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CHAPTER

INTRODUCTION

The so-called Web 2.0 revolution has fundamentally changed the way people interact with the Internet.
The Web has turned from a read-only infrastructure to a collaborative platform. The users are now
active participants, and contribute to the content of the websites by expressing their opinions and
sharing information.

Social networks Social network websites, such as Facebook, were originally created to keep track
of friends, and share information and pictures with them. On these platforms, users can publish
information to explicitly designated friends. It is also possible, for example, to associate a friend
with a picture on which she appears. Facebook has proved to be a very efficient mean to quickly
reach thousands of people and organize events.

Social networks have developed tools that enable other websites to access to the user’s profile and
personalize the Web content depending on her friends, or the city she lives in for instance. Hence, it
is possible for a user to recommend a website to her friends. The website can also detect that two
friends are interested in the same information which gives them an opportunity to discuss about it.
As the content of the Web keeps on growing, leveraging social networks can be an effective way to
provide the users with a more interesting and personalized experience.

Social information While social networks were designed to connect people with real life friends,
many modern websites have been created to leverage social information. They do not rely on
an explicit social network, but let the users express their opinions and preferences. For example,
LastFM collects what users listen to, while Delicious is a collaborative bookmarking platform. These
websites aggregate the information provided by the users to extract knowledge such as trends in
music communities, or hot topics in the Internet. In return, the users benefit from personalized
services based on the preferences they expressed. The website can compute similarities between the
interests of the user and recommend new content, through collaborative filtering for instance.
Several websites also rely on the users to annotate the content they propose. This phenomenon is
known as crowdsourcing. Youtube and Flickr are websites in which users can publish videos and
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1. INTRODUCTION

photos respectively. These contents are very difficult to analyze, as opposed to text, and thus difficult
to integrate in a search engine. The users have the possibility to annotate the content using freely
chosen keywords, also called tags, either to facilitate the diffusion of their own content, or to enhance
the efficiency of the website they use. This increases the efficiency of search engines, as the tags can
be used to index the content. Monitoring the activities of the users also helps discovering new links
between items as well as identifying popular content.

Privacy Social systems are crucial to enhance the Web experience of the users. Nevertheless, they
also raise serious privacy problems. Indeed, to benefit from these services, users have to publish
personal information. The complexity of the interactions makes it very difficult to precisely know
which information is recorded and who can access it. Social networks propose configuration options
to control who can access the data, but the users are often not aware of how exposed they really are.!
To the best of our knowledge, websites based on social information always associate the contributions
of a user with her identity, which enable anyone to track her activities and interests. In 2009, the
Facebook terms of service even included a perpetual ownership claim over the user’s data.

The privacy problem mainly arises from the mismatch between the user’s need to protect their
private life, and the website’s need for business opportunities. It is well known that friends influence
each other, thus companies leverage social networks to increase their sales. For instance, Facebook
implemented a functionality which automatically tells a user’s friends about what she buys on the
Amazon Web store. This behavior clearly threatens the privacy of the users, and Facebook had to
remove it due to the user’s reactions. Similarly, social information is often sold to other companies
for personalized advertising purpose. As a consequence, the users may become reluctant to share
their personal data. This is a huge problem, as the efficiency of social platforms depends of the
number of users participating. Hence, the websites have to find a balance between the amount of
private information they publicize and the quality of the services they propose.

A personalized Web experience leverages the user’s private data, either through a social networks
or through their social information. While users can greatly benefit from these opportunities, they
may feel threatened by the private companies’ policies and reject these platforms.

Cost and scalability As the number of social services users keeps on growing, it becomes in-
creasingly difficult for companies to scale with the demand. Facebook claims over 500 millions of
active users, while LastFM reports 40 millions accounts. The computation required by personalized
services as well as the storage of the user’s personal information necessitate large dedicated data
centers. This infrastructure is extremely costly, both in terms of machines and in terms of energy.
The price of energy and the proximity of energy production sites has even become one of the main
placement criteria for data centers. Data centers are often constituted of many regular machines,
and new computation paradigms have been developed to leverage their power. Indeed, a data center
can no longer be seen as one extremely powerful computer, it is now a distributed architecture [26].
Hence, the programmers have to deal with problems related to the distribution of data, its replication
and fault tolerance, in order to increase the reliability of the infrastructure.

Nevertheless, computing personalized recommendations can still be extremely costly. In [4], Amer-
Yahia et al. explore the trade-offs between processing time and storage capacity for implementing

"Even the founder of Facebook had some private pictures made public at the occasion of a privacy configuration
changes.



and exact personalized recommendation in Delicious. They show that, even when only a subset of the
Delicious data is selected, this problem remains very challenging. In order to scale with the number
of users, data centers often aggregate the users into interest communities and recommendations
are computed for the whole community. This results in an approximation and a degradation of the
service proposed to the user. If more processing power was available, more sophisticated and costly
algorithms could further enhance the Web experience of the users.

Processing social information is extremely costly and requires a dedicated infrastructure. The
degree of personalization proposed to the users is limited by the power of data centers.

Peer-to-peer (P2P) The thesis we defend is that social networks and social information applications
should be deployed over P2P networks. As social applications are user centered, it is very easy to
conceive them as distributed systems: each user and her information represents one machine in the
P2P network.

P2P networks are decentralized architectures in which all the participants contribute to the operation
of a service. This model is often opposed to the client/server one, in which a central machine, the
server, has to process all the demands of the clients. In P2P systems, all the clients also execute a
share of the server’s work. Hence, P2P architectures are known for their scalability, since each client
joining the network also increases the resources available to provide the service. The decentralization
of the architecture increases its reliability, as the service is replicated on many machines distributed
all around the world.

We believe that such an architecture has two main advantages. First, each user controls her
information and does not have to store it on a central server that belongs to a private company. This
clearly is a huge advantage in terms of privacy. The P2P network is a neutral platform and does
not belong to anyone. Second, the scalability of P2P networks in terms of computing and storage
offers support for better personalized services. Data centers are already evolving towards distributed
architectures. We propose to push the decentralization even further by deploying the applications
directly on user’s machines. As each user contributes to the platform with her own machine, a P2P
social platform does not require a costly dedicated architecture. Furthermore, as more processing
power would be available, the P2P architecture could offer new services that go beyond the ones
available in centralized existing platforms.

Nevertheless, building social systems in a distributed context also comes with many challenges.
As each user manages her own information, the system has to be able to efficiently locate interesting
information stored by other users, without generating too many network communications. The archi-
tecture needs to be efficient in order to provide functionalities with a quality of service comparable to
dedicated data centers. While the scalability of P2P systems offers opportunities for more advanced
features, the existing ones should not be impaired due to the distribution of the information. Many
different P2P architectures have been proposed to manage distributed information. We rely on gossip
algorithms to weakly structure the P2P network and find the relevant information.

Contributions of this thesis
In this thesis, we consider the design of social networks and social information services in the context
of P2P networks. We believe that distributing social services over P2P platforms in which users

control their own data is an important first step towards better user privacy. Yet, P2P networks do
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Figure 1.1: Summary of the contributions

not provide a full solution to this problem, and have to be associated with techniques such as onion
routing [80] to offer a better protection to the users. The goal of this thesis is to propose scalable,
decentralized algorithms, that leverage social networks and social information. Thus, we will mostly
be interested on how to efficiently locate and use relevant information. We will mention some privacy
protecting mechanisms adapted to the algorithms we propose, but do not pretend to completely solve
this problem.

The fist contribution we present shows how social information can be used in a centralized system
to infer a private social network. This highlights the privacy problems raised by centralized solutions,
and highlights the need for P2P alternatives. The second contribution considers the problem of
predicting new social neighbors in a decentralized social network. Finally, the third contribution
proposes a P2P system for personalized Web search through social information. Figure 1.1 gives an
overview of these three contributions and shows how they are linked to each other.

Link prediction from social information

The link prediction problem consists in predicting new edges in a social graph. Typically, this can
be used to recommend new friends to the users of a social network. Most of the link prediction
algorithms rely only on the knowledge of the social network to predict new links. In Chapter 2,
we show that it is also possible to accurately predict a hidden social network by leveraging social
information. We call this problem cold start link prediction.

We propose a two-phase method to solve this problem and evaluate it on a real dataset (Flickr). In
the first phase, we leverage any social information available about the users to generate a probabilistic
graph. This probabilistic graph is a prediction of the social network, based purely on the similarity
of the social information of pairs of vertices. In our evaluation, we rely on the group memberships of
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the users to estimate their probability to be connected in the social graph. The second phase consists
in refining this probabilistic graph by taking into account the transitivity of the social relations.
Therefore, we consider classic link prediction techniques that rely on the paths in the social graphs.
We adapt these algorithms to probabilistic graphs and compare our approach with non probabilistic
techniques.

Although group memberships of the users are weakly correlated with the social network, our
results show that our method is able to identify quite accurately social links between users. The
approach we propose is generic: any available social information can be used in the first phase. Thus,
more social information will lead to even more accurate link prediction. We believe that this work
demonstrates the difficulty of social information anonymization and the need for decentralized social
platforms. The social network of the users is often considered as a sensitive data. In our case, it
is kept secret by the user. Nevertheless, our approach is able to infer the social network from a
little amount of social information. Several approaches have been proposed to anonymize social
information, and make it difficult for an attacker to infer sensitive hidden data. However, many other
algorithms have been created to de-anonymize this information. It is in fact very difficult to evaluate
the degree of anonymity of a dataset.

Distributed link prediction for social networks

In Chapter 3, we address the problem of the distributed computation of link prediction. As link
prediction is a crucial functionality for social networks, finding a fully distributed solution to that
problem is crucial for the distribution of social systems. Each vertex of the social network participates
to a P2P system, and is responsible for its social links. Contrary to the cold start link prediction
problem, the social network is not hidden, as users do not have to trust a third party to store it.
Nevertheless the knowledge of the social network is partial: each vertex knows who its social
neighbors are, but does not now the social neighbors of the other vertices.

Most of the link prediction algorithms were designed for centralized systems, therefore they
assume that the whole social graph is available. In our case, navigating the full social graph is a very
costly operation since it requires network communications for each edge transition. Furthermore,
for privacy reasons, we want to avoid as much as possible sharing the lists of social neighbors
between users. We propose SOCS (SOCIAL COORDINATE SYSTEMS), a distributed algorithm for
link prediction based on a distributed embedding of the social graph.

In SOCS, each vertex computes its social coordinates in a social space. These coordinates can
then be used to easily evaluate the social distance between two vertices, without having to navigate
the graph. SOCS is inspired from force-based graph drawing algorithms. In these algorithms, the
graph simulates a physical systems, with attractions on the edges and repulsions between all pairs
of vertices. SOCS performs a distributed force-based embedding for the social graph. However,
contrary to graph drawing algorithms, SOCS can use more than 3 dimensions. At each cycle, the
SOCS vertices compute the sum of the forces that are applied to them and adjust their position
accordingly. The challenge, in our case, comes from the computation of the repulsion forces. A
straightforward implementation would generate communications between all pairs of vertices, which
would clearly not be scalable. SOCS relies on gossip protocols to approximate these repulsions by
only considering the closest vertices in the social space.

We experiment SOCS on real and synthetic social graphs and compare the results against other
existing algorithms. Our results show that SOCS obtains good results in link prediction. Furthermore,
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we observe that the approximations performed by SOCS because of its distributed nature improve
the efficiency of the link prediction. Finally, we compare different force models and show that
the state-of-the-art force model for communities representation is not necessarily the best for link
prediction.

Distributed personalized Web search

Many modern websites let the users express their opinions by describing items with freely chosen
tags. This information generates a folksonomy. Navigating in a folksonomy is a difficult task as the
information is unstructured. Users can express the same idea through different tags, and a given
tag may not have the same meaning for different users. Additionally, social information exposes
the interests of the users and threatens their privacy. In Chapter 4, we present the GOSSPLE [50]
Multi-Interest Network (GMIN), a distributed system designed to personalize the Web experience.
We illustrate its efficiency through a personalized query expansion mechanism (GQE), designed to
facilitate search in a folksonomy.

Several centralized algorithms for personalized search have been proposed. However, they
experience scalability problems. The amount of data to store and the processing power required to
manage it does not enable centralized systems to fully personalize the search experience. In some
solutions, the users are clustered into interest communities, which approximates the personalization.
An other possibility is to only personalize a small part of the search process. GMIN relies on P2P
system, so each user contributes to the system by sharing her storage and processing power. Thus,
GMIN’s architecture is inherently more scalable. Furthermore, in GMIN provides anonymity to the
users. Each user stores her own profile and receives personalized information based on its content,
but a user is never associated with her profile. This would not be possible in a centralized system, as
the user would have to trust a third party with her data.

GMIN provides each user with a selection of neighbors that are interested in the same items.
This selection is performed through gossip algorithms, and takes care to cover all the interests of
the user, even the minor ones. These neighbors are then used to extract proximity between tags and
discover new tags. When the user performs a search, GQE uses GMIN to automatically transforms
her request. Tags which, according to the user and her neighbors, are similar, are added to the query,
and weighted through an algorithm inspired from PageRank.

We experiment our system on real folksonomy data (Delicious and CiteULike). Our results shows
that GQE improves the search experience of the user, both in terms of recall and precision.

This thesis only presents the decentralization of the query expansion mechanism. The reader may
refer to [7] for a description of a decentralized search process.

12



CHAPTER

LINK PREDICTION FROM
SOCIAL INFORMATION

Abstract

In this chapter, we evaluate the possibility of predicting a hidden social network using the
social information of the users. We refer to this problem as cold start link prediction. We
propose a two-phase approach to solve it. First, we build a probabilistic social graph using the
social information about the users. Then, in the second phase, we adapt classic link prediction
algorithms to the probabilistic graph and refine the prediction. We evaluate our method on a real
dataset taken from Flickr, an photo sharing community. We use the group memberships of the
users as social information. Our results show that our protocol accurately predicts some of the
links in the social network. Additional social information would enable an even more precise
prediction and seriously threaten the privacy of the users. We believe that this work highlights
the need for a decentralized architecture for social systems.

This work, presented at the KDD 2010 conference [57], was done in collaboration with Berkant
Barla Cambazoglu and Francesco Bonchi during internship at Yahoo! Research Barcelona. This
internship was funded by the College Doctoral International (CDI) and the Université Européenne
de Bretagne (UEB).
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2. LINK PREDICTION FROM SOCIAL INFORMATION

2.1 Introduction

Context

Social networks have become very popular platforms for people to exchange information with their
friends. As previously mentioned, social networks may raise privacy problems, as they contain
private information. This is typically why the access to the list of friends of a user is often restricted.
However, many websites have access to social information about Internet users, such as their interests
or logs of their Web activities. In this chapter, our goal is to predict a social network solely using
the social information of its users. We show that any website having a sufficient amount of social
information about the users can accurately predict social links among them.

Link prediction, introduced by Liben-Nowell and Kleinberg [59], consists in predicting new links
in an existing and available social network. They state that the link prediction problem evaluates to
what extent the evolution of a social network can be modeled using features intrinsic to the network
itself. Indeed, all the features presented in [59] are based on the link structure of the network. In this
chapter, we tackle the problem of cold start link prediction. We aim at predicting links within a social
graph, but we aim at doing so without any, even partial, knowledge of the existing link structure:
the initial social network is empty. However, we have access to some auxiliary social information
about the users. This is the case if, for example, the users keep the social network secret for privacy
reasons, but some of their activities, like purchases on an Internet store, can be monitored. This setup
also represents the information available to a community website that does not support any explicit
social network. In that case, the activities of the users can be used to recommend possible friends to
users and speed up the expansion of the social network. The question tackled herein is the following:
is it possible to infer the social network (to an acceptable level of accuracy), just using the auxiliary
social information?

In this context, we propose a two-phase method based on the bootstrap probabilistic graph for
cold start link prediction. In the first phase, based on some limited information (potentially, weakly
correlated with the link structure of the network), the method predicts the existence of links. The
output of this phase is a probabilistic graph, i.e., a graph where each edge is labeled with a probability
representing the confidence of the prediction, or in other terms, the uncertainty of the existence of a
link. The second phase takes as input the probabilistic graph and refines it by adopting graph-theoretic
measures. These measures are similar to the algorithms used in the classical link prediction setting,
but in our case, the input graph is probabilistic and hence the traditional measures must be adapted to
deal with this case [71].

We apply our method to a large data collection obtained from Flickr!, a popular online community
for photo sharing. We keep the existing social network (represented as a directed graph) as the
ground truth for the link structure that we aim to predict. As the available auxiliary information, we
use users’ memberships in interest groups.

Three observations are note-worthy. First, the cold start link prediction problem is intrinsically a
very difficult binary prediction problem due to the skewness of the target variable. In fact, assuming
that the edges in the social network are directed, given n vertices, we have a universe of n(n — 1)
possible links, of which only a very small fraction exists in the ground truth. In our data, only 0.07%
of all possible links are present in the ground truth.

"http://wuw.flickr.com
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The second observation is that we apply our method starting with little information, which provides
a very small coverage of existing links. Indeed, in Flickr, interest group membership? is a very
weak predictor of links, as a group gathers people interested in photos regarding a specific subject or
technique (e.g., “Nikon Selfportrait”, “HDR Panoramas”, “Cat and Dog: not Cat or Dog”), and
they are not usually groups of friends or small communities (as it is more often the case in Facebook
groups). More precisely, in our data, considering only the users who belong to at least one group, we
have approximately 28M links, of which only 1.9% (approximately 550k links) are among two users
that share at least one common group. We deliberately select weakly correlated information in order
to highlight the benefits of our approach. Despite the difficulty of our prediction task, our two-phase
method based on the bootstrap probabilistic graph can achieve good prediction performance.

Finally, it is very important to note that, even though the first phase features used herein target
the group membership information, we propose a general framework which can be applied to any
input information. In some cases, the available auxiliary information could be much more predictive
than the one used in our experiments or more information might be available. If this is the case, all
available information should be used in order to bootstrap the probabilistic graph as accurately as
possible.

Contributions

We introduce cold start link prediction as the problem of predicting the link structure of a social
network assuming unavailability of an initial network and using other available social information
(in this case, group memberships). Our work has privacy and security implications as it sheds light
on to what extent a social network can be reconstructed and how resilient an anonymization solution
is to link prediction attacks.

We propose a two-step method based on the bootstrap probabilistic graph as a feasible solution to
the cold start link prediction problem. We apply our method to predict the link structure of the Flickr
social network by using only the interest group membership information. As discussed previously,
group membership is a weak predictor for friendship and hence suits well to our purpose of starting
the social network with little available information.

We assess the predictive power of various features based on group membership (phase 1), such
as the time a user joins a group and the size of the group. The features we use herein can be
considered to be somewhat general and are applicable to other problem instances as long as the
available information can be mapped to a group structure. For instance, a thread on a discussion
board can be mapped to a group, and the same features can be used for predicting friendship between
the users of a bulletin board service.

We adapt various graph-theoretic measures to deal with probabilistic graphs (phase 2). Our
experiments show that our approach, based on a probabilistic graph, clearly outperforms traditional
approaches that rely on a deterministic graph whose edges have been pruned to remove the ones with
low probability.

Roadmap

In Section 2.2, we present the formal definition of the problem and the proposed two-phase method.
In Section 2.3, we describe the data we use for assessing our method, which is then developed in

http://www.flickr.com/groups
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Section 2.4 (phase 1) and Section 2.5 (phase 2). We review the existing work in Section 2.6, and we
conclude this chapter in Section 2.7.

2.2 Problem and Method

2.2.1 Problem

We are given a set V of users and a multiset H of groups of users. We denote the set of groups to
which a user u belongs to as her membership set:

m(u) = {h € Hlu € h,u CV} .

Our task is to reconstruct the links of a social graph Gs = (V, &) where the vertices are the users
and the edges & C V x V represent a one-way relation between two users. Reconstructing the social
network G means to predict which of the links in V x V actually exist in &, or in other terms, to
build a function f : V x V — {0, 1}.

2.2.2 Method

We propose a two-phase method for cold start link prediction. During the first phase, we predict
the existence of links based only on the group membership information. The output of the first
phase is the bootstrap probabilistic graph, i.e., a directed probabilistic graph G, = (V, &y, p), where
&y CV x V, and every link (u,v) € &, is labeled with a probability p(u,v) > 0 representing the
confidence (or uncertainty) about the link’s existence, i.e., p: V x V — [0, 1].

In particular, after the first phase, we have p(u,v) = 0 and p(v, u) = 0 for every user pair (u, v),
where m(u) N'm(v) = (. This is because if two users have no groups in common, a prediction
cannot be made about the existence of a link between them. Moreover, we have p(u, v) > 0 for every
user pair (u, v) such that m(u) Nm(v) # 0 (this will also hold for the reverse arc (v, )). Links with
null probabilities do not exist in G,,.

The second phase takes as input the bootstrap probabilistic graph G,,, and it refines the probability
distribution p into a new weight distribution w. This phase revisits the graph features traditionally
used for link prediction and adapts them to probabilistic graphs. Therefore, the output of the second
phase is a weighted graph G,, = (V, £, w). After the second phase, some links that previously had
p(u,v) = 0 can now possibly have a non-null score, w(u, v) > 0, thus extending the overall recall
of the method.

2.2.3 Result presentation

In most real-world social networks, the links in a social graph £ form only a small fraction of the
total number of possible links, i.e., |€5| < [V|?. This means that accuracy is not a very meaningful
measure in this context, given that, by predicting always 0 (the link does not exist), it is possible
to achieve an accuracy of 99.93% in our data. Also, comparing different predictors by means of
precision and recall is not very appropriate, given the very low maximum recall achievable (only
0.037 in our data). Therefore, in order to compare the performance of different predictive functions
by eliminating the skewness between possible and existing links, we adopt the ROC curve metric [72]
as the main way of presenting our results.
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In a ROC curve, all predictions are sorted by order of confidence. The = axis shows the normalized
true positives (good prediction) while the y axis represents the false positives (bad predictions).
Therefore, taking each prediction in the sorted list, we draw the ROC curve by starting at (0,0) and
moving up for a good prediction and right for a bad one. If the predictor was prefect, the ROC curve
would go from (0,0) to (0,1), meaning that it would give higher confidence to the predictions that are
actually good, and then from (0,1) to (1,1), since all bad predictions would be at the end of the list. A
random prediction generates a diagonal ROC curve, that goes from (0,0) to (1,1) in a straight line.

For the best predictor of each feature group, we also provide recall/fallout ratios. Recall is the ratio
between the number of true positives (correctly predicted existing links) and positives (existing links)
while fallout is the ratio between the number of false positives (links erroneously predicted to exist)
and negatives (not existing links). Given a predictor function f, we may interpret recall and fallout as
the following probabilities, respectively: p(f(u,v) = 1|(u,v) € V) and p(f(u,v) = 0|(u,v) ¢ V).
Now, suppose to have recall/fallout = 8 for a predictor f. This means that for two users (u,v) € V
for whom a link exists, it is 8 times more likely to have f(u,v) = 1 than for two users who are not
connected. This measure removes the bias caused by the skewness of the dataset and clearly shows
how discriminant a feature is.

2.3 Dataset

Flickr is a highly popular online social network, whose primary objective is to facilitate images
sharing among people. As Flickr belongs to Yahoo!, we have an easy access to the social data of the
users. In Flickr, a user can place other users in three privilege classes: contact, friend, and family.
Depending on the class, the user can restrict access to its properties (e.g., images, videos). In this
work, we only consider the contact class to form the social graph we are trying to predict. Although
Flickr supports directed links, our data shows that only 1/3 of the links are unidirectional. Thus,
most of the features we use in Section 2.4 are symmetric. This means that we predict the same
likelihood for links’ existence in both directions.

2.3.1 Dataset preparation

We sample a subset of the entire Flickr social network by applying the snowball sampling strategy.
Starting from a single, highly connected seed user, we follow the contact links and iteratively add
them to the sampled graph. This is equivalent to a breadth-first reading of the graph. The adopted
sampling strategy increases the chance of selecting more active users, who have higher connectivity
in the network (i.e., more links). In our case, this is desirable as users with few or no friends are
relatively less interesting for our prediction task. For each user in the sample set, we store all links
and groups associated with the user. From the sampled set of users, we remove the ones who are not
members of any group. This is because the proposed techniques are only applicable to users who
have at least one group membership.

2.3.2 Dataset properties

After the above-mentioned pruning, we are left with 198, 315 users. The number of existing links is
reported in Table 2.1. The same table (second line) also reports how many of these existing links
are among two users that have at least one common group: this is the maximum number of links
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2. LINK PREDICTION FROM SOCIAL INFORMATION

Possible links  Existing links

Total 39,328,640,910 28,249,755
Phase 1 54,945,936 553,977
Phase 2 1,165,664, 850 1,072,595

Table 2.1: Number and type of links

Property Minimum Average Maximum
# of users in a group 1 8.8 3,497
# of groups of a user 1 3.1 172
# of links of a user 1 142.5 11,956

Table 2.2: Dataset properties
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Figure 2.1: Frequency distributions for group membership and group size

predictable in the first phase, or in other terms, links for which we will have p(u,v) > 0. In the
second phase, we use measures based on paths formed by the links between users. This means that
we cannot predict the existence of a link between two users, each belonging to a different connected
component of the bootstrap probabilistic graph. The maximum number of links predictable in the
second phase is also reported in Table 2.1 (the third line). The number of groups we have is 69, 793.
Various properties of our dataset are displayed in Table 2.2.

According to Figure 2.1, the frequency of group sizes follows a highly skewed distribution. There
are few very large groups but many very small groups. For instance, 35.3% of groups have only
one member and groups of size less than 3 constitute about half of the total number of groups. The
frequency distribution for group membership is even more skewed: 47.0% of users are members in
only one group while the number of users who are members in at most 10 groups constitutes 95.6%
of the total number of users. A highly skewed distribution is also observed in frequency of users’
link counts (Figure 2.2). For example, 96.1% of the users have at least one link, and about half of the
users have 42 or less contact links.
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Figure 2.2: Frequency distribution for the number of links that users have

Type Name Direction Formula

Number of groups | sum > im(u)| + [m(v)]
prod > m(w)] % [m(v)]

Common groups | overlap > le(u, v)|
frac_1 > le(u, v)|/Im(u)]
frac_2 > le(u, v)|/|m(v)]
jaccard > le(u, v)|/|m(u) Um(v)]
> | Je(w, )/ /Im@)] % m()]

Group size min_s < mingec(y,v) |9|
avg_s < AVEcc(uw) |g|
sum_rec_s > dec(u,v) (1/‘9‘)
ad_ad_s > 5, cotuny (1/ 108(191)

Inter-arrival time | min_t < Minge (y0) (W, v, g)
avg_t < avgyc(uv (U, v, g)
sum_rec_t > > gec(uw) (1/t(w, v, 9)
ad_ad_t > > gee(uw) (1/1og(t(u, v, 9)))

Table 2.3: Features evaluated in the bootstrap phase

2.4 Bootstrap phase

2.4.1 Basic features

In the first phase, we bootstrap the probabilistic graph using the group membership information. In
particular, we explore four types of features: number of groups, number of common groups, size of
common groups, and difference in joining time. For each of these features families, we experiment
intuitive features and adapt classic ones to our dataset. Throughout this section, the reader may refer
to Table 2.3 for definitions of the features. Since, in this phase, the probabilities are assigned to only
the links between users who share at least one group, in the rest of this section, we report ROC curves
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2. LINK PREDICTION FROM SOCIAL INFORMATION

computed only on this subset of links. We denote by c¢(u, v) the set of groups that are common to
both users w and v, i.e., ¢(u,v) = m(u) N m(v). The absolute value of the difference in time that u
and v joined group g is denoted by t(u, v, g).

Number of groups

The number of group memberships of a user might be a good indicator of her level of engagement
and activity in the social network. As the user is more active, she may tend to have more links.
Figure 2.3a shows how the number of links of a user changes as the number of group memberships
increases. We observe a very linear behavior, which may indicate a correlation between the number
of groups and the number of links. We also observe that the number of out-links increases at a
slightly faster rate than in-links as users join more groups.

We evaluate two features based only on the number of groups. Given two users u and v, we define
sum and prod, respectively, as the sum and product of |m(u)| and |m(v)| values. Obviously, as the
feature values increase, the likelihood of having a link increases.

Figure 2.3b shows the ROC curves for the two features: according to the plot, the performances
of sum and prod are very close, but prod performs slightly better. In Figure 2.3c, we report the
recall/fallout ratio for different thresholds of prod. The plot gives an indication of how predictive
the feature is. As an example, for two linked users u and v, it is 200 times more likely to have
|m(u)| x |m(v)| > 1000 than for two users without a link.

Common groups

Intuitively, the fact that two users are members of the same groups should be a strong indicator of
the existence of a possible link between them. An active group member may influence her existing
friends to join the group as new members. This means that members of the same group are more
likely to have existing friendship links among themselves. From another perspective, groups may be
a suitable medium to meet other users and form friendships, thus groups may lead to the creation of
new links. Figure 2.4a verifies this hypothesis by measuring the fraction of links among users having
membership in the same groups. Specifically, for each value x of common groups, we compute
which proportion of users having x groups in common are friends

{(u,v) € &, |e(u, v)| = }|
H(u,v) €V XV, u#vAlc(u,v)| =z}

As expected, the fraction of links increases as the users have more groups in common.

We evaluated five different features based on common groups: overlap, which is the number of
common groups; frac_1 and frac_2, which are the overlap normalized by the number of groups
of the first and second users, respectively; jaccard, which is the Jaccard coefficient; and cos,
indicating the cosine similarity commonly used in information retrieval.

ROC curves of the five features are shown in Figure 2.4b. Interestingly, we observe that all
features except for overlap perform worse than random prediction, which would correspond to the
diagonal of the plot. This can be easily explained with the very high number of pairs of users being
members of only one very large group. When two of such users are part of the same group, they
receive the maximum value of frac_1, frac_2, jaccard, and cos although these two users
are very likely not to be linked. We observed this effect also for variations of these features, such as
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Figure 2.3: Leveraging the number of group memberships
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the weighted cosine similarity feature (using tf-idf weighting?), and also for some other features with
normalization. It seems that any kind of normalization by the number of groups, which penalizes
very active users, has a negative effect on this dataset. This result confirms our previous observations:
active users have many friends, thus lowering their scores has a negative impact. Figure 2.4¢ reports
the recall/fallout curve of overlap for different numbers of common groups. We can observe that
for two linked users, the probability of having more than 10 common groups is approximately 600
times larger than for two users that have no link. This number grows to 1, 800 for the probability of
having no less than 24 common groups.

Group size

It can be claimed that two users are more likely to be friends if they are members of a small group
than a large group as

e group founders are more likely to prefer their friends over other users in invitations they send

e large groups are more likely to be general-purpose groups, attracting different users with equal
likelihood.

We verify this claim in Figure 2.5a, which shows the density of links with increasing group size. The
link density is computed as

Dgen, o= 1 (W, v) €&, u € gAv € g}
{geH, |g|=a} xzx(x-1)

The average link count for groups of size x is normalized with the maximum possible link count
(x x (z — 1)). We observe a significant drop in density values at very small group sizes, followed by
a linear drop as the group size increases.

We try four different features based on the size of common groups: min_s and avg_s denote the
minimum and the average size of the common groups, respectively; the summation of the reciprocal
of size is denoted by sum_rec_s; and Adamic/Adar-size is denoted by ad_ad_s. The last feature
is inspired by the measure defined by Adamic and Adar in [2] for deciding when two personal home
pages are strongly related, and then borrowed and adapted by Liben-Nowell and Kleinberg [59] to
deal with common neighbors in the context of link prediction. Here, we re-adapt this measure to deal
with the size of common groups and compute

1
log(lgl)

ad_ad_s(u,v) = Z

gec(u,v)

Figure 2.5b shows that features that are based on group size perform quite well, with ad_ad_s
outperforming the others. The recall/fallout curve for ad_ad_ s is displayed in Figure 2.5c. We
observe that the probability of having ad_ad_s(u, v) > 1 for an existing link (u, v) is approximately
200 times larger than for a non-existing link (u, v), and the ratio keeps growing almost linearly.

3Search engines often use term frequency—inverse document frequency weighting to rank results [73].
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Difference in joining time

In the last set of features, we investigate the temporal consistency between linked users joining the
same group. We expect that friends are likely to inform each other of the existence of a group just
before (or just after) joining it. Hence, we believe that linked users are likely to join the same group
with small time gaps (inter-arrival time). Figure 2.6a shows the fraction of links with increasing
inter-arrival time. For each possible inter-arrival time value x (discretized into days), we compute

de’}-{‘{(uav)688775(147079):3:/\”69/\7}69}‘
dogen H(w,v) €V XV, u#vAt(u,v,9) =rAu€ghveg}

According to the figure, as expected, linked users are more likely to join the same group with
a small inter-arrival time. It is interesting to note that an increase is observed in the likelihood of
having a link, around a year inter-arrival time. This may be explained by the existence of “seasonal”
groups, i.e., groups that refer to events held once per year and that attract new members in that period
(e.g., “Glastonbury Festival” or “Christmas Worldwide”).

We try features similar to the ones we used for the group size, simply by replacing group size
with inter-arrival time: min_t, avg_t, sum_rec_t, and ad_ad_t. As in the case of group
size features, Adamic/Adar-time (ad_ad_t) performs the best among all features of this class
(Figures 2.6b and 2.6¢). The irregular shape of the ROC curve as well as of the recall/fallout curve
are due to the seasonal behavior discussed before.

2.4.2 Combining basic features

Next, we try to combine a number of features from previous sections to create a single, hybrid feature
with higher predictive power than the basic features. For this purpose, we evaluate various possible
combinations of our best performing features, trying to find a good trade-off between predictive
power and simplicity (which also translates to generality). Optimizing the predictors through machine
learning algorithms could lead to better results, but there is absolutely no guaranty that this tuning
would also improve the results on an other dataset. The goal in this work is not to create a predictor
specific to Flickr; instead just need a generic predictor to generate reasonably accurate predictions
and support the second phase of our approach. In our case, best performing combination turns out to
be ad_ad_s x ad_ad_t x logprod, referred to as combined.

An important observation is that the features ad_ad_t, ad_ad_s, and prod perform relatively
well for high, medium, and low confidence intervals, respectively. This is the reason for the
combined feature, which unifies them, to perform the best across all intervals. No features from
the class using the number of common groups is directly used in the combined feature as this is
subsumed in the two Adamic/Adar features, which compute a sum over all common groups. Table 2.4
summarizes the composition of the combined feature, showing that all the families of features are
indeed taken into account.

Figure 2.7 compares combined against the best-performing feature from each of the four
categories. As the figure shows, combined takes advantage of all the features that compose it
and outperforms all the previous results we obtained. Thus, we use combined to bootstrap the
probabilistic graph, as shown next.
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2.4. Bootstrap phase

Feature family Feature used

Number of groups prod

Common groups ad_ad_t and ad_ad_t (indirectly)
Group size ad_ad_s

Difference in joining time | ad_ad_t

Table 2.4: Summary of the features used in combined
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Figure 2.7: ROC curves for the best feature from each category and the best combined feature

2.4.3 Bootstrap probabilistic graph

So far, we have proposed various measures and evaluated their predictive power. We have then
combined them under a simple but yet effective feature, namely combined. We now finalize the
first phase of our method by producing the bootstrap probabilistic graph. As the second phase of
our approach uses the paths in G, to compute a new score between all pairs of users in the same
connected component, we need to be able to combine the values of the edges in a meaningful way.
To this end, we have to to convert the scores provided by the combined feature into probabilities.

Converting scores to probabilities is not straightforward since the relation between them is often
not linear. This problem has been studied for different kinds of classifiers [38, 90,91, 93], but with
score distributions different from the one we observe in our case.

Using the ground truth (i.e. the social graph), G, we study the existence probability of edges
with respect to the score that combined assigned to them. This result is presented in Figure 2.8.
We observe a logarithmic shape in the distribution of probabilities with respect to scores. Using a
curve fitting algorithm, we could map the function to the data, but depending on the feature used,
this mapping could be completely different. In our case, for the sake of generality, we only assume
the knowledge that it follows a logarithmic distribution. We design a very simple function that maps
the highest score output by the combined feature to a probability of 1 and assigns the remaining
probabilities as

! 1
probability = og(score + 1)

log(mazx_score +1)
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Figure 2.8 shows that our simple approximation is very rough. However, it is good enough as it
will be shown in the next section. The probability distribution in the bootstrap probabilistic graph is
reported in Figure 2.9. The graph consists of 1, 238 connected components, of which 42 have more
than 1, 000 vertices, 10 have more than 5, 000 vertices, and the largest connected component has

more than 20, 000 vertices.

2.5 Probabilistic graph measures

2.5.1 Graph-theoretic features

In the first phase of our method, we have predicted, for some pairs of users, the probability to have a
link in the social network. In the second phase, we refine and extend this prediction by considering
transitivity of contact relationship. As shown in [59], users who have many common contacts are
more likely to be friends. Using graph-based features, we can spread the link prediction to pairs of
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users who have no common groups but share contacts. Therefore, we compute graph-based measures
on the bootstrap probabilistic graph for all pairs of users who are in the same connected component. If
two users are not connected by a path in the probabilistic graph, then they will have a null probability
also after phase 2. In the following, we adapt to the probabilistic case three graph-based measures that
are reported to perform well in [59]: common_neighbors, katz, and rooted_pagerank.

Probabilistic common neighbors

Having a high number of common contacts may be an indication of the existence of a link. We
adapt this idea to our probabilistic graph in a straightforward way. For a given user pair (u,v),
common_neighbors simply computes the sum of the probability that each vertex is connected to
both v and v, i.e.,

common_neighbors(u,v) = Zp(u, w) X p(v,w) .
wey

A consequence of this definition is that all pairs of users who are more than two hops away in the
graph are assigned a zero score. Recall that the probability p computed in the first phase is symmetric,

ie., p(u,v) = p(v,u).

Probabilistic Katz

The Katz measure computes a score between two users based on the number of paths existing
between them, exponentially damped by length to count short paths more heavily. In other
words, a path of length ¢ is weighted by ¢, where 0 < B < 1. This measures goes beyond
the common_neighbors, as all pairs of vertices within the same connected component receive a
score. It is also more complex than the graph shortest path, since it takes into account the ensemble
of path between the vertices. Social networks contain many “accidental” edges connecting otherwise
distant vertices. In the small-world theory, these links are called the long links. By taking into
account the multiplicity of the path between the vertices, Katz gives higher scores to pairs of vertices
that are well connected than to vertices connected through long links. We adapt this measure to deal
with probabilistic graphs by further weighting each path by its existence probability, which is the
product of the probabilities of the links that compose it.

Let pathfﬁ) be the set of paths of length ¢ between u and v in G, and pathProb(z) be the existence
probability of a path . Then, kat z is computed as

o0

katz(u,v) = Z (8" x Z pathProb(z)) .

=1 prathfﬁ)

Probabilistic rooted PageRank

The rooted_pagerank feature computes a score between vertices u and v by running rooted
PageRank (personalized PageRank), starting from w. While PageRank [17] computes the centrality
of vertices in a graph, rooted PageRank computes this centrality with respect to a limited set of
vertices. In PageRank, random walks start on any vertex of the graph and stop with a probability
« (usually, a = 15). The PageRank score of a vertex is the probability of a random walk to be on
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this vertex. In rooted PageRank, instead of starting from any vertex, the random walks start only on
the roots. We use an algorithm based on random walks [35] approximation to get an estimation of
rooted PageRank scores. Inspired by [71], we adapt it to our probabilistic graph by sampling existing
links at each step of a walk using the probabilities in the graph. The walk continues using an existing
edge chosen at random as in the classic unweighted version of PageRank. We run W walks for each
vertex. rooted_pagerank(u,v) is not null if at least one walk starting at u reaches v. Thus, a
user u potentially has a positive score with all other users in his connected component. However, if
the number of walks and link probabilities are both very low, this may not be the case. If « and v are
not in the same component, then the link (u, v) receives a null score.

2.5.2 Experimental results

We evaluate the three features by comparing our method based on the bootstrap probabilistic graph
(BPG) with two alternative methods. These methods work on deterministic graphs (DG) obtained
from BPG, by selecting only the links with a probability higher than a given threshold. Note that
since the probability function we designed to convert the phase one scores into probabilities is
monotonic, this is equivalent to a score threshold. It is also worth noting that using a high threshold
would seriously compromise the recall of the method. Indeed, a larger threshold implies that fewer
links will be selected, which in turn implies a smaller density for the resulting graph and thus a
large number of small components. Since graph-based features produce scores only for pairs of
users belonging to the same connected component, using a large threshold would give very small
recall. Therefore, for the two alternative methods, we use 0 and 0.005 as the thresholds. The methods
are accordingly named as DG_0 and DG_0.005. While DG_0 can achieve the same recall as BPG,
DG_0.005 can only predict a smaller number of links due to the lower density as discussed above.

Figure 2.10 displays the ROC curves for common_neighbors. Despite its simplicity,
common_neighbors performs quite well with BPG as seen from the sharp rise in the true
positive rate for predictions with high confidence (early data points). The ROC curve of DG_0
remains always under the curve of BPG. DG_0.005 produces results closer to BPG, but at the price
of a lower recall. In the figure, some portion of the curves are not displayed for better visibility of the
rest. The last data point is (0.607,0.953) for DG_0 and BPG curves.

For kat z, following [59], we set 5 to 0.005. For scalability reasons, we also set an upper bound
on the path length. Since BPG is quite dense, the number of paths becomes important for large values.
As (3 is small and thus long paths have very little weight, the impact on precision is negligible. In our
experiments, pairs that are more than two hops away in BPG receive a zero score. Figure 2.11 shows
the performance of kat z. BPG still outperforms DG_0 and DG_0.005, but the gap is small, relative
to common_neighbors.

For experiments on rooted_pagerank, we set a to 0.15 and W to 1,000. According
to the ROC curves shown in Figure 2.12, rooted_pagerank performs poorly, relative to
common_neighbors and katz, in terms of both coverage of predictions and their quality. In-
creasing W does not have a significant effect on the result quality, but it increases the coverage of
predictions. We believe that rooted_pagerank can be efficiently applied on a given user to sort
the other users by contact probability. However, the scores obtained through this measure are not
comparable across different users. This is due to the fact that PageRank shares a fixed, total score
among all vertices. The sum of all PageRank values is always 1, since they represent probabilities.
Assuming that a vertex w is part of a very clustered community, with 10 potential neighbors connected
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Figure 2.11: ROC curves for the kat z feature

to u in an identical way. All those neighbors will get a score which is at most 0.1, since they share
the total PageRank score. Now, consider the vertex v which is at the extremity of a chain of 3 users
in the graph. While there is only one path between v and the other extremity, this vertex will get a
very high PageRank score and this prediction will come before the ones of u. As a consequence, a
user with many potential neighbors is assigned a score lower than a more isolated one, resulting in
poor quality predictions at a full graph scale.

Figure 2.13 brings together the ROC curves for the combined feature and the three phase 2
features (assuming the BPG scenario). The plot demonstrates the gain achieved by phase 2 over the
results of phase 1. The performance of kat z is seen to be very close to common_neighbors.
Note that, in this plot, the true and false positives for the combined feature is normalized using the
total number of positives and negatives for phase 1.

As a representative, Figure 2.14 shows the precision—-recall plot for the katz feature. BPG
achieves pretty high precision values relative to DG_0 and DG_0.005 under the equal recall constraint.
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Figure 2.13: ROC curves for the three phase 2 features and the combined feature from phase 1

Despite the difficulty of the problem, precision and recall values achieved by BPG indicate the validity
of the proposed method (e.g., at a recall of 1%, we observe a precision around 31%).

As another representative, Figure 2.15 shows the recall/fallout curve for the
common_neighbors feature. BPG is able to leverage the low probability edges to in-
crease recall without losing precision while non-probabilistic approaches either prune this noise and
lose recall or use these edges but suffer from low precision.

In this work, we have preferred not to combine the predictive power of the three features of phase
2 (e.g., by means of machine learning techniques). The rationale behind this choice is two-fold. First,
as we have explained before, rooted_pagerank is not suitable for prediction at a full graph scale.
Second, common_neighbors can be seen as a special case of kat z in which the maximum path
length is 2 and 3 is set to 1. Therefore, we expect only little improvement in prediction accuracies by
further combinations.
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Figure 2.15: Recall/fallout for the common_neighbors feature

2.6 Existing work

2.6.1 Link prediction

In this section, we review some of the existing approaches for link prediction. In particular, we detail
the work of Liben-Nowell and Kleinberg [59], who introduced the link prediction problem. We also
provide some information about the hierarchical random graph approach [25], as we compare against
it in Chapter 3.

The link prediction problem Link prediction, introduced by Liben-Nowell and Kleinberg [59],
refers to a basic computational problem underlying the evolution of social networks in time. Given
a snapshot of a social network at time ¢ and a future time ¢, the problem consists in predicting the
new links that are likely to appear in the network within the time interval [¢, ¢']. Liben-Nowell and
Kleinberg explore a long list of features and evaluate their ability to accurately predict links. These
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features include Katz, rooted Pagerank, the number of common neighbors and the graph shortest
path. They are classified in three categories: the features based on the vertex’s neighborhood, the
features based on the ensemble of all paths in the graph, and higher level approaches that transform
the graph and are used in conjunction with an other feature. Each feature ranks all possible new
edges in decreasing order of confidence. In order to compare the performance of the features, they
measure they precision of the top-k predictions for different values of k.

Liben-Nowell and Kleinberg experiment these link prediction features on co-authorship networks
from different scientific communities. They compare the performances by measuring the improve-
ment over a random prediction. Their first observation is that, despite the common nature of the
experimental graphs, the quality of the features varies a lot depending on the graph. Nevertheless,
the Katz feature consistently obtains a good performance. They also note that simple measures like
the number of common neighbors are reasonably precise and often outperform much more complex
features.

Liben-Nowell and Kleinberg highlight some of the reasons that make link prediction a difficult
task. Social graphs have small-world properties [52], which means that they are clustered, but also
contain random edges. Thus, these graphs have a small diameter, which limits the performance of the
graph shortest path feature. Therefore, a good link prediction feature has to be robust to this noise.
An opposite problem comes from the fact that most of the edges that appear are between vertices at
distance 3. Hence, the number of common neighbors is not sufficient to predict all the links, and a
good feature has to consider the paths in the graph. Finally, the diversity of the social graphs makes
it difficult to create a feature that consistently provides accurate predictions. Different communities
have different behaviors, and this affects the performance of the predictors.

The graph features presented in Section 2.5 are inspired by Liben-Nowell and Kleinberg’s work but
they are adapted to probabilistic graphs. These features can be very costly in terms of computation.
Liben-Nowell and Kleinberg’s experiment on graphs of small size (less than 6, 000 vertices). In
our case, the graph contains almost 200, 000 vertices, which makes the computation much longer.
Therefore, we had to approximate the results of Katz and rooted Pagerank. This demonstrates the
scalability problem of many link prediction approaches.

In this thesis, we evaluate the precision of link prediction algorithms using ROC curves. ROC
curves provide an information comparable to the top-k precision, as the sloop of the ROC curve
is a good indicator of the precision of the feature. The main difference is that the top-£ precision
considers the precision over the k first predictions, while the ROC information is closer to the
precision at the k" prediction. Liben-Nowell and Kleinberg compare their features with a random
predictor. In ROC curves, a random predictor generates a diagonal line, which is why ROC curves
are a good way to represent link prediction results.

Hierarchical Random Graph (HRG) Clauset et al. [25] propose a method that detects the com-
munity structure of the social graph and weights predictions according to the likelihood that the two
vertices belong to the same community. Their model, called hierarchical random graph (HRG),
samples dendrograms of the social graph depending on their probability to generate the observed
graph. The link prediction then combines the scores of the sampled dendrograms. Clauset et al.
apply their method to a wide variety of graphs including a metabolic network, a terrorist network,
and a food web. The main originality of this approach is that it can be applied to both assortative
graphs and disassortative graphs. For example, the terrorist network is an assortative graph as is
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is very clustered, while the food web is disassortative, as herbivores eat plants but do not eat other
herbivores.

They evaluate their results under different graph sparsity conditions, by varying the number of
edges removed, and use the AUC measure to present the performances. As many link prediction
features, this approach does not scale with the size of the graph, which is why the authors limit their
experimentation to graphs of small size. In most cases, they obtain good results, but do not always
outperform simple methods like the number of common neighbors.

This method relies heavily on the community structure of the graph, and thus cannot be applied
in the setup presented in this chapter, as the social graph is hidden. However, in Chapter 3, we
consider a more classic link prediction problem and compare against HRG. The AUC statistic, used
by Clauset et al., is equal to the Area Under the ROC Curve. A ROC curve therefore gives more
details about the results, as it shows the evolution of the prediction quality, from the first prediction
to the last. The AUC is very useful to summarize a ROC curve and present results with respect to an
other parameter like the sparsity of the graph in their case.

Other approaches Taskar ef al. [81] apply link prediction to a social network of universities. They
rely on machine learning techniques and use personal information of users (music, books, etc.) to
increase the accuracy of predictions. Following a similar approach, O’Madadhain et al. [68] focus
on predicting events between entities and use the geographic location as a feature. In both cases,
the authors improve the efficiency of the link prediction techniques through the use of auxiliary
information, but they still have access to the social network. In the cold start link prediction problem,
the auxiliary information is the only information available, as the social network is hidden.

Several probabilistic models such as Markov logic [29], relational Markov networks [81], Markov
random fields [21], and probabilistic relational models [39] have been used to efficiently capture
the relation in data. Again, these approaches have not been proved to scale as they have been tested
only on small datasets. We suspect that they would not scale to a large social graph like the one we
consider in this chapter.

Van der Aalst et al. [82] extract a social network from logs of interactions between workers in a
company. Similar works include mining email communications [10] and proximity interactions [32].
In each case, the authors start with a very dense graph and the idea is to identify the social network in
this graph. The difficulty of the task is due to the huge amount of data. In our problem, we have the
opposite situation: the information used to generate the bootstrap probabilistic graph, which enables
link prediction, is very sparse. Hence, the information needs to be spread, not pruned.

2.6.2 Privacy

Since we deal with reconstructing information that is often considered sensitive (the links of a social
network), our work has privacy implications. In fact, our method can be used by an attacker to
threaten link privacy in a social network, thus it can be used to test the resilience of anonymization
solutions. Several papers [6,43, 64] study the problem of social network anonymization and the
impact of the available knowledge on the inference of hidden information that should remain secret.
We are particularly interested in the work of Zheleva and Getoor [95]. They show how the Flickr
social network and groups can be used to predict private information.
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Mixed public and private profiles Zheleva and Getoor [95] consider a social network in which
some users hide their profile information by making it private, while other users make it public. They
propose several methods to leverage the social links and groups information to predict the content of
private profiles. Their experiments include datasets from Flickr and Facebook.

Their Flickr experiments show that the Flickr social network does not leak a lot of private
information, as the Flickr social graph connects very different people. However, they obtain much
better results using the group membership knowledge. They further improve the quality of their
prediction by selecting only the groups that have a low entropy (using the public profiles).

These results are very interesting as the stress the need for decentralized social networks. Their
observations confirm our experimental results: the Flickr groups are not very correlated with the
social network. In the setup we consider, the social network is completely hidden. Yet, if some of the
users made the list of their contacts public, we could improve the performance of our prediction by
also taking into account the entropy of the groups.

2.7 Concluding remarks

We presented the cold start link prediction problem and a two-phase method that enables link
prediction in the absence of a social network. The first phase of the proposed method generates a
bootstrap probabilistic graph using the available social information while the second phase applies
various link prediction algorithms to this probabilistic graph. We tested our approach over a dataset
obtained from Flickr, by using group memberships as the only available information.

For the sake of generality, we applied our method to interest groups, a very simple and common
kind of information in social networks. Thus, the features we present can be applied to other networks.
Obviously, as more information is available, higher prediction accuracies can be achieved.

In the context of Flickr, we might use information that is more specific to photography in order to
improve prediction performance. For instance, in [76], Singla and Weber study the impact of the
social network on camera brands of Flickr users. We could leverage such information to create more
accurate predictors. Similarly, as observed in [20], information diffusion often follows the social
network. This is known as the social cascade phenomena and can be observed in Flickr when users
favorite others’ pictures and post comments about them. If this information is available, it can be
used as a bootstrap feature to generate a probabilistic social graph that matches the observed social
cascade.

As pointed in Section 2.6, we believe that our method can be applied as an attack against link
privacy in social networks. Determining to which extent our approach can be combined with existing
attacks to improve the predictive power of publicly available attributes is worth future research. Yet,
we believe that this highlights the need for a decentralized architecture for social networks. Indeed,
the efficiency of these attacks is directly related to the amount of data available. In a decentralized
system, each user could be responsible for her own data, which would make the task of collecting a
sufficient amount of data to threaten the privacy of the users much more difficult.

In this work, we have adapted the graph-theoretic algorithms in [59] to probabilistic graphs.
Potamias et al. [71] introduces different measures of distances in probabilistic graphs and present
algorithms to compute k-nearest neighbor queries. We believe that probabilistic graphs are a powerful
tool and designing algorithms to extract their characteristics can create new approaches also to other
research problems.
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CHAPTER

DISTRIBUTED LINK PREDICTION
FOR SOCIAL NETWORKS

Abstract

In this chapter, we propose SOCS, a distributed algorithm to predict links between the users
of a social network. Link prediction is a very important feature of social networks, as it helps
users to discover new friends. In order to deploy social networks on P2P systems, we need to
be able to implement it in a fully decentralized manner. The algorithm we propose embeds
the social graph in a metric space. Vertices are assigned social coordinates, which reflect the
proximity between users. The closer they are, the more likely they are to be connected. We
rely on force based embedding methods, traditionally used in the graph drawing community, to

compute the coordinates. SOCS uses P2P gossip algorithms to discover socially close vertices.

We evaluate SOCS on real social graphs as well as synthetic topologies. We show that SOCS is
able to accurately predict links in social networks, and is adapted to a P2P context, as it is very
resilient to churn and requires a small amount of network communications.

This work was realized in collaboration with Anne-Marie Kermarrec and Gilles Trédan. It is
now under submission.

37
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3.1 Introduction

Context

P2P networks are becoming an appealing platform for social networks' as they offer opportunities
to increase the privacy of the users. In this chapter, we address the problem of the distributed
computation of link prediction [59]. Link prediction is a very important functionality in social
network, as it assists users in finding new contacts in the social graph. Decentralized link prediction
systems are appealing for two main reasons. First, many link prediction algorithms involves heavy
computations and do not scale well with the size of the graph. As social networks now involve
millions of users, a distributed approach enables each user to participate to the computation, hence
reducing the scalability problem. Secondly, central servers storing all the data enable private
companies to predict very accurately the user’s behavior [33]. In Chapter 2, we show how very little
social information is sufficient to start predicting sensitive data. It is therefore crucial to decentralize
social systems, as it is an important first step to protect the privacy of the users.

Building a distributed link prediction system is a challenging task. More precisely, this requires to
extract a notion of proximity between vertices in the whole social graph. The intuition is that only the
closest entities to a given vertex are considered to guide the recommendations made to this vertex. In
this chapter, we consider the problem of link prediction under its traditional form. We assume that
the social network is available, and only rely on the knowledge of the social graph to compute the
proximity between vertices. However, contrary to centralized link prediction approaches, we do not
rely on features that use the social graph globally. Instead, we assume a distributed and more privacy
preserving setting, in which the knowledge of each vertex is limited to its list of graph neighbors.
Thus, in the solution we present, vertices do not exchange information about the graph, they are
limited to their local view of the social graph. It would be impossible for a vertex to discover new
vertices without first learning about their existence. Therefore, in our system, vertices exchange
information about their knowledge of the proximity between vertices. They provide information
about vertices they consider to be close, but do not reveal which ones of them they are connected to
in the social graph.

It turns out that most of the social graphs reflecting real life relationships exhibit a community
structure. In other words, these graphs are often composed of smalls and internally well-connected
subgraphs (the communities). These communities are sparsely connected by bridges, or long links.
A user in a social network is usually connected to some communities such as her professional envi-
ronment, her university friends, her childhood friends, etc. Connections between these communities
may exist and the user precisely acts as a bridge between them. Extracting the community structure
from a graph is crucial to guide a recommender system to predict links within the community.

This extraction is however not straightforward and is a computationally expensive task that is
hardly compatible with dynamic graphs. Moreover, the traditional definition of community, still
under discussion, is fairly rigid: a vertex either belongs to a community or does not. This does not
fit the current Internet setting. Overlapping communities have only been recently considered (see
e.g. [69]). In this chapter, we substitute the (tree-shaped) traditional community structure by a notion
of community space, that we call social space. In this space, communities are no longer strictly
defined as sets, but vertices from the same community belong to the same area. This definition allows

"http://www. joindiaspora.com/
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vertices in the social space to be in the core or at the border of a community, as well as in multiple
communities.

To illustrate this intuition, consider a graph representing the friendship relations between people.
People living in the same city are more likely to be friends. As a consequence, the majority of a
link in the social graph bind people living in the same city. Nevertheless, a user can also have many,
geographically distant friends, that all share a common interest for a specific music type for instance,
and therefore interact with each other. In this example, a recommender system should be able to
differentiate these two communities. It should recommend to the user new friends from both her
city and her music community. But it should not predict more links between these two different
communities. This user is a bridge between these communities, but they remain different.

Contributions

In this chapter, we introduce a novel decentralized algorithm based on (non-isometric) force based
graph embedding to assist a link prediction system. More specifically, we propose SOCS (SOCIAL
COORDINATE SYSTEMS), a fully distributed graph embedding algorithm that embeds a social graph
into a metric space. The embedding achieved by SOCS preserves the community structure of the
input graph thus enabling to easily predict links. SOCS predicts links between vertices that are close
in the social space but are not connected in the input graph. SOCS is a very simple algorithm, less
than 20 lines of code. SOCS is based on a gossip protocol and does not require any vertex to have a
global knowledge of the system.

As we show in the following, force based graph embedding is natural to distribute, and thus, our
technique provides a sound basis for distributed link prediction systems. SOCS can be parametrized
with any force-based model and we explore in this chapter the application of two well-known energy
models to generate a social graph embedding. We provide empirical evidence that the state-of-the-art
force model as presented by theoreticians (the LinLog model [66]) is not necessarily the model
providing the best results in a practical setting, when considering only the local contacts. Additionally,
we obtain the surprising result that distributed versions of our protocol, that solely rely on local
knowledge, often provide a better accuracy than their centralized counterparts. This demonstrates a
connection with local non-linear reduction algorithms.

We evaluate SOCS in the context of:

e a terrorist collaboration network
e a science co-authorship dataset
e a synthetic small-world Kleinberg topology [52].

Our results show that SOCS is able to achieve social embedding: links removed from social networks
are accurately predicted, and SOCS enables to clearly distinguish between short and long-range links
in a small-world network. We also observe that SOCS is efficient and highly resilient to dynamics.

Roadmap

The rest of the chapter is organized as follows. In Section 3.2, we present background knowledge
about graph embedding and force-based layout. We present SOCS in Section 3.3 and show part of
the experimental results in Section 3.4. Finally, we review existing work in Section 3.5 and conclude
in Section 3.6.
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3.2 Background

In this section, we present the link prediction problem and provide the background on graph embed-
ding required to understand our decentralized protocol. We also introduce the two force models that
we are considering in this work. Finally, we present gossip protocols, which are used to maintain
P2P networks.

3.2.1 Link Prediction

The link prediction problem, which we already consider throughout Chapter 2, consists in predicting
the links that are likely to appear in a social network. In Section 2.6.1, we present this problem and
review some existing approaches. In this chapter, contrary to the work we present in Chapter 2, we
are interested in algorithm that only use the link structure.

In this work, we compare SOCS’ ability to predict links in a social graph against three other
measures:

e The graph shortest path (SP): we compute the unweighted graph shortest path between the two
vertices and. The closer the vertices are in the graph, the higher is the prediction probability.

e The number of common neighbors (CN): we first compute the graph shortest path between
the two vertices, and then the number of common neighbors. This measure refines the graph
shortest path, as when the shortest path is of length 2, we sort the predictions according to the
number of common neighbors.

e The hierarchical random graphs (HRG): presented in [25], this method relies on detecting the
community structure of the graph and weights the prediction according to the likelihood to
belong to the same community. We give more details about this approach in Section 2.6.1.

3.2.2 Graph Embedding

Consider G(V, &), an undirected graph of n vertices representing a distributed system (n = |V|). Let
P be the host space and let dim P = d. A graph embedding is a mapping of the graph vertices to
positions in the host space. In other words, each vertex ¢ € V get assigned to a point F; in the host
space P.

We denote d¢ (i, j) the graph shortest path distance between vertices i and j, and H]TP;H the
(Euclidean) distance between images for vertices ¢ and j in P by the embedding. In other words,
||]TPJ> || is the distance between the projections of ¢ and j in the host space. Many graph embedding
algorithms focus on minimizing the difference between graph distance between two vertices and the
distance of their respective images in the host space. Formally, the criterion with respect to this goal
is captured by the so-called distortion: let f be an embedding of G into P, and let ¢ €]0, 1] be the
distortion. We have:

Dl i
Y(i,5) € V x V, da(i,j) < ||BiP)|| < clij)

C

If ¢ = 1, the embedding is isometric. It is important to note that there always exists an isometric
embedding in a (n — 1)-dimensional host space [85]. The dimension d of the host space is an
important parameter to consider for distortion. Minimizing the distortion is an important goal when
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Figure 3.1: Example of a friendship social network

the embedding aims at reflecting as closely as possible the graph distances. Yet, our goal to achieve
a social embedding is to precisely have some distortion to distinguish edges that link different
communities. Therefore, in SOCS, we use low-dimensional host spaces (d << n): our goal is not to
minimize the distortion, since an isometric embedding would not respect the community structure.

Force-based graph embedding There are several ways of achieving graph embedding. In this
chapter, we explore a subfamily of these techniques, namely the force-based embeddings (FBE),
introduced by Eades [31]. Several variations have been proposed since. Intuitively, it is possible
to explain the algorithm using a physical analogy: edges represent springs and vertices represent
electrically equally charged particles. Edges (springs) attracts the vertices close to each other whereas
vertices (particles) repulses each other. This is the physical system simulated by the algorithm. The
embedding is achieved once the system reaches an equilibrium.

FBEs are iterative algorithms and rely on two kinds of forces that define the attractions and
repulsions that each vertex is subject to in the host space. Initially, each vertex is placed at random in
the host space. At each iteration of the algorithm, the forces are applied to the vertices. Attractive
forces are always applied to a vertex by its graph neighbors whereas repulsive forces are applied by
all vertices. We denote by V; the graph neighbors of the vertex . Figure 3.1 illustrates this principle:
vertex a is attracted by b, ¢ and e, and repulsed by b, ¢, d, e and f. Let P; be the image (i.e. the
position) of vertex ¢ in the host spacget || P; P;|| be the distance between P; and P;, and let &;; be

. . P;P;
the direction from P; to Pj: & = ﬁ.
(2]

Following Noack’s formalism [67], we define forces as proportional to some power of the distance

between two images: attraction force A; and repulsion force R; applied to a vertex i € V are
respectively defined as

— — = — —
A =" |IPP| g, Ry ==Y _|[BP".ij .
JjEV; jEV

Thus each couple (fa, fr), as respective parameters of the attraction and the repulsion force, defines
a new force model. Note that only systems with (fa > fr) produce finite distances (provided the
graph is connected).

In this chapter, we study two common FBE models. The first one is Noack’s LinLog [66] defined
by (fa = 0, fr = —1), known as producing layouts that account for community structures. This is
considered as the best force model to preserve the community structure of a graph. The second one
is the carbon copy of physical Hooke’s spring attraction and Coulomb’s electrostatic repulsion forces
(such as presented in [83]). We denote HC this model hereafter, defined by (fa = 1, fr = —2)
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3.2.3 Gossip protocols

P2P networks can federate millions of machines in a completely distributed manner. In such a large
network, it is impossible for a peer to keep track of all the participants. This would require too many
network resources, and the volatility of the peers would prevent the peer from maintaining an up
to date list of participants. Instead, in P2P, each peer maintains a partial knowledge of the network,
which we refer to as its view. The graph formed by the peers and the connexions between them is
called an overlay. The view of each peer contains a few other peers, typically O(logn), where n is
the size of the network. A peer joins the network by contacting an other peer which is already part of
the P2P overlay. Many different protocols have been developed to generate different P2P overlay
topologies, ranging from very rigid ring structures in distributed hash tables [78], to completely
random overlays [46].

In this chapter, we are particularly interested in a specific class of P2P algorithms, known as
gossip protocols. Gossip protocols have been widely used to maintain distributed overlays. Each
peer regularly contacts an other peer from its view and shares its view information with it. After
this exchange, they both update their view, using their previous view as well as the information
they received. Following the formalism used in [84], we define a skeleton of a gossip protocol in
Algorithm 3.1. This protocol describes the actions performed by a peer u during a cycle of the
gossip protocol. The peer v, which is contacted by v upon gossip, performs the exact same actions
from line 4. The makeEntry () function is used by u to add its own description to the infor-
mation sent to v. This skeleton contains several undefined functions: selectDestination (),
selectEntriesToSend () and ComputeView (). Their implementation defines the behavior
of the gossip protocol as well as the properties of the resulting P2P overlay.

Algorithm 3.1 Gossip skeleton for peer u gossiping with v

1: loop > Do one cycle every T time units
2: wait 7' time units

3 v ¢ selectDestination () > Select a gossip destination
4 sendBuf < { makeEntry () }U selectEntriesToSend ()

5 send sendBuf to v > Share the view information
6: receive recBuf from v

7: view, — ComputeView () > Update the view
8: end loop

Voulgaris and Steen define, in [84], two different gossip protocols using this framework. The first
one is Cyclon, a Random Peer Sampling (RPS) protocol, which provides each node with a random
view of the network. Therefore, selectEntriesToSend () selects half of view, at random and
ComputeView () merges the remaining part of view with the peer descriptors received from v.
Cyclon ensures the connectivity of the overlay, and has very good load-balancing properties. The
second protocol, Vicinity, clusters the network by grouping peer which are similar together. In some
cases, clustering the network could partition the P2P overlay: if all the peers hold an integer value
i € {1,2} and select their view according to this value, then the clustering protocol will generate
at least two different connected components, one with all peers having ¢ = 1 and the other with
the peers having ¢+ = 2. Now consider a new peer joining the network with ¢ = 1. If the peer it
contacts to join the overlay has a value ¢ = 2, then it will not be able to discover peers having
1 = 1, as they are in a different connected component: its view will not converge to the optimal.
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Figure 3.2: Clustering protocol associated with a RPS

Therefore, clustering protocols are used in conjunction with a RPS. In a clustering protocol, the
selectEntriesToSend () function makes a list of the entries from view,, closest to v according
to the clustering criterion, and the ComputeView () selects the node which are closest to v from
view,, the peer descriptors received from v, and the RPS view of u. The RPS ensures that the
clustering view will always converge, as it provides the peer with continuously changing random
peers. Figure 3.2 illustrates the association between a clustering protocol and a RPS.

P2P networks are subject to churn, peers join and leave the network. As already mentioned, a
peer u joins the network by contacting any already connected peer. The other peers of the network
discover its existence through gossip, as u transmits its descriptor (Algorithm 3.1 line 4). The gossip
protocol also detects nodes which have disconnected when they are selected as gossip destinations.
In [84], the authors use a time-stamp mechanism to ensure that the peer descriptors of disconnected
nodes are quickly removed. The selectDestination () function is then biased in order to
select the oldest entries. The trade-off between the freshness of the view entries and the quality of a
RPS is further studied in [46].

In this chapter, we rely on two gossip protocols, a RPS and a clustering protocol, to maintain the
SoCS overlay.

3.3 Social Coordinate System (SoCS)

In this section, we describe how SOCS performs a distributed embedding of a social graph. For the
sake of clarity, we hereafter add the adjective social to every element referring to the SOCS host
space. For instance the host space of the embedding is designated as the social space and the distance
on that space is designated as the social distance. Vertices that have close social positions are social
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neighbors. At this point it is particularly important to distinguish between the graph neighbors of a
vertex (the friends of this vertex) and the social neighbors of this vertex, which are not necessarily
the same. Indeed, SOCS will recommend to a vertex its closest social neighbors that are not already
graph neighbors.

In a nutshell, each vertex that runs a SOCS instance (i.e. each graph vertex) regularly computes its
position in the social space. Each vertex first gathers its graph neighbors social neighbors positions.
Then, using these positions, each vertex computes the forces that are applied to it, and derive its
updated position. The rest of the protocol is a gossip protocol that provides each vertex with a list of
its social neighbors. This list of social neighbors is then used to compute new positions but also to
issue recommendations.

3.3.1 System model

SOCS is a peer-to-peer (P2P) algorithm that embeds a social graph and operates on a P2P overlay
network. We consider a system of n vertices and assume a one-to-one mapping between the vertices
of the social graph and the machines connected to the P2P network, hence we refer as vertex both to
the machine connected to the network and to the logical entity in the social graph. The social graph
is an input in SOCS, so each vertex is aware of its graph neighbors. In a dynamic social graph, the
set of graph neighbors may vary during the execution. To join an existing SOCS P2P network, a
vertex contacts its graph neighbors to establish connexions. Traditionally, in FBEs, each vertex is
assigned a random initial position. Indeed, FBEs are usually used in the context of a drawing, so no
initial position is known. As SOCS considers the case of a permanent P2P network, a vertex may
join an existing network, in which some coordinates have already been computed. In that case, the
vertex may initialize its position at the barycenter of its graph neighbors. This first approximation of
the optimal coordinates speeds up the convergence since the vertex is initially placed in a good area
of the social space.

3.3.2 Rationale

Let us consider the example graph on Figure 3.1. Assume that this graph represents friendship
relations between people. Vertices d and f are both two hops away from a. From a shortest path
perspective, they thus should be considered equally friends to a. Yet, it is very likely that d is closer
to a since they have two friends in common, namely ¢ and b. This could result in d having twice
more chances than f of being invited to a’s birthday.

Such social information is typically what SOCS aims at capturing in the resulting social embedding:
this is achieved since the attractive forces applied between c and b bring d closer to a in the social
space. In addition, due to d’s repulsions, ¢ and b are closer to a than e. As a result, the list of friends
of a in the resulting space is then, ordered from the closest to the farthest: b and ¢, e, d, f.

These results can be interpreted as follows: since (a, b, d, ¢) is a quadrilateral, it has more cohesion
than a single line, and members of that structure get close positions. The generalization of this
intuition is that vertices within the same community get closer positions than vertices from different
communities. This is exactly the approach advocated by Noack, that recently bridged community
detection and force-based graph embedding [67].

Link prediction algorithms are empowered by the knowledge of communities (see e.g. [25]). SOCS
achieves such a social embedding, capturing, as the evaluation will confirm, the notion of clusters
and communities by placing vertices of a community close to each other in the host space. Since
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links are more likely to appear between vertices of the same community, the social distance (i.e. the
Euclidean distance over the social space) can be directly leveraged to predict links between vertices.

3.3.3 Local repulsions

In SOCS a vertex, in order to compute its position, needs to compute the sum of attractions and
repulsions that applies to it. As explained in Section 3.2, attractions take into account the graph
neighbors. Since a SOCS vertex is directly connected to all its graph neighbors, computing the
attractions is straightforward. We now detail how repulsions are approximated and computed.
Computing repulsion forces based on all vertices is both extremely costly in a large system and
hard to achieve in a decentralized way. Instead, SOCS only considers repulsion forces of the close
vertices in the social space. This optimization was introduced by Fruchterman and Reingold [37] to
reduce the time complexity of graph drawing algorithms. It is relevant for several reasons. First, in
both force models (especially the HC model), the repulsion force is quickly decreasing with respect
to the social distance between vertices: distant vertices’ contribution to the force equilibrium is
negligible. Second, we target link prediction. We aim at predicting links binding vertices that are
already socially close. Long social distances do not necessarily need to be precisely respected. Let
B(i,r) to be the set of i’s  closest neighbors in P. SOCS computes the following repulsion force:

— — =
JE€B(r)

Therefore, in SOCS, each vertex needs to compute its repulsions based on its local neighborhood. The
size of this neighborhood, i.e. the number of repulsion is represented by the parameter r. The benefit
of this optimization is that each vertex only communicates with a small number of other vertices,
either graph or social neighbors (these sets often overlap). We empirically show in Section 3.4
that considering only local forces provides better results while reducing the cost of the algorithm.
SOCS relies on a gossip protocol to provide each vertex with its r closest social neighbors in a fully
decentralized way.

3.3.4 The SoCS decentralized algorithm

SOCS is a fully decentralized algorithm: each vertex knows only a limited portion of the network,
namely its graph neighbors and its social neighbors. SOCS relies on gossip protocols, presented
Section 3.2.3, to discover the social neighbors. In SOCS, each vertex runs two different gossip
protocols, a Random Peer Sampling (RPS) [46] and a Neighbors Peer Sampling (NPS). The NPS
protocol is based on Vicinity [84] and clusters the vertices according to the social coordinates: the
NPS view of a vertex converges to the r closest social neighbors of this vertex. When a vertex joins
the network, the NPS view is initialized with its graph neighbors, are they are very likely to be also
social neighbors.

Algorithm 3.2 depicts the SOCS algorithm. Initialization is done lines 1 — 3. In a static setting (G
does not change over time), we assume that vertices are provided with a function Converged ()
that stops the execution of the protocol on a given vertex. For instance, a vertex that has not changed
position over the last couple of rounds, may stop. In a dynamic setting, Converged () always
returns false. Two key parameters allow to tune the algorithm: the number of neighbors considered
for computing the repulsions, r and the dimension of the host space, d. The impact of both parameters
is detailed in Section 3.4.
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Each vertex retrieves the lists of its social neighbors by calling Get SocialNeighbors () (this
list is obtained from the NPS) and its graph neighbors by calling Get GraphNeighbors () (this
list is extracted from the graph and present in the vertex’s profile).

Instead of computing directly a new vertex position, the presented algorithm computes a couple
(speed, direction) toward the ideal position (lines 12 — 13). This improvement, also used by [37],
allows a faster convergence by speeding up vertices in the early steps while avoiding oscillation
during the late ones.

Figures 3.3,3.4 and 3.5 illustrate SOCS running on a small-world grid. They respectively illustrate
Kleinberg’s graph generation process, SOCS’ input and output on vertex a, and an illustration of
SoCS’ system-wide output. Blue vertices represent a’s graph neighbors, green vertices represent a’s
predicted links.

Algorithm 3.2 Graph embedding algorithm, code for Vertex %
1: P, + GetBarycenter (GetGraphNeighbors())
2: Uppew = 1

3: d prey ¢ new RandomDirection ()

4: while not Converged () do > Execute a cycle
5 «0
6 for j € GetGraphNeighbors () do
7: ded + ||P1_PJ>|]f“ X Z} > Compute attractions
8 end for
9 for j € GetSocialNeighbors () do
10: — d —||PP|" x ig > Compute repulsions
11: end for
12: 7 — 7

kil
13: v = (% X cos(j, jprev) + 1)Vprew > Compute speed
14: prev —
15: Uprev = U
16: P, = B—Fv.j > Move

17: end while

3.4 Experimental evaluation

This section presents the experimental evaluation of SOCS. We evaluate SOCS through two different
approaches. First, we measure the quality of the embedding generated by SOCS with a link prediction
experiment. We present results obtained on two different real social graphs: a computer science
co-authorship graph (DBLP) and a terrorist interaction network. We compare these results with
some existing approaches and highlight the qualities of SOCS in a distributed environment. Then, in
the second part of this section, we evaluate SOCS on synthetic small-world graphs. We generate
small-world graphs from a known social topology. This setup provides a full knowledge of the social
space and allows us to perform a more precise evaluation of SOCS by comparing the distances in the
social space and the ones in the SOCS coordinates space. We present results obtained both in a static
setting and in a dynamic network. We demonstrate SOCS’ fast convergence and resilience to churn.
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In our experiments, we evaluate SOCS in different configurations with three parameters. The first
one is r, the number of repulsions applied to vertices, introduced in Section 3.3.3. The second one
is the force models, presented in Section 3.2.2. The accuracy and the convergence speed of SOCS
highly depend on these two parameters. The last parameter is the number of dimensions in the SOCS
coordinates space. While it also impacts the precision of SOCS, its influence is much lower than
the two previous ones. We show that, quite surprisingly, the configurations that achieve the best
prediction quality are very close to the ones that perform well in a distributed environment. Finally,
please note that, although SOCS is implemented in a java simulator, it still runs in a fully distributed
setting: each vertex is only provided with the list of its neighbors identities, and nothing else. In
particular, SOCS does not use any hypothesis about the nature or the size of the graph.

3.4.1 SoCS link prediction quality
Setup

In this section, we consider two different social graphs. The first one is a terrorist association
network [55] of 62 vertices and 152 edges, used in [25] to evaluate HRG. The second one is
the DBLP dataset?, from which we generate a co-author graph. We add an edge between the
authors having at least one publication in common, while removing the authors that have less than
20 publications. We keep the biggest connected component, which consists in 27, 680 vertices
connected by 211, 078 edges. Note that the edges are not weighted and the number of publications
co-authored and the publication dates are ignored in this experiment. In order to perform the link
prediction, we rely on the usual approach which consists in removing some edges from the graphs
and trying to predict them. More precisely, we select from the social graph G = (V, £) a set of edges
&y, at random. We call these edges the hidden links. Then we run the link prediction algorithms on
the test graph G, = (V,€ — &,). The goal is to predict the edges in &,. The edges removed are
always selected at random, but we take care not to disconnect the graph.

We compare SOCS’ performance with HRG, as well as two simple approaches introduced in [59]:
the graph shortest path (SP) and the number of common neighbors (CN). In the case of CN, we first
compute the shortest path between vertices, and the compare the number of common neighbors if the
shortest path’s length is 2. This feature was also studied in the previous chapter (Section 2.5), but in
this case the graph is deterministic so the computation is more simple. We consider the case of a
static network, so the social graph is not modified during the execution and we run SOCS until the
coordinates have converged. We use ROC curves [72], as well as the AUC measure to display the
results. The ROC curves were already presented in Section 2.2.3 and show the evolution of good
predictions with respect to bad predictions. The AUC measure represents the Area Under ROC
Curve. The bigger this area is, the better the precision is. The AUC can be also interpreted as follows:
an AUC value of p means that if a good prediction and a bad prediction are chosen at random, the
good prediction has a probability p to receive a higher confidence than the bad prediction. While the
AUC is very useful to compare ROC curves, since it summarizes the curve into a single value, it is
also less detailed. A ROC curve shows precisely on which portion of the prediction a feature was
accurate: two very different ROC curves can have the same AUC.
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Figure 3.7: DBLP link prediction
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Evaluation

Figure 3.6a displays the AUC of the link prediction on the terrorist association graph for an increasing
number of edges || removed. We configure SOCS to use 10 dimensions. As already observed
in [59], SP does not perform well, while CN is very accurate. We observe that SOCS performs best
with the HC force model. It’s also very interesting to notice that a lower value of r also improves the
accuracy of the prediction. By reducing the amount of information gathered by each vertex, SOCS
eliminates the impact of distant vertices and reduces the noise in the data. Thus, vertices get a better
position and also need less bandwidth to run SOCS. With HC, SOCS outperforms HRG at each level
of sparsity. Figure 3.6b provides the ROC curve for the experiment in which |&;,| = 1. This gives
more insight on the behavior of the link predictor. HRG is slightly better than SOCS for the very first
predictions, and is then outperformed for the remaining ones.

The results obtained on the DBLP dataset, presented Figure 3.7, confirm these observations. We
removed 1% of the edges at random , |£| = 2, 110. Since the graph is larger, we configure SOCS
to use 20 dimensions and a larger value of . We apply two different strategies for SOCS. In the
first one, we perform the prediction at a full graph level. This means that we sort the distances
between all vertices from the shortest to the longest and predict the links in that order. In the second
one, each vertex alternatively predicts a link to the closest social neighbor. The second approach
performs better. It is also the one that fits SOCS the best as each vertex makes its own predictions
in a distributed manner. This behavior confirms that SOCS generates accurate social coordinates
at a local scale. They are usable to compare the distances to social neighbors. Yet, the density of
the social space can vary a lot depending on the density of the graph. Thus, it is less accurate to
compare two distances from different areas of the social space. Again, SOCS performs best with
the HC force model and few repulsions. However, it is always outperformed by CN, and also CP
after predicting 60% of the missing edges. Note that at that point, many non existing edges would
have been introduced in the graph, so the first predictions are actually the most important. We also
believe that the setup of the DBLP experiment favors the CN metric: scientific publications often
have more than 2 authors, resulting in many common neighbors for the authors whose link has been
removed. We were not able to evaluate HRG on this graph. The implementation provided by the
authors quickly runs out of memory on a 16GB memory computer when it’s applied to such a large
graph.

The experiments show that SOCS can be used for an accurate link prediction. It scales well with
the size of the graph, since a small value of r, with respect to the number of vertices, is necessary
to obtain the best results. This setting also favors a distributed approach it reduces the network
bandwidth usage. On the considered datasets, SOCS is more accurate than HRG, but is outperformed
by CN. It is important to understand that computing shortest paths in a large graph is very costly.
This is even more problematic when the vertices of the graph are part of a P2P network: it causes a
large amount of network communications, and it is very sensitive to churn. When vertices leave or
join the graph, the shortest path has to be computer over again. In SOCS, vertices do not compute
the list of their common graph neighbors. They just exchange lists of neighboring vertices in the
SOCS coordinates space. During our experimentation, we also noticed that SOCS runs faster than
HRG, and uses much less memory, which confirms the scalability of our algorithm.

Zhttp://dblp.uni-trier.de/xml/dblp.xml.gz
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3.4.2 SoCS applied to a small-world network
Setup

In order to evaluate SOCS into details against objective criteria, we experiment the algorithm on a
synthetic small-world network. Most of the graphs representing social and semantic relations exhibit
a small-world topology. Small-world graphs are characterized by a high clustering coefficient and a
small diameter. They have been widely studied from a graph perspective. We rely on the Kleinberg
model [52] on the Euclidean plane to generate 1, 024-vertices small-world network from a 2D grid
(Figure 3.3). We proceed as follows:

1. We place on a Euclidean plane a square grid of 1,024 vertices. Each vertex has thus grid
coordinates ranging from (1,1) to (32,32). We call grid distance the Euclidean distance between
two vertices in this space.

2. Each vertex is connected with its 8 direct neighbors. These links are called hereafter short
links, as they represent links withing communities. In a real social graph, these links represent
close friends, who know each other and live in the same city. Vertices at the border of the grid
may have less neighbors.

E3]

3. Each vertex ¢ also draws one long link to an other vertex. These links represent “unlikely
friends, met on holidays for example. Following Kleinberg’s model, the second end of this
link, j, is chosen with a probability proportional to m, where g(i, §) is the grid distance?
between ¢ and j. Intuitively, the closer ¢ to j, the higher its probability to be picked as a long
link. The distribution of long links is justified by the properties of greedy routing associated,

but this is not a property we are using in this chapter.

4. Each vertex has on average 10 neighbors, depending on its position on the grid and how
often it is chosen as the end of a long link. For each vertex, we extract this list of neighbors
(undirected) and use it as an input for SOCS as depicted Figure 3.4.

5. SOCS generates a social embedding of the graph (Figure 3.5) and we compare this result with
the grid used for generating the graph.

Since the small-world grid used to generate the graph constitutes a detailed ground truth, we
are able to perform precise measures to evaluate the embedding performed by SOCS. We are not
interested in the absolute value of the coordinates, nor by any scaling or rotation that could occur, as
displayed Figure 3.5. Our first experiment consists in computing the Pearson correlation between
the social distances and the grid distances. A second experiment consists in using SOCS to allow
vertices to differentiate between short and long range links. This is a problem defined by Kleinberg
in [53], which was already theoretically addressed [36]. SOCS provides an interesting and more
flexible approach to this problem. Each vertex ranks its graph neighbors using the social distances. If
SOCS is accurate, all the short links should be shorter than the long links. We evaluate the number
of ranking errors as the number of consecutive vertices that need to be switched to obtain a perfect
ranking. This can be seen as the number of bubble-sort operations necessary to sort the list. All the
results we present are averaged over 100 different generated graphs.

3For the sake of uniformity across the experiments, we used an Euclidean distance, whereas [52] used the Manhattan
distance. Yet, this does not impact the results.
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Figure 3.8: Pearson correlation between grid distance and SOCS distance

Static system evaluation

In this set of experiments, we evaluate SOCS on a static graph and wait until the coordinates have
converged. We first compute the Pearson correlation between the distance of all the pairs of vertices
as seen by g and the distance in the social distances computed by SOCS. The results are presented
on Figure 3.8a. Contrary to the previous results, the best performance is obtained with the LinLog
force model and a large value of r. The setups in which r is high are very stable, especially in the
case of LinLog, and are almost not impacted by the number of dimension. In the other cases, when
r decreases, the number of dimensions has a negative impact on the correlation between the social
distances and the grid distances. These results contradict the ones obtained in the link prediction
experiments in Section 3.4.1. Indeed, link prediction is much more affected by the local positioning
of vertices than by the distances between all pairs of vertices. Hence, we define a second measure that
we call the local Pearson coefficient. For each vertex, we compute the Pearson correlation by only
considering the distances to graph neighbors, and we average this result over all the vertices. This

52



3.4. Experimental evaluation

<
B T T
oy N
>
& HC all ——
g HC 100 ------- 1
B HC 20 --- o
Nt LinLog all |
° LinLog 100 ----=----
8 LinLog 20 T
g [ E——— Mhnmmmmmm——— [ TR, T R PR Erry ey W mmmm [ 3
I e X Koo, &
= ]
I L ]
S -------------- |
> 1 1
<

8 9 10

number of dimensions
(a) Average number of errors
3.5e-06 T T T T T

HCall —
= 3e-06 HC 100 - .
= i HC20 ------
8 2.5e-06 LinLog all 1
o LinLog 100 -
£ 2e-06 [\ LinLog 20 7
15) 2\,
E 1.5e-06 b
= _ i
é 1e-06 N
= 5e-07

0
2

link length

(b) Normalized distribution of the real grid length of misclassified long-range links

Figure 3.9: Links ranking experiment in the static setting

measure reflects the ability of a vertex to differentiate its social neighbors, which relates it to the link
prediction problem. As Figure 3.8b shows, the best results are achieved through small values of r.
Adding dimensions improves the results with HC, while Linlog performs better with few dimensions.
The experiment on the link ranking errors, described in Section 3.4.2, also reflects the quality of
the embedding of the close social neighbors. Figure 3.9a presents the average number of ranking
errors for each vertex. The configurations that perform well are almost the same: a small 7 and many
dimensions generate fewer errors. LinLog is more stable than HC with r = 20, as HC obtains better
results with » = 100 than with » = 20. While the average number of errors per vertex may seem
quite high (0.4 in the best case), the classification errors are actually benign. Figure 3.9b gives more
insight on the distribution of these errors. It displays the distribution of errors with respect to the
grid length of the long links involved in the errors. The number of errors is normalized by the total
number of errors of the SOCS configuration, and by the number of such links in the small-world
graphs. Clearly, most of the errors are caused by the long links at distance 2. These long links are
quite frequent, given the Kleinberg distribution, and sometimes get swapped with diagonal short
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Figure 3.10: SOCS in a cold start situation

links, which have a grid distance of v/2. As these long links are very close according to the grid
distance, we do not believe these errors are important. When the long links become more distant,
there are almost never involved in errors.

These results confirm our experiments on link prediction: SOCS should be configured with a small
r in order to generate an accurate short-range positioning without suffering from noise caused by
distant vertices. Taking more repulsions into account generates more accurate long social distances,
but it clearly degrades the quality of the close social space representation. Given the applications we
target, the close social neighbors are much more important.

Dynamic system evaluation

So far, we have considered a static system. In this section, we consider SOCS in a real P2P
environment, where users may join and leave the system (aka churn), creating perturbations. SOCS
relies on gossip protocols to maintain the network knowledge of each vertex. These algorithms
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have been extensively studied within different churn conditions and have been shown to be very
resilient, even in the case of massive failures. In SOCS, the arrival or departure of a vertex modifies
the underlying social graph, therefore, the SOCS coordinates should be updated in order to reflect
these modifications. In this section, we study the quality of the SOCS coordinates during different
churn conditions.

We first consider the case of a “cold start”. The 1,024 vertices of the small-world simultaneously
join the network, without running any intermediate SOCS coordinate adjustment. Figure 3.10a and
Figure 3.10b display the normalized local Pearson coefficient and the normalized number of links
ranking errors respectively. The value 1 is obtained once the system has converged. The HC force
model reaches stability much faster (8 cycles), than the LinL.og one (up to 40 cycles). We also
observe that the convergence time decreases with 7.

A massive churn scenario, in which half the network converges and the other half simultaneously
joins leads to the same observations. However, the convergence time is faster. Indeed, the vertices
that join the network leverage the positions of the vertices already in place and obtain a quite accurate
initial placement.

Regular churn, in which vertices join and leave the network at each cycle, has almost not impact
on SOCS’ precision. When r is low, the perturbations caused by churn are local so they only affect
the few vertices that are directly connected to the vertex leaving or joining. They quickly modify
their coordinates to take the modification into account.

These experiments show that the HC force model is more adapted to churn than LinLog. This is
easily explained by the impact of repulsions: their weight is much lower in the HC model (fr = —2),
so they generate less perturbations. Taking only the closes vertices into account, i.e. choosing a small
r, is crucial for handling churn. It increases the convergence speed of SOCS and makes the system
more resilient to churn. The previous experiments show that a small  and the HC force model lead
to a better link prediction. Thus, SOCS does not suffer from its distributed nature, link prediction is
inherently a distributed application in which each vertex considers its neighbors while ignoring the
perturbation from the distant other vertices.

3.5 Existing Work

3.5.1 Graph embedding and drawing

Graph embedding is a mathematical problem that has been receiving a lot of attention for it is a
generic problem as explained by Linial, et al. [60]:

Many problems concern either directly or implicitly the distance, or metric on the vertices
of a graph. It is, therefore, natural to look for connections between such questions and
classical geometric structures.

Most of the works in this area extend the results of Bourgain [16] that proved the existence of an
embedding of any n-point metric in an O(log n)-dimensional Euclidean space with a logarithmic
distortion. They then explore how to exploit these low-distortion mappings to find efficient approxi-
mations for various problems such as k-commodity flow [5], or clustering (see Duda and Hart [30],
chap. 6). The reader may find in [60] an extensive study of the important results and applications
of graph embeddings. We believe that we could use SOCS to adapt many of these algorithms to
distributed systems.
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Another active and related branch of graph embedding is the graph drawing problem. In this
context, the host dimension is always 2 or 3 [40, 54, 83]. The objective is here to produce results that
are visually meaningful or to match certain applications requirements such as minimizing the number
of crossing when integrating electrical components on a board. Many graph drawing evaluations are
purely aesthetic. Since SOCS uses more than 3 dimensions to embed complex graphs, it is difficult
to rely on visual observation to determine the quality of the embedding, which is why we rely on
link prediction and the comparison with a ground truth in the experiments. However, during the first
steps of our experiments on SOCS, we also used images of the layout of small graphs (typically 100
vertices) in 2 dimensions to get an idea of SOCS’ performance.

In the remaining of this section, we survey related works in distributed graph embedding, not specif-
ically targeting content recommendation, and works related to content recommendation typically
non-linear dimensionality reduction.

3.5.2 Distributing Graph embedding algorithms

To the best of our knowledge, SOCS is the first distributed force-based graph embedding algorithm.
However, it is important to consider that some older works closely relate to embedding graphs in a
distributed fashion.

As opposed to FBE, another approach to graph embedding relies on the graph spectral properties.
The basic idea is to use the Eigenvectors associated to the k largest Eigenvalues of a graph’s Laplacian
matrix to embed the graph in a k-dimensional host space. This technique was introduced by Hall [41]
and is extensively described in [54]. Recently, Kempe and McSherry [49] provided an algorithm to
compute the £ first Eigenvectors of the adjacency matrix of a graph, based on decentralized orthogonal
iteration. The number of steps the algorithm has to run to achieve an error € is O(log2 (2) X Tmiz(G)),
where T,,,i»(G) denotes the graph G mixing time. The algorithm thus presents attractive costs for fast
mixing graphs. However, the application of these works to graph embedding is not straightforward.
Indeed, spectral layout sometimes generates representations that facilitate the comprehension of the
graph, but the distances between vertices are often difficult to understand. Furthermore, the stability
of this algorithm when facing churn or dynamics of the graph has yet to be studied.

Assigning Internet coordinates to vertices in a fully distributed way is a problem that received a
lot of attention. Dabek et al. proposed Vivaldi [28], a distributed protocol that aims at predicting
Round Trip Times (RTT) between machines on the Internet. The system is modeled as a valued
graph where machines are vertices and edges are measured RTT values. In a nutshell, a distributed
spring embedding algorithm is used to embed the graph in a low (2-3) dimensional space. The idea
is that even though each Internet machine maintains an up-to-date RTT to some Internet machines,
the vertex’s distance in the host space efficiently approximates the RTT between them. The main
difference with SOCS is that the embedding aims to be as isometric as possible. Furthermore,
in Vivaldi, machines can easily compute, through a ping measure, their optimal distance to any
given machine and adjust their position accordingly. In SOCS, the vertices only have information
about their graph neighbors and cannot do such a measure with respect to any vertex in the graph.
Finally, the social networks we consider in SOCS can be arbitrarily complex and unpredictable. For
example, the long links in the social networks break the community clustering and add some difficult
constraints to the layout. In the case of Vivaldi, the RTT between machines is bound to the physical
reality of the network, therefore the structure of the graph is much more simple.
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3.5.3 Non linear dimensionality reduction

Another class of works that relate to SOCS is dimensionality reduction (DR). DR consists in
discovering close items from a of set items described by highly dimensional data. These methods
are heavily used in machine learning and recommendation systems. Finding relationships between
the describing variables that are not linearly correlated led people to consider variables correlated
in a manifold (such as the distances between cities of the Earth globe). The goal of the non-linear
DR algorithm is to flatten this data into a Euclidean space (a world map). The approach followed
by these methods (e.g. KPCA, LMDS [23], LLE [74]) is to achieve DR while preserving the “local
structure” of the data.

Recently, Chen and Buja [23] pointed out the close link between graph drawing and non linear DR.
Their conclusion is that graph drawing, under certain circumstances, is achieving DR (or proximity
analysis). This allows to see SOCS as a non linear DR algorithm that “flattens” the social manifold.
Moreover, the importance of locality in non-linear DR fits with the distributed implementation of
SoCS.

3.6 Concluding Remarks

In this chapter, we presented SOCS, a fully distributed algorithm for social graph embedding. SOCS
distributes traditional force-based embedding algorithms to embed social graphs while preserving
their community structure [67]. SOCS exploits the benefits of the community structure knowledge
for link prediction [25] to achieve meaningful recommendations. SOCS relies on gossip protocols to
approximate the forces applied to the vertices and achieve scalability in large and dynamic graphs.

We extensively analyzed the performance of SOCS on both synthetic and real data. Our experi-
ments show that SOCS is able to accurately assign social coordinates to vertices. The configurations
that obtain the best results are the ones that favor a precise representation of the local social neighbor-
hood to global accuracy. Not only does this setting improve the quality of the results, it also offers
better scalability and more resilience to large-scale network perturbations such as churn.

We believe that link prediction is one of the most important features in social networks. It is crucial
to the development of the social graph. It is also one of the most difficult to achieve in a distributed
environment. Indeed, in social networks, most of the activities involve interactions between friends.
Link prediction is one of the only cases in which it is imperative to explore the social graph in order
to predict new connections. Our results are very encouraging, as they show that a P2P social network
could be implemented without sacrificing this functionality.

Future work includes evaluating the impact of other force models in order to find the best trade-off
between accuracy and applicability in P2P systems, as well as achieving a better understanding of
the algorithm parameter space. We also would like to study further the privacy-protecting properties
of SOCS, and the applications of onion routing [80] in its context.
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CHAPTER

DISTRIBUTED PERSONALIZED WEB SEARCH

Abstract

In this chapter, we propose a decentralized approach for social applications. As social
information can be used to accurately predict social information, we consider the case of a
P2P architecture, in which each user keeps control over her data. We present GOSSPLE [50]
Multi-Interest Network (GMIN), a distributed algorithm that provides each user with a set of
personalized acquaintances that share her interests. GMIN relies on a set cosine similarity to
select neighbors which cover all the interests of the user. GMIN discovers these neighbors
through a gossip-on-behalf protocol, which protects the privacy of the users through the use
of onion routing techniques. We use the neighbors provided by GMIN in a Web search query
expansion application named GQE. We show that, by taking into account the user’s personal
view of the relations between tags, it is possible to improve the quality of the results. We
experiment our system on a wide variety of datasets to demonstrate the benefits achieved.

This work, presented at the Middleware 2010 conference [13], was done in collaboration
with Marin Bertier, Davide Frey, Anne-Marie Kermarrec and Rachid Guerraoui. A companion
paper [7], not presented in this thesis, describes the decentralization of the search process. This
work is supported by the ERC Starting Grant GOSSPLE number 204742.
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4.1 Introduction

Context

Personalized Internet services have radically changed the way people navigate in the Internet.
Websites, such as LastFM!, Flickr?, CiteULike and Delicious*, contain large amounts of user
generated social information. They leverage it to recommend content to the users, which greatly
facilitates their discovery of new interesting content.

Yet, this social knowledge can also be used to threaten the privacy of the users. As we show in
Chapter 2, it is possible to accurately predict the social network of a user from her social information.
Social information is also often used for personalized advertising purposes. Therefore, users might
become reluctant to expose their interests and share their knowledge. Since the efficiency of social
applications is directly related to the amount of social knowledge they gather, this would clearly
affect their quality. Some sensitive topics, may not receive any more contributions.

Furthermore, these centralized websites are limited by their processing power. The social knowl-
edge they contain is mostly unstructured. The users express their interests in ifems through freely
chosen keywords, also called tags, forming a folksonomy. While the freedom left to the users is
very appealing and can lead to the emergence of unexpected and interesting knowledge, it is also an
impediment to the navigation. Users can express the same idea through different tags, and do not
always assign the same meaning to a given tag. The processing power required to extract all this in-
formation and fully personalize the experience of the users necessitates extremely costly data centers,
which can be out of reach for many Web services. Hence, they approximate the recommendations
and do not exploit the full extent of the personalization possibilities.

In this chapter, we tackle the privacy and scalability issues by proposing a P2P framework for
social applications. As argued in Chapter 3, this improves the privacy of the users, as they keep
control over their personal information. It also increases the scalability of the system, since users
contribute to the system with their own machine. Each user is associated with a network of anonymous
acquaintances that are interested in similar items, independently of the vocabulary they use to express
their interests (i.e. which keywords they use to tag items). These acquaintances can then be leveraged
in personalized Web search applications.

Capturing associations between millions of users is challenging as the amount of information
available grows not only with the number of users, but also with the size of the users’ profiles. The
acquaintances assigned to a user should provide a significant amount of information in order to
enhance her search experience, but without drowning her within tons of useless data. They have to
reflect the whole range of her interests, even minor ones, in order to provide information for a wide
range of queries. The system also has to adapt to the dynamics of the network to account for users
joining and leaving the system, but also to match the evolution of the users’ profiles. Finally, the
system has to protect the privacy of the users: their interests should not be exposed.

"http://www.last.fm
http://www.flickr.com
*http://www.citeulike.org
‘nttp://www.delicious.com
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4.1. Introduction

Contributions

We introduce GOSSPLE [50] Multi-Interest Network (GMIN), a system that personalizes the Web
experience of the users by automatically inferring interest-based connections between them. We then
leverage the neighbors discovered by GMIN in a personalized query expansion application called
GQE.

We devise a distributed protocol to detect and select acquaintances on a distributed manner. GMIN
users continuously gossip digests of their tagging profiles and locally compute a personalized view of
the network, which is then leveraged to improve their Web navigation.

This protocol detects proximity between users’ profiles without violating anonymity: the associa-
tion between users and profiles is hidden. Basically, every GMIN user has a proxy, chosen randomly,
gossiping her profile digest on her behalf. The user transmits her profile to her proxy in an encrypted
manner through intermediary users, which cannot decrypt the profile.

To reduce bandwidth consumption, the gossip exchange procedure is thrifty: users do not exchange
their full profiles but only Bloom filters of those until similarity computation reveals that the two
users might indeed benefit from the exchange.

Our gossip exchange procedure is able to build a GMIN overlay quickly, even starting from a
completely random configuration. Additionally, the bandwidth consumption remains low and the
anonymity of the users is preserved through the use of onion-routing techniques.

To limit the number of profiles maintained by each user, while encompassing the various interests
of the user, we introduce a new similarity metric, we call the set cosine similarity, as a generalization
of the classical cosine similarity metric [19, 88], as well as an effective heuristic to compute this new
metric. The views generated by GMIN cover multiple interests without any explicit support (such as
explicit social links or ontology).

GMIN can directly be used as a recommendation and search systems, but it can also provide
information to more sophisticated algorithms. We illustrate the effectiveness of GMIN through GQE,
a query expansion application for collaborative tagging systems (folksonomies). We compute scores
between tags using the acquaintances provided by GMIN and adapt rooted PageRank to leverage the
relative centrality of the tags through an algorithm we call GRANK. We evaluate our query expansion
application independently and show how we retrieve items that state-of-the-art search systems do
not (recall, also called completeness) whilst improving precision (accuracy) at the same time. We
show, among other things, how GQE retrieves personalized results, even when they contradict what
a majority of the other users would have expected.

We evaluated our system with a wide-range of Web application traces, including Delicious,
CiteULike, LastFM and eDonkey through simulation and in a real distributed network (PlanetLab).
Our results clearly show the benefits achieved by the GMIN personalized network. The algorithm
we use for query expansion requires a lot of computation, which would be prohibitive in a centralized
system. This illustrates how P2P social applications can increase the quality of the Web search of the
users, while also protecting their privacy.

Roadmap

We detail the GMIN protocol in Section 4.2 and evaluate its performance in Section 4.3. In Section
4.4, we describe how GQE leverages GMIN in a query expansion application. In Section 4.5, we
survey the existing work. Finally, in Section 4.6, we conclude and highlight some of the limitations
of our system.
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4.2 GMIN Protocol

GMIN is a fully decentralized protocol aimed at building and maintaining dynamic communities of
anonymous acquaintances. Such communities differ from networks of explicitly declared friends (e.g.
Facebook) which are often not the most suited to enhance the search procedure as reported in [11].

4.2.1 Overview

More specifically, GMIN provides each user with GNET, a network of semantically close anonymous
interest profiles. Building and maintaining a user’s GNET goes first through determining a metric to
identify which profiles exhibit similar interests. This is particularly challenging for the goal is to
capture the whole range of a user’s interests while limiting the number of profiles in the GNET for
scalability and personalization reasons. Another challenge is to devise an effective communication
procedure that limits the amount of network traffic generated upon profile exchange and hides the
association between users and profiles to preserve anonymity.

We detail in the following how GMIN addresses these challenges. We assume, for presentation
simplicity, a one-to-one mapping between a user and a machine: we refer to a user in the remaining
of this chapter. From an abstract perspective, we model the profile of a user as a set of items
I = {i1,...,in}. Each item can be described by a potentially large amount of meta-information,
such as tags it in the case of a folksonomy. Depending on the target application, this set may
represent downloaded files (eDonkey), URLs (Delicious and CiteULike), artists (LastFM), etc. In the
following, we first present a novel multi-interest (set item cosine similarity) metric; then, we describe
our thrifty gossip-based protocol to establish and maintain connections between users (i.e., compute
GNET) using this metric. For presentation simplicity, we describe our protocol in a modular manner:
we present first how a user communicates with other users to review a large set of profiles, how it
encodes a profile, and finally how it preserves its anonymity.

4.2.2 Selecting acquaintances

In order to improve her Web search experience, a user has to leverage the knowledge of other users
whose interests are similar. There are many possible definitions of similarity between users. In the
link prediction work applied to Flickr (Section 2.4), we presented many features that leveraged the
users’ group membership to determine their similarity and predict friendship. In this context, we
rely on the profiles of the users, which are lists of items they are interested in. Thus, the metrics we
describe in this section will be used by the GMIN users to rate other users based on their profiles
and discover relevant acquaintances.

Rating individuals

One way to build a user’s GNET is to individually rate other users and select the ones that score
the highest. Cosine similarity [61] is widely used in the area of data mining. The score between
two users increases when interests are similar and specific overlapping of interests are favored over
large profiles. Our preliminary experiments have shown indeed that cosine similarity outperforms
simple measures such as the number of items in common. Thus we implemented cosine similarity as
a reference in our experiments. More specifically, let I,, be the set of items in the profile of user u,
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A multi-interest rating (GMIN)
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Figure 4.1: Multi-interest rating vs. Individual rating

the item cosine similarity between two users v and v is defined as follows:

|1, N 1|
V| Lul X ||

Individual rating, and thus cosine similarity, selects users having the most similar profiles. Yet,
this may lead to consider only the dominant interest, ignoring minor, potentially important, ones. In
a large-scale system where a user can only keep track of a limited number of profiles, individual
rating cannot capture emerging interests until they represent an important proportion of the profile,
which they might never. This is a critical issue since the moment a user discovers a new topic also is
the moment where it is the most important to improve her search.

Consider Bob whose tagging actions reveal that 75% of his interests are in football while 25% are
in cooking. Selecting the profiles of the closest users might lead to only selecting those interested
in football: the cooking topic will not be represented enough to provide interesting information. In
Figure 4.1, the individual rating selects a view of 8 users interested only in football (users w1, u2,

.. ug). On the contrary, the GNET should preserve the distribution of 75% of football and 25% of
cooking. We achieve this by rating a set of profiles as a whole rather than each profile independently.
This is crucial to achieve scalability and limit the size of the GNET with respect to the overall size
of the network. In the example, multi-interest scoring would lead to selecting 2 users interested in
cooking: ug and u1¢ and 6 in football, covering Bob’s interest in cooking as well.

ItemCos(u, v) = cos(Iy, I,) =

Rating sets

Rating a set of profiles as a whole involves a balance between the extent to which users in the set
share interests with a given user u, and how well the distribution of the interests in the set matches
the one in w’s profile. This is precisely what the GMIN item set cosine similarity metric achieves.

Let IVect, be the vector that represents the items in the profile of the user u. IVect,[i] = 1 if
item 7 is in the profile of u, 0 otherwise. Following the same principle, SetlVect, (s) builds an item
vector that represents the distribution of items in s with respect to the user u where s is a set of users.
Each value of this vector is computed as follows:

IVect,[i]

SetlVecty(s)[i] = IVecty[i] x Z | IVect H
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The rationale behind this metric is to represent the distribution of interests in GNET while normalizing
the contribution of each user to favor specific interests. The items that are not present in the profile of
user u are discarded since their distribution should not impact the score of GNET. Indeed, adding two
identical items to Setl Vect,, does not impact the norm of the vector the same way as two different
ones (||[1,1]]| = v/2 while ||[2,0]|| = 1). If n is not interested in any of those two items, there is no
reason to prefer one choice over the other, which is why they are discarded.

Following the cosine similarity between users, a user v computes a score for a set of users as
follows:

SetScore, (s) = (IVect, - SetIVect,(s)) x cos(IVect,, Setl Vect,(s))°

The first part of the formula sums all the values in the vector representing the distribution of items
in s, while the second represents how well the distribution of the items in s matches the one in n’s
profile, i.e. how fair the contribution to all the interests of n is. The parameter b is the balance
between the amount of shared interests and a fair distribution that does not favor any item. The set
that scores the highest forms the user’s GNET. It is important to notice that for b = 0 (no cosine
impact), the distribution is not considered and the resulting GNET is exactly the same as the one
obtained from the individual rating:

SetScorey(s) = (IVect, - SetIVect,(s)) x cos(IVect,, SetIVect,(s))°

= [Vect, - SetlVect,(s)
_ Z IVect, - I'Vect,

v | IVect, ||
=y Okb U ﬂf\
vES

_ T ‘Z umy
uu€5V|I| ‘I

= \/|IU|ZItemCOS(u,v).

veES

Since \/|I,,| does not depend on s, maximizing SetScore is exactly the same as selecting the users
that individually maximize [temCos when b = 0.

4.2.3 Discovering acquaintances

GMIN’s multi-interest metric is key to selecting the best set of profiles to fill a given user’s GNET.
This would however be of little use without an effective mechanism to review a large set of candidate
profiles while ensuring rapid convergence to the ideal GNET. GMIN achieves this through a gossip
protocol to establish and maintain connections between users. For the sake of clarity, we first present
the non-anonymous variant of this protocol and describe Section 4.2.5 how it preserves anonymity.

The GMIN protocol relies on two sub-protocols: a Random Peer Sampling protocol (RPS) and
a multi-interest clustering protocol (GNET protocol). Each user maintains two corresponding data
structures, a random view and the GNET. Gossip protocols are presented in Section 3.2.3. GMIN is
built along the lines of the skeleton described in Algorithm 3.1.
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RPS

As already explained, a RPS [46] provides each user with a random subset of the network. Each
entry in the random view contains:

o the IP address and the GMIN ID of the user
e adigest of its profile in the form of a Bloom filter (discussed in Section 4.2.4)

e the number of items in the profile (used for the normalization during cosine computation, as a
Bloom filter does not provide the cardinality of the set).

GMIN relies on Brahms [15], a byzantine resilient RPS, which provides the building blocks to build
GMIN’s anonymity (presented in Section 4.2.5).

GNet protocol

GNET contains c entries composed of the same fields as the entries in the random view. In addition,
each entry also contains the full profile of users that have been chosen as acquaintances. The
parameter c selects the trade-off between the amount of available information and its personalization
degree. A large view provides results averaging the whole system’s information, while a small view
provides information closer to the user’s opinion. We denote by G'Net,, the GNET of a user u. Note
that a user in GNet, shares at least one item (interest) with u.

Although the GNET protocol is built along the lines of clustering protocols [84] and on top of the
gossip skeleton, for simplicity reasons, we provide a full description in Algorithm 4.1. The GNET
protocol maintains a list of (implicit) acquaintances. Upon receiving the other user’s GNET, v and v
update their own GNET structure. They first compute the union of GNet,,, GNet, and their own
RPS view, then they select the c users that maximize the GMIN metric described in Section 4.2.2.
Selecting the best view consists of computing the score of all possible combinations of ¢ users
out of 3c users. Because the corresponding running time is O ((300) ) , our protocol uses a heuristic
(Algorithm 4.2) as an approximation. It incrementally builds a view of size ¢ from an empty view by
adding at each step the user that provides the best view score. This heuristic has complexity O(c?)
and turns out to be very appropriate in our evaluations.

Algorithm 4.1 GNet protocol (u gossips with v)

1: loop > Do one cycle every T time units
2: wait 7' time units
3: v < oldest entry in GNet,,
4: send GNet, U {makeEntry (u) } tov > Exchange the GNET information
5: receive GNet, from v
6: GNet, + ComputeView (GNet, U GNet, U RPS,) > Update the view
7: for entry € GNet,, do > Fetch profiles of the users that stay in GNET K cycles
8: if entry € GNet, during K cycles & entry.profile = & then
9: entry.profile < fetchProfile (entry.user)
10: end if
11: end for
12: end loop
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Algorithm 4.2 Scoring heuristic

1: input candidateSet > Set of entries
2: input viewSize > Maximum size of the view
3: if |candidateSet| < viewSize then > Trivial case
4: return candidateSet

5: end if

6: bestView < ()

7: for setSize = 1 to viewSize do > Incrementally build a view
8 bestScore — —o0

9 bestCandidate < @
10: for candidate € candidateSet do > Consider all remaining users
1: candidate View < bestView U { candidate }
12: viewScore < SetScore (candidate View)
13: if viewScore > bestScore then
14: bestCandidate < candidate
15: end if
16: end for
17: > Keep the entry that got the best score and remove it from the candidates

18: bestView <— bestView U {bestCandidate}

19: candidateSet < candidateSet — {bestCandidate}
20: end for

21: return bestView

4.2.4 Gossiping digests

In order to keep the bandwidth consumption of GMIN within reasonable bounds, users do not send
their full profiles during gossip. Instead, they exchange a Bloom filter [14]: a compact representation
of the set of items in the profile. The Bloom filter provides a reasonably good approximation of a
user’s profile that can be used to compute GMIN’s metric with a negligible error margin.

The Bloom filter, as depicted in Figure 4.2, is an array of bits representing a set. When an item
is added to the set, h hash functions are used on the item to obtain h positions in the array: these
are set to 1. In order to query the presence of an item in the set, one uses the same hash functions
and checks if all the bits at the & indexes are set to 1. In the case of several additions to the Bloom
filter, the request can return true even if the item was never added to the set. The rate of false positive
depends on the size of the set, h, and the number of items added to the Bloom filter. However, a
Bloom filter never returns a false negative.

In GMIN, the Bloom filter is used as a first approximation of a user’s profile. If a user remains in
the GNET for K gossip rounds, it is considered as a good candidate and the entire profile is requested
(K = 5 in our experiments), as explained in Algorithm 4.1 lines 8—10. Once the full profile of the
user has been retrieved, it is used to compute an exact similarity score. This prevents the expensive
transfers of useless entire profiles of users that will reveal distant according to the GMIN metric.
For example, the profile of a Delicious user is on average 12.9KB large, while the corresponding
Bloom filter is only 603B. This leads to a 20-fold improvement in bandwidth usage, as discussed in
Section 4.3.4.

Since a Bloom filter can return false positive results, some users considered as acquaintances
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Figure 4.2: The Bloom filter of a profile

through their Bloom filters can be discarded when the exact score is computed with the profile. Nev-
ertheless, a user that should be in the GNET cannot be discarded due to a Bloom filter approximation.
Hence, an entry for a user in the GNET contains either the full profile of the user or a Bloom filter of
the profile with a counter incremented at each cycle. When the counter reaches the value of K, it
triggers the retrieval of the corresponding full profile.

4.2.5 Preserving anonymity
Protocol modifications

Anonymity is crucial in applications where personal interests may be exposed. The decentralized
nature of GMIN somehow inherently preserves some level of anonymity, as compared to a central
entity which would control and store all personal data. We go one step further by observing that,
while personalized applications may benefit from the profile information contained in GNETS,
they do not need to need know which users are associated with which profiles. What matters is
that a user can leverage other users’ information, but she doesn’t need to know who provided this
information. This observation underlies our gossip-on-behalf approach: each user u is associated
with a proxy p that gossips on her behalf. Since P2P networks are subject to churn, it is possible
that p disconnects, either willingly or accidentally, while w is still online. In order to avoid losing
the clustering information, p periodically sends snapshots of GNet,, to u. Thus, u can resume the
gossip protocol on a new proxy without losing any information, the convergence state remains the
same. This anonymity by proxy setup is achieved by an encrypted two-hop communication path
similar to the ones used in onion routing [80]. Therefore p receives u’s profile and its updates but
does not know u’s identity while the users relaying the communication cannot decrypt the profile.
GMIN relies on the Byzantine resilience properties of the RPS protocol to prevent colluders from
manipulating the selection of the proxy and the relays. Furthermore, we assume that the system is
protected against Sybil attacks through a certificate mechanism, a challenge system at join time, or a
detection algorithm [89]. Finally, we also consider that it is a user’s responsibility to avoid adding
very sensitive information to her profile. In that case, the profile alone would be sufficient to find the
identity of the user as it was the case in the famous anonymized AOL query-log dataset.

Since GMIN’s privacy guaranties are purely related to the strength of onion routing, we do not
detail the attacks scenario in this thesis. The reader may refer to [79] for additional information on
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this matter. GMIN ensures anonymity deterministically against single adversary users and with high
probability against small colluding groups.

Anonymity overhead

The use of onion routing in GMIN generates some additional messages which increase the network
cost of the protocol. However, this overhead is not comparable to the one usually observed in onion
routing. Indeed, in onion routing, all messages are sent from the user w to the destinations through
several other users. In GMIN, p runs the gossip protocols (GNET and RPS) on u’s behalf, without
communicating with u at each step of the gossip. Hence, there is absolutely no overhead on the
gossip, besides the snapshots that p regularly sends to u. The proxy p sends the profiles of the users
in GNet, once they have been downloaded after K cycles. Compared to a setup without anonymity,
the overhead on the profile transmission is directly proportional to the length of the onion routing
path. Since GMIN waits for the GNET to stabilize before downloading profiles, the total number of
profiles downloaded by w is limited and close to c.

To summarize, GMIN’s anonymity protocol generates some overhead when a new user joins the
system and her GNET converges. She downloads profiles to acquire information and this data is
routed through several users. During the rest of the execution, the only data transmitted through the
onion routing is related to profile updates and snapshots. This information is much smaller than full
profiles, so the anonymity protocol remains lightweight.

4.3 GMIN Evaluation

We report on the effectiveness and cost of GMIN by means of both simulation (100, 000 users) and
PlanetLab deployment (446 users). The former provides insights about GMIN’s behavior with a
very large number of participants while the latter measures the inherent overhead of GMIN in a real
distributed setting.

4.3.1 Setting and methodology

We evaluated the quality of GMIN’s GNET, its convergence speed, as well as its bandwidth
consumption and behavior under churn. We considered various Web datasets:

e a trace crawled from Delicious (social URL bookmarking) in January 2009
e atrace from CiteULike (reference management system) available on October 9, 2008

e a LastFM (music recommender system) trace crawled in Spring 2008 and composed of the 50
most listened-to artists for each user

e an eDonkey (P2P file-sharing) trace [42].

Table 4.1 provides the figures for each trace. While the simulation lets us experiment GMIN on a
large number of users, PlanetLab is much more limited. We have to select a subset of our dataset in
order to create profiles for the users on PlanetLab. Sampling the users at random is not a good option
as it emphasis the sparsity of the dataset. Users do not form communities anymore and cannot find
enough acquaintances to create their GNETS. Thus, in order to preserve the density of the dataset,
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Delicious | CiteULike | LastFM | eDonkey
Number of users 130k 34k 1,219k 187k

Number of items 9,107k 1,134k 964k 9,694k
Number of tags 2,214k 237k

Average profile size 224 39 50 142
Number of users 50k 10k 100k 100k
Recallb =0 12.7% 33.6% 49.6% 30.9%
Recall GMIN 21.6% 46.3% 57.6% 43.4%

Table 4.1: Dataset properties

we first create a GMIN network in the simulator using the whole dataset, and then sample a subset of
this network through snowball sampling, as performed on the Flickr dataset (Section 2.3.1). The only
difference is that instead of following friendship links, we use the GNETS to discover new users.

We configured GMIN’s GNETS size to 10 and the gossip cycle length to 10 seconds. We
deliberately select a small GNet size in order to stress the system and highlight the impact of the
selection of each acquaintance.

In this section, we evaluate the quality of a user’s GNET through its ability to provide the user
with interesting items. This measures the basic usefulness of GMIN’s GNETS in search applications
and recommender systems. We remove a subset (10%) of the items in the profile of each user, which
we call the hidden interests of the user. GMIN uses the remaining part of the profile to build the
GNETS. We express the quality of a GNET in terms of recall, i.e. the proportion of hidden interests
of a user u that are present in the profile of at least one user in u’s GNET. The better the GNET, the
more hidden interests it contains. Each hidden interest is present in at least one profile within the
full network: the maximum recall is always 1. Recall is enough to evaluate quality here because u
contacts a fixed number of users. We further evaluate precision in Section 4.4.

We evaluate the overall quality by computing the recall for the whole system: we divide the sum
of the number of hidden interests retrieved by GMIN for each user and divide it by the sum of the
number of hidden interests of each user.

4.3.2 Metric (the quality of GNets)

’

Our item set cosine similarity (multi-interest) metric enables GMIN to cover the diversity of users
interests in a large scale system by assessing the quality of the whole GNET at once, instead of
rating profiles individually. Parameter b in the definition of SetScore (introduced in Section 4.2.2)
represents the weight of minor interests with respect to major ones. We evaluate the impact of b using
the hidden interests test described above. Intuitively, too small a value of b achieves poor results
because the GNET fails to provide items related to minor interests. On the other hand, if b is too
high, users focus too much on the fairness of the interest distribution and select profiles with too
little in common with the user to provide relevant items. Figure 4.3 presents the normalized recall
achieved by GNETS on the datasets with increasing values of b. The score is normalized to take as a
reference the case when b = 0, equivalent to individual rating. As expected, the performance initially
increases with increasing values of b, but it decreases for greater values of b. Multi-interest improves
recall from 17% (LastFM) to 69% (Delicious). For all datasets, GMIN significantly improves the
quality of GNETS over traditional clustering algorithms illustrated by the b = 0 configurations. The
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Figure 4.3: Impact of b on normalized recall

exact recall values are given in Table 4.1. We also observe that the improvement of multi-interest has
more impact when the base recall is low. Further experiments reveal that this is because GMIN is
particularly good at finding rare items. Finally, we observe that the maximum performance is not
obtained for a specific value of b, but for a full range of values, b € [2, 6], across all datasets. This
demonstrates GMIN’s effectiveness on a wide variety of datasets without requiring prior fine tuning
of parameters.

4.3.3 Convergence time

We evaluate GMIN’s ability to build and maintain a useful GNET for each user. First, we consider
the time required to build a network of GMIN acquaintances from empty GNETS. Then we consider
the maintenance of this network by evaluating convergence in a dynamic scenario where users join
an existing stable network.

Bootstrapping

We consider a simulation of 50, 000 users and a real-world PlanetLab deployment with 446 users
on 223 machines. Figure 4.4 plots the hidden interests’ recall (as defined in Section 4.3.2) during
the construction of the GMIN network. It is normalized by the value obtained by GMIN at a fully
converged state.

As expected, the multi-interest clustering (b = 4) constantly outperforms the standard one (b = 0),
although the former requires slightly longer to reach a stable state. The difference is minimal, GMIN
reaches 90% of its potential after only 14 gossip cycles in simulation in our Delicious traces for
instance. This convergence is extremely fast given the size of the network (50, 000) and the small size
of the GNET and RPS (10). The measures conducted on LastFM assess the scalability of the protocol:
for twice as large a network, only 3 more cycles are needed to reach the same convergence state. The
PlanetLab deployment confirms the simulation results. The smaller scale of the experiments causes
GMIN’s GNETS to reach 90% of their potential after an average of 12 cycles and stabilize after 30.
This confirms the scalability of our protocol by demonstrating convergence times that grow very
slowly with the size of the network.
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Figure 4.4: Recall during churn

Maintenance

Bootstrapping represents a worst-case scenario for the convergence of our protocol. It is, in fact, a
one-time event in the life of a GMIN network. During normal operation, the system experiences
instead perturbations that cause it to deviate from a stable state in which each user has converged to
her best possible GNET. Examples of such perturbation include the presence of users that join and
leave the network (churn), but also variations in the interests of users. When a user adds or removes
items from her profiles, her optimal GNET can be modified.

To evaluate the impact of these perturbations, we consider a scenario where 1% of new users join
an existing GMIN network at each gossip cycle. We measure hidden interests recall of these new
users to see how many gossip cycles are needed for them to reach a quality of GNET equivalent to the
one of the previously converged users (i.e. 1 on the normalized score). Joining an existing network
is indeed faster than bootstrapping as 9 cycles are enough to reach a 90%-quality GNET. Clearly,
this represents an upper bound on the time required for convergence in the presence of dynamic
profiles or users that leave the network. In both of these cases, users that are required to converge
only need to partially reconstruct their GNETS as they already have some good neighbors to rely
on. Moreover, the removal of disconnected users from the network is automatically handled by the
clustering protocol through the selection of the oldest peer from the view during gossip exchanges as
discussed in detail in [84].

4.3.4 Bandwidth

The bandwidth consumption of GMIN when the GNETS are built from scratch is depicted in
Figure 4.5. This cost is the result of:

o the exchange of profile digests upon gossip
e the download of the full profiles of users in the GNET

e the extra communications required to maintain anonymity.
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Figure 4.5: Bandwidth usage at cold-start

Each user gossips through the RPS and the GNET protocol every 10 seconds. Each message contains
respectively 5 and 10 digests. This results in a maximum bandwidth consumption of 30Kbps in
the most demanding situation, that is during the burst at the beginning of the experiment. This is
because no profile information has yet been downloaded®. As soon as the GNETS start to converge,
the rate of exchange of full profiles decreases, as shown by the line depicting the total number of
downloaded profiles per user. This causes bandwidth consumption to decrease to the fixed cost of
gossiping digests, 15Kbps, a clearly irrelevant value for almost any user on the network today.

If GMIN did not use Bloom filters, on the other hand, profile information would be exchanged
continuously, thereby increasing bandwidth consumption. In the considered data trace, replacing
Bloom filters with full profiles in gossip messages makes the cost 20 times larger. Finally, we observe
that, while GMIN’s anonymity protocol continuously sends keep-alive messages, the only ones that
impact bandwidth are those sent when new profile information needs to be exchanged.

4.4 GQE mechanism

Most modern search engines modify the queries that users submit in order to improve their efficiency.
One of these modifications is query expansion. The search engine adds keywords to the query in
order to improve the recall and find more relevant items. For instance, adding synonyms for the
important keyword in the query is crucial to identify important documents that would otherwise
be ignored. It also improves the ranking of some documents that use diverse keywords to express
the same idea. Modifying the query of a user is a difficult task as a the system could potentially
misunderstand the user’s request and add wrong keywords. In that case, the results would be polluted
by documents the user is not interested in. As explained in Section 4.5, most of the existing work on
query expansion is not fully user-centric. In this section, we explore possibilities to use GMIN in the
context of a fully decentralized and personalized query expansion system, GQE. We consider the
case of a collaborative tagging system (folksonomy), such as Delicious or CiteULike, where every
user is associated with a tagging profile. As we show, GQE significantly improves the recall [17] and

SThe is burst is slightly longer on PlanetLab due to the lack of synchronization between the machines.
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Figure 4.6: Associating John and Alice enables John to leverage the unusual association between the
keywords teaching assistants and baby-sitter

precision [17] of the results, with respect to the state-of-the-art centralized personalized approach,
namely Social Ranking [92].

Insight

One of the applications of personalized query expansion is solving problems such as homonymy.
For instance, consider the “apple” query. GQE can leverage the user’s past behavior and interests to
predict if the user is looking for results about fruits or about computers. Such homonymy cases are
quite frequent (jaguar, latex ... ), and the user can usually solve them quite simply by adding a few
keywords to make her query more precise. However, in some cases, a user’s needs don’t match the
ones observed in the majority of the system, and the user doesn’t have the knowledge required to
improve her query and obtain the results she need. In that case, GQE will nevertheless manage to
leverage the specificity of the user to automatically improve her query.

Consider the following real example. After living for several years in the UK, John is back to Lyon
in France. To maintain his kids’ skills in English, he is looking for an English speaking baby-sitter
who would be willing to trade baby-sitting hours against accommodation. There is no doubt that
such an offer would be of interest to many of the young foreigners living in a big city such as Lyon.
Yet, John’s Google request “English baby-sitter Lyon” does not provide anything interesting for the
term baby-sitter is mainly associated with daycare or local (French) baby-sitting companies.

None of John’s Facebook buddies in Lyon or the UK can help either as none has ever looked for an
English speaking baby-sitter in Lyon. Yet, Alice living in Bordeaux after several years in the US, and
who was looking for a similar deal with her kids, has been lucky enough to discover that teaching
assistants in primary schools are a very good match.

Clearly, John could leverage Alice’s discovery if only he knew about it. Should a system be able to
capture the affinity between Alice and John, through their common interest in international schools
and British novels for example (Figure 4.6), John could leverage Alice’s discovery.

Indeed, consider a collaborative URL tagging system (e.g. Delicious) through which Alice
has annotated the teaching assistant URL with baby-sitter (Figure 4.6). Assume both Alice and
John have expressed their interest in international schools and British novels by tagging related
URLs. A personalized search could leverage these affinities to return Alice’s teaching assistant URL
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first instead of the millions of URLs of standard (non English speaking) baby-sitter related URLs.
Likewise, a personalized query expansion could expand John’s query appropriately with tags derived
from Alice’s activities on the Web and make it easy to solve by any reasonable search engine. The
crucial aspect here is the unusual (personal) association between baby-sitter and teaching assistant,
which is relevant to a niche community (the one gathering Alice and John) while baby-sitter is
dominantly associated with (non English speaking) daycare. Discovering such specific affinity is
very rewarding for the users, yet challenging to automatically capture.

4.4.1 Overview

We use GMIN’s GNETS to compute a data structure we call TAGMAP (Figure 4.7), a personalized
view of the relations between all the tags in the user’s profile and in her GNET. This is updated
periodically to reflect the changes in the GNET. A query from the user is then expanded using the
TAGMAP of that user through a centrality algorithm we call GRANK, which we derived from the
seminal PageRank [17] algorithm. While PageRank computes the relative importance of Web pages
(eigenvector centrality [1]), GRANK computes the relative importance of tags for a given user: we
refer to this notion as the tag centrality in the sequel. GRANK estimates the relevance of each tag in
the TAGMAP with respect to the query and assigns a score to the tag. We then recursively refine the
correlation between tags by computing their distance using random walks, along the lines of [35].

4.4.2 TagMap

The GNET of a user u contains a set of profiles covering its interests. These profiles are used to
compute the TAGMAP of u, namely a matrix TagMap,,, where TagMap,,[a, b] is a score that reflects
the distance between tags a and b as seen by the user u. We denote by 1.5, the information space
of the user u, namely its profile and the profiles in her GNET; TIS, and /IS, denote the set of
all the tags and items in IS,,. The TAGMAP uses item-based cosine similarity to compute a score
between the tags. The information needed to fill the TAGMAP is, for each tag in 715, the number
of occurrences of the use of that tag per item, i.e., for all ¢t € TS, a vector V,, ; of dimension |IIS,,|
is maintained such that V,, ;[i] = x, where z is the number of times the item ¢ has been tagged with ¢
in IS,,. More precisely, the similarity between two tags is computed as follows:

TagMap,[a,b] = cos(Viy,a, Vup) -
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‘ Music ‘ BritPop ‘ Bach ‘ Oasis

Music 1 0.7 0.1 0
BritPop 1 0 0.7
Bach 1 0
Oasis 1

Table 4.2: Example of a TagMap

Table 4.2 depicts an example of a user’s TAGMAP. In this TAGMAP, the score between Music and
BritPop is 0.7, i.e. TagMap,[Music, BritPop| = 0.7.

4.4.3 GRank

The number of tags ¢ added to the initial query is a parameter of the query expansion algorithm. In
the two approaches we present in this section, the query expansion algorithm assigns scores to tags
and a query is expanded with the ¢ tags scoring the highest. The TAGMAP contains a personalized
view of the scores between pairs of tags. This information can be directly used to expand queries as
in [92]. This approach, called Direct Read (DR), simply computes for each tag sums the TAGMAP
scores with respect to all the tags in the query:

DRscore,(a) = Z TagMaplt, a

tequery

While this approach seems intuitive, it gives bad results when the item sparsity of the system
is high. This is very likely to happen for niche content: with a very large number of items, the
relationships between tags might not always be directly visible in the TAGMAP. To illustrate the
issue, consider the TAGMAP presented in Table 4.2 and a query on Music with ¢ = 2. The TAGMAP
exhibits a high score between Music and BritPop (based on a given set of items). In addition, there is
a low score between Music and Bach suggesting that the user is more interested in BritPop than in
Bach. However BritPop and Oasis have also a high score in the same TAGMAP (gathered from a
different set of items), DR will never associate Music and Oasis whilst this association seems relevant
for that user. In fact, DR would instead expand the query with Bach, increasing the result set size and
reducing the precision of the search (Figure 4.8).

Our approach is based on the observation that, by iterating on the set of newly added tags, more
relevant tags can be selected for the query. We capture this idea through an algorithm inspired by
PageRank [17], which we call GRANK. GRANK is very similar to the rooted PageRank already
used for link prediction in Section 2.5.1. In short, GRANK runs a rooted PageRank on the tag graph
extracted from the TAGMAP and assigns the set of roots to the tags in the query. More specifically,
considering the weighted graph provided by the TAGMAP, all the tags in T'1S, are vertices and, for
each non-null score in the TAGMAP, we add an edge weighted by the score. These scores affect the
transition probabilities when generating the query expansion. As opposed to PageRank, where each
link is chosen with equal probability, in TAGMAP, the transition probability (TRP) from one tag to
another depends on the edge weight provided by the TAGMAP:

TagM. b
TransitionProbability,(a, b) = 5 Y Tapi\[;, ][ 7
teT1S, 1agMapy|a,
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Figure 4.8: Example of query expansion

To limit the computation time of a score (which can be prohibitive in a large graph), instead of
running an instance of GRANK per query, we divide the computation per tag in the query, forming
partial scores. They are approximated through random walks [35] and cached for further use
whenever the same tag is used in a new query. Still, a centralized server computing GRANK for all
users would not scale. It can only be applied in the context of GQE where each user provides her
processing power to compute its own GRANK.

Both DR and GRANK assign scores to the tags in the query and the ones added by the query-
expansion. These tags are transmitted to the search engine in order to weights in the query evaluation.

4.4.4 Evaluation

We evaluated GQE'’s ability to achieve a complete and accurate query expansion. First, we describe
our experimental setup. Then, we report on the evaluation of GQE on Delicious and CiteULike
traces. Finally, we consider synthetic traces modeling the behavior of a mad tagger trying to disrupt
GQE’s operation.

Evaluation setup

Workload Each user is associated with a profile from a real trace (Delicious or CiteULike). The
profiles drive the generation of requests: a user u generates a query for each item ¢ € I, such that at
least two users have ¢ in their profiles. The initial query consists of the tags used by u to describe
item ¢ since they are also likely to be the ones u would use to search for i. We evaluate GQE using
the generated queries. Given a query from user v on an item ¢, we first remove ¢ from wu’s profile so
that u’s GNet and TagMap are not built with it, then we determine if 7 is indeed an answer to the
expanded query.

Search engine Although any search engine could be used to process a query expanded by GRank,
for the sake of comparison, we consider the search engine and ranking method used in [92]. The
search engine runs on the set of items available in the real trace and takes into account the weights
assigned by the query expansion mechanisms. An item is in the result set if it has been tagged at
least once with one of the tags of the query. To rank the items, the score of an item is the sum, for
each tag in the query, of the number of users who made an association between the item and the tag,
multiplied by the weight of the tag.
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Evaluation criteria The query expansion mechanism is evaluated along the two classical and
complementary metrics: recall and precision. Recall expresses the ability of the query expansion
mechanism to generate a query that includes the relevant item in the result set. In these experiments,
we are interested in the item ¢ for which the query has been generated. A query succeeds when i is
in the result set: recall is 1 if 7 is in the result set, 0 otherwise. Note that the size of the result set
increases with the length of the query expansion. Since each document that has been tagged at least
once with a tag in the query is added to the dataset, the more the query is expanded, the bigger the
result set is. The popularity of the tags added to the query also has a huge impact on the number of
items retrieved. While precise tags such as “BritPop” only add a few items to the result set, very
generic tags like “Music” are used on millions of items. This potentially reduces the visibility of the
item the user is looking for. To balance this effect, we also assess the quality of the query expansion
by evaluating precision. We rely on the observation that although a Web search can find billions of
related Web pages®, this does not impair the user’s experience as long as the page she wishes to find
is among the top ones. Therefore, we consider the absolute rank (based on the score provided by the
search engine) of the items in the result set as a metric for precision: namely, the precision is defined
as the difference between the rank with query expansion and the rank with the initial query.

Recall is evaluated on the queries that do not succeed without query expansion. This comprises
53% of the queries in the CiteULike trace and 25% in the Delicious one. These results show that
a significant proportion of items have been tagged by several users with no tags in common and
highlights the importance of query expansion. Precision is evaluated on the queries that are successful
even without query expansion since they provide a reference rank for the item.

Impact of GQE'’s personalization

Our first results, in Figure 4.9, isolate the impact of personalization through a TagMap based on a
small GNET with respect to a global 7agMap based on all users’ profiles. Figure 4.9a shows the
extra recall obtained with query expansion sizes from 0 to 50 on the Delicious traces with GNet sizes
from 10 to 2,000. We compare these results with those of Social Raking, i.e. the case where GNet
contains all the other users. The figure presents the proportion of items that were found with the
query expansion out of the ones that were not found without. For example, the point (20, 0.37) on
the GQE 10-neighbor curve says that 37% of the requests not satisfied without query expansion are
satisfied with a 20-tag expansion based on a GNet of 10 users.

The figure highlights the benefit of personalization over a TagMap that would involve all users
such as Social Ranking. Even though increasing the size of the GNer up to 100 has a positive
impact on recall, larger sizes degrade performance. With a 30-tag query expansion, a 10-user GNet
has a recall of 43%; recall goes up to 47% in a 100-user network and drops to 42% in the case of
Social Ranking. As the number of user profiles integrated in the TagMap increases, relevant tags are
gradually swallowed by less relevant tags or popular ones.

The experiments conducted on the CiteULike dataset, presented in Figure4.9b, lead to very same
conclusions. The striking similarity between the two figures clearly demonstrates the benefits of
personalization, since GQE is able to bring similar performance on two different datasets. This is
clearly an illustration of how the baby-sitter/teaching assistant association in the example presented
in Section 4.4 could be diluted if we had considered all users.

The Yahoo! search engine returns 9 billions results to the “music” query.
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Figure 4.9: Extra recall (Delicious)

Impact of GQE’s centrality

We evaluate here the impact of computing the relative importance of tags (GRank) over the DR query
expansion. As mentioned previously, personalization is mostly responsible for increasing recall.
However, computing the relative importance of tags (i.e., tag centrality) significantly improves the
precision of the results. This is clearly illustrated in Figure 4.10, which compares our the results of:

e non personalized DR query expansion (Social Ranking), Figure 4.10a
e GQE DR query expansion, Figure 4.10b
e GQE GRANK query expansion, Figure 4.10c.

For the three configurations, increasing the query expansion size improves the recall for the items
which were not initially found. Yet, this is accompanied by a significant drop in the precision for
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71% of the items originally found when using the DR query expansion. GRank however with a 20-,
resp. 50-tag query expansion, increases the recall of items not found initially up to 40%, resp. 56%,
while increasing the ranking of approximately 58, 5% resp. 40% of the items which were returned to
the initial query. This is a clear illustration of the impact of GRank on the precision. Interestingly
enough, GRANK improves the precision for approximately 50% of items with a query expansion of
0. This is due to the fact that GRANK weights the tags in the query with respect to their importance
in the context of the TAGMAP of the user issuing the query.

To summarize, while the direct use of the TagMap improves the recall over existing approaches,
mostly through personalization, the precision is significantly improved through the centrality provided
by GRank. The latter is of utmost importance as the better precision enables us to expand queries
with more tags.

Synthetic traces

We also assess the resilience of GQE to attacks through synthetic traces. We consider the case of
a user trying to force an association between two tags. We call this situation a GQE bombing, in
reference to the Google bombing attacks [9]. As GQE benefits from a personalized query expansion
mechanism, an attacker willing to manipulate the results of a user first has to modify her TAGMAP
and therefore manipulate her GNET. As presented in Section 4.2.5, we assume that an attacker
cannot run a Sybil attack to overwhelm the system with infected users. If the attacker tries to target
many users by adding very diverse items to its profile, the attack fails. The GNET protocol favors
precise overlapping of interests and therefore no user adds the attacker to its profile. On the contrary,
if the attacker targets users in a specific community by forging a profile very similar to their interests,
it is selected as an acquaintance and impacts their query expansion. But in that case, only few users
are infected as the attack is specific to that community. If the attacker’s objective is to promote some
tags for marketing purposes, targeting a precise community can be sufficient to achieve its goal.

GQE is not fully protected against bombing operations. The personalization of GQE ensures that
only users that exhibit similar interests can influence each-other. Nevertheless, it is still possible to
target a specific community. In that case, it is difficult to automatically make a difference between an
attack and a good query expansion. We do not propose any solution to this problem in this thesis. We
believe that we could improve GQE’s resilience to bombing attacks by making the query expansion
mechanism explicit. Users would be able to blame other users for query expansion pollution and
mark them as potential attackers in a reputation system. This would then be taken into account by
other users in order to ignore the attackers in the future.

4.5 Existing Work

The GMIN network can be viewed as a semantic overlay devoted to boosting the search on the Web,
in particular through query expansion. We overview below state-of-the-art semantic overlays. We also
discuss query expansion techniques and compare them to GQE. Finally, we present state-of-the-art
folksonomy metrics.
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4.5.1 Semantic overlays
Explicit approaches

Many user-centric approaches [4, 11, 62] consider an explicit (predefined) social network, typically
derived from systems such as Facebook, LinkedIn, LastFM or MySpace, to improve the search on
the Web. The assumption here is that the explicit, declared, relationships between users reflect their
shared interests [63] and can help their search. In many cases, however, and as pointed out in [3,11],
the information gathered from such networks turns out to be very limited in enhancing the navigation
on the Web.

A couple of alternative approaches exploit the unknown acquaintances of a user to improve the
search further [51]. These require the user to explicitly declare a list of topics of interests and
assume a strict topic classification, rendering it impossible to dynamically detect new communities.
However, it provides an interesting feature: a user interested in several topics splits her acquaintances
among them with respect to her involvement. GMIN goes a step further and automatically assigns
acquaintances to users solely based on their common items: GMIN’s associations naturally evolve
over time. It enables the system to benefit from new and useful information while sharing the
acquaintances among the several interests of the users. This independence from any a priori list of
topics makes the system well suited to changes. This gives GMIN much more freedom and the
ability to dynamically evolve with the users without depending on a given list of topics.

Implicit approaches

Some approaches form semantic acquaintances by associating users with those that successfully
answered their queries in the past [22,24,34,42,75,77]. In file sharing communities, these approaches
gradually transform a random overlay into weakly structured communities that improve the success
ratio of queries. Various replacement policies have been proposed to limit the number of semantic
neighbors. A major drawback is the need for a warm-up phase to establish the network based on
a reasonable sample of queries: the first queries are sent to random users, leading to poor results.
Furthermore, because the acquaintances of a user only reflect her last few queries, queries on new
topics are inefficient. GMIN actively locates the acquaintances of a user independently of her past
queries but based on her (full interest) profile instead.

In order to avoid the warm-up phase, some (active) clustering approaches rely on gossip. Voulgaris
and Steen [84] use the number of shared files in common as a proximity metric. While this approach
improves search, it overloads generous users that share many files. Jin et al. [48] consider the cosine
similarity of the users as a metric to penalize non-shared interests. This gives better performance
than simple overlap and underlies our GMIN metric. These approaches also tend to choose uniform
acquaintances that only reflect the primary interest of a user, while GMIN spreads the acquaintances
among all the interests of a user. As discussed in [56], a user has usually several areas of interests,
typically non-correlated: on average, a user requires three different communities (clusters) to find
25% of the data she is looking for.

Patel er al. [70] use gossip to select semantic acquaintances for RSS feed transmission. The
selection algorithm increases the score of users that provide items not covered by other acquaintances.
GMIN’s multi-interest metric can be considered a generalization of this idea. Instead of giving a
bonus to the first user covering an interest, GMIN increases the score for rare interests in general.
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In [27], a centralized ontology-based analysis of all the items in the system assigns a type to each
one of them and infers users’ interests. This procedure is centralized and relies on an external source
of knowledge for the classification, while GMIN is fully distributed and only uses the item interest
pattern of users as a source of information. In [8], the attributes of the items generate a navigable
overlay. This approach is centered on items rather than users, and does not scale with the number
of items a user shares. It is also limited to items which carry a lot of metadata, like music or text
files. The system proposed in [58] is fully distributed: it clusters items in order to obtain semantic
coordinates. The user joins the unstructured community responsible for most of her items and obtains
small-world links to other communities. Although the user has to advertise the items which are not
part of its main community, this approach scales quite well with the size of the user profile. However,
it suffers from the same drawback as [8] and requires items with a lot of metadata for clustering.
GMIN relies on shared items to determine similarity between users. Metadata, such as tags, can also
be leveraged in order to detect common interests. Nevertheless, since our goal in this chapter is to
provide a query expansion functionality, clustering users using tags would have limited the number
of new tags discovered, hence the use of items only.

4.5.2 Query expansion
Personalized systems

Several approaches leverage information about users’ past behavior to personalize their query
expansion process. In [18], the query is expanded by tags already used in previous queries. In [47],
the query is expanded using the information available on the user’s local computer. The tags are
chosen with a local search engine and completed by user feedback. In both cases, no information is
inferred from other users. We believe that the main interest of query expansion is to add tags which
are not part of the user’s usual vocabulary, which is why GQE learns from other users.

Global approaches

Centralized Web search engines often rely on handwritten taxonomies (Wordnet’, Open Directory
Project®, Yahoo! Directory”) to expand queries. Instead, we only consider knowledge that is
automatically extracted from the user’s profile. [12] proposes a query-expansion framework that
uses social relations to rank results. However, only the scoring model is personalized. The query-
expansion mechanism exploits the co-occurrence of tags in the full document collection leading to a
non-personalized query-expansion output. We now describe Social Ranking [92], which is somehow
the system the most similar to our work, despite its centralization.

Social Ranking Zanardi and Capra propose Social Ranking [92], an architecture for personalized
search in folksonomies. Social Ranking relies on the cosine similarity between the tags of the users
to compute the similarity between users. Each tag is weighted by the number of times the user
tagged an item with it. The similarity between tags is the same for all users. It consists in the cosine
similarity between the items that have been tagged by these tags. Again, each item is weighted by
the number of times a user in the system tagged the item with it.

"http://wordnet .princeton.edu/
Shttp://www.dmoz.org/
*http://dir.yahoo.com/
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4.5. Existing Work

A query is first expanded, using the tag similarity measure, and then evaluated. The query
expansion process assigns a weight to each tag, depending on the tag similarity, and keeps the k&
tags which obtained the best scores. The score of a document depends on how many user tagged the
document with a tag in the expanded query. This measure is weighted using the weight of the tag,
and the similarity between the user that tagged the item and the user which issues the query.

Zanardi and Capra experiment Social Ranking on a CiteULike dataset. They show that taking into
account the similarity between users in the raking process increases the raking of relevant documents,
especially the ones which are not popular. The query expansion process recovers additional relevant
documents, and they do not observe a significant drop in precision.

In Section 4.4.4, we compare GQE against Social Ranking and show that GQE obtains significantly
better results. There are two main reasons for this. Social Ranking weights the contributions of
the users depending on their similarity with the user issuing the query. But these weights are not
taken into account in the query expansion process: the query expansion outputs the same results
for all the users. Similarly to Social Ranking, GMIN considers the similarity between users to
select the GNET. However, GQE is personalized, and each user generates her own query expansion
using the information in the GNET. This accounts for the subjectivity of the relations between
tags and increases the recall of the search. The second reason which explains the performance
difference is GRANK. The system we propose is fully distributed, therefore each user contributes
to the query processing with her own machine. We leverage this processing power to compute
the relative centrality of tags and obtain a more accurate weighting of the query. As we show in
Section 4.4.4, this has a huge impact on the precision of the results.

4.5.3 Folksonomy metrics

Several metrics have been proposed to measure the distance between tags or items in a folksonomy.
This chapter presents a framework for decentralized user-centric applications, therefore it does not
focus on metric. Our preliminary experiments have shown that cosine similarity yields more effective
results, so this is the one we implemented in our experiments and compared with our set cosine
similarity metric. Nevertheless, we have also considered several other similarity measures:

Edit-distance [86] captures the relative similarity between tags. The edit-distance between two
tag names equals the minimum number of insertions, deletions and substitutions needed to
transform one name (string) to the other. This distance basically allows to detect misspelled
words (or words with the same base). We did not use this in our context as our goal was to
expand queries with new ones instead of correcting errors: this is somewhat complementary.

Co-occurrence count [65] determines the number of times two tags are used on the same items,
normalized by the times the first tag is used. The use of co-occurrence count helps derive for
instance the fact that the tag “tennis” is close to the tag “sport”. The use of this metric in a
user-centric way prevents ambiguities of tags by looking at the context within which tags are
used.

Cosine similarity is an effective metric to compute distance between users [88,94] or tags [19, 87]:
we heavily relied on a variant of this metric in our system, which we adapted to encompass the
multiple interests of a user. In fact, we compared this metric with co-occurrence count in a
preliminary step of our work and came up with the conclusion that cosine similarity yields
more effective results.
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4. DISTRIBUTED PERSONALIZED WEB SEARCH

To rank the tags in our query expansion solution, we use an algorithm inspired by the rooted
version of the PageRank algorithm [17] to compute the distance between tags in terms of their
relative (eigenvector) centrality. A similar idea was used in the context of top-k item ranking
in [35,44,45, 88].

4.6 Concluding Remarks

We presented GMIN, and Internet-scale protocol that discovers connections between users and
leverages their social information to propose a personalized Web experience. GMIN is fully
distributed, no central authority is involved and there is no single point of failure. With little
information stored and exchanged, every GMIN user is associated with a relevant network of
acquaintances. GMIN protects the privacy of the users by hiding the association between a user
and her profile. The decentralized nature of GMIN makes it possible to use costly personalization
algorithms. GQE computes the TAGMAP of users and relies on GRANK, a centrality measure. They
both would have been computationally prohibitive in a centralized system. Interestingly, GMIN
naturally copes with certain forms of free-riding: users do need to participate in the gossiping in
order to be visible and receive profile information. As we have also shown, the impact of arbitrary
tagging, or even individual malicious tagging, is very limited.

Yet, GMIN has some limitations and many extensions might need to be considered. Our gossip-
on-behalf approach is simple and lightweight, but users may require additional security even by
enduring a higher network cost. It would be interesting to devise schemes where extra costs are only
paid by users that demand more guarantees. It would also be interesting to explore the benefits of
a social network of explicit friends. For instance, GMIN could take such links into account as a
ground knowledge for establishing the personalized network of a user and automatically add new
implicit semantic acquaintances. This would pose non-trivial anonymity challenges.
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CHAPTER

CONCLUSION

Context

Personalized Web applications have a central place in the Internet, as they efficiently guide the
user to find relevant content among an increasingly large number of websites. Still, the current
implementation of these services raises scalability and privacy problems. To benefit from personalized
recommendations, users have to express their preferences and provide private information. This data
is processed on data centers owned by private companies. Generating personalized recommendation
for all users is a very computationally intensive process. While new paradigms have been developed
to face the growing need for processing power, maintaining such infrastructure is extremely costly.
Hence, the recommendations are approximated in order to scale with the demand. To maintain these
data centers, private companies need to find business opportunities and use this data for commercial
purposes, such as personalized advertising. This exposes the privacy of the users. As they become
aware of how much private information private companies store, users may become reluctant to use
these personalized services.

Summary of the contributions

In this thesis, we argue that social applications should be deployed on peer-to-peer (P2P) networks.
In a P2P architecture, users contribute to the processing of the information and remain responsible for
their own private data. While P2P improves the scalability and privacy, it also creates new challenges.
As the data is now distributed among all the participants, it is necessary to design efficient algorithms
to locate and retrieve it.

We present three main contributions. In the first one, we evaluate the privacy risk of social
information. In the second one, we propose a link prediction algorithm for P2P social networks.
Finally, the third contribution is a P2P platform that leverages social information for personalized
Web search.
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5. CONCLUSION

Link prediction from social information Link prediction consists in predicting new edges in a
social network solely using the existing ones. We define the cold start link prediction problem, which
consists in predicting the edges in a social network when the social network is hidden. However,
some social information about the users is available. We propose an original solution to solve this
problem. It relies on a two-phase approach based on a probabilistic graph. We apply it to a dataset
from Flickr, using the group memberships of the users as social information. In the first phase, we
use several features to compare the group memberships of pairs of users and assign a probability
to the existence of a link between them. This generates a probabilistic graph which contains an
edge for all pairs of users having at least one group in common. The second phase of our approach
consists in adapting classic link prediction algorithms to probabilistic graphs in order to refine the
probabilities and increase the coverage of the prediction. Our experiments show that, even though
the group memberships are weakly correlated with the social network, we manage to predict the
social network of the users with a reasonable accuracy. This work highlights the privacy problems
caused by the centralization of social information.

Decentralized link prediction for social networks We propose SOSC, a distributed algorithm
to predict new links in a social network. Recommending friends is a crucial functionality in social
network, hence this is a preliminary step towards P2P social networks. Inspired from graph drawing
algorithms, SOCS relies on gossip protocols to perform a distributed force-based embedding of the
social graph. Each vertex is assigned social coordinates, and can compute its social distance with
respect to any other vertex. We show that SOCS is adapted to P2P networks, as it converges quickly
and is not affected by churn. Furthermore, SOCS exhibits a low network cost. We also show that
SOCS is able to accurately predict links in a social network by leveraging its community structure.
Despite its constraints related to the decentralization, SOCS outperforms some centralized and costly
link prediction algorithms.

Distributed personalized Web search In the context of social information websites, we propose
GMIN, a gossip algorithm that provides each user with a list of similar anonymous acquaintances.
Contrary to traditional clustering algorithms, GMIN was designed to take into account all the
interests of the users, even the minor ones. We experimentally show that this enables GMIN to
answer a wide range of queries. We go one step further by introducing GQE, a query expansion
mechanism that leverages the neighbors identified by GMIN. Query expansion automatically adds
keywords to a query, in order to improve the quality of the results. We argue that the relation between
tags can be subjective, hence GQE performs a personalized query expansion. We experimentally
show that this improves the recall of the queries. In addition, as GQE is computed in a P2P context,
it benefits from more computing power than the centralized server. Consequently, we improve GQE
by computing the relative centrality between the tags in order to weight them. We show that this
significantly improves the precision of the results.

Perspectives

In this thesis, we present three different contributions. For each of them, we provide, at the end of
the chapter, a few indications on possible future work. In addition, we now present two main projects
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that we foresee could lead to interesting results. We also mention Diaspora, a P2P social platform
that we could use to implement our protocols.

Multi-purpose coordinates system In Chapter 3, we propose SOCS, a distributed graph embed-
ding protocol that assigns social coordinates to vertices in a social network. These coordinates are
then leveraged to predict new links. We believe that SOCS could be adapted to other classes of
recommender systems. For instance, many websites propose a rating mechanism, in which users can
express their opinion about items by assigning a score. This is the case for example in the Netflix !
dataset: users rate movies. It would be interesting to adapt SOCS to bipartite graphs in order to
represent the relations between users and items. The main advantage is that users and items would
be placed in the same coordinates space, so it would be possible to obtain a distance between a user
and an item, but also between two users and two items.

The force model we currently use applies attractions between the entities that are connected and
repulsion between all. In order to take into account the rating of users, we would have to propose a
new force model that applies attractions between users and items they like, and repulsions between
users and the items they dislike. The new force model would also apply weak repulsions between
two users, two items and a user and an item she has not rated. Such a setup is very challenging as we
must ensure that the coordinates converge to a stable state. While conceiving is P2P network in which
each user is represented by a machine is quite straightforward, the placement of the items is more
problematic. Several users are interested by the same item, but the system should provide unique
coordinates for each item. Thus, a unique machine should be responsible for each item, and its state
should be replicated as the coordinates of the item should not be lost when the user disconnects. One
possibility to obtain an automatic placement of items would be relying on a Distributed Hash Table
(DHT). However, this would give the responsibility of an item to a user which is not necessarily
interested in it. A better solution would take into account the coordinates so that users would be
responsible for items in their social neighborhood. This would optimize the computation of the
repulsions since only one instance of the clustering protocol would be necessary: the user and the
item would have the same neighbors hence the same repulsions.

Enhanced personalization control In Chapter 4, we present a framework for personalized Web
search using social information. In particular, we show that a personalized query expansion process
can significantly improve the quality of the results proposed to a user. Nevertheless, in some cases,
the user may be interested in obtaining an answer which differs from what her community is usually
interested in. This is important, as too much personalization could lead to missing information from
people with different points of view.

One possible evolution of our protocol would involve routing the users’ queries on the GMIN
overlay. Hence, it would be possible to aggregate results along the path of the query, from the user to
different communities. The answers found close to the user would be very personalized, while more
distant results would come from different communities and therefore be more general. The diffusion
of the query is a difficult problem. For scalability reasons, it is not possible to flood the query on all
links of the network. We believe a more controlled diffusion scheme is necessary, potentially using
the interests of the users to directly target users able to provide answers.

"http://www.netflix.com/
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5. CONCLUSION

Implementation for end-users In this thesis, we propose several protocols to personalize the
Web experience of Internet users. These protocols are experimented using real datasets, through a
simulator and on a distributed experimentation platform (Planetlab). Still, none of these experiments
involves real users actively using the system. The Diaspora > project aims at building a decentralized
social network. It has started very recently and is available under an open-source license. In the
future, we could use it as a development platform to implement some of the algorithms described in
this thesis and obtain feedback from the users.

Zhttp://www.joindiaspora.com/
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CHAPTER

FRENCH SUMMARY

Introduction

L’émergence du “Web 2.0” a fondamentalement changé le comportement des utilisateurs d’Internet.
Le Web, qui ne disposait auparavant que de contenu statique, est devenu une plate-forme collaborative.
Les utilisateurs sont maintenant actifs, et contribuent au contenu des sites Internet en exprimant leurs
opinions et en partageant de 1’information.

Réseaux sociaux Les réseaux sociaux, comme Facebook, ont été créés pour permettre aux utilisa-
teurs de garder le contact avec leurs amis. Sur ces plates-formes, les utilisateurs peuvent publier de
I’information pour des amis qu’ils ont explicitement désignés. Il est également possible, par exemple,
de partager des photos et d’associer un ami avec une photo sur laquelle il apparait. Facebook est un
moyen efficace de contacter rapidement des milliers de personnes pour organiser des événements.

Les réseaux sociaux ont développé des outils pour permettre a d’autres sites Internet d’accéder
au profil d’un utilisateur afin de personnaliser ses pages Web en fonction de ses amis ou de la ville
ou il habite par exemple. Ainsi, un utilisateur peut recommander une page Web a ses amis. Le site
Web peut aussi détecter que deux amis sont intéressés par la méme information, ce qui leur donne
I’occasion d’en discuter. Alors méme que le contenu d’Internet ne cesse de grandir, I’utilisation des
réseaux sociaux peut étre un moyen efficace de fournir aux utilisateurs un contenu personnalisé et
plus intéressant.

Information sociale Contrairement aux réseaux sociaux, qui sont plutdt destinés aux personnes
qui se connaissent réellement, de nombreux sites Internet ont été créés pour tirer partie d’informations
personnelles. Ils ne s’appuient pas sur un réseau social explicite, mais permettent aux utilisateurs de
partager leurs préférences. Par exemple, LastFM enregistre la musique que les utilisateurs écoutent,
et Delicious permet aux utilisateurs de partager leurs listes de sites Web préférés. Ces sites Internet
agregent I’information fournie par chaque utilisateur afin d’en extraire des connaissances, comme les
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6. FRENCH SUMMARY

tendances dans le monde de la musique, ou les sujets a la mode sur Internet. En retour, les utilisateurs
bénéficient de recommandations personnalisées.

Certains sites Internet reposent sur les utilisateurs pour annoter le contenu qu’ils proposent.
Youtube et Flickr permettent aux utilisateurs de partager des vidéos et des photos. Ces contenus
sont tres difficiles a indexer pour les moteurs de recherche, contrairement au texte. Les utilisateurs
peuvent annoter le contenu du site avec des mots clés, ou fags, de leur choix, afin de faciliter la
diffusion de leur propre contenu, ou d’améliorer I’efficacité du site. Cela permet aux moteurs de
recherche de découvrir ces documents plus facilement, puisque les tags peuvent étre utilisés pour en
identifier le contenu. L’étude des activités des utilisateurs permet aussi de découvrir des liens entre
différents contenus et de connaitre leur popularité.

Vie privée Les plates-formes sociales sont extrémement importantes pour la personnalisation de la
navigation Internet. Cependant, elles posent d’importants problemes au sujet du respect de la vie
privée. Les interactions sont devenues tellement complexes que les utilisateurs ne savent souvent
plus quelle information est enregistrée et qui peut y accéder. Ce probléme vient principalement des
entreprises privées qui gerent ces plates-formes. Les utilisateurs ont besoin de protéger leur vie
privée, mais ces entreprises ont besoin de rentabiliser leur infrastructure. Il est bien connu que les
amis s’influencent entre eux, par conséquent, les réseaux sociaux peuvent étre utilisés a des fins
commerciales. Par exemple, Facebook a développé une fonctionnalité qui prévient automatiquement
les amis d’un utilisateur lorsque celui-ci fait un achat en ligne sur Amazon. Cette application met
clairement en danger la vie privée des utilisateurs, et elle a été retirée suite a leurs réactions. De
méme, il est courant que des informations personnelles soient vendues a des fins de publicité ciblée.
Par conséquent, les utilisateurs pourraient devenir réticents a partager leurs données personnelles.
C’est un probléme important pour les plates-formes sociales, qui doivent trouver un équilibre entre
I’information qu’elles exposent et la qualité des services qu’elles proposent.

Une navigation personnalisée d’Internet s’appuie sur des données personnelles, que c¢a soit a
travers les réseaux sociaux ou a travers les informations sociales. La personnalisation peut fortement
améliorer la navigation des utilisateurs mais ceux-ci pourraient se sentir menacés par les pratiques
des entreprises privées et rejeter ces plates-formes.

Coiit et limitations Le nombre d’utilisateurs de plates-formes sociales ne cesse d’augmenter. Par
conséquent, il devient de plus en plus difficile de faire face a la quantité d’information a traiter.
Facebook affiche plus de 500 millions d’utilisateurs, et LastFM 40 millions. L’extraction de données
personnalisées nécessite des centres de calcul extrémement cofiteux, que ce soit en matériel ou en
énergie. Ces centres de calcul sont souvent composés de milliers de machines “classiques”, et de
nouveaux paradigmes de calcul distribué ont été créés pour les exploiter.

Toutefois, le calcul de recommandations personnalisées reste extrémement coliteux. Pour faire
face a la demande, les services de recommandation regroupent les utilisateurs en communautés
d’intérét et recommandent le contenu pour toute une communauté. Ainsi, les recommandations sont
approximées, ce qui réduit leur qualité. Si les plates-formes sociales disposaient de d’avantage de
puissance de calcul, elles pourraient utiliser des algorithmes plus sophistiqués et améliorer la qualité
de leur service.

Le calcul de recommandations personnalisées est tres cofiteux et nécessite des infrastructures
dédiées. Le niveaux de personnalisation offert aux utilisateurs est limité par la puissance des centres
de calcul.
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Réseaux pair-a-pair (P2P) Dans cette thése, nous défendons 1’idée que les plates-formes sociales
devraient étre déployées sur des réseaux P2P. Ces applications sont centrées sur 1’utilisateur, par
conséquent, elles peuvent s’envisager facilement dans un contexte P2P : chaque utilisateur participe
au réseau avec son propre ordinateur.

Les réseaux P2P sont completement décentralisés, et chaque participant contribue a I’opération
d’un service. Ce modele est souvent opposé au modele client/serveur, pour lequel une machine
centrale, le serveur, répond aux demandes de tous les clients. Par conséquent, les réseaux P2P sont
reconnus pour leurs propriétés de passage a I’échelle. La décentralisation de I’architecture augmente
également sa fiabilité puisque le service est répliqué sur des milliers de machines partout dans le
monde.

Une plate-forme sociale déployée sur un réseau P2P a deux avantages principaux. Premicrement,
chaque utilisateur garde le contrdle de ses données personnelles et n’a pas besoin de les stocker sur
un serveur central appartenant a une entreprise privée. Une plate-forme P2P est neutre et n’appartient
a personne. Deuxiemement, le passage a I’échelle des réseaux P2P en terme de puissance de calcul et
de stockage permet d’améliorer la qualité des services personnalisés. Les centres de calcul évoluent
vers des architectures distribuées, nous proposons d’aller encore plus loin en intégrant I’application
directement sur les machines des utilisateurs. De cette facon, il n’est plus nécessaire de gérer
des centres de calcul cofiteux. De plus, comme la puissance de calcul disponible sera supérieure,
I’architecture P2P permettra d’offrir de nouveaux services plus performants que ceux existants dans
les architectures centralisées actuelles.

Cependant, créer une plate-forme sociale décentralisée souleve aussi plusieurs difficultés. Comme
chaque utilisateur gere ses propres données, le systeme doit pouvoir localiser efficacement
I’information nécessaire, sans générer trop de trafic réseau. L’ architecture doit étre suffisamment
efficace pour fournir un service de qualité équivalente a celle d’un systeme centralisé. Si la puissance
de calcul des réseaux P2P peut permettre I’émergence de nouvelles fonctionnalités, il est impératif
de préserver la qualité des fonctions existantes. De nombreuses architectures P2P ont été proposées
pour gérer de I’information de fagon distribuée. Nous utilisons des algorithmes épidémiques pour
structurer le réseau et trouver 1’information nécessaire.

Contributions Dans cette thése, nous nous intéressons a la création d’une plate-forme sociale
basée sur un réseau P2P. Nous sommes convaincus qu’il s’agit d’une étape importante vers un
meilleur contréle de la vie privée. Cependant, les réseaux P2P ne sont pas une réponse suffisante
a ce probleme. Ils doivent étre utilisés en conjonction avec d’autres méthodes, comme “l’onion
routing”, pour mieux protéger les utilisateurs. Le but de cette theése est de proposer des algorithmes
adaptés aux conditions des réseaux P2P pour exploiter les systémes sociaux. Par conséquent, nous
nous intéresserons principalement aux mécanismes permettant de localiser et d’obtenir 1’information
nécessaire a la personnalisation. Nous mentionnerons des mécanismes de protection de la vie privée,
mais ne prétendons pas résoudre ce probleme.

La premiere contribution que nous présentons montre comment 1’information sociale peut étre
utilisée pour prédire un réseau social tenu secret. Cela met en évidence les risques des solutions
centralisées et justifie le déploiement d’architectures P2P. La seconde contribution s’intéresse au
probléme de la recommandation d’amis dans le contexte d’un réseau social décentralisé. Enfin, la
troisiéme contribution est une architecture P2P pour un systeme de recherche personnalisé.
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6. FRENCH SUMMARY

Prédiction d’un réseau social a partir des informations sociales des
utilisateurs

Contexte

La prédiction de liens, définie par Liben-Nowell et Kleinberg, est un probléme classique en fouille
de données. L’objectif est, a partir d’un graphe social existant, de deviner quelles sont les nouvelles
connexions qui vont apparaitre dans ce graphe dans un futur proche. Pour cela, les approches
existantes s’appuient sur les caractéristiques du graphe, telles que la distance entre deux sommets, ou
le nombre de voisins en commun. La prédiction de liens montre donc a quel point 1’évolution d’un
graphe est conditionnée par son état actuel, par opposition a une évolution aléatoire par exemple.

Dans notre cas, nous considérons que le graphe social est tenu secret, car les utilisateurs ne
souhaitent pas révéler ces informations sur leur vie privée. Par contre, une entreprise, qui possede des
données sur les activités de ces utilisateurs, souhaite reconstruire ce graphe. L’ objectif est multiple.
La connaissance du graphe social des utilisateurs permet d’optimiser des stratégies marketing par
I’adoption de techniques dites virales. Une bonne prédiction du réseau social permettrait également a
I’entreprise, si elle le souhaite, de développer son propre réseau social explicite sur son site Internet.
En effet, cela permettra de suggérer des connexions aux utilisateurs et donc de créer le réseau
beaucoup plus rapidement. Comme cette entreprise n’a aucune connaissance sur I’état actuel du
graphe social, elle ne peut pas utiliser les méthodes traditionnelles de prédiction de liens. Par contre,
elle dispose des données sur les activités des utilisateurs pour essayer d’inférer un graphe social
de départ sur lequel travailler. Notre objectif, dans cette section, est d’étudier dans quelle mesure
cette entreprise peut obtenir une reconstruction précise du graphe social uniquement a partir de cette
information auxiliaire. En d’autres termes, nous cherchons a savoir a quel point les informations sur
les activités des utilisateurs mettent en évidence des liens sociaux qu’ils souhaiteraient garder secrets.

Contributions

Nous proposons une approche en deux phases pour résoudre le probleme de la prédiction de liens
quand le graphe social est initialement vide. Dans un premier temps, nous utilisons I’information
auxiliaire dont I’entreprise dispose pour inférer un graphe social probabiliste. Cela signifie que nous
élaborons des mesures qui nous permettent, a partir des données sur les activités des utilisateurs,
d’estimer la probabilité que deux utilisateurs soient liés dans le graphe social caché. Puis, dans
un second temps, nous adaptons les algorithmes classiques de prédiction de liens pour affiner ces
probabilités et découvrir de nouveaux liens. Nous mettons en pratique notre méthode sur des données
issues du site Internet Flickr. Sur cette plate-forme de partage de photos, les utilisateurs peuvent
désigner quels sont leurs amis. Cette information constitue le graphe social caché que nous souhaitons
prédire. Ils peuvent également rejoindre des groupes d’intérét, comme “Nikon Selfportraits”, ou
“Cat and Dog: not Cat or Dog”. Nous utilisons la connaissance des membres des groupes comme
information auxiliaire pour démarrer la prédiction de liens. Les groupes d’intérét des utilisateurs sont,
en pratique, assez peu révélateurs des liens sociaux. Cependant, ils ont 1’avantage d’étre présents sur
de nombreux sites communautaires. Par exemple, sur un forum de discussion, on peut considérer
qu’un sujet constitue un groupe. Ainsi, I’approche que nous présentons est tout a fait généralisable a
d’autres jeux de données.
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Construction du graphe probabiliste

Pour construire une premicre approximation du réseau social, nous utilisons un graphe probabiliste.
Nous nous appuyons donc sur la connaissance des groupes d’utilisateurs pour estimer leur probabilité
d’étre connectés dans le graphe. Nous étudions quatre types de mesures :

o L’activité des utilisateurs : plus un utilisateur rejoint de groupes, plus il est actif sur le site
Internet. Par conséquent, il a également plus de chances d’étre bien connecté dans le réseau
social.

e Le nombre de groupes en commun : si deux utilisateurs ont beaucoup de groupes d’intérét en
commun, alors ils ont plus de chances d’étre connectés dans le réseau social.

e La taille des groupes en commun : si deux utilisateurs sont membres d’un mé&me petit groupe,
alors ils ont plus de chances de se connaitre que si se groupe contient beaucoup d’utilisateurs.

e La proximité temporelle : si la date a laquelle un utilisateur rejoint un groupe est proche de
celle a laquelle un autre utilisateur rejoint ce groupe, alors il est possible qu’ils se connaissent
et se soient influencés.

Nous construisons plusieurs mesures basées sur chacune de ces observations, puis nous combinons
les meilleures d’entre elles en un seul prédicteur. Ce prédicteur nous permet de construire le graphe
social probabiliste : tous les utilisateurs qui ont au moins un groupe en commun sont reliés par un
arc pondéré par leur probabilité d’étre connectés. Par contre, ce prédicteur ne permet pas d’évaluer
les connexions entre deux utilisateurs qui n’ont aucun groupe en commun. C’est pourquoi la seconde
étape de notre approche s’intéresse aux chemins dans le graphe probabiliste, afin de pouvoir prédire
un lien entre tous les utilisateurs.

Prédiction de liens dans un graphe probabiliste

Nous utilisons les chemins reliant les utilisateurs dans le graphe probabiliste pour affiner les proba-
bilités et prédire des liens entre des utilisateurs situés a plusieurs sauts de distance dans ce graphe.
Pour cela, nous nous appuyons sur trois mesures classiques de la prédiction de lien, et les adaptons
au graphes probabilistes.

e Le nombre de voisins en commun : plus deux utilisateurs ont des voisins en commun, plus ils
ont de chance d’étre eux-mémes reliés dans le graphe social.

e Katz : cette mesure fait la somme du nombre de chemins entre les utilisateurs. Chaque chemin
est pondéré en fonction de sa longueur, les chemins courts étant de meilleurs indicateurs de
lien social.

o La centralité relative (rooted PageRank) : pour chaque utilisateur, on effectue des marches
aléatoires sur le graphe. Plus la marche a de chances de passer par un utilisateur donné, plus
ils ont de chances d’étre connectés.

Nos expériences montrent que la prise en compte des probabilités améliore grandement la précision
de la prédiction. Par conséquent, notre approche de la prédiction de liens est tout a fait adaptée a une
connaissance imparfaite du graphe social.
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Conclusion

Nous avons proposé un nouveau probléeme, qui consiste a prédire les liens d’un graphe social quand
celui-ci est totalement inconnu. Notre approche modélise le comportement d’un adversaire qui
souhaiterait deviner une information tenue secrete par les utilisateurs d’un site Internet. Nous avons
montré que, bien que I’information des groupes d’utilisateurs soit une source d’information peu fiable,
il est possible de prédire de fagon relativement précise les liens entre utilisateurs. Nous pensons
que notre algorithme pourrait &tre utilisé pour évaluer I’efficacité de techniques d’anonymisation de
données : si la prédiction de liens est précise, alors les données sont sensibles.

Prédiction de liens distribuée pour les réseaux sociaux

Contexte

De nombreuses applications distribuées pourraient bénéficier d’un systeme de recommandation
décentralisé. Par exemple, une plate-forme de partage de musique pourrait recommander des artistes
aux utilisateurs. Un réseau social, comme Diaspora!, doit pouvoir recommander de nouveaux amis
aux utilisateurs. Pour des raisons de performances et de respect de la vie privée des utilisateurs,
ces applications sont distribuées. Pour préserver ces propriétés, il est important que le systeme de
recommandation qui leur est associé le soit également. Une grande majorité des travaux dans ce
domaine est réalisée dans un environnement centralisé, et ne peut donc pas €tre adaptée simplement
pour les réseaux distribués.

Dans cette section, nous proposons une approche distribuée au probleme de prédiction de lien
décrit dans la section précédente. Cependant, dans ce cas, nous considérons que le réseau social est
connu. Chaque pair du systéme peut communiquer avec ses voisins dans le réseau social. Par contre,
il ne connait que ses propres voisins.

Contributions

Nous proposons un algorithme décentralisé, nommé SoCS, basé sur un plongement du graphe social
dans un espace de coordonnées. SOCS s’appuie sur des techniques de dessin de graphe: chaque pair
calcule des coordonnées dans 1I’espace social. Grace a ces coordonnées, il est ensuite capable de
calculer une distance sociale vis a vis des autres utilisateurs et donc de prédire s’ils sont proches ou
non. SOCS préserve la structure communautaire du graphe social, ce qui le rend efficace dans le
cadre de la prédiction de liens. Il s’appuie sur des protocoles épidémiques largement étudiés dans le
domaine du P2P, et résiste parfaitement aux dynamiques observées dans les systemes distribués. De
plus, nous montrons qu’en adaptant SOCS aux spécificités des systemes distribués, nous améliorerons
également la précision des coordonnées sociales. Nous évaluons SOCS sur trois types de graphes
différents :

e un réseau de collaborations entre terroristes
e un réseau de collaborations scientifiques (DBLP)

e un graphe petit monde synthétisé

"http://www. joindiaspora.com
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Modeles de forces pour le dessin de graphes

Le plongement de graphe consiste a attribuer a chaque sommet du graphe des coordonnées. Souvent,
I’ objectif d’un plongement est de faire correspondre la distance entre ces coordonnées a la distance
du plus court chemin dans le graphe. Notre objectif avec SOCS est précisément 1’inverse. Nous
sommes intéressés par les différences entre la distance dans le graphe et la distance entre les coor-
données (appelée distorsion), car c’est ce qui va nous indiquer la séparation entre les communautés
d’utilisateurs.

De nombreux travaux cherchent a dessiner des graphes de facon a ce qu’ils soient facilement
compréhensibles. Il s’agit d’un cas particulier de plongement de graphe, dans lequel I’espace de
coordonnées a deux ou trois dimensions. Ces méthodes ont fréquemment recours a des modeles de
forces pour placer les sommets. Deux types de forces sont appliquées sur le graphe:

e Les sommets sont attirés par leurs voisins dans le graphe. Cela signifie que les voisins du
graphe doivent étre dessinés cote a cte. Cette force permet de préserver les structures de
communautés dans la représentation. Mais si elle était utilisée seule, tous les sommets seraient
dessinés précisément au méme endroit.

e Les sommets sont repoussés par tous les autres sommets. Cette force permet d’écarter les
sommets dans la représentation, et indique que deux sommets qui ne sont pas bien connectés
dans le graphe doivent étre distants.

Ces algorithmes ont été largement étudiés, et de nombreux modeles de forces ont été proposés. Nous
nous intéressons particulicrement a deux d’entre eux. Le modele LinLog s appuie sur des propriétés
théoriques et a été concu pour représenter les communautés. Le modele HC s’inspire des modeles
physiques des particules chargées et des ressorts.

Contrairement au cas du dessin de graphe, SOCS n’est pas limité a trois dimensions. Toutefois,
afin de favoriser la distorsion et de rendre les coordonnées compactes lors de leur transmission sur le
réseau, nous travaillons dans des espaces de taille réduite, par exemple dix dimensions.

SoCS

SOCS s’inspire des algorithmes de dessin de graphe. A chaque étape du protocole, chaque pair
calcule les forces d’attraction et de répulsion qui lui sont appliquées, et ajuste sa position.

Les attractions sont calculées par rapport a un nombre réduit de voisins du graphe et ne posent par
conséquent pas de difficulté. Par contre, il n’est pas envisageable de communiquer avec tous les pairs
du réseau pour calculer les forces de répulsion : le colt réseau serait bien trop élevé. SOCS s’appuie
sur une propriété importante des modeles de forces que nous considérons : les forces de répulsion
diminuent rapidement avec la distance. Par conséquent, SOCS ignore tout simplement les répulsions
des pairs distants dans 1’espace social, en considérant que leur impact est négligeable. 1l suffit alors
de maintenir une liste des r voisins les plus proches dans I’espace social en utilisant des algorithmes
épidémiques de “clustering” pour pouvoir calculer les forces avec un colit raisonnable.

Une autre différence importante avec les algorithmes de dessin de graphe vient du fait que le
réseau P2P est maintenu de fagon permanente. Dans un dessin de graphe, les sommets sont initialisés
a des positions aléatoires. Par contre, dans SoCS, le graphe social évolue au cours de la vie du
réseau, et des pairs peuvent rejoindre le réseau. Dans ce cas, un pair initialise ses coordonnées
au centre de gravité des coordonnées de ses voisins du graphe. Cela lui permet de commencer a
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une position proche de I’idéal, et de converger plus rapidement, en évitant d’étre bloqué dans un
minimum d’énergie local.

Evaluation

Dans un premier temps, nous évaluons SOCS dans le cadre d’une application de prédiction de liens.
Pour cela, nous considérons deux graphes, un réseau terroriste de 152 sommets et un réseau de
scientifiques de 211018 sommets. Nous comparons les performances de SOCS avec celles de trois
algorithmes couramment utilisés dans la prédiction de liens :

e le plus court chemin dans le graphe (SP)
e le nombre de voisins en commun (CN)

e les “hierarchical random graphs” (HRG), proposés par Clauset, Moore et Newman

Les performances de SOCS sont supérieures a celles de SP et HRG, mais inférieures a celles de CN.
Nos résultats confirment les travaux existants, qui indiquent qu’une approche aussi simple que CN
est souvent plus efficace que des algorithmes plus élaborés. Toutefois, il est important de noter que
dans SoCS, les pairs n’échangent jamais leurs listes de voisins. SOCS ne calcule pas non plus de plus
court chemin dans un graphe. Cette opération est particulierement coliteuse dans un environnement
décentralisé. Enfin, il est trés intéressant de remarquer que SOCS est plus efficace lorsque r, le
nombre de répulsions prises en compte, est petit. Ce parametre est trés important puisqu’il permet a
la fois de réduire le cofit réseau du protocole, mais aussi d’améliorer la précision des résultats. Dans
nos expériences, HC se montre plus précis que LinLog.

Ensuite, nous générons des graphes petits mondes suivant le modele de Kleinberg afin de vérifier
I’adéquation entre la distance sociale théorique et celle obtenue par SoCS. Nos expériences montrent
que lorsque 7 est petit, la distance vers les voisins proches est mieux respectée. Ces résultats
confirment ceux obtenus dans le cadre de la prédiction de liens : il est beaucoup plus important de
bien positionner les voisins proches pour avoir des recommandations précises. Par conséquent, en
limitant le nombre de répulsions, SOCS élimine le bruit causé par les pairs lointains et améliore
les résultats. Nous évaluons également SOCS dans le cadre d’un réseau dynamique. Nos mesures
indiquent que SOCS converge plus rapidement avec le modele HC et lorsque 7 est petit.

Conclusion

Nous avons décrit SOCS, un algorithme de plongement de graphe qui apporte une approche com-
pletement décentralisée au probleme de prédiction de liens. Plutot que de simplement décentraliser
un algorithme existant, SOCS apporte une nouvelle approche originale a la prédiction de liens. A
notre connaissance, il s’agit du seul algorithme de prédiction de liens basé sur des modeles de forces.
Les performances de SOCS sont comparables aux algorithmes existants, et nos résultats montrent
que SOCS est particulierement adapté a un environnement P2P, puisqu’il converge vite et que son
colit est trés réduit.
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Moteur de recherche personnalisé et décentralisé

Contexte

Les sites Internet modernes, comme Flickr, Delicious et CiteULike, s’appuient sur des données
“sociales” renseignées par les utilisateurs. Ce modele de fonctionnement, appelé “folksonomy”,
offre aux utilisateurs une liberté complete pour décrire les éléments du site Internet. Les utilisateurs
“taguent” les éléments du site avec un vocabulaire qui leur est propre. Cette liberté est une source
de richesse, puisque chaque utilisateur peut enrichir le site Web avec sa connaissance, mais elle est
également un frein a la navigation. L’ information est non structurée (contrairement a une taxonomie
ou ontologie), si bien qu’il est trés difficile de trouver une réponse satisfaisante a une recherche.

Contributions

Nous proposons GQE, un systeme décentralisé qui permet une recherche d’information personnalisée
dans une folksonomie. GQE s’appuie sur GMIN, un protocole P2P qui crée un réseau sémantique
d’utilisateurs partageant des centres d’intérét. Contrairement a un réseau social au sens habituel, les
voisins sémantiques permettent de découvrir d’autre tags et éléments, et ainsi d’avoir une recherche
plus efficace. GMIN s’attache particulierement a couvrir tous les centres d’intérét d’un utilisateur,
de facon a pouvoir satisfaire tous les types de requétes. Il est également économe en ce qui concerne
I’utilisation du réseau. Les profils des utilisateurs, contenant 1’information sur leurs intéréts peuvent
étre particulierement volumineux, ¢’est pourquoi GMIN utilise des résumés de ces profils sous la
forme de filtres de Bloom. Ainsi, I’information compléte n’est échangée que lorsque les utilisateurs
sont certains qu’ils bénéficieront de cet échange. GMIN est un protocole complétement distribué,
qui permet d’offrir aux utilisateurs un anonymat dont ils ne pourraient pas bénéficier dans un systeme
centralisé. Enfin, nous proposons également un systeme d’extension de requétes personnalisé de
facon a améliorer les résultats d’une recherche.

Sélection des voisins

GMIN génere, pour chaque utilisateur, un ensemble de voisins sémantiques appelé GNET. Pour cela,
GMIN doit identifier les utilisateurs ayant des intéréts communs. Cela nécessite la création d’une
métrique qui permet de détecter la similarité entre des profils d’utilisateurs. Les métriques classiques
basées sur I'utilisation de tags en commun, ou le nombre de centres d’intérét en commun, ne sont pas
satisfaisantes. En effet, comme GMIN est un systeme décentralisé et personnalisé, la taille du GNET
doit rester faible. Cela pose probleme lorsqu’un utilisateur a plusieurs centres d’intérét différents.
Sélectionner les utilisateurs ayant le plus d’intéréts en commun pousse a ignorer les intéréts mineurs
et ceux-ci sont sous-représentés dans le GNET. Par conséquent, nous proposons une nouvelle fagon
de sélectionner les voisins sémantiques. Chaque utilisateur tient compte des voisins précédemment
sélectionnés, de facon a s’assurer que la représentation de ses intéréts sera équilibrée. Si un intérét
est sous-représenté, alors un voisin partageant cet intérét sera favorisé pour faire partie du GNET.
La construction du GNET se fait par algorithmes épidémiques. Les utilisateurs échangent
I’information sur leurs voisins de facon a continuellement améliorer leur GNET. Comme le profil
d’un utilisateur est volumineux, ce protocole aurait un coft réseau tres élevé si les profils étaient
envoyés a chaque échange. Dans GMIN, chaque utilisateur construit un résumé de son profil sous la
forme d’un filtre de Bloom des éléments qui I’ont intéressé. Ce filtre de Bloom est beaucoup moins
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volumineux que le profil entier et fournit une approximation précise du contenu du profil. Lorsqu’un
voisin est considéré comme faisant partie du GNET pendant une période suffisamment longue, alors
son profil est téléchargé de facon a bénéficier de sa connaissance.

GMIN est un protocole décentralisé qui permet un anonymat des utilisateurs. En effet, les
utilisateurs ne souhaitent pas forcément pouvoir étre associé€s au contenu de leur profil. Pour cela,
nous modifions la procédure épidémique de création du GNET en introduisant la présence d’un
intermédiaire. Chaque utilisateur sélectionne au hasard un intermédiaire qui assure la construction
du GNET a sa place. De cette fagon, les personnes ajoutées au GNET ne connaissent pas I’ utilisateur
mais son intermédiaire. L’ intermédiaire lui-méme ne communique pas directement avec 1'utilisateur,
leurs communications sont cryptées, et passent par plusieurs pairs relais, de la méme facon que les
systemes comme Tor protégent I’anonymat des utilisateurs. Nous optimisons également les transferts
réseau de facon a limiter le volume des informations transmises par les relais.

Nous évaluons la procédure de création du GNET par des simulations, ainsi qu’un déploiement
sur la plate-forme de test Planetlab. Pour évaluer la qualité du GNET, nous mesurons sa capacité
a fournir a un utilisateur des éléments qui I’intéressent. Nos mesures, effectuées sur des données
réelles, indiquent que la métrique utilisée par GMIN peut améliorer les résultats de 17% a 69%
suivant les données utilisées. Ces expériences prouvent qu’en prenant en compte 1’ensemble des
intéréts d’un utilisateur, GMIN améliore grandement la proportion de requétes qu’il est capable de
satisfaire. Nos expériences en simulation et sur Planetlab indiquent également que GMIN converge
rapidement (20 cycles d’échange), et consomme peu de bande passante (20kbps au maximum).

Extension de requétes

Les moteurs de recherche internet bénéficient tous d’un systeme d’extension de requéte. Lorsqu’une
requéte est envoyée, elle est complétée par 1’ajout de synonymes, de facon a fournir plus de résultats
a I'utilisateur. Ce mécanisme est, dans la majorité des cas, le méme pour tous les utilisateurs. Nous
proposons GQE, un mécanisme d’extension de requétes personnalisé basé sur I’'information contenue
dans le GNET. Grace au profils contenus dans son GNET, chaque utilisateur génere sa propre vision
des relations entre les tags, et enregistre cette information dans une structure nommée TAGMAP. Nos
expériences indiquent qu’utiliser une vision personnalisée des relations entre tags, par opposition a
une vision globale, est suffisant pour améliorer la qualité de I’extension de requétes. Nos expériences
montrent qu’avec GQE, les utilisateurs trouvent les réponses a leurs recherches plus facilement.
Mais GQE, a également un autre avantage. Comme notre systeme est décentralisé, chaque utilisateur
peut, avec son ordinateur, contribuer aux calculs liés a sa recherche. Par conséquent, GQE, peut
utiliser des mécanismes plus cofiteux en calculs qu’un moteur de recherche classique. Nous utilisons
a nouveau des mesures de centralité relative. Nos expériences montrent que son utilisation permet
d’assigner des poids aux éléments de la requéte, et ceux-ci, une fois pris en compte par le moteur
de recherche, améliorent la précision des résultats. Cette démarche est uniquement possible dans le
cadre de GQE, un moteur de recherche centralisé ne serait pas capable d’effectuer tous les calculs
nécessaires pour de nombreux utilisateurs.

Conclusion

Avec GMIN et GQE, nous proposons une nouvelle approche a la navigation Internet. Notre systéme
est décentralisé et met I'utilisateur au coeur du processus de recherche. Ce mécanisme permet
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d’améliorer la pertinence des résultats qui lui sont proposés, et aussi de protéger sa vie privée en
masquant 1’association entre son identité et son profil.

Conclusion et perspectives

Les plates-formes sociales permettent de personnaliser la navigation Internet. Cependant, les plates-
formes actuelles posent de sérieux problemes de respect de la vie privée et de passage a 1I’échelle.
Nous étudions ces aspects a travers trois contributions différentes ;

e Nous proposons une approche générique qui permet, a partir d’information sociale, de prédire
un réseau social gardé secret pour des raisons de vie privée. Notre méthode peut étre utilisée
pour évaluer a quel point des données sont sensibles. Nos résultats mettent en évidence le
danger que représentent les plates-formes centralisées pour la vie privée des utilisateurs.

e Nous proposons SOCS un algorithme décentralisé qui permet de prédire des liens dans un
graphe social. Notre approche s’inspire des travaux de dessins de graphe et peut étre utilisée
dans le cadre d’un réseau social décentralisé.

e Nous proposons GMIN, un protocole épidémique P2P qui permet de regrouper les utilisateurs
ayant des intéréts en commun. Cette information est ensuite utilisée par GQE, un systéme
d’expansion de requétes qui personnalise les recherches des utilisateurs et améliore la qualité
des résultats. Notre systeme protege 1’identité des utilisateurs en masquant I’association entre
un profil et I’identité de I’ utilisateur.

Dans nos travaux futurs, nous envisageons d’adapter SOCS aux graphes bipartites qui modélisent
les interactions entre les utilisateurs et les contenus. Ainsi, il serait possible d’obtenir des coordonnées
pour des utilisateurs et des films dans un méme espace. Il serait également intéressant de modifier
GQE afin de pouvoir paramétrer le niveau de personnalisation souhaité par 1’ utilisateur. Enfin, nous
envisageons d’implémenter nos algorithmes au sein de diaspora, une plate-forme de réseaux sociaux
P2P récemment créée.
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Résumeé

Lémergence du “Web 2.0” a fondamentalement changé le
comportement des utilisateurs d’Internet. Le Web est devenu
une plates-forme collaborative. En indiquant leurs préférences
et en partageant des informations privées, les utilisateurs
bénéficient d’un contenu personnalisé.

Cependant, ces systemes posent des problémes au niveau du
respect de la vie privée et du passage a I'échelle. Les plates-
formes sociales divulguent ces informations personnelles dans
un but commercial. De plus, ces systémes centralisés néces-
sitent des serveurs trés colteux. Par conséquent, les plates-
formes sociales existantes ne tirent pas compléetement profit
des possibilités de personnalisation.

Dans cette thése, nous nous intéressons a la conception de
réseaux sociaux et de services tirant partie des informations
personnelles dans le contexte de réseaux pair-a-pair (P2P).
Les réseaux P2P sont des architectures décentralisées, par
conséquent les utilisateurs contribuent au service et gardent
le contr6le de leurs donnés personnelles. Cette architecture
résout donc en partie le probléme du passage a I'échelle
et préserve mieux la vie privée des utilisateurs. Cependant,
comme les données sont distribuées, il devient plus difficile de
localiser les informations intéressantes.

Dans cette these, nous présentons les contributions suivantes.
Nous proposons une approche pour prédire un réseau social
a partir des informations personnelles des utilisateurs. Notre
méthode repose sur I'utilisation d’'un graphe probabiliste. Nous
évaluons ses performances sur des donnés de Flickr en util-
isant les groupes d’intérét comme information disponible. Nos
résultats montrent qu’il est possible de prédire un réseau so-
cial tenu secret a partir de peu d’'information, et justifient donc
le passage a une solution décentralisée.

Nous proposons SOCS, un algorithme décentralisé de pré-
diction de liens. La recommandation de contacts est une
fonctionnalité centrale des réseaux sociaux, notre algorithme
est donc une premiére étape vers leur décentralisation. SOCS
s’appuie sur des protocoles épidémiques pour réaliser un
plongement de graphe distribué. Les coordonnées sociales
obtenues permettent ensuite de prédire des liens entre les
utilisateurs. Nous montrons que SOCS est particuliérement
adapté aux systemes distribués.

Nous proposons GMIN, une plates-forme décentralisée tirant
profit des centres d’intérét des utilisateurs. GMIN fournit
a chaque utilisateur une liste de voisins intéressés par les
mémes sujets. Notre algorithme fait attention a prendre en
compte I'ensemble des intéréts d’un utilisateur, et pas seule-
ment les principaux. Nous utilisons ensuite ces donnés pour
générer des requétes personnalisées (GQE). Chaque requéte
est étendue de fagon a prendre en compte le point de vue de
l'utilisateur et de ses voisins. Nous montrons que ce mécan-
isme améliore la pertinence des résultats.

Mot-clés : algorithmes épidémiques, expansion de requétes,
folksonomy, information sociale, pair-a-pair, personnalisation,
plongement de graphe, protection de la vie privée, réseaux
sociaux, systemes distribués

Abstract

The so-called Web 2.0 revolution has fundamentally changed
the way people interact with the Internet. The Web has turned
from a read-only infrastructure to a collaborative platform. By
expressing their preferences and sharing private information,
the users benefit from a personalized Web experience.

Yet, these systems raise several problems in terms of privacy
and scalability. The social platforms use the user information
for commercial needs and expose the privacy and preferences
of the users. Furthermore, centralized personalized systems
require costly data-centers. As a consequence, existing cen-
tralized social platforms do not exploit the full extent of the
personalization possibilities.

In this thesis, we consider the design of social networks and
social information services in the context of peer-to-peer (P2P)
networks. P2P networks are decentralized architecture, thus
the users participates to the service and control their own data.
This greatly improves the privacy of the users and the scala-
bility of the system. Nevertheless, building social systems in
a distributed context also comes with many challenges. The
information is distributed among the users and the system has
be able to efficiently locate relevant data.

The contributions of this thesis are as follow.

We define the cold start link prediction problem, which consists
in predicting the edges of a social network solely from the
social information of the users. We propose a method based
on a probabilistic graph to solve this problem. We evaluate
it on a dataset from Flickr, using the group membership as
social information. Our results show that the social information
indeed enables a prediction of the social network. Thus, the
centralization of the information threatens the privacy of the
users, hence the need for decentralized systems.

We propose SOCS, a decentralized algorithm for link predic-
tion. Recommending neighbors is a central functionality in
social networks, and it is therefore crucial to propose a decen-
tralized approach as a first step towards P2P social networks.
SoCS relies on gossip protocols to perform a force-based
embedding of the social networks. The social coordinates are
then used to predict links among vertices. We show that SOCS
is adapted to decentralized systems at it is churn resilient and
has a low bandwidth consumption.

We propose GMIN, a decentralized platform for personalized
services based on social information. GMIN provides each
user with neighbors that share her interests. The clustering
algorithm we propose takes care to encompass all the different
interests of the user, and not only the main ones. We then
propose a personalized query expansion algorithm (GQE) that
leverages the GMIN neighbors. For each query, the system
computes a tag centrality based on the relations between tags
as seen by the user and her neighbors. We show that this
improves the recall and the precision of the user’s queries.

Keywords: distributed systems, foksonomy, gossip, graph
embedding, peer-to-peer, personalization, privacy, query ex-
pansion, social information, social networks
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