K. T. Alfriend and H. Schaub, Dynamics and control of spacecraft formations : Challenges and some solutions, Journal of the Astronautical Sciences, vol.48, issue.2, pp.249-267, 2000.

K. T. Alfriend, H. Schaub, and D. Gim, Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies, pp.0-012, 2000.

M. L. Anthony and F. T. Sasaki, The rendezvous problem for nearly circular orbits, 2nd Aerospace Sciences Meeting, pp.1666-1673, 1965.
DOI : 10.2514/6.1965-32

G. Arfken and H. J. Weber, Mathematical Methods for Physicists, 1985.

D. Arzelier and A. Théron, Etude du maintienàmaintienà poste en boucle fermée par frottement différentiel de la roue interferométrique, 2007.

D. Arzelier, A. Théron, and M. Kara-zaitri, Etude bibliographique sur la modélisation du mouvement relatif pour leprobì eme du rendez-vous. Note technique Rapport LAAS 08258, CNRS, 2008.

H. Baoyin, L. Junfeng, and G. Yunfeng, Dynamical behaviors and relative trajectories of the spacecraft formation flying, Aerospace Science and Technology, vol.6, issue.4, pp.295-301, 2002.
DOI : 10.1016/S1270-9638(02)01151-3

A. Baranov and E. O. Terekhova, Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit, Cosmic Research, vol.33, pp.382-387, 1995.

L. Breger and J. How, Safe trajectories for autonomous rendezvous of spacecraft, AIAA Guidance, Navigation and Control Conference and Exhibit, pp.20-23, 2007.

L. Breger and J. How, Safe Trajectories for Autonomous Rendezvous of Spacecraft, Journal of Guidance, Control, and Dynamics, vol.31, issue.5, pp.1478-1489, 2008.
DOI : 10.2514/1.29590

R. A. Brouke and P. J. Cefola, On the equinoctial orbit elements, Celestial Mechanics, vol.70, issue.3, pp.303-310, 1972.
DOI : 10.1007/BF01228432

Y. D. Brouwer, Solution of the problem of artificial satellite theory without drag, The Astronomical Journal, vol.64, pp.378-397, 1959.
DOI : 10.1086/107958

M. Capderou, Satellites : orbites et missions, 2003.

T. E. Carter, State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example, Journal of Guidance, Control, and Dynamics, vol.21, issue.1, pp.148-155, 1998.
DOI : 10.2514/2.4211

S. Casotto, Position and velocity perturbations in the orbital frame in terms of classical element perturbations. Celestial Mechanics and Dynamical Astronomy, pp.209-221, 1993.

J. H. Chiu, Optimal multiple-impulse nonlinear orbital rendezvous, 1984.

W. H. Clohessy and R. S. Wiltshire, Terminal Guidance System for Satellite Rendezvous, Journal of the Aerospace Sciences, vol.27, issue.9, pp.653-658, 1960.
DOI : 10.2514/8.8704

C. Delaunay, Théorie du mouvement de la lune. Mallet-Bachelier, p.1878

J. P. Devries, ELLIPTIC ELEMENTS IN TERMS OF SMALL INCREMENTS OF POSITION AND VELOCITY COMPONENTS, AIAA Journal, vol.1, issue.11, pp.2626-2629, 1963.
DOI : 10.2514/3.2124

J. Fontdecaba, Dynamics of formation flying :Applications to Earth and Universe observation, 2008.

J. Fourcade, Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying, ESA Special Publication, p.41, 2004.

J. Fourcade, MaintienàMaintienà poste d'une formation par frottement différentiel. Note technique DCT, 2002.

J. L. Garrison, T. G. Gardner, and P. Axelrad, Relative motion in highly elliptical orbits, Proceedings of the Advances in the Astronautical Sciences, pp.95-194, 1995.

S. Gaulocher, J. P. Chétien, C. Pittet, M. Delpech, and D. Alazard, Closed-loop control of formation flying satellites : time and parameter varying framework, 2nd Int. Symposium on formation flying missions and technologies, 2004.

D. Gim and K. T. , The state transition matrix of relative motion for the perturbed non-circular reference orbit, 2001.

D. Gim and K. T. , State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit, Journal of Guidance, Control, and Dynamics, vol.26, issue.6, pp.956-971, 2003.
DOI : 10.2514/2.6924

D. Gim and K. T. , Satellite relative motion using differential equinoctial elements. Celestial Mechanics and Dynamical Astronomy, pp.295-336, 2005.

J. F. Hamel and J. De-lafontaine, Linearized Dynamics of Formation Flying Spacecraft on a J2-Perturbed Elliptical Orbit, Journal of Guidance, Control, and Dynamics, vol.30, issue.6, pp.1649-1658, 2007.
DOI : 10.2514/1.29438

G. W. Hill, Researches in the Lunar Theory, American Journal of Mathematics, vol.1, issue.1, pp.5-26, 1878.
DOI : 10.2307/2369430

M. Humi and T. Carter, Rendezvous Equations in a Central-Force Field with Linear Drag, Journal of Guidance, Control, and Dynamics, vol.25, issue.1, pp.74-79, 2002.
DOI : 10.2514/2.4851

D. J. Irvin, A study of linear vs nonlinear control techniques for the reconfiguration of satellite formations. Master's thesis, Air Force Institute of Technology, 2001.

O. Junge, J. E. Marsden, and S. Ober-blöbaum, Optimal Reconfiguration of Formation Flying Spacecraft ---a Decentralized Approach, Proceedings of the 45th IEEE Conference on Decision and Control, pp.5210-5216, 2006.
DOI : 10.1109/CDC.2006.376977

C. D. Kaarlgard, Second-order relative motion equations. Master's thesis, 2001.

J. A. Kechichian, Motion in a general elliptic orbit with respect to a dragging and precessing coordinate frame, Journal of Astronautical Sciences, vol.46, issue.1, pp.25-46, 1998.

Y. Kozai, The motion of a close earth satellite, The Astronomical Journal, vol.64, pp.367-377, 1959.
DOI : 10.1086/107957

C. Lane and P. Axelrad, Formation Design in Eccentric Orbits Using Linearized Equations of Relative Motion, Journal of Guidance, Control, and Dynamics, vol.29, issue.1, pp.146-160, 2006.
DOI : 10.2514/1.13173

D. F. Lawden, Fundamentals of space navigation, Journal of the British Interplanetary Society, vol.2, pp.87-101, 1954.

D. F. Lawden, Optimal trajectories for space navigation, 1963.

R. G. Melton, Time-Explicit Representation of Relative Motion Between Elliptical Orbits, Journal of Guidance, Control, and Dynamics, vol.23, issue.4, pp.604-610, 2000.
DOI : 10.2514/2.4605

O. Montenbruck and E. Gill, Satellite orbits, 2001.
DOI : 10.1007/978-3-642-58351-3

B. J. Naasz, Classical element feedback control for spacecraft orbital maneuvers, 2002.

J. E. Prussing and B. A. Conway, Orbital mechanics, 1993.

D. P. Scharf, F. Hadaegh, and S. R. Ploen, A survey of spacecraft formation flying guidance and control (part 1): guidance, Proceedings of the 2003 American Control Conference, 2003., pp.1733-1739, 2003.
DOI : 10.1109/ACC.2003.1239845

H. Schaub and J. L. Junkins, Analytical mechanics of space systems, Education Series. AIAA, 2003.
DOI : 10.2514/4.861550

S. A. Schweighart, Development and analysis of a high fidelity linearized J 2 model for satellite formation flying, 2001.

S. A. Schweighart and R. J. Sedwick, High-Fidelity Linearized J Model for Satellite Formation Flight, Journal of Guidance, Control, and Dynamics, vol.25, issue.6, pp.1073-1080, 2002.
DOI : 10.2514/2.4986

P. Sengupta, Dynamics and control of satellite relative motion in a central gravitational field, 2006.

M. J. Sidi, Spacecraft dynamics and control, 1997.
DOI : 10.1017/CBO9780511815652

A. Théron, F. Jouhaud, and J. P. Chrétien, Modélisation du mouvement orbital relatif entre deux satellites. Note technique 1/08282, 2004.

J. Tschauner, The elliptic orbit rendezvous, AIAA 4th Aerospace Sciences Meeting, 1966.

J. Tschauner and P. Hempel, Optimale beschleunigungs-programme fur des rendezvous manover, Astronautica Acta, pp.5-6296, 1964.

V. V. Vaddi, Modelling and control of satellite formations, 2003.

D. A. Vallado, Fundamentals of astrodynamics and applications. Space Technology Library, 2001.

M. J. Walker, B. Ireland, and J. Owens, A set modified equinoctial orbit elements, Celestial Mechanics, vol.30, issue.2, pp.409-419, 1985.
DOI : 10.1007/BF01227493

A. D. Wheelon, Midcourse and terminal guidance. Space Technology Library, 1959.

K. Yamanaka and F. Ankersen, New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit, Journal of Guidance, Control, and Dynamics, vol.25, issue.1, pp.janvier-février, 2002.
DOI : 10.2514/2.4875

H. Yan, Dynamics and real-time optimal control of satellite attitude and satellite formation systems, 2006.

.. Exemples-académiques-de-carter, .. De-carter, -. Carter, and -. Carter, 201 8.2.2 Validation et comparaison des approches indirectes, p.205

A. La-mission, 208 8.3.2 Simulations et résultats pour le cas nominal, p.215

P. La-mission, 218 8.4.1 Présentation de la mission, p.223

S. La-mission, 223 8.5.1 Présentation de la mission, p.224

L. Algorithmes-indirects-ontétéontété-comparéscomparésà-l-'aide-des-exemples-de and C. , Cela a permis de constater que l'algorithme RDV-IND1 certifiè a chaque fois les résultats obtenusàobtenusà l'aide de l'algorithme RDV-IND2 qui est moins complexè a mettre en oeuvre et ne nécessite pas une grande puissance de calcul. Pour chaque exemple traité

L. Approches-directes-et-indirectes-ontétéontété-comparées-ensuite, Les deux techniques développées ne permettent pas d'optimiser la même fonction de coût. Les simulations ont permis de constater qu'il existe un certain nombre de cas de figure o

. Enfin, RDV-DIR ontétéontété traitéstraitésà travers la mission ATV. L'effet des incertitudes a ´ etéetéétudié dans cette section et leur incidence sur les performances de l'algorithme. Un point important a ´ eté notamment remarqué : la grande sensibilité des trajectoires par rapport aux incertitudes sur l'´ etat initial. L'influence de la robustesse sur la consommation a ´ eté démontréé egalement pour différents nombres d'impulsions, 2] V. Alexéev, V. Tikhomirov, and S. Fomine. Commande Optimale, 1979.

D. Arzelier, A. Théron, and M. Kara-zaitri, Etude bibliographique sur la modélisation du mouvement relatif pour leprobì eme du rendez-vous. Note technique Rapport LAAS 08258, CNRS, 2008.

U. Ascher, R. Mattheij, and R. R. , Numerical solution of boundary value problems in ordinary differential equations, 1988.
DOI : 10.1137/1.9781611971231

U. Ascher, R. Press, and . Russell, On Spline Basis Selection for Solving Differential Equations, SIAM Journal on Numerical Analysis, vol.20, issue.1, pp.121-142, 1983.
DOI : 10.1137/0720009

M. Athans and P. L. Falb, Optimal control, 1966.

R. H. Battin, An introduction to the mathematics and methods of astrodynamics. Education Series, 1999.

A. Ben-tal, S. Boyd, and A. Nemirovski, Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems, Mathematical Programming, pp.63-89, 2006.
DOI : 10.1007/s10107-005-0679-z

A. Ben-tal and A. Nemirovski, Robust Convex Optimization, Mathematics of Operations Research, vol.23, issue.4, 1998.
DOI : 10.1287/moor.23.4.769

D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control : The Discrete-Time Case (réédition), Athena Scientific, pp.3061-0805, 1996.

J. T. Betts, Survey of Numerical Methods for Trajectory Optimization, Journal of Guidance, Control, and Dynamics, vol.21, issue.2, pp.193-207, 1998.
DOI : 10.2514/2.4231

J. T. Betts, Optimal three-burn orbital transfer, Journal of Guidance, Control and Dynamics, vol.15, pp.861-864, 1977.

J. T. Betts, Practical methods for optimal control using nonlinear programming Advances in Design and Control, SIAM, 2001.

H. G. Bock and K. J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems, IFAC 9 th World congress, 1984.

O. Bolza, Calculus of variations, 1973.

G. Brauer, D. Cornick, and R. Stevenson, Capabilities and applications of the program to optimize simulated trajectories (post), 1977.

R. G. Brusch, Constrained Impulsive Trajectory Optimization for Orbit-to-Orbit Transfer, Journal of Guidance, Control, and Dynamics, vol.2, issue.3, pp.204-212, 1979.
DOI : 10.2514/3.55862

A. E. Bryson and Y. C. Ho, Applied optimal control, 1969.

C. Caratheodory, Calculus of variations and partial differential equations of the first order, 1965.

T. E. Carter, Optimal impulsive space trajectories based on linear equations, Journal of Optimization Theory and Applications, vol.7, issue.2, 1991.
DOI : 10.1007/BF00940627

T. E. Carter, Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynamics and Control, vol.10, issue.3, pp.219-227, 2000.
DOI : 10.1023/A:1008376427023

T. E. Carter and S. A. Alvarez, Quadratic-Based Computation of Four-Impulse Optimal Rendezvous near Circular Orbit, Journal of Guidance, Control, and Dynamics, vol.23, issue.1, pp.109-1117, 2000.
DOI : 10.2514/2.4493

T. E. Carter and J. Brient, Linearized impulsive rendezvous problem, Journal of Optimization Theory and Applications, vol.6, issue.3, 1995.
DOI : 10.1007/BF02192159

L. Cesari, Optimization theory and applications : Problems with ordinary differential equations, 1983.
DOI : 10.1007/978-1-4613-8165-5

V. A. Chobotov, Orbital mechanics. Educational Series, 2002.

W. H. Clohessy and R. S. Wiltshire, Terminal Guidance System for Satellite Rendezvous, Journal of the Aerospace Sciences, vol.27, issue.9, pp.653-658, 1960.
DOI : 10.2514/8.8704

D. Cox, J. Little, and D. Shea, Using algebraic geometry, 2000.
DOI : 10.1007/978-1-4757-6911-1

D. Cox, J. Little, and D. Shea, Ideals, varieties and algorithms, 2005.

B. Dacorogna, Introduction to the calculus of variations, 2004.

G. B. Dantzig, A. Orden, and P. Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific Journal of Mathematics, vol.5, issue.2, pp.183-195, 2003.
DOI : 10.2140/pjm.1955.5.183

T. N. Edelbaum, How many impulses ?, AIAA Aerospace Sciences Meeting, 1966.

L. Ghaoui, F. Oustry, and H. Lebret, Robust Solutions to Uncertain Semidefinite Programs, SIAM Journal on Optimization, vol.9, issue.1
DOI : 10.1137/S1052623496305717

G. Elnagar, M. Kazemi, and M. Razzaghi, The pseudospectral Legendre method for discretizing optimal control problems, IEEE Transactions on Automatic Control, vol.40, issue.10, p.40, 1995.
DOI : 10.1109/9.467672

D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, Spectral methods for PDE, chapter Theory and applications of spectral methods, SIAM, 1984.

F. J. Hale, Introduction to space flight, 1994.

C. Hargraves and S. Paris, Direct trajectory optimization using nonlinear programming and collocation, AIAA J. Guidance and Control, vol.10, 1987.

D. Henrion, J. B. Lasserre, and J. Loefberg, Gloptipoly 3 : moments, optimization and semidefinite programming. Optimization Methods and Software, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00172442

D. Henrion and J. B. Lasserre, Feature - How gloptipoly is applied to problems in robust and nonlinear control Solving nonconvex optimization problems, IEEE Control Systems Magazine, vol.24, issue.3, pp.72-83, 2004.
DOI : 10.1109/MCS.2004.1299534

D. G. Hull, Conversion of optimal control problems into parameter optimization problems, J. Guidance, Control and Dynamics, vol.20, issue.1, 1997.

D. Jezewski, Primer vector theory and applications. Note technique TR R-454, 1975.

D. Jezewski, Primer vector theory applied to the linear relative-motion equations, Optimal Control Applications and Methods, vol.27, issue.4, pp.387-401, 1980.
DOI : 10.1002/oca.4660010408

D. Jezewski and J. Donaldson, An analytic approach to optimal rendezvous using clohessy-wiltshire equations, Journal of the Astronautical Sciences, vol.3, pp.293-310, 1979.

D. Jezewski and H. L. , An efficient method for calculating optimal free-space n-impulse trajectories., AIAA Journal, vol.6, issue.11, pp.2160-2165, 1968.
DOI : 10.2514/3.4949

H. B. Keller, Numerical methods for two-point Boundary-value problems, 1968.

S. Kerambrun and . Eads-astrium, Spécification des algorithmes de guidage, 2008.

D. Kraft, Computational Mathematical Programming, chapter On converting optimal control problems into non linear programming codes, pp.261-280, 1985.

P. Labourdette, E. Julien, F. Chemama, and D. Carbonne, Atv jules vernes mission maneuver plan, 21 st International symposium on space flight dynamics, 2008.

R. Larsson, S. Berge, P. Bodin, and U. Jönsson, Fuel efficient relative orbit control stategies for formation flying and rendezvous within prisma, 29 th Annual AAs Guidance and Control Conference, 2006.

R. Larsson, J. Mueller, S. Thomas, B. Jakobsson, and P. Bodin, Orbit constellation safety on the prisma in-orbit formation flying test bed, The 3rd International Symposium on Formation Flying, Missions and Technologies, pp.23-25, 2008.

J. Lasserre, Global Optimization with Polynomials and the Problem of Moments, SIAM Journal on Optimization, vol.11, issue.3, pp.796-817, 2001.
DOI : 10.1137/S1052623400366802

D. F. Lawden, Optimal trajectories for space navigation, 1963.

G. Leitman, An introduction to optimal control, 1966.

P. M. Lion and M. Handelsman, Primer vector on fixed-time impulsive trajectories, AIAA Journal, vol.6, issue.1, p.127, 1968.

J. Löfberg, YALMIP : a toolbox for modeling and optimization in MATLAB, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), 2004.
DOI : 10.1109/CACSD.2004.1393890

J. Marec, Trajectoires spatiales optimales, 1983.

S. Mehrotra, On the Implementation of a Primal-Dual Interior Point Method, SIAM Journal on Optimization, vol.2, issue.4, pp.575-601, 1992.
DOI : 10.1137/0802028

E. H. Moore, On the reciprocal of the general algebraic matrix, Bulletin of the American Mathematical Society, vol.26, pp.394-395, 1920.

L. W. Neustadt, A General Theory of Minimum-Fuel Space Trajectories, Journal of the Society for Industrial and Applied Mathematics Series A Control, vol.3, issue.2, pp.317-356, 1965.
DOI : 10.1137/0303023

F. Nilsson, P. Bodin, C. Chasset, B. Jakobsson, R. Larsson et al., Autonomous rendezvous experiments on the prisma in-orbit formation flying test bed, The 3rd International Symposium on Formation Flying, Missions and Technologies, pp.23-25, 2008.

G. Pareschi and P. Ferrando, The simbol-x hard x-ray mission, Experimental Astronomy, vol.20, issue.1, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00130675

S. W. Paris, J. P. Riehl, and W. K. Sjauw, Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp.21-24, 2006.
DOI : 10.2514/6.2006-6309

P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, 2000.

A. Pablo, B. Parrilo, and . Sturmfels, Minimizing polynomial functions, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2001.

R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, vol.11, issue.03, pp.406-413, 1955.
DOI : 10.1093/qmath/2.1.189

J. E. Prussing, Illustration of the primer vector in time- fixed, orbit transfer., AIAA Journal, vol.7, issue.6, pp.1167-1168, 1969.
DOI : 10.2514/3.5297

J. E. Prussing, A class of optimal two-impulse rendezvous using multiple-revolution lambert solution Advances in the Astronautical Sciences, pp.17-39, 2000.

J. E. Prussing and R. S. Clifton, Optimal multiple-impulse satellite evasive maneuvers, Journal of Guidance, Control, and Dynamics, vol.17, issue.3, pp.599-606, 1994.
DOI : 10.2514/3.21239

J. E. Prussing and B. A. Conway, Orbital mechanics, 1993.

R. Pytlak, Numerical methods for optimal control problems with state constraint, Lecture Notes in Mathematics, vol.1707, 1999.
DOI : 10.1007/BFb0097244

H. Schaub and J. L. Junkins, Analytical mechanics of space systems, Education Series. AIAA, 2003.
DOI : 10.2514/4.861550

H. Shen and P. Tsiotras, Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions, Journal of Guidance, Control, and Dynamics, vol.26, issue.1, pp.50-61, 2003.
DOI : 10.2514/2.5014

N. Z. Shor, Quadratic optimization problems, Tekhnicheskaya Kibernetika, vol.1, issue.1, pp.128-139, 1987.

N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems, 1998.
DOI : 10.1007/978-1-4757-6015-6

URL : http://dx.doi.org/10.1016/s0898-1221(99)90233-x

A. J. Sommese and C. W. Wampler, The numerical solution of systems of polynomials Advances in Design and Control, World Scientific, 2005.

R. G. Stern and J. E. Potter, Optimization of Midcourse Velocity Corrections, First IFAC Symposium Peaceful Uses of Automatic Control in Outer Space, pp.70-83, 1966.
DOI : 10.1007/978-1-4899-6411-3_6

J. F. Sturm, Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, pp.11-12625, 1999.

E. Trélat, Contrôle optimal : théorie & applications. Vuibert, 2005.

J. Tschauner, The elliptic orbit rendezvous, AIAA 4th Aerospace Sciences Meeting, 1966.

J. Tschauner and P. Hempel, Optimale beschleunigungs-programme fur des rendezvous manover, Astronautica Acta, pp.5-6296, 1964.

J. Verschelde, Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Transactions on Mathematical Software, vol.25, issue.2, pp.251-276, 1999.
DOI : 10.1145/317275.317286

K. Yamanaka and F. Ankersen, New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit, Journal of Guidance, Control, and Dynamics, vol.25, issue.1, pp.janvier-février, 2002.
DOI : 10.2514/2.4875

B. J. Naasz, Classical element feedback control for spacecraft orbital maneuvers, 2002.

M. J. Walker, B. Ireland, and J. Owens, A set modified equinoctial orbit elements, Celestial Mechanics, vol.30, issue.2, pp.409-419, 1985.
DOI : 10.1007/BF01227493

Y. D. Brouwer, Solution of the problem of artificial satellite theory without drag, The Astronomical Journal, vol.64, pp.378-397, 1959.
DOI : 10.1086/107958

A. J. Chakravarty, Orbital decay due to drag in an exponentially varying atmosphere, Journal of Guidance, Control, and Dynamics, vol.3, issue.6, pp.592-576, 1980.
DOI : 10.2514/3.19728

D. Gim and K. T. , State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit, Journal of Guidance, Control, and Dynamics, vol.26, issue.6, pp.956-971, 2003.
DOI : 10.2514/2.6924

M. Humi and T. Carter, Closed-Form Solutions for Near-Circular Arcs with Quadratic Drag, Journal of Guidance, Control, and Dynamics, vol.29, issue.3, pp.513-518, 2006.
DOI : 10.2514/1.16186

D. King-hele, Theory of satellite orbits in an atmosphere, Butterworths, 1964.

Y. Kozai, The motion of a close earth satellite, The Astronomical Journal, vol.64, pp.367-377, 1959.
DOI : 10.1086/107957

R. H. Lyddane, Small eccentricities or inclinations in the Brouwer theory of the artificial satellite, The Astronomical Journal, vol.68, issue.8, pp.555-558, 1963.
DOI : 10.1086/109179

O. Montenbruck and E. Gill, Satellite orbits, 2001.
DOI : 10.1007/978-3-642-58351-3

J. E. Prussing and B. A. Conway, Orbital mechanics, 1993.

H. Schaub and J. L. Junkins, Analytical mechanics of space systems, Education Series. AIAA, 2003.
DOI : 10.2514/4.861550

D. A. Vallado, Fundamentals of astrodynamics and applications. Space Technology Library, 2001.

O. Zarrouati, Trajectoires spatiales. Cepadues Editions, 1987.

D. A. Vallado, Fundamentals of astrodynamics and applications. Space Technology Library, 2001.

D. Arzelier, M. Kara-za¨?triza¨?tri, C. Louembet, A. Deliba¸s?ba¸s?, M. Théron et al., solution of fuel-optimal impulsive rendezvous using primer vector theory Journal of Guidance, Navigation and Control. Soumis. Nonlinear and linearized mappings between perturbed relative motion state vectors, A Navigation and Control. Sou- mis. Nonlinear local cartesian relative motion model for perturbed elliptical orbits, Liste des publications Journaux internationaux Polynomial optimization for the

G. Atlanta, U. , M. Kara-za¨?triza¨?tri, D. Arzelier, and C. , Mixed Iterative Algorithm For Solving Optimal Impulsive Time-Fixed Rendezvous problem

P. Blanc-paques, E. Gogibus, C. Louembet, and M. Kara-za¨?triza¨?tri, Evaluation of autonomous guidance techniques for space rendezvous and withdrawal strategy Solving fuel-optimal impulsive rendezvous problem using primer vector theory and real algebraic geometry, Août, 2010.

C. Louembet, M. Kara-za¨?triza¨?tri, D. Arzelier, and A. Théron, Nonlinear and linear local cartesian relative motion state models for J2 perturbed elliptical orbits, Liste des publications Solving fuel-optimal orbital homing problem with continuous thrust using direct methods 21st International Symposium on Space Flight Dynamics 21st International Symposium on Space Flight Dynamics, 2002.

M. Kara-za¨?triza¨?tri, D. Arzelier, C. Louembet, A. Théron, and G. Mosar, Rendez-vous orbital : de la modélisationmodélisationà la résolution par les méthodes indirectes, 2009.