizations are linear chains. They start from a
formula to compute p bilinear forms given by m× n matrices with coefficients in
the center S of R. Call this a (m,n,p)-formula. They show that any such formula
can be transformed in (m,p,n), (n,m,p), (n,p,m), (p,m,n), (p,n,m)-formulas
using the same number of multiplications in S and in R \ S.

Their result can be derived from this section by observing that their formula is
a bilinear chain with linearizations ℓ1, ℓ2, and that their five transformed formulas
are given by the bilinear chains

Cop,C∗
ℓ1

,Cop
ℓ1

∗
,C∗

ℓ2
,Cop

ℓ2

∗
;

where the opposite circuit of a multilinear circuit is defined by swapping every
multiplication node.

Their bounds on the number of multiplications follow by considering the sets
D = {∗a|a ∈ S} and M = {∗a|a 6∈ S} and applying Proposition 3.24.

A consequence of their result is that any formula to multiply an m× n matrix
by an n×p can be transformed in five formulas of the same complexity to multiply
matrices of sizes permuted as above.

3.3 Straight Line Programs

One can view arithmetic circuits as algorithms, where each node is an elementary
step. Then, the size of a circuit is a measure of complexity in terms of number of
elementary (algebraic) operations. However, arithmetic circuits do not carry any
information about space complexity.

Straight line programs (SLP) allow to reason about both space and time com-
plexity: they can be seen as evaluation strategies for arithmetic circuits, carrying
information about registers to store intermediate results. Informally speaking, they
are programs that are only made of a sequence of assignments (no branchings, no
loops). See [BCS97b] for formal definitions and proofs.

We work in the algebraic RAM model of [Kal88]; this is to the classic RAM
model what the BSS model [BSS89] is to the Turing machine. In a slightly simplified
way, an R-algebraic RAM (Random Access Machine) has a memory made of an
infinite set of registers that can contain an arbitrary element of R, and a CPU
that can perform arithmetic operations on elements of R and store the result in a
register.

An SLP can be seen as a program for an algebraic RAM: its inputs are initially
stored in some registers, its instructions are executed in order, and its outputs are
to be read in some other registers. For example, the program

R3 ← R1 + R2

R3 ← R3 ∗ 3

R2 ← R2 ∗ R3

(3.20)

expects its inputs in the registers R1 and R2, performs an addition, a scalar
multiplication and a multiplication, and stores its output in the registers R2 and R3

(in our context, it is somehow arbitrary to decide which are the input and output
registers). In this model, the time complexity of an SLP is given by the number of
instructions, the space complexity by the number of different registers used.
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3. Algebraic Complexity and duality

3.3.1 The BLS model

In this section we study a particular family of linear straight line programs introduced
by Bostan, Lecerf and Schost [BLS03] to study the transposition principle. They
consider straight line programs consisting uniquely of the two operations

Ri ← Ri + Rj, also written Ri
+← Rj, (3.21)

Ri ← Ri ∗ a, also written Ri
∗← a, (3.22)

where Ri,Rj are registers and a ∈ R.
Such SLP’s can compute the same morphisms as linear circuits over the basis

BLS:

XOR1 :

(
1 0
1 1

)
, XOR2 :

(
1 1
0 1

)
, ∗a :

(
a
)

for a ∈ R. (BLS)

In fact, consider a circuit C over (R, BLS) and let x1, . . . , xn be its inputs. Allocate
n registers R1, . . . ,Rn and initialize them to the values of x1, . . . , xn. Then, walk
through C in any topological order and for any ∗a acting on Ri issue the instruction

Ri
∗← a, (3.23)

for any XOR1 acting on Ri and Rj issue the instruction

Ri
+← Rj, (3.24)

and for any XOR2 acting on Ri and Rj issue the instruction

Rj
+← Ri. (3.25)

Observe that all the operators in BLS have the same input and output arities, then
circuits over BLS necessarily have the same number of inputs and outputs. Hence,
if a circuit has n inputs (and outputs), any topological order yields a straight line
program using n registers by this evaluation strategy. Inversely, it is clear that any
straight line program using only instructions (3.21) and (3.22) can be represented
by a circuit over BLS having n inputs (and outputs).

Thus, we identify circuits over BLS with such SLP’s (note that the identification
is not one-to-one as different topological orders yield different SLP’s), and define
the space complexity in the algebraic RAM model of a circuit over BLS as its
number of inputs (and outputs).

Finally, observing that XOR1 is the dual of XOR2, we deduce that any circuit C
on (R, BLS) has a dual circuit with the same space and time complexities in the
algebraic RAM model.

Remark 3.28. Let (L1, . . . ,Lk) be a SLP on n registers, where Li is one of the
instructions (3.21) or (3.22). By what we just said we can take as its dual the
sequence (L∗k, . . . ,L∗1), where L∗i is defined as

(Ri
+← Rj)

∗ = Rj
+← Ri, (3.26)

(Ri
∗← a)∗ = Ri

∗← a. (3.27)
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3.3. Straight Line Programs

3.3.2 Linear straight line programs

The step from the SLP’s we just defined to classic linear SLP’s is very small. In
fact, all one has to do is simulate the instructions

Ri ← Rj ∗ a with i 6= j, (3.28)

Ri ← Rj + Rk with i 6= j, k. (3.29)

The first one can be simulated by the sequence

Ri
∗← 0,

Ri
+← Rj,

Ri
∗← a;

(3.30)

and the second one by

Ri
∗← 0,

Ri
+← Rj,

Ri
+← Rk.

(3.31)

It is reasonable not to count multiplications by 0, as these just require to free
some memory, than one sees that transposing linear SLP’s preserves the space
complexity and looses a factor of at most two on time complexity. However this
is clumsy: one can do much better by transposing directly the instructions (3.28)
and (3.29).

Definition 3.29 (Double use) We say that a register Ri is doubly used in a sequence
of instructions (L1, . . . ,Ln) if it appears on the right hand side of two instructions
Li and Lj, and no instruction Lk for i < k < j is of the form (3.28) or (3.29).

The matrix of the instruction Ri ← Rj ∗ a is
(

1 0
a 0

)
in general, but simply

(
0 0
a 0

)

if Rj is not doubly used; in the second case, the transposition is

Rj ← Ri ∗ a,

Ri
∗← 0.

(3.32)

Similarly, the matrix of Ri ← Rj + Rk is



0 0 0
0 0 0
1 1 0


 (3.33)

if Rj and Rk are not doubly used; this transposes to

Rj ← Ri,

Rk ← Ri,

Ri
∗← 0

(3.34)

(notice that a double use is introduced by this transposition).
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3. Algebraic Complexity and duality

By comparing this to equations (3.30) and (3.31), one sees that each double use
of a register introduces a +← in the transposed code, and each addition introduces
a double use in the transposed code. This corresponds well to the duality between
+ and &.

In conclusion, one sees that the sum of additions and double uses stays un-
changed when transposing generic straight line programs. Again, it is reasonable
not to count multiplications by 0 (in fact, they can be merged to the next assign-
ment to the register). Copies of registers like in (3.34) are still a problem in the
algebraic RAM model, but at a higher level of abstraction they can be handled
using references (or one can simplify the code by hand, if his code has to run on
an algebraic CPU!). Thus we can state the following version of the transposition
theorem for straight line programs.

Theorem 3.30 (Transposition theorem) Any linear straight line program S computing
a function f can be transformed in a new straight line program S∗ computing f∗. S and
S∗ use the same number of registers. The sum of the algebraic time complexity and the
number of double uses of registers is the same for S and S∗.

3.3.3 R-algebraic transforms

One rarely programs with straight line programs: to make transposition really
useful, we must transpose families of SLP’s. Bostan, Lecerf and Schost consider
SLP’s parameterized by integers and booleans.

Definition 3.31 (algebraic transform) Let R be a ring, an R-algebraic transform is a
program in the algebraic RAM model composed by the following constructs:

• linear algebraic assignments of the forms (3.21), (3.22), (3.28), (3.29);

• for loops with iterator ranging over a list of non-algebraic registers;

• conditionals with tests over non-algebraic registers;

• function calls, recursive function calls.

If the program is recursive, it must terminate on any valid input.

By extension, we shall also call R-algebraic transform any algorithm that can
be expressed in this model. This is equivalent to consider circuit families; for
example, Algorithm 3.1 corresponds to a circuit family with parameter space N,
computing the map

N→ hom(R2,R2),

n 7→






(
1 0
0 1

)
if n = 0,(

fn fn+1
fn−1 fn

)
if n > 0 is odd,(

fn−1 fn
fn fn+1

)
if n > 0 is even,

(3.35)

where fn is the n-th Fibonacci number.
It is clear that, for any value of the non-algebraic parameters, an R-algebraic

transform corresponds to a SLP, then the transposition theorem can be applied to it.
In practice, one leaves conditionals untouched and reverses for loops; function calls
(recursive or not) are substituted by their transpose. For example, Algorithm 3.1
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Algorithm 3.1: R-algebraic transform

Input : a,b ∈ R; n ∈ N.
for i ∈ [1, . . . ,n] do

if i is odd then

a
+← b;

else

b
+← a;

return a,b;

Algorithm 3.2: Transposition of Algorithm 3.1

Input : a,b ∈ R; n ∈ N.
for i ∈ [n, . . . , 1] do

if i is odd then

b
+← a;

else

a
+← b;

return a,b;

becomes Algorithm 3.2; we let to the reader the verification that the transposed
algorithm computes the transpose of maps (3.35) for any n.

Putting together the results of this section and the previous ones, we can now
state the transposition theorem for algebraic transforms.

Theorem 3.32 (Transposition theorem) Any R-algebraic transform T computing a
linear function f can be transformed in an R-algebraic transform T∗ computing f∗. T and
T∗ use the same number of registers. The sum of the algebraic time complexity and the
number of double uses of registers is the same for T and T∗.

Note. Observe that some care must be taken when counting double uses in for
loops: a single assignment in a for loop counts as n− 1 double uses, where n is
the number of times the loop is repeated.

3.3.4 R-algebraic algorithms

The transposition theorem for algebraic transforms is an important result that
we shall use in the following chapters. However, if we want to transpose the
multiplication or the Euclidean division of Section 2.2.8, we need to consider SLP’s
parameterized by algebraic elements.

With a little of hand waving, the transposition theorem is applied to algorithms
parameterized by algebraic elements in [BLS03]:

“Last, we will consider algorithms mixing linear and non-linear pre-
computations; the transposition principle leaves the latter unchanged.”

We shall call R-algebraic any algorithm that can be expressed in the algebraic
RAM model, and that terminates on any input. Formally, the way an R-algebraic
algorithm can be transposed is by partial evaluation [CD93, RV04, CKS09].

Definition 3.33 (Partial evaluation) Let M,N be free R-modules (non necessarily
finite). Let A :M× P→ N be an R-algebraic algorithm and let p ∈ P. The partial
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evaluation of A on p is the algorithm

Ap : L→ N,

x 7→ A(x;p).
(3.36)

If for any p ∈ P the partial evaluation Ap is a straight line program, then we can
apply the transposition theorem to Ap. For example, if M : R[X]×R[X]×N→ R[X]

is a polynomial multiplication algorithm, then for any b ∈ R[X], the transposed
multiplication is M∗

b,degb, as in Section 2.2.8.
There are many strategies to compute partial evaluations, we shall see one in

Section 4.2. The simplest one is to evaluate all the expressions that depend on p
and store them in memory so that they can be used in Ap as constants; this is
similar to the linearization of arithmetic circuits we saw in Section 3.2. Obviously,
the cost in time complexity is bounded by the time complexity of A; however, the
cost in space complexity is also bounded by the time complexity of A.

Principle 3.34 (Transposition principle) Let P be an arbitrary set. Any R-algebraic
algorithm A computing a family of linear functions (fp :M→ N)p∈P can be transformed
in an R-algebraic algorithm A∗ computing the dual family (f∗p : N∗ → M∗)p∈P. The
algebraic time and space complexities of A∗ are bounded by the time complexity of A.

Notice, however, that in many practical instances of transposition, the partially
evaluated values constitute a negligible amount of the space used by the algorithm.
Thus, in practice, transposed algorithms often have the same space and time
complexities as the original ones; this is the case for all the transposed algorithms
that appear in this document.2

Note. Is this the end of the story? Probably not. Umans and Kedlaya [KU08] have
recently shown an example of non-algebraic algorithm that can be transposed
with no loss in space and time complexity. This makes one wonder what the true
limits of the transposition principle are.

3.4 Automatic differentiation

Automatic differentiation (AD) studies the following question: given a program to
evaluate a function f : Rn → R at a point of Rn, how much does it cost to evaluate
the gradient ∇f at a point of Rn. More generally, one can consider functions
Rn → Rm and ask for the evaluation of the Jacobian matrix Jf. The two main
techniques in AD are the forward and the reverse mode; Griewank [GW08] traces
back their origins to [BKSF59] and [OWB71] respectively.

3.4.1 From automatic differentiation to transposition

Transposition of linear straight line programs reduces to automatic differentiation,
in fact, if one has a program computing a linear function f : Rn → Rm and an
ℓ ∈ (Rm)∗,

∇(ℓ ◦ f) =
(
∂ℓ ◦ f
∂x1

, . . . ,
∂ℓ ◦ f
∂xn

)
= (〈f∗(ℓ)|e1〉 , . . . , 〈f∗(ℓ)|en〉) , (3.37)

2Actually, the author is not aware of any application of the transposition principle where space
complexity is not preserved, although it is easy to artificially create examples that behave badly.
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where (e1, . . . ,en) is the standard basis of Rn. Thus, differentiating the program
for ℓ ◦ f yields the coordinates of f∗(ℓ) in the standard basis of (Rn)∗ as requested.

Automatic differentiation is widely used in numerical computations and this
is why there is an extensive literature on it. In particular the reverse mode with
the checkpoint method of Griewank [Gri92] implies that automatic differentiation
of functions Rn → R can be done with a constant factor penalty in algebraic time
complexity and an O(log(n)) penalty in algebraic space complexity. However, this
is still far from the bounds of Theorem 3.32.

Using the method of the adjoint code with optimizations for linear instruc-
tions [GLVM91], it is possible to save even more and ultimately reduce to the
bounds of the transposition principle. This is not surprising as the adjoint code on
linear programs is exactly the same thing as the transposition of linear straight
line programs we saw in the previous section.

However, automatic differentiation uses a lot of machinery that has been tai-
lored for non-linear programs. Using it for transposition is just overkill. Even
worse, it is clumsy because automatic differentiation is built on top of the transpo-
sition principle as it was pointed out by [GG05]. To see this we shall briefly recall
how automatic differentiation works on arithmetic circuits.

3.4.2 Differentiation of arithmetic circuits

One of the most influential results on the automatic differentiation of arithmetic
circuits is due to Baur and Strassen [BS83]. They show that a non-linear arithmetic
circuit that computes a function f : Rn → R can be transformed in a circuit to
compute f and∇f with a three-fold increase in size. Gashkov and Gashkov [GG05]
interpret their method as a transformation that yields a circuit to compute f and
the differential d f at a point x and n differential inputs d x1, . . . , d xn; then, an
application of the transposition principle on linearized circuits as in Section 3.2.1,
yields the original result of Baur and Strassen.

Here we describe the transformation of [GG05] in a simplified manner. A
complete description can be found in [GG05, Ser08].

For simplicity, we consider an arithmetic circuit C over a non-linear basis
B over R made exclusively of everywhere continuously differentiable functions
(w.r.t the standard metric of the Euclidean space Rn). We describe a technique to
compute the differential of evalC at a point a ∈ Rn.

Definition 3.35 (Differential of a circuit) Let C = (V ,E,6,6i,6o) be a circuit
over (R,B) with n inputs and m outputs and let a ∈ Rn. For any function f ∈ B,
we denote by Jf its Jacobian.

The differential of C at a, denoted by da C, is obtained by substituting each β(v)
with

β ′(v) = Jf (evale1(a), . . . , evalek
(a)) (3.38)

for any v ∈ V , where e1, . . . , ek are the edges incident to v.

Proposition 3.36 The differential of a circuit satisfies evalda C = JevalC(a) for any
a ∈ Rn.

Proof. Let e be an edge of C, we shall denote by evale its evaluation as in Defini-
tion 3.6, and by eval ′e the evaluation of the corresponding edge in da C. We prove
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x1 x2 x3

∗

∗

y1

d x1 d x2 d x3

(b,a)

(c,ab)

dy1

Figure 3.5: A circuit and its derivative at the point (a,b, c). We have replaced
multiplication nodes with linear applications represented by 1× 2 matrices.

that for any a ∈ Rn and for any edge e of C, the differential of evale at a is eval ′e.
The proof is by induction and follows by the chain rule.

Let x1 6i · · · 6i xn be the inputs of C, we write f(x) for f(x1, . . . , xn). Let v be
a node, let e1 6v · · · 6v ek be its input edges and let e be the i-th output edge. Set
f = β(v), then by definition

evalv = f ◦ (evale1 , . . . , evalek
),

evale = πi ◦ evalv ,
(3.39)

where πi is the i-th projection. Then, the Jacobian matrix of evalv is

Jevalv(x) = Jf(evale1 , . . . , evalek
)J(evale1 ,...,evalek

)(x). (3.40)

Hence, da evalv is equal to

Jevalv(a)




da x1
...

da xn


 = β ′(v)




da evale1

...
da evalen


 = β ′(v) ◦ (eval ′e1

, . . . , eval ′en
), (3.41)

where the last equality follows by induction. By definition, this is the evaluation
of v in da C, and the claim follows by composing with πi.

It is also clear that da C is defined over a linear basis over R, thus the trans-
position theorem applies to it. In other words we have defined a transformation
from circuits computing differentiable functions to linear circuits.

Also notice that when C is a linear circuit, then simply C = da C for any a.
In this case, Eq. (3.37) amounts to plug the form ℓ at the bottom of C, so that
transposing da C = C and evaluating at 1 gives the desired coefficients of f∗(ℓ).

Note. The construction of [GG05] is more powerful: they start from a non-
linear circuit C with input nodes x1, . . . , xn, and they augment it to obtain a non
linear circuit C ′ with input nodes x1, . . . , xn, d x1, . . . , d xn; this circuit admits a
linearization ℓ = {d x1, . . . , d xn}, in the sense of Definition 3.21, and they prove
that C ′

ℓ = dx C. Then, Baur and Strassen’s theorem follows by considering C ′
ℓ
∗.

3.4.3 From transposition to automatic differentiation

The circuit da C is an important intermediate step to compute the gradient: any
automatic differentiator computes it, either explicitly or implicitly.
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Now da C can be queried by black-box algorithms to obtain information about
the Jacobian JevalC(a). The simplest application is to compute the directional
derivative in a along a direction u: for this task it suffices to evaluate the circuit
once, since evalda C(u) is the desired value. Computing the derivative along n
linearly independent directions yields the whole Jacobian matrix and this roughly
corresponds to the forward mode in automatic differentiation.

Remark 3.37. To be more precise, forward mode automatic differentiation con-
structs da C and evaluates the n directions in parallel, thus avoiding the need to
store the whole circuit in memory. This is a great advantage for iterative code,
where C can be represented compactly by a for loop, but da C needs the loop to
be unrolled.

When the circuit has many inputs but only one output, there is a more conve-
nient way to get ∇ evalC with only one black-box query: da C computes a linear
form whose coefficients are exactly the coefficients of the gradient, thus the dual
circuit (da C)

∗ computes the transposed form. The single query eval(da C)∗(1)
yields this vector. This is exactly what is called “reverse mode” in automatic
differentiation.

Remark 3.38. Unlike the forward mode, reverse mode cannot compute (da C)
∗

and evaluate on a direction in parallel. One solution is to store the whole da C

in memory, but this object may be too large. The checkpoint method of Grie-
wank [Gri92] computes da C by slices of logarithmic size and transposes them
one by one. Another way to gain space is to observe that the Jacobian of a linear
operations (e.g., sums) does not depend on a, thus it does not need to be pre-
computed; this technique is suggested in [GLVM91], although it has seldom been
implemented.

Whatever one does to save space, the key observation is the following: the gen-
eration of code to compute da f and its transposition can be done in two separate
phases. Thus, automatic differentiation can concentrate of finding techniques to
save space in the computation of da f, while automatic transposition can concentrate
on reversing code.

Note. One is not limited to forward or reverse mode: any black-box algorithm
can be combined with the differential circuit to obtain information on the original
function. For example, suppose that C is a circuit computing a function f : Rn →
Rn, and take a ∈ Rn; one can apply Wiedemann’s algorithm [Wie86] to da C to
determine if f is invertible around a, and to compute the directional derivatives of
f−1 in a neighborhood of f(a).
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Chapter4

Automatic transposition of code

In this chapter we present a joint work with Schost [DFS10]. We study the automatic
transposition of generic code (i.e. not limited to straight line programs). Section 3.4
has shown that this has applications in automatic differentiation, and we will see
other applications in the next chapters.

By looking at a specific subproblem of automatic differentiation, our goal is
to be more efficient and more general. In particular, compared to the existing
implementations of AD tools, we want to:

• avoid unnecessary space overhead;

• handle algebraic, rather than just numerical code;

• handle advanced programming constructs, including recursion and algebraic
data types;

• transpose code parameterized by arbitrary algebraic variables.

In this chapter we shall abandon the algebraic RAM model we used in Sec-
tion 3.3 and work on source code transformation. Implementation details such as
knowing what the cost of copying variables is, shall be ignored: one can assume
that a good compiler will optimize most of those details. Hence, we shall assume
that Theorem 3.32 really reflects the behavior of the code we generate.

4.1 Inferring linearity

By looking at Section 2.2.8 one sees that often we want to transpose families
of R-algebraic algorithms parameterized by algebraic elements (e.g., we want to
transpose the code that for any a ∈ R evaluates the map b 7→ ab). This is also
necessary in automatic differentiation, when the code for dx f not only depends
on d x1, . . . , d xn, but also on x.

The next section will address the question of how to transpose such code. This
section, instead, asks the question: can a compiler guess by itself which inputs to
a function are parameters, and which are linear arguments?

The answer is yes. We show how the type system of common statically
typed functional languages can be extended to automatically infer all the possible
linearizations of a computer program. We first present the non-commutative case,
which can be fully expressed inside the Haskell type system, then we discuss how
to extend to the commutative case.
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4.1. Inferring linearity

Linears, scalars. Suppose we have defined some data type R representing elements
of a ring R together with the usual constants (say zeroR, oneR, etc.), arithmetic
operations (say plus, times, etc.), tests and so on. To simplify, we assume –as
usual in algebraic complexity theory– that the type R is isomorphic to R, i.e. the
elements of R can be represented exactly, the operations do not introduce any
rounding error, etc.

For any term involving elements of type R we would like the type system to
tell us whether its outputs are linear in its inputs. For example the term

\x y -> plus x y

has type R -> R -> R, but we would like the type checker to also output some-
thing like ℓ→ ℓ→ ℓ (ℓ for linear) telling that the term is a (curryfied) left module
homomorphism from R2 to R. For consistency, we want to view constants as
mappings from R0 to R, thus for the term zeroR we want the type checker to
compute something like 0→ ℓ, that we simply write as ℓ.

Now, what do we expect about oneR or times? The former is the mapping ⊥7→
1, which is not a module homomorphism; then, by analogy with Definition 3.21,
we want the type checker to output something like 0→ s, or simply s (s for scalar).
The second can be made into a linear mapping by fixing its second argument
(remember that for the moment we are restricting to left modules) as we did in
Section 3.2; thus we expect the type checker to output ℓ→ s→ ℓ, meaning that

\x -> times x y

is a left module homomorphism R→ R for any y::R.
Finally consider the following term

z x n = if n <= 0 then zeroR else plus x (z x (n-1))

as before we expect something like ℓ→ N→ ℓ, meaning that

\x -> z x n

is a homomorphism R→ R for any integer n.
Observe that in order to make a correct inference about a term such as

\x y -> times x (plus y y)

we must also admit for any of the previous cases the possibility where everything
is a scalar, so that from the hypothesis that plus has type s → s → s we can
deduce the correct type ℓ→ s → ℓ for the term above. Summarizing, we would
like to have two types L and S such that the following equations hold

plus :: L -> L -> L

plus :: S -> S -> S

times :: L -> S -> L

times :: S -> S -> S

zeroR :: L

zeroR :: S

oneR :: S

If we define L and S as wrappers around R

newtype L = Lin R

newtype S = Sca R
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4. Automatic transposition of code

then, using Haskell type classes [WB89], we can conveniently express all the
equations above as

class Ring r where

zero :: r

(<+>) :: r -> r -> r

neg :: r -> r

(<*>) :: r -> S -> r

together with the obvious instance definitions (see the example in Appendix B).
For our inference to work, it is important that L be an abstract data type with

only the above functions in its interface. On the other hand, any other function
acting on R can be wrapped inside a function acting on S as, for example,

one = Sca oneR

(Sca a) == (Sca b) = a == b

or, simply, using a deriving clause in the declaration of S

newtype S = Sca R deriving (Eq)

If we restrict to terms that do not use the type constructor Lin, then we can
show that the semantic of a term with type

L->...->L->L

is a left module homomorphism. The proof for the full language would be too
long, thus we restrict to a simply typed λ-calculus with constants. Its terms are
defined by the following grammar

t ::= c | x | t0t1 | λx.t , (4.1)

where x are identifiers and c are constants; its types are defined by the grammar

τ ::= ℓ | s | β | τ→ τ , (4.2)

where β are the usual base types (integers, booleans, etc.). If Γ is a type environ-
ment, by Γ ⊢ t :: τ we mean that the term t has type τ in Γ . The semantic of our
calculus is the usual one, based on βη-reduction.

We suppose all the constants above are defined, plus the usual constants for the
other base types; observe that our grammar forbids type constructors altogether
(including Lin and Sca). In this context we use the type names ℓ and s in place
of the Haskell types L and S defined above. For simplicity, we shall also assume
that lists and tuples are not part of the types of our language; see the end of this
section for a discussion about them.

Definition 4.1 (Flipper) Let τ be the type

τ = α0 → α1 → · · · → αn (4.3)

with αn not a function type. Let I ⊂ [0, . . . ,n − 1] such that αi 6= ℓ if and only if
i ∈ I, and let m = #I. The flipper for τ, denoted by flipτ, is the term

flipτ = λt.λxi1 . . . . .λxim .λxj1 . . . . .λxjn−m
.tx0 · · · xn−1, (4.4)

with i1, . . . , im ∈ I and j1, . . . , jn−m ∈ Ī.
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4.1. Inferring linearity

Lemma 4.2 Let Γ ⊢ t :: τ be a term, let m,n > 0, and let Γ ⊢ flipτ t :: σ with

σ = α1 → α2 → · · · → αm → ℓ→ · · · → ℓ︸ ︷︷ ︸
n times

→ β, (4.5)

with αi 6= ℓ and β not a function type. Let ∆i ⊢ si :: αi for 1 6 i 6 m. The semantic of

Γ ,∆1, . . . ,∆m ⊢ flipτ ts1 · · · sm (4.6)

is

1. a constant function if β 6= ℓ,

2. a module homomorphism Rn → R if β = ℓ,

assuming the free variables in t, s1, . . . , sm satisfy 1 or 2.

Proof. We distinguish the following cases.

• Γ ⊢ c. All the constants satisfy either 1 or 2. We just work out 0 and +

defined above and leave the others to the reader; in both cases flipτ c = c up
to βη-conversion.

– Γ ⊢ 0 :: ℓ is the map ⊥7→ 0, thus a (constant) morphism.

– Γ ⊢ 0 :: s is the map ⊥7→ 0, thus a constant (morphism).

– Γ ⊢ + :: ℓ→ ℓ→ ℓ is the map a,b 7→ a+ b. A morphism.

– Γ ⊢ + :: s → s → s. Take any a :: s and b :: s, then Γ ⊢ a + b :: s is a
constant.

• Γ , x :: α ⊢ x :: α. The claim follows because x is free.

• Γ ⊢ t0t1 :: τ. This is the only real case to prove. We distinguish two cases:

– Γ ⊢ t1 :: ℓ, then, by induction its semantic is a morphism 0→ R (because
it is βη-equivalent to flipℓ t1).
Let Γ ⊢ flipτ t0t1 :: σ, with σ as in Eq. (4.5), and let ∆i ⊢ si for 1 6 i 6 m

be as in the hypothesis. Let Γ ⊢ t0 :: τ0 and Γ ⊢ flipτ0
t0 :: σ0, then by

induction

Γ ,∆1, . . . ,∆m ⊢ t ′0
def≡ flipτ0

t0s1, . . . , sm (4.7)

is either a morphism Rn+1 → R or a constant function. In the first case
t ′0t1 is a morphism Rn

′ → R, in the second case it is a constant function;
in both cases

flipτ(t0t1)s1 · · · sm βη←→ t ′0t1 (4.8)

and the claim follows.

– Γ ⊢ t1 :: α with α 6= ℓ. Then the claim follows directly by induction on
t0 and βη-conversion, by choosing s1 = t1.

• Γ ⊢ λx.t :: α1 → α2. By induction Γ , x :: α1 ⊢ t :: α2 satisfies 1 or 2 (assuming
x does). We distinguish two cases
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4. Automatic transposition of code

– α1 6= ℓ, then

λx. flipα2
t

βη←→ flipα1→α2
(λx.t); (4.9)

– α1 = ℓ, then

λx. flipα2
ts1 · · · sm βη←→ flipα1→α2

(λx.t)s1 · · · sm. (4.10)

In both cases, λx.t satisfies 1 or 2 accordingly.

Proposition 4.3 Let t : τ be a closed term, let n > 0 and let

τ = ℓ→ · · · → ℓ︸ ︷︷ ︸
n times

→ β, (4.11)

with β not a function type. Then, the semantic of t is

1. a constant function if β 6= ℓ,

2. a module homomorphism Rn → R if β = ℓ.

By the proof, it should be now clear why we forbid the type constructor Lin.
In fact, introducing a term as Lin oneR :: L tricks the proof (the type checker)
by making it believe that the function ⊥7→ 1 is a morphism.

The commutative case. In the commutative case we shall add a second multiplica-
tion operator allowing multiplication on the left by a scalar

class Ring r => CommRing r where

(>*<) :: S -> r -> r

but this would force the user to choose between the two operators any time he
multiplies two elements of R. To avoid this we need to overload the operator
(<*>) with both type signatures, a technique sometimes called ad-hoc polymor-
phism [Str00], but this is not possible in the Haskell type system since the two
types are contradictory. To make it possible we need to extend the type inference
algorithm: our idea is not new, but it has been rarely implemented because it is
not practical for solving generic ad-hoc polymorphism; it perfectly fits the needs of
our special case, though.

First observe that type classes can be translated to ordinary types of the
Hindley-Milner type system as explained in [WB89, §4], thus it suffices to modify
the classic type inference algorithm [DM82, Car87]. Second, observe that there is
some redundancy between the two signatures of (<*>) and that a more concise
version is

(<*>) :: Ring r => r -> S -> r

(<*>) :: S -> L -> L

A review of the Hindley-Milner algorithm and its implementation can be
found in [Car87]. The idea is to first assign type variables to terms, then solve type
equations by unifying them. In our generalization, instead of handling a single
unification, we keep a list of possible unifications: when a type equation implies

58



4.2. transalpyne

that a certain unification is not acceptable, the unification is discarded from the list;
if the list gets empty the term cannot by typed and an error is returned, otherwise
any unification in the list is valid and is returned.

In practice, the only term that makes the list of unification grow is (<*>): any
time an equation involving it has to be solved, the list of unifications potentially
doubles. This exponential increase is the reason why this solution is not practical
to solve generic ad-hoc polymorphism; but in our case we really are interested
in knowing all the possible types of a term because each of them gives rise to a
different linearization and, hence, to a different transposition.

Modules. Finally we remark that by allowing tuples and lists, Lemma 4.2 can be
generalized to morphisms Rm → Rn and even to infinite dimensional modules
using lazy lists. Elements of type L, [L], (L,L), etc. share a common pattern: they
can be viewed as R-modules. It is convenient to summarize their properties in an
unique interface1

class Ring r => Module m r | m -> r where

zeroM :: m

(<<*) :: m -> S -> m

(>>>) :: m -> Integer -> r

(<<<) :: r -> Integer -> m

(<++>) :: m -> m -> m

add :: m -> m -> Integer -> m

add a b n = foldl (<++>) zeroM

[((a>>>i) <+> (b>>>i))<<<i | i <- [1..n]]

Instances of this class represent free R-modules: zeroM is the zero element,
(<<*) is scalar multiplication, (<++>) is addition, (<<<) and (>>>) are canonical
injections and projections.

This interface adds nothing to the linearity inference system, but we will need
it in Section 4.2. Also notice the presence of the operator add that performs
addition up to a truncation order, it is of no great importance in this section, but
for efficiency reasons we will eventually prefer it to plain addition.

A fully worked Haskell example of the ideas presented in this section (without
the extension to the commutative case) is given in Appendix B where we implement
Karatsuba multiplication of polynomials in Z[X].

4.2 transalpyne

We present here a “Python implementation of a transposable Algebraic Language”,
in short transalpyne.

transalpyne is a limited functional language incorporating all the features
that we have discussed until now, in particular:

• it supports algebraic code (i.e., not restricted to native types such as integers
or floats);

• it has a static type checker that only gives types to algebraic variables and
performs linearity inference (see Section 4.1);

1We make use of some experimental modules of Haskell: this code needs the flags
-XMultiParamTypeClasses, -XFunctionalDependencies and -XFlexibleInstances in order to work.
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4. Automatic transposition of code

• it is able to transpose any linearization of an algebraic program (see Sec-
tion 3.3.4);

• its code can be compiled to Python code, or interpreted inside the Python
interpreter.

At the moment we write, the first stable release of transalpyne is not ready
yet. We plan to start distribute it by the beginning of 2011. It will be available
from http://transalpyne.gforge.inria.fr/.

4.2.1 Concepts

transalpyne has been conceived as a scripting language to be used on top of
computer algebra systems. We made an effort to give syntax and semantics as
close as possible to the Python programming language.

In transalpyne there is no such concept as an executable program: only
functions can be defined in transalpyne. transalpyne programs can be compiled
to Python code, so that their functions can be called by Python programs; we plan
to support compilation to other languages in the future. transalpyne can also be
interpreted via the Python interpreter. A transalpyne library contained in a file
my-library.yp can be imported in a Python program via the statement

import my-library

The Python interpreter recognizes the .yp extension and launches the transalpyne
interpreter on the file; the functions of the library are interpreted and transposed
by the transalpyne interpreter and their names are exported to the Python
namespace.

transalpyne is mostly dynamically typed, with the only exception of algebraic
types. In order to transpose a function, transalpyne must know at transpose time
which variables contain algebraic elements and which variables contain other data
(such as booleans, strings, ints, etc.); this can be done by explicitly specifying
the type of the input and output parameters of a function, while all the other
variables can be left untyped. transalpyne supports two sorts of algebraic types:
ring elements and module elements; we plan to support more complex algebraic
types, such as algebras, in the future. transalpyne relies on Python operator
overloading to represent ring operations.

transalpyne’s type checker also performs a linearity inference as described in
Section 4.1. The base ring is supposed to be commutative, we plan to add support
for non commutative rings in the future. When a function admits more than one
linearization, transalpyne computes and transposes all of them; if this leads to
an ambiguity in a function call, it raises a compile time error.

4.2.2 Syntax

We only describe transalpyne syntax informally. Indentation has a syntactic
value (it delimits blocks) and keywords are pretty much the same as in Python. A
transalpyne file contains a type declaration section followed by a name definition
section.

Type declarations Type declarations let the user declare which are the algebraic
types. transalpyne supports two type constructors: a ring constructor and a free
module constructor.
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type Ring R

type Module(R) M

This example declares R as a ring type and M as a free module type over the
ring R. The typechecker ensures that modules are consistently declared.

Name declarations Name declarations take three forms: imports, function
definitions and aliases. Imports are declared as in Python and have the same
semantics. Note however that the type checker does not enter imported modules
to infer linearity: any imported function is considered as a scalar function.

There is no return statement in transalpyne, function definitions are declared
as follows

def (a, b)my-function(c, d):

where input arguments are given on the right and output arguments on the left.
Inside function definitions, there are four types of statements: pass statements

(the statement that does nothing), assignments (including augmented assignments),
for loops and ifs. The syntax is identical to Python.

On the left hand side of assignments, may only appear variable names and sub-
scripts. On the right hand side of assignments, the following types of expressions
may appear:

• String, numeric and boolean constants;

• Binary and unary operators +, -, *, /, %, div, mod, <, >, <=, <=, ==, !=, and, or,
not, in;

• Parenthesized expressions;

• Subscripts and slices;

• List constructors, including comprehensions;

• Variable evaluations;

• Function calls.

The syntax for all of these is identical to Python. The only notable exception are
function calls where a keyword trans is added to let the user call a transposition
of a function. In case a function has more than one linearization (and thus more
than one transposition), signature specifiers enclosed in braces {, } let the user
specify which linearization/transposition is wanted.

Finally, aliases let the user export specific linearization/transpositions of func-
tions with names that can be used inside a Python program.

Figure 4.1 gives a complete transalpyne example. It defines a product func-
tion and two aliases (with transposition and signature specifiers).

61



4. Automatic transposition of code

type Ring R

def (R c)product(R a, R b):

c = a * b

l_product = trans {linear R}product{linear R, const R}

r_product = trans {linear R}product{const R, linear R}

Figure 4.1: A transalpyne program

4.2.3 Semantics

We only give here the points where transalpyne semantics differ from Python.

Types transalpyne is statically typed for algebraic types. The type of each input
and output parameter of a function must be specified in the definition as in figure
4.1. When the type of an argument is omitted, it is assumed to have non-algebraic
type. Variables inside the body of a function cannot be explicitly typed, the type
checker deduces their types from the types of the input parameters.

Side effects There is no side effect in transalpyne. In particular, there is no
global variable and assignment itself is a let-binding. After having transposed the
functions, the transalpyne compiler/interpreter leaves to the target language the
task of executing them, thus it cannot enforce the no-side-effect policy at runtime.
It is the responsibility of the user to insure that no side effect happens inside a
transalpyne function.

Conditionals, loops In order for the type inference to work, we must work
around a feature of Python. The following is correct Python code, even if a is not
defined before the if statement:

if x:

a = 0

b = a

In case the if-block is not executed, Python simply issues a runtime error. If we
want to do a type inference, we must enforce a stricter policy.

In transalpyne one cannot use outside of an if-block a variable that has been
first assigned in one of the branches but not in all of them. If-blocks have a return
type: it is the product of the types of all the variables modified inside one of its
branches, and that appear in each branch or were defined before the if; this type
must be the same at the issue of any branch. For example, in the following code

a = R.zero()

if True:

a = R.one()

else:

b = R.zero()
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the return type of the if statement is the type of a, because it has been modified
in the if branch, and was defined before the if, and is the same in both branches
(namely, R). Using the value of b after the block generates a compile time error.

For loops also have a return type. To this extent, they are treated as if they
were if-blocks with an empty else-block.

Algebraic variables Type declarations merely say that some variables belong
to a type, but do not specify any particular implementation of the type. The
implementation of rings and modules is left to the user and must be given in an
external module written in Python (or in whatever the target language is). The
user is only required to implement them as objects and to expose a few methods.

Ring objects must:

• Overload + and * with the obvious semantic;

• Implement a method zero that returns the zero of the ring;

• Optionally, implement a method one that returns the one of the ring;

• Optionally, implement a method Z that takes an integer n and returns the
element n · 1 of the ring;

• Optionally, implement methods div and mod that perform Euclidean division
with remainder;

• Optionally, overload /, thus making the ring into a field.

Module objects must:

• Overload + and * with the obvious semantic;

• Implement a method zero that returns the zero of the module;

• Overload the subscript operator [] so that it implements some arbitrary
projections on the underlying ring. Most often, a module will be imple-
mented as an array of ring objects and [i] will just be projection onto the
i-th coordinate.

• Overload the assignment-to-subscript operator in the obvious way.

Algebraic output parameters of a function are implicitly initialized to zero via
their zero method. This insures that non-assigned algebraic output parameters
are always linear in the inputs of the function.

Algebraic elements cannot be combined through the use of lists: lists of
algebraic objects are non-algebraic objects and extraction from a list always yields
a non-algebraic object.

Function calls transalpyne does not have tuples; the return type of a function
with many output parameters is not a tuple, as a consequence its return value
cannot be assigned to a variable: it must be assigned to as many variables as there
are output parameters. Another consequence of this is that functions with many
outputs cannot be used inside expressions: their outputs can only be assigned to
variables.
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Function names not declared in the library are simply regarded as external func-
tions. They are assumed to have one return parameter, thus a multi-assignment
will return an error. External functions have no algebraic input or output param-
eters. This is useful to call built-in Python functions from inside a transalpyne

program (one common example is the function range, needed to iterate in for
loops).

Recursion and Higher order transalpyne allows recursion and even calling
its own transpose. It does not allow to pass functions as arguments to functions,
although the transposition algorithm internally uses this technique to transpose
for loops. A higher order transposable language is theoretically possible and we
consider adding this feature to transalpyne in the future.

4.2.4 Linearization

After a first type checking to determine which variables are algebraic, transalpyne’s
compiler/interpreter runs the linearization inference algorithm of Section 4.1.

Since a function may have more than one linearization, transalpyne allows
the user to annotate the types of the algebraic arguments so that they can be
constrained to be linears or scalars (non-algebraic arguments are by default scalars).
The two keywords for this are linear and const, the following code shows an
example of use:

def (linear R c)product(linear R a, const R b):

c = a * b

The user is free to leave some arguments unspecified. For example, the previous
code could have been written

def (R c)product(linear R a, R b):

c = a * b

The linearity inference looks for all the linearizations compatible with the specified
modifiers, thus in this case both codes yield the same linearization. If more than a
linearization is acceptable, transalpyne computes all of them.

We call signature a list of linear/const modifiers inferred for the arguments
of a function. Signature specifiers (see Section 4.2.2) can be used to distinguish
between different linearizations when calling the transposed function. They are
written as

{const R}product{linear R, const R}

Thus, in the example we gave in figure 4.1, l_product is an alias for the
transposed left-linear product, while r_product is an alias for the transposed
right-linear one. Aliases are extremely useful since they are the only way to export
the transposed functions to the namespace of the target language.

4.2.5 Partial evaluation

After the type checking and linearity inference phase, any discovered linearization
of any function is partially evaluated and transposed as in Section 3.3.4.

The first step is to translate any for loop into a tail-recursive function, as this
simplifies greatly the partial evaluation. The partial evaluation is then done in
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two steps: first we evaluate all the statements depending exclusively from the
scalars, then we strip those statements off the partially evaluated program. Let us
explain this through an example. Consider the program in Figure 4.2, we want to
transpose it with respect to the signature ℓ× s→ ℓ× s.

First we generate the program that evaluates at d the statements that only
depend on d, we call it fS.

def (R b)fS(R d):

if d > R.zero ():

y = fS(d - R.one())

b = y + R.one()

else:

b = d

Now we generate the partial evaluation of f at d by stripping off all the values
that solely depend on d.

def (R a)f(R c):

if d > R.zero ():

x = f(c, d - R.one ())

a = x * y

else:

a = c

Notice that this program needs the values of d and y that are computed in fS.
Depending on whether the code is compiled or interpreted, we use a different
strategy.

In case we generate code, we simply concatenate the bodies of fS and f, even-
tually performing α-conversion to avoid name clashes (notice that α-conversion is
possible because we have eliminated for loops). Thus, the refactored code for f
would look like in Figure 4.3.

Notice, however, that this is inefficient because it generates two recursive calls:
one in the scalar part and one in the linear part. A better solution would be to
evaluate fS(d) only once and save all its stack, so that all the scalar values needed
in the partial evaluation can be retrieved from it. When we interpret code we
choose an intermediate solution: we save the return value of any call to fS in a
memoization table, then retrieve the values from the table when they are needed
in the linear part. This is a sort of lazy evaluation of functions in the scalar part.

def (R a, R b)f(R c, R d):

if d > R.zero ():

x, y = f(c, d - R.one())

a, b = x * y, y + R.one()

else:

a, b = c, d

Figure 4.2: A transalpyne program that does nothing interest-
ing, but is very hard to transpose (with respect to the signature
{linear R, const R}f{linear R, const R}).
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4. Automatic transposition of code

def (R a, R b)f(R c, R d):

# Scalar part

if d > R.zero ():

y = fS(d - R.one())

b = y + R.one()

else:

b = c

# Linear part

if d > R.zero ():

x, _ = f(c, d - R.one())

a = x * y

else:

a = c

Figure 4.3: Refactoring of the code of Figure 4.2, separating the scalar from the
linear part.

def (R c, R b)fT(R a, R d):

# Forward sweep

if (d > R.zero ()):

y = fS(d - R.one())

b = y + R.one()

else:

b = d

# Reverse sweep

if (d > R.zero ()):

x = a * y

c, _ = trans f(x, d - R.one ())

else:

c = a

Figure 4.4: Transposition of Figure 4.2.

Remark 4.4. Regardless of whether the code is interpreted or compiled, scalar
parts of real world algorithms tend to be very short and simple. In particular they
seldom contain a recursive call having both scalar and linear return values as the
one in Figure 4.2. Thus we can reasonably assume that the generated code is as
efficient as the original one.

4.2.6 Transposition

Finally, the linear part of each linearized function is transposed as in Section 3.3.
In doing this we read the code from bottom to top and transpose each instruction,
i.e. we swap input and output algebraic arguments of any function, and substitute
each function call with a call to the transposed function. The example of Figure 4.2
is transposed in Figure 4.4. We borrow the names forward sweep and reverse sweep
from the theory of automatic differentiation [GW08], where a similar technique is
applied in the reverse mode.
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Chapter5

Trace computations

The goal of this part of the document is to present some efficient algorithms to
compute in some specific finite dimensional algebras over a field K.

Let K be a field, and let x1, . . . , xn be indeterminates. We denote by K[x]

the algebra K[x1, . . . , xn]. Any finite dimensional K-algebra A is isomorphic to a
quotient K[x]/I for some 0-dimensional ideal I. Residue classes of K[x] modulo an
ideal I are indeed a very good representation of the elements of A.

The most popular tools to compute in generic residue class rings are Gröb-
ner bases [Buc65, CLO05a, CLO05b, Fau99, Fau02]. An alternative to Gröbner
bases, called geometric resolution is presented in [GLS01]. In the bivariate case,
resultants [CLO05a, CLO05b] are a classic tool.

Besides the algorithmic tool used to compute in A, the choice of a basis for the
ideal I also has a great impact. Consider, for example, the ideal of Q[x,y]

(x2 + x+ 1,y3 − x), (5.1)

another set of generators for the same ideal is

(y6 + y3 + 1, x− y3). (5.2)

Both sets of generators are Gröbner bases of I and identify Q[x,y]/I to Q(ζ9).
However, while (5.1) naturally identifies Q[x]/(x2 + x+ 1) to the subfield Q(ζ3) ⊂
Q(ζ9), this information is lost by (5.2), making it harder to test for membership in
Q(ζ3) in this case.

Thus, algorithms to change from a set of generators to another are impor-
tant too. The FGLM algorithm [FGLM93] computes the change from a Gröbner
basis to another. There is also a variety of change-of-order algorithms for tri-
angular sets based on resultants [BLMM01], on trace formulas [DTGV01, PS06],
on Newton-Hensel lifting [DJMMS08]; while the rational univariate representation
algorithm [Rou99] allows to go from a Gröbner basis to a geometric resolution.

In this chapter we focus on a generalization of Lagrange interpolation formula,
called trace formulas, and on its application to the rational univariate representation
of a zero-dimensional ideal. Section 5.1 studies the decomposition of a zero
dimensional ideal in the algebraic closure of K, then Section 5.2 introduces the
trace formulas, and, in Section 5.3, Stickelberger’s theorem makes the link between
the trace formulas and the trace of the multiplication operator. We present the
rational univariate representation algorithm and some algorithmic improvements
in Sections 5.4, 5.5 and 5.6; finally, in Section 5.7 we show how it can be applied as
a change-of-basis algorithm.
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5.1. Decomposition of a zero-dimensional ideal

5.1 Decomposition of a zero-dimensional ideal

We let I be a zero-dimensional ideal of K[x] and A = K[x]/I. To simplify the
exposition, from now on we assume that K is a perfect field and I is radical, this is
equivalent to all the points of V(I) = {a ∈ K̄n|f(a) = 0, ∀f ∈ I} being simple. We
address the reader interested in the case of arbitrary multiplicity to [EM07].

To better understand the structure of A it will be important to study the
algebraic set V(I). We denote by Ī the ideal of K̄[x] generated by I and by Ā the
quotient ring K̄[x]/Ī.

Lemma 5.1 A is naturally identified to a subset of Ā.

Proof. We want to prove Ī ∩K[x] = I. The direction ⊃ is clear. Let f ∈ Ī ∩K[x] and
let f1, . . . , fk be generators of I, then there exist g1, . . . ,gk ∈ K̄[x] such that

f =
∑

i

gifi. (5.3)

Then the coefficients of g1, . . . ,gk are the solutions of a linear system with coeffi-
cients in K, thus they can be taken in K[x].

Hence f ≡ f ′ mod I if and only if f ≡ f ′ mod Ī.

Because of the lemma, we will always implicitly identify elements of A to their
image in Ā.

Lemma 5.2 The dimension of Ā as K̄-vector space is the same as the dimension of A as
K-vector space.

Proof. Observe that Ā is generated as K̄-vector space by the monomials M =

{xα|α ∈ Nn}. Since M ⊂ A, any generating family of A as K-vector space also gen-
erates Ā as K̄-vector space. Now, if a0, . . . ,ad are K-linearly dependent elements
of A, they clearly are K̄-linearly dependent in Ā. Thus the dimension of Ā does
not exceed the one of A.

Now suppose that Ā has dimension d and let a0, . . . ,ad be elements of A. Then,
if f1, . . . , fk are generators of I, there exist λ0, . . . , λd ∈ K̄ and g1, . . . ,gk ∈ K̄[x] such
that

∑

i

λiai =
∑

j

gjfj. (5.4)

As in the proof of the previous lemma, λ0, . . . , λd and the coefficients of g1, . . . ,gk
are the solutions of a linear system with coefficient in K, thus they can be taken in
K. Hence a0, . . . ,ad are K-linearly dependent.

In what follows, we suppose that V(I) has cardinality d and we denote its
points by ζi ∈ K̄n for 1 6 i 6 d.

Proposition 5.3 The number of points of V(I) equals the dimension of Ā as vector
space.

Proof. Since Ī is radical and zero-dimensional, its primary decomposition is

Ī = Q1 ∩ · · · ∩Qd, (5.5)

where Qi is the ideal vanishing on ζi.
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5. Trace computations

The Qi’s are maximal and pairwise coprime (i.e. Qi + Qj = K̄[x] whenever
i 6= j), hence, by the Chinese remainder theorem,

K̄[x]/Q1 ∩ · · · ∩Qd
∼=

d⊕

i=1

K̄[x]/Qi. (5.6)

But Qi is maximal, hence K̄[x]/Qi is an algebraic field extension of K̄. Since K̄

is algebraically closed, K̄[x]/Qi = K̄, and Ā has dimension d as expected.

x2 = y

y = 3

−
√

3
√

3

Figure 5.1: Plot in the reals of the ideal I = (y− 3, x2 − y).

Example 5.4 Consider the ideal I = (y − 3, x2 − y) of Q[x,y], a plot is given
in Figure 5.1. This ideal is prime and its set of zeros contains no Q-rational
points. Since G = {y − 3, x2 − y} is a Gröbner basis for I (for grevlex), elements
of A = Q[x,y]/I are uniquely represented by their normal form modulo G; for
example

x5y+ 3xy+ 1 ≡ 36x+ 1 mod I.

By analyzing the leading monomials of G, it is straightforward to realize that all
normal forms modulo G have degree at most 1 in x and degree 0 in y, thus A has
dimension 2 as vector space.

Indeed, the algebraic set V(I) consists of two points:

V(I) =
{

(
√

3, 3), (−
√

3, 3)
}

⊂ Q̄2.

Hence, Ī = (x−
√

3,y− 3) ∩ (x+
√

3,y− 3) and

Ā ∼= Q̄/(x−
√

3,y− 3)⊕ Q̄/(x+
√

3,y− 3).

In particular, the element 36x+ 1 of Ā is mapped to

(1 + 36
√

3, 1 − 36
√

3)

by this isomorphism. The reader will have noticed that A is isomorphic to Q(
√

3)
as a ring.

We set

Āi
def≡ K̄[x]/Qi, (5.7)

then by Eq. (5.6)

Ā =

d⊕

i=1

Āi. (5.8)

70



5.2. Trace formulas

Now, the Āi’s are subalgebras of Ā isomorphic to K̄. We denote by ei the unit
element of Āi, then

e
2
i = ei,

eiej = 0.
(5.9)

Hence (e1, . . . ,ed) is a basis of Ā made of orthogonal idempotents.

Example 5.5 Continuing the previous example,

Ā1 = Q̄/(x−
√

3,y− 3) and Ā2 = Q̄/(x+
√

3,y− 3).

The idempotents are given by

e1 = (3 +
√

3x)/6 and e2 = (3 −
√

3x)/6.

The verification of Eq. (5.9) is straightforward. In particular

36x+ 1 = (1 + 36
√

3)e1 + (1 − 36
√

3)e2.

For any f ∈ K̄[x], we denote by f(ζi) the evaluation of f at ζi ∈ V(I). f(ζi) only
depends on the class of f in Ā, thus for a ∈ Ā, we define a(ζi) as the evaluation at
ζi of an arbitrary representative of the class a.

For any a ∈ Ā, its class in Āi is a(ζi), by Eq. (5.7). Hence

a =

d∑

i=1

a(ζi)ei. (5.10)

The basis (e1, . . . ,ed) is a very practical one to represent elements of Ā. Un-
fortunately, in the general case the idempotents ei may not be elements of A, as
the previous example shows; thus, using such a basis comes at the cost of lifting
coefficients in K̄. In order to find a basis better suited to represent elements of A,
we shall study the dual of the algebra Ā.

5.2 Trace formulas

We shall denote by A∗ the dual space of A, that is the space of K-linear forms on
A. Similarly, we shall denote by Ā∗ the dual space of Ā.

The map

1ζi
: Ā→ K̄

a 7→ a(ζi)
(5.11)

is linear; in particular

1ζi
(ej) =

{
1 if i = j,
0 if i 6= j. (5.12)

Hence (1ζ1 , . . . , 1ζd
) is the basis of Ā∗ dual to (e1, . . . ,ed).

The space A∗ has a natural A-module structure under the law · : A×A∗ → A∗

defined by

a · ℓ : A→ K

b 7→ ℓ(ab).
(5.13)

Similarly Ā∗ has an Ā-module structure under an analogous law.
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5. Trace computations

Proposition 5.6 Ā∗ and Ā are isomorphic as Ā-modules under the mapping ρ : ei 7→
1ζi

for 1 6 i 6 d.

Proof. The mapping is clearly a vector space isomorphism, we only need to prove
that it is a morphism of Ā-modules. We want to prove that for any a,b ∈ Ā

ρ(ab) = a · ρ(b).

It suffices to prove this on the bases (e1, . . . ,ed) and (1ζ1 , . . . , 1ζi
).

On the one hand

ρ(eiej) =

{
ρ(0) = 0 if i 6= j,
ρ(ei) = 1ζi

if i = j.
(5.14)

On the other hand, ei · 1ζj
is the form that associates to any c ∈ Ā the element

(eic)(ζj) = ei(ζj)c(ζj) =

{
0 if i 6= j,
c(ζj) if i = j,

(5.15)

where the last equality comes from (5.12). Hence

ei · 1ζj
=

{
0 if i 6= j,
1ζi

if i = j.
(5.16)

Note. We have thus identified Ā∗ to Ā as Ā-modules, this implies that Ā is a
Gorenstein algebra [EM07, Chapter 8]. The theory of Gorenstein algebras is much
deeper than the exposition we give here, and giving a complete account of it
would be beyond the scope of this document. Nevertheless, we will eventually
point out the relationships between the results proven here and the general theory.

Since 1 generates Ā as an Ā-module, the form

Tr
def≡ ρ(1) =

∑

i

1ζi
(5.17)

generates Ā∗ as an Ā-module. ρ(1) will play an important role in the sequel; it is
called the trace form, the reason for this will be clear in the next section.

The bilinear form on Ā∗ × Ā defined by

〈ℓ|a〉 = ℓ(a) (5.18)

is non-degenerate by definition (see Section 1.1.3). By means of the isomorphism
ρ, we can transport this to a bilinear form on Ā× Ā: we define

〈a|b〉 = ρ(a)(b). (5.19)

By Proposition 5.6, by Eq. (5.13) and by the equality

ρ(a)(b) =
∑

i

a(ζi)b(ζi), (5.20)
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5.3. Sitckelberger’s theorem

we deduce that

〈a|b〉 = ρ(a)(b) = ab · Tr(1) = a · Tr(b) = Tr(ab) = 〈b|a〉 . (5.21)

is a non-degenerate form on Ā× Ā that identifies Ā to its dual.
In particular, from Eqs. (5.21) and (5.10) we deduce the trace formulas or interpo-

lation formulas:

a =

d∑

i=1

〈a|ei〉ei =

d∑

i=1

a(ζi)ei =

d∑

i=1

aei (5.22)

Note. In the Gorenstein setting, the forms 1ζi
are called the local residues at ζi

and the form
∑

1ζi
is called a global residue. The non-degeneracy of the global

residue implies the Ā-isomorphism between Ā and Ā∗. The name “residue” comes
from complex analysis, because in C[x]/I this concept coincides with the classical
analytic residue. See [BKL98, EM07].

5.3 Sitckelberger’s theorem

Let a ∈ Ā and consider the linear map

Ma : a 7→ ab. (5.23)

Theorem 5.7 (Stickelberger) The element ei is an eigenvector of Ma associated to the
eigenvalue a(ζi). The characteristic polynomial of Ma is

d∏

i=1

(X− a(ζi)).

Proof. Using Eqs. (5.22) and (5.9), we have

Ma(ei) = aei = 〈a|ei〉ei = a(ζi)ei. (5.24)

Since the ei’s form a basis of Ā as a vector space, Ma is diagonalizable and its
eigenvalues are the a(ζi)’s, each counted once.

We define the trace and the norm of an element of Ā in the same way as they
are defined for elements of extension fields.

Definition 5.8 (Trace, norm) We define the trace of a as

Tr(a) = Tr(Ma)

and its norm as
N(a) = det(Ma).

Then, the following corollary is easily derived.

Corollary 5.9 One has

Tr(a) =
d∑

i=1

a(ζi), (5.25)

N(a) =

d∏

i=1

a(ζi). (5.26)
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5. Trace computations

By Eqs. (5.25) and (5.17), it is clear that Tr(a) = ρ(1)(a), which justifies the
notation we employed in the last section.

Theorem 5.10 A∗ is isomorphic to A as A-module under the restriction of ρ to A.

Proof. When a,b ∈ A, the characteristic polynomial of Mab has coefficients in K.
Thus 〈a|b〉 = Tr(ab) is in K, and the restriction of ρ(a) to A is in A∗.

Consider now the quadratic form on Ā

q(a) = Tr(a2). (5.27)

Its matrix in the basis (e1, . . . ,ed) is the identity matrix, thus it has rank d. Now
let B = (b1, . . . ,bd) be a basis of A, then it is a basis of Ā too. The matrix of q on
B has coefficients in K and rank d, thus it also is the matrix of the restriction of q
to A.

Hence, q is non degenerate on A, and so is 〈a|b〉. We deduce that a ∈ A equals
0 if and only if ρ(a) ∈ A∗ equals 0. To conclude it suffices to observe that A∗ and
A have the same dimension as K-vector spaces.

5.4 Rational Univariate Representation

In many circumstances it is useful to switch from a multivariate representa-
tion of the elements of A to an univariate one. A rational univariate representation
(RUR) [Rou99], sometimes also called geometric resolution [GLS01], of K[x1, . . . , xn]/I
consists in expressing V(I) as the solution of the system

f(t) = 0,

x1 =
g1(t)

g(t)
,

...

xn =
gn(t)

g(t)
,

(5.28)

where t is a new variable and f,g,g1, . . . ,gn are univariate polynomials with
coefficients in K.

Lemma 5.11 Let t ∈ A and let Q be its characteristic polynomial. Let T be a fresh
variable, then

∑

i>0

〈
1
∣∣ti
〉

T i+1 =
Q ′(T)

Q(T)
. (5.29)

Proof. By the trace formulas (5.22)

ti =

d∑

j=1

〈
ti
∣∣ej

〉
ej, (5.30)

hence

∑

i>0

〈
1
∣∣ti
〉

T i+1 =
∑

i>0

d∑

j=1

〈1|ej〉
〈
ti
∣∣ej

〉

T i+1 =
∑

i>0

d∑

j=1

t(ζj)
i

T i+1 . (5.31)
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5.4. Rational Univariate Representation

Swapping the sums, this equals

d∑

j=1

1
T − t(ζj)

=

∑d
j=1

∏
j′ 6=j(T − t(ζj))

∏d
j=1(T − t(ζj))

=
Q ′(T)

Q(T)
, (5.32)

where the last equality comes from Theorem 5.7.

Remark 5.12. If K has characteristic 0, the polynomial Q can be recovered from
its logarithmic derivative via the formula

Q = exp
(∫

Q ′

Q

)
. (5.33)

When the degree d is known in advance, this suggests an efficient algorithm to
compute Q, provided the characteristic of K is 0 or larger than d.

We know that Tr(1) = d, hence

Q ′

Q
=
d

T
+
∑

i>1

〈
1
∣∣ti
〉

T i+1 . (5.34)

We deduce

Q = exp


d log T +

∫ ∑

i>1

〈
1
∣∣ti
〉

T i+1


 = Td exp


−

∑

i>1

〈
1
∣∣ti
〉

iT i


 , (5.35)

then the power series on the right hand side can be exponentiated using a Newton
iteration. But Q is a polynomial of degree d, hence we can truncate the exponent
power series to the order O(T−d−1).

In conclusion, it is sufficient to know

Tr(t), . . . , Tr(td) (5.36)

in order to compute Q.

Example 5.13 Continuing Example 5.5, we want to compute the characteristic
polynomial of t = 36x+ 1. We know that

t = 36x+ 1 = (1 + 36
√

3)e1 + (1 − 36
√

3)e2,

hence its traces are easily computed :

Tr(t) = (1 + 36
√

3) + (1 − 36
√

3) = 2,

Tr(t2) = (1 + 36
√

3)2 + (1 − 36
√

3)2 = 7778.

We compute the exponential:

exp
(
−

2
T
−

3889
T 2 +O(T−3)

)
=

(
1 −

2
T
+

4
2!T 2 +O(T−3)

)(
1 −

3889
T 2 +O(T−3)

)
=

(
1 −

2
T
−

3887
T 2 +O(T−3)

)
,

hence the characteristic polynomial is

T 2 − 2T − 3887.
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5. Trace computations

Being able to compute characteristic polynomials is not enough to find a
rational univariate representation. Indeed, the element t may not generate A as
a K-algebra, and thus not every element of A could be represented as a rational
function of t. We now give a criterion to find elements that generate A.

Definition 5.14 (Separating element) An element t ∈ A is said to be separating if
for any ζ, ζ ′ ∈ V(I)

t(ζ) 6= 0 and ζ 6= ζ ′ ⇒ t(ζ) 6= t(ζ ′).

Separating elements always exist, provided A is large enough. We do not
give here any proof of this fact because in the applications we have in mind a
separating element is always at hand.

Proposition 5.15 Let t be a separating element, then 1, t, . . . , td−1 are K̄-linearly
independent.

Proof. Let
∑d−1

i=0 ait
i = 0, then the polynomial

∑d−1
i=0 aiT

i has d roots in K̄, namely
t(ζi) for 1 6 i 6 d, hence it is identically null.

Thanks to this proposition and to Lemma 5.11, we have a way to find the
first line of the representation in Eq. (5.28), provided that we know a separating
element t. We now have to express x1, . . . , xn as functions of the roots of the
minimal polynomial of t.

Theorem 5.16 Let t be a separating element of A and let Q be its minimal polynomial.
Let a ∈ A and set

A(T) = Q(T)
∑

i>0

〈
a
∣∣ti
〉

T i+1 . (5.37)

Then A(T) is a polynomial of degree less than d, and

a =
A(t)

Q ′(t)
. (5.38)

Proof. We develop the series as in the proof of Lemma 5.11:

∑

i>0

〈
a
∣∣ti
〉

T i+1 =

d∑

j=1

a(ζj)
∑

i>0

t(ζj)
i

T i+1 =

∑d
j=1 a(ζj)

∏
j′ 6=j(T − t(ζj))

Q(T)
. (5.39)

Hence A(T) is a polynomial of degree less than d.
Now we use the trace formulas to decompose A(t) and Q ′(t):

〈A(t)|ei〉 =
d∑

j=1

a(ζj)
∏

j′ 6=j

(〈t|ei〉− t(ζj)) = a(ζi)
∏

j 6=i

(t(ζi) − t(ζj)), (5.40)

〈Q ′(t)|ei〉 =
∏

j 6=i

(t(ζi) − t(ζj)). (5.41)

Because t is separating, 〈Q ′(t)|ei〉 6= 0 for any i, hence Q ′(t) is a unit of A. We
deduce that

〈
A(t)

Q ′(t)

∣∣∣∣ei

〉
= a(ζi) (5.42)
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5.5. The univariate case

for any i. Hence, by the trace formulas

A(t)

Q ′(t)
=

∑

i

〈
A(t)

Q ′(t)

∣∣∣∣ei

〉
ei =

∑

i

a(ζi)ei = a. (5.43)

By taking a = xi, the theorem can be used to find a rational univariate
representation: it suffices to know

Tr(xi), Tr(xit), . . . , Tr(xitd−1) (5.44)

in order to deduce gi(T) as in the representation (5.28).

Example 5.17 We conclude the previous example. We want to find a parameter-
ization of x and y with respect to t = 36x + 1. We already know the minimal
polynomial of t:

Q(T) = T 2 − 2T − 3887,

thus
Q ′(T) = 2T − 2.

Now
x =
√

3e1 −
√

3e2 y = 3e1 + 3e2,

hence

Tr(x) = 0, Tr(xt) = 216,

Tr(y) = 6, Tr(yt) = 6.

We deduce that

x =
216

2t− 2
, y =

6t− 6
2t− 2

.

Note. Theorem 5.16 was introduced in [ABRW96]. It was used by Rouiller [Rou99]
to give an explicit algorithm to compute a rational univariate representation of
an arbitrary zero-dimensional ideal. This algorithm requires to have a monomial
basis for the vector space A, thus in practice it computes a rational univariate
representation starting from a Gröbner basis.

A completely different approach based on Noether’s normalization theorem,
called geometric resolution [GLS01], gives a Gröbner-basis-free alternative for
computing rational univariate representations.

5.5 The univariate case

In this section we shall see that, in the particular case of ideals of the univari-
ate polynomial ring K[x], trace formulas reduce to Lagrange interpolation and
Lemma 5.11 reduces to Newton’s identities.

Any ideal I of K[x] is principal. Let f be a monic generator of I and let ζ1, . . . , ζd
be its roots in K̄, then

K̄[x]/(f) =

d⊕

i=1

K̄[x]/(x− ζi). (5.45)
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5. Trace computations

Hence, the orthogonal idempotents are given by

ei =
∏

j 6=i

x− ζj

ζi − ζj
. (5.46)

By definition

〈a|ei〉 = a(ζi), (5.47)

hence the trace formulas rewrite

a =

d∑

i=1

a(ζi)
∏

j 6=i

x− ζi

ζi − ζj
, (5.48)

which is exactly the formula of Lagrange interpolation (see Eq. (2.24)).
Now we want to compute the Newton sums of f, i.e. the values

pi = ζ
i
1 + · · ·+ ζid. (5.49)

x is a root of f in A and it clearly separates V(I), then by Lemma 5.11

f ′

f
=

∑

i>0

〈
1
∣∣xi
〉

T i+1 =
∑

i>0

∑d
j=1 ζ

i
j

T i+1 =
∑

i>0

pi

T i+1 . (5.50)

Hence the Newton sums can be recovered as coefficients of the power series.
Inversely, the coefficients of f can be computed from its Newton sums using
Newton’s identities; notice, however, that it is more efficient to use Remark 5.12
for this.

5.6 Shoup’s algorithm

We have seen that at the heart of the rational univariate representation is the
computation of the coefficients of the power series

∑

i>0

〈
a
∣∣ti
〉

T i+1 (5.51)

up to a certain precision. In this section we shall find an efficient way to compute
such truncated series.

Consider the univariate polynomial ring K[T ] and identify its dual space K[T ]∗

to K[[1/T ]] via the bilinear form

〈α|f〉 = [αf]0, (5.52)

where α ∈ K[[1/T ]], f ∈ K[T ] and [β]i is the coefficient of T i in β. So that
〈
∑

i>0

αi

T i

∣∣∣∣∣∣

n∑

j=0

fjT
j

〉
=

∑

i>0

αifi. (5.53)

For a t ∈ A, consider the evaluation map at t

evt : K[T ]→ A,

g 7→ g(t).
(5.54)
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Lemma 5.18 For any t ∈ A, the dual map ev∗
t with respect to the bilinear forms defined

in Eqs. (5.19) and (5.54) is such that

ev∗
t(a) =

∑

i>0

〈
a
∣∣ti
〉

T i
. (5.55)

Proof. evt and ev∗
t are clearly linear maps, thus it suffices to show the identity on

the basis {1, T , T 2, . . .} of K[T ].

〈
a
∣∣evt(T

j)
〉
=
〈
a
∣∣tj
〉
=

〈
∑

k>0

〈
a
∣∣tk
〉

Tk

∣∣∣∣∣∣
T j

〉
=
〈
ev∗

t(a)
∣∣T j
〉

. (5.56)

Thus, applying the techniques of Section 3.3, from any K-algebraic transform
to compute evt for a fixed t we can deduce a transform to compute ev∗

t that has
the same time and space complexity. Furthermore, from a generic K-algebraic
algorithm to evaluate polynomials in K[T ] at points of A, we can deduce an
algorithm to compute ev∗

t for any t, having the same time complexity and possibly
a penalty in space complexity.

However, for a given basis of A, it may be difficult to find the corresponding
dual basis with respect to 〈|〉. In order to give an explicit algorithm, we work with
the form

〈ℓ|a〉 = ℓ(a) (5.57)

on A∗ ×A, instead.

Lemma 5.19 Let a ∈ A and consider the map Ma : b 7→ ab. The dual map M∗
a with

respect to the form (5.57) is such that

M∗
a(ℓ) = a · ℓ. (5.58)

Proof. The verification is straightforward:

〈ℓ|Ma(b)〉 = 〈ℓ|ab〉 = ℓ(ab) = 〈a · ℓ|b〉 . (5.59)

Hence, using Principle 3.34, any multiplication algorithm for a given basis B

of A can be transposed to compute a · ℓ given a on B and ℓ on B∗. Transposed
multiplication is a classic problem, it can be solved without significant losses
in space complexity on most bases, see Section 2.2.8 and [Sho95, Sho99, BLS03,
HQZ04, PS06].

We now consider again the dual map of evt, this time with respect to (5.57);
we denote it by projt to avoid confusion with (5.55).

Lemma 5.20 For any t ∈ A, the map projt is such that

projt(ℓ) =
∑

i>0

ℓ(ti)

T i
. (5.60)
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Algorithm 5.1: RUR

Input : A basis B of A, a1, . . . ,an ∈ AB, t separating, Tr ∈ (A∗)B
∗

.
Output : A rational univariate representation of a1, . . . ,an, t.

1: Compute Q′

Q
= 1

T
projt(Tr);

2: Compute Q = exp
(∫

Q′

Q

)
;

3: for all ai do

4: Compute Ai(T) =
Q(T)
T
· (projt ◦M∗

ai
(Tr)) mod Td;

5: Output Q(T) and A1(T)
Q′(T)

, . . . , An(T)
Q′(T)

.

Proof. This is just a consequence of Lemma 5.18, since there exists an a ∈ A such
that ℓ = ρ−1(a).

The problem of computing projt is often known as power projection. Using
again Principle 3.34, any algorithm to evaluate polynomials in K[T ] on t can be
transposed to a power projection algorithm on t. We will see some instances of
power projection algorithms later on.

Then, the proof of the following theorem is evident.

Theorem 5.21 Let a, t ∈ A, let Tr ∈ A∗ be the trace form, then

∑

i>0

〈
a
∣∣ti
〉

T i
= projt ◦M∗

a(Tr). (5.61)

From it, we can derive an algorithm to compute a rational univariate represen-
tation, provided we know the coordinates of the linear form Tr.

In order to apply this algorithm, prior knowledge of the expression of Tr in the
basis B∗, i.e. {Tr(b)|b ∈ B}, is needed. When B is a polynomial basis {1,b, . . . ,bd},
and the minimal polynomial of b is known in advance, this can be obtained using
Lemma 5.11.

Remark 5.22. In the univariate case A = K[x]/(f), t ∈ A is expressed in the basis
(1, x, . . . , xd−1) as a polynomial in x modulo f. Then,

evt(g) = g(t) = g ◦ t mod f,

where g ◦ t is polynomial composition. The problem of computing g ◦ t mod f for
g, t, f ∈ K[x] is modular composition; as in Section 2.1, its complexity is denoted
by C(d), where d = deg f. A naive algorithm gives C(d) ∈ O(d2).

As we saw in Section 2.2.4, the most efficient algorithms for modular compo-
sition are Brent and Kung’s [BK78], having complexity O(M(d)

√
d + d(ω+1)/2),

and Kedlaya and Umans’ [Uma08, KU08], having quasi-linear complexity. Each
of these has a dual algorithm solving power projection with the same complex-
ity [Sho94, KU08], thus, at least in the univariate case, power projection can be
solved in subquadratic time. Some extensions to the bivariate and multivariate
cases also exist [Sho99, KU08].

Remark 5.23. Algorithm 5.1 first appeared in [BSS03], which combined the ideas
of [Rou99] and [Sho94, Sho95, Sho99]. Lemma 5.20 was first used in [Sho94] to
compute minimal polynomials of elements of a residue class field K[x]/(f), based
on a transposed modular composition algorithm. The method was extended to
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the bivariate case in [Sho99]. A review of the methods of [Sho94, Sho95, Sho99]
can be found in [Kal00, §6].

In [Sho94, Sho99], a generic linear form ℓ is taken, so that by Theorem 5.16

∑

i>0

ℓ(ti)

T i+1 =
A(T)

Q(T)

for some A(T). Since ℓ is arbitrary, A(T) is a priori unknown, thus one cannot use
Remark 5.12 to recover Q. Instead, a rational fraction reconstruction algorithm
(see Section 2.2.6) is used to recover both A(T) and Q(T). However, in comparison
to Remark 5.12, this requires to compute twice as many “power projections”.

The intuition for the method, and for the name “power projection”, comes
from Wiedemann’s method to solve sparse linear systems [Wie86]. The idea is
that the minimal polynomial of a black-box matrix A is the same as the one of the
linear recurrent sequence

1,A,A2, . . .

Then, for any linear form ℓ, the minimal polynomial of the sequence

ℓ(1), ℓ(A), ℓ(A2), . . .

divides the minimal polynomial of A. The algorithm takes a random form ℓ and
uses it to “project” the first 2d powers of A onto K, then recovers its minimal
polynomial using the Berlekamp-Massey algorithm [Mas03]. On the equivalence
between the Berlekamp-Massey algorithm and the rational fraction reconstruction,
see [Dor87].

5.7 From univariate to bivariate and back again

Algorithm RUR can be used as an efficient change of basis algorithm. Let B be any
basis for A, let t be a separating element, and let the coordinates of Tr on B∗ be
known.

Proposition 5.24 Let MB be the cost of multiplication in the basis B and let EB be the
cost of the change of basis from

T = (1, t, . . . , td−1) (5.62)

to B. Then, the cost of the change of basis from B to T is

MB + EB +O(M(d)), (5.63)

plus a precomputation cost of

EB +O(M(d) logd), (5.64)

where M(d) is the cost of polynomial multiplication, as usual.

The algorithm follows immediately from the observation that the change of
basis map from T to B is equivalent to the map

evt : K[T ]→ AB,

g 7→ g(t).
(5.65)

Then algorithm RUR on inputs a ∈ AB and Tr, outputs the expression of a in the
basis T . We now prove the complexity estimates (5.63) and (5.64).
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Proof of Proposition 5.24. By Principle 3.34, the call to projt at step 1 of RUR has
the same cost as EB. Then the cost of step 2 is O(M(d)) using a Newton iteration.
Both steps can be done just once, thus they contribute to (5.64).

Again by Principle 3.34, step 4 costs

MB + EB + M(d), (5.66)

where the first term comes from transposed multiplication, the second one from
the power projection and the third one from multiplication by Q.

Finally, in step 5 instead of expressing a as a rational fraction, we need to invert
Q ′ modulo Q and multiply A by the result. The inversion costs O(M(d) logd)
by extended GCD, but can be done just once, thus it contributes to (5.64); the
multiplication costs O(M(d)) by polynomial multiplication and Newton inversion.
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Chapter 6

Artin-Schreier towers

In this chapter we give fast algorithms for arithmetic operations in Artin-Schreier
towers. Prior results for this task are due to Cantor [Can89] and Couveignes
[Cou00]. However, the algorithms of [Cou00] need as a prerequisite a fast mul-
tiplication algorithm in some towers of a special kind, called “Cantor towers”
in [Cou00]. Such an algorithm is unfortunately not in the literature, making the
results of [Cou00] non practical. This chapter fills the gap.

To our knowledge, no previous work provided the missing ingredients to put
Couveignes’ algorithms to practice. Part of Cantor’s results were independently
discovered by Wang and Zhu [WZ88] and have been extended in another direction
(fast polynomial multiplication over arbitrary finite fields) by von zur Gathen and
Gerhard [vzGG02] and Mateer [Mat08].

Technically, the main algorithmic contribution of this chapter is a fast change-
of-basis algorithm based on the techniques of Chapter 5. Building on this, it is
possible to obtain fast multiplication routines, and by extension completely explicit
versions of all algorithms of [Cou00]. Along the way, we also extend constructions
of Cantor to the case of a general finite base field U0, where Cantor had U0 = Fp.

The algorithms presented in this chapter have been integrated in a C++ library
called FAAST, based on Shoup’s NTL [Sho03] library. This chapter is joint work
with Schost [DFS09].

6.1 Introduction

If U is a field of characteristic p, polynomials of the form

Xp − X− α, (6.1)

with α ∈ U are called Artin-Schreier polynomials; a field extension U ′/U is Artin-
Schreier if it is of the form U ′ = U[X]/P, with P an Artin-Schreier polynomial.

An Artin-Schreier tower of height k is a sequence of Artin-Schreier extensions
Ui/Ui−1, for 1 6 i 6 k; it is denoted by (U0, . . . ,Uk). In what follows, we only
consider extensions of finite degree over Fp. Thus, Ui is of degree pi over U0, and
of degree pid over Fp, with d = [U0 : Fp].

The importance of this concept comes from the fact that all Galois extensions
of degree p are Artin-Schreier (see [Lan02, VI, §6]). As such, they arise frequently,
e.g., in number theory (for instance, when computing pk-torsion groups of Abelian
varieties over Fp). The need for fast arithmetic in these towers is motivated in par-
ticular by applications to isogeny computation and point-counting in cryptography,
as we will see in Chapter 8.
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6. Artin-Schreier towers

We count all time complexities in number of operations in Fp. Then, notation
being as before, optimal algorithms in Uk would have complexity O(pkd); most
of our results are (up to logarithmic factors) of the form O(pk+αd1+β), for small
constants α,β such as 0, 1, 2 or 3.

For several operations, different algorithms will be available, and their relative
efficiencies can depend on the values of p, d and k. In these situations, we always
give details for the case where p is small, since cases such as p = 2 or p = 3 are
especially useful in practice.

In the following section we give the relevant definitions and preliminaries. In
Section 6.3, we define a specific Artin-Schreier tower, where arithmetic operations
will be fast. Our key change-of-basis algorithm for this tower is in Section 6.4. In
Sections 6.5 and 6.6, we revisit Couveignes’ algorithm for isomorphisms between
Artin-Schreier towers [Cou00] in our context, which yields fast arithmetics for any
Artin-Schreier tower. Finally, Section 6.7 presents our implementation of the FAAST

library and gives experimental results.

6.2 Preliminaries

As a general rule, variables and polynomials are in upper case; elements algebraic
over Fp (or some other field, that will be clear from the context) are in lower case.

6.2.1 Element representation

We let Q0 be in Fp[X0] and U0 = Fp[X0]/Q0.

Definition 6.1 Let (Gi)06i<k be a sequence of polynomials over Fp, with Gi in
Fp[X0, . . . ,Xi]. The sequence (Gi)06i<k is said to define the tower (U0, . . . ,Uk) if for
i > 0, Ui = Fp[X0, . . . ,Xi]/Ki, where Ki is the ideal generated by

∣∣∣∣∣∣∣∣∣

Pi = X
p
i − Xi −Gi−1(X0, . . . ,Xi−1)

...
P1 = Xp

1 − X1 −G0(X0)

Q0(X0)

(6.2)

in Fp[X0, . . . ,Xi], and if Ui is a field.
The residue class of Xi (resp. Gi−1) in Ui, and thus in Ui+1, . . . , is written xi

(resp. γi−1), so that we have xpi − xi = γi−1.

Finding a suitable Fp-basis to represent elements of a tower (U0, . . . ,Uk) is a
crucial question.

Definition 6.2 (Multivariate basis) If d = deg(Q0), the multivariate basis Bi of Ui

is

Bi = {xe0
0 · · · xei

i | 0 6 e0 < d, 0 6 ej < p for j > 0}. (6.3)

However, in this basis, we do not have very efficient arithmetic operations,
starting from multiplication. Indeed, the natural approach to multiplication
in Bi consists in a polynomial multiplication, followed by reduction modulo
(Q0,P1, . . . ,Pi); however, the initial product gives a polynomial of partial degrees
(2d− 2, 2p− 2, . . . , 2p− 2), so the number of monomials appearing is not linear in
[Ui : Fp] = p

id. See [LMMS07] for details.
As a workaround, we introduce the notion of a primitive tower.
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Definition 6.3 (Primitive tower) With the same notation of Definition 6.1, a tower
(U0, . . . ,Uk) defined by (Gi)06i<k is said to be primitive if

Ui = Fp[xi] (6.4)

for all i. In this case, we let Qi ∈ Fp[X] be the minimal polynomial of xi, of degree
pid.

Definition 6.4 (Univariate basis) Let (U0, . . . ,Uk) be a primitive tower, the uni-
variate basis Ci of Ui is the Fp-basis

Ci = {xai | 0 6 a < pid}. (6.5)

To stress the fact that v ∈ Ui is represented in the univariate basis, we write v ∈ Ui

using a bold “belongs to” sign.

In a primitive tower, unless otherwise stated, we represent the elements of
Ui in the univariate basis. In this basis, assuming Qi is known, additions and
subtractions are done in pid operations, multiplications in O(M(pid)) operations
and inversions in O(M(pid) log(pid)) operations (see Section 2.2).

Note that having fast arithmetic operations in Ui enables us to write fast algo-
rithms for polynomial arithmetic in Ui[Y], where Y is a new variable. Extending the
previous notation, let us write A ∈ Ui[Y] to indicate that a polynomial A ∈ Ui[Y] is
written in the basis (xαi Y

β)06α<pid,06β of Ui[Y]. Then, given A,B ∈ Ui[Y], both of
degrees less than n, one can compute AB ∈ Ui[Y] in O(M(pidn)) operations using
Kronecker’s substitution (see Section 2.2.7).

One can extend the fast Euclidean division algorithm to this context, as
Newton iteration reduces Euclidean division to polynomial multiplication (see
Section 2.2.3). This implies that Euclidean division of a degree n polynomial
A ∈ Ui[Y] by a monic degree m polynomial B ∈ Ui[Y], with m 6 n, can be done
in O(M(pidn)) operations.

Finally, fast GCD techniques carry over as well, as they are based on multiplica-
tion and division. As we saw in Section 2.2.6, the extended GCD of two monic poly-
nomials A,B ∈ Ui[Y] of degree at most n can be computed in O(M(pidn log(n)))
operations.

6.2.2 Trace and pseudotrace

We continue with a few useful facts on traces.

Proposition 6.5 We have the following well-known properties:

TrFqn/Fq
: a 7→∑n−1

ℓ=0 a
qℓ

, (P1)

TrFqmn/Fq
= TrFqm/Fq

◦TrFqmn/Fqm . (P2)

Proof. This is a direct consequence of Proposition 1.4.

Proposition 6.6 If U ′/U is an Artin-Schreier extension generated by a polynomial Q
and x is a root of Q in U ′, then

TrU′/U(x
j) = 0 for j < p− 1; TrU′/U(x

p−1) = −1. (P3)
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Proof. This is a consequence of Lemma 5.11. In fact

∑

i>0

Tr(xi)
T i+1 =

Q ′(T)

Q(T)
= −

1
Tp − T − α

, (6.6)

from which we deduce

Tr(xi) = 0 for 0 6 i < p− 1, (6.7)

Tr(xp−1) − Tr(1) = Tr(xp−1) = −1, (6.8)

Tr(xi+p) − Tr(xi+1) − αTr(xi) = 0 for i > 0. (6.9)

Proposition 6.7 The Artin-Schreier polynomial Xp − X− α is irreducible in Fq if and
only if

TrFq/Fp
(α) 6= 0. (6.10)

If it is reducible, then it is split and its roots are

η,η+ 1, . . . ,η+ p− 1. (6.11)

Proof. This proof is from [LN96, Chapter 2].
The map Xp − X is linear and its kernel is Fp, thus if η is a root of Xp − X− α

Eq. (6.11) follows immediately, implying that all the roots lie in the same extension
of Fq.

Suppose that Xp − X− α is split and let η be one of its roots. Then

TrFq/Fp
(α) = TrFq/Fp

(ηp) − TrFq/Fp
(η) = 0, (6.12)

where the last equality comes from 1.4.
Suppose now that TrFq/Fp

(α) = 0, and let η be a root of Xp − X − α in its
splitting field. Let m = [Fq : Fp], then by (P1)

0 = TrFq/Fp
(α) =

m−1∑

i=0

αpi

=

m−1∑

i=0

(ηp − η)p
i

= ηq − η, (6.13)

thus η ∈ Fq.

Following [vzGS92, Cou00], we also use a generalization of the trace, as already
introduced in Section 2.2.4.

Definition 6.8 (Pseudotrace) The n-th pseudotrace of order m is the Fpm-linear
operator

T(n,m) : a 7→
n−1∑

ℓ=0

ap
mℓ

;

for m = 1, we call it the n-th pseudotrace and write Tn.

Note. In our context, for n = [Ui : Uj] = p
i−j and m = [Uj : Fp] = p

jd, T(n,m)(v)

coincides with TrUi/Uj
(v) for v in Ui; however T(n,m)(v) remains defined for v in a

field extension of Ui, whereas TrUi/Uj
(v) is not.
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6.3 A primitive tower

Our first task in this section is to describe a specific Artin-Schreier tower where
arithmetic will be fast; then, we explain how to construct this tower.

6.3.1 Definition

The following theorem extends results by Cantor [Can89, Theorem 1.2], who dealt
with the case U0 = Fp.

Theorem 6.9 Let U0 = Fp[X0]/Q0, with Q0 irreducible of degree d, let x0 = X0 mod
Q0 and assume that TrU0/Fp

(x0) 6= 0. Let (Gi)06i<k be defined by






G0 = X0

G1 = X1 if p = 2 and d is odd,

Gi = X2p−1
i in any other case.

Then, (Gi)06i<k defines a primitive tower (U0, . . . ,Uk).

As before, for i > 1, let Pi = Xp
i − Xi − Gi−1 and for i > 0, let Ki be the

ideal 〈Q0,P1, . . . ,Pi〉 in Fp[X0, . . . ,Xi]. Then the theorem says that for i > 0,
Ui = Fp[X0, . . . ,Xi]/Ki is a field, and that xi = Xi mod Ki generates it over Fp. We
prove it as a consequence of a more general statement.

Lemma 6.10 Let U be the finite field with pn elements, and let U ′/U be an extension
field with [U ′ : U] = pi. Let α ∈ U ′ be such that

TrU′/U(α) = β 6= 0, (6.14)

then Fp[β] ⊂ Fp[α] and pi divides [Fp[α] : Fp[β]].

Proof. Equation (6.14) can be written as β =
∑

j α
pjn

, thus Fp[β] ⊂ Fp[α]. The
rest of the proof follows by induction on i. If [U ′ : U] = 1, then α = β and
there is nothing to prove. If i > 1, let U ′′ be the intermediate extension such that
[U ′ : U ′′] = p and let α ′ = TrU′/U′′(α), then, by composition of traces (Eq. P2),
TrU′′/U(α

′) = β and by induction hypothesis pi−1 divides [Fp[α
′] : Fp[β]].

Now, suppose that p does not divide [Fp[α] : Fp[α
′]]. Since Fp[α

′] ⊂ U ′′,
this implies that p does not divide [U ′′[α] : U ′′]; but α ∈ U ′ and [U ′ : U ′′] = p

by construction, so necessarily [U ′′[α] : U ′′] = 1 and α ∈ U ′′. This implies
TrU′/U′′(α) = pα = 0 and, by P2, β = 0. Thus, we have a contradiction and p must
divide [Fp[α] : Fp[α

′]]. The claim follows.

Corollary 6.11 With the same notation as above, if TrU′/U(α) generates U over Fp,
then Fp[α] = U ′.

Hereafter, recall that we write γi = Gi mod Ki. We prove that the γi’s meet
the conditions of the corollary.

Lemma 6.12 If p 6= 2, for i > 0, Ui is a field and, for i > 1,

TrUi/Ui−1(γi) = −γi−1. (6.15)
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Proof. Induction on i: for i = 0, this is true by hypothesis. For i > 1, by induction
hypothesis U0, . . . ,Ui−1 are fields; we then set i ′ = i − 1 and prove by nested
induction that TrUi′/Fp

(γi′) 6= 0 under the hypothesis that U0, . . . ,Ui′ are fields.
This, by Proposition 6.7, implies that Xp

i − Xi − γi−1 is irreducible in Ui−1[Xi+1]

and Ui is a field.
For i ′ = 0, TrU0/Fp

(γ0) = TrU0/Fp
(x0) is non-zero and we are done. For i ′ > 1,

we know that γi′ = x
2p−1
i′ = xpi′x

p−1
i′ , which rewrites

(xi′ + γi′−1)x
p−1
i′ = xpi′ + γi′−1x

p−1
i′ = γi′−1 + xi′ + γi′−1x

p−1
i′ . (6.16)

By P3 we get Eq. (6.15), and by P2 we deduce the equality

TrUi′/Fp
(γi′) = −TrUi′−1/Fp

(γi′−1). (6.17)

The induction assumption implies that this is non-zero, and the claim follows.

Lemma 6.13 If p = 2, for i > 0, Ui is a field. For i = 1

TrU1/U0(γ1) =

{
1 + γ0 if d even,

1 if d odd,
(6.18)

and for i > 2

TrUi/Ui−1(γi) = 1 + γi−1. (6.19)

Proof. The proof closely follows the previous one. For i ′ = 0, TrU0/Fp
(γ0) =

TrU0/Fp
(x0) is non-zero. For i ′ = 1 and d odd,

TrU1/U0(γ1) = TrU1/U0(x1) = 1 (6.20)

by P3, and

TrU0/Fp
(1) = d mod 2 6= 0. (6.21)

For all the other cases

γi′ = x
2
i′xi′ = γi′−1 + (1 + γi′−1)xi′ , (6.22)

thus

TrUi′/Ui′−1
(γi′) = 1 + γi′−1 (6.23)

by P3 and TrUi′−1/Fp
(1) = 0. In any case, using the induction hypothesis and P2,

we deduce TrUi′/Fp
(γi′) = 1 and this concludes the proof.

Proof of Theorem 6.9. We prove that Ui = Fp[γi], then the theorem follows because,
clearly, Fp[γi] ⊂ Fp[xi].

If p 6= 2, by Lemma 6.12 and P2,

TrUi/U0(γi) = (−1)iγ0, (6.24)

thus Ui = Fp[γi] by Corollary 6.11 and the fact that γ0 = x0 generates U0 over Fp.
If p = 2, we first prove that U1 = Fp[γ1]. If d is odd, γp1 + γ1 = x0 implies U0 ⊂

Fp[γ1], but γ1 6∈ U0, thus necessarily U1 = Fp[γ1]. If d is even, TrU1/U0(γ1) = 1 + γ0

clearly generates U0 over Fp, thus U1 = Fp[γ1] by Corollary 6.11.
Now we proceed like in the p 6= 2 case by observing that TrUi/U1(γi) = 1 + γ1

generates U1 over Fp.
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6.3. A primitive tower

Remark 6.14. The choice of the tower of Theorem 6.9 is in some sense optimal
between the choices given by Corollary 6.11. In fact, each of the Gi’s is the
“simplest” polynomial in Fp[Xi] such that TrUi/Fp

(γi) 6= 0, in terms of lowest
degree and least number of monomials, as shown by Proposition 6.6 and Eq. (6.10).

We also remark that the construction we made in this section gives us a family
of normal elements for free. In fact, recall the following proposition from [Hac97,
Section 5].

Proposition 6.15 Let U ′/U be an extension of finite fields with [U ′ : U] = kpi where
k is prime to p and let U ′′ be the intermediate field of degree k over U. Then x ∈ U ′ is
normal over U if and only if TrU′/U′′(x) is normal over U. In particular, if [U ′ : U] = pi,
then x ∈ U ′ is normal over U if and only if TrU′/U(x) 6= 0.

Then we easily deduce the following corollary.

Corollary 6.16 Let (U0, . . . ,Uk) be an Artin-Schreier tower defined by some (Gi)06i<k.
Then, every γi is normal over U0; furthermore γi is normal over Fp if and only if
TrUi/U0(γi) is normal over Fp.

In the construction of Theorem 6.9, if we furthermore suppose that γ0 is normal
over Fp, using Lemma 6.12 we easily see that the conditions of the corollary are
met for p 6= 2. For p = 2, this is the case only if [U0 : Fp] is even (we omit the
proofs that if γ0 is normal then so are −γ0 and 1 + γ0).

Remark 6.17. Observe however that this does not imply the normality of the xi’s.
In fact, they can never be normal because TrUi/Ui−1(xi) = 0 by P3. Granted that
γ0 is normal over Fp, it would be interesting to have an efficient algorithm to
switch representations from the univariate Fp-basis in xi to the Fp-normal basis
generated by γi.

In particular, having such a change of representations would allow efficient
computations of Frobenius automorphisms. However, in Section 6.5, we give a
quasi-optimal algorithm to compute Frobenius automorphisms, making no use of
this remark.

6.3.2 Building the tower

This subsection introduces the basic algorithms required to build the primitive
tower of Theorem 6.9, that is, compute the required minimal polynomials Qi.

Composition. We give first an algorithm for sparse polynomial composition, to be
used in the construction of the tower defined before. Given P and R in Fp[X], we
want to compute P(R). For the cost analysis, it will be useful later on to consider
both the degree k and the number of terms ℓ of R.

Compose is a recursive process that cuts P into c + 1 “slices” of degree less
than pn, recursively composes them with R, and concludes using Horner’s scheme
and the linearity of the p-power; a similar recursive step was used in [Ber98] to
compose power series in small characteristic. At the leaves of the recursion tree,
we use the algorithm NaiveCompose.

Lemma 6.18 NaiveCompose has cost O(deg(P)2kℓ).

Proof. At step i, ρ and S have degree at most ik. Computing the sum S + piρ

takes O(ik) operations and computing the product ρR takes O(ikℓ) operations,
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6. Artin-Schreier towers

Algorithm 6.1: NaiveCompose

Input : P,R ∈ Fp[X].
Output : P(R).

1: write P =
∑deg(P)

i=0 piX
i, with pi ∈ Fp;

2: let S = 0, ρ = 1;
3: for i ∈ [0, . . . , deg(P)], let S = S+ piρ and ρ = ρR;
4: return S.

Algorithm 6.2: Compose

Input : P,R ∈ Fp[X].
Output : P(R).

1: let n = ⌊logp(deg(P))⌋ and c = deg(P) div pn;
2: If n = 0, return NaiveCompose(P,R);
3: write P =

∑c
i=0 PiX

ipn

, with Pi ∈ Fp[X], degPi < pn;
4: for i ∈ [0, . . . , c], let Qi = Compose(Pi,R);
5: let Q = 0;
6: for i ∈ [c, . . . , 0], let Q = QR(Xpn

) +Qi;
7: return Q.

since R has ℓ terms. The total cost of step i is thus O(ikℓ), whence a total cost of
O(deg(P)2kℓ).

Theorem 6.19 If R has degree k and ℓ non-zero coefficients and if deg(P) = s, then
Compose(P,R) outputs P(R) in O(ps logp(s)kℓ) operations.

Proof. To analyze the cost, we let K(c,n) be the cost of Compose when deg(P) 6
(c+ 1)pn, with c < p. Then K(c, 0) ∈ O(c2kℓ). For n > 0, at each pass in the loop
at step 6, deg(Q) < cpnk, so that the multiplication (using the naive algorithm)
and addition take O(cpnkℓ) operations. Thus the cost of the loop is O(c2pnkℓ),
and the total cost satisfies

K(c,n) 6 (c+ 1)K(p− 1,n− 1) +O(c2pnkℓ). (6.25)

Let then K ′(n) = K(p− 1,n), so that we have

K ′(0) ∈ O(p2kℓ), K ′(n) 6 pK ′(n− 1) +O(pn+2kℓ). (6.26)

We deduce that K ′(n) ∈ O(pn+2nkℓ), and finally

K(c,n) ∈ O(cpn+1nkℓ+ c2pnkℓ). (6.27)

The values c,n computed at step 1 of the top-level call to Compose satisfy cpn 6 s

and n 6 logp(s); this gives our conclusion.

Note. A binary divide-and-conquer algorithm [vzGG99, Exercise 9.20] has cost

O(M(sk) log(s)).

Our algorithm has a slightly better dependency on s, but adds a polynomial cost
in p and ℓ. However, we have in mind cases with p small and ℓ = 2, where the
latter solution is advantageous.
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6.3. A primitive tower

Computing the minimal polynomials. Theorem 6.9 shows that we have defined a
primitive tower. To be able to work with it, we explain now how to compute
the minimal polynomial Qi of xi over Fp. This is done by extending Cantor’s
construction [Can89], which had U0 = Fp.

For i = 0, we are given Q0 ∈ Fp[X0] such that U0 = Fp[X0]/Q0(X0), so there
is nothing to do; we assume that TrU0/Fp

(x0) 6= 0 to meet the hypotheses of
Theorem 6.9.

Remark 6.20. If TrU0/Fp
(x0) = 0, assuming gcd(d,p) = 1, we can replace Q0

by Q0(X0 − 1); this is done by taking R = X0 − 1 in algorithm Compose, so by
Theorem 6.19 the cost is O(pd logp(d)).

So, the only case we cannot handle is when p divides d and the trace of x0 is
zero. By Lemma 5.11, this happens if and only if the (d− 1)-th coefficient of Q is
equal to 0. If the polynomial Q is chosen at random, this happens with probability
1/q.

For i = 1, we know that xp1 − x1 = x0, so x1 is a root of Q0(X
p
1 − X1). Since

Q0(X
p
1 −X1) is monic of degree pd, we deduce that Q1 = Q0(X

p
1 −X1). To compute

it, we use algorithm Compose with arguments Q0 and R = Xp
1 − X1; the cost is

O(p2d logp(d)) by Theorem 6.19. The same arguments hold for i = 2 when p = 2
and d is odd.

To deal with other indices i, we follow Cantor’s construction. Let Φ ∈ Fp[X] be
the reduction modulo p of the (2p−1)-th cyclotomic polynomial. Cantor implicitly
works modulo an irreducible factor of Φ. The following shows that we can avoid
factorization, by working modulo Φ.

Lemma 6.21 Let A = Fp[X]/Φ and let x = X mod Φ. For Q ∈ Fp[Y], define

Q⋆ =

2p−2∏

i=0

Q(xiY). (6.28)

Then Q⋆ is in Fp[Y] and there exists q⋆ ∈ Fp[Y] such that Q⋆ = q⋆(Y2p−1).

Proof. Let F1, . . . , Fe be the irreducible factors of Φ and let f be their common
degree. To prove that Q⋆ is in Fp[Y], we prove that for j 6 e,

Q⋆

j = Q⋆ mod Fj (6.29)

is in Fp[Y] and independent from j; the claim follows by Chinese remaindering.
For j 6 e, let aj be a root of Fj in the algebraic closure of Fp, so that

Q⋆

j =

2p−2∏

i=0

Q(aijY). (6.30)

Since gcd(pf, 2p − 1) = 1, Q⋆

j is invariant under Gal(Fpf/Fp), and thus in Fp[Y].
Besides, for j, j ′ 6 e, aj = akj′ for some k coprime to 2p − 1, so that Q⋆

j = Q⋆

j′ as
needed.

To conclude, note that for j 6 e,

Q⋆

j (ajY) = Q
⋆

j (Y), (6.31)

so that all coefficients of degree not a multiple of 2p − 1 are zero. Thus, Q⋆

j has
the form q⋆j (Y

2p−1); by Chinese remaindering, this proves the existence of the
polynomial q⋆.
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6. Artin-Schreier towers

Algorithm 6.3: MinimalPolynomial

Input : Qi, Φ.
Output : Qi+1.

1: Q⋆ =
∏2p−2

i=0 Q(xiY) mod Φ;
2: q⋆(Y2p−1) = Q⋆(Y);
3: Qi+1 = Compose(q⋆, Yp − Y).

We conclude as in [Can89]: supposing that we know the minimal polynomial
Qi of xi over Fp, we compute Qi+1 using algorithm MinimalPolynomial.

Theorem 6.22 Algorithm MinimalPolynomial is correct and computes its output in

O(pi+2d logp(p
id) + M(pi+2d) log(p)) (6.32)

operations.

Proof. Since xi is a root of Qi, it is a root of Q⋆

i too. So γi = x
2p−1
i is a root of q⋆i

and xi+1 is a root of q⋆i (Y
p − Y). Since the latter polynomial is monic of degree

pi+1d, it is the minimal polynomial Qi+1 of xi+1 over Fp.
As for the complexity, the algorithm of [Bre93] computes Φ in O(p2) op-

erations; then, polynomial multiplications of degree s in A[Y] can be done in
O(M(sp)) operations by Kronecker substitution. The overall cost of step 1 is
O(M(pi+2d) logp) using a subproduct tree (see Section 2.2.5). Step 2 is free and
step 3 costs O(pi+2d logp(p

id)).

The former cost is linear in pi+2d, up to logarithmic factors, for an input of
size pid and an output of size pi+1d.

Some further operations will be performed when we construct the tower: we
will precompute quantities that will be of use in the algorithms of the next sections.
Details are given in the next sections, when needed.

6.4 Level embedding

We discuss here change-of-basis algorithms for the tower (U0, . . . ,Uk) of the
previous section; these algorithms are needed for most further operations. We
detail the main case where Pi = X

p
i − Xi − X

2p−1
i−1 ; the case P1 = Xp

1 − X1 − X0 (and
P2 = X2

2 + X2 + X1 for p = 2 and d odd) is easier.
Recall the two families of Fp-bases we have defined so far:

Bi = {xe0
0 · · · xei

i | 0 6 e0 < d, 0 6 ej < p for j > 0}, (6.33)

Ci = {xai | 0 6 a < pid}. (6.34)

The first one arises naturally when constructing the tower as a succession of
Artin-Schreier extensions, and we expect our inputs to be given in such basis.
Furthermore, lifting in Bj an element written in Bi for i < j is immediate in this
basis, and so is the inverse operation. The basis Ci, on the other hand, is practical
for multiplication, inversion, etc., but it is not evident how to lift elements.

We shall thus need algorithms to change between these two bases. Since xi
is clearly a separating element for the variety V(Ki) (see Chapter 5), we will use
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6.4. Level embedding

Proposition 5.24 to go from Bi to Ci, but we shall need an algorithm for the
inverse map first.

Instead of converting from Ci to Bi directly, we will pass through some
intermediate bivariate bases to keep the complexity low. By Theorem 6.9, Ui

equals Fp[Xi−1,Xi]/I, where the ideal I admits the following Gröbner bases, for
respectively the lexicographic orders Xi > Xi−1 and Xi−1 > Xi:

∣∣∣∣
Xp
i − Xi − X

2p−1
i−1

Qi−1(Xi−1)
and

∣∣∣∣
Xi−1 − Ri(Xi)

Qi(Xi)
(6.35)

with Ri in Fp[Xi]. Both Gröbner bases are triangular and bivariate, one can go
from one to the other using the algorithms of Pascal and Schost [PS06], in fact
most of the ideas of this section are inspired by their paper.

Since deg(Qi−1) = pi−1d and deg(Qi) = pid, we associate the following
Fp-bases of Ui to each system:

Di = {xai−1x
b
i | 0 6 a < pi−1d, 0 6 b < p}, (6.36)

Ci = {xai | 0 6 a < pid}. (6.37)

We describe an algorithm called Push-down which takes v written in the basis Ci

and returns its coordinates in the basis Di. Then, using Proposition 5.24, we will
be able to describe the inverse operation, called Lift-up. In other words, Push-down

inputs v ∈ Ui and outputs the representation of v as

v = v0 + v1xi + · · ·+ vp−1x
p−1
i , with all vj ∈ Ui−1 (6.38)

and Lift-up does the opposite.
Then, the change from Ci to Bi is done by repeatedly applying Push-down,

and the opposite is obtained by repeatedly applying Lift-up.
Hereafter, we let L : N− {0}→ N be such that both Push-down and Lift-up can

be performed in L(i) operations; to simplify some expressions appearing later
on, we add the mild constraints that p L(i) 6 L(i+ 1) and pM(pid) ∈ O(L(i)). To
reflect the behavior of the implementation, we also allow precomputations. These
precomputations are performed when we build the tower; further details are at
the end of this section.

Theorem 6.23 One can take L(i) in O(pi+1d logp(p
id)2 + pM(pid)).

Remark that the input and output have size pid; using fast multiplication, the
cost is linear in pi+1d, up to logarithmic factors. The rest of this section is devoted
to proving this theorem. Push-down is a divide-and-conquer process, adapted
to the shape of our tower; Lift-up is a special case of Proposition 5.24, the power
projection will be obtained using the transposed version of Push-down.

As said before, the algorithms of this section (and of the following ones) use
precomputed quantities. To keep the pseudo-code simple, we do not explicitly list
them in the inputs of the algorithms; we show, later, that the precomputation is
fast too.
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6. Artin-Schreier towers

6.4.1 Modular multiplication

We first discuss a routine for multiplication by Xpn

i in Fp[Y,Xi]/(X
p
i −Xi − Y), and

its transpose. We start by remarking that

Xpn

i = Xi + Rn mod (Xp
i − Xi − Y) with Rn =

n−1∑

j=0

Yp
j

. (6.39)

Then, precisely, for k in N, we are interested in the operation

MulModk,n : A 7→ (Xi + Rn)A mod (Xp
i − Xi − Y), (MulMod)

with A ∈ Fp[Y,Xi], degY(A) < k and degXi
(A) < p.

Since Rn is sparse, it is advantageous to use the naive algorithm; besides, to
make transposition easy, we explicitly give the matrix of MulMod. Let m0 be the
(k+ pn−1)× k matrix having 1’s on the diagonal only, and for ℓ 6 pn−1, let mℓ be
the matrix obtained from m0 by shifting the diagonal down by ℓ places. Let finally
m ′ be the sum Σn−1

j=0 mpj . Then one verifies that the matrix of MulModk,n is




m ′ m1

m0 m ′ m0

m0 m ′ 0
. . .

. . .
...

. . .
. . . 0
m0 m ′




, (6.40)

with columns and rows indexed by

(Xj
i, . . . ,Yk−1Xj

i)j<p and (Xj
i, . . . ,Yk+pn−1−1Xj

i)j<p (6.41)

respectively. Since this matrix has O(pnk) non-zero entries, we can compute both
MulMod and its dual MulMod∗ in O(pnk) operations.

6.4.2 Push-down

The input of Push-down is v ∈ Ui, that is, given in the basis Ci; we see it as a
polynomial V ∈ Fp[Xi] of degree less than pid. The output is the normal form
of V modulo Xp

i − Xi − X
2p−1
i−1 and Qi−1(Xi−1). We first use a divide-and-conquer

subroutine to reduce V modulo Xp
i −Xi−X

2p−1
i−1 ; then, the result is reduced modulo

Qi−1(Xi−1) coefficient-wise.
To reduce V modulo Xp

i − Xi − X
2p−1
i−1 , we first compute

W = V mod (Xp
i − Xi − Y), (6.42)

then we replace Y by X2p−1
i−1 in W. Because our algorithm will be recursive, we let

deg(V) be arbitrary; then, we have the following estimate for W.

Lemma 6.24 We have degY(W) 6 deg(V)/p.

94



6.4. Level embedding

Algorithm 6.4: Push-down-rec

Input : V ∈ Fp[Xi] and c,n ∈ N.
Output : W ∈ Fp[Y,Xi].

1: if n = 0 return V ;
2: write V =

∑c
j=0 VjX

jpn

i , with Vj ∈ Fp[Xi], degVj < p
n;

3: for j ∈ [0, . . . , c], let Wj = Push-down-rec(Vj,p− 1,n− 1);
4: W = 0;
5: for j ∈ [c, . . . , 0], let W = MulMod(c+1)pn−1,n(W) +Wj;
6: return W.

Algorithm 6.5: Push-down

Input : v ∈ Ui.
Output : v written as v0 + · · ·+ vp−1x

p−1
i with vj ∈ Ui−1.

1: let V be the canonical preimage of v in Fp[Xi];
2: let n = ⌊logp(p

id− 1)⌋ and c = (pid− 1) div pn;
3: let W = Push-down-rec(V , c,n);
4: let Z = Evaluate(W, [X2p−1

i−1 ,Xi]);
5: let Z = Z mod Qi−1;
6: return the residue class of Z mod (Xp

i − Xi − X
2p−1
i−1 ,Qi−1).

Proof. Consider the matrix M of multiplication by Xp
i modulo Xp

i − Xi − Y; it has
entries in Fp[Y]. Due to the sparseness of the modulus, one sees that M has degree
at most 1, and so Mk has coefficients of degree at most k. Thus, the remainders of
Xpk
i , . . . ,Xpk+p−1

i modulo Xp
i − Xi − Y have degree at most k in Y.

We compute W by a recursive subroutine Push-down-rec, similar to Compose.
As before, we let c,n be such that 1 6 c < p and deg(V) < (c+ 1)pn, so that we
have

V = V0 + V1X
pn

i + · · ·+ VcX
cpn

i ,

with all Vj in Fp[Xi] of degree less than pn. First, we recursively reduce V0, . . . ,Vc

modulo Xp
i − Xi − Y, to obtain bivariate polynomials W0, . . . ,Wc. Let Rn be the

polynomial defined in Equation (6.39). Then, we getW by computing Σc
j=0Wj(Xi+

Rn)
j modulo Xp

i − Xi − Y, using Horner’s scheme as in Compose. Multiplications
by Xi + Rn modulo Xp

i − Xi − Y are done using MulMod.

Proposition 6.25 Algorithm Push-down is correct and takes

O(pi+1d logp(p
id)2 + pM(pid)) (6.43)

operations.

Proof. Correctness is straightforward; note that at step 5 of Push-down-rec, degY(W)

< (c+ 1)pn−1, so our call to MulMod is justified. By the claim of Subsection 6.4.1
on the cost of MulMod, the total cost of that loop is O(nc2pn). As in Theorem 6.19,
we deduce that the cost of Push-down-rec is O(n2c2pn).

In Push-down, we have cpn < pid and n < logp(p
id), so the previous cost is

seen to be O(pi+1d logp(p
id)2). Reducing one coefficient of Z modulo Qi−1 takes

O(M(pid)) operations, so step 5 has cost O(pM(pid)). Step 6 is free, since at this
stage Z is already reduced.
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Algorithm 6.6: Push-down-rec∗

Input : L ∈ Fp[[1/Y, 1/Xi]] and c,n ∈ N.
Output : M ∈ Fp[[1/Xi]].

1: If n = 0 return L;
2: for all j ∈ [c, . . . , 0] do

3: let Lj = L mod Y1−n;
4: let Mj = Push-down-rec∗(Lj,p− 1,n− 1);
5: let L = MulMod

∗
(c+1)pn−1,n(L);

6: return
∑c

j=0
Mj

X
jpn

i

.

6.4.3 Transposed push-down

Before giving the details for Lift-up, we discuss here the transpose of Push-down.
As in Section 5.7, Push-down is equivalent to the map

evxi
: Fp[T ]→ UDi

i ,

g 7→ g(xi).
(6.44)

So its transpose is the map

projxi
: (U∗

i )
Di

∗ → Fp[[1/T ]],

ℓ 7→
∑

j>0

ℓ(xji)

T j
.

(6.45)

Push-down is an algebraic transform, thus, applying Theorem 3.32, the trans-
posed algorithm is obtained by reversing the initial algorithm step by step, and
replacing subroutines by their transposes. The overall cost remains the same; we
review here the main transformations.

As usual, we identify the dual of the space Fp[Y,Xi] to Fp[[1/Y, 1/Xi]]. Thus
linear forms given as input to the algorithm are written as series

L =
∑

a,b>0

ℓa,b

YaXb
i

. (6.46)

We do the same for Fp[Xi] and Fp[Xi−1,Xi].
The initial loop at step 5 is a Horner scheme; the transposed loop is run

backward, and its core becomes Lj = L mod Y1−n and L = MulMod
∗
(c+1)pn−1,n(L);

a small simplification yields the pseudo-code we give. In Push-down, after calling
Push-down-rec, we evaluate W at [X2p−1

i−1 ,Xi]: the transposed operation Evaluate
∗ is

the map

∑

a,b

ℓa,b

Xa
i−1X

b
i

7→
∑

a,b

ℓ(2p−1)a,b

YaXb
i

. (6.47)

Then, originally, we perform a Euclidean division by Qi−1 on Z. The transposed
algorithm mod∗ amounts to compute the values of a sequence linearly generated
by the polynomial Qi−1 from its first pi−1d values (see Section 2.2.8).
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Algorithm 6.7: Push-down∗

Input : L ∈ Fp[[1/Xi−1, 1/Xi]].
Output : M ∈ Fp[[1/T ]].

1: let n = ⌊logp(p
id− 1)⌋ and c = (pid− 1) div pn;

2: let P = mod∗(L,Qi−1);
3: let M = Evaluate

∗
(P, [X2p−1

i−1 ,Xi]);
4: return Push-down-rec∗(M, c,n);

Algorithm 6.8: Lift-up

Input : v written as v0 + · · ·+ vp−1x
p−1
i with vj ∈ Ui−1.

Output : v ∈ Ui.
1: let ℓ = TransposedMul(v, ρi(1));
2: let M = 1

T
Push-down∗(ℓ);

3: let V = QiM mod Tp
id;

4: return v = V(xi)Qi(xi)
−1 = VQ ′

i
−1 mod Qi.

6.4.4 Lift-up

Let v be given in the basis Di and W its canonical preimage in Fp[Xi−1,Xi]. The
lift-up algorithm finds V in Fp[Xi] such that

W = V mod (Xp
i − Xi − X

2p−1
i−1 ,Qi−1) (6.48)

and outputs the residue class of V modulo Qi. Hereafter, we assume that both
Q ′−1

i mod Qi and the values ρi(1) of the trace TrUi/Fp
on the basis Di are known.

See the discussion below.

Lift-up. We use Proposition 5.24 to write v as a polynomial in xi. To do this we
proceed as in steps 4 and 5 of RUR. To compute the power projection we could
use transposed bivariate modular composition as in [Sho99]; it is however more
efficient to use Push-down∗.

Proposition 6.26 Algorithm Lift-up is correct and takes

O(pi+1d logp(p
id)2 + pM(pid)) (6.49)

operations.

Proof. Correctness is a consequence of Theorem 5.16 and of the algorithm given in
Section 5.7.

TransposedMul implements the transposed bivariate modular multiplication; an
algorithm of costO(M(pid)) for this is in [PS06, Corollary 2] (see also Section 2.2.8).
The last subsection showed that step 2 has the same cost as Push-down. Then, the
costs of steps 3 and 4 are O(M(pid)).

Propositions 6.25 and 6.26 prove Theorem 6.23.
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6. Artin-Schreier towers

Precomputations. The precomputations, that are done at the construction of Ui,
are as follows. First, we need the values of the trace on the basis Di. By (P2) we
know that

TrUi/Fp
(xai−1x

b
i ) = TrUi−1/Fp

◦TrUi/Ui−1(x
a
i−1x

b
i ), (6.50)

then, by (P3)

TrUi/Ui−1(x
a
i−1x

b
i ) =

{
0 for 0 6 b < p− 1,
−xai−1 for b = p− 1.

(6.51)

Thus the values of TrUi/Fp
on the basis Di are

0, . . . , 0,−TrUi−1/Fp
(1),−TrUi−1/Fp

(xi−1), . . . ,−TrUi−1/Fp
(xp

i−1d−1
i−1 ). (6.52)

They can be computed in O(M(pi−1d)) operations using Lemma 5.11.
Then, we need Q ′

i
−1 mod Qi; this takes O(M(pid) log(pid)) operations by fast

extended GCD computation. These precomputations save logarithmic factors at
best, but are useful in practice.

6.5 Frobenius and pseudotrace

In this section, we describe algorithms computing Frobenius and pseudotrace
operators, specific to the tower of Section 6.3; they are the keys to the algorithms
of the next section.

The algorithms in this section and the next one closely follow Couveignes’
[Cou00]. However, the latter assumed the existence of a quasi-linear time algo-
rithm for multiplication in some specific towers in the multivariate basis Bi of
Subsection 6.2.1. To our knowledge, no such algorithm exists. We use here the
univariate basis Ci introduced previously, which makes multiplication straight-
forward. However, several push-down and lift-up operations are now required to
accommodate the recursive nature of the algorithm.

Our main purpose here is to compute the pseudotrace

Tpjd : x 7→
pjd−1∑

ℓ=0

xp
ℓ

; (6.53)

we already gave an algorithm for this task in Section 2.2.4, but in our context
we can do better. We start by describing how to compute values of the iterated
Frobenius operator x 7→ xp

n

by a recursive descent in the tower.
We focus on computing the iterated Frobenius for n < d or n = pjd. In both

cases, similarly to (6.39), we have:

xp
n

i = xi + βi−1,n, with βi−1,n = Tn(γi−1). (6.54)

Assuming βi−1,n is known, the recursive step of the Frobenius algorithm follows:
starting from v ∈ Ui, we first write v = v0 + · · · + vp−1x

p−1
i , with vh ∈ Ui−1; by

(6.54) and the linearity of the Frobenius, we deduce that

vp
n

=
∑p−1

h=0 v
pn

h (xi + βi−1,n)
h . (6.55)
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Algorithm 6.9: IterFrobenius

Input : v, i, n with v ∈ Ui and n < d or n = pjd.
Output : vp

n

∈ Ui.
1: if n = pjd and i 6 j, return v;
2: if i = 0, return vp

n

;
3: let v0 + v1xi + · · ·+ vp−1x

p−1
i = Push-down(v);

4: for h ∈ [0, . . . ,p− 1], let th = IterFrobenius(vh, i− 1,n);
5: let F = 0;
6: for h ∈ [p− 1, . . . , 0], let F = th + (xi + βi−1,n)F;
7: return Lift-up(F).

Then, we compute all vp
n

h recursively; the final sum is computed using Horner’s
scheme. Note that these equations are not limited to the case where n < d or of
the form pjd: an arbitrary n would do as well. However, we impose this limitation
since these are the only values we need to compute Tpjd.

In the case n = pjd, any v ∈ Uj is left invariant by this Frobenius map, thus
we stop the recursion when i = j, as there is nothing left to do. In the case n < d,
we stop the recursion when i = 0 and apply the algorithm of Section 2.2.4. We
summarize the two variants in one unique algorithm IterFrobenius.

As mentioned above, the algorithm requires the values βi′,n for i ′ < i: we
suppose that they are precomputed (the discussion of how we precompute them
follows). To analyze costs, we use the function L of Section 6.4.

Theorem 6.27 On input v ∈ Ui and n = pjd, algorithm IterFrobenius correctly
computes vp

n

and takes

O((i− j)L(i)) (6.56)

operations.

Proof. Correctness is clear. We write F(i, j) for the complexity on inputs as in the
statement; then F(0, j) = · · · = F(j, j) = 0 because step 1 comes at no cost. For
i > j, each pass through step 6 involves a multiplication by xi + βi−1,n, of cost
of O(pM(pi−1d)), assuming βi−1,n ∈ Ui−1 is known. Altogether, we deduce the
recurrence relation

F(i, j) 6 p F(i− 1, j) + 2 L(i) +O(p2M(pi−1d)), (6.57)

so F(i, j) 6 p F(i − 1, j) + O(L(i)), by assumptions on M and L. The conclusion
follows, again by assumptions on L.

Theorem 6.28 On input v ∈ Ui and n < d, algorithm IterFrobenius correctly computes
vp

n

and takes

O(piC(d) log(n) + iL(i)) (6.58)

operations.

Proof. The analysis is identical to the previous one, except that step 2 is now
executed instead of step 1 and this costs O(C(d) log(n)) by the algorithm of
Section 2.2.4. The conclusion follows by observing that step 2 is repeated pi

times.
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6. Artin-Schreier towers

Algorithm 6.10: LittlePseudotrace

Input : v, i, n with v ∈ Ui and 0 < n 6 d.
Output : Tn(v) ∈ Ui.

1: if n = 1 return v;
2: let m = ⌊n/2⌋;
3: let t = LittlePseudotrace(v, i,m);
4: let t = t+ IterFrobenius(t, i,m);
5: if n is odd, let t = t+ IterFrobenius(v, i,n);
6: return t.

Algorithm 6.11: Pseudotrace

Input : v, i, j with v ∈ Ui.
Output : Tpjd(v) ∈ Ui.

1: if j = 0 return LittlePseudotrace(v,d);
2: t0 = Pseudotrace(v, i, j− 1);
3: for h ∈ [1, . . . ,p− 1], let th = IterFrobenius(th−1, i, j− 1);
4: return t0 + t1 + · · ·+ tp−1.

Next, we compute pseudotraces. We use the following relations, whose verifi-
cation is straightforward:

Tn+m(v) = Tn(v) + Tm(v)p
n

, Tnm(v) =

m−1∑

h=0

Tn(v)
phn

. (6.59)

We give two divide-and-conquer algorithms that do a slightly different divide step;
each of them is based on one of the previous formulas. The first one, LittlePseu-

dotrace, is meant to compute Td. It follows a binary divide-and-conquer scheme
similar to the algorithm in Section 2.2.4. The second one, Pseudotrace, computes
Tpjd for j > 0. It uses the previous formula with n = pj−1d and m = p, computing
Frobenius-es for such n; when j = 0, it invokes the first algorithm.

Theorem 6.29 Algorithm LittlePseudotrace is correct and takes

O(piC(d) log2(n) + iL(i) log(n)) (6.60)

operations.

Proof. Correctness is clear. For the cost analysis, we write PT(i,n) for the cost on
input i and n, so PT(i, 1) = O(1). For n > 1, step 3 costs PT(i, ⌊n/2⌋), steps 4 and 5
cost both

O(piC(d) log2(n) + iL(i)) (6.61)

by Theorem 6.28. This gives

PT(i,n) = PT(i, ⌊n/2⌋) +O(piC(d) log2(n) + iL(i)), (6.62)

and thus

PT(i,n) ∈ O(piC(d) log2(n) + iL(i) logn). (6.63)
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Theorem 6.30 Algorithm Pseudotrace is correct and takes

PT(i) = O((pi+ log(d))iL(i) + piC(d) log2(d)) (6.64)

operations for j 6 i.

Proof. Correctness is clear. For the cost analysis, we write PT(i, j) for the cost on
input i and j, so theorem 6.29 gives

PT(i, 0) = O(piC(d) log2(d) + iL(i) log(d)). (6.65)

For j > 0, step 2 costs PT(i, j − 1), step 3 costs O(piL(i)) by Theorem 6.27 and
step 4 costs O(pi+1d). This gives

PT(i, j) = PT(i, j− 1) +O(piL(i)), (6.66)

and thus

PT(i, j) ∈ O(pijL(i) + PT(i, 0)). (6.67)

The cost is thus O(pi+2d+ piC(d)), up to logarithmic factors, for an input and
output size of pid: this time, due to modular compositions in U0, the cost is not
linear in d.

Finally, let us discuss precomputations. On input v, i, d, the algorithm Lit-

tlePseudotrace makes less than 2 logd calls to IterFrobenius(x, i,n) for some value
x ∈ Ui and for n ∈ N where the set N only depends on d. When we construct
Ui+1, we compute (only) all βi,n = Tn(γi) ∈ Ui, for increasing n ∈ N, using the
LittlePseudotrace algorithm. The inner calls to IterFrobenius only use pseudotraces
that are already known. Besides, a single call to LittlePseudotrace(γi, i,d) actually
computes all Tn(γi) in

O(piC(d) log2 d+ iL(i) logd) (6.68)

operations. Same goes for the precomputation of all βi,pjd = Tpjd(γi) ∈ Ui, for
j 6 i, using the Pseudotrace algorithm: this costs PT(i). Observe that in total we
only store O(k2 + k logd) elements of the tower, thus the space requirements are
quasi-linear.

Remark 6.31. A dynamic programming version of LittlePseudotrace as in Sec-
tion 2.2.4 would only precompute βi,2e for 2e < d, thus reducing the storage
from 2 logd to ⌊logd⌋ elements. This would also allow to compute Tn for any
n < d without needing any further precomputation. Using this algorithm and
a decomposition of n > d as n = r +

∑
j cjp

jd with r < d and cj < p, one could
also compute Tn and xp

n

for any n at essentially the same cost. We omit these
improvements since they are not essential to the next section.

6.6 Arbitrary towers

Finally, we bring our previous algorithms to an arbitrary tower, using Couvei-
gnes’ isomorphism algorithm [Cou00]. As in the previous section, we adapt this
algorithm to our context, by adding suitable push-down and lift-up operations.
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6. Artin-Schreier towers

Let Q0 be irreducible of degree d in Fp[X0], such that TrU0/Fp
(x0) 6= 0, with as

before U0 = Fp[X0]/Q0. We let (Gi)06i<k and (U0, . . . ,Uk) be as in Section 6.3.
We also consider another sequence (G ′

i)06i<k, that defines another tower
(U ′

0, . . . ,U ′
k). Since (U ′

0, . . . ,U ′
k) is not necessarily primitive, we fall back to the

multivariate basis of Subsection 6.2.1: we write elements of U ′
i in the basis

B
′
i = {x ′0

e0 · · · x ′i
ei | 0 6 e0 < d, 0 6 ej < p for j > 0}, (6.69)

where x0 = x ′0.
To compute in U ′

i, we will use an isomorphism U ′
i → Ui. Such an isomorphism

is determined by the images si = (s0, . . . , si) of (x ′0, . . . , x ′i), with si ∈ Ui (we
always take s0 = x0). This isomorphism, denoted by σsi

, takes as input v written
in the basis B ′

i and outputs σsi
(v) ∈ Ui.

To analyze costs, we use the functions L and PT introduced in the previous
sections. We also let 2 6 ω 6 3 be a feasible exponent for linear algebra over Fp

(see Section 2.1).

Theorem 6.32 Given Q0 and (G ′
i)06i<k, one can find sk = (s0, . . . , sk) in

O(dωk+ PT(k) + M(pk+1d) log(p)) (6.70)

operations. Once they are known, one can apply σsk
and σ−1

sk
using O(k L(k)) operations.

Thus, we can compute products, inverses, etc, in U ′
k for the cost of the corre-

sponding operation in Uk, plus O(k L(k)).

6.6.1 Solving Artin-Schreier equations

As a preliminary, given α ∈ Ui, we discuss how to solve the Artin-Schreier
equation Xp − X = α in Ui. We assume that TrUi/Fp

(α) = 0, so this equation has
solutions in Ui.

Because Xp − X is Fp-linear, the equation can be directly solved by linear
algebra, but this is too costly. In [Cou00], Couveignes gives a solution adapted to
our setting, that reduces the problem to solving Artin-Schreier equations in U0.
He observed what follows.

Proposition 6.33 Let δ ∈ Ui be a solution of the equation

Xp − X = α. (6.71)

Any solution µ of

Xppi−1d
− X = η, with η = Tpi−1d(α). (6.72)

is of the form µ = δ− ∆ with ∆ ∈ Ui−1.

Proof. Let µ be a solution of Eq. (6.72), and let ∆ = δ− µ, then

∆ppi−1d
− ∆ = δp

pi−1d
− δ− η =




pi−1d−1∑

ℓ=0

(δp − δ)p
ℓ


− η =

Tpi−1d(δ
p − δ) − η = 0, (6.73)

where the last equality comes from the definition of the pseudotrace. This implies
∆ ∈ Ui−1.
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6.6. Arbitrary towers

Algorithm 6.12: ApproximateAS

Input : η ∈ Ui such that (6.72) has a solution.
Output : µ ∈ Ui solution of (6.72).

1: let η0 + η1xi + · · ·+ ηp−2x
p−2
i = Push-down(η);

2: for all j ∈ [p− 1, . . . , 1] do

3: let µj = 1
jT

(
ηj−1 −

∑p−1
h=j+1

(
h

j−1

)
βh−j+1
i−1,pi−1d

µh

)
;

4: return Lift-up(µ1xi + . . . + µp−1x
p−1
i );

By its definition, ∆ = δ− µ is a root of

Xp − X− α+ µp − µ. (6.74)

This equation has solutions in Ui−1 by the previous proposition, hence it can be
solved recursively. In a certain sense, µ is a good approximation to δ, and their
difference ∆ can be computed as the solution of a new, simpler, Artin-Schreier
equation.

First we tackle the problem of finding a solution of (6.72). For this purpose,
observe that the left hand side of (6.72) is Ui−1-linear and its matrix in the basis
(1, . . . , xp−1

i ) is




0
(1

0

)
βi−1,pi−1d

(2
0

)
β2
i−1,pi−1d

. . .
(
p−1

0

)
βp−1
i−1,pi−1d

0 0
(2

1

)
βi−1,pi−1d . . .

(
p−1

1

)
βp−2
i−1,pi−1d

...
...

0 · · · · · · 0
(
p−1
p−2

)
βi−1,pi−1d

0 · · · · · · · · · 0




(6.75)

(we recall that βi−1,n = Tn(γi−1)). Then, algorithm ApproximateAS finds the
required solution.

Theorem 6.34 Algorithm ApproximateAS is correct and takes O(L(i)) operations.

Proof. Correctness is clear by Gaussian elimination. For the cost analysis, note
that βi−1,pi−1d has already been precomputed as a prerequisite for the iterated
Frobenius and pseudotrace algorithms. Step 2 takes O(p2) additions and scalar
operations in Ui−1; the overall cost is dominated by the one of the push-down and
lift-up steps, by assumptions on L.

Writing the recursive algorithm is now straightforward. To solve Artin-Schreier
equations in U0, we use a naive algorithm based on linear algebra, written Naive-

Solve.

Theorem 6.35 Algorithm Artin-Schreier is correct and takes

O(dω + PT(i)) (6.76)

operations.

Proof. Correctness follows from the previous discussion. For the complexity,
let AS(i) be the cost for α ∈ Ui. The cost AS(0) of the naive algorithm is
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6. Artin-Schreier towers

Algorithm 6.13: Artin-Schreier

Input : α, i such that α ∈ Ui and TrUi/Fp
(α) = 0.

Output : δ ∈ Ui such that δp − δ = α.
1: if i = 0, return NaiveSolve(Xp − X− α);
2: let η = Pseudotrace(α, i, i− 1);
3: let µ = ApproximateAS(η);
4: let α0 = Push-down(α− µp + µ);
5: let ∆ = Artin-Schreier(α0, i− 1);
6: return µ+ Lift-up(∆).

Algorithm 6.14: ApplyIsomorphism

Input : v, i with v ∈ U ′
i written in the basis B ′

i.
Output : σsi

(v) ∈ Ui.
1: if i = 0 then return v;
2: write v = Σj<pvj(x

′
0, . . . , x ′i−1)x

′
i
j;

3: let si,0 + · · ·+ si,p−1x
p−1
i = Push-down(si);

4: for j ∈ [0, . . . ,p− 1] let tj = ApplyIsomorphism(vj, i− 1);
5: let t = 0;
6: for j ∈ [p− 1, . . . , 0] let t = (si,0 + · · ·+ si,p−1x

p−1
i )t+ tj;

7: return Lift-up(t).

O(M(d) log(p) + dω), where the first term is the cost of computing xp0 and the
second one the cost of linear algebra.

When i > 1, step 2 has cost PT(i), steps 3, 4 and 6 all contribute O(L(i))
and step 5 contributes AS(i − 1). The most important contribution is at step 2,
hence AS(i) = AS(i − 1) + O(PT(i)). The assumptions on L imply that the sum
PT(1) + · · ·+ PT(i) is O(PT(i)).

6.6.2 Applying the isomorphism

We get back to the isomorphism question. We assume that si = (s0, . . . , si) is
known and we give the cost of applying σsi

and its inverse. We first discuss the
forward direction.

As input, v ∈ U ′
i is written in the multivariate basis B ′

i of U ′
i; the out-

put is t = σsi
(v) ∈ Ui. As before, the algorithm is recursive: we write v =

Σj<pvj(x
′
0, . . . , x ′i−1)x

′
i
j, whence

σsi
(v) =

∑

j<p

σsi
(vj)s

j
i =

∑

j<p

σsi−1(vj)s
j
i; (6.77)

the sum is computed by Horner’s scheme. To speed-up the computation, it is
better to perform the latter step in a bivariate basis, that is, through a push-down
and a lift-up.

Given t ∈ Ui, to compute v = σ−1
si

(t), we run the previous algorithm backward.
We first push-down t, obtaining t = t0 + · · ·+ tp−1x

p−1
i , with all tj ∈ Ui−1. Next,

we rewrite this as t = t ′0 + · · ·+ t ′p−1s
p−1
i , with all t ′j ∈ Ui−1, and it suffices to apply

σ−1
si

(or equivalently σ−1
si−1

) to each t ′i. The non-trivial part is the computation of the
t ′j’s: this is done by another application of RUR in the extension Ui = Ui−1[Xi]/(Pi),
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Algorithm 6.15: ApplyInverse

Input : t, i with t ∈ Ui.
Output : σ−1

si
(t) ∈ U ′

i written in the basis B ′
i.

1: if i = 0 then return t;
2: let t0 + · · ·+ tp−1x

p−1
i = Push-down(t);

3: let si,0 + · · ·+ si,p−1x
p−1
i = Push-down(si);

4: let t ′0 + · · ·+ t ′p−1X
p−1 = RURsi

(t0 + · · ·+ tp−1x
p−1
i , si,0 + · · ·+ si,p−1x

p−1
i );

5: return Σj<p ApplyInverse(t ′j, i− 1)x ′i
j;

that we shall call RURsi
. We shall discuss RURsi

later, for the moment we just
state a result about its complexity.

Lemma 6.36 Algorithm RURsi
computes its output in O(pM(pid)) operations.

Proposition 6.37 Algorithms ApplyIsomorphism and ApplyInverse are correct and
both take O(iL(i)) operations.

Proof. In both cases, correctness is clear, since the algorithms translate the former
discussion. As to complexity, in both cases, we do p recursive calls, O(1) push-
downs and lift-ups, and a few extra operations: for ApplyIsomorphism, these are p
multiplications / additions in the bivariate basis Di of Section 6.4; for ApplyInverse,
this is calling the algorithm RURsi

. The costs is O(pM(pid)) in both cases, which
is in O(L(i)) by assumptions on L. We conclude as in Theorem 6.27.

Rational univariate representation. We describe now the algorithm to change from
the basis Di to the basis D ′

i, based on the rational univariate representation.
Unlike Lift-up, this algorithm will not make use of transposed subroutines.

We consider the algebra Ui[Xi]/(Pi). We have an element si, its minimal
polynomial P ′

i, and we know that si separates V(Pi). We want to express an
element t ∈ Ui written in the basis Di as a rational fraction in si.

We first observe that the values of TrUi/Ui−1 over the basis 1, xi, . . . , xp−1
i are

ρ(1) = (0, . . . , 0,−1) (6.78)

by (P3). Now, as in step 4 of RUR, we need to compute t · ρ(1). By writing down
the multiplication matrix of t, we verify that

t · ρ(1) = (−tp−1,−tp−2, . . . ,−t1,−t0 − tp−1). (6.79)

Also observe that we need the inverse of the derivative of P ′
i, as in step 5 of

RUR. Since P ′
i is Artin-Schreier, this value is just −1. Finally, the algorithm RURsi

is as follows.

Proof of Lemma 6.36. Step 2 is the most expensive one. We use p−1 multiplications
in the bivariate basis Di to compute si, . . . , sp−1

i , then we apply ℓ to each of them.
These operations cost respectively O(pM(pid)) and O(p2M(pi−1d)).

Then, step 1 just costs one addition in Ui−1 and step 3 costs O(d) additions in
Ui−1 because P ′

i(T) = T
p − T ′ − γ ′

i−1.

Note. We could have done better in step 2 by using transposed modular composi-
tion, but this would not influence the overall complexity of ApplyInverse.
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Algorithm 6.16: RURsi

Input : t0, . . . , tp−1 ∈ Ui−1.
Output : t ′0, . . . , t ′p−1 ∈ Ui−1 such that t0 + · · ·+ tp−1x

p−1
i = t ′0 + · · ·+ t ′p−1s

p−1
i .

1: let ℓ = t · ρ(1) = −
tp−1

X
p−1
i

−
∑p−1

j=0
tp−1−j

X
j
i

;

2: let M = 1
T

∑p−1
j=0

ℓ(s
j
i)

T j ;
3: let V = P ′

iM mod Tp;
4: return −V .

6.6.3 Proof of Theorem 6.32

Finally, assuming that only (s0, . . . , si−1) are known, we describe how to determine
si. Several choices are possible: the only constraint is that si should be a root of
Xp
i − Xi − σsi

(γ ′
i−1) = X

p
i − Xi − σsi−1(γ

′
i−1) in Ui.

Using Proposition 6.37, we can compute α = σsi−1(γ
′
i−1) ∈ Ui−1 in O((i −

1)L(i − 1)) ⊂ O(iL(i)) operations. Applying a lift-up to α, we are then in the
conditions of Theorem 6.35, so we can find si for an extra O(dω+PT(i)) operations.

We can then summarize the cost of all precomputations: to the cost of de-
termining si, we add the costs related to the tower (U0, . . . ,Ui), given in Sec-
tions 6.3, 6.4 and 6.5. After a few simplifications, we obtain the upper bound
O(dω + PT(i) + M(pi+1d) log(p)). Summing over i gives the first claim of the
theorem. The second is a restatement of Proposition 6.37.

6.7 Experimental results

We discuss here the implementation of the algorithms of this Chapter and some
experimental results.

Implementation. We packaged the algorithms of this chapter in a C++ library called
FAAST and made it available under the terms of the GNU GPL software license from
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/.

FAAST is implemented on top of the NTL library [Sho03] which provides the
basic univariate polynomial arithmetic needed here. Our library handles three
NTL classes of finite fields: GF2 for p = 2, zz_p for word-size p and ZZ_p for
arbitrary p; this choice is made by the user at compile-time through the use of
C++ templates and the resulting code is thus quite efficient. Optionally, NTL can be
combined with the gf2x package [BGTZ08] for better performance in the p = 2
case, as we did in our experiments.

All the algorithms of Sections 6.3–6.5 are faithfully implemented in FAAST. The
algorithms ApplyIsomorphism and ApplyInverse have slightly different implementa-
tions toUnivariate() and toBivariate() that allow more flexibility. Instead of
being recursive algorithms doing the change to and from the multivariate basis
B ′

i = {x ′0
e0 · · · x ′iei }, they only implement the change to and from the bivariate basis

D
′
i = {xi−1

ei−1x ′i
ei | 0 6 ei−1 < p

i−1d, 0 6 ei < p}. (6.80)

Equivalently, this amounts to switch between the representations

∈ Ui and ∈ Ui−1[X
′
i]/(X

′
i
p
− X ′

i − γ
′
i−1). (6.81)
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Figure 6.1: An example of conversion from the univariate basis to the multivariate
basis of the tower (U0,U ′′

1 , . . . ,U ′
k−1,U ′′

k).

The same result as one call to ApplyIsomorphism or ApplyInverse can be obtained
by i calls to toUnivariate() and toBivariate() respectively.

However, more freedom is allowed in the case where several generic Artin-
Schreier towers, say (U ′

0, . . . ,U ′
k) and (U ′′

0 , . . . ,U ′′
k), are built using the algorithms

of Section 6.6. In fact it is possible, for example, to see U ′′
k as an extension field of

U ′
k by first converting to the basis D ′′

k and then recursively to D ′
k−1, . . . ,D ′

1. More
generally, this allows the user to build a new Artin-Schreier tower (U ′′′

0 , . . . ,U ′′′
k )

by taking at each level either U ′′′
i = U ′

i or U ′′′
i = U ′′

i . In other words this allows the
user to zig-zag in the lattice of finite fields as in Figure 6.1.

Besides the algorithms of this Chapter, FAAST also implements the algorithms
described in Section 8.7 for minimal polynomials, evaluation and interpolation.

Experimental results. We compare our timings with those obtained in Magma
2.16 [BCP97] for similar questions. All results are obtained on an Intel Xeon E5520
(2.26GHz). Our experiments revealed a regression in the performances of Magma
2.16, concerning one algorithm. When such difference is noticeable, we also plot
the timings obtained with Magma 2.11 on an equivalent machine (Intel Xeon
E5430).

The experiments for the FAAST library were only made for the classes GF2 and
zz_p. The class ZZ_p was left out because all the primes that can be reasonably
handled by our library fit in one machine-word. In Magma, there exist several
ways to build field extensions:

• quo<U|P> builds the quotient of the univariate polynomial ring U by P ∈ U
(written magma(1) hereafter);

• ext<k|P> builds the extension of the field k by P ∈ k[X] (written magma(2));

• ext<k|p> builds an extension of degree p of k (written magma(3)).
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Figure 6.2: Build time (left) and isomorphism time (right) with respect to tower
height. Plot is in logarithmic scale.

We made experiments for each of these choices where this makes sense.
The parameters to our algorithms are (p,d, k). Thus, our experiments describe

the following situations:

• Increasing the height k. Here we take p = 2 and d = 1 (that is, U0 = F2); the
x-coordinate gives the number of levels we construct and the y-coordinate
gives timings in seconds, in logarithmic scale.

This is done in Figure 6.2. We let the height of the tower increase and we
give timings for (1) building the tower of Section 6.3 and (2) computing an
isomorphism with a random arbitrary tower as in Section 6.6. In the latter
experiment, only the magma(2) approach was meaningful for Magma.

• Increasing the degree d of U0. Here we take p = 5 and we construct 2 levels;
the x-coordinate gives the degree d = [U0 : Fp] and the y-coordinate gives
timings in seconds. This is done in Figure 6.3 (left).

• Increasing p. Here we take d = 1 (thus U0 = Fp) and we construct 2 levels;
the x-coordinate gives the characteristic p and the y-coordinate gives timings
in seconds. This is done in Figure 6.3 (right).

The timings of our code are significantly better for increasing height or increas-
ing d. Not surprisingly, for increasing p, the magma(1) approach performs better
than any other: the quo operation simply creates a residue class ring, regardless of
the (ir)reducibility of the modulus, so the timing for building two levels barely de-
pend on p. The most adapted approach for this situation presumably is magma(2);
yet we notice that FAAST has reasonable performances for characteristics up to
about p = 50.

In Tables 6.1 and 6.2 we provide some comparative timings for the different
arithmetic operations provided by FAAST. The column “Primitive” gives the time
taken to build one level of the primitive tower (this includes the precomputation
of the data as described in Subsection 6.4.4); the other entries are self-explanatory.
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level Primitive Push-d. Lift-up Product Reciprocal apply σ−1 apply σ
19 1.143 0.304 1.265 0.039 0.649 0.652 1.290
20 2.566 0.609 2.796 0.081 1.544 1.314 2.602
21 5.686 1.225 6.147 0.187 3.598 2.409 2.668
22 12.660 2.515 13.746 0.463 8.355 5.565 11.179
23 28.511 5.295 31.200 1.046 19.522 12.323 24.740

Table 6.1: Some timings in seconds for arithmetics in a generic tower built over F2

using GF2.

level Primitive Push-d. Lift-up Product Reciprocal apply σ−1 apply σ
18 13.618 0.884 13.712 0.476 10.753 1.337 3.578
19 30.288 1.814 30.432 1.001 23.046 2.850 7.798
20 65.632 3.953 66.889 2.106 51.544 6.564 18.141
21 128.190 8.347 131.271 4.791 121.349 14.396 39.296
22 296.671 11.396 298.541 6.413 249.520 28.851 86.628

Table 6.2: Some timings in seconds for arithmetics in a generic tower built over F2

using zz_p.

Product and inversion are just wrappers around NTL routines: in these operations
we did not observe any overhead compared to the native NTL code.

Finally, we mention the cost of precomputation. The precomputation of the
images of σ as explained in Section 6.6 is quite expensive; most of it is spent
computing pseudotraces. Indeed it took one week to precompute the data in
Figure 6.2 (right), while all the other data can be computed in a few hours. There
is still space for some minor improvement in FAAST, mainly tweaking recursion
thresholds and implementing better algorithms for small and moderate input sizes.
Yet we think that only a major algorithmic improvement could consistently speed
up this phase.
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Chapter 7

Elliptic curves and isogenies

The techniques we have developed to perform fast computations in some finite-
dimensional algebras, find an application in some number-theoretic computations
on elliptic curves.

Elliptic curves are a central object of study in number theory and alge-
braic geometry. They are probably most famous for having being used by
Wiles [Wil95, TW95] to prove of Fermat’s last theorem. In computer science, they
have applications in cryptography [Kob87, Mil86, BSS99], factorization [Len87,
AM93b, BBLP08] and primality proving [AM93a, Mor07].

In this section we recall the basic definitions and properties of elliptic curves,
the material is drawn from [Sil86, Mil96, Con91].

7.1 Definitions

We let K be a field and K̄ be its algebraic closure. Elliptic curves are genus 1 curves
over K̄ with a distinguished point.

7.1.1 Weierstrass equations

Definition 7.1 (Weierstrass equation) Any elliptic curve E can be viewed as the
projective variety associated to the equation

E : Y2Z+ a1XYZ+ a3YZ
2 = X3 + a2X

2Z+ a4XZ
2 + a6Z

3, (7.1)

with a1, . . . ,a6 ∈ K̄. The distinguished point is [0 : 1 : 0], called the point at infinity
and denoted by O. When a1, . . . ,a6 ∈ K, the curve is said to be defined over K.

Eq. (7.1) is called the homogeneous Weierstrass form of the curve E. After the
change of variables x = X

Z
,y = Y

Z
, Eq. (7.1) can be rewritten as

E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6, (7.2)

called the affine Weierstrass form. Then the curve E is the locus of zeros of Eq. (7.2)
in K̄2 (or, more exactly, in the affine plane A2), plus the extra point at infinity O.

The discriminant of Eq. (7.2) is

∆E = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, (7.3)
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7. Elliptic curves and isogenies

where

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a

2
4.

(7.4)

Remark 7.2. The curve defined by (7.2) has an unique singular point if and only if
∆E = 0. Figure 7.1 shows the two possible shapes of a singular curve over the reals.
Then, every line passing through the singular point meets the curve in another
unique point. This parameterization makes E birationally equivalent to P1, thus E
has genus 0. The converse is also true, thus Eq. (7.2) defines an elliptic curve if
and only if ∆E 6= 0.

Figure 7.1: Two singular Weierstrass curves. On the left y2 = x3, on the right
y2 = x3 + x2. On the right we have shown the parameterization by the line passing
through the origin.

Definition 7.3 (j-invariant) We associate to the curve E defined by Eq. (7.2), the
j-invariant

jE =
(b2

2 − 24b4)
3

∆E
.

Note. Recall that if E is an elliptic curve defined by an affine Weierstrass equation
f(x,y) = 0 with coefficients in K, its function field K(E) is the field of fractions of

K[E]
def≡ K[x,y]/(f(x,y)). (7.5)

7.1.2 Group law

Elliptic curves are endowed with a group structure via the chord-tangent law.

Definition 7.4 Let E be an elliptic curve and let P,Q ∈ P2 be two points on the
curve. Let L be the line passing through P and Q, with multiplicity two if P = Q,
and let R be the third intersection point with E. Let L ′ be the line passing through
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7.1. Definitions

R and O. Then the point P +Q is defined as the third point of intersection of L ′

and E.

Figure 7.2: Chord-tangent law on an elliptic curve defined over the reals.

The definition is pictured in Figure 7.2. For a proof that this defines indeed a
group law on the points of E, with O being the identity element, see [Sil86, II, §2].

Definition 7.5 (Rational points) Let E be an elliptic curve defined over K, the set
of K-rational points E(K) is

E(K) = E ∩ P2(K). (7.6)

If P and Q are rational points, the lines L and L ′ are defined by equations
over K, thus E(K) forms a subgroup of E. To allow calculations in E(K) without
having to lift the coefficients in an algebraic closure, it is convenient to give explicit
formulas for the chord-tangent law.

We shall give the formulas for affine coordinates. x,y are functions in K(E),
thus from now on, if P is a point of E, we denote by x(P) its abscissa and by y(P)
its ordinate (in affine coordinates).

Proposition 7.6 Let E be the elliptic curve defined by Eq. (7.2). Let P, be a point of E
different from O, the coordinates of −P are given by

x(−P) = x(P), y(−P) = −y(P) − a1x(P) − a3. (7.7)

Let P,Q be points of E different from O and let Q 6= −P, the coordinates of P + Q are
given by

λ =

{
y(Q)−y(P)
x(Q)−x(P)

if P 6= Q,
3x(P)2+2a2x(P)+a4−a1y(P)

2y(P)+a1x(P)+a3
if P = Q,

x(P +Q) = λ2 + a1λ− a2 − x(P) − x(Q),

y(P +Q) = −(λ+ a1)x(P +Q) − y(P) + λx(P) − a3.

(7.8)
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7. Elliptic curves and isogenies

For m ∈ Z, we denote by [m]P the point

m times
︷ ︸︸ ︷
P + P + · · ·+ P if m > 0, or the point

[−m](−P) if m < 0, or O if m = 0.

Definition 7.7 (Kummer variety) The Kummer variety of an elliptic curve E,
denoted by KE, is the quotient of E by the equivalence relation P ≃ −P.

Remark 7.8. The Kummer variety can be represented by taking the abscissas of
the points of E. It is not a group, but we can still compute scalar multiples of its
points. In fact, from the addition formulas we deduce for P 6= −P

x([2]P) =
x4 − b4x

2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6
, (7.9)

where x = x(P); and for P 6= Q

x(P +Q) + x(P −Q) =
2πσ+ b2π+ b4σ+ b6

(x(P) − x(Q))2 , (7.10)

where π = x(P)x(Q) and σ = x(P) + x(Q).
Then, to compute x([n]P), we start from x(P) and x([2]P), and we iteratively

apply

[2i]P = [2][i]P,

[2i+ 1]P = [i+ 1]P + [i]P,
(7.11)

or

[2i+ 1]P = [i+ 1]P + [i]P,

[2i+ 2]P = [2][i+ 1]P,
(7.12)

until we reach [n]P. This algorithm appeared in [Mon87] and is sometimes referred
to as Montgomery’s formulas.

The map

[m]E : E(K)→ E(K),

P 7→ [m]P
(7.13)

is a group endomorphisms of E(K).

Definition 7.9 The m-th torsion subgroup of E is

E[m] = {P ∈ E(K̄) | [m]P = O}, (7.14)

its points are called m-torsion points.

Since addition is an algebraic map, multiplication by n is algebraic too. It can
be shown that there exist polynomials ψm, θm,ωm ∈ K(E) such that

[m](x,y) =
(
θm(x,y)
ψm(x,y)2 ,

ωm(x,y)
ψm(x,y)3

)
. (7.15)

Definition 7.10 (Division polynomials) The polynomial ψm is called the m-th
division polynomial.
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Remark 7.11. The division polynomials can be computed from the addition for-
mulas via a double-and-add approach. Their importance comes from the fact that
ψm vanishes on E[m].

From the formulas for the division polynomials one can deduce the structure
of the m-torsion.

Theorem 7.12 Let p be the characteristic of K. If p does not divide m

E[m] ∼= Z/mZ× Z/mZ; (7.16)

if p 6= 0, then for every i > 0 either

E[pi] = {O}, or E[pi] ∼= Z/piZ. (7.17)

Definition 7.13 (Supersingular, ordinary) An elliptic curve E is said to be super-
singular if E[pi] = {O} for any i; it is said to be ordinary otherwise.

Definition 7.14 (Tate module) Let ℓ be a prime, the ℓ-adic Tate module Tℓ(E) is the
group

Tℓ(E) = lim←−
n

E[ℓn] (7.18)

with respect to the projections

[ℓ]E : E[ℓn+1]→ E[ℓn]. (7.19)

Proposition 7.15 The Tate module has a natural structure of Zℓ-module. As such

Tℓ(E) ∼=






Zℓ × Zℓ if ℓ 6= p,

Zp if ℓ = char(K) and E is ordinary,

{O} if E is supersingular.

(7.20)

7.1.3 Isomorphisms

Let E and E ′ be two elliptic curves in Weierstrass form over a field K, they are
said to be isomorphic if there is a linear change of variables that transforms one
equation in the other and preserves the point at infinity. Then, clearly E(K̄) and
E ′(K̄) are isomorphic as groups. If the change of variables has coefficients in K,
the curves are said to be isomorphic over K, then E(K) and E ′(K) are isomorphic
as groups.

It can be shown that the only such changes of variables are

x = u2x ′ + r,

y = u3y ′ + u2sx ′ + t,
(7.21)

with r, s, t,u ∈ K̄ and u 6= 0.

Proposition 7.16 Two elliptic curves E and E ′ in Weierstrass form are isomorphic over
K̄ if and only if jE = jE′ .

Weierstrass equations can be brought via isomorphism to a form that is eas-
ier to handle, called simplified Weierstrass form. The following classification is
from [Con91].
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7. Elliptic curves and isogenies

Proposition 7.17 (Simplified Weierstrass form) Any elliptic curve is isomorphic to
one of the following Weierstrass forms:

• If char(K) = 0 or char(K) > 3

E : y2 = x3 + ax+ b and jE =
1728(4a)3

16(4a3 + 27b2)
; (7.22)

• if char(K) = 3 and E is ordinary

E : y2 = x3 + ax2 + b and jE = −
a3

b
; (7.23)

• if char(K) = 3 and E is supersingular

E : y2 = x3 + ax+ b and jE = 0; (7.24)

• if char(K) = 2 and E is ordinary

y2 + xy = x3 + ax2 + b and jE =
1
b

; (7.25)

• if char(K) = 2 and E is supersingular

E : y2 + a3y = x3 + a4x+ a6 and jE = 0. (7.26)

Definition 7.18 (Twist) Two non-isomorphic elliptic curves E and E ′ over K such
that jE = jE′ are called twists (of one another).

An elliptic curve and a twist are isomorphic over the algebraic closure K̄. The
degree of a twist is the degree of the smallest extension K ′/K such that the two
curves are isomorphic over K ′.

Proposition 7.19 Any curve has a quadratic twist. Any twist of an ordinary elliptic
curve is quadratic.

7.1.4 Isogenies

Definition 7.20 (Isogeny) Let E and E ′ be elliptic curves, an isogeny E→ E is a
morphism of varieties that preserves the point at infinity.

It turns out that isogenies preserve the group structure.

Theorem 7.21 Let I : E → E ′ be an isogeny, then it is a group morphism E(K̄) →
E ′(K̄). It is surjective and its kernel is finite. Furthermore, if I is defined over K, then its
restriction to E(K) is a group morphism E(K)→ E ′(K).

Definition 7.22 (Degree) Let I be an isogeny and define

I∗ : K̄(E ′)→ K̄(E)

f→ f ◦ I. (7.27)

The separable (resp. inseparable) degree of I, denoted by degs I (resp. degi I), is the
separable (resp. inseparable) degree of the field extension K̄(E)/I∗(K̄(E ′)). The
degree of I is deg I = degs Idegi I.

An isogeny is called separable if degi I = 1, inseparable otherwise. It is called
purely inseparable if degs = 1.
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7.2. Curves over C

Theorem 7.23 Let I be an isogeny, its kernel contains degs I elements.

Two curves are said to be isogenous if there is an isogeny between them;
ℓ-isogenous if it has degree ℓ.

One example of isogeny is the map [m], it is a separable isogeny of degree m2.
If K has characteristic p, then the map

φ : (x,y) 7→ (xp,yp) (7.28)

is a purely inseparable isogeny of degree p, called the Frobenius isogeny. If K is a
perfect field, any purely inseparable isogeny is a power of φ.

Theorem 7.24 Any isogeny can be factored into a product of a separable and a purely
inseparable isogeny.

One important property about isogenies is that they factor the multiplication
by m map.

Definition 7.25 (Dual isogeny) Let I : E→ E ′ be a degree m isogeny. There exists
an unique isogeny Î : E ′ → E, called the dual isogeny such that

I ◦ Î = [m]E and Î ◦ I = [m]E′ .

By endomorphism we mean an isogeny E→ E. The multiplication maps are
endomorphisms, thus End(E) contains a copy of Z. The main theorem about the
endomorphism ring End(E) is the following.

Theorem 7.26 The endomorphism ring is either isomorphic to Z, or to an order in a
quadratic imaginary field, or to an order in a quaternion algebra.

If char(K) 6= 0, we can exclude the case Z, because End(E) contains the
Frobenius isogeny. Furthermore, in the two cases

• char(K) = 0,

• K perfect and E ordinary,

End(E) cannot be an order in a quaternion algebra, thus it is commutative.

7.2 Curves over C

Elliptic curves defined over C have a very simple structure.

Definition 7.27 (Lattice) A lattice Λ ⊂ C is a discrete additive subgroup of C

that contains a basis of the R-vector space C. Two lattices Λ1,Λ2 are said to be
homothetic if Λ1 = αΛ2 for some α ∈ C∗.

As a group, a lattice is isomorphic to Z × Z. Two elements ω1,ω2 ∈ Λ such
that

Λ = ω1Z+ω2Z (7.29)

are called a basis of Λ. The quotient C/Λ is called a complex torus.

Definition 7.28 (Elliptic function) Let Λ be a lattice. An elliptic function on Λ is a
meromorphic function f on C such that

f(z+ω) = f(z) (7.30)

for any ω ∈ Λ. The set of elliptic functions on Λ is denoted by C(Λ).
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7. Elliptic curves and isogenies

An example of elliptic function is the Weierstrass ℘-function

℘(z;Λ) =
1
z2 +

∑

ω∈Λ\ {0}

1
(z−ω)2 −

1
ω2 . (7.31)

Theorem 7.29 Let Λ be a lattice, then C(Λ) = C(℘(z),℘ ′(z)).

For k > 1, we define the Eisenstein series G2k as

G2k(Λ) =
∑

ω∈Λ\ {0}

1
ω2 . (7.32)

Theorem 7.30 The Laurent series expansion of ℘(z) at 0 is

℘(z) =
1
z2 +

∞∑

k=1

(2k+ 1)G2k+2z
2k. (7.33)

At any z 6∈ Λ, the function ℘(z) satisfies the differential equation

℘ ′2 = 4℘− 60G4℘− 140G6. (7.34)

We set g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

Theorem 7.31 Let E be the curve

E : y2 = 4x3 − g2(Λ)x− g3(Λ). (7.35)

The map

φ : C/Λ→ E(C)

z 7→
{
O if z = 0,

(℘(z),℘ ′(z)) otherwise,

(7.36)

is an isomorphism of Riemann surfaces and a group homomorphism.

If Λ is a lattice, we denote by EΛ the elliptic curve corresponding to it as in
Eq. (7.35).

Theorem 7.32 Let Λ1,Λ2 be lattices and let a ∈ C∗ such that aΛ1 ⊂ Λ2. The map

φa : C/Λ1 → C/Λ2

z 7→ az
(7.37)

is holomorphic. The map EΛ1 → EΛ2 induced by φa is an isogeny.

The correspondences we just defined are actually equivalences.

Theorem 7.33 The category of elliptic curves over C with isogenies as maps is equivalent
to the category of lattices up to homothety with maps z 7→ az such that aΛ1 ⊂ Λ2.

Thus to any elliptic curve there is an unique lattice Λ associated up to homoth-
ety; the addition law on C/Λ is just addition in C, and an isogeny can be obtained
by an a ∈ C such that aΛ1 ⊂ Λ2.
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7.3. Curves over finite fields

7.3 Curves over finite fields

We saw previously that an elliptic curve defined over a field of characteristic p 6= 0
has an isogeny

φ : (x,y) 7→ (xp,yp) (7.38)

called Frobenius isogeny. If the curve E is defined over the field Fq with q = pd,
then d iterations of the Frobenius map give the isogeny

φq
def≡ φd : (x,y) 7→ (xq,yq). (7.39)

The map φq is an endomorphism of E and fixes the points of E(Fq); it is called
the Frobenius endomorphism of E. It plays an important role in determining the
cardinality of E(Fq).

Theorem 7.34 (Hasse) The minimal polynomial of φq in End(E) is of the form

φ2
q − cφq + q = 0 (7.40)

with |c| 6 2
√
q.

Since ϕq acts as the identity on E(Fq), this implies

#E(Fq) = q+ 1 − c with |c| 6 2
√
q. (7.41)

Theorem 7.35 Two elliptic curves E,E ′ defined over Fq are isogenous if and only if
#E(Fq) = #E(Fq).

7.4 Modular polynomials

Recall that in C any elliptic curve is isomorphic to a complex torus C/Λ. Since we
take lattices up to homothety, we can scale Λ so that (1, τ) is a basis for it. Then
C/Λ is ℓ-isogenous to C/(Z+ ℓτZ) via the map z 7→ ℓz.

For any prime ℓ, the minimal polynomial over C of the modular function j(ℓτ)
is called the ℓ-th modular polynomial, it is denoted by Φℓ(X, Y). It is a bivariate
polynomial with coefficients in Z, symmetric in X and Y, of degree ℓ+ 1 in X and
Y.

Its importance comes from the fact that the roots of the univariate polynomial
Φℓ(X, jE) are the j-invariants of the elliptic curves ℓ-isogenous to E. From the
knowledge of a pair of ℓ-isogenous j invariants, one can compute an isogeny using
the algorithms of the next chapter.

The modular polynomial has O(ℓ2) coefficients, and the coefficients themselves
have logarithmic height O(ℓ log ℓ). For this reason minimal polynomials associated
to other modular functions are often preferred to Φℓ [Atk88, ES10]; for example,
our implementations make use of Atkin’s modular polynomials Φ∗

ℓ [Atk88].
Algorithms to compute the modular polynomial and its variants are described

in [Mor95, BLS10, ES10].
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Chapter8

Computing isogenies over finite fields

Let E and E ′ be two elliptic curves defined over K, by finding an explicit isogeny
we mean to find a K-rational function from E(K̄) to E ′(K̄) such that the map it
defines is an isogeny.

In this chapter we are interested in finding explicit isogenies of ordinary elliptic
curves over finite fields. In what follows Fq will be a finite field of characteristic p,
and d the positive integer such that q = pd.

Parts of this chapter and of the following have been published in [DF10].
However, the complexity analysis we give in Proposition 8.6 benefits from recent
advances on the computation of modular polynomials [BLS10]; this in turn changes
the relative ranking of the algorithms of this chapter in terms of complexity. We
also present a new algorithm in Section 8.9.

8.1 Overview

The problem of computing an explicit degree ℓ isogeny between two given elliptic
curves over Fq was originally motivated by point counting methods based on
Schoof’s algorithm [Atk88, Elk98, Sch95]. A review of the most efficient algorithms
to solve this problem is given in [BMSS08], together with a new quasi-optimal
algorithm that we will review in Section 8.3.

All the algorithms of [BMSS08] only work when ℓ ≪ p. The case where p
is small compared to ℓ was first treated by Couveignes in [Cou94], making use
of formal groups. The complexity of his method is Õ(ℓ3 logq) operations in Fp

assuming p is constant, however it has an exponential complexity in logp.
Later, Lercier [Ler96] gave an algorithm specific to characteristic 2, that uses

some linear properties of the problem to build a linear system from whose solution
the isogeny can be deduced. Its complexity is conjectured to be Õ(ℓ3 logq)
operations in Fp, but it has a much better constant factor than [Cou94]. At
the moment we write, this is by many orders of magnitude the fastest algorithm
to solve practical instances of the problem when p = 2, thus being the de facto
standard for cryptographic use.

Couveignes, again, proposed an algorithm in [Cou96] working for any p, based
on the structure of the pk torsion of ordinary elliptic curves. Using improvements
from [Cou00, DFS09, DF10], this algorithm has a quadratic complexity in ℓ. We
review the original algorithm as well as its improved variants in Sections 8.5 to 8.9.

After the discovery of p-adic alternatives to Schoof’s algorithm [Sat00, FGH00],
interest in computing isogenies in small characteristic was lost for some time.
However, other cryptographic applications of isogenies soon appeared. The GHS
attack uses Weil descent to reduce the discrete logarithm problem (DLP) of an
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8.2. Vélu formulas

E
[m] //

I′

44E
I // E ′ φn

// E ′(pn)

Figure 8.1: Factorization of an isogeny. I ′ has kernel E[m]⊕ ker I.

elliptic curve over a binary field of composite degree to the DLP of an hyperelliptic
curve over a smaller field [GHS02b, GHS02a, Hes03]. A similar application is
the reduction of the DLP of some genus 3 hyperelliptic curves to the DLP of
genus 3 non-hyperelliptic curves [Smi09]. Isogeny graphs have been used to
construct hash functions [CLG09] and to compute Hilbert class polynomials and
modular polynomials [Sut10, BLS10]. New cryptographic protocols based on
isogenies have also been proposed: Rostovtsef and Stolbunov [RS06] construct a
Diffie-Hellman key exchange based on a DLP-like problem in a cycle of isogenous
curves; Teske [MMT01, Tes06] constructs a trapdoor cryptosystem by hiding a
GHS-vulnerable curve behind a random path of isogenies.

On the wave of the renewed interest for isogenies, two p-adic algorithms were
recently proposed by Joux and Lercier [JL06] and Lercier and Sirvent [LS08] to
compute isogenies in arbitrary characteristic. The former method has complexity
Õ(ℓ2(1 + ℓ/p) logq) operations in Fp, which makes it well adapted to the case
where p ∼ logq. The latter has complexity Õ(ℓ2 logq) operations in Fp, making it
the best algorithm to compute isogenies is small characteristics. We review the
second algorithm in Section 8.4.

8.2 Vélu formulas

Since an isogeny can be uniquely factored in the product of a separable and
a purely inseparable isogeny, we focus on the problem of computing explicit
separable isogenies. Furthermore one can factor out multiplication-by-m maps,
thus reducing the problem to compute explicit separable isogenies with cyclic
kernel (see figure 8.2).

In the rest of this chapter, unless otherwise stated, by ℓ-isogeny we mean a
separable isogeny with kernel isomorphic to Z/ℓZ.

For any finite subgroup G ⊂ E(K̄), Vélu formulas [Vél71] give in a canonical
way an elliptic curve Ē and an explicit separable isogeny I : E → Ē such that
ker I = G. The isogeny is K-rational if and only if the polynomial vanishing on
the abscissas of G belongs to K[X].

The isogeny computed by Vélu formulas is the map

I(P) =


x(P) +

∑

Q∈G\ {O}

x(P +Q) − x(Q),

y(P) +
∑

Q∈G\ {O}

y(P +Q) − y(Q)


 . (8.1)

Using the addition formulas it is straightforward to obtain the coefficients of the
curve Ē and the explicit isogeny. For simplicity, we do so only for the case p > 3
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8. Computing isogenies over finite fields

and E in the form

E : y2 = x3 + a2x
2 + a4x+ a6 (8.2)

(note that this is always possible by Proposition 7.17).
We set G∗ = G \ {O}. We denote by f, f ′ the two functions in K(E)

f(P) = x(P)3 + a2x(P)
2 + a4x(P) + a6,

f ′(P) = 3x(P)2 + 2a2x(P) + a4.
(8.3)

From the addition formulas, after some calculations (see Appendix C for an
automatic proof of this calculation), Eq. (8.1) is equivalent to

I(x,y) =


x+

∑

Q∈G∗

f ′(Q)

x− x(Q)
+

2f(Q)

(x− x(Q))2 ,

y+
∑

Q∈G∗

−
yf ′(Q)

(x− x(Q))2 −
4yf(Q)

(x− x(Q))3


 . (8.4)

Observe that if Q ∈ G∗ is a 2-torsion point, then f(Q) = 0; while if Q is not a
2-torsion point, x(Q) is counted twice in the sum of the previous equation. Then,
the denominator of Ix is

h(x) =
∏

Q∈G∗

(x− x(Q)). (8.5)

We set

t =
∑

Q∈G∗

f ′(Q), u =
∑

Q∈G∗

2f(Q), w = u+
∑

Q∈G∗

x(Q)f ′(Q),

g(x)

h(x)
= x+ t

h ′(x)

h(x)
− u

(
h ′(x)

h(x)

) ′
,

(8.6)

then Eq. (8.4) becomes

I(x,y) =
(
g(x)

h(x)
,y
(
g(x)

h(x)

) ′)
, (8.7)

and the isogenous curve has equation

Ē : y2 = x3 + a2x
2 + (a4 − 5t)x+ a6 − 4a2t− 7w. (8.8)

Thus, from the knowledge of h(x) one can deduce the isogeny and the isogenous
curve in O(M(deg I)) operations in K.

Remark 8.1. Traditionally, Eqs. (8.6) and (8.7) are used to deduce the isogeny and
the curve from h(x) and its first three power sums.

It is sometimes more convenient to use the reformulation given by Elkies [Elk98]

g(x)

h(x)
= x+

∑

Q∈G∗

x− x(Q) −
f ′(x)

x− x(Q)
+

2f(x)
(x− x(Q))2 (8.9)
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8.3. BMSS

E
Ī //

I

��?
?

?
?

?
?

?
? Ē

≃
��
E ′

Figure 8.2: Using Vélu formulas to compute an explicit isogeny.

(this equality is shown in Appendix C, too). This implies

g(x)

h(x)
= ℓx− p1 − f

′(x)
h ′(x)

h(x)
− 2f(x)

(
h ′(x)

h(x)

) ′
, (8.10)

where p1 is the first power sum of h.

Given two curves E and E ′, Vélu formulas reduce the problem of finding an
explicit isogeny between E and E ′ to that of finding the kernel of an isogeny
between them. Once the polynomial h(X) vanishing on ker I is found, the explicit
isogeny is computed composing Vélu formulas with the isomorphism between Ē
and E ′ as in figure 8.2.

8.3 BMSS

In this section we present the BMSS algorithm [BMSS08] to compute isogenies
of degree ℓ 6= p in characteristic 0 or p ≫ ℓ. It takes as input the integer ℓ and
two elliptic curves E and E ′ over a finite field Fq defined by normalized models (see
definitions below). It outputs the explicit isogeny using O(M(ℓ) log ℓ) operations
in Fq, or O(M(ℓ)) in case the sum of the abscissas of the kernel of the isogeny is
known.

Because of the assumption on the characteristic, we can assume p 6= 2 and the
curves to be in the form

E : y2 = x3 + a2x
2 + a4x+ a6,

E ′ : y2 = x3 + a ′
2x

2 + a ′
4x+ a

′
6.

(8.11)

Then, any isogeny I : E→ E ′ of odd degree is of the form

I(x,y) =
(
g(x)

h(x)
, cy

(
g(x)

h(x)

) ′)
, (8.12)

with c ∈ K̄, and g,h monic polynomials in K̄[X] (this is a consequence of Vélu
formulas).

Definition 8.2 (Normalized isogeny) An explicit isogeny given by Eq. (8.12) is
said to be normalized if c = 1.

Given two ℓ-isogenous curves E and E ′, Weierstrass equations for them such
that the explicit ℓ-isogeny I : E→ E ′ is normalized, are called ℓ-normalized models
for those elliptic curves.

It is noteworthy that Vélu formulas output normalized models and a normal-
ized isogeny. Normalized models naturally arise in point counting: in fact in
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8. Computing isogenies over finite fields

the Schoof-Elkies-Atkin algorithm [Atk88, Elk98, Sch95] one factors the modular
polynomial Φℓ to obtain j-invariants of curves ℓ-isogenous to E. As a conse-
quence of Vélu formulas, it is possible to obtain normalized models for such
curves from the knowledge of the partial derivatives of Φℓ. Details can be found
in [Sch95, Mor95, Elk98, Ler97].

Our goal is to compute the rational fraction g(x)
h(x)

. From the fact that I is
normalized and from Eq. (8.12) we deduce

(x3 + a2x
2 + a4x+ b)

(
g(x)

h(x)

) ′2
=

(
g(x)

h(x)

)3

+ a ′
2

(
g(x)

h(x)

)2

+ a ′
4
g(x)

h(x)
+ a ′

6. (8.13)

The key idea is to find a power series solution to this differential equation and
then deduce the rational fraction.

However, we do not know the initial condition at 0, and we cannot look for an
expansion at infinity either, because the degree of g is greater than the degree of h.
Instead we set

S(x) =

√
h(1/x2)

g(1/x2)
⇔ g(x)

h(x)
=

1
S(1/
√
x)2 , (8.14)

so that S(x) = x + O(x3) from the monicity of g and h. Now S(x) satisfies the
differential equation

(a6x
6 + a4x

4 + a2x
2 + 1)S ′2 = 1 + a ′

2S
2 + a ′

4S
4 + a ′

6S
6, (8.15)

hence we can use a Newton iteration to find a power series solution. In [BMSS08,
2.4], a generic iteration to solve Eq. (8.15) is used; here we present a more efficient
iteration due to Lercier and Sirvent [LS08].

Let

G =
1

1 + a2x2 + a4x4 + a6x6 , H = 1 + a ′
2t

2 + a ′
4t

4 + a ′
6t

6, (8.16)

Lercier and Sirvent give an algorithm to find a solution in K[[x]] of any equation
of the form

S ′2 = (H ◦ S)G, (8.17)

with G ∈ K[[x]] and H ∈ K[t].

Theorem 8.3 Let K be a field of characteristic 0 or p > 2µ. Let α,β,H,G be the inputs
to algorithm 8.1 such that G(0)H(α) = β2. Then Algorithm 8.1 computes a solution to

S ′2 = (H ◦ S)G, S(0) = α, S ′(0) = β (8.18)

modulo x2µ using O(M(2µ)) operations in K.

Proof. The complete proof is quite long and can be found in [LS08]; here we just
give a sketch of it.

Let t be a solution to Eq. (8.18) modulo xd+1 and let h be such that

S = t+ h mod x2d+1, (8.19)
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8.3. BMSS

Algorithm 8.1: Solve differential equation

Input : µ > 1, α ∈ K, β ∈ K∗, H ∈ K[t], G ∈ K[[x]].
Output : S ∈ K[[x]], solution to S ′2 = (H ◦ S)G modulo x2µ .

1: let U← 1/β+O(x2), J← 1 +O(x2), V ← 1 +O(x2);
2: let S← α+ βx+

G′(0)H(α)+G(0)G(′α)β
4β x2 +O(x3);

3: for all d ∈ [22, . . . , 2µ] do

4: S← S+ V

∫ (
(H ◦ S)G− S ′2

)
UJ/2 mod xd+1;

5: U← U(2 − S ′U) mod xd+1;
6: V ← (V + (H ◦ S)J(2 − VJ))/2 mod xd+1;
7: J← J(2 − VJ)) mod xd+1;
8: output S.

so that xd+1 divides h. Then x2d divides h ′2 and, by Eq. (8.18)

2t ′h ′ + t ′
2
= G(x)H(t+ h) mod x2d. (8.20)

Using the Taylor expansion of H at t, we get the linearized differential equation

2y ′h ′ + y ′2 = G(x)H(t) +G(x)H ′(t)h mod x2d (8.21)

with initial condition t(0) = 0. By Eq. (2.9), this equation has solution

h =
1
J

∫
(G(x)H(t) − t ′2)J

2t ′
d x, (8.22)

where J is

J = exp
(
−

∫
G(x)H ′(t)

2t ′
d x
)

. (8.23)

The key observation is that, in order to compute the above solution to precision
x2d+1, J must only be known to precision xd. But t is a solution of (8.18) modulo
xd+1, thus

G(x)H ′(t)

2t ′
=
H ′(t)t ′

2H(t)
mod xd, (8.24)

hence

J = exp
(
−

1
2

logH(t)
)

=
1√
H(t)

. (8.25)

Then, at each iteration, the algorithm computes the quantities

S, U = 1/S ′, V =
√
H ◦ S, J = 1/V , (8.26)

doubling the precision at each iteration. Since the only operations are integrals
and multiplications of power series, the i-th iteration costs O(M(2i)) operations in
K, thus the last iteration dominates the complexity.
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8. Computing isogenies over finite fields

Algorithm 8.2: BMSS

Input : ℓ > 1, ℓ-normalized models of E and E ′ .
Output : An isogeny I : E→ E ′ of degree ℓ.

1: Compute G(x) = 1/(1 + a2x
2 + a4x

4 + bx6) mod x4ℓ−1;
2: find S(x) mod x4ℓ−1 using Algorithm 8.1;
3: let T(x) =

∑2ℓ−1
i=0 s2i+1x

i;
4: compute R(x) = 1/T(x)2 mod x2ℓ−1;
5: compute g(x)

h(x)
by rational fraction reconstruction.

Then, the algorithm to compute the isogeny goes as follows. The power series
expansion of S is computed to precision 4ℓ, then we set

S(x) = xT(x2), R(x) =
1

T(x)2 , so that
g(x)

h(x)
= xR(1/x). (8.27)

Finally, the rational fraction is recovered by rational fraction reconstruction (see
Section 2.2.6); the overall complexity is dominated by this last step.

Remark 8.4. Alternatively, if the sum of the abscissas of the kernel

p1 =
∑

Q∈G∗

x(Q) (8.28)

is known, we can avoid the rational fraction reconstruction.
The idea is to recover the Newton sums p0, . . . ,pℓ−1 of h from g(x)

h(x)
. From

Eq. (8.10) we deduce

g(x)

h(x)
= x+

∑

i>1

hi

xi
,

hi = (2i+ 1)pi+1 + a(2i− 1)pi−1 + 2b(i− 1)pi−2 for i > 1;

(8.29)

thus, knowing p0 = ℓ− 1 and p1 is enough to compute all the Newton sums up to
pℓ−1 using O(ℓ) operations.

From the power sums, we can recover h(x) using Remark 5.12 in O(M(ℓ))

operations. Then, g(x) is obtained simply multiplying g(x)
h(x)

by h(x), again in M(ℓ)

operations.
Using this approach, we gain a logarithmic factor compared to the rational

fraction reconstruction; and the number of coefficients of S(x) to compute goes
down to 2ℓ. This is similar to the trade-off we had in Remark 5.23.

The knowledge of p1 (i.e. the coefficient of xℓ−2 in h) may seem a rather bizarre
requirement; however, in the Schoof-Elkies-Atkin algorithm this information is
obtained, together with the normalized model for E ′, from the derivatives of the
modular polynomial (see [Elk98, Mor95]), and this is why this algorithm has been
developed.

8.4 Lercier-Sirvent

The integral at step 4 requires divisions by all the integers in the interval [1, . . . , 2µ],
thus, when 2⌈log2(4ℓ−1)⌉ > p, BMSS encounters a division by 0. A natural idea is
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8.4. Lercier-Sirvent

Algorithm 8.3: Lercier-Sirvent

Input : ℓ > 1, E,E ′ ℓ-isogenous defined over Fq.
Output : An isogeny I : E→ E ′ of degree ℓ.

1: Take any lift Ē : y2 = x3 + āx+ b̄ of E in Qq;
2: Compute a root j̄ ′ of Φℓ(X, jĒ) in Qq by lifting the solution jE′ ;
3: Compute an ℓ-normalized model Ē ′′ : y2 = x3 + ā ′x+ b̄ ′ for j̄ ′;
4: Apply BMSS to Ē and Ē ′′ to obtain Ī : Ē→ Ē ′′;
5: Reduce Ē ′′ and Ī to E ′′ and I modulo p;
6: Apply an isomorphism E ′ ∼= E ′′ to recover I : E→ E ′.

to work in characteristic 0 by lifting the curves in the p-adics. However, lifting
the Weierstrass models of E and E ′, there is no guarantee of obtaining a pair of
ℓ-normalized models, thus BMSS cannot apply.

To circumvent this problem, Lercier and Sirvent [LS08] use Elkies formulas to
obtain normalized models in the p-adic, and then apply BMSS. The algorithm is
summarized below; it requires p > 5 and it makes computations in an unramified
extension of degree d of Qp, denoted by Qq.

Step 3 uses Elkies’ formulas [Elk98] to find the ℓ-normalized model of j̄ ′; these
formulas allow to compute a normalized model of the form y2 = x3 + ax + b

from the knowledge of ∂Φℓ/∂X and ∂Φℓ/∂Y, and the sum of the abscissas of the
kernel from the knowledge of ∂2Φℓ/∂X

2, ∂2Φℓ/∂X∂Y and ∂2Φℓ/∂Y
2, using O(ℓ2)

operations in the base field (Qq, in this case). Analogous formulas exist for other
types of modular polynomials, we address the interested reader to [Sch95, Mor95,
Elk98, Ler97]. Notice that this step fails when (jE, jE′) is a singular point of the
curve X0(ℓ); this condition is very rare for ordinary curves of large discriminant,
as pointed out in [Sch95, §7].

Computations in Qq must be approximated to a certain precision. Lercier and
Sirvent show the following fundamental property.

Proposition 8.5 If p > 5, on inputs ℓ, E, E ′, the previous algorithm computes the
correct answer using at most O(log2 ℓ/ logp) p-adic digits.

Building on this, we now analyze the complexity of the algorithm.

Proposition 8.6 Algorithm Lercier-Sirvent computes an ℓ-degree isogeny in

Õℓ,logq(ℓ
2 logq)

operations in Fp.

Proof. We do not take into account the complexity of building the field Qq. Lifting
E in Qq can be done for free by taking a trivial lift. The coefficients of the modular
polynomial Φℓ need only be computed modulo plog2 ℓ/ logp, this has a binary
complexity of O(ℓ2 log2 ℓ) using the techniques of [BLS10].

Step 2 can be done in Õ(ℓ logq) using Hensel lifting. Step 3 takes O(ℓ2)
operations in Qq, that is Õ(ℓ2 logq). BMSS takes O(M(ℓ) log ℓ) operations in Qq at
worse (better if the sum of the abscissas of the kernel of the isogeny is computed
by Elkies formulas), that is Õ(M(ℓ) logq). The rest of the computation is negligible.
Thus, the dominating step is 3.
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8. Computing isogenies over finite fields

Remark 8.7. Our presentation of the algorithm slightly deviates from the original
paper [LS08]. Since we want to compare it to Couveignes’ algorithm, we assume
that the elliptic curve E ′ isogenous to E is provided as an input, while in [LS08] it
is assumed that only E is known.

The consequence is that in the original version, before step 2 one has to factor
the univariate polynomial Φ(X, jE) in Fq to find an isogenous j-invariant. Lercier
and Sirvent, citing [LN96], estimate this cost to be Õ(ℓ log2 q). This contribution
must be added to the complexity announced in Proposition 8.6 if one wants to
work in the original setting.

Another important difference is that we rely on an algorithm to compute the
modular polynomial Φℓ in the ring Z/mZ[X, Y], recently appeared in [BLS10].
This permits to compute Φℓ in Qq truncated to the required precision using only
O(ℓ2 log2 ℓ) binary operations, instead of Õ(ℓ3).

Note. In the cases p = 2, 3, Elkies’ formulas yield a curve over Qq that reduces
badly in Fq. As a consequence, each iteration of algorithm 8.1 introduces some
additional divisions by p, and Proposition 8.5 fails to hold. While it is still possible
to apply Lercier-Sirvent in this case, its complexity gets much worse because of the
higher p-adic precision needed.

In [LS08], Lercier and Sirvent say:

“For p = 2 (or p = 3), Weierstrass models of the form y2 + xy =

x3 + a2x
2 + a6 (or y2 = x3 + a2x

2 + a6) must be considered. This
yields completely different equations. . . [The algorithm] can be easily
extended to these fields but for the sake of simplicity we prefer to omit
the details here.”

It is true that in the case p = 3 it is possible to obtain, via isomorphism,
normalized models for Ē and Ē ′′ of the form y2 = x3+a2x

2+a6 that reduce well in
Fq. Hence, algorithm 8.1 can still be applied to solve the differential equation, and
the isogeny can be computed using the same p-adic precision as in Proposition 8.5.

On the other hand, when p = 2, while it is still possible to obtain models of the
form y2 + xy = x3 + a2x

2 + a6 that reduce well in Fq, isogenies in such models
do not verify an equation as simple as Eq. (8.13). We think that in this case the
techniques known to solve differential equations are not enough to find a solution
to this problem.

8.5 Couveignes’ algorithm

In this section we describe Couveignes’ algorithm to compute isogenies between
ordinary elliptic curves in arbitrary characteristic, as it was originally presented
in [Cou96]. In the next sections we will discuss more efficient variants of this
algorithm; to distinguish between the variants, we call C2 this original version (it
is to be understood that C1 would be the code-name of the other algorithm by
Couveignes, appeared in [Cou94], that we will not present in this document).

C2 takes as input two elliptic curves E,E ′ and an integer ℓ prime to p, and it
returns, if it exists, an Fq-rational isogeny of degree ℓ between E and E ′. It only
works in odd characteristic.
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8.5.1 The original algorithm

Suppose there exists an Fq-rational isogeny I : E→ E ′ of degree ℓ. Since ℓ is prime
to p one has I(E[pk]) = E ′[pk] for any k.

Recall that E[pk] and E ′[pk] are cyclic groups. C2 iteratively computes genera-
tors Pk,P ′

k of E[pk] and E ′[pk] respectively. Now C2 makes the guess I(Pk) = P
′
k;

then, if I is given by rational fractions as in (8.7),

g
(
x([i]Pk)

)

h
(
x([i]Pk)

) = x([i]P ′
k) for i ∈ Z/pkZ, (8.30)

and Vélu formulas imply that

degg = degh+ 1 = ℓ. (8.31)

Using (8.30) one can compute the rational fraction g(X)

h(X)
through Cauchy in-

terpolation over the points of E[pk] for k large enough. C2 takes pk > 4ℓ + 1,
interpolates the rational fraction and then checks that it corresponds to the re-
striction of an isogeny to the x-axis. If this is the case, the whole isogeny is
computed through Vélu formulas and the algorithm terminates. Otherwise the
guess I(Pk) = P

′
k was wrong, then C2 computes a new generator for E ′[pk] and

starts over again.
We now go through the details of the algorithm.

The p-torsion. The computation of the p-torsion points follows from the work of
Gunji [Gun76]. Here we suppose p 6= 2.

Definition 8.8 Let E have equation y2 = f(x). The Hasse invariant of E, denoted
by HE, is the coefficient of Xp−1 in f(X)

p−1
2 .

Gunji shows the following proposition.

Proposition 8.9 Let c1, . . . , cp−1 be the roots of Xp−1 −HE in its splitting field. The
abscissas of the abscissas of the p-torsion points of E are given by

Xp
i =

∆2
0 − a6c

2
i∆

2
1

4c2
i

,

where ∆0 and ∆1 are the determinants of the matrices shown in Figure 8.3.
with r = p−1

2 , αν = ν(ν− 1)a6, βν = ν(ν− 1
2 )a4, γν = ν2a2 and δν = ν(ν+ 1

2 )

(∆1 is set to 1 when r = 1).

In what follows we let c be any (p− 1)-th root of HE. Then Gunji’s formulas
imply that the p-torsion points are defined in Fq[c] and their abscissas are defined
in Fq[c

2].

The pk-torsion. pk-torsion points are iteratively computed via p-descent. The
basic idea is to split the multiplication map as [p] = φ ◦ V and invert each of the
components. The purely inseparable isogeny φ is just a Frobenius map and the
separable isogeny V can be computed by Vélu formulas once the p-torsion points
are known. Although this is reasonably efficient, pulling V back may involve
factoring polynomials of degree p in some extension field.
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∆0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 α2 0 0 . . . 0

δ1 γ2 − c
2 β3 α4

. . .
...

0 δ2 γ3 − c
2 β4

. . . 0
...

. . . δ3
. . .

. . . αr

...
. . .

. . .
. . . βr

0 . . . . . . 0 δr−1 γr − c
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ2 − c
2 β3 α4 . . . 0

δ2 γ3 − c
2 β4

. . .
...

0 δ3
. . .

. . . αr

...
. . .

. . .
. . . βr

0 . . . 0 δr−1 γr − c
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(8.32)

Figure 8.3: The determinants ∆0 and ∆1 appearing in Gunji’s formulas.

A finer way to do the p-descent, as suggested in the original paper [Cou96],
is to use the work of Voloch [Vol90]. Suppose p 6= 2, let E and Ẽ have equations
respectively

y2 = f(x) = x3 + a2x
2 + a4x+ a6 ,

ỹ2 = f̃(x̃) = x̃3 + p
√
a2x̃

2 + p
√
a4x̃+ p

√
a6 ,

set

f̃(X)
p−1

2 = α(X) +H
Ẽ
Xp−1 + Xpβ(X) (8.33)

with degα < p− 1 and H
Ẽ

the Hasse invariant of Ẽ. Voloch shows the following
proposition.

Proposition 8.10 Let c̃ = p−1
√
H

Ẽ
, the cover of Ẽ defined by

C : z̃p − z̃ =
ỹβ(x̃)

c̃p
(8.34)

is an étale cover of degree p and is isomorphic to E over Fq[c̃]; the isomorphism is given
by






(x̃, ỹ) = V(x,y)

z̃ = −
y

c̃p

p−1∑

i=1

1
x− x([i]P1)

(8.35)

where P1 is a primitive p-torsion point of E.

The descent is then performed as follows: starting from a point P on E, first
pull it back along φ, then take one of its pre-images in C by solving equation (8.34),
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Ẽ
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Figure 8.4: Two ways of doing the p-descent: standard on the left and via a degree
p cover on the right

finally use equation (8.35) to land on a point P ′ in E. The proposition guarantees
that [p]P ′ = P. The descent is pictured in figure 8.4.

The reason why this is more efficient than a standard descent is the shape
of equation (8.34): it is an Artin-Schreier equation and it can be solved by the
techniques of Chapter 6 (or by linear algebra, as was suggested in [Cou96]). Once
a solution z̃ to (8.34) is known, solving in x and y the bivariate polynomial system
(8.35) takes just a GCD computation (explicit formulas were given by Lercier
in [Ler97, §6.2], we give some slightly improved ones in Section 9.1). Compare
this with a generic factoring algorithm needed by standard descent.

In this section we assume that the Artin-Schreier equations are solved using
linear algebra. The impact of Chapter 6 over Couveignes’ algorithm is discussed
in the next section.

Cauchy interpolation. Interpolation reconstructs a polynomial from the values it
takes on some points; Cauchy interpolation reconstructs a rational fraction. As
we saw in Section 2.2.6, the Cauchy interpolation algorithm is divided in two
phases: first find the polynomial P interpolating the evaluation points, then use
the Euclidean algorithm to find a rational fraction congruent to P modulo the
polynomial vanishing on the points.

Cauchy interpolation needs n + 1 points to reconstruct a degree (k,n − k)

rational fraction. This, together with (8.31), justifies the choice of k such that
pk > 4ℓ + 1. Some of our variants of C2 will interpolate only on the primitive
pk-torsion points, thus requiring the slightly larger bound ϕ(pk) > 4ℓ+ 1. This is
not very important to our asymptotical analysis since in both cases pk ∈ O(ℓ).

Recognising the isogeny. Once the rational fraction g(X)

h(X)
has been computed, one

has to verify that it is indeed an isogeny. The first test is to check that the degrees of
g and h match equation (8.31): if this is not the case, the equation can be discarded
right away and the algorithm can go on with the next trial. Next, one can check
that h is indeed the square of a polynomial (or, if ℓ is even, the product of one
factor of the 2-division polynomial and a square polynomial). These two tests are
usually enough to detect an isogeny. In case a higher confidence is needed, one
can evaluate the rational fraction on some random points of E and check that it
is indeed a group morphism. Finally, if a deterministic proof is needed, one can
compute the ℓ-division polynomial modulo h and verify that it is equal to 0.
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8. Computing isogenies over finite fields

8.5.2 The case p = 2

The algorithm, as we presented it, only works when p 6= 2, it is however an easy
matter to generalise it. The only phase that does not work is the computation of
the pk-torsion points. For curves in the simplified Weierstrass form (7.25) the only
2-torsion point is (0,

√
b).

Voloch formulas are hard to adapt, nevertheless a 2-descent on the Kummer
variety of E can easily be performed since the doubling formula reads

x([2]P) =
b

x(P)2 + x(P)2 = φ

(√
b+ x(P)2

x(P)

)
= φ ◦ V . (8.36)

Given point xP on KE, a pull-back along φ gives a point x̃P on K
Ẽ

. Then pulling V
back amounts to solve

x2 + x̃Px =
√
b (8.37)

and this can be turned in an Artin-Schreier equation through the change of
variables x→ x ′x̃P.

From the descent on the Kummer varieties one could deduce a full 2-descent
on the curves by solving a quadratic equation at each step in order recover the y
coordinate, but this would be too expensive. Fortunately, the y coordinates are
not needed by the subsequent steps of the algorithm, thus one may simply ignore
them. Observe in fact that even if KE does not have a group law, the restriction of
scalar multiplication is well defined and can be computed through Montgomery
formulas as described in Remark 7.8. This is enough to compute all the abscissas
of the points in E[pk] once a generator is known.

8.5.3 Complexity analysis

Analyzing the complexity of C2 is a delicate matter since the algorithm relies
on some black-box computer algebra algorithms in order to deal with finite
extensions of Fq. The choice of the actual algorithms may strongly influence the
overall complexity of C2. In this section we will only give some lower bounds
on the complexity of C2, since a much more accurate complexity analysis will be
carried out in Section 8.6.

p-Torsion. Applying Gunji formulas first requires to find c and c ′, (p − 1)-th
roots of HE and HE′ , and build the field extension Fq[c] = Fq[c

′]. Independently
of the actual algorithm used, observe that in the worst case Fq[c] is a degree
p− 1 extension of Fq, thus simply representing one of its elements requires Θ(pd)
elements of Fp.

Subsequently, the main cost in Gunji’s formulas is the computation of the
determinant of a p−1

2 ×
p−1

2 quadri-diagonal matrix (see [Gun76]). This takes Θ(p2)

operations in Fq[c] by Gauss elimination, that is no less than Ω(p3d) operations in
Fp.

pk-Torsion. During the p-descent, factoring of equations (8.34) or (8.37) may in-
troduce some field extensions over Fq[c]. Recall that an Artin-Schreier polynomial
is either irreducible or totally split (see Proposition 6.7), so at each step of the
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p-descent we either stay in the same field or we take a degree p extension. This
shows that in the worst case we have to take an extension of degree pk−1 over Fq[c].
The following proposition, which is a generalization of [Ler97, Proposition 26],
states precisely how likely this case is.

Proposition 8.11 Let E be an elliptic curve over Fq, we denote by Ui the smallest
field extension of Fq such that E[pi] ⊂ E(Ui). For any i > 1, either [Ui+1 : Ui] = p or
Ui+1 = Ui = · · · = U1.

Before proving the proposition, we shall state a lemma. Its proof is elementary
and can be found in [Ler97, §6.1].

Lemma 8.12 Let p be a prime and let c be prime to p. For any k > 1, let ordk(c) be the
order of c in Z/pkZ. Then ordk+1(c) = ordk(c) implies ordk(c) = ordk−1(c).

Proof of Propositon 8.11. Observe that the action of the Frobenius φ on E[p] is just
multiplication by the trace t, in fact the equation

φ2 − [t mod p] ◦ φ+ [q mod p] = 0

has two solutions, namely [t mod p] and [0 mod p], but the second can be dis-
carded since it would imply that φ has non-trivial kernel. By lifting this solution,
one sees that the action of φ on the Tate module Tp(E) is equal to multiplication
by some τ ∈ Zp.

Let G be the absolute Galois group of Fq, there is a well known action of G on
Tp(E). Since G is generated by the Frobenius automorphism of Fq, the restriction
of this action to E[pk] is equal to the action (via multiplication) of the subgroup of
(Z/pkZ)∗ generated by τk = τ mod pk. Hence [Uk : Fq] = ord(τk).

Then, for any k > 1, Lemma 8.12 applied to τk+1 = τ mod pk+1 shows that
ord(τk+1) = ord(τk) implies ord(τk) = ord(τk−1) and this concludes the proof.

Thus for any elliptic curve there is an i0 such that [Ui : U1] = pi−i0 for any
i > i0. This shows that the worst and the average case coincide since for any
fixed curve [Uk : U1] ∈ Θ(pk) asymptotically. In this situation, one needs Θ(pkd)
elements of Fp to store an element of Uk.

Now the last iteration of the p-descent needs to solve an Artin-Schreier equation
in Uk. To do this C2 precomputes the matrix of the Fq-linear application (xq − x) :

Uk → Uk and its inverse, plus the matrix of the Fp-linear application (xp − x) :

Fq → Fq and its inverse. The former is the most expensive one and takes Θ(pωk)

operations in Fq, that is Ω(pωkd) = Ω(ℓωd) operations in Fp, plus a storage of
Θ(ℓ2d) elements of Fp. Observe that this precomputation may be used to compute
any other isogeny with domain E.

After the precomputation has been done, C2 successively applies the two
inverse matrices; details can be found in [Cou96, §2.4]. This costs at least Ω(ℓ2d).

Interpolation. The most expensive part of Cauchy interpolation is the polynomial
interpolation phase. In fact, simply representing a polynomial of degree pk − 1 in
Uk[X] takes Θ(p2kd) elements of Fp, thus at least Ω(ℓ2d) operations are needed to
interpolate unless special care is taken1. We will give more details on interpolation
in Section 8.7.

1This contribution due to arithmetics in Uk had been underestimated in the complexity analysis
of [Cou96], where an estimate of Ω(ℓd log ℓ) operations was given.
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Recognising the isogeny. The cost of testing for squareness of the denominator
and of the other probabilistic tests is negligible compared to the rest of the algo-
rithm. The cost of computing the ℓ-division polynomial modulo h is O(M(ℓ) log ℓ)
operations in Fq, thus, again, negligible.

Nevertheless it is important to realize that, on average, half of the ϕ(pk)
mappings from E[pk] to E ′[pk] must be tried before finding the isogeny, for only
one of these mappings corresponds to it. This implies that the Cauchy interpolation
step must be repeated an average of Θ(pk) times, thus contributing a Ω(ℓ3d) to
the total complexity.

Summing up all the contributions one ends up with the following lower bound

Ω(ℓ3d+ p3d) (8.38)

plus a precomputation step whose cost is negligible compared to this one and
a space requirement of Θ(ℓ2d) elements. In the next sections we will see how to
make all these costs drop.

8.5.4 The case (p, ℓ) 6= 1

If we are interested in finding a separable isogeny whose degree is not prime to
p, the best way is to compute the curve Ẽ such that E = Ẽ(p), then compute an
isogeny of degree ℓ/p between Ẽ and E ′ and finally compose it with the separable
p-isogeny V from E to Ẽ.

Observe however that C2 can be easily adapted to directly compute such an
isogeny. In fact let v = vp(ℓ), then I(E[pk]) = E ′[pk−v]. All one needs to do in
this case is to modify the Cauchy interpolation so that it interpolates the rational
function that sends a generator of E[pk] over a generator of E ′[pk−v] and the
other points accordingly. The maximum number of trials to do before finding the
isogeny is ϕ(pk−v), thus the overall complexity is

Ω

(
ℓ3

pv
d+ p3d

)
. (8.39)

Although this method is less efficient than the first one, it will come handy in
Section 8.9.

8.6 The algorithm C2-AS

One of the most expensive steps of C2 is the resolution of an Artin-Schreier
equation in an extension field Ui. We call C2-AS the variant of Couveignes’
algorithm that uses the fast Artin-Schreier towers of Chapter 6; in this section we
analyze the complexity of C2-AS

8.6.1 Complexity analysis

We borrow the complexity notations L(i) (Theorem 6.23) and PT(i) (Theorem 6.30)
from Chapter 6.

p-torsion. The construction of Fq[c] may be done in many ways. The only
requirements of Theorem 6.9
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1. that its elements have a representation as elements of Fp[X]/Q1(X) for some
irreducible polynomial Q1,

2. that either (d,p) = 1 or degQ ′
1 + 2 = degQ1.

Selecting a random polynomial Q1 and testing for irreducibility is usually enough
to meet these conditions, as we saw in Remark 6.20. This costs

O
(
pdM(pd) log(pd) log(p2d)

)

according to [vzGG99, Th. 14.42].
Now we need to compute the embedding Fq ⊂ Fq[c]. Supposing Fq is repre-

sented as Fp[X]/Q0(X), we factor Q0 in Fq[c], which costs O
(
pdM(pd2) logd logp

)

using [vzGG99, Coro. 14.16]. Then the most naive technique to express the embed-
ding is linear algebra. This requires the computation of pd elements of Fq[c] at the
expense of Θ

(
pdM(pd)

)
operations in Fp, then the inversion of the matrix holding

such elements, at a cost of Θ
(
(pd)ω

)
operations. This is certainly not optimal, yet

this phase will have negligible cost compared to the rest of the algorithm.
Now we can compute c and c ′ by factoring the polynomials Yp−1 − HE and

Yp−1 −HE′ in Fp[X]/Q1(X). This costs

O
(
(pC(pd) + C(p)M(pd) + M(p)M(pd) logp)(log2 p+ logd)

)

using [KS97, Section 3].
Finally, computing the determinants needed by Gunji’s formulas takes Θ(p2)

multiplications in Fq[c], that is Θ
(
p2M(pd)

)
.

Letting out logarithmic factors, the overall cost of this phase is

Õ
(
p2d3 + pC(pd) + C(p)pd+ (pd)ω

)
(8.40)

pk-torsion. Application of Voloch formulas requires at each of the levels U2, . . . ,Uk

1. to solve equation (8.34) by factoring an Artin-Schreier polynomial,

2. to solve the system (8.35).

If we assume the worst case [U2 : U1] = p, according to Theorem 6.32, at each level
i the first step costs

O
(
(pd)ωi+ PT(i− 1) + M(pi+1d) logp

)

while the second takes the GCD of two degree p polynomials in Ui[X] for each i
(see Section 9.1), at a cost of O

(
M(pi+1d) logp

)
operations using a fast Euclidean

algorithm.
Summing up over i, the total cost of this phase up to logarithmic factors is

Õp,d,log ℓ

(
(pd)ω log2

p ℓ+ p
2ℓd log4

p ℓ+
ℓ

p
C(pd)

)
. (8.41)

Also notice that there is no need to store a pk−1d × pk−1d matrix to solve the
Artin-Schreier equation, thus the space requirements are not anymore quadratic
in ℓ.
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Interpolation. The interpolation phase does not change in a significant way: one
needs first to interpolate a degree pk − 1 polynomial with coefficients in Uk, then
use Push-down to obtain the corresponding polynomial in Fq[X] and finally do a
rational fraction reconstruction.

The first step costs O
(
M(p2kd) logpk

)
using fast techniques as in Section 2.2.5,

then converting to Fq[c][X] takes O
(
pkL(k − 1)

)
and further converting to Fq[X]

takes Θ
(
(pd)2

)
by linear algebra. The rational function reconstruction then takes

O
(
M(pkd) logpk

)
.

The overall complexity of one interpolation is then

O
(
M(ℓ2d) logp ℓ+ ℓL(k− 1) + (pd)2) . (8.42)

Remember that this step has to be repeated an average number of ϕ(pk)/4 times,
thus the dependency of C2-AS in ℓ is still cubic.

8.7 The algorithm C2-AS-FI

The most expensive step of C2-AS is the polynomial interpolation step which is
part of the Cauchy interpolation. If we use a standard interpolation algorithm, its
input consists in a list of Θ(pk) pairs

(
P, I(P)

)
, with P having coordinates in Uk,

thus a lower bound for any such algorithm is Ω(p2kd). Notice however that the
output is a polynomial of degree Θ(pk) in Fq[X], hence, if supplied with a shorter
input, an ad hoc algorithm could reach the bound Ω(pkd).

In this section we give an algorithm that reaches this bound up to some
logarithmic factors. It realizes the polynomial interpolation on the primitive points
of E[pk], thus its output is a degree ϕ(pk)/2 − 1 polynomial in Fq[X]. Using the
Chinese remainder theorem it is straightforward to generalize this to an algorithm,
having the same asymptotic complexity, that realizes the polynomial interpolation
on all the points of E[pk]. We call C2-AS-FI (FI for Fast Interpolation) the variant of
C2-AS resulting from applying this new algorithm.

8.7.1 The algorithm

Let P ∈ E[pk] and P ′ ∈ E ′[pk] be primitive pk torsion points. We want to compute
the polynomial A ∈ Fq[X] such that

A
(
x
(
[n]P

))
= x
(
[n]P ′) for any n ∈

(
Z/pkZ

)∗
. (8.43)

As we saw in Section 2.2.5, such a polynomial is only defined modulo the polyno-
mial vanishing on the interpolation points

T(X) =
∏

n∈(Z/pkZ)
∗

(
X− x([n]P)

)
. (8.44)

Thus we look for the canonical representative of A in Fq[X]/T(X).
We start by applying the Chinese remainder theorem to Fq[X]/T(X): let

T =
∏

T (j) (8.45)

be the factorization of T over U0, and set

A(j) def≡ A mod T (j) . (8.46)
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Define

Kj
def≡ Fq[X]/T

(j)(X), (8.47)

then Kj is a field and A(j) is the projection of A in Kj.
It was already pointed out in [Cou96, §2.3] that, knowing the factorization of T

over U0 and all the A(j)’s, we can recover A using the Chinese remainder algorithm
of [vzGG99, §10] (see also Section 1.8). Thus we will focus on computing, say,
A(0).

Choose any root ζ of T (0), without loss of generality we can take ζ = x(P), then

B = {1, ζ, . . . , ζd−1} (8.48)

is an Fq-basis of K0. Fix the Fq-linear embedding of finite fields

K0
� � ι // Uk (8.49)

given by ι(ζ) = x(P), by linearity it is evident that

ι
(
A(0)(ζ)

)
= A(0) (ι(ζ)) = x

(
P ′). (8.50)

Thus ι−1
(
x(P ′)

)
is in K0 and the coefficients of A0 are its coordinates in the

basis B. In conclusion, computing A0 is equivalent to find a rational univariate
representation of x(P ′) with respect to x(P).

Unfortunately, applying algorithm RUR is not optimal: the bottleneck is the
power projection projζ appearing in step 1. We have seen in Section 5.6 that the
dual problem to power projection is polynomial evaluation, thus in particular

proj∗ζ = evζ : Fq[X]→ Kj,

g 7→ g(ζ);
(8.51)

so that any algorithm to evaluate polynomials at ζ yields a power projection
algorithm having the same complexity, and vice-versa. But none of the algorithms
of Chapter 6 allows to evaluate polynomials in Fq[X] at a generic point of Uk,
better than a Horner rule.

We shall thus give an alternative algorithm to compute the minimal polynomial
T0 of x(P). It will be similar to a subproduct tree, but it will exploit the structure
of the Artin-Schreier tower. This is similar to the way we solved Artin-Schreier
equations in Section 6.6.

Interpolation in towers of extensions. We set U0 = Fq. The algorithm we give here
can be applied in any tower of cyclic extensions, provided the action of the Galois
groups can be computed. However we will present it only for our specific tower
(U0, . . . ,Uk), to avoid adding unnecessary notation.

Consider the following problem: given elements x,y ∈ Uk such that x generates
Uk over Fq, find a polynomial A ∈ Fq[X] such that

A(x) = y. (8.52)

Let T be the minimal polynomial of x over Fq, then, as above, the class of A in
Fq[X]/T(X) is uniquely determined.
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Figure 8.5: The subproduct tree of T , in the case of a tower of quadratic extensions.
Any generator of Gal(U3/U0) can be taken as σ. We gray out and circle the nodes
that the algorithm does not compute.

Let A be a polynomial satisfying (8.52) it is clear that A(σ(x)) = σ(y) for any
σ ∈ Gal(Uk/Fq). Conversely, the polynomial interpolating σ(x) over σ(y) for any
σ is invariant under Gal(Uk/Fq), thus it has coefficients in Fq. Hence we can
construct A by interpolation.

A fast interpolation algorithm would compute T via a binary subproduct tree,
and then interpolate A recursively applying the Chinese remainder theorem along
the branches of the tree. However this is too expensive. We can do better by using
a non-binary subproduct tree on which the tower of Galois groups associated to
(U0, . . . ,Uk) acts.

First we need to compute T . Let Ti be the minimal polynomial of x over Ui, we
compute it recursively as

Tk = (X− x), (8.53)

Ti−1 =
∏

σ∈Gal(Ui/Ui−1)

Tσi . (8.54)

Then T = T0. Observe that, rather than computing a whole subproduct tree of T ,
we have only computed one branching as shown in figure 8.5.

Now the we have something like a subproduct tree for T , we proceed as for
interpolation. We compute recursively the polynomials in Ai ∈ Ui[X] such that
Ai(x) = y. We start from Ak = y. Suppose Ai+1 is known, then we use the
Chinese remainder theorem to obtain the polynomial P ∈ Ui+1[X]/Ti(X) such that

P ≡ Aσ
i+1 mod Tσi+1 for any σ ∈ Gal(Ui+1/Ui). (8.55)

It is clear that P is invariant under Gal(Ui+1/Ui), hence P ∈ Ui[X]/Ti(X) and by
(8.55) it is evident that P(x) = Ai+1(x) = y, thus P = Ai.

We have thus succeeded in interpolating A = A0, without having to build the
whole subproduct tree. A similar algorithm was applied by Enge and Morain to
the solution of equations by radicals [EM03], although they did not recognize the
application to polynomial interpolation.

Remark 8.13. Observe that, once the polynomials Ti for 0 6 i 6 k are known, we
have an efficient algorithm to evaluate polynomials in g ∈ U0[X] at the point x:
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8.7. The algorithm C2-AS-FI

simply compute

g0 = g mod T0,

g1 = g0 mod T1,
...

gk = gk−1 mod Tk,

(8.56)

then gk = g(x). Transposing this algorithm gives a power projection algorithm
that can be used in RUR. By the discussion in Section 2.2.8, the transpose of this
algorithm amounts to iteratively extend a linearly recurring sequence. However,
we do not use this method because it would not improve the overall complexity,
as we shall show in the next section.

Back to our problem. It is easy to realize that, on inputs x(P) and x(P ′), the
algorithm we just gave computes A(0). In fact, T (0) is the minimal polynomial
of x(P) over Fq and A(0) is the unique polynomial in Fq[X]/T

(0)(X) that satisfies
(8.52).

This can be viewed as decomposing the morphism ι of Eq. (8.49) as the chain
of Fq-linear isomorphisms

U0[X0]/T0(X0)
� � ι0 // · · · � � ιk−1 // Uk[Xk]/Tk(Xk)

� � ιk // Uk (8.57)

defined by ιk ◦ · · · ◦ ιi(Xi) = x(P) for any i, and then finding the preimage of x(P ′)
by inverting them one by one.

Then, the Chinese remainder theorem we applied in (8.55) amounts to invert ιi
by descending the lower path in the diagram below

Ui[Xi]/Ti(Xi)
� � ιi //

� _

ε

��

Ui+1[Xi+1]/Ti+1(Xi+1)

Ui+1[Y]/Ti(Y)
� � γ // //

⊕
σ

Ui+1[Yj]/(Ti+1)
σ
(Yj)

π

OOOO
(8.58)

where ε is the canonical injection extending Ui ⊂ Ui+1, γ is the Chinese remainder
isomorphism and π is projection onto the first coordinate.

Some care must be taken when x(P) does not generate Uk, but only a subfield
of index 2. This happens when c 6∈ Fq[c

2], and in this case ι0 is not a field
isomorphism. It is not to difficult, however, to handle this case, as one only needs
to take a subgroup of index 2 of Gal(U1/U0), instead of the whole group, in the
interpolation algorithm given above.

8.7.2 Complexity analysis

In practice, the algorithms to compute T (0) and A(0) are modified versions of the
subproduct tree and the interpolation (see Section 2.2.5).

We set some notation. Let i0 be the largest index such that Ui0 = U1 and let
p−1

2r = [Fq[c
2] : Fq]. Note that all the T (j)’s have degree ϕ(pk−i0+1)

2r .
We first compute the truncated subproduct tree as in Figure 8.5. The product of

Eq. (8.54) is computed via a classic binary subproduct tree to keep the complexity
low.
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8. Computing isogenies over finite fields

Algorithm 8.4: Truncated subproduct tree

Input : x(P) ∈ Uk.
Output : The subproduct tree.

1: Let Tk = (X− x(P));
2: for i = k− 1 to 0 do

3: for all σ ∈ Gal(Ui+1/Ui) do

4: compute Tσi+1 using IterFrobenius;
5: Ti ←

∏
σ T

σ
i+1 via a binary subproduct tree.

6: convert Ti into an element of Ui[X] using Push-down.

Algorithm 8.5: Truncated fast interpolation

Input : Ti ∈ Ui[X] for 0 6 i 6 k, x(P ′) ∈ Uk, T ′
0 (x(P)) ∈ Uk.

Output : A0 ∈ U0[X].
1: Pk ← x(P ′)/T ′

0 (x(P));
2: for i = k− 1 to 0 do

3: for all σ ∈ Gal(Ui+1/Ui) do

4: compute Pσi+1 using IterFrobenius;
5: convert Ti into an element of Ui+1[X] using Lift-up.
6: Pi ←

∑
σ P

σ
i+1Ti/T

σ
i+1 using the binary subproduct tree computed previ-

ously;
7: convert Pi into an element of Ui[X] using Push-down.
8: return P0.

Recall that we denote by L(i) the cost of performing one lift-up or push-down
at the i-th level (see Theorem 6.23). For any i > i0, step 4 of is repeated p times,
each iteration taking

O
(
pk−iL(i− i0)

)
⊂ O

(
L(k− i0)

)

by Theorem 6.27. Step 5 takes O
(
M(pk−i0+1d/r) logp

)
using Algorithm 2.3 and

step 6 takes

O
(
pk−i+1L(i− i0)

)
⊂ O

(
pL(k− i0)

)
.

For any 1 6 i < i0, there is nothing to do because Ui+1 = Ui. Finally, when
i = 0 and U1 6= Fq the algorithm is identical but step 4 must be computed through
a generic Frobenius algorithm (using the algorithm of Section 2.2.4, for example)
and step 6 must use the implementation of Fq[c] to make the conversion (for
example, linear algebra). In this case step 4 costs Θ

(
pk−i0

r
C(pd) logd

)
by Eq. (2.19)

and step 6 costs Θ
(
pk−i0(pd)2

)
.

Now, we have T0 at the root of the tree. We compute its derivative T ′
0 and

we evaluate it at x(P) by reducing modulo T1, . . . , Tk. This costs strictly less than
computing the subproduct tree. We finally do the interpolation of A0.

Step 1 is just one inversion in Uk, that is O(M(pk−i0d/r) logpk−i0d/r). Steps 4
and 7 are identical to steps 4 and 6 of the subproduct tree and step 5 is also
absorbed. Finally, step 6 has the same complexity as step 5 of the subproduct tree,
using the Algorithm 2.5.
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8.8. The algorithm C2-AS-FI-MC

In conclusion, the total cost of computing the subproduct tree and the interpo-
lation is

O

((
k− i0

)
pL(k− i0) + M

(
pk−i0+1d

r

)
log

pk−i0d

r
+

pk−i0

r

(
C(pd) logd+ r(pd)2)

)
.

The complete interpolation. We compute all the A(j)’s using this algorithm; there are
pi0−1r of them. We then recombine them through a Chinese remainder algorithm
at a cost of O

(
M(pkd) logpkd

)
. The total cost of the whole interpolation phase is

then

O
((
k− i0

)
pL(k) + pk−1C(pd) logd+ pk−1r(pd)2 + M(pkd) logpkd

)
,

that is

O

(
pL(k) log

(
ℓ

pi0

)
+ M(ℓd) log ℓd+

ℓ

p
C(pd) logd+ ℓ(pd)2

)
. (8.59)

Alternatively, once A(0) is known, one could compute the other A(j)’s using
modular composition with the multiplication maps of E and E ′ as suggested
in [Cou96]. However this approach does not give a better asymptotic complexity
because in the worst case A(0) = A. From a practical point of view, though, Brent’s
and Kung’s algorithm for modular composition [BK78], despite having a worse
asymptotic complexity, could perform faster for some set of parameters. We will
discuss this matter in Section 8.8.

If more than ϕ(pk)/2 points are needed, but less than p−1
2 , one can use the

previous algorithm to interpolate over the primitive pi-torsion points for each
i = 1, . . . , k. The interpolating polynomials can then be recombined through
a Chinese remainder algorithm at a cost of O

(
M(pkd) logpk

)
, which does not

change the overall complexity of C2-AS-FI.
Putting together the complexity estimates of C2-AS and C2-AS-FI, we have the

following theorem.

Theorem 8.14 Assuming M(n) = n logn loglogn, the algorithm C2-AS-FI has worst
case complexity

Õp,d,log ℓ

(
p2d3 + C(p)pd+ (pd)ω log2 ℓ+ p3ℓ2d log3 ℓ+ p2ℓ2d2 +

(
ℓ2

p
+ p

)
C(pd)

)
.

8.8 The algorithm C2-AS-FI-MC

However asymptotically fast, the polynomial interpolation step is quite expensive
for reasonably sized data. Instead of repeating it ϕ(pk)

2 times, one can use com-
position with the Frobenius endomorphism φE in order to reduce the number of
interpolations in the final loop. We call this variant C2-AS-FI-MC (MC for Modular
Composition).
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8. Computing isogenies over finite fields

8.8.1 The algorithm

Suppose we have computed, by the algorithm of the previous Section, the poly-
nomial T vanishing on the abscissas of E[pk] and an interpolating polynomial
A0 ∈ Fq[X] such that

A0
(
x
(
[n]P

))
= x
(
[n]P ′) for any n.

We view A0 as a morphism of varieties (not necessarily an isogeny!) from E[pk] to
E ′[pk].

The Frobenius automorphism φE acts on E[pk] permuting its points. We define

A1
def≡ A0 ◦ φE = φE′ ◦A0, (8.60)

where the equality comes from the fact that A0 is Fq-rational. Hence

A1 ◦ [n](P) = [n] ◦ φE′(P ′) for any n.

A1 has no poles at E[pk], thus it is a polynomial map; and since φE′(P ′) is a
generator of E ′[pk], A1 is one of the polynomials that the algorithm C2 tries to
identify to an isogeny. By iterating this construction we obtain [Uk : Fq]/2 different
polynomials Ai for the algorithm C2 with only one interpolation.

To compute the Ai’s, we first compute F ∈ Fq[X]

F(X) = Xq mod T(X), (8.61)

then for any 1 6 i < [Uk : Fq]/2

Ai(X) = Ai−1(X) ◦ F(X) mod T(X). (8.62)

If ϕ(pk)

[Uk:Fq]
= pi0−1r, we must compute pi0−1r polynomial interpolations and

apply this algorithm to each of them in order to deduce all the polynomials needed
by C2.

8.8.2 Complexity analysis

We compute (8.61) via square-and-multiply, this costs Θ(dM(pkd) logp) operations.
Each application of (8.62) is done via a modular composition, the cost is thus
O(C(pk)) operations in Fq, that is O(C(pk)M(d)) operations in Fp. Using the
algorithm of [KU08] for modular composition, the complexity of C2-AS-FI-MC

would not be essentially different from the one of C2-AS-FI. However, in practice
the fastest algorithm for modular composition is [BK78], and in particular the
variant in [KS98, Lemma 3]: these have worse asymptotic complexity, but perform
better on the instances we treat in Section 9.4.

Notice that a similar approach could be used inside the polynomial interpola-
tion step (see Section 8.7) to deduce A(0)

k from A
(0)
0 using modular composition

with the multiplication maps of E and E ′ as described in [Cou96, §2.3]. This
variant, though, has an even worse complexity because of the cost of computing
multiplication maps.
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8.9. Isogenies of unknown degree

8.9 Isogenies of unknown degree

We now present an extension to Couveignes algorithm that could be useful in
cryptographic application. Recall that two curves having the same number of
points over a finite field are isogenous; however this says nothing on the degree of
the isogeny connecting them. Given two elliptic curves E and E ′ defined over Fq

and having the same number of points, we want to find an Fq-rational isogeny
between them.

The simplest solution is to take any algorithm computing an isogeny of given
degree, and try all the degrees until an isogeny is found. If ℓ is the degree of the
smallest isogeny, this of course adds a factor ℓ to the complexity of any polynomial
time algorithm.

Couveignes’ algorithm can be easily adapted to solve this problem at no
additional cost. We call this algorithm C2-UD (UD for Unknown Degree), all the
variants of C2 presented until now also apply to C2-UD.

Observe that, apart for the choice of k, the computation of E[pk] and the
polynomial interpolation step do not depend at all on ℓ. The degree of the isogeny
only comes into play in the last part of the Cauchy interpolation, that is in the
rational function reconstruction. We study more in detail this last step.

Rational Fraction Reconstruction. Recall from Section 2.2.6 that rational fraction
reconstruction takes as input a degree n polynomial T , a polynomial A of degree
less than n and a target degree m 6 n and outputs the unique rational fraction
such that

A ≡ R

V
mod T

and degR < m, degV 6 n −m. This is done by computing a Bézout relation
AV + TU = R with the expected degrees via an XGCD algorithm. If a classical
XGCD algorithm is used, one simply computes all the lines

R0 = T , U0 = 1, V0 = 0,

R1 = A, U1 = 0, V1 = 1,

Ri−1 = QiRi + Ri+1, Ui+1 = Ui−1 −QiUi, Vi+1 = Vi−1 −QiVi

(8.63)

and stops as soon as a remainder Ri+1 with degRi+1 < m is found. If a fast XGCD
algorithm such as [vzGG99, §11.1] is used, one directly aims at the two lines

Rh−2 = Qh−1Rj−1 + Rh

Rh−1 = QhRh + Rh+1
(8.64)

such that degRh+1 < m 6 degRh without computing the intermediate lines.
In Couveignes’ algorithm, when looking for an ℓ-isogeny, one simply sets

m = ℓ + 1. Observe that if the algorithm does not return a rational fraction R
V

with degR = ℓ and degV = ℓ− 1, then no such fraction congruent to A modulo T
exists.

If ℓ is not a priori known, we can still use the fact that a separable isogeny with
cyclic kernel must have degR = degV + 1. In fact, if we suppose R = Ri and
V = Vi, then

deg T = degVi+1 + degRi,

degRi − degVi = degRi−1 − degVi+1
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8. Computing isogenies over finite fields

implies
deg T + 1 = degRi−1 + degRi .

Hence, if A is congruent to an ℓ-isogeny with ℓ =
⌊

degT

2

⌋
− t for some t > 0, then

degRi−1 =

⌈
deg T

2

⌉
+ t+ 1 >

⌊
deg T

2

⌋
− t = degRi . (8.65)

Thus we can recover any isogeny having degree less than
⌊

degT

2

⌋
using either a

classical or a fast XGCD algorithm, setting m =
⌈

degT

2

⌉
+ 1.

Recognizing an isogeny. Once we have a rational fraction with the required degree,
we have to test if it really is an isogeny. In order to understand how often we
have to make this test, we introduce some more terminology. Let ni = degRi, we
call (n0, . . . ,nr) the degree sequence of A and T ; a degree sequence is said normal if
ni = ni+1 + 1 for any i.

Proposition 8.15 Let f,g ∈ Fq[X] be uniformly chosen random polynomials of re-
spective degrees n0 > n1 > 0 and let (n0,n1, . . . ,nr) be their degree sequence. For
0 6 i < n1 define the binary random variables Xi = 1⇔ i ∈ (n0,n1, . . . ,nr), then the
Xi are independent random variables and Prob(Xi = 0) = 1

q
.

Proof. Pairs of polynomials f,g are in bijection with the GCD-sequence (Rr,Qr, . . . ,
Q1) constituted by their GCD and the quotients of the GCD algorithm. To each
such sequence is associated a degree sequence

(n0,n1, . . . ,nr) =

(
degRr +

r∑

i=1

degQi, . . . , degRr +
1∑

i=1

degQi, degRr

)
,

thus for any given degree sequence there are

(q− 1)qn0−n1 · (q− 1)qn1−n2 · · · · · (q− 1)qnr = (q− 1)r+1qn0

GCD-sequences.
Let I and O be two disjoints subsets of {Xi}, the number of GCD-sequences

such that X ∈ I⇒ X = 1 and X ∈ O⇒ X = 0,

n1−#I−#O∑

s=0

(
n1 − #I− #O

s

)
(q− 1)s+2+#Iqn0 = (q− 1)2+#Iqn0qn1−#I−#O .

There are (q− 1)2qn0qn1 pairs of polynomials of degrees n0,n1, thus

Prob
(
{X = 1 | X ∈ I}, {X = 0 | X ∈ O}

)
=

(
q− 1
q

)#I( 1
q

)#O

. (8.66)

The claim follows.

Degree sequences associated to isogenies are in general not normal, in fact if

ℓ 6
⌊

degT

2

⌋
− t, equation (8.65) shows that there must be at least a gap of degree 2t

in the degree sequence. Heuristically, we can expect that if the polynomial A does
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not correspond to an isogeny, then A and T act like random polynomials, thus,
by the proposition above, the probability that A looks like an isogeny of degree

ℓ 6
⌊

degT

2

⌋
− t is less than 1

q2t .

Therefore, by choosing an appropriate t ∈ O(logq p
k), C2-UD can find any

isogeny of degree less than pk−1
4 − t at the same cost of one run of C2. Also

notice that C2-UD is not restricted to isogenies of degree prime to p as was already
mentioned in Section 8.5.4.

Note. This variant makes Couveignes’ algorithm quite unique for various reasons.
First of all, it is the first algorithm, other than trivial ones, to compute isogenies
of unknown degree. Besides, most algorithms to compute isogenies of fixed
degree do not seem to have a similar variant: for example, BMSS requires ℓ-
normalized models, and Lercier-Sirvent uses Φℓ. We think that Couveignes’ first
algorithm [Cou94] could also be generalized to compute isogenies of unknown
degree, thanks to its similarity to C2.

It is also interesting to notice that, while for computing isogenies of degree
ℓ there is still a complexity gap between the large and small characteristic cases,
C2-UD closes this gap in the unknown degree case. Finally, this variant explains
somehow why Couveignes’ algorithm is not optimal: because it solves another
problem.
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Chapter9

Experimental results

In this chapter we describe the implementations we made of the algorithms of the
previous chapter and some experimental results.

9.1 Implementation of Couveignes’ algorithm

We implemented C2-AS-FI-MC as C++ programs using the libraries NTL [Sho03]
for finite field arithmetic, gf2x [BGTZ08] for fast arithmetic in characteristic 2
and FAAST (see Section 6.7) for fast arithmetic in Artin-Schreier towers. We also
have a Magma [BCP97] prototype of the same algorithm, not making use of the
fast algorithms of Chapter 6. This section mainly deals with some tricks we
implemented in order to speed up the computation.

9.1.1 Building E[pk] and E ′[pk]

p-Torsion. For p 6= 2, C2 and its variants require to build the extension Fq[c]

where c is a (p − 1)-th root of HE. In order to deal with the lowest possible
extension degree, it is a good idea to modify the curve so that [Fq[c] : Fq] is the
smallest possible.

[Fq[c] : Fq] is invariant under isomorphism, but taking a twist can save us a
quadratic extension. Let u = c−2, the curve

Ē : y2 = x3 + a2ux
2 + a4u

2x+ a6u
3

is defined over Fq[c
2] and is isomorphic to E over Fq[c] via (x,y) 7→ (

√
u

2
x,
√
u

3
y).

Its Hasse invariant is HĒ = (u)
p−1

2 HE = 1, thus its p-torsion points are defined
over Fq[c

2].
In order to compute the pk-torsion points of E we build Fq[c

2], we compute
P̄ a pk-torsion points of Ē using p-descent, then we invert the isomorphism to
compute the abscissa of P ∈ E[pk]. Since the Cauchy interpolation only needs the
abscissas of E[pk], this is enough to complete the algorithm. Scalar multiples of P
can be computed without knowledge of y(P) using Montgomery formulas.

Note that for p = 2 we use the same construction in an implicit way since we
do a p-descent on the Kummer variety.

pk-Torsion points. For p 6= 2 we use Voloch’s p-descent to compute the pk-torsion
points iteratively as described in Section 8.5. To factor the Artin-Schreier polyno-
mial (8.34), we use the algorithms from Section 6.6 implemented in FAAST.
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To solve system (8.35) we first compute

V(x,y) =
(
g(x)

h2(x)
, sy

(
g(x)

h2(x)

) ′)

through Vélu formulas.1 Recall that we work on a curve having Hasse invariant 1,
system (8.35) can then be rewritten






x̃(P) =
g(x)

h2(x)

ỹ(P) = sy

(
g(x)

h2(x)

) ′

z̃(P) = −2y
h ′(x)

h(x)

where P is the point on the cover C that we want to pull back (x̃(P), ỹ(P) and z̃(P)
are just its coordinates). After some substitutions this is equivalent to






x̃(P)h2(x) − g(x) = 0
(
x̃(P)h2(x) − g(x) −

ỹ(P)

sx̃(P)
h2(x)

) ′
= 0

Then a solution in x to this system is given by the GCD of the two equations. Note
that proposition 8.10 ensures there is one unique solution. These formulas are
slightly more efficient than the ones in [Ler97, §6.2].

For p = 2 we use the library FAAST (for solving Artin-Schreier equations) on
top of gf2x (for better performance). There is nothing special to remark about the
2-descent.

9.1.2 Cauchy interpolation and loop

The polynomial interpolation step is done as described in Section 8.7. As a result
of this implementation, the polynomial interpolation algorithm was added to the
library FAAST.

The rational fraction reconstruction is implemented using a fast XGCD algo-
rithm on top of NTL and gf2x. This algorithm was added to FAAST too.

The loop uses modular composition as in Section 8.8 in order to minimise the
number of interpolations. The timings in the next section clearly show that this
non-asymptotically-optimal variant performs much faster in practice.

To check that the rational fractions are isogenies we test their degrees, that their
denominator is a square and that they act as group morphisms on a fixed number
of random points. All these checks take a negligible amount of time compared to
the rest of the algorithm.

9.1.3 Parallelisation of the loop

The most expensive step of C2-AS-FI-MC, in theory as well as in practice, is the final
loop over the points of E ′[pk]. Fortunately, this phase is very easy to parallelise
with very little overhead.

1Vélu formulas compute this isogeny up to an indeterminacy on the sign of the ordinate, the actual
value of s must be determined by composing V with φ and verifying that it corresponds to [p] by
trying some random points.
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Let n be the number of processors we wish to parallelise on, suppose that
[Uk : Fq] is maximal, then we make only one interpolation followed by ϕ(pk)/2

modular compositions.2 We set m =
⌊
ϕ(pk)

2n

⌋
and we compute the action of φm

on E[pk] as in Section 8.8:

F(m)(X) = F(X) ◦ · · · ◦ F(X) mod T(X) ,

this can be done with Θ(logm) modular compositions via a binary square-and-
multiply approach as in Section 2.2.4.

Then we compute the n polynomials

Ami(X) = Am(i−1)(X) ◦ F(m)(X) mod T(X)

and distribute them to the n processors so that they each work on a separate
slice of the Ai’s. The only overhead is Θ(log(ℓ/n)) modular compositions with
coefficients in Fq, this is acceptable in most cases.

9.2 Implementation of C2-UD

We modified our C++ implementation of C2-AS-FI-MC to obtain two variants of
C2-UD.

The first one takes an integer k and looks for all isogenies of degree pcℓ with
ℓ prime to p, ℓ < ϕ(pk)/4 and c arbitrary. This is done by slightly modifying
the modular composition step of Section 8.8. Suppose we know an interpolating
polynomial A0, that we view as a morphisms E[pk]→ E ′[pk] such that

A0 ◦ [n](P) = [n](P ′) for any n. (9.1)

Then we compose with the Frobenius isogeny φ

A1
def≡ φ ◦A0 : E[pk]→ E ′(p)[pk], (9.2)

where E ′(p) is the curve

E(p) : y2 = x3 + a ′px+ b ′p. (9.3)

So A1 is one of the polynomials that Couveignes algorithm computes when looking
for an isogeny between E and E ′(p). If q = pd, iterating d times this construction,
we fall back on E ′, as we would have if we had directly applied the Frobenius
automorphism as in Section 8.8. Thus, paying an additional factor of logp q, we
can compute any isogeny of degree pcℓ with arbitrary c and ℓ bounded as before.

When logp q is large, the previous variant becomes unpractical. We imple-
mented a second variant using the algorithm described in Section 8.5.4, this allows
to compute any isogeny of degree ℓ 6 ϕ(pk)/4, even if p divides ℓ. The asymptotic
cost of this variant is the same as one run of C2-AS-FI-MC, because the search for ℓ
prime to p dominates.

2If [Uk : Fq] is not maximal, the parallelisation is straightforward: we simply send one interpola-
tion to each processor in turn.
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Figure 9.1: Comparative timings for different implementations of C2-AS-FI-MC

with curves defined over F2101 . Plot in logarithmic scale.

9.3 Implementation of Lercier-Sirvent

We implemented a Magma prototype of BMSS and Lercier-Sirvent. In both cases
we did not take Remark 8.4 into account, and only implemented the variant using
rational fraction reconstruction. We used Magma native support for p-adics to
construct the field Qq.

Both implementations differ from the description we gave in Sections 8.3
and 8.4 in that they only take the degree ℓ and the equation of E as input, and
compute an Fq-isogenous curve, if it exists, by factoring the modular polynomial
in Fq[X].

Instead of the classical modular polynomials Φℓ we used Atkin’s modular
polynomials Φ∗

ℓ since they have smaller coefficients and degree; this does not
change the other steps of the algorithm.

The modular polynomials were not computed on the fly as suggested in
Section 8.4, instead they were taken from the tables precomputed in Magma. This
implies that the implementation has an asymptotic complexity cubic in ℓ, however
we will see that even this implementation behaves well in practice.

9.4 Benchmarks

We ran various experiments to compare the different variants of the algorithm
C2 between themselves and to Lercier-Sirvent. All the experiments were run on
four dual-core Intel Xeon E5520 (2.26GHz), using the parallelized version of the
algorithm in some cases. Magma 2.16 was used to run Magma experiments.

Magma vs. FAAST. The first set of experiments was run to evaluate the benefits
of using the algorithms of Chapter 6. We selected pairs of isogenous curves over
F2101 such that the height of the tower is maximal (observe that this is always
the case for cryptographic curves). We compared the Magma prototype to the
FAAST-based implementation of C2-AS-FI-MC using the zz_p and GF2 data types
(see Section 6.7).
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ℓ E[pk] E ′[pk] FI RFR MC Avg tries loop time
31 0.3529 0.3529 0.3569 0.00125 0.00055 32 0.058
61 0.9848 0.9848 0.8268 0.00343 0.00228 64 0.365

127 2.6636 2.6626 1.8927 0.01090 0.00872 128 2.511
251 6.9809 6.9779 4.2833 0.03092 0.03494 256 16.860
397 18.1052 18.0952 9.7385 0.07325 0.14117 512 109.783

Table 9.1: Comparative timings in seconds for the phases of C2-AS-FI-MC for
curves over F2101 .

The results are in figure 9.1: we plot a line for the average running time of the
algorithm and bars around it for minimum and maximum execution times of the
final loop. Besides the dramatic speedup obtained by using the ad-hoc type GF2,
the algorithmic improvements of FAAST over Magma are evident as even zz_p is
one order of magnitude faster.

Table 9.1 shows detailed timings for each phase of C2-AS-FI-MC. The column FI
reports the time for one interpolation, the column MC the time for one modular
composition; comparing these two columns the gain from passing from C2-AS-FI

to C2-AS-FI-MC is evident. Columns RFR (rational fraction reconstruction) and MC
constitute the Cauchy interpolation step that is repeated in the final loop. The last
column reports the average time spent in the loop: it is by far the most expensive
phase and this justifies the attention we paid to FI and MC; only on some huge
examples we approached the crosspoint between these two algorithms.

C2-UD. Next we ran experiments on C2-UD. The first observation was that the
heuristic argument –on the probability that a degree sequence not associated to an
isogeny is not normal– is well verified in practice: except for a degree 2 symmetry
verified in characteristic 2, polynomials not associated to an isogeny very rarely
gave a degree sequence with a gap around the middle.

Looking for isogenies of unknown degree may be of some cryptographic
significance. For example, Teske’s trapdoor cryptosystem selects a binary field of
composite degree (F27·23 , in the proposal) and chooses an elliptic curve E vulnerable
to the GHS attack [GHS02b]. Then hides E by taking a random path of isogenies
of small degrees landing on a curve E ′ not vulnerable to GHS, and uses E ′ as
public key. The security of the cryptosystem comes from the assumption that it is
infeasible to find a GHS-vulnerable curve isogenous to E ′, without the knowledge
of the isogeny path.

The trapdoor of the cryptosystem is the curve E: it is given to a trusted authority
so that –using an isogeny path from E ′ to E and a GHS attack– it has the power of
deciphering messages at a relatively high computational cost. This feature rests
on the assumption that it is feasible, but relatively hard, to compute any isogeny
path from E to E ′.

In this context, it may be interesting to verify that E and E ′ are not related by
an isogeny of too low degree. From [Tes06, Appendix A], we took the two curves
defined over F2161 = F2[z]/(z

161 + z18 + 1) of j invariants:
1/j = z152+z143+z139+z136+z135+z133+z130+z125+z124+z122+z120+z119+z118+

z117+z116+z114+z113+z112+z110+z109+z106+z105+z103+z102+z101+z99+z97+z96+z92+

z91+z88+z87+z86+z85+z81+z78+z77+z76+z75+z73+z71+z69+z68+z67+z66+z63+z59+

z58+z53+z51+z50+z49+z48+z46+z45+z44+z42+z38+z34+z3+z32+z31+z29+z27+z26+
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ℓ Lift DiffSolve RFR
31 0.570 14.830 0.010

103 5.160 274.550 0.250
149 12.510 815.320 0.590
239 21.420 1470.240 1.950
331 113.500 4204.610 4.890
389 147.340 5166.730 7.360

Table 9.2: Comparative timings in seconds for the phases of Lercier-Sirvent for
curves over F364 .

z24+z23+z22+z21+z20+z19+z18+z17+z16+z15+z14+z13+z12+z10+z7+z6+z4+z3+z2,
1/j ′ = z160+z156+z155+z153+z152+z151+z150+z149+z148+z147+z146+z145+z143+

z142+z141+z130+z129+z127+z126+z125+z124+z123+z120+z118+z112+z109+z104+z103+

z102+z101+z99+z98+z97+z96+z93+z92+z91+z90+z88+z85+z83+z77+z74+z70+z68+

z65+z64+z63+z62+z61+z60+z58+z57+z55+z50+z48+z45+z41+z38+z37+z36+z33+z31+

z30+z27+z26+z24+z23+z22+z21+z20+z19+z17+z16+z14+z13+z10+z8+z7+z4+z3+z.
We ran our two variants of C2-UD on the two curves to certify the conjectured

property that no unexpected isogeny of low degree exists between the two curves.
In 258 cpu-hours we were able to prove that no isogeny of degree pcℓ for

ℓ < 211 and c arbitrary exists between the two curves; in 694 cpu-hours we were
able to prove that no isogeny of degree less than 213 exists either. We stress the fact
that, albeit of little interest, this computation would have been impossible without
the (surprising) discovery of C2-UD.

Couveignes vs. Lercier-Sirvent. Finally, we ran experiments on Lercier-Sirvent.
Table 9.2 shows timings for the different phases of the algorithm for some isogeny
degrees. The first column is the time spent to find a root of Φℓ(X, jE) in Fq, the
second column summarizes the time spent to lift this root in Qq and apply Elkies’
formulas. DiffSolve is the time spent solving the differential equation, it is clearly
the most expensive phase, although not the most important asymptotically. RFR is
the time for rational fraction reconstruction, its rapid growth is justified by the
fact that we implemented it on top of a quadratic XGCD algorithm.

We also compared the running times of C2-AS-FI-MC and Lercier-Sirvent over
curves of half the cryptographic size in figure 9.2 (left) and five times the crypto-
graphic size in figure 9.2 (right). We only plot average times for C2, in characteristic
2 we only plot the timings for GF2. From the plot it is clear that C2-AS-FI-MC

only performs better than Lercier-Sirvent for p = 2, but in this case Lercier’s al-
gorithm [Ler96] is much faster. Contradicting theory, the asymptotic behavior
of Lercier-Sirvent looks worse than the one of C2-AS-FI-MC; however comparing
a Magma prototype to our highly optimized implementation of C2-AS-FI-MC is
somewhat unfair.

Furthermore, it is unlikely that C2-AS-FI-MC could be practical for any p > 3
because of its high dependence on p, while Lercier-Sirvent scales pretty well with
the characteristic as shown in figure 9.3.

Considering that the asymptotic dependency of Couveignes’ algorithm in
logq and in p is worse than the one of Lercier-Sirvent (compare Eq. (8.59) to
Proposition 8.6), there are very few regions where Couveignes’ algorithm stays of
practical or theoretical interest.
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Figure 9.3: Timings for Lercier-Sirvent for different fields. We increase p while
keeping constant d and the isogeny degree.

Ironically, the techniques presented in this document were developed in view
of an efficient implementation of Couveignes’ algorithm, but, for the moment, their
only practical application seems to be C2-UD. Our hope is that other interesting
applications may be found in the future.
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AppendixA

Categorical considerations

The aim of this chapter is to give a simpler proof of the transposition theorem for
arithmetic circuits shedding new light on it. The main idea is to bring duality back
where it belongs: category theory. This is done through the use of some basic
categorical semantics [Pit01, AL91]. We also discuss the relationship with some
Haskell type classes and perspectives for the implementation of the transposition
principle. This chapter is joint work with Boespflug.

A.1 Categorical semantics of arithmetic circuits

Categorical semantics introduce the notion of structure valued in a category C, which
is a generalization of the concept of structure in model theory. This permits us to
reason about operations that “preserve some algebraic structure”. See [Pit01] for
formal definitions.

Take the example of arithmetic circuits. In Section 3.1 we defined them using
left modules and morphisms, this allowed us to state that the evaluation of a circuit
is a module morphism simply because the composition laws for arithmetic circuits
“preserve” the structure. Then in Section 3.2 we extended the notion of circuit to
embrace circuits containing multiplication nodes; however this meant that we had
to redefine circuits from scratch, considering maps that are not module morphisms
(we did not actually write the new definition in Section 3.2, because we were lazy).

The clean way to give both definitions at once, is to consider circuits valued in a
category C. It is soon evident that the only requirement on the category is that it
has finite products; in what follows, we let C be a category with finite products.

The definition of the syntax of circuits, i.e. what are the nodes and ports, how
they are composed to build a circuit, etc., stay the same; we only change the
definitions of operator and of evaluation of an arithmetic circuit.

Definition A.1 (Arithmetic operator, arity) Let A be an object of C. An arithmetic
operator over A is an arrow f :

∏i
A → ∏o

A for some i,o ∈ N. Here i is called
the in-arity of f or simply arity, o is called the out-arity of f.

Definition A.2 (Evaluation of an arithmetic circuit) Let A be an object of C. Let
C be an arithmetic circuit with i inputs and o outputs, then its evaluation is an
arrow evalC :

∏i
A→∏o

A.
In order to define it, we simultaneously define the evaluation evalv of each

v ∈ V and the evaluation evale of each e ∈ E. We will denote by <v the orders on
the input and the output ports of v.

• Let v ∈ V have out-degree n, let its evaluation be evalv :
∏i

A→∏n
A and

let π1, . . . ,πn be the canonical projections from
∏n

A to A. Let o1 <v · · · <v

154



A.2. Coevaluation

on be the output ports of v and let ej =
(
oj,E(oj)

)
be the corresponding

edges stemming from v, then evalej
= πj ◦ evalv for any j.

• Let x1 <i · · · <i xi be the input nodes and let π1, . . . ,πi be the canonical
projections from

∏i
A to A, then evalxj

= πj for any j.

• For every evaluation node v with in-degree m, let i1 <v · · · <v im be the
input ports of v and let ej =

(
E−1(ij), ij

)
be the corresponding edges incident

to v, then

evalv = β(v) ◦ (evale1 × · · · × evalem
). (A.1)

• For every output node y, let e ∈ E be the only edge incident to y, then
evaly = evale.

We can finally define evalC :
∏i

A→∏o
A. Let y1 <o · · · <o yo be the output

nodes, then

evalC = (evaly1 × · · · × evalyo
) . (A.2)

We also say that C computes evalC.

As the reader will have noticed, we have simply taken Definition 3.6 and
changed direct sums with categorical products. Hence, the fact that the evaluation
of a circuit in the category of left modules is a left module morphism is now
tautology; but we can also consider circuits valued in Set, then all the theory of
Section 3.2 can be carried out on those circuits.

A.2 Coevaluation

When dealing with a construction in category theory, it is natural to simultaneously
study its dual, that is the construction obtained by reversing all the arrows. If in
definition 3.6 we substitute the product

∏n
R by its dual

∐n
R, we obtain a new

way of evaluating an arithmetic circuit that we will call coevaluation. In this section
we let D be a category with finite coproducts.

An arithmetic cobasis is just an arithmetic basis in Dop, and the coevaluation
of an arithmetic circuit is just its evaluation in Dop. For completeness, we give the
detailed definitions.

Definition A.3 (Arithmetic co-operator, arity) Let A be an object of D. An
arithmetic co-operator over A is an arrow f :

∐i
A→∐o

A for some i,o ∈ N.

Definition A.4 (coevaluation of an arithmetic circuit) Let A be an object of D.
Let C be an arithmetic circuit with i inputs and o outputs over a cobasis B. Its
coevaluation is an arrow coevalC :

∐i
A→∐o

A.
We use the same notation as in the previous definition. As we did there, we

simultaneously define coevalv for each v ∈ V and coevale for each e ∈ E.

• Let v ∈ V have in-degree m, let its coevaluation be coevalv :
∐m

A→∐o
A

and let ι1, . . . , ιn be the canonical injections from A to
∐m

A. Let i1 <v · · · <v

im be the input ports of v and let ej =
(
ij,E−1(ij)

)
be the corresponding

edges incident to v, then coevalej
= coevalv ◦ιj for any j.
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• Let y1 <V · · · <V yn be the output nodes and let ι1, . . . , ιo be the canonical
injections from A to

∐o
A, then coevalyj

= ιj for any j.

• For every evaluation node v with out-degree n, let o1 <v · · · <v on be
the output ports of v and let ej =

(
E(oj),oj

)
be the corresponding edges

stemming from v, then

coevalv = (coevale1 + · · ·+ coevalen
) ◦ β(v). (A.3)

• For every input node x, let e ∈ E be the only edge stemming from x, then
coevalx = coevale.

We can finally define coevalC :
∐i

A → ∐o
A. Let x1 <V · · · <V xi be the

input nodes, then

coevalC = coevalx1 + · · ·+ coevalxi
. (A.4)

The coevaluation in general does not attach the same semantics to a circuit as
the evaluation. For example in the case of Set the coevaluation is a function from
the disjoint union of i copies of A to the disjoint union of o copies of A. We can
regard circuits over cobases in Set as objects that are fed one single element of A
on one out of their n inputs and then take decisions depending on which input
was fed. An example is given in figure A.1.

x

>10 >20

10c

>50

20c

>100

50c 1e 2e

Figure A.1: The coffee machine circuit. On input n ∈ Z, the operator >x: Z→ Z⊎Z
gives n on its right output if n > x, on its left output otherwise. The circuit is an
euro coin separator.

In some cases, howevever, evaluation and coevaluation coincide. Recall that an
additive category is a category if every hom-set is an Abelian group, composition
of morphisms is bilinear, and every finite biproduct exists [ML98, VIII.2]. In
particular, in an additive category finite products and coproducts are isomorphic.

Lemma A.5 Let C be a circuit valued in an additive category, then evalC ∼= coevalC
naturally.

We just sketch the proof.

Proof. First observe that since products and coproducts are naturally isomorphic,
the basis of C can be interpreted both as a basis and a cobasis. Hence both
evaluation and coevaluation C are meaningful.

Then, we proceed by induction on the size of the circuit. First, it is obvious that
for circuits with one unique evaluation node v we have evalC ∼= β(v) ∼= coevalC.
Now if C has n evaluation nodes, we choose any topological order on C and
remove the last evaluation node v and the output nodes connected to it. This new
circuit satisfies the lemma by induction. The claim follows by connecting v back to
the circuit.
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A.3 The tranposition theorem

We restate the notion of dual circuit in our new context. The dual circuit is obtained
by reversing all the arrows, and it is valued in the opposite category Cop. Although
we use the same notation, the reader shall not confuse this definition of the dual
circuit Cop with the definition of the opposite circuit we gave in Section 3.2.2.

Definition A.6 (Dual basis) Let A be an object of C and let B be an arithmetic
basis over A. We define the dual basis Bop as

Bop = {fop | f ∈ B}. (A.5)

Definition A.7 (Dual circuit) Let A be an object of C. Let C = (V ,E,6,6i,6o) be
a circuit over (A,B). For any v ∈ V define

vop =






(O, I, fop) if v = (I,O, f) with f 6= ∅,
(O, ∅, ∅) if v = (∅,O, ∅),
(∅, I, ∅) if v = (I, ∅, ∅).

(A.6)

The dual circuit of C, denoted by Cop, is the circuit over (A,Bop) defined as

Cop = (Vop,E−1,6op,6 ′
i,6

′
o),

where Vop = {vop|v ∈ V} and the orderings are defined as follows:

v 6 v ′ ⇔ v ′
op

6
op vop, (A.7)

v 6o v
′ ⇔ vop

6
′
o v

′op, (A.8)

v 6i v
′ ⇔ vop

6
′
i v

′op. (A.9)

We now have all the elements to prove the transposition theorem. We let C and
C ′ be categories with finite products. The first, trivial, observation is that certain
functors “preserve” the semantic of a circuit. If F : C→ C ′ is a functor, we define
by F(B) the basis obtained by substituting any arrow f with F(f), and by F(C) the
circuit obtained by substituting any node with the corresponding node in F(B).

Proposition A.8 Let F : C→ C ′ be a continuous functor (i.e. a functor that preserves
small limits; we actually only need it to preserve products). Let C be a circuit valued in C.
Then F(C) is valued in C ′ and F(evalC) = evalF(C).

Corollary A.9 Let C be a category with finite products, D a category with finite
coproducts and F : C → Dop a continuous functor. Then F(C)op is valued in D and
F(evalC)op = coevalF(C)op .

Corollary A.10 (Transposition theorem) Let C be an additive category and let
F : C→ Cop be a continuous functor. Then F(evalC)op ∼= evalF(C)op .

The transposition theorem of Section 3.1.3, then follows by considering the
transposition functor ()∗ : R−Mod→ R−Mod (note that the transposition functor
is traditionally written in a contravariant fashion).

A.4 From circuits to function-level programming

People who think that categories are just abstract nonsense, may be surprised
discovering that arithmetic circuits valued in Hask (the category of Haskell types)
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are already implemented in Haskell. Alternatively, they might think that Haskell
is concrete nonsense.

The package Control.Arrow implements what are commonly called arrows
in Haskell jargon. Arrows were introduced in [Hug98] as a generalization of
monads, they have been successfully applied to many different settings such as, for
example, solving ordinary differential equations [LH10]. Paterson [Pat01] was the
first to realize the relationship between circuits and arrows, and to propose a DSL
for arrows that is amazingly similar to straight line programs.

The standard library class Arrow is roughly equivalent to arithmetic circuits
valued in Hask (or Set), while ArrowChoice is roughly equivalent to arithmetic
circuits valued in Hask

op. So we asked ourselves the question of whether it is
possible to write a type class AdditiveArrow that has the same properties of
circuits valued in additive categories. A desirable feature of additive arrows is that
they could be evaluated both in C and Cop, thus they share some similarities with
invertible arrows [ASvW+05].

We sketch what an additive arrow should look like, by giving an hypothetical
list of type classes; following [Yor09], we use infix operators (~>) instead of prefix
ones as in the standard Haskell library. As for arrows, we start from the class
Category.

class Category (~>) => where

id :: (a ~> a)

(.) :: (b ~> c) -> (a ~> b) -> (a ~> c)

In order to behave as a category, an instance of this class shall form a monoid
for the operation (.), with id being the identity element. Now this class can be
extended to model additive categories: we first define a class that mimics Ab-
categories, or preadditive categories, that is categories whose hom-sets are Abelian
groups, then we define additive categories.

class Category (~>) => AbCategory (~>) where

zeroArrow :: (a ~> b)

(<+>) :: (a ~> b) -> (a ~> b) -> (a ~> b)

class AbCategory (~>) => AdditiveCategory (~>) where

(&&&) :: (a ~> b) -> (a ~> c) -> (a ~> (b, c))

(|||) :: (a ~> c) -> (b ~> c) -> ((a, b) ~> c)

(***) :: (a ~> b) -> (c ~> d) -> ((a, c) ~> (b, d))

Where &&& roughly corresponds to the operator & of arithmetic circuits, |||
corresponds to +, and *** corresponds to forming a new circuit by putting two
circuits side by side.

However, these type classes cannot be implemented as expected because
Haskell tuples do not behave like Rn: in particular, it is impossible to properly
implement the operators ||| and *** on tuples. To circumvent this, we have to
use some form of dependent types [KLS04, McB03] to encode the free module
Rn+m and its projections over Rn and Rm.

After some unsuccessful experiments with GADT’s, we succeeded in imple-
menting additive circuits in the category of Z-modules and transposable multipli-
cation in Z[X] using type level arithmetic from the package Data.TypeLevel. We
thank Jacques Carette for having suggested this solution to us.
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The source code is presented in the next section. Notice, however that our
implementation needs to suggest some trivialities to the type checker (for example,
a 6 a+ b for any b ∈ N) in order for the compilation to succeed.

Another problem is that the implementation of polynomial multiplication
is far from being self-evident. In fact, we had to follow Kiselyov and Peyton-
Jones [KPJ08] to implement advanced overlapping instances.

Future research directions include:

• use a language natively implementing dependent data types to avoid hacks;

• implement a DSL similar to Paterson’s do-notation for arrows [Pat01].

Our hope is that these techniques could provide an efficient and easy to use library
for automated theorem provers, to prove the correctness of programs based on the
transposition principle.

A.5 Implementation of self-transposing polynomial multiplication in

Haskell

import Data.TypeLevel hiding (Mul)

import Data.Param.FSVec

import qualified Prelude as P

------ The ring

type R = P.Int

zero :: R

zero = 0::P.Int

plus :: R -> R -> R

plus = (P.+)

times :: R -> R -> R

times = (P.*)

------ Additive circuits

class Category (~>) where

id :: Nat a => a -> (a ~> a)

(.) :: (Nat a, Nat b, Nat c) => (b ~> c) -> (a ~> b) -> (a ~> c)

class Category (~>) => AbCategory (~>) where

zeroArrow :: (Nat a, Nat b) => a -> b -> (a ~> b)

(<+>) :: (Nat a, Nat b) => (a ~> b) -> (a ~> b) -> (a ~> b)

class AbCategory (~>) => AdditiveCategory (~>) where

(&&&) :: (Nat a, Nat b, Nat c, Add b c bc,

Min bc b b)

=> (a ~> b) -> (a ~> c) -> (a ~> bc)

(|||) :: (Nat a, Nat b, Nat c, Add a b ab,

Min ab a a)

=> (a ~> c) -> (b ~> c) -> (ab ~> c)

(***) :: (Nat a, Nat b, Nat c, Nat d, Add a c ac , Add b d bd,

Min ac a a, Min bd b b)

=> (a ~> b) -> (c ~> d) -> (ac ~> bd)

------ Bicategories

data Cat a b = Cat a b

(FSVec a R -> FSVec b R)

(FSVec b R -> FSVec a R)
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apply :: Cat a b -> FSVec a R -> FSVec b R

apply (Cat n m f g) x = f x

transapply :: Cat a b -> FSVec b R -> FSVec a R

transapply (Cat n m f g) x = g x

instance Category Cat where

id n = Cat n n

(\x -> x)

(\x -> x)

(Cat n m f g) . (Cat n' m' f' g') = Cat n' m

(\x -> f (f' x))

(\x -> g' (g x))

instance AbCategory Cat where

zeroArrow n m = Cat n m

(\x -> iterate m (\x -> zero) zero)

(\x -> iterate n (\x -> zero) zero)

(Cat n m f g) <+>

(Cat n' m' f' g') = Cat n m

(\x -> zipWith plus (f x) (f' x))

(\x -> zipWith plus (g x) (g' x))

instance AdditiveCategory Cat where

(Cat n m f g) &&& (Cat n' m' f' g') =

Cat n (m + m')

(\x -> (f x) ++ (f' x))

(\x -> zipWith plus (g (take m x)) (g' (drop m x)))

(Cat n m f g) ||| (Cat n' m' f' g') =

Cat (n + n') m

(\x -> zipWith plus (f (take n x)) (f' (drop n x)))

(\x -> (g x) ++ (g' x))

(Cat n m f g) ***

(Cat n' m' f' g') = Cat (n + n') (m + m')

(\x -> f (take n x) ++ f' (drop n x))

(\x -> g (take m x) ++ g' (drop m x))

-- injections

scalar r = Cat d1 d1

(\x -> singleton (times (head x) r))

(\x -> singleton (times (head x) r))

---- Scalar multiplication

-- HList hacks , following Kiselyov and Peyton -Jones:

-- http ://www.haskell.org/haskellwiki/GHC/AdvancedOverlap

-- instead of ShowPred as in the online article , we use Trich as

-- provided by Data.Typelevel

class Nat a => SMul a where

smul :: R -> Cat a a

class Nat a => SMul ' flag a where

smul ' :: flag -> R -> Cat a a

-- the instantiations of SMul '

instance SMul ' EQ D0 where

smul ' _ x = zeroArrow d0 d0

instance (Nat b, Succ b a, Trich b D0 f,

SMul ' f b, Add b D1 a, Min a D1 D1)

=> SMul ' GT a where
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A.5. Self-transposing polynomial multiplication

smul ' _ x = (scalar x) ***

((smul '::f -> R -> Cat b b) P.undefined x)

-- and finally the instantiation of SMul !!

instance (Trich a D0 flag , SMul ' flag a) => SMul a where

smul = smul ' (P.undefined ::flag)

---- Full multiplication

class (Nat preca , Succ preca a, Nat b, Add preca b c)

=> Mul preca a b c where

mul :: FSVec a R -> Cat b c

class (Nat preca , Succ preca a, Nat b, Add preca b c)

=> Mul ' flag preca a b c where

mul ' :: flag -> FSVec a R -> Cat b c

-- the instantiations of Mul '

instance (Nat b, Add D0 b b, Trich b D0 f, SMul ' f b)

=> Mul ' EQ D0 D1 b b where

mul ' _ x = smul (head x)

instance (Nat ppa , Succ ppa pa , Succ pa a, Nat b,

Add ppa b pc , Add pa b c,

Trich ppa D0 f, Mul ' f ppa pa b pc ,

Trich b D0 f', SMul ' f' b,

Add pc D1 c, Min c D1 D1, Min b D0 D0 ,

Add b D0 b, Min b b b, Min c b b)

=> Mul ' GT pa a b c where

mul ' _ x = (zeroArrow d0 d1 ***

(mul '::f -> FSVec pa R -> Cat b pc)

P.undefined (tail x))

<+>

((smul::R -> Cat b b) (head x) ***

zeroArrow P.undefined P.undefined)

-- and finally the instantiation of Mul !!

instance (Trich pa D0 flag , Mul ' flag pa a b ab)

=> Mul pa a b ab where

mul = mul ' (P.undefined ::flag)

-- Run ghci -fglasgow -exts -XUndecidableInstances

-- then try (for example)

-- ghci > apply (mul (1 +> 2 +> empty)) (1 +> 2 +> 45 +> 10 +> empty)

-- ghci > transapply (mul (1 +> 2 +> empty )) (1 +> 2 +> 45 +> 10 +> empty)

-- enjoy
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AppendixB

Linearity inference of Karatsuba

multiplication

We show here an example of inference of linearity in Haskell, using the technique
described in Section 4.1. We define type classes Ring and Module to represent
left-linear operations on rings and free modules. We instantiate them with integers
as base ring, and lists of integers as free module (representing polynomials over
Z[X]).

We implement Karatsuba multiplication over Z[X], using only the methods
defined in Ring and Module. This allows the type checker to deduce that Karatsuba
multiplication is linear in its first argument, once the second argument and
the degree of the polynomials are fixed. The code makes use of functional
dependencies, it must be run with the switch -fglasgow-exts on.

-- Linear and Scalar wrappers

newtype L = Lin Integer deriving (Show)

newtype S = Sca Integer deriving (Num , Show , Eq)

-- The ring

class Ring r where

zero :: r

(<+>) :: r -> r -> r

(<*>) :: r -> S -> r

neg :: r -> r

-- Free modules

class Ring r => Module m r | m -> r where

zeroM :: m

(<<*) :: m -> S -> m

(>>>) :: m -> Integer -> r

(<<<) :: r -> Integer -> m

(<++>) :: m -> m -> m

add :: m -> m -> Integer -> m

add a b n = foldl (<++>) zeroM

[((a>>>i) <+> (b>>>i))<<<i | i <- [1..n]]

-- Linear is an instance of Ring

instance Ring L where

zero = Lin 0

(Lin x) <+> (Lin y) = Lin (x+y)

(Lin x) <*> (Sca y) = Lin (x*y)

neg (Lin x) = Lin (-x)
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-- Scalar is an instance of Ring

instance Ring S where

zero = 0::S

(<+>) = (+)

(<*>) = (*)

neg = negate

-- We can add any other constant we like to S

one = 1::S

-- Lists (polynomials) are free modules

instance Ring r => Module [r] r where

zeroM = [zero]

[] <<* x = []

(x:xs) <<* y = (x <*> y):(xs <<* y)

[] >>> i = zero

(x:xs) >>> i =

if i < 1

then zero

else if i == 1

then x

else xs >>> (i-1)

x <<< i = if i <= 1 then [x] else zero:(x <<< (i-1))

[] <++> [] = []

(x:xs) <++> [] = x:(xs <++> [])

[] <++> (y:ys) = y:([] <++> ys)

(x:xs) <++> (y:ys) = (x <+> y):(xs <++> ys)

add [] [] n = []

add [] (y:ys) n =

if n > 0 then y:(add [] ys (n-1)) else []

add (x:xs) [] n =

if n > 0 then x:(add xs [] (n-1)) else []

add (x:xs) (y:ys) n =

if n > 0 then (x<+>y):(add xs ys (n-1)) else []

-- Karatsuba multiplication : the system will infer

-- shift :: Ring r => [r] -> Int -> [r]

-- split :: Ring r => [r] -> Int -> ([r], [r])

-- kara :: Ring r => [r] -> [S] -> Int -> [r]

shift x n = if n <= 0 then x else shift (zero:x) (n-1)

split [] n = ([], [])

split (x:xs) n =

if n <= 0

then ([], x:xs)

else let (a, b) = split xs (n-1) in (x:a, b)

kara [] y n = []

kara x [] n = []

kara x y n =

if n <= 0

then []
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B. Linearity inference of Karatsuba multiplication

else if n == 1

then [(x!!0) <*> (y!!0)]

else

let h = n `div ` 2 in

let (a0, a1) = split x h in

let (b0, b1) = split y h in

let x0 = kara a0 b0 h in

let x2 = kara a1 b1 (n-h) in

let xx1 = kara (a1 <++> a0) (b1 <++> b0) (n-h) in

let x1 = xx1 <++> ((x0 <++> x2) <<* (neg one)) in

(shift x2 n) <++> (shift x1 h) <++> x0

-- Run ghci -fglasgow -exts

-- and at the prompt type

-- ghci > :t kara

-- enjoy
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Appendix C

Proof of Vélu’s formulas

We always had admiration for our colleagues who can develop by hand two pages
full of calculations without making mistakes. When it comes to us, we usually
make a sign mistake at the third term. Tired of having to check for sign errors in
other people’s papers any time we had to use Vélu formulas, we decided to make
an automatic proof of it.

The following Magma code proves the passage from Eq. (8.1) to Eq. (8.4) and
from there to (8.9).

// Set the a-invariants and the Weierstrass equation

aInv <a2,a4,a6 > := FunctionField(Rationals () ,3);

_<X> := PolynomialRing(aInv);

f := X^3 + a2*X^2 + a4*X + a6;

fprim := Derivative(f);

// Set the affine coordinate ring

// (variables repeated twice)

P<Xp,Xq,Yp,Yq > := PolynomialRing(aInv , 4);

p<xp,xq,yp,yq > := quo <P|Yp^2-Evaluate(f,Xp),

Yq^2-Evaluate(f,Xq)>;

// The numerators of x(P+Q) - x(Q) and y(P+Q) - y(Q)

// using additions formulas

numlambda := yp - yq;

denlambda := xp - xq;

xPplusQ := numlambda ^2 + (-a2 -xp -xq)* denlambda ^2;

xPplusQminusxQ := xPplusQ - xq*denlambda ^2;

yPplusQ := -numlambda*xPplusQ + numlambda*xp*denlambda ^2

- yp*denlambda ^3;

yPplusQminusyQ := yPplusQ - yq*denlambda ^3;

// Velu summands

veluX := Evaluate(fprim ,xq)* denlambda + 2* Evaluate(f,xq);

veluY := -yp*Evaluate(fprim ,xq)* denlambda

- 4*yp*Evaluate(f,xq);

// Here's the proof!

// Observe how these quantities only have odd powers of yq

veluX - xPplusQminusxQ;

veluY - yPplusQminusyQ;
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C. Proof of Vélu’s formulas

// Elkies summmands (only abscissa)

elkiesX := (xp - xq)* denlambda ^2

- Evaluate(fprim ,xp)* denlambda

+ 2* Evaluate(f,xp);

// The proof , again (thus time we directly get 0)

elkiesX - veluX;

// Done!

The first and second line of output are the differences between each term of
the sums in Eqs. (8.1) and (8.4). In both lines, to conclude one must observe that
all the terms in the difference contain an odd power of y(Q), thus they sum up to
0 over G∗.

The third line is the difference between each term of the sums in Eqs. (8.4)
and (8.9). The result is self-explanatory.
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Conclusion

We have presented our contributions to the study of efficient algorithms for
towers of finite fields and isogenies between elliptic curves. In view of these
applications, we have employed advanced algebraic and algorithmic techniques,
and developed new tools that have an interest of their own. Our contributions
span three directions.

Transposition principle. Before this work, the transposition principle used to be
considered difficult to apply, and transposed algorithms were notoriously difficult
to interpret and implement correctly. Following [BLS03], one could apply the
principle in an automatic fashion to a very special class of algebraic algorithms, that
we call algebraic transforms in Section 3.3. More general algebraic algorithms, such
as polynomial multiplication or Euclidean division, were still treated case-by-case.

In this document we have shown that typed functional languages allow to
automatically infer the linear algebraic structure of any algebraic algorithm. Once
this structure is known, the transposition of the algebraic algorithm is automati-
cally produced by partial evaluation. It would be interesting to explore new ways
of implementing the transposition principle in higher order languages such as
Haskell, Coq or Agda, as this could have applications to the formal verification
of computer algebra systems by automated theorem provers. We have sketched
some relevant ideas in Appendix A.

Towers of finite fields. With the help of transposed algorithms, we have constructed
a family of Artin-Schreier towers of finite fields with quasi-optimal arithmetic op-
erations. Thanks to Couveignes’ algorithm [Cou00], such fast arithmetic generalize
to any Artin-Schreier tower.

Since any separable extension of degree equal to the characteristic is Artin-
Schreier, our construction provides –at least in theory– fast arithmetics for any
such tower of extensions. This can be applied, for example, to the computation
of torsion points of Abelian varieties, as we did in this document. It would be
interesting to generalize this construction to the case of function fields, as this
could have applications to coding theory [GS96, SAK+01].

Elliptic curves. Using our construction for Artin-Schreier towers, we were able
to give the first complete implementation of Couveignes’ second algorithm for
isogeny computation [Cou96]. This, together with a further improvement we have
presented in Section 8.7, yields an algorithm whose complexity is quadratic in the
degree of the isogeny.

The comparison of our implementation with Lercier and Sirvent’s algorithm
[LS08] concludes in favor of the latter, however our improvements to Couveignes’
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Conclusion

algorithm stay of theoretical interest for several reasons. First, Couveignes’ al-
gorithm can be easily generalized to Jacobians of hyperelliptic curves, although
with a much worse complexity. Improving such generalization, at least for the
case of genus 2 hyperelliptic curves, would be of some relevance for point count-
ing [Sch95, Pil90, GS04]; although p-adic methods are likely to remain the best
algorithms for the small characteristic case [Ked01, DV06].

Second, our generalization of Couveignes’ algorithm to compute isogenies of
unknown degree sheds new light on Couveignes’ algorithm and on the complexity
of the isogeny computation problem; and could have applications in cryptogra-
phy [Tes06, RS06]. Looking for similar generalizations of other algorithms, such as
Couveignes’ first algorithm [Cou94], is a first step towards a better understanding
of the problem, and could ultimately lead to an optimal algorithm to compute
isogenies of given degree between elliptic curves: a result that is still out of reach
today.
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j-invariant, 112

Karatsuba multiplication, 22
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Kummer variety, 114

Lagrange interpolant, 26
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modular polynomial, 119
Montgomery’s formulas, 114
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multiDAG, 35
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path, 35
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projective space, 19
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RAM model, 45
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rational univariate representation, 74–
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reverse mode, 50
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tation

scalar edge, 42
scalar input, 42, 55
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element, 17
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SLP, see straight line program
soft Oh, see complexity notation
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standard left-linear basis, 34

standard multilinear basis, 41
straight line program, 45
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supersingular, 115

Tate module, 115
torsion point, 114
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Artin-Schreier, 83
primitive, 85, 87

trace, 15, 73, 85
of an operator, 15
of a field extension, 18

trace form, 72
trace formulas, 71–73
trace map, 25
transalpyne, 59
transposed algorithm, 30
transposed modular multiplication,

31, 97
transposed modular reduction, 31, 96,

139
transposed multiplication, 30
transposition principle, 30, 50
transposition theorem, 37, 38, 48–50
twist, 116

degree of a, 116
type class, 56

underlying graph, 35
univariate basis, 85

variety
affine, 19
algebraic, 19
projective, 19

vertex, 35
Voloch’s formulas, 130

Weierstrass equation, 111
Weierstrass form

affine, 111
homogeneous, 111
simplified form, 115

Weierstrass ℘-function, 118

XGCD, 28
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Abstract

In this thesis we apply techniques from computer algebra and language
theory to speed up the elementary operations in some specific towers of finite
fields. We apply our construction to the problem of computing isogenies
between elliptic curves and obtain faster (both asymptotically and in practice)
variants of Couveignes’ algorithm.

The document is divided in four parts. In Part I we recall some basic
notions from algebra and complexity theory. Part II deals with the transposition
principle: in it we generalize ideas of Bostan, Schost and Lecerf, and show
that it is possible to automatically transpose computer programs without
losses in time complexity and with a small loss in space complexity. Part III
combines the results on the transposition principle with classical techniques
from elimination theory; we apply these ideas to obtain asymptotically optimal
algorithms for the arithmetic of Artin-Schreier towers of finite fields. We also
describe an implementations of these algorithms. Finally, in Part IV we use the
previous results to speed up Couveignes’ algorithm and compare the result
with the other state of the art algorithms for isogeny computation. We also
present a new generalization of Couveignes’ algorithm that computes isogenies
of unknown degree.

Résumé

Dans cette thèse nous appliquons des techniques provenant du calcul
formel et de la théorie des langages afin d’améliorer les opérations élémentaires
dans certaines tours de corps finis. Nous appliquons notre construction au
problème du calcul d’isogénies entre courbes elliptiques et obtenons une
variante plus rapide (à la fois en théorie et en pratique) de l’algorithme de
Couveignes.

Le document est divisé en quatre parties. Dans la partie I nous faisons
des rappels d’algèbre et de théorie de la complexité. La partie II traite du
principe de transposition : nous généralisons des idées de Bostan, Schost et
Lecerf et nous montrons qu’il est possible de transposer automatiquement
des programmes sans pertes en complexité-temps et avec une petite perte
en complexité-espace. La partie III combine les résultats sur le principe de
transposition avec des techniques classiques en théorie de l’élimination ; nous
appliquons ces idées pour obtenir des algorithmes asymptotiquement optimaux
pour l’arithmétique des tours d’Artin-Schreier de corps finis. Nous décrivons
aussi une implantation de ces algorithmes. Enfin, dans la partie IV nous
utilisons les résultats précédents afin d’accélérer l’algorithme de Couveignes et
de comparer le résultat avec les autres algorithmes pour le calcul d’isogénies
qui font l’état de l’art. Nous présentons aussi une nouvelle généralisation de
l’algorithme de Couveignes qui calcule des isogénies de degré inconnu.
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