. Deuxièmement, utilisation de modèles d'instruments peut aider à augmenter la performance d'extraction de sources par rapport aux méthodes aveugles exploitant uniquement les informations spatiales

. Dans-ce-cas, augmentation est d'autant plus significative que les informations spatiales sont difficiles à interpréter, comme c'est le cas dans les mélanges stéréo " AB étroits " . Par contre, la performance de nos algorithmes est semblable à celle des algorithmes aveugles basés sur une hypothèse de parcimonie en ce qui concerne la modification de scène sonore

L. 'inversion-est-alors-basée-sur-un-algorithme-itératif-exploitant-la-redondance, Les sous-bandes ( y f ) sont initialisées de sorte que y tf = y tf en chaque point (t, f ) À chaque itération , ces sous-bandes sont normalisées sur chaque trame de sorte que y tf = y tf , puis elles sont transformées en un signal y par l'équation B.9, puis ce signal est redécomposé en sous-bandes ( y f ) par l'équation B.3

]. S. Bibliographie-[-abd01, M. D. Abdallah, and . Plumbley, Sparse coding of music signals, 2001.

]. F. Abr01, Y. Abrard, P. Deville, and . White, From blind source separation to blind source cancellation in the underdetermined case : a new approach based on time-frequency analysis, Proc. ICA, pp.734-739, 2001.

B. Albouy and Y. Deville, Alternative structures and power spectrum criteria for blind segmentation and separation of convolutive speech mixtures, Proc. ICA, pp.361-366, 2003.

S. I. Amari, S. Douglas, A. Cichocki, and H. Yang, Novel online algorithms for blind deconvolution using natural gradient approach, Proc. SYSID, pp.1057-1062, 1997.

J. Anemüller and B. Kollmeier, Amplitude modulation decorrelation for convolutive blind source separation, Proc. ICA, 2000.

]. H. Att99 and . Attias, Independent factor analysis, Neural Computation, vol.11, pp.803-851, 1999.

C. Avendano and J. Jot, Frequency domain techniques for stereo to multichannel upmix, Proc. AES 22nd Conference on Vitual, Synthetic and Entertainment Audio, 2002.

R. Balan, J. Rosca, and S. Rickard, Robustness of parametric source demixing in echoic environments, Proc. ICA, pp.144-148, 2001.

]. B. Bar98, J. Bartlett, and . Bartlett, Practical recording techniques : the step-by-step approach to professional recording, 1998.

. Bass-db-]-bass-db, E. Gribonval, C. Vincent, and . Févotte, Blind Audio Source Separation dataBase Authors : R

J. P. Bello, L. Daudet, and M. Sandler, Time-domain polyphonic transcription using selfgenerating databases, Proc. AES 112th Convention, 2002.

L. Benaroya, Représentations parcimonieuses pour la séparation de sources avec un seul capteur, Proc. GRETSI, 2001.

L. Benaroya, Séparation de plusieurs sources sonores avec un seul microphone, 2003.

A. Bonafonte, J. Vidal, and A. Nogueiras, Duration modeling with expanded HMM applied to speech recognition, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96, 1996.
DOI : 10.1109/ICSLP.1996.607797

]. A. Bre90 and . Bregman, Auditory scene analysis, 1990.

G. J. Brown and M. P. Cooke, Computational auditory scene analysis, Computer Speech & Language, vol.8, issue.4, pp.297-333, 1994.
DOI : 10.1006/csla.1994.1016

J. C. Brown, O. Houix, and S. Mcadams, Feature dependence in the automatic identification of musical woodwind instruments, The Journal of the Acoustical Society of America, vol.109, issue.3, pp.1064-1072, 2001.
DOI : 10.1121/1.1342075

]. O. Cap93 and . Cappé, Techniques de réduction de bruit pour la restauration d'enregistrements musicaux, 1993.

M. Caraty, C. Montacié, and C. Barras, Integration of frequential and temporal structurations in a symbolic learning system, Proc. ICSLP, pp.475-478, 1992.

]. Car98a and . Cardoso, Blind source separation : statistical principles, Proceedings of the IEEE, vol.9, issue.10, pp.2009-2025, 1998.

J. Cardoso, Multidimensional independent component analysis, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998.
DOI : 10.1109/ICASSP.1998.681443

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.6376

M. A. Casey and A. Westner, Separation of mixed audio sources by independent subspace analysis, Proc. ICMC, 2000.

M. A. Casey, Generalized sound classification and similarity in MPEG-7. Organized Sound, 2002.

A. T. Cemgil, B. Kappen, and D. Barber, Generative model based polyphonic music transcription, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No.03TH8684), pp.181-184, 2003.
DOI : 10.1109/ASPAA.2003.1285861

]. S. Che98, D. L. Chen, M. A. Donoho, and . Saunders, Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing, 1998.

M. E. Davies, Audio source separation, Mathematics in Signal Processing V, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00545140

M. E. Davies, A sparse mixture of Gaussians model for blind separation of more sources than sensors, Proc. N2SP Workshop, 2002.

M. Davy and S. Godsill, Bayesian harmonic models for musical pitch estimation and analysis, 2002.

J. S. Downie, Music Information Retrieval. Annual review of information science and technology, pp.295-340, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00544675

]. R. Dre00 and . Dressler, Dolby Surround Pro Logic II decoder : principles of operation, 2000.

S. Dubnov, Extracting sound objects by independent subspace analysis, Proc. AES 22nd Conference on Virtual, Synthetic and Entertainment Audio, 2002.

]. R. Dud02 and . Dudas, Spectral envelope correction for real-time transposition : proposal of a "floatingformant" method, Proc. ICMC, pp.126-129, 2002.

]. S. Dup99 and . Dupuis, Le rôle des transitions legato dans la reconnaissance des instruments de musique, 1999.

J. Eggink and G. J. Brown, Application of missing feature theory to the recognition of musical instruments in polyphonic audio, Proc. ISMIR, 2003.

]. D. Ell96 and . Ellis, Prediction-driven computational auditory scene analysis, 1996.

]. A. Ero03 and . Eronen, Musical instrument recognition using ICA-based transform of features and discriminatively trained HMMs, Proc. ISSPA, 2003.

]. D. Fit03a, E. Fitzgerald, B. Coyle, and . Lawlor, Independent subspace analysis using locally linear embedding, Proc. DAFx, 2003.

]. D. Fit03b, B. Fitzgerald, E. Lawlor, and . Coyle, Prior subspace analysis for drum transcription, Proc. AES 114th Convention, 2003.

C. Févotte, Bayesian approach for blind separation of undetermined mixtures of sparse sources, Proc. ICA, 2004.

C. Févotte and C. Doncarli, Two Contributions to Blind Source Separation Using Time???Frequency Distributions, IEEE Signal Processing Letters, vol.11, issue.3, 2004.
DOI : 10.1109/LSP.2003.819343

M. J. Gales, Model-based techniques for noise robust speech recognition, 1995.

Z. Ghahramani and M. I. Jordan, Factorial hidden Markov models, Machine Learning, vol.29, issue.2/3, pp.245-273, 1997.
DOI : 10.1023/A:1007425814087

Z. Ghahramani, AN INTRODUCTION TO HIDDEN MARKOV MODELS AND BAYESIAN NETWORKS, International Journal of Pattern Recognition and Artificial Intelligence, vol.15, issue.01, pp.9-42, 2001.
DOI : 10.1142/S0218001401000836

O. K. Gillet and G. Richard, Automatic labelling of tabla signals, Proc. ICASSP, 2004.

D. Godsmark and G. J. Brown, A blackboard architecture for computational auditory scene analysis, Speech Communication, vol.27, issue.3-4, pp.351-366, 1999.
DOI : 10.1016/S0167-6393(98)00082-X

M. Goto and S. Hayamizu, A real-time music description system : detecting melody and bass lines in audio signals, Proc. IJCAI Workshop on CASA, pp.31-40, 1999.

D. Griffin and J. Lim, Signal estimation from modified short-time Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.32, issue.2, pp.236-242, 1984.
DOI : 10.1109/TASSP.1984.1164317

]. R. Gri99 and . Gribonval, Approximations non linéaires pour l'analyse des signaux sonores, 1999.

]. R. Gri03a and . Gribonval, Piecewise linear source separation, Proc. SPIE Conference 5207 "Wavelets : Applications in Signal and Image Processing, pp.297-310, 2003.

R. Gribonval, L. Benaroya, E. Vincent, and C. Févotte, Proposals for performance measurement in source separation, Proc. ICA, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00570123

S. Hainsworth and M. Macleod, Onset detection in musical audio signals, Proc. ICMC, 2003.

]. D. Han01, K. Hand, and . Yu, Idiot's bayes -not so stupid after all ?, International Statistical Review, vol.69, issue.3, pp.385-398, 2001.

A. Hyvärinen, The Independence Assumption: Analyzing the Independence of the Components by Topography, Advances in Independent Component Analysis, pp.45-62, 2000.
DOI : 10.1007/978-1-4471-0443-8_3

]. A. Hyv01a and . Hyvärinen, Fast ICA by a fixed-point algorithm that maximizes non-Gaussianity, Independent Component Analysis : Principles and Practice, pp.71-94, 2001.

A. Hyvärinen, J. Karhunen, and E. Oja, Principal Component Analysis and Whitening, Independent Component Analysis, 2001.
DOI : 10.1002/0471221317.ch6

G. Jang, T. Lee, and Y. Oh, Blind separation of single channel mixture using ICA basis functions, Proc. ICA, pp.595-600, 2003.

K. Jensen, Timbre models of musical sounds, 1999.

L. Josifovsky, M. Cooke, P. Green, and A. Vizinho, State-based imputation of missing data for robust speech recognition and speech enhancement, Proc. Eurospeech, 1999.

]. C. Jut03, J. Jutten, and . Karhunen, Advances in nonlinear blind source separation, Proc. ICA, pp.245-256, 2003.

K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka, Application of bayesian probability network to music scene analysis, Working notes of IJCAI Workshop on CASA, pp.52-59, 1995.

K. Kashino and H. Murase, A sound source identification system for ensemble music based on template adaptation and music stream extraction, Speech Communication, vol.27, issue.3-4, pp.337-349, 1999.
DOI : 10.1016/S0167-6393(98)00078-8

]. T. Kin99, S. Kinoshita, H. Sakai, and . Tanaka, Musical sound source identification based on frequency component adaptation, Proc. IJCAI Worshop on CASA, pp.18-24, 1999.

T. Kitahara, M. Goto, and H. G. Okuno, Musical instrument identification based on F0- dependent multivariate normal distribution, Proc. ICASSP, pp.421-424, 2003.

J. Klingseisen and M. D. Plumbley, Towards musical instrument separation using multiplecause neural networks, Proc. ICA, pp.447-452, 2000.

]. R. Lam99 and . Lambert, Difficulty measures and figures of merit for source separation, Proc. ICA, pp.133-138, 1999.

T. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski, Blind source separation of more sources than mixtures using overcomplete representations, IEEE Signal Processing Letters, vol.6, issue.4, 1999.

J. Marques and P. Moreno, A study of musical instrument classification using gaussian mixture models and support vector machines, 1999.

]. K. Mar99b and . Martin, Sound-source recognition : a theory and computational model, 1999.

J. Marozeau, A. De-cheveigné, S. Mcadams, and S. Winsberg, The dependency of timbre on fundamental frequency, The Journal of the Acoustical Society of America, vol.114, issue.5, pp.2946-2957, 2003.
DOI : 10.1121/1.1618239

URL : https://hal.archives-ouvertes.fr/tel-00008742

L. Mcdonagh, F. Bimbot, and R. Gribonval, A granular approach for the analysis of monophonic audio signals, Proc. ICASSP, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00574785

Y. Meron and K. Hirose, Separation of singing and piano sounds, Proc. ICSLP, 1998.

J. Miskin and D. Mackay, Ensemble Learning for blind source separation, Independent Component Analysis : Principles and Practice, pp.209-233, 2001.
DOI : 10.1017/CBO9780511624148.009

N. Mitianoudis and M. Davies, Intelligent audio source separation using independent component analysis, Proc. AES 112th Convention, 2002.

S. Molla and B. Torrésani, An hybrid audio scheme using hidden Markov models of waveforms, 2003.

N. Murata, S. Ikeda, and A. Ziehe, An approach to blind source separation based on temporal structure of speech signals, Neurocomputing, vol.41, issue.1-4, pp.1-24, 2001.
DOI : 10.1016/S0925-2312(00)00345-3

]. T. Nak02 and . Nakatani, Computational auditory scene analysis based on residue-driven architecture and its application to mixed speech recognition, 2002.

N. [. Leary and . Griffith, A hybrid approach to timbral consistency in a virtual instrument, Proc. DAFx, 2003.

S. Ortmanns, H. Ney, and A. Eiden, Language-model look-ahead for large vocabulary speech recognition, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96, pp.2095-2098, 1996.
DOI : 10.1109/ICSLP.1996.607215

M. Ostendorf, V. Digalakis, and O. A. Kimball, From HMM's to segment models: a unified view of stochastic modeling for speech recognition, IEEE Transactions on Speech and Audio Processing, vol.4, issue.5, pp.360-378, 1996.
DOI : 10.1109/89.536930

]. L. Par00, C. Parra, and . Spence, On-line convolutive blind source separation of non-stationary signals, Journal of VLSI Signal Processing, vol.26, issue.12, pp.39-46, 2000.

L. C. Parra and C. V. Alvino, Geometric source separation : merging convolutive source separation with geometric beamforming, IEEE Trans. on Speech and Audio Processing, vol.10, issue.6, 2002.
DOI : 10.1109/tsa.2002.803443

W. Penny, R. Everson, and S. Roberts, Hidden Markov Independent Component Analysis, Advances in Independent Component Analysis, 2000.
DOI : 10.1007/978-1-4471-0443-8_1

W. Penny, S. Roberts, and R. Everson, ICA : model order selection and dynamic source models. In Independent Component Analysis : Principles and Practice, 2001.

]. Pha01, J. Pham, and . Cardoso, Blind separation of instantaneous mixtures of non stationary sources, IEEE Trans. on Signal Processing, vol.49, issue.9, pp.1837-1848, 2001.

N. H. Pontoppidan and M. Dyrholm, Fast monaural separation of speech, Proc. AES 23rd Conference on Signal Processing in Audio Recording and Reproduction, 2003.

]. V. Pul01, M. Pulkki, and . Karjalainen, Localization of amplitude-panned virtual sources I : stereophonic panning, Journal of the AES, 2001.

L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, pp.257-286, 1989.

R. Radke and S. Rickard, Audio interpolation, Proc. AES 22nd Conference on Virtual, Synthetic and Entertainment Audio, 2002.

]. C. Rap02 and . Raphael, Automatic transcription of piano music, Proc. ISMIR, 2002.

M. J. Reyes-gomez, B. Raj, and D. P. Ellis, Multi-channel source separation by factorial HMMs, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., 2003.
DOI : 10.1109/ICASSP.2003.1198868

URL : http://academiccommons.columbia.edu/download/fedora_content/download/ac:148740/CONTENT/icassp03-fhmm.pdf

N. Roman, D. Wang, and G. J. Brown, Speech segregation based on sound localization, Journal of the ASA, vol.114, issue.4, pp.2236-2252, 2003.

J. Rosier and Y. Grenier, Pitch estimation for the separation of musical sounds, Proc. AES 112th Convention, 2002.

S. Roweis, One microphone source separation, Proc. NIPS, pp.793-799, 2000.

[. M. Goto, H. Hashiguchi, T. Nishimura, R. Oka, and . Url, Music Database : database of copyright-cleared musical pieces and instrument sounds for research purposes

]. Y. Sak03, H. G. Sakuraba, and . Okuno, Note recognition of polyphonic music by using timbre similarity and direction proximity, Proc. ICMC, 2003.

H. Sawada, R. Mukai, S. Araki, and S. Makino, A Robust and Precise Method for Solving the Permutation Problem of Frequency-Domain Blind Source Separation, Proc. ICA, pp.505-510, 2003.
DOI : 10.1109/TSA.2004.832994

]. D. Sch99, K. Schobben, P. Torkkola, and . Smaragdis, Evaluation of blind signal separation methods, Proc. ICA, pp.261-266, 1999.

]. E. Sch00 and . Scheirer, Music-listening systems, 2000.

X. Serra and J. O. Smith, Spectral Modeling Synthesis: A Sound Analysis/Synthesis System Based on a Deterministic Plus Stochastic Decomposition, Computer Music Journal, vol.14, issue.4, pp.12-24, 1990.
DOI : 10.2307/3680788

]. C. Ser03 and . Servière, Separation of speech signals with segmentation of the impulse responses under reverberant conditions, Proc. ICA, pp.511-516, 2003.

M. Slaney, D. Naar, and R. F. Lyon, Auditory model inversion for sound separation, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing, pp.77-80, 1994.
DOI : 10.1109/ICASSP.1994.389714

[. Online, URL : http ://forumnet.ircam.fr

]. J. Str85 and . Strawn, Modeling musical transitions, 1985.

F. J. Theis, C. Puntonet, and E. W. Lang, A histogram-based overcomplete ICA algorithm, Proc. ICA, pp.1071-1076, 2003.

C. Uhle, C. Dittmar, and T. Sporer, Extraction of drum tracks from polyphonic music using independent subspace analysis, Proc. ICA, pp.843-848, 2003.

]. L. Vie01, D. Vielva, ?. Erdo, and J. C. Príncipe, Underdetermined blind source separation using a probabilistic source sparsity model, Proc. ICA, pp.675-679, 2001.

]. E. Vin01 and . Vincent, Séparation de signaux audio : principes statistiques de l'analyse en composantes indépendantes et applications au signal monophonique, 2001.

]. E. Vin03a, C. Vincent, R. Févotte, and . Gribonval, Comment évaluer les algorithmes de séparation de sources audio ?, Proc. GRETSI, 2003.

E. Vincent, X. Rodet, A. Röbel, C. Févotte, R. Gribonval et al., A tentative typology of audio source separation tasks, Proc. ICA, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00544239

E. Vincent, R. Gribonval, and C. Févotte, Performance measurement in blind audio source separation, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.4, 2004.
DOI : 10.1109/TSA.2005.858005

URL : https://hal.archives-ouvertes.fr/inria-00544230

E. Vincent and X. Rodet, Instrument identification in solo and ensemble music using independent subspace analysis, Proc. ISMIR, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00544689

E. Vincent and X. Rodet, Music Transcription with ISA and HMM, Proc. ICA, 2004.
DOI : 10.1007/978-3-540-30110-3_151

URL : https://hal.archives-ouvertes.fr/inria-00544697

E. Vincent and X. Rodet, Underdetermined Source Separation with Structured Source Priors, Proc. ICA, 2004.
DOI : 10.1007/978-3-540-30110-3_42

URL : https://hal.archives-ouvertes.fr/inria-00544694

]. T. Vir03a and . Virtanen, Algorithm for the separation of harmonic sounds with time-frequency smoothness constraint, Proc. DAFx, 2003.

]. T. Vir03b and . Virtanen, Sound source separation using sparse coding with temporal continuity objective, Proc. ICMC, 2003.

H. Viste and G. Evangelista, An extension for source separation techniques avoiding beats, Proc. DAFx, 2002.

H. Viste and G. Evangelista, On the use of spatial cues to improve binaural source separation, Proc. DAFx, 2003.

]. A. Wes99, V. M. Westner, and . Bove, Blind separation of real world audio signals using overdetermined mixtures, Proc. ICA, 1999.

]. P. Wol00 and S. J. Wolfe, The application of psychoacoustic criteria to the restoration of musical recordings, Proc. AES 108th Convention, 2000.

]. P. Wol03 and S. J. Wolfe, A Gabor regression scheme for audio signal analysis, Proc. WASPAA, pp.103-106, 2003.

M. Wu and D. Wang, A one-microphone technique for reverberant speech enhancement, Proc. ICASSP, 2003.

M. Wu, D. Wang, and G. J. Brown, A multipitch tracking algorithm for noisy speech, IEEE Trans. on Speech and Audio Processing, vol.11, issue.3, pp.229-241, 2003.

Ö. Yilmaz and S. Rickard, Blind Separation of Speech Mixtures via Time-Frequency Masking, IEEE Transactions on Signal Processing, vol.52, issue.7, 2002.
DOI : 10.1109/TSP.2004.828896

]. M. Zib01, B. A. Zibulevsky, P. Pearlmutter, P. Bofill, and . Kisilev, Blind source separation by sparse decomposition in a signal dictionary, Independent Component Analysis : Principles and Practice, pp.181-208, 2001.