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Chapter 1

Motivations and introduction

The recent worldwide rise of important issues like global warming and energy
supply has shone some light on solar energy and most notably photovoltaics
(PV). Even though the physical principle of this technology was discovered
more than 170 years ago by Alexandre-Edmond Becquerel who observed an
increase of conductivity of his sample under light irradiation, the manu-
facture of photovoltaic solar cells has only advanced recently. Indeed, PV
presents several advantages compared to other electrical power generation
technologies:

e the potential source of energy is huge : 174 PW received by the earth
from the sun at the upper atmosphere corresponding to a solar irradi-
tion of ~ 1300W /m?.

e it is a green source of energy (life-cycle greenhouse gas emission ranging
between nuclear and wind and an order of magnitude smaller than fossil
energy sources.)

e there is still room for improvement: from the point of view of mass pro-
duction, there are enormous possibilities of cutting cost and improving
the efficiency. From the point of view of research, the record efficiency
of a photovoltaic solar cell (40.7%) is still far from the theoretical limit
for energy conversion of solar radiation (Carnot efficiency n ~ 85.0%
considering the average temperature on earth).

While the first practical devices were built more than 50 years ago, PV is
still a wide (and wild) field of discoveries for physicists, chemists or engi-
neers. New solar cell designs and principles arise at a very fast rate, keeping
the PV research area extremely challenging and interesting. One particular
subject of interest is the search for new materials. Indeed, PV solar cells
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Figure 1.1: Bar diagram: Number of publications on Cu(In,Ga)Ses versus
year. Curve: record efficiency of Cu(In,Ga)Sey solar cells versus year. Two
blue line refers to the two most cited articles based on ab initio methods. [1, 2]

are stackings of layers made of different materials with specific properties.
These properties were chosen in order to achieve the precise goal of a solar
cell: convert light into electricity. If only one of these materials fail in its
task, then the solar cell will display poor properties. Therefore, a profound
understanding of the physics and chemistry of materials is needed in order
to build high efficiency device.

This thesis has been written in this prospect: applying advanced methods in
order to gain deeper insight in the physics of the materials. While it is a very
exciting challenge, it is also an extremely difficult and paradoxical task. On
one hand, the theoretical explanation of the PV effect waited for more than
100 years between Becquerel’s discovery and the Shockley Queisser paper |3]:
it involved quantum effects that require to treat the material at the nanoscale
level. On the other hand, scientists had built solar cells for years since Bec-
querel’s discovery, dealing with macroscopic quantities like current density
and voltage. Microscopic and macroscopic worlds usually do not get along
very well: one can find one striking example in this thesis as microscopic
changes of the crystalline structure induce large macroscopic variations of
the bandgap which are experimentally not observed. We study Culn(S,Se),
(CIS), belonging to the family of the Cu-based chalcopyrite which is believed



to be the most promising class of material of the thin film technologies. It
is a very good light absorbing material which displays intrinsic doping prop-
erties, electrical and optical innocuity to large stoichiometric variations and
other remarkable properties for PV applications. Figure 1.1 shows the evo-
lution of efficiency of CulnGaSes-based solar cell versus time. For the last
30 years, the research conducted on this material has achieved a steady in-
crease of solar cell performance: one should notice the two abrupt steps in
the evolution related to synthesis improvements (the so-called Boeing process
and 3-stage process), and the two main theoretical contributions to the field
based on first principle calculations |1, 2|. Each of the latter has permitted
a better understanding of the physics of the material and most notably of
the physics of defects. It explained the capability of doping of the material
and the innocuity of large defect concentrations on the optical properties of
CIS. However these two contributions were using ab initio methods based
only on Density Functional Theory (DFT). While being the state of the art
method when dealing with ground state properties, this method is known to
fail considerably for excited states properties (for example it underestimates
the bandgap by 50% to 100%). In the case of CIS, the underestimation of
the bandgap is so large that DFT predicts CIS to be a semimetal despite the
experimentally observed insulating nature of CIS. Therefore, we use the GW
method which is a state-of-the-art method when dealing with bandgaps. For
the last few years, important efforts have been carried out in order to make
this method computationally tractable [5]. GWW is now able to treat systems
with typically up to 100 atoms. In the case of CIS, it requires however partic-
ular care because of the presence of d electron. Therefore as a test case ZnO
was studied first in order to get some technicalities of GW tested on a sim-
ple model. Self-consistent schemes for the GW calculation turned out to be
necessary in the case of CIS and ZnO, which makes calculations more cum-
bersome. In the end, however, GW not only succeeds in describing correctly
the bandgap of CIS but also reveals the existence of a hidden dependence
of the bandgap. While the issue had been asserted long time ago in one of
the first papers using ab initio methods on CIS [I], it has been discarded
for more than 20 years in most theoretical and experimental studies. The
dependence of the bandgap on an atomic displacement is very surprising as
thin films or polycrystalline CIS samples show an extremely stable bandgap
despite large dispersion of some structural parameters. At the same time,
the samples are usually not ideal crystals. The question of defects in CIS
had been already adressed theoretically [2|. Tt was shown that some of the
intrinsic defects have a very low formation energy that can explain the ob-
served deviation from stoichiometry. In this thesis, we propose a mechanism
including a feedback loop that relates changes in the lattice structure to the
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changes in the defect concentration.

In the first chapter of this thesis, we will present the principle of PV so-
lar cells with a special emphasis on the CIS absorber. In the second and
third chapter, we will describe the methods we used to treat the many body
problem. Finally, in the last chapter, we will apply methods presented in
chapter 2 and 3 to CIS and pay a particular attention to the dependence of
the bandgap on the anion displacement and the concentration of defects.



Chapter 2

Materials for solar cells

The photovoltaic (PV) effect was discovered in 1839 by Alexandre-Edmond
Becquerel who observed an increase of conductivity under light irradiation.
The effect was finally understood by Einstein in 1905, by introducing the
concept of light quanta [6].

Let us consider the band structure of a semiconductor: the valence states
are separated from the conduction states by a forbidden gap where no state
exists (see Fig. 2.1). This forbidden gap is called the bandgap E,. By shining
light on a sample, the photons promote the transition of the electrons from
the valence to the conduction, leaving a hole in the valence. Clearly, this can
only happen if the energy of the impinging photon Avr should be larger than
the bandgap E,. The electron-hole pair can either recombine, by reemitting a
photon, loose its energy to the lattice or be fully separated and participate in
the current flow. Due to this latter possibility, the photovoltaic effect can be
used in order to provide electrical current and power. The increase of conduc-
tivity observed by Becquerel happens for photon energies hv > E;: therefore
it is natural to consider the bandgap as the keystone of the photovoltaic ef-
fect. It should closely correspond to the solar spectrum in order to obtain
maximum photovoltaic conversion. However, the simple picture describing
the photovoltaic effect is rather far from the reality of a photovoltaic device.
In order to extract electrical power, one should not only favor light absorp-
tion by the material but also prevent the recombination of electron-hole pairs
and enable a correct charge collection. Figure 2.1 displays one of the many
recombination processes that may occur in a solar cell where the presence of
a localized state inside the bandgap can act as a recombination center. The
electrons populating the conduction bands can relax to such state, emitting
a phonon. Once the electron is localized, it does not participate anymore in
the conductivity and moreover it can recombine further with a hole in the
valence. Such an effect is one of the main shortcomings of the actual devices.
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Figure 2.1: Schematic of the photovoltaic effect. Also one of the major source
of loss in a photovoltaic solar cell recombination due to trap located inside the
bandgap is displayed on the right.

2.1 Photovoltaic solar cells

2.1.1 History and technology

The first practical solar cell was built at Bell laboratories in the 50s [7]. Tt
showed a conversion efficiency of about 6% which was orders of magnitude
larger than for the selenium photocells. The device developed by Chapin
and co-workers used silicon grown in a special manner [3], i.e., high quality
crystalline silicon. Furthermore, they also introduced a device design that
would be used in the following 50 years to build photovoltaic solar cells:
the p-n junction, formed by two different materials, one p-doped and the
other one n-doped. The association of two materials with different doping
properties creates an electric field across the junction which can be used
to separate the electron-hole pairs and to conduct the charges toward the
electrodes. However most of solid state PV solar cell still rely on the p-n
junction. The developpement of possible applications followed shortly after
Chapin’s breakthrough with the first autonomous electrical system installed
in Americus, Georgia in 1955 [8]. These first solar cells were exclusively
based on silicon technology and consequently benefited from all the advances
in other silicon-based devices. The choice of silicon was certainly dictated by
technological limitations and by theoretical works that predicted the maxi-
mum photovoltaic conversion for semiconductor to occur for materials whose
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Figure 2.2: Representation of the solar cell displaying the layer stacking
Zn0/CdS/Cu(In,Ga)Ses. [9]

bandgaps E, ~ 1.1 eV [3]. However, silicon is a rather bad energy harvesting
material as it has an indirect bandgap and low absorption coefficient over
the range of interest of the solar spectrum.

During 20 years, PV cells remained too expensive when compared to other
sources of energy. Only one domain departed from this trend: the use of PV
panels for space applications. High efficiency multiple junctions based on
GaAs and other semiconducting alloys were developed to selectively absorb
the solar spectrum outside Earth’s atmosphere and thereby improving the
conversion. Nevertheless, their complexity made their industrial production
extremely expensive but they remained the only viable option for energy
production in space. The oil crisis in the 70s, the constant decrease of PV
prices and the emergence of new technologies in the 80s and 90s made the
PV solar cells more and more attractive. One of these emerging technologies
is the thin-film solar cell. At first sight, it has many advantages: the use of
smaller quantities of material results in a significant reduction of the cost,
the possibility of using different substrates opens the way to flexible solar
cells, and lower cost of better absorbing material when compared to crys-
talline PV solar cells. Considering the low absorption capability of silicon,
the latter advantage is of primary interest and resulted in the advent of three
materials for thin film solar cells:

e amorphous silicon (a-Si): It has a direct bandgap of 1.7 eV but suffers
from the Staebler-Wronski effect [10]. While not completely under-
stood, this light induced metastability is most likely caused by defects
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or mediated by hydrogen atoms. It results in a decrease of the efficiency
during the first 6 months of use. a-Si is currently the leading technology
of the thin film family but due to the above mentioned limitation it is
thought that it will leave its spot to one of the following technologies.

e CdTe: it has an optimal bandgap for photovoltaic conversion (1.4 V).
However, the major drawback of CdTe is the health risk of Cd, which
impacts unfavorably the economical and technical growth of this tech-
nology. Moreover, it suffers from severe losses due to collection issues,
junction recombination and low carrier concentration [11].

e Cu(In,Ga)Ses (CIGS) and related alloys: the most promising as it holds
the highest record efficiency for thin film solar cells. CIGS presents the
advantage of being electrically and optically tunable due to its mixture
of In and Ga. Moreover, it exhibits a large absorption coefficient (two or
three orders of magnitude larger than the one of silicon at w = 1.5 eV)
which permits to obtain rather large currents with very thin films.

2.1.2 CIGS solar cell

Semiconductor-based solar cells are formed by a complex stacking of layers
that are designed to achieve three very specific tasks: (i) transport of light to
the absorber, (ii) generation of electron-hole pairs, (iii) separation and trans-
port of the charges to the contacts. Therefore, the skeleton of the device is
usually formed by a p-n junction. Extra transparent layers are deposited on
top of the p-n junction in order to realize the contacts and to allow current
extraction.

On a substrate®, a layer of molybdenum is grown to realize the back contact
of the device. Molybdenum presents all the qualities required for a potential
back contact material: it displays good electric conductivity and sustains
very high temperatures due to its high melting point which enables the use
of any techniques to grow the CIGS absorber layer on top of it. A direct
consequence of the use of Mo as back contact is the formation of Mo(S,Se),
at the interface between CIGS and Mo: the size of this layer is significant
and impacts the performance of the device. This back contact is in most
cases found to be an ohmic contact [13].

The absorbing layer is then grown and can be made p-type or n-type de-
pending on the condition of growth. As the transparent conducting layer

I'The development of many types of substrates in the past years has favored practical
applications of thin films technologies: the original glass substrate has been replaced by
flexible substrates such as titanium foil or polyimide [12].
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is usually doped n, the most natural doping for CIGS is with holes p-type.
Moreover, p-type thin films of CIS present usually much better electrical
properties than their n-type counterparts. Then follows a layer,the so-called
buffer layer, that is formed by a n-type transparent semiconductor. CdS has
been selected despite its small bandgap. Thereby, some electron-hole pairs
are also created in the buffer layer but do not contribute significantly to the
photogenerated current. There have been some promising attempts to re-
place CdS by ZnS [14] or InyS; [15] for instance that leads to an increase of
the efficiency of the solar cell [10].

The last layer to deposit is a transparent conducting oxide (TCO) that plays
the role of the front contact. Some oxides display both transparent and con-
ducting properties through a complex interplay between doping and optical
properties. ZnO heavily doped with Al (ZnO:Al) is the usual TCO deposited
on top of the buffer layer. A large amount of research has been carried out
trying to improve this stage as losses at the front contact are believed to
plague the efficiency of the device. One of the conclusions is that the depo-
sition of undoped ZnO (i-ZnO) prior to the deposition of the doped one can
greatly improve the solar cell. We will see in the final section of this chapter
that this is due to the particularly complex defect physics of CIGS.

In conclusion, we describe the structure of a CIGS-based solar cell.
The number of interfaces together with the variety of materials used make
the working of such device extremely complex. A single defective layer might
hinder the efficiency of the whole device. In the next section, we will present
the physics behind the solar cell, most notably the origin of the current-
voltage dependence of the solar cell.

2.2 Physics of the solar cell

The semiconductor-based solar cells generally rely on the physics of the p-n
junction as this is the central component of the device. When two semi-
conductors respectively n- and p-doped are assembled together, diffusion of
charges between the two materials occurs creating two distinct regions in
each doped semiconductor: the space charge region, where all dopants are
ionized creating a uniform background charge, and the quasi-neutral region,
one in each doped semiconductor. When applying a voltage to the device,
the width of the space charge region can be modulated, allowing carriers to
drift from one material to the other. As the materials have different type
of majority carriers due to their concurrent doping, a recombination current
appears in each of the quasi-neutral regions in order to regulate the excess
of minority carriers that cross the space charge region. The current voltage
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Figure 2.3: Recombination and generation processes consider in the Shockley-
Hall-Read theory based on a trap states in the middle of the gap: (a) capture
of an electron, (b) emission of an electron, (¢) capture of a hole, (d) emission
of a hole. [17]

curve can often be expressed as

qV.

I = Iy(e"sT — 1), (2.1)

where I is the saturation current, kg the Boltzmann constant and 7" the tem-
perature. This equation is the so-called Shockley diode equation. It relies on
many assumptions about the recombination processes in the different regions
of the p-n junction (there is no recombination in the space charge region for
example) or the amount of minority carriers present in the device (the so-
called low injection approximation). However, most of these assumptions do
not usually hold for solar cells:

e due to the high number of electron-hole pairs generated in the different
regions of the device, the low injection approximation can fail.

e the recombination in the space charge region cannot be discarded.

Let us consider the continuity equation in the steady state regime
1
0 = G,—R,+-VJ,, (2.2)
q
1
0 = Gp—R,+ gvt]p7 (2.3)

where G,, (G,) is the generation rate for electrons (holes), R,, (R,) is the
recombination rate for electrons (holes) and J,, (J,) is the current density of
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electrons (holes). By performing an integration over the whole volume of the
device

/d3r$VJn = /d3r (R, — Gy) , (2.4)
/ d%éwp - / Fr (R, —G,) . (2.5)

The divergence theorem allows us to transform the integration over the vol-
ume to a surface integration and then obtain directly the total current as

I= /dr3q(Rn —G,) . (2.6)

The I-V characteristic depends on the recombination processes that take
place in the device. If one would like to obtain the diode equation, one
should:

e restrict the integration domain to the quasi-neutral region only as in
the diode model no recombination is assumed

e consider the net recombination rate U originating from a standard
conduction-to-valence recombination process:

Upp=Rnp—Gnp=29n,0)/Tnyp, (2.7)
where 7, , is an effective lifetime of electrons (n) and holes (p).

Going back to the description of the solar cell, we consider the recombination
and generation of carriers beyond the radiative conduction-to-valence recom-
bination model [17], the so-called Shockley-Read-Hall (SRH) recombination
model. Figure 2.3 shows the original picture of Shockley and Read which
displays the four processes encompassed by their analysis. It is based on the
presence of a state inside the bandgap that acts as a trap for electrons and
holes. Before going further and for the sake of clarity, we may decompose
the generation term between the equilibrium term G, and the photogenerated
term G,. We can therefore still define a net recombination rate in Eq. (2.3)
and the illumination gives rise to an independent current I, which depends
only on the illumination conditions. Equation (2.6) then becomes

I=1, +/dr3q (Unp) - (2.8)

The voltage dependent term is still to be evaluated and involves only net
recombination rates U, ,. Shockley and Read derived two simplified expres-
sions for their recombination rate: one assuming arbitrary charge modulation
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on or dp and small number of traps, another assuming low injection and an
arbitrary number of traps [17]. We will consider the first simplified model
as solar cells work under high injection conditions and one tries to limit the
concentration of traps as much as possible when building the device. The
net recombination rate U reads

(po +0p)(no + dn) — mipy

U = , 2.9
To0(Po + 0p + p1) + Tno(no + on + ny) (2:9)

where ng (pg) is the equilibrium electron (hole) concentration, dn (dp) is the
excess of electrons (holes) and 7,0 (7,0) is the effective life time for electrons
(holes) that can be expressed in term of the concentration of recombina-
tion centers N, its capture cross section o,, (0,) and the thermal velocity of

electrons and holes vy,
1

—_— . 2.10
Nan,pvth ( )

Tno,p0 =

The two last terms n; and p; to be defined are the equilibrium concentrations
of electrons and holes when the Fermi level Er coincides with the energy of
the trap E;. Considering a Boltzmann distribution for the carrier, they read

E—E¢

ny = N.e *sT | (2.11)
Ey—E,

m = Nye F57 | (2.12)

where N, and N, are the densities of state at the valence (conduction) edge
obtained within an effective mass approximation. If one recasts expres-
sion (2.9) in order to obtain the effective lifetime such as in equation (2.7),
then the lifetime of carriers is dependent on the position of the recombina-
tion center in the bandgap through the terms n; and p;. If, for example, one
considers a shallow acceptor, then the recombination process will be more
or less equivalent to a conduction-to-valence recombination. However, for
midgap recombination center, the lifetime is significantly reduced and as a
consequence also the current provided by the solar cell. The recombination
rate is also proportional to the carrier concentration. Illumination might
therefore modify the recombination and, in some cases, saturate some limit-
ing recombination processes and improve the efficiency of the solar cell. In
practice, devices achieving light concentration are coupled to the solar cell
to increase the flux of photons and therefore the carrier concentration.
Another important assumption about the Schokley diode equation is the
presence of recombination only in the quasi-neutral regions. However, let
us consider the case where recombination occurs in the space charge region
through a midgap recombination center. For the sake of simplicity, we con-
sider that the Fermi level is constant along the device (i.e. thermodynamic
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Figure 2.4: I-V characteristic of a CIGS record cell [18]. Magenta area is
equal to the maximum power point (J,,,,V;,) while orange area correspond to
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equilibrium) while a built-in potential bends the bands in the space charge
region. Consequently, in the space charge regions, the Fermi level can get
closer to the energy level of the recombination center. Then, two recombi-
nation processes may occur: conduction-to-midgap and midgap-to-valence
recombination. The corresponding Schockley diode equation reads hence

[ = I(e?s™ — 1), (2.13)

where Ij is the saturation current. The main difference between equation (2.1)
and equation (2.13) is the presence in the denominator of the exponential of
a factor 2. Such factor is the specific to the case of a midgap recombination
center. One can generalize the diode equation

qV.
I = Iy(e™s™ — 1), (2.14)

where n is called the diode ideality factor. The ideality factor can be inter-
preted as the fingerprints of the recombination process at work in the device:
if one obtains through some fitting procedure an ideality factor close to 2,
the most important recombination processes occur in the space charge region,
while for values closer to 1, the recombination takes place in the quasi-neutral
region. Usually, for CIGS-based solar cells, n &~ 1.6/1.7. Record cell displays
however a much smaller n ~ 1.3 [18], which confirms the harmful character
of recombination in the space charge regions.
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The ideality factor is experimentally extracted through a non-linear fitting
of the [-V curve. However, under certain circonstances like low temperature
or low illumination, the form (2.14) does not have sufficient flexibility of fit
the experimental curve. In those cases, the two diode model is preferred as
it increases the number of degrees of freedom.

% %
I = [()16"13‘W + IOQG"’?%‘W . (215)

In order to be complete, we should mention that the solar cell suffers from
exactly the same problems as any other semiconductor device: parallel and
series resistances. Series resistances R, is of particular interest in cases of high
photogenerated current (for example in the situation of light concentration as
the Joule effect scales as RSIQ). On the other hand, shunt resistances Rgnunt
account for the leakage of current through the cell 2. The I-V characteristic
is then recast as

a(V+Rs xI) 1
T 1) _Y R (2.16)

I =1, -1 nkpT

" 0 <e i Rshunt
Figure 2.4 displays the I-V characteristic with the parameter I, [y, n, Rs and
Rihunt established by a fitting procedure for a state-of-the-art ZnO/CdS/CIGS

solar cell [18].

In conclusion, we presented the equation governing the voltage-current
characteristic of solar cell. There is a constant tradeoff between the photo-
generated current and the saturation current that depends on the load to
which the solar cell is connected. Technically, the I-V characteristics are an
extremely rich source of information: one can make the connection between
microscopic phenomena such as recombination processes and macroscopic
quantities such as the voltage or the current. In the next section, we will
look at these macroscopic quantities in detail.

2.3 I-V characteristics

Open-circuit voltage

The open circuit voltage is the voltage corresponding to no current flow in
the device. From Eq. (2.16) it is expressed as

nk‘BT (Jh ) nk:BT (Jh)
Ve = In|—+1) = In{— . 2.17
q Jo q Jo (2.17)

20ne could also notice the analogy between the shunt resistance and the midgap level
as both can be viewed as parallel path for current.
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It is interesting to express the saturation current of the diode depending on
the dominant recombination process.

e Recombination in the quasi-neutral regions then n =1

E, kgT. (qD,N.N,
V=2 _ BT . 2.18
q q N ( JhNaLn ) ( )

The open circuit voltage is therefore always bounded by the bandgap
of the absorber. Besides, it is impacted by bulk recombination losses
in the neutral region depending on the concentration of dopant N,
the diffusion length of electrons L, = +/D,7, with D, the diffusion
coefficient of holes, and 7, the lifetime of holes calculated with the pre-
viously presented SHR theory. The lower the dopant concentration is ,
the smaller V,. becomes. This effect can however be counterbalanced
by a longer lifetime of the carrier. It could be tempting to increase
the doping of the absorber. However, it might result in the appearance
of other recombination processes such as Auger recombination [13] or
tunneling enhanced recombination [19, 20].

¢ Recombination in the space charge regions n = 2, thereby loss
will affect twice more V,. than loss in the quasi-neutral regions. Sah
et al [21] expressed the recombination current arising from the total
space charge region by

kT
I~ 22 ”\/Nchexp( ar ) , (2.19)

2t B 2kgT

where E is the electric field at the position of maximum recombina-
tion in the space charge region. While, this expression is only valid
under certains conditions (ie.., hole and electron lifetimes and mobili-
ties should be equal and the recombination center energy is situated at
the Fermi level), it is helpful to understand the phenomena at work in
the space charge region. Indeed, there are two competing phenomena
in the space charge region: the electric field creates a rapid drift of
the carriers to the edge of the space charge region while recombination
centers may trap these carriers. The characteristic length of the first
process is given by kgT'/qE and appear in the expression of the recom-
bination current in order to replace the diffusion length L,,. The open
circuit current then reads

Ey _2ksT [ ksTDyry/NoN,
= n
q q 2J,EL2 ’

Vie = (2.20)
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The dependence of expression (2.20) and expression (2.18) on the con-
centration of dopants NV, is the same and therefore all the considerations
about modulating the doping in order to lower the loss due to recom-
bination still hold in the case of recombination in the space charge
region.

e Recombination at the interface CdS/CIGS interface

One of the main sources of loss is the recombination occuring at inter-
faces. Usually, heterojunctions are the seat of important lattice distor-
tions that can create defects or various traps for carriers. It is legitimate
to investigate the effect of surface recombination on the open-circuit

voltage
® kgT S, N,
Vye= -2 1B m(‘“ ) (2.21)
q q Jn

where S, is the interface recombination velocity for holes and ®,, is the
hole barrier formed by the band offset between CIGS and CdS. The use
of a very thin layer of CdS and highly doped ZnO permits to increase
the band bending and reduce the recombination velocity of the holes
at the interface. Therefore, the main loss mechanism in high-efficiency
CIGS solar cell is believed to originate from bulk recombination in the
absorber.

In addition to the three recombination processes mentioned, other pro-
cesses might impact V. like the recombination at the back contact or due to
grain boundaries |22]. The typical values of V. for the chalcopyrite family
ranges between 515 meV for CulnSe; to 861 meV for CuGaSe;. The bandgap
hierarchy for the chalcopyrite structure is preserved: indeed CuGaSe, has the
largest bandgap and CulnSe; the smallest for this family of material.

Short circuit current I

In the case of high quality solar cells (where Iy and Ry are low and Rgpuns
high), the short circuit current is approximatively equal to the photogener-
ated current. Therefore it gives a good indication on the electron-hole pair
generation, and how the charges are separated and collected. Instinctively, we
can forsee that large bandgap materials will absorb less photons than small
bandgap materials resulting in smaller short circuit currents. For CulnSe,,
a typical value of Jg. is 41 mA /cm? while it is reduced to 14.2 mA /cm? for
CuGaSes.
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Maximum Power Point

The maximum power point corresponds to the operation point (V, I) that
maximizes the electrical power P =V x I. It can be represented graphically
by the largest rectangle that can be encompassed under the [-V characteris-
tics. This power varies with the irradiation and therefore, under operation,
the load to which the solar cell is connected should be adjusted instaneously
in order to obtain maximum power transfer.

Efficiency

Efficiency is one of the most popular indicators of solar cell performance. In-
deed it directly asserts the macroscopic energy conversion. Energy efficiency
is a common quantity in describing thermodynamical system: the energy
efficiency of the Carnot cycle is simply

(2.22)

where T is the temperature of the cold reservoir and Ty, is the temperature
of the hot reservoir. In the case of a solar cell, the hot reservoir is simply the
sun whose spectra can be described by a black body with 7}, = 6000K and
the solar cell is the cold reservoir at room temperature 7, = 300K. Then,
the Carnot efficiency limits the energy conversion to 95%. However, the en-
tropy generation associated with input radiative flux and output work should
also be taken into account: the subsequent efficiency is called the Landsberg
limit [23] n, = 93.3%. It is considered as the upper bound for solar energy
conversion efficiency. In 1961, Shockley and Queisser present a derivation of
the efficiency of a solar cell based on the detailed balance principle [3] .In
this context, detail balance means that the rate of radiative recombination
at thermal equilibrium for a given frequency interval is equal to the corre-
sponding rate of generation of electron hole pairs at thermal equilibrium.
The maximum efficiency is obtained when the recombination processes con-
sidered are entirely radiative (n = 31%) for a bandgap E, ~ 1.4 ¢V. The
Shockley-Queisser limit is considered as the most realistic limit for solar cells
based on a p-n junction. The highest efficient recorded for a single junction
solar cell is 24.5% [21], very close to the theoretical limit. The analysis of
Shockley et al. is however plagued by several rough approximations:

e all the light above the bandgap is absorbed in the active region.

e one photon creates a pair of electron-holes which are all extracted if
they do not recombine.
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Figure 2.5: Left panel: Efficiency 7 of solar cell versus the bandgap E, [3].
Different curves f, g, h,i,j refers to variation of the irradiation solid angles,
the ratio of non-radiative/radiative recombination and the fraction of reflected
radiation. Numerical details are given in Ref. [3]. Right panel: Efficiency of
the record CIGS cell with different absorbers [26] versus the bandgap of the
absorber. The red line refers to the optimal value for the bandgap E; ~ 1.4 eV.

e recombination occurs only in the quasi-neutral region.

The full account of all losses in the efficiency is a rather difficult task [25].
In practice, the efficiency is expressed as the ratio between the maximum
power point MPP and the irradiation power received by the device W x A
where W is the light irradiance and A the surface of the solar cell

(2.23)

Figure 2.5 shows the record efficiency achieved for different type of Cu-
based chalcopyrite absorbers versus the bandgap value. One can see that
the family encloses the optimal bandgap and that the highest efficiency is
achieved for the material with the bandgap closest to the optimal value. The
general trend of the curve follows the theoretical prediction displayed in the
left panel of Fig. 2.5 7.e. the assymmetry around the maximum efficiency
point, which makes the material with a smaller bandgap than the optimal
always better than material above the optimal value of E,. Chalcopyrite
family exhibits the higher efficiency for the thin film family 19.9 % for a
solar cell made of Cu(In,Ga)Ses.
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Fill Factor

The fill factor is another parameter that is defined as the ratio between
the MPP and V. x I,. Again the graphical analysis of this quantity is
relatively simple as it is the ratio between the surface of the largest rectangle
encompassed under the I-V characteristics and the surface of the smallest
rectangle that encomposses the I-V curve.

P,

FF=——-—.
‘/:)CX[SC

(2.24)

The fill factor is typically impacted by series resistance and shunt resistances.
Typical fill factors in the Cu-based chalcopyrite family range between 68%
[CuGaSey| and 77% [Cu(In,Ga)Ses]

2.4 Culn(Se,S),, the perfect photovoltaic ma-
terial 7

Culn(S,Se), crystallizes in the chalcopyrite phase, with space group 142d
which forms an isoelectrical analog to the III-V binary semiconductor phase,
zinc blende. Experimental observations of phases CuAu [27] or CuPt |28]
have been reported in the past but can be considered marginal due to the
scarcity of the experimental evidences in the literature. In the chalcopyrite
phase, each anion is coordinated to two indium and two copper atoms while
each cation is tetrahedrally coordinated to four anions. The unit cell contains
two chemical formula, 7.e. 8 atoms. The corresponding Wyckoff positions are
Cu (0,0,0), In (0,0,1/2) and (S,Se) (u,1/4,1/8). The chalcopyrite structure
is depicted in Fig. 2.6.

If we replace indium atoms by copper atoms, we recover the zinc blende
phase. However there are significant differences between the chalcopyrite
phase and the zinc-blende. The existence of two different cations (In and Cu)
results in two different bonding lengths Ry, (s se) and Reoy—(s,se) distorting the
crystallographic structure in two ways. First the cell is tetragonally distorted,
i.e. 1 = c/2a # 1. For In-based chalcopyrite, the tetragonal distortion is
very small n ~ 1.006. Second, the ideal zinc-blende site of the anion is
disturbed leading to a parameter u called the anion displacement. If the two
zinc-blende sublattices forming the chalcopyrite lattice were identical, u = i
whereas in the case of chalcopyrites

1 R2 u— (S - R2Il— (S
u = Z_l + C (S,S )a2 T (S,S ) ’ (225)
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Figure 2.6: Atomic structure of CulnSs. Blue middle-size spheres represent
copper atoms, large grey spheres represent indium atoms and small yellowish
spheres represent sulfur atoms.

where a is the lattice parameter. The value of u lies between 0.21 and 0.235
for CIS.

Now let us turn to the composition of CIS thin films: they present signif-
icant deviations from stoichiometry depending on the conditions of growth.
It is not surprising as CIS materials display a very rich phase diagram. Ow-
ing to its ternary nature, many possible binary or ternary phases can form
depending on temperature and the compositional ranges. Figure 2.7 shows
the phase diagram of CulnSe, as a function of the content of Cu and the
temperature. First, the pure chalcopyrite phase « is restricted to a rather
small compositional range. Its domain of stability decreases significantly at
low temperature. Besides, it is bounded for high fraction of Cu by the seg-
regation of Cuy_,Se phase and for lower fraction of Cu by the appearance of
secondary phase 3 and §. The B-phase is an order defect phase corresponding
to CulnzSes while ¢ is the high temperature sphalerite phase. More surprising
is the fact that the chalcopyrite phase is not stable for perfect stoichiometry.
Usually, PV grade CIGS shows a significant Cu-poor character and therefore
lies within the stability domain of the o phase. All such deviations from
the perfect stoichiometry can therefore be viewed as the fingerprint of the
presence of intrinsic defects. Understanding the physics of the defects in CIS
allows us to better understand the phase diagram and also the mechanism
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Figure 2.7: Phase diagram of CulnSe; along the quasi-binary cut InsSes-
CusSe in the range of 10-32 % of Cu and in the temperature range 100-1000°
C [29]

of doping at work in CIS.
Zhang et al. |2| published in 1998 a seminal work on the physics of defects
in CulnSey using ab initio methods. They drew five important conclusions:

e Defect formation energy in CIS depends strongly on the growth condi-
tion through the chemical potential of the atomic species

e The copper vacancy V¢, has an extremely low formation energy.

e V¢, forms shallow acceptor level (see Fig. 2.8) which explains the self-
doping of CIS.

e Neutral defect pairs with charge transfer involving two copper vacancies
V¢, and one indium copper antisite Inchfl are abundant, and electrically
benign due to the neutralization process of the midgap Inét states by
two Vg, (see Fig. 2.8).
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The first conclusion is a rather general consideration of the ab initio cal-
culation of the defect formation energies. However it allows us to analyse
the benefit of the intrinsic ZnO layer on the device performance: V¢, and
Ing, are believed to stabilize the polar surface (112) of CIS and CIS grain
boundaries. It is experimentally observed that CIS surfaces usually present
a strong Cu depletion that can be associated with doping inversion: while
the bulk is p-type, the surface turns out to be n-doped. The fact that the
formation energies of V¢, and Inc, are Ey-dependent allows one to design
the band structure in order to control the position of the Fermi level at the
surface. For instance, by introducing a layer of intrinsic ZnO, the Fermi level
is pushed away from the conduction band. Consequently, the V¢, formation
energy significantly increases and counterbalances the type inversion that oc-
curs at the heterojunctions [30].

The two previous conclusions agree well with experimental observations. The
p-type character of CIS under Cu-poor growth condition originates from V¢,
seen experimentally as a depletion of Cu atoms. The existence of an ordered
defect compound (ODC) phase (3 results from the repetition of the neutral
complex defect 2Vg, +InZt3. The two latter defects explain the usual deple-
tion of Cu atom experimentally observed in thin films. In thin-films, the
phase is rarely observed due to: (i) diffusion of Na from the glass substrate
into CIS [31] and replacement of indium by gallium preventing the formation
of such phase, (ii) high growth temperature extends the stability domain of
the a phase as seen in Fig. 2.7, (iii) nucleation of the § phase is forbidden
by the important interfacial energy originating from electrostatic [32] or mis-

match effects [33]. Following this study on defects involving Cu and In, Lany
et al. |31, 35] have introduced two defects that can explain the experimen-
tally observed metastable electrical behavior in bulk CIGS [36, 37]. While

Vse can explain the p-type persistant photoconductivity, Vg.-Vo, may ac-
count for the appearance of a deep hole trap that appears at 260 meV above
the valence band [30].

The discovery of the morphology enhancement action of Na is one of the
main reasons for the second technological step observed in the evolution of
the record efficiency. However, the mechanism behind this improvement is
still not known exactly and may proceed by multiple effects, two of the many
being the effect of Na on thin film growth and the incorporation of Na into
the lattice. During growth, incorporation of Na leads to the formation of
NaSe, that can mediate the inclusion of Se into the film, preventing forma-
tion of the Vg, donor [38]. Moreover, Na can delay the growth of CulnSe, at

30DC usually displays a n-type doping character which would make the use of an
p-type TCO layer necessary. Therefore, p-type absorber are preferred.



2.4 Culn(Se,S),, the perfect photovoltaic material ? 23

06 &)

Energy (eV)

(24

(-/0)

Figure 2.8: Defect transition energy for CulnSes calculated by means of ab
initio methods. [2]

temperature below 380°, requiring the growth temperature to be increased
and consequently increasing the stability domain of the a phase. The in-
corporation of Na is however believed to occur at the film surface and grain
boundary [39]. Another interpretation has been proposed as Na-Se bonds
were observed experimentally [10]: Na may replace In or Ga so that Nay, ga
is formed and acts as a shallow acceptor, improving the p-type character
of CIS. Replacement of Cu by Na has been proposed and may prevent the
formation of the deep defect Ing, [!1]. Both hypothesis can be valid, but
the large amount of Na required to grow device quality CIGS is of the order
of 0.1 % and such amounts of Na is not detected in the sample [12]. Thus,
one may favour the assumption that the action of Na is more predominant
during film growth than by an actual incorporation into the lattice.

The second hypothesis about the predominance of the o phase was the bene-
ficial effect of Ga. Similarly to Na, Ga addition acts on the growth by slowing
down the process [38] and also on the film itself due to its incorporation into
the lattice. However, there is absolutely no doubt about the presence of Ga
in the lattice. Wei et al. [13] explained the improvement of the film properties
by the slightly different defect physics between CuGaSe; and CulnSey: Gacy
formation energy is higher than Ing, so this compensating donor will be much
less likely to occur in the film. Moreover, the complex defect 2V6u+In%Tl is
less likely in CuGaSe,; than its counterpart in CulnSes. Therefore, the
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phase is less probable in CuGaSe, and addition of Ga in CulnSe; makes the
domain of stability § phase shrink. It was noticed empirically that there
exists an optimum of Ga-content around Ga/Ga+In ~ 0.2-0.3 that makes
the solar cells the most efficient [11]. Record cells [15] together with commer-
cial products [16] use such a ratio for their Cu(In,Ga)Ses absorbers. Other
factors are known to impact favorably the growth of CIGS or the properties
of the film like addition of sulfur or oxygen [13].

Grain boundaries play an intriguing role in the performance of CIGS so-
lar cells. Indeed, while Si- and GaAs-based polycrystalline solar cells suffer
from large recombination at grain boundaries [17, 18], CIS polycrystalline so-
lar cells outperform significantly their single-crystalline counterparts: today,
record efficiency of 20% [15] is achieved for polycrystalline to be compared
with the lower efficiency of the record single-crystal solar cell 13% [19, 50].
Usually, the grain size in CIS is rather small and does not exceed the thickness
of thin films i.e. 1-2um. As a comparison, the grain size in polycrystalline Si
can be larger than 5 mm. Once a grain boundary is formed, states may ap-
pear in the bandgap and they can act as recombination centers. Such states
result in a charge that is cancelled by the formation of a depletion layer
around the grain boundary. Such space charge region induces a band bend-
ing of the valence and conduction band: consequently, the grain is thought to
act as a hole barrier whose barrier height is defined as ®;.%. Grain boundaries
in CIS are believed to originate from the polar (112) free surface passivated
with Vg, Ing, and 2V6u+1n%t defects. As in that case the p-d repulsion
that governs the valence band maximum behavior is relaxed, removing Cu
atoms will result in the downshift of the valence band maximum: such inter-
nal valence band offset AFE, is often called the neutral barrier as it does not
depend on the space charge region. The total barrier is then ®; = &, + AE,
and is typically of the order of 0.2-0.3 eV. Under conditions of illumination,
the majority carriers might get trapped in the grain and therefore diminish
the grain charge and consequently ®,. Therefore, AE, must be sufficient
to prevent majority carriers from reaching the recombination center at the
grain boundaries: AFE, > 0.2 eV is believed to be enough to eclipse such
recombination process. Grain boundaries improve the performance of the
polycrystalline CIGS solar cell by extending the space charge region of the
p—mn junction [52|. They can also serve as a guide for minority carrier current
through the junction. Such view can only be possible if the grain boundaries

4Tt has to be noticed that the real action of grain boundaries is not entirely understood
at an experimental and theoretical level [51]. Therefore, the following discussion will only
be made at the light of the recent reports found in the literature.
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are orientated perpendicularly to the p-n junction. When grain boundaries
are oriented parallel to the heterojunction, space charge region results in a
dead layer that prevents the current flow [51].

In conclusion, CIGS is a rather versatile material. Experimental ev-
idences necessary to validate theoretical predictions are extremely difficult
to obtain due to the intricated nature of the optical and electronic proper-
ties. Moreover, defects seem to play an important role but their theoretical
study require the use of large supercells. Therefore, up to now, all ab nitio
calculations performed in this material have used density functional theory.
In the next section, we will review DFT, its advantages and deficiencies and
we will particularly show that it is not suitable for prediction of the bandgap.






Chapter 3

The Many Body problem and
Density Functional theory

Understanding the behavior of interacting electrons in a solid is still a tremen-
dous task and can only be adressed partially. This is not due to purely theo-
retical reasons but also to numerical reasons. Computers have became more
and more powerful allowing physicists to solve more and more complex prob-
lems. However, the interacting-electron problem has been known for more
than 80 years and despite the advent of computers and supercomputers, this
particular task is still out of reach. Consider the Hamiltonian for a system
of electrons with mass m. and nuclei with mass My

62
H = ;—vz +22—MIV2 ;—‘ri =
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= Te + Ty + Ue—e + Ue—N +Un-Nn y (32)

where indices ¢ and j run over electrons and I and J over nuclei. The first
two terms represent the kinetic energy of electrons (T.) and nuclei (Ty)
respectively while the three last terms represent the Coulomb interaction
between, respectively, electron-electron (U._.), electron-nucleus (U._y), and
nucleus-nucleus (Uy_y). The time-independent non-relativistic Schrodinger
equation (SE) then reads

HY = EV, (3.3)

where U is the many-body wave function and F is the total energy. The
time independent expression of any observable O is given by its expectation

27
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value (O) such as

(o) = O} (3.4)

(U]w)

For example, the expectation value of the Hamiltonian H is the total energy
E. The solution of Eq. (3.3) ¥ is a stationary point of the total energy. In
particular, the state with the lowest energy Ej is called the ground state Wy,.
It can be determined by minimizing the total energy expression. If one were
able to solve Eq. (3.3), one would have to deal with very large quantities
as W depends on the variables {ry..ry, R;...Rp/} where N and M represent
respectively, the number of electrons and the number of nuclei in the system.
One can notice immediately that the resolution of the many-body equation
depends on the internal degrees of freedom of a system of N electrons and
a system of M nuclei. Values of N and M in a solid are of the order of
the Avogadro’s number, that is 10%3. Solving the many body Schrodinger
equation appears to be impossible without any further approximation due to
the enormous amount of information contained in ¥. Several approximations
have been developed to simplify the many-body problem and eventually open
a path to the numerical solution of the Schrodinger equation.

3.1 Born-Oppenheimer approximation

By noticing that the masses of nuclei are about 3-4 orders of magnitude
larger than those of the electrons, one can decouple the slow dynamics of
nuclei from the fast one of electrons. This is the so-called Born Oppenheimer
(BO) approximation or adiabatic approximation. It is an extremely impor-
tant approximation as it allows us to simplify significantly the many-body
problem. Let us consider the following separation of the eigenfunction of H

U =o(r; : Rp)x(Ry), (3.5)
where ¢ satisfies the Schrédinger-like equation in a static lattice
(Te + Ue—e + Uen)o(ri - Rp) = E(Rr)o(r; - Ry). (3.6)

By applying the operator H to ¥
HY = ¢(I‘l . R[){TN + UNfN + Ee(R[)}X<R[>

h? .
S Ve Ve awieh, B0
1

we can make y(R;) statisfy the following equation:

{TN + 56 + UN—N}X = gX? (38)
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where the total energy of the electron system &, is added to the lattice energy
as a potential. This is the so-called adiabatic contribution of the electrons to
the lattice motion. The second line of Eq. (3.7) is called the non adiabatic
terms. We can ask ourselves how much the diagonal non-adiabatic terms
contribute to the total energy. The diagonal matrix element of the first non
adiabatic term vanishes due to the normalization of the eigenfunction. Fol-
lowing Ziman |53, the second term can be roughly estimated to proportional
to m,/M; which is of the order of 1072 or 107°. Note that we only consider
the diagonal element but we should keep in mind that off-diagonal matrix
elements of the first non-adiabatic term give rise to the electron-phonon in-
teraction , ¢.e., energy is transfered from the lattice to the electrons resulting
in an electronic excitation [5].

The Born-Oppenheimer approximation [55] consists in neglecting the sec-
ond line of Eq. (3.7). Within this approximation, all the electrons remain in a
given electronic state ¢; when the atoms move. Moreover, no energy transfer
occurs between the lattice and the electron. The decoupling nature of the
BO approximation permits to treat separately the nuclei and the electrons.
Therefore, as we are interested mainly in phenomena involving electrons only,
we can simplify the many-body problem to an electronic problem only. All
the first principles calculations that will follow in this thesis have been made
using the BO approximation i.e. positions of atoms have been kept fixed
throughout the calculation. Nevertheless, atomic positions have to be known
in order to define our system: either we have access to them from experi-
mental data or we can determine them using a very general formalism called
the force theorem.

3.2 Hellmann-Feynman theorem

Feynman proposed in 1939 to use the more classical concept of force in order
to determine the structure of molecules. He derived the force theorem|[56]
that allows one to express forces in molecules using concepts of classical elec-
trostatics once the electronic density is obtained by solving the Schrédinger
equation. Then the forces acting on nuclei ¢ can be written as

OE
R,

The total energy is expressed as the expectation value of the Hamiltonian
E = (V|H|¥) where U is the eigenfunction of the Hamiltonian.

OH ov ov
SR ) — G — (VM

F, =

(3.9)

Fy = — (7]

) (3.10)
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The two last terms of expression (3.10) vanish because of the stationarity of
the total energy with respect to variations of the wavefunctions. One can
notice that the only terms of H dependent of R; are U._; and U;_;. They
do not dependent directly on the electron-electron interaction U,_. which
is the most difficult term to model. Thereby, this theorem allows one to
calculate the forces even though the internal interactions change when nuclei
are moving. For the case of a local potential v..(r), the force is expressed as

8Uex (I‘) aE[[
F, /d rn(r) R, R, (3.11)

The force depends only the electronic density. For the case of non-local
potentials, the above expression is not valid anymore and one should go back
to Eq. (3.10) in order to derive the relation for the forces. Moreover, an extra
component of the force should be added. We will go back to that point in
section 3.8.

3.3 Density Functional Theory

One of the possible paths to solve the many body problem is based on the
assumption that all the necessary information contained in the many-body
wavefunction W in order to describe the ground state properties can be cast
into a functional of the ground state electronic density ng(r) defined as

no(r) = N/drg...drN]\Ifo(r,r2..rN)|2. (3.12)

The use of the integrated variable ny decreases considerably the workload
and could permit to treat realistic system. It was introduced by Thomas [57]
and Fermi [58]: while they neglected the electron-electron interaction beyond
the Hartree potential, they approximated the kinetic energy as an explicit
functional of the density. The kinetic energy of the system was calculated
considering the kinetic energy of a non interacting homogeneous electron
gas with density n = ng(r). However, due to the lack of electron-electron
interactions, the Thomas-Fermi method failed to reproduce the physics of
simple systems [59].

In 1964, Hohenberg and Kohn demonstrated formally that all properties of
the system are unique functionals of the ground state electronic density [60].
They introduced the two following theorems:

e there is one to one mapping up to a constant between the space of the
external potential V.., and the ground state electronic density ny.
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e there is a universal functional for the energy E[n|, which is valid for
any external potential V. For a given Vg, the ground state density
ny(r) is the density that minimizes the functional E|n|.

Then it follows that the total energy functional is expressed as
Elo] = Tl0] + [ don(s)Vo(5) + Vil (313

where T'[n] represents the internal kinetic energy and V._.[n| the internal
potential energy i.e. representing the electron-electron interaction (U,._.).
One of the main difficulties is to express the kinetic term as a functional of
the density. One can show by means of the virial theorem that the kinetic
term is of the order of magnitude of the total energy. Therefore, particular
attention should be paid when evaluating the kinetic term.

While Hohenberg and Kohn proved the existence of such functionals, no
analytical functional is known for more than one electron. Kohn and Sham
introduced a fictitious sytem that allows one to treat the non interacting
kinetic energy contribution exactly and therefore to solve the many-body
problem in practice (within some approximations).

3.4 Kohn-Sham system

In 1965, Kohn and Sham proposed a practical framework for the Density
Functional Theory [61]: the fictitious Kohn-Sham system. The idea is simple:
replace the original many-body problem by an auziliary independent particle
problem. The ground state density of the interacting system is required to be
equal to the ground state density of the non interacting system. The system
of non interacting particles has the usual kinetic operator and an effective
potential veg which is tuned such that the above requirement is fulfilled. We
start from the Hohenberg and Kohn definition of the energy as a functional
of the density (3.13)

&mm:Tm+/ﬁ%ﬁmm+u4m, (3.14)

where T[n| represents the internal kinetic energy and Ej|n| the internal
potential energy. We write the energy functional for the Kohn Sham system

EMM_EM+/M%MMM+&MmM+QML (3.15)
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where T,[n| is the independent particle kinetic energy, Egariree 1S the Hartree
energy describing the self-interaction of the electronic density treated classi-
cally. E,. is defined as the functional of the density that ensures the condition
Exs[n] = Egk[n] and is expressed as:

Ey[n] = Tn] — Ts[n] + Vee[n] — Enartree[n] - (3.16)

It is the so-called exchange and correlation energy. Since the right hand side
of Eq. (3.16) is formed by a sum of functionals of the density, E,.[n] is defined
as a functional of the density. Unfortunately this functional is unknown.

In practice, from the Kohn-Sham energy functional, one can derive a set of
equations called Kohn-Sham equations. As the HK theorem ensures that the
KS functional is variational with respect to the electronic density, it follows
the Euler equation

5% {EKS[TL] — 1 (Z n; — N) - Z%’/dr (:(r)@5(r) — 5@]‘)} =0,

(3.17)
where n; are the occupation of wave functions ¢, i is the Lagrange multiplier
associated with the constraint [ drn(r) = N i.e. conservation of the number
of particles and ¢;; are the Lagrange multipliers associated to the orthonor-
mality constraint of the one-particle wave functions ¢;. The left hand side of
equation (3.17) can be decomposed further such as

0Eks[n]  6T4[n] o " n(r') ol )
on(r) - on(r) Vet )+/d v — /| + 5n(r>[ B (3.18)

As the KS system is non interacting, Eq. (3.17) is solvable: the many body
wave function is a Slater determinant of the single-particle wavefunctions
veryfing the single-particle Schrodinger equation

(—V; o)) o) = o, (3.19)

where vkg is a Kohn-Sham potential defined as

Vs (T) = Vet (T) + /dr’ n(r’) OF,.

rmprib g (3.20)

It follows from the fact that the system is non-interacting that the density is
expressed as

n(r) =3 loio)l” (3.21)
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The exchange and correlation potential v,. = dFEy.[n|/dn is an a priori
complicated quantity. For the time being, we will consider it to be exact
but it certainly needs approximations in order to apply the KS formalism in
practice.

In this section, we recast the fully interacting particle problem into a
non interacting particle problem. The mapping between the two systems
was achieved by the introduction of an unknown quantity, v... We have
obtained a practical scheme to solve the many-body problem though the
Kohn Sham equations. In the following section, we will discuss the meaning of
the quantities introduced by the Kohn Sham equations and more particularly
the eigenenergies ¢;.

3.5 Physicality of the Kohn-Sham eigenvalues

One of the most important quantities for photovoltaic application is the
bandgap. How do we define the bandgap in the context of the many-body
problem ?. Let us consider the experimental point of view first. The bandgap
is defined experimentally as

E,=1—A, (3.22)

where [ is the first ionization energy and A is the affinity energy. I and A are
well defined within photomoemission and inverse photoemission experiments.
In photoemission experiments, one photon of a given energy hw impinges the
surface of the sample, travels from the surface to the bulk, the photon might
be absorbed provoking the excitation of an electron. If the energy of the
photon is sufficient i.e. larger than the vacuum level E,,. = E; + ¢ where
E; is the Fermi level and ¢ the work function of the interface between the
solid and the vacuum, the electron will be extracted from the sample with a
kinetic energy Eyy,, leaving a hole in the system in a many-body state i !.
The conservation of energy yields

hw + E(N,0) = (Ex + ¢) + E(N — 1,4), (3.23)

I'Photoemission is a surface sensitive technique. It can be explained by the concept of
inelastic mean free path of the electron which is the distance that an electron covers before
losing energy. Once the electron absorbs the energy of the photon, it shall then reach the
surface before escaping the sample. The inelastic mean free path determines the depth
of the sample that is actually probed. Moreover, the inelastic mean free path is energy
dependent: generally, it presents a minimum at energy of the order of magnitude 100
eV and increases at high energy [62]. Therefore, hard X-Ray photoemission has recently
encountered a great success in order to probe bulk-like properties.
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where E(N,0) is the ground state total energy of the system with N particles
and E(N — 1,4) is the total energy of the system with N-1 particles in the
excited state 7. The minimum energy required to eject an electron from the
sample is called the first ionization energy. Experimentally, it is expressed
as

I = min {Ey, + ¢ — hw} (3.24)

Reordering the terms of Eq. (3.23), expression (3.24) can also be written as
[ =min {E(N — 1,i) — E(N,0) = E(N —1,0) — E(N,0)} . (3.25)

Let us turn to the second constituent of the bandgap expression, the elec-
tronic affinity A. The latter is explained by considering the opposite process
of the photoemission, the inverse photoemission. An electron with energy
Exin is injected into the system with N electrons in its ground state. The
electron has to overcome the work function of the surface and then might
relax to one of the eigenstates of the system i, resulting in the emission of
a photon with energy hw. Invoking the conservation of energy one more
time, the inverse photoemission process yields the following energy balance
equation

Exin + E(N,0) = ¢+ hw+ E(N + 1,17). (3.26)

Therefore, the electron affinity energy is given by
—A =min{Ey, — ¢ — hw} = miin {E(N +1,i) — E(N,0)}, (3.27)
and the bandgap £, is expressed as
E,=1-A=EN+10)+E(N—-1,0)—2E(N). (3.28)

The bandgap is defined as difference of ground state total energy for sys-
tem with N, N +1 and N — 1 electrons. One would like to cast this into
a one electron picture. In the Hartree-Fock approximation %, Koopmans’
theorem [63] allows one to express the total energy difference through an
eigenvalue difference. However, strict assumptions were made in order to
obtain such results:

e clectronic correlation: Hartree-Fock only contains exact exchange be-
yond Hartree approximation. Exchange is a purely quantum mechani-
cal effects which originates from the Pauli exclusion principle and the
indistinguishability of the particles. All the effects beyond exchange
are called Correlation. Then, the many-body wave function is a single
Slater determinant.

2See section 3 for more details about Hartree-Fock approximation.
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e orbital relaxation: when removing one electron, no orbital relaxation
has been performed. In practice, it means to work on the Slater deter-
minant by removing rows or columns.

While the initial proof of the theorem was made for the first ionization,
Koopmans’ theorem is easily generalizable to the electron affinity or any
unoccupied states following the same arguments. However due to the lack of
electronic correlation and the omission of the orbital relaxation, HF estimates
poorly the bandgap. In diamond, for instance, the experimental bandgap
is 7.3 eV but HF predicts E, = 15 eV [04]. One may think of using the
same theorem considering KS equation as it incorporates correlation which
is missing in the HF method. Unfortunately, Koopmans’ theorem does not
hold for the KS equations. The eigenvalues ¢; of (3.19) have been introduced
in the derivation of the KS equations as Lagrange multipliers in order to
ensure the condition of orthonormality of the single-electron wave functions.
As a result, {¢;} are just by-products of the resolution of the KS equations.
There is a unique exception to the previous statement: the highest occupied
state ey which is equal to the ionization energy of the system ey = —1 [65].
In the context of finite systems, Levy et al suggested that as the KS electronic
density is exact then considering the long range limit r — oo, ng(r) — |n|?,
where 1y is the wave function of the highest occupied state. Intuitively, such
state should be the most extended occupied state of the system, and therefore
should form the long range part of the KS electronic density. Consequently,
W is exact together with its eigenvalue €. Therefore, it is possible to express
the affinity of a system of N electrons as the ionization of a system with N—+1
electrons which is exactly 9, (N + 1) and the expression for the bandgap
becomes

Ly = 6N+1(N +1) —ex”(N), (3.29)

where the argument of €% refers to the number of electrons of the system
and the subscript to the index of the states. We have to deal now with
two different systems: one with N electrons and another one with N + 1.
However, we want to know the bandgap Efs from a single calculation i.e.
from the difference of the eigenvalues of the last occupied states and the first
unoccupied states of the system with N electrons. The bandgap expression
then becomes

E, = (Eﬁil(N) - Eﬁs(N)) + (€N+1(N +1) — €N+1(N)) = E§<S + Age
(3.30)
where A, = N7, (N+1)— ek (V) is the so called exchange and correlation
discontinuity. One can notice that the KS bandgap will never equal the real
bandgap unless A,. = 0. This is called the bandgap problem |66, 67]; it is the
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reason why KS equations should not be used in order to evaluate bandgaps.
Let us consider a solid where N is very large, the addition of an electron will
then only induce infinitisemal changes of the electronic density. Therefore,
vy must be highly non-analytical: infinitesimal changes in the density must
induce important variations of the xc potential. A,. may be considered
as a measure of the degree of non-analytical behavior of the exchange and
correlation potential. With the definition of the xc energy E,.

By ln] = / drn(r)ese([n], v) (3.31)

where €,. is the exchange and correlation energy density, one obtains the xc
potential

Vge(T) = (;SnE(z_c) = €ze([n], 1) + /dr’n(r')%ﬁ;r/). (3.32)

The second term of expression (3.32) ressembles a response function i.e.
variations of the exchange and correlation energy density with respect to
variations of the density. In the context of an extended system ¢.e. infini-
tisemal change of the electronic density ¢, the exact xc discontinuity reads
0E, 0E
Age(r) = lim ( N N

P\ 50e) |,y Sn) N(s) ' (3:33)

As already pointed out in expression (3.32), the response part of the exchange
and correlation potential can vary discontinuously between different states
(in the case of an insulator, in the bandgap region), giving rise to jump in
the eigenvalues [54].

In this section, we introduced the concept of bandgaps and showed why
the eigenvalues of the KS equation cannot be used to evaluate bandgaps. We
also discussed the difficulty of obtaining practical exchange and correlation
potentials. In the next section, we will introduce local and semi-local approx-
imations to v, that are used in practice to study the electronic properties of
solids.

3.6 Local and semilocal approximations to V.

3.6.1 Local density approximation

The simplest approximation to the exchange and correlation energy is the
Local Density Approximation (LDA). One uses the exchange and correlation
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energy density of the homogeneous electron gas €29™ [68], that yields the

following exchange and correlation energy function

By ln] = / (1) (1 (1)) dPr (3.34)

One can immediately see that this approximation can be expected to work
only for slowly varying electronic density ressembling the one of the homo-
geneous electron gas. However, it has proved to work rather well even for
systems which have very inhomegeneous electron densities. In order to inves-
tigate this apparent paradox in more detail, we introduce the electron pair
density po(r,r’), that is the probability of finding one electron at position r
and another at position r’.

p2(r,r’) = N(N —1) /drg...drN\Il*(r,r',r3...rN)\If(r,r’,r3...rN), (3.35)

where ¥ is the many-body wave function. Due to correlation effects between
electrons, po(r,r’) # p(r)p(r’). Therefore, one can define the exchange-
correlation (xc) hole p,.(r,r’) as

pa(x,r') = p(r)p(r’) + p(r) poc(r, ') . (3.36)

From the point of view of probability theory, the xc-hole ressembles a condi-
tional probability i.e. probability of finding an electron at r’ given there is
one at r

A pQ(rar,) — o(r
pre(r 1) = =05~ — o).

Furthermore, the xc-hole has a physical meaning: because of the Pauli ex-
clusion principle, one electron is surrounded by a deficit of charge adding up
to exactly one electronic charge. This condition is expressed as a sum rule:

(3.37)

/pm(r, r')dr' = —1. (3.38)

Figure 3.1 shows the xc-hole calculated within Variational Monte Carlo
(VMC) and within LDA for the case of silicon [69]. The LDA xc-hole is
spherically symmetric which is not true for the xc-hole calculated in VMC,
but the overall shape one is well reproduced by LDA. LDA xc-hole fulfills
sum rule (3.38). It implies that while in some regions of space, LDA xc-hole
may have positive errors, it must have negative errors in orther part of space
leading to a systematic error cancellation. This point is even more evident
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Figure 3.1: The exchange-correlation hole p,.(r,r’), with one electron fixed
at the tetrahedral interstitial site in the (110) plane of bulk silicon. Left panel
Quantum Monte Carlo calculation. Right panel: LDA calculation [69].

if one expresses the exchange correlation energy functional as a function of

the xc-hole /
Bpe = / drn(r) / i Peel ) (3.39)

r—r|

By observing that the Coulomb interaction is isotropic |[70], substituting the
variable R=r’-r in expression (3.39), the exchange correlation energy then
reads

E,.= [ drn(r) OodRRQl dQp..(r,R). (3.40)
e | omie |

The exchange and correlation energy depends only on the spherical average
of p.. Therefore, even if the description of the nonspherical part of p,. is
inaccurate, the most important information is contained in the spherical part
that should be correctly described by the electron gas.
However, LDA of course is not perfect: in particular it tends to favor homo-
geneous electronic densities. Therefore, it overestimates the binding energy
of molecule and cohesive energy of solids. As a result, bond lengths and
lattice parameters are usually underestimated. Besides, it tends to delocal-
ize localized states such as 3d or 4f states. DFT-LDA bandgaps are usually
strongly underestimated, which should however not be related only to the
deficiency of the LDA itself but rather to the problem of KS formalism.

In summary, despite the apparent simplicity of the local density approx-
imation, it is an extremely powerful approximation. Indeed, it contains most
of the information necessary to evaluate E,. and fulfills exactly sum rules.
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However, there is still room for improvement when treating non homogenous
materials. A natural way to improve LDA is to expand Ey.[n] as a series of
the density n. The expansion will be described in the next section as it gives
rise to the generalized gradient approximation.

3.6.2 Generalized Gradient Approximation

A straightforward improvement over the LDA is to introduce a further de-
pendence of the xc energy on the gradient of the density in order to take
into account the inhomogeneity of the system. This has been proposed in
the original paper of Kohn and Sham under the name of “gradient expansion
approximation” (GEA).

FCGA[,] — / Prn(r)es(n(r), Vn(r)) . (3.41)

However, the GEA provides no consistent improvement over LDA [71, 72].
An analysis of the xc-hole of GEA shows that while the short range part of
the former is improved, the long range part is significantly worsened [73].
In order to correct this behavior, one should enforce the fulfillment of sum
rules like Eq. (3.38). The resulting functionals are known under the name of
Generalized Gradient Approximation (GGA) functionals. Usually, the ful-
fillment of the exact behavior in some limit is enforced: for example the
exact hole condition |71], the asymptotic behavior of the exchange poten-
tial 1/r [75], the slowly varying limit [76], or the correct scaling law [77].
Compared to LDA, GGA tends to improve the total energy and atomization
energy. It has a clear tendency to expand bonds, which is the reason why
GGA usually overestimates lattice parameters. One of the famous successes
of GGA compared to LDA is the correct prediction of the bee ferromagnetic
ground state of iron [78, 79, 80] due to its better estimation of the lattice
parameter. Interestingly, GGA does not improve considerably the bandgap
with respect to the LDA. In fact, GGA and LDA bandgaps are very similar,
which is the a strong indication that the bandgap problem originates from
the xc discontinuity A,. rather than the exchange and correlation functional
itself. Furthermore, even for ground state problems, there is no systematic
improvement of GGA over LDA: for example, while GGA is particularly ac-
curate for first and second row constituents, it totally fails to predict correct
bond lengths and cohesive energy for heavy constituents such as metal 5d [31]
or fifth row elements [32, 83] while LDA results are very close to experiments.
However, comparing GGA with LDA can give some idea about the physics
at work in the system of interest.
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In this section, we presented the Generalized Gradient Approximation
and how the expansion as a series of the density reveals the importance of
sum rules fulfilled by LDA. The improvement compared to LDA is generally
not spectacular in particular for bandgaps. Therefore, the main deficiency
of LDA or GGA in the treatement of bandgaps lies within the KS formalism
rather than the functionals itself. In the next section, we will present one
of the many errors present within both GGA or LDA which is particularly
important for the system we want to study.

3.7 Self interaction problem

3.7.1 Self Interaction correction

One of the main drawbacks of the previously introduced xc functionals is the
self-interaction (SI) problem. Let us introduce this problem with an example.
In 1934, Fermi et al. represented the expectation value of U,._. considering
only the Hartree contribution [31]

Uln] = % / / drdr’%. (3.42)

In the limit of one electron where n(r) = |¢(r)[?, expression (3.42) does
not vanish: hence the electron interacts with itself, which is called the self-
interaction problem. Hartree-Fock theory on the contrary is self-interaction
free as the self-interaction in the Hartree term is cancelled ezactly by the
self-interaction term in the Fock exchange term

1 97 (x) 95 (r") 5 (x) i (r')
E, = —3 Z /dr dr : (3.43)

T

%

1,j€0CC

where ¢; are one-electron wave functions. Let us consider again the limit of
one electron. E, becomes

[ [ o)
E, - 2/d /d e Ul (3.44)

r/

Due to the exact formulation of F,, the self-interaction vanishes. However,
for a KS functional such as LDA or GGA, the self-interaction occuring in the
Hartree term is only partially cancelled by the density dependent exchange
potential. For real systems, localized states such as d or f electrons are
particularly sensitive to the self-interation problem. Therefore, in this thesis
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work it is extremely important to cure this particular drawback of approxi-
mated functionals as Cu 3d states are present in the vicinity of the bandgap
region for CIS. For example, the self-interaction contribution to the Hartree
potential is of the order of 15 eV for Cu 3d [30].

Fermi et al. [31] proposed a simple scheme to remove this spurious effect,
namely

U._.[n] = Uln] — NU [ﬁ (3.45)

vl
where N is the number of electrons of the system. n/N is a rudimentary one-
electron density. The self-interaction is therefore removed for all N electrons
of the system which explains the factor N in front of the second term of
expression (3.45). Following Fermi’s spirit, Perdew and coworkers [85, 80|
developed the idea of a scheme fulfilling the exact condition in order to cancel
the self interaction problem

Vi € occ, Egl|il’] + Ewel|6:*] = 0. (3.46)
As the exchange term cancels completely the Hartree one, we obtain two
relations
: Epl¢i’] + Eull¢s*] = 0.
Vi € occ 3.47
i (347

Considering an approximate exchange and correlation functional E,., the
self-interaction corrected (SIC) functional reads

EjCln] = ERPl] = Y {Ellol’] + Efllod’]} - (3.48)

1€ occ

In order to get a practical scheme, one applies the same procedure as in the
case of the original KS equation. One obtains a KS-like equation with an
orbital dependent SIC potential (corresponding to the KS potential)

Vs1c(T) = Vext (1) + var[n] (1) — v [n'](r) + vieln] (r) — vee[n'](x), (3.49)

where n® = |¢;|%.

There are two main advantages of the SIC potential: first it corrects the
self-interaction problem as it was designed to do so. Second, the orbital de-
pendence of the SIC potential introduces the strong non-analycity that was
missing in LDA or GGA. Indeed, one can realize that the orbital dependence
of Vsic follows the prescriptions proposed in section 3.5 such as the orbital
dependence of xc potential.
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Perdew et al. considered the SIC scheme in the light of Koopmans’ theo-
rem [86] and predicted the improvement of SIC bandgaps compared to DFT-
KS ones. Indeed, SIC has shown great improvement of binding energies or
atomization energies, making it a good candidate for calculating excitation
energies. Moreover, the highest occupied states are believed to be improved
compared to LDA due to the correct asymptotic behavior of the SIC po-
tential [86]. Furthermore, the nice properties of the LDA xc-hole are not
destroyed by the use of the SIC scheme [36]. However, while succesfully
applied to free atoms [30], the SIC potential vanishes in the case of bulk
wavefunctions which extend over the whole space. Therefore, any implemen-
tation of SIC in a solid requires a description in terms of localized states, like
Wannier functions [¢7] or muffin-tin spheres [38]

In conclusion, we present one of the main pathologies of DF'T for local-
ized states, the so-called self interaction problem. It is of primer importance
in this work as Cu 3d states play a major role in the physics of CIS. We
introduce the self-interaction correction scheme that not only improves total
energies but also eigenvalues.In subsequent sections, we will present other
orbital dependent schemes that partially cure the self-interaction problem
and might be appropriate for the treatment of localized states.

3.7.2 Meta-GGA

Meta-GGA is a functional very similar to GGA, derived from the same rea-
soning: the gradient expansion. But first, let us consider the expression of
the ground state total energy. One can show by means of the virial theorem
that the kinetic energy term is of the order of magnitude of the total energy.
It is natural to try to describe it to the best of our knowledge and capabil-
ities. Thomas and Fermi [57, 58] proposed a density dependent expression
of the kinetic energy of the interacting system. The KS formalism follows
a smarter path: as the expression of the kinetic energy of the non interact-
ing system is trivial, the KS formalism only requires the evaluation of the
difference between the KS kinetic energy and the true kinetic energy. The
latter difference is believed to be much smaller than the true kinetic energy
and therefore less dependent on approximations. The meta-GGA tries to im-
prove the description of the kinetic energy by considering the kinetic energy
density 7

T = % > Vel (3.50)

(2



3.7 Self interaction problem 43

then the meta-GGA functional E,. is expressed as
meta-GGA[,] / Prn(r)en(n(r), Va(r), 7). (3.51)

In the spirit of the self-interaction correction scheme, the meta-GGA can be
made self-correlation free. This corresponds to the second condition given
by Eq. (3.47) i.e. the correlation energy should vanish for any one-electron
density. van Weizsicker had introduced a kinetic energy 7', which is a more
performant indicator of one-electron region than Fermi’s one:

VQ
TW:‘ n]

. (3.52)

Then one can build the ratio 7/7" which is 1 for one-electron region |39] ie for
regions of the solid where the electronic density is so low that it corresponds
to one single state. With the help of this operator, one can construct a
functional that nullifies the correlation energy in one-electron region of the
space. The problem of self-interaction is however only slightly reduced as
only the self-correlation is cured. In the case of Cu 3d, self-correlation only
accounts for less than 1 eV [85] i.e. it is an order of magnitude smaller than
the self-interaction in the exchange term.

3.7.3 LDA-+U

A different approach towards the correct treatment of localized states has
been proposed, relying on a non-ab initio model hamitonian. Let us first
introduce the Hubbard model Hamiltonian [90]

H=—t Z (CZUCN +h.c)+ UZ N | (3.53)
(4,3)i#d,0 i
where C;U and c;, are creation and annihilation operators and n; , = Cl—L’JCi’U.

The first term describes the kinetic energy in a tight-binding way, electrons
hopping from one lattice site i to another j. The sum over {i, j} is restricted
to nearest neighbors. The kinetic term has a tendency to delocalize states
and is at the origin of the dispersion of the bands. On the other hand, the
second term describes the on-site interaction: U is the energy cost for two
electrons to sit at the same site. Contrary to the kinetic term, the on-site
term tends to localize states. The Hubbard Hamiltonian is particularly suited
to study localized states such as d or f electrons. The fact that only oppo-
site spins on the same site interact makes the Hubbard model self-interaction
free. Therefore, it is appealing to combine it with LDA in order to obtain a
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consistent treatment of both localized and delocalized states.

Following this spirit, Anisimov et al. [91] proposed a LDA+U total energy
functional

1 Nyj(N;—1
Erparv = Erpa+Ey — Ege = ELDA+§UZ7’LZ‘nj — Ud(—d)

i#]

, (3.54)

where n; are the occupations of the d orbitals and Ny = Ny = Zie n;. The
second term Fjy describes d — d interaction only and the last term Eg. is
a double counting correction. Let us now move to the real implementation
of LDA+U. One builds then an orbital dependent exchange and correlation
potential Vipaiu

vrpa+u(r) = Z vi(r)]i) (il - (3.55)
where ¢ runs over all the possible principal n and azimuthal [ quantum num-
bers and atomic sites. Note the presence of the projector operator that makes
the potential act differently on delocalized (s and p) and on the localized (d
and f) orbitals, making the potential orbital dependent hence non local.
v;(r) is computed through the derivative of the total energy with respect to
the partial electronic density p;(r). For s and p electrons i.e. i = s and p,
the potential v;(r)

dErpatv  dEppa
i = = = . 3.56
v;(r) ip; in; vrpA(T) (3.56)

DA,

(2

yielding ¢; However, in the case of d electrons ¢.e. 7 = d, the

potential V;(r) is

1
v;(r) = vppalr) + U(§ —n;), (3.57)
which leads to the eigenvalue
1
€; = €, LDA + U(§ — TLZ) . (358)

When the d orbital is occupied (n;=1), the LDA+U energy is shifted by
-U/2 with respect to the LDA eigenvalues. However when orbitals are un-
occupied, their level is upshifted by +U/2. Then, full and empty bands are
separated by an energy gap A = U. LDA+U tends to localize electrons on
d orbitals where the occupation is larger than 1/2. LDA+U partially solves
the self-interaction issue encountered in LDA. There is however still room for
improvement, through the double counting term. [92].
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More physics is contained in the U parameter than just a parameter from
a model Hamiltonian. The above discussion only treats the one-band Hub-
bard model. However it can be generalized to more general cases [93, 91| i.e.
taking into account exchange interaction between d orbitals and the polar-
ization of d orbitals. Then, the parameter U can be interpreted as the energy
cost to move one d electron from one atom to another, renormalized by the
screening due to the s and p orbitals |95]. Usually, an s or p orbital moves
in the opposite direction in order to reduce the energetic cost.

Despite its clear physical meaning there exists several ways to determine U,
ranging from fully ab initio to empirical approaches:

e U can be evaluated by means of constrained-density-functional calcu-
lation [96, 97, 98, 99, ]: one d electron is moved to one site, then
the electronic structure is relaxed to take into account the screening of
s and p states.

e U can be evaluated through fitting of experimental spectra: this is
usually done comparing the density of states computed in LDA+U
and photoemission spectra, possibly energy resolved only to retain the
orbitals d and f affected by U.

In conclusion, LDA+U is one of the methods of choice in order to treat
localized states and cures mostly the self-interaction correction indirectly. It
shares with SIC the orbital dependence of its potential. Despite its clear
physical meaning, the evaluation of U often involves simple fit procedures,
which makes LDA+U a parameter-dependent method. We will detail in the
result chapter the connection between U and the electronic screening in a
solid. In the next section, we will present some technical details about DFT:
how is it implemented in practice, which approximations are made in order
to treat real systems ?

3.8 Practical Implementation of DFT

As solid-state physicists traditionally deal with perfect crystals, they take
benefit of the periodic boundary condition using Bloch’s theorem. The use
of plane waves as a basis set follows naturally. Let us consider a crystal with
a periodicity R such that the potential v(r) = v(r + R). Then the wave
function ¢, , eigenstate of the periodic Hamiltonian H*¥ can be written as

Gri(r) = € unk(r) (3.59)
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where k is the wave vector and w, x is a crystal periodic function. This is
Bloch’s theorem. It implies that plane waves can be used as basis set in the
context of periodic crystals. Thus, the wave functions can be expressed as a
plane wave expansion using the reciprocal lattice space {G}

Pn (1) Nk TN Zunk G/t (3.60)

where Ny is the number of k-points and (2. the volume of the primitive cell.
Then, the KS equations take the form of a secular equation:

> H¥S(k+ G k+ Gunu(G') = enptink(G). (3.61)
G/

The matrix form of the KS Hamiltonian reads

(k + G)?

H*k+G,k+G) = 5

bea +vrksk+G k+G), (3.62)
The first term of expression (3.62) is the kinetic term and the second term is
the Fourier transform of the KS potential. A priori, the KS potential is local.
Therefore, its Fourier representation can be simplified even further with a
dependence on the difference G — G’ only. However, in practice the KS po-
tential often has a non local component (from a nonlocal pseudopotential and
for orbital dependent potential such as in LDA+U) whose Fourier transform
should be evaluated as

1 - gt
wkk+ G k+G') = o /drdr’ —iAGI T (r, 1) GO (3.63)

[

The summation over G is truncated and in most cases the limit is defined
by a cut-off energy E. ,
k+GE _p (3.64)
i.€., the basis set is defined as a sphere whose radius is defined by a kinetic
cut-off energy.
In principle, any basis can be selected in order to expand the wave functions.
Plane waves are a set of choice, because of their mathematical simplicity,
systematic convergence, periodic character that makes them suitable for re-
producing the periodicity of the lattice.
Other basis sets exist though, one of the most common being atom-centered
basis sets. Such basis may reduce in many cases significantly the number
of basis functions in order to reproduce the true wave functions particularly
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for the localized states. On the other hand, they may suffer from non sys-
tematic convergence issues like in the case of gaussian basis sets, and may
have difficulties to reproduce delocalized states like conduction states. In
the calculation of forces, they can also cause the appearance of spurious con-
tributions an extra stress called when turning to force calculation. Overall,
localized basis set are used extensively by the chemistry community since
they are more suited for finite systems.

For solid-state problems, when plane waves are to be used, one has to adopt
a smart approximation in order to get rid of the localized states. Most no-
tably, core states are known to have little influence on the chemical bonding.
One can hence separate the valence electrons from the core electrons using
a pseudopotential or a projected augmented wave approach. They are dis-
cussed in more details in the appendix 1 of this thesis. Briefly, the so-called
frozen core approximation keeps the core electrons in their atomic states.
Their effect on the valence electrons can then be simulated by an effective
potential, a so called pseudopotential. This reduces considerably the number
of states to be considered in the calculation. Furthermore, it allows one to
employ efficiently a plane wave basis set because the wave functions of the
valence states are rather smooth compared to the ones of core states once
the wiggles of the valence wave functions are smoothed out in the procedure
of pseudization. Knowing the coefficients u, x(G) of the wave functions, we
can express the density in the same basis

p(r) =) D D Cwnbles — en)tif 1 (Guni(G)e G0 (3.65)

k G &

where wy are the weights of the k-points. It can be seen that while the
one-electron wave function ¢,, depends only on G, the electronic density de-
pends on G-G’ which may lie outside of the sphere defined by the cut-off
energy (3.64). Therefore, the expression of the electronic density requires to
double the radius of the sphere. In practice, this is not a real issue as a care-
ful convergence test should be performed, increasing the radius of the sphere
until the quantity of interest is converged. The second summation present
in the expression of the density runs over the k-points. The symmetry of
the crystal permits to reduce integrations over the irreducible Brillouin zone
only. Then different numerical schemes are available to minimize the num-
ber of k-points used: mean value point of Baldereschi et al [101] where one
special k-point of the Brillouin zone is supposed to reproduce the average of
any arbitraty periodic function. A generalized procedure was proposed by
Chadi and Cohen [102] and obtains the best sampling relaxing the constraint
about the single k-point. A better sampling was achieved by Monkhorst and
Pack [103] who developed a uniform minimal grid of k-points. For the time
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being, Monkhorst-Pack grid is the most efficient and popular in the solid-
state community.

The Hellmann-Feynman theorem applies straightforwardly to DFT. The

energy is at a variational minimum with respect to the electronic density
and therefore any change of the density when a nucleus is moved will not
contribute to F;. However, the use of non-local pseudopotentials urges the
inclusion of the Kohn-Sham wave functions as the force is not dependent on
the electronic density only as in Eq. (3.11). Additional force components
may arise from the lack of completeness of the basis set or from the atomic
dependent basis set such as the Pulay stress [104]. In this thesis, only plane
waves were used so that they ensure the Pulay stress to be zero.
The numerical resolution of the Kohn-Sham system of equations is straight-
forward once the electronic density is calculated. Figure 3.2 describes the self-
consistent procedure usually used in DFT. First, one should pick an arbitrary
potential. The determination of a good starting point is a relatively intuitive
task: the use of overlapping potentials or overlapping spherical atomic densi-
ties are one of the possibilities [105]. Then, Kohn-Sham equations are solved
by matrix diagonalization or using conjugate gradient algorithms. Summing
over all the occupied states ¢;, the electronic density is obtained and permits
to construct the Kohn-Sham potential vxs(r) = v (r)+vg([n], r)+ve([n], r).
This potential is compared to the potential obtained from the previous iter-
ation, by defining a distance for instance such as

Dlvi,vi1] = \/Qic/g dr [v;(r) — vy (v)]?, (3.66)

where v; and v;;; are the potentials at iteration ¢ and ¢ + 1. If DI[i,i +
1] lies below the convergence parameter, then the self-consistence cycle is
stopped. Otherwise, a new potential is generated by mixing the potential
with potentials from previous iterations. Various mixing schemes exist [1006,

, | in order to accelerate the convergence and to prevent any numerical
instabilities. The HK theorem ensures that the potential can be replaced
by the electronic density as the quantity to be determined self-consistently.
Thus, the previous discussion holds similarly in the case of the electronic
density.

In conclusion, we have presented the general form of a DFT numerical
scheme as it is implemented in modern ab initio software. In the next section,
we will introduce another approach which is based on a different energy
functional and, most importantly, on a generalized KS formalism.



3.9 Hybrid Functionals 49
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Figure 3.2: Flow chart describing the self-consistent procedure implementing
DFT [109].

3.9 Hybrid Functionals

Hybrid functionals have encountered a growing success for the last 15 years.
Hybrids partially cure the self-interaction problem in the ground state and
yield improved bandgap compared to standard KS. We will show that the
enhancement of bandgaps is mostly inherent to the use of a generalized KS
formalism. In order to derive hybrid energy functionals, we introduce a rather
general theorem which is often used to establish exact conditions or limits for
exchange and correlation potentials: the adiabatic connection theorem [110),

, 1]

3.9.1 Adiabatic Connection theorem

In sec. 3.4, we have seen that we can map the interacting electron system
to a non interacting system with the help of an external potential Ug. Let
us consider an adiabatic path along this mapping by turning on the electron
interaction. Let us consider an Hamiltonian with a similar form as the one
of Eq. (3.6)

Hy=1. + Uext)\ + AUq_e (3.67)
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where 0 < A < 1. For A = 1, we choose U1 = Uny—. in order to recover
the many body Hamiltonian of chapter 1. For any A # 1, U, defined
to be the potential that yields the exact ground state electronic density.
As a consequence for A\ = 0, Uey o = Ugg. Using the Hohenberg and Kohn
theorem, we can write the total energy as a functional of the electronic density

o = / Veann(r)dr + Fi[n] (3.68)
where the functional F\[n] is defined such as
Fyln] = (W5 [T + Ao ). (3.69)
From this definition, we can rewrite Eq. (3.16) as

EIC[TL] = F1 [n] - F()[n] - EHartree[n} ) (370)

1
hence Emc[n] = / aFaA/\[n] A\ — EHartree[n] ) (371)
0

Using the Hellmann-Feynman theorem [50] the derivative of F\ with respect
to A is
aF)\ [n]
O\

which suggests the definition of a A exchange-correlation energy Ey 5

= <qu ’Uefe‘ \Ij)\> ) (372)

EIC»)\ [n] = <\I[/\ ’Ue,e| \Ij)\> - EHartree[n] . (373)

The kinetic term of the exchange correlation energy disappears. Still, one
has to integrate between the Kohn Sham system (A = 0) and and the real
many body system (A = 1).

Many properties of E,.\ have been derived. The most important ones for
the derivation of Hybrid functional are listed below

o for A\ = 0, Exeo = Exo = (Yo |e—e| Vo) — Enartree[] where ¥y are
Slater determinants of one electron Kohn-Sham wave functions. This
expression shows very nicely that one of the bounds of the integral can
be approximated by Fock exchange energy constructed with KS wave
functions.

e F..,is a monotically decreasing function of A [112]
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3.9.2 Hybrid functional

In 1993, Becke derived the first hybrid functional by approximating the in-
tegral of Eq. (3.71)with the trapezoidal rule integration [113]

—_

1
By~ _(EXC,O + Exc,l) ~ _(Ex70 + EXC,LDA) : (374)

(\V]
(\]

Despite its poor improvement compared to modern semilocal functionals,
this hybrid draw a particular attention to the concept of mixing a fraction of
exact exchange with a fraction of local or semilocal exchange and correlation.
A better approximation can be made by considering the monotonic behavior
of Py x; mean-value theorem guarantees the existence of a mixing parameter
b such that

Exe = bEyxo+ (1= b)Eye1 =0bEyxo+ (1 —b)Exy + (1 —b)E.y,(3.75)
Ex = bEy o+ (1—b)Exapp + Eeapp - (3.76)

where E,  is of the form the Fock exchange energy but evaluated with KS
wave functions, and functionals Fy .., are approximated form of the ex-
change and correlation energy usually based on DFT such as LDA or GGA.
Eq. (3.76) is the common form of an hybrid functional ®. Correlation is ac-
counted for through a semilocal functional only while the exchange energy
results from the mixing of the exact exchange and an approximation of ex-
change. One question still remains: how to determine the mizing parameter
b ?. Most of the attempts to determine b rely on empirical mean square
fitting of the atomization energies, ionization potential, proton affinities of a
canonical set of organic and inorganic molecules known as the G2 set |1 14].
This procedure yields values of b comprised between 0.16 and 0.28 [115].
The value b=0.25 emerges from work trying to rationalize the mixing pa-
rameter |1 16| but it appears to be extremely dependent on the type of GGA
used [117, , 119]. The direct application of (3.76) with b=0.25 yields
the PBEOQ functional [119, 120]. This functional improves over the already
very nice agreement with experiments of standard GGA for the prediction
of structural parameters. Besides, the introduction of a portion of Hartree-
Fock exchange partially solves the self-interaction problem, making the use
of PBEO particularly suitable for materials where d or f electrons play a
major role.

Let us turn now to the bandgap problem. As we deal with an explicitly
orbital dependent quantity ¢.e. the Fock exchange term, one may wonder:

3one should notice the simplification made (1 — b)E. 1 ~ Ee app
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how can we apply the KS formalism to the Fock term ? In order to resolve
this apparent issue, we introduce the optimized effective potential (OEP)
method [121]. In the OEP framework, the energy functional is thought to be
an explicit functional of the single particle wave functions and energies {¢; }
and {e¢;}, E[{¢i, €;}] which is an implicit functional of the density. Owing to
HK theorems, the total energy is variational with respect to the KS potential.
Therefore applying chain rule

SE  6¢(r) OE b
51]](5 Z/ |: (SUK5<I‘) + hec. + 861' 51)](5(1‘) =0 (377)

The sum runs over all states ¢ is not restricted to occupied states only. Using
the condition that the orbitals ¢; are solution of the KS equation with a
local potential, one finds the OEP integral equation for Vi, [122], a Fredholm
equation of first kind,

/ dr' OPE) ) = A, (3.78)

(SUKS(I‘/)

where the inhomegeneity A,. reads

O, 65T B,
Auclr) = ;@@( R L LR )

where ¢; are the KS orbitals. Compared to standard DFT, where the xc
potential is calculated with the help of the electronic density, in OEP, one
should solve Eq. (3.78) with the orbital dependent inhomegeneity (3.79) in
order to obtain wv,.(r) that can be inserted in the KS equations. The two
sums including unoccupied states make the calculation extremely cumber-
some compared to the DFT ones. The OEP method has been applied to the
Fock exchange term FE,[{¢;}]: it is the so-called exact exchange (EXX) [123].
The exchange term is an explicit functional of the orbitals only. Therefore,
one can drop the first term in expression (3.79). Besides, F, is a function of
the occupied states only. Still, a sum over unoccupied states is still present:
the solution of the EXX equation is much more involving than the resolution
of HF*. EXX total energies are usually higher than HF ones: despite using
the HF energy functional, EXX adds the constraint of the orbital satisfying
the KS equation with a local potential. However, the OEP procedure does

4A further approximation allows one to replace the sum over unoccupied states by a
sum over occupied states: the Krieger-Li-Iafrate (KLI) approximation. It considers that
the eigenvalue difference in the denominator of A,. can be approximated by some average
Ae. Then the numerator of the fraction can be estimated easily using closure relation. [124]
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not destroy the self-interaction free properties of the HF energy functional,
therefore EXX cancels exactly the self-interaction and might be a suitable
method for the case of systems involving localized states.

As EXX is based on KS formalism, it should not give the correct bandgap.
Nevertheless, good agreement of the Kohn-Sham bandgap calculated within
EXX with respect to experiments has been reported in the literature for sp
semiconductors [125, 126]. When calculations were performed on other mate-
rials than sp semiconductors such as noble gas [127], one found EQEXX # B,
This trend was confirmed by calculations adding random phase approxima-
tion correlation to EXX [128, |, which results in even smaller bandgaps
closed to LDA bandgaps. We just remind that the difference between the ex-
perimental bandgap and the KS bandgap lies in the exchange and correlation
discontinuity. If one adds AZXX to EfXX , one obtains very large bandgaps,
comparable to the HF ones [128]. Therefore, the agreement between the
EXX KS bandgap and the experimental bandgaps was only incidental and
strongly system dependent. In EXX, there is an important cancellation of
error between the neglect of the exchange and correlation discontinuity and
the lack of correlation.

In conclusion, the introduction of exact exchange in the energy functional
results in the exact cancellation of the self-interaction. However, it yields no
significant improvement in £, compared to explicit functionals of the density.
This limitation stems from the locality of the KS formalism: the exchange and
correlation potential is local (i.e. it depends only on r). In order to go beyond
the KS formalism, the Generalized Kohn Sham (GKS) |130] formalism has
been introduced. It relies on the one-particle density matrix

Ar,r) =D i) (x). (3.80)

Variation of the total energy is then realized over the one-particle density
matrix 6E/6v(r,r’), yielding non local xc potential v,.(r,r’"). The require-
ment of high non-locality of the exchange and correlation potential may have
been foreseen in the previous discussion for example by considering the form
of the electron-electron interaction in Eq. (3.1). However it deserves some
clarification: changes in the density at position r should induce significant
variations of the xc potential at position r’, very far from initial point r.
The GKS improves the KS formalism in that respect. In the original paper
by Seidl et al., the GKS formalism was applied to screened exchange sX.
The non-local potential corresponding to the Fock exchange term was then
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derived as®

GKS (1 1) ¢i(r
06 Z r_r,| . (3.81)

Later, it was generalized to the Hybrids [131]. The nonlocal hybrid potential
reads hence:

Vge(r, 1) = b x G55 (£, 1)) + (1 — b) x v55(r) + v5%(r) (3.82)

The improvement of the bandgaps is remarkable. This is due to the inclusion
of some part of the xc¢ discontinuity A,. inside EfXX. Let us consider first
an expression of the eigenvalue %5 using first order perturbation theory
with respect to eX9:

€% = €+ (U Av, ) | (3.83)

where 15 denotes the ith KS orbitals and Ad, = v¢E5[{¢;}] —vE5[n]. The
GKS bandgap EG*5 is expressed as

EJRS = B 4 (W2l Ao Eh) — (N | A0 [0y ®) | (3.84)

where the second and third term can be viewed as the exchange disconti-
nuity A,. Therefore, EgGK S incorporates a part of A,., which explains why
the bandgap within GKS formalism is better. For instance, applying the
formalism to PBEO cures partially the usual DFT underestimation of the
bandgap: for small- to medium-bandgap, PBEO overestimates the bandgap
while it underestimates it for large bandgap. The agreement with experi-
ments is however much better compared to LDA [132].

In conclusion, we have presented the general concept of a hybrid energy
functional. The admixture of HF not only corrects the self-interaction prob-
lem but also with the critical interplay of the GKS formalism improves the
bandgap. However, while the addition of bare Coulomb interaction (i.e. the
unscreened Fock term) may seem suitable for finite systems where the long
range interaction is not well described by the short range LDA or GGA, for
solids it is more arguable since the Coulomb interaction is strongly screened
by the large number of electrons. In the next section, we present the screened
hybrid functionals that have encountered great success in the last years in
order to describe bandgaps in solids.

®Note that this is not equal to the Fock term of HF since the ¢; are GKS orbitals.
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3.9.3 The concept of Range separation

The concept of range separation which leads to screened hybrids, was first
applied to finite systems. It originates from the observation that the main
deficiency of the local or semi local functionals is their bad description of long
range behavior which is of outmost importance in finite systems. For exam-
ple, lim, o vEPA(r) o< €7@ in the asymptotic regime of a finite systems while
the real exchange and correlation potential should go like the bare Coulomb
interaction -1/r. The same issue stands for the long range correlation. In
order to remedy the situation, Savin and co workers [133, 134] initiated the
idea of range separation. The description of the electron-electron interac-
tion potential is an extremely exhausting task due to the singularity of the
Coulomb potential at » — 0. On the other hand, the long range exchange
and dynamical correlation ¢.e. at r — oo might be necessary to describe cer-
tain properties of the system e.g. Rydberg states. The idea of Savin and co
workers lies in splitting the long range and short range problems, and choose
the best methods to treat either problem depending on their accuracy and
their computational load. Such splitting strategy was particularly successful
on finite systems [135, |: since standard DFT functionals are unable to
describe long range interactions that are of primer importance in finite sys-
tems, more advanced methods such as configuration interaction were used to
describe the long range problem while standard DFT methods took care of
the description of the short range problem.

The previous analysis breaks down for extended systems: in extended sys-
tems, electron-electron interaction is screened. An unscreened long range
component leads to pathologies (e.g. the density of states of the homoge-
neous electron gas at the Fermi level vanishes in Hartree-Fock) whereas mid-
dle and short range components are essential. In this spirit, Heyd, Scuseria
and Ernzerhof presented a new functional called HSEO3 based on the range
separation but considering that long range components should be evaluated
through a local KS potential [137]. By evaluating only the short range con-
tribution to the exact exchange and thus implicitly screening the Coulomb
potential, they have literally opened the way to the use of hybrid functionals
to solid-state physics. The exchange and correlation energy functional reads

1 ST 3 ST T
Exense = ZEX,HF + ZEX,GGA + Ei,GGA + Eccaa - (3.85)

In this case, the partition of the Coulomb interaction is obtained using to
the error function (erf) and its complementary (erfc) that was introduced by



56 3. The Many Body problem and Density Functional theory

10: T T T T T T T ]

- — 1 1

I — erfc(0.r)/r ]

— erfc(0.63%r)/r

1
> |
0.1

0.0f 4 s

2
r (A)
Figure 3.3: Comparison between the bare coulomb potential and the short
range ersatz used in HSEQ6.
Leininger et al [134]:

% _ LR 1 FSR(r) = erfiwr) N erfcfwr) , (3.86)

where w is the splitting parameter. The choice of the error function may
look totally arbitrary. However, we know that the Fourier transform of an
error function is a gaussian. Therefore it is not surprising that chemists first
introduced this scheme for computational convenience |131]. Nevertheless,
another function might be more suitable in the case of solid state physics.
Values of w found in the literature usually are w = 0.3 A~! (HSE03) and
w = 0.2 A~' (HSE06). HSE hybrids show important improvement compared
to PBEQ particularly for the prediction of small- to medium-gap [132]. Most
of HSEO06 results are independent of the choice of the splitting parameter to
the only exception of the bandgap [138]. This important observation is one
of the main drawbacks of HSE06 in order to estimate bandgaps: there is no
systematic behavior of HSE06 compared to experiments.

One should notice that HSE06 only mixes the short range part of exact
exchange. But one may wonder: how short is the short range ?. Let us
consider an optimal partitioning of the Coulomb potential. Optimal refers
to the case where the second term of expression (3.86) becomes physically
insignificant. For example, if the second term is a slowly enough varying
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potential (i.e. it has a rapidly decaying Fourier transform), it will do as little
as shift the energy origin. Thereby, Lee et al. [139] defined a measure of the

optimal partitioning
erfc
}_( r (wr))
r

where F stands for the Fourier Transform. Minimizing expression (3.87), Lee
and co workers obtained the optimal value of w = 0.637 A=, which differs
significantly from the one obtained from the fitting procedure. Figure 3.3
compares f5%(w = 0.2) and f5F(w = 0.637) to the coulombian 1/r. While
the blue curve should retain only the short range part of the Coulomb po-
tential, one can realize that the short-range component of HSE06 (red curve)
ressembles much more the true 1/r (black curve) than the true short range.
HSE06 does not contain only short range of exact exchange but also some
long range components up to 5 A. This characteristic length is of the order
of the second nearest neighbour distance in most solids and compares well
with the typical range of interaction in a solid [1410)].

Zerf] = /erf(wr)dr+/k2 2alk7 (3.87)

In this section, we presented the state of the art of screened hybrid func-
tionals. We explained the physical approximations that make the screened
hybrids so successful in treating solids. The overall ground state properties
are improved within HSE due to the fact that it cancels partially the self-
interaction problem. Besides, HSE yields improved bandgap compared to
KS due to the short range exchange interaction and most importantly to
the GKS formalism. However, bandgaps are still not reliable within both
formalisms and one needs a reference method in order to calculate accurate
bandgaps. For this purpose, we will turn to Many Body Perturbation Theory
(MBPT).






Chapter 4

Many Body Perturbation Theory

4.1 Introduction to Green’s Functions

Let us consider a linear differential operator £ such that the inhomegeneous
equation Lo(r) = V(r) is to be solved. One defines Green’s function as the
solution of the equation

LG(r,r’) =d(r —1’). (4.1)

Green’s function G is a two-variable function and must have a discontinu-
ity according to r in order to obtain the ¢ function on the right hand side
of Eq. (4.1). Solutions of Eq. (4.1) replacing the delta function with any
arbitrary potential V' can be expressed easily as a function of G

o(r) = /dr’G(r,r’)V(r’). (4.2)

There is a clear practical advantage of using Green’s functions: by solving
once Eq. (4.1) one can obtain the solution of £L¢ = V for any perturbation
V by simply integrating Green’s function with the inhomogeneity V. As a
two-point quantity, the amount of information contained in G is much more
than in ¢. But at this cost, one can solve the differential equation for any
inhomogeneity.

Another popular representation of a Green’s function is using the resol-
vent formalism that allows one to use powerful complex variable analysis
tool. The Green’s function is expressed as

[z — L]IG(r,x’,2) = d(r — 1), (4.3)

where z is a complex variable. Assuming that £ is self-adjoint, it admits a
complete set of eigenfunctions {|¢,)} with the following eigenvalues {\,}. G

29
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can be written as a function of the resolvent

1

Vegd {)GR)=——=(—-L)". (4.4)
z—L

Inserting the identity as a sum of projector |¢,){(¢,|, one can obtain the

following expression for G(z)

Ge) = Y [2eklGel (45)

The polar structure of G displays the discrete eigenvalue spectrum of its
corresponding operator L.

In conclusion, we present the mathematical definition of Green’s func-
tion. Green’s functions we will introduce and deal with in the subsequent
section are slightly different from the ones we present in this section: besides
their mathematical definition, they also have a physical meaning.

4.2 Green’s function and Many Body Theory

Within the framework of second quantization and the Heisenberg picture,
the one particle time ordered equilibrium Green’s function is defined as

G(1,2) = =i(NIT [$(1)$1(2)] IN). (4.6)

where |N) is the N-electron ground state vector and ¢ (1) is the annihilation
(creation) field operator. Index 1 stands for the compact form of (ry,t1,0y).
T is the Wick time ordering operator which orders all the operators with
increasing time starting from the left.

 SiNBOF@IN) i > .
G(l’z){z'<N|z/%<2w<1>|N> £ty <ty (47)

Let us consider the physical meaning of G. The field operators create
and annihilate electrons. In the case t; > t,, the Green’s function represents
therefore the probability amplitude to find an electron at time ¢;, position
r; and with spin o; when an electron is put at time ¢, position r, and
with spin g5. Therefore, one often refers to Green’s function as the operator
which describes the propagation an electron from (rq,t2, 09) to (rq,%1,01) in
the system. Alternatively, if ¢; < to, it describes the propagation of a hole
from (rq,t1,01) to (ra, t2, 02). Because G is formed by two field operators, any
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operator that can be expressed in terms of two field operators is a function
of Green’s function. For instance, let us consider a single particle operator
that will be expressed within the second quantization framework as

7= [a2i 0.2, (4.8)
The expectation value of such operator is then
(N|JIN) = /d12J(1,2)G(1,2) (4.9)

One could notice the similarity of this expression with the definition of
Eq. (4.2). Indeed, mathematically speaking, G defined in Eq. (4.6) is Green’s
function of a Hamiltonian that can be expressed in quadratic term of @/A) and
¥t One possible example is the definition of the density operator

p(1) =P (1)d(1). (4.10)

Its expectation value is simply given by the diagonal element in space and
time of G(1,2)

(N|p(r,0)|N) = G(r,r,t,t",0,0). (4.11)
We will now introduce the so-called Lehmann representation which is an
analog of the resolvent formalism presented in sec. 4.1 . For sake of clarity,
we will restrict ourselves to the case of a time-independent external potential
(therefore the Green’s function only depends on 7 = t; — 3) and drop the
spin variable o (we are not interested in magnetic systems in this thesis).
Eq. (4.7) can be written as

iG(I‘l, Iy, 7') :9(7') <N|1[J(t1, fl)iﬁT(tQ, I'2>|N> (412)
— O(=T)(N YT (ra, t2)db(x1,11)|N) . (4.13)

We can introduce two identity relations involving two different Hilbert spaces
{IN +1,4)} and {|N — 1,4)}. Thus, the identity will be expressed as

T=) IN+1Li){N+1i =) |N-LiN-11i. (4.14)

Before inserting the identity, one should remember that

ez"Ht|N + 17 Z> _ eiEN+1,it

N +1,4). (4.15)

'Tt stems from the fact that the single-particle Green’s function is composed of only
two field operators.
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Then, expression (4.13) becomes
iG(1,2) =0(7) Z fi(rl)fi*(I'Q)Bi(EN_ENH’i)XT (4.16)

—0(—) Z9:(I‘z)gi(rl)ei(EN_EN”*i)XT, (4.17)

where f; and g; are called Lehmann’s amplitudes

filr) = (NWA)(r)U\{JrLi% (4.18)
gi(r) = (N = Lil(r)|N), (4.19)

Differences of total energies like Enyq,;, — En or By — Ey_1,; correspond to
excitation energies €;, namely

o ¢, = Eni1; — Ey is the energy required to add an electron to the
ground-state; the system will then be in a state ¢ (ground or excited
state). This addition excitation energy corresponds to the electron
affinity A when ¢ is the N-+1 electron ground state.

e ¢, = By — En_;; is the energy required to remove one electron; and
leave the system in a state ¢: this removal excitation energy corresponds
to the ionization energy I when ¢ is the N-1 electron ground state.

For a metal, both excitation energies are equal and define the chemical po-
tential . For the case of an insulator, the mismatch between A and I defines
the bandgap F, = I — A and there is a different chemical potential for
electrons and holes. The energy differences appearing in the phase of the
Green’s function are hence electron addiation and removal energies, with a
well defined physical meaning. They will in particular allow us to calculate
bandgaps. This derivation gives also a hint why the Koopmans’ theorem fails
for Kohn Sham DFT. Excitation energies appear upon inclusion of excited
states | N &+ 1) which corresponds to the removal or addition of an electron.
Energies obtained from DFT are however Lagrange multipliers that constrain
the conservation of number of particles in the system. One can immediately
see the impossibility for Kohn-Sham DFT to fulfill Koopman’s theorem.

We can further simplify expression (4.17) by generalizing the excitation
energy as a function of the chemical potential

if ¢>p €=FEny1;— En.

if € < U €= En — ENfl,i- (420)
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Consequently, it is useful to define a generalized form of Lehmann’s amplitude
U;(r) as
' . fz(r) if ¢ >,
One-particle Green’s function is then expressed as

iG(ry,12,7) = Y [0(7)0(ei — 1) — O(=7)0(1 — €)] W(x1) ¥; (r2) x "7 |
(4.22)
The Fourier transform of such a quantity can be performed only if a small
imaginary part 7 is added to the exponential. Depending on the sign of 7,
the sign of n will change: for removal energy 7 is negative and for addition
energy it is positive 2. Finally, Lehmann’s representation of G after Fourier
transform reads

Wi(r) 7 (r2)
w— € + insign(e; — p)

G(I‘l, Iy, w) = Z

i

(4.23)

The pole structure of G gives hence access to removal and addition energies.
One should note that both excitation energies lie along the real axis, but the
sign of n (defined by the sign of ¢; — u) positions them below (for addition
energies) or above (for removal energies) the real axis. There is no pole lying
in the energy range defined by the bandgap.

From the frequency dependent form of G, we can define the so-called spectral
function A(ry,ry,w):

1
A(ry,ro,w) = ;sign(u — w)ImG(ry, o, w) . (4.24)

Working with spectral functions has advantages compared to working with
the full Green’s function: one has to deal with a real-valued function instead
of the complex-valued G. Because of Kramers-Kronig relations for G (see
Eq. (3.62)) A contains the full amount of information of G. For example, one
can access the ground-state electronic density using the relation:

o
/ de(rl, ry, (U) = p(rl) s (425)
or the density of states N(w) = Tr(A(ry,re,w)), or the ground-state total
energy via the Galitskii Migdal [111]| formula:
1 p
= §/dr1 lim [ dwlw+ h(r)] Ay ra,w) (4.26)

2This is due to the product of the two step functions. The time range of integration of
the Fourier transform will be different depending on the position of ¢; according to p.
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Experimentally speaking, Angle Resolved Photoemission Electron Spectra
(ARPES) are closely related to the spectral function A(k,w). Therefore, ap-
proximations made to construct G can be tested by comparing the spectral
function to ARPES data.

In conclusion, we have derived the spectral representation of G, which
gives access to removal and addition energies and consequently to the bandgap.
We have also introduced the spectral function which will be very useful when
it comes to explain the concept of quasiparticle. In the next section, we will
introduce an equation of motion in order to determine G.

4.3 Towards the Quasi-particle picture

Equation (4.6) for the Green’s functions, is well defined, but one would need
the N electron ground state which is in general not known. Therefore, one
needs another equation to solve for GG. It is common practice in quantum me-
chanics in order to evaluate an operator to use the Heisenberg equation also
called equation of motion (EOM) as it describes the time-dependence of an
operator by means of the commutator of the operator with the Hamiltonian
of the system. For instance, the equation of motion of the field operators
within the Heisenberg representation is given by

o
5 = [V, H], (4.27)
ot
iy = WLH] (4.28)

Once again, the form of the H in terms of field operators will be of outmost
importance. Assuming that H = Hy, where Hy is a non-interacting fermion
Hamiltonian, its second quantization form is simply quadratic in ) and 1

Hy = / dryipt (r1)ho (1)1 (ry) (4.29)
Working around Eq. (4.28), the equation of motion for G is then simply
.0
[28_25 B ho(r1>} Go(r1,tr, 2, b3) = 0(r1 — 12)0(t1 — 12) - (4.30)
1

The subscript 0 has been added to Green’s function symbol as it is a non-
interacting Green’s function. The spectral function of Gy simply reads

A(ry, 19, w) = Z hi(r1) bk (12)0(w — &), (4.31)
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where Lehmann’s amplitudes ¢; are the independent-particle wavefunctions
of hg and ¢; the corresponding eigenenergies. Its expression simplifies further
the matrix element (i|Ali) of the spectral function for a given state |i):

(] Ali) = 8(w — ). (4.32)

The spectral function of non-interacting Green’s function is then a simple
delta-peak centered at w = ¢;. We will see that the interacting case will be
more complicated and results in different features of the spectral function.
When the electron-electron interaction is switched on, the equation of motion
of G is significantly different. The second quantization representation of the
electron-electron interaction involves four field operators:

~

O =5 [ dridead! ()0 (ruer mdeie) . (439

Thus, it is natural to introduce two-particle Green’s function G5 describing
two particles at the same time as the electron-electron interaction involves
two particles. The two-particle Green’s function G5 defined in (4.34) contains
four field operators:

°Gy(1,2,1,2) = (NIT [P @) M)| N}, (434)

With (4.28), (4.29) and (4.34), the equation of motion of G depends on G,
as

[Zait — ho(rl)} G(1,2) +z’/d3vc(1,3)Gg(1,3+, 2,37 =6(1,2), (4.35)
1

where + and ++ indicate positive infinitesimalS added to the time vari-
able t. The interacting Green’s function is hence not true a Green’s function
mathematically speaking. Indeed, its equation of motion presents an inhomo-
geneity involving the two-particle Green’s function. The two-particle Green’s
function depends through a similar equation of motion on the three-particle
one Gs and so on. Thus, the equation obviously would require lot of effort
to be solved without being reformulated. From a mathematical perspective,
the inhomogeneity in Eq. (4.35) should be transformed in order to make G
appear. The situation is not as bad as one may think. Indeed, not the full
two-particle Green’s function is required to solve the EOM for G: only a
three point contraction of Gy enters Eq. (4.35). Before doing any further
approximation, it is necessary to describe the three-point GG and more par-
ticularly its polar structure. The Wick operator present in G5 yields multiple
contributions depending on the time ordering [112]. The three-point G5 is



66 4. Many Body Perturbation Theory

constrained such as t3; < t3... Moreover, the Coulomb potential is time
independent so it has a time delta-function making ¢; and ¢3 equal. Then,
the time constraint applied to Go in the homogeneity of Eq. (4.35) reads as

tl - tg S t3+ S t3++ . (436)

Three out of the four field operators are then ordered. As a result, only two
terms will arise from the two possible time ordering of 5 with respect to the
other

iGa(1,3%,2,3%5) =(N 41 (2)d (1) (3%) ¢! (37)IN)0(t; — 1)

) . (4.37)
+ (NGB )G (3FH) ¢ (2)| N)6(ts — 1)

Similarly to what has been done for the derivation of Lehmann’s represen-
tation of G, one should introduce the identity of Hilbert spaces {|N — 1,4)}
and {|N + 1,7)} . However, here we are only interested by the pole structure
of G. The poles originate from the time-dependent exponential using the
reduced time parameter 7 = t; — t; with ¢ # j. The latter argument will
result in many of the time exponentlals being 1 because t, = t3 ~ t3, ~ j
up to an infinitesimal. Therefore, one needs to insert Z only between W( )
and its adjacent field operator. Setting 7 = ty —t3, expression (4.37) becomes

iGy(1,3%,2,3%7) = Z<NW<2>1N— L) (N = Lilp(1)(3H)4 (379 IN)0(r)
+Z N (1) 3+ YOI BT)N + 1, 4) (N + 1, j[41(2)|N) (7).
(4.38)
Using the Heisenberg representation, one gets
iG(1,37,2,377) = Z(NW@)IN— L) (N = Ll (L)g(3%)d! (37| N)e v =Fn-107g(7)
+ Z N (1) 3+ YOI BTDIN + 1 )N + 1, j[1(2)[N)e N —Evendmg(—r).
(4.39)
The inhomogeneity term in Eq. (4.35) has hence the same polar structure
as GG, which is a further argument in favor of putting G into evidence in the

expression of GGo. In the next section, we will present an exact formulation
involving a new operator Y called self-energy.
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4.3.1 X and Dyson equation

As previously demonstrated, the inhomogeneity in Eq. (4.35) has a polar
structure close to the one of G. It is then natural to define a formal operator
> such that

z‘/d3vc(1,3)G(1,3+,2,3++) = /d32(1,3)0(3,2), (4.40)

where Y is a formal operator called the self energy. The definition yields a
new equation of motion for GG

[z% — ho(rl)] G(1,2) — /d32(173)G(3, 2) =4(1,2). (4.41)
1

This equation can be related to the equation of motion for non-interacting
Green’s function by using the resolvent formalism presented in the introduc-
tion of this chapter. The frequency fourier transform of Gy can be written
as Gy = (w — hy)~! and consequently Gy'(w) = w — hg. The Eq. (4.41) can
be rewritten as

G =Gy + GoSG . (4.42)

Eq. (4.42) is called a Dyson equation [112]. The knowledge of Gy and X
allows one to access the pole structure of interacting Green’s function. All
the interaction effects are gathered into Y, and for a given Y, interactions to
all orders are included in G. The main difficulty is to find a physically sound
approximation to the self-energy. But first, let us have a closer look at the
pole structure of the problem.

4.3.2 Quasiparticle picture

We will first derive mathematically the quasiparticle equation and then intro-
duce the physical concept of quasiparticle. Expression (4.22) is Lehmann’s
representation of Green’s function for a finite system: the excitation energies
are discrete quantities. If one considers the thermodynamic limit correspond-
ing to an infinite system 2, then the excitation energies will form a continuum
of excitations and the discrete sum Y . will be replaced by an integral [ de.
G(w) is ill defined if w is a real frequency, prompting to the introduction of
complex variable z. The imaginary part of the excitation energies as we will
see later are hence not artifacts introduced to reproduce experimental spec-
tra but are formally required to define G(w) based on its complex analytic
continuation G(z).

3The number of particles and the volume — oo, keeping the ratio of the two (i.e. the
concentration) constant.



68 4. Many Body Perturbation Theory

Following Farid [113], let us introduce the function f(e) with the following
form

flw)y=>" o6 —eo) ~blei—en) (4.43)

- € — W

7
The function f(w) presents isolated singularities at ¢; which are the excita-
tions energy of the system. It ressembles closely Lehmann’s representation
of Green’s function but also many of the quantities that will be introduced
later in this thesis. In the thermodynamic limit, f(w) should be replaced by
the complex function f(z) with Im(z) # 0. The analytical continuity holds if
f(w) — f(2) when I'm(z) — 0. In this limit, the singularities condense into
a branchcut. For the sake of clarity, we consider only one branch-cut delim-
itated by branch points ey and e; situated along the real axis. For instance,
G(w) presents two semi-infinite branch-cuts separated by the bandgap: one
infinitesimally above (below) the real axis for removal (addition) energies. As
stated previously, > . becomes an integral and the analytical continuation of

7, f(z) reads

~ Z — €1
f(z) =1In (z — 60) . (4.44)
The analytical continuation of a logarithm is a standard textbook problem.
The function (4.44) is a multi valued function® |144]. The n-valued complex
function f(z) can be considered as a one-valued complex function f,(z) over
n complex planes called Riemann sheets R,. Riemann sheets are connected
along the branch cut of {f;(2)} (here the branch cut is [eg, e1]). From the
physical point of view, multi-valued functions are of limited interest: if one
is interested in some specific physical properties then one should determine
R; such that f;(z) — f(w) when z — w. Thus, R; is called the physical
Riemann sheet and f;(z) = f(z) the analytical continuation of f(w) in the
complex plane. If one considers the limit of f(w Fin) when n — 0, one
obtains using the Cauchy theorem to perform the integration [ de

flwTin) =In (M> Fimh(w — eg)f(e; — w). (4.45)

|€0 —w|

Depending on where w lies, the analytical continuation of f(w) will be real
valued (for w > e; or w < ¢g) or complex valued when ey < w < e;. One can
extend this discussion to the case of G(z): when e lies in the bandgap, G(2)
is real valued while it becomes complex valued everywhere else. However,

4Let us consider y = In(z), ¥ is the solution of equation z = e¥. Since €™ = 1, y can
only be determined up to a constant y; = In(|z|) + 2in.
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along the real axis, G’(z) is always analytical except at some singularity
points. Therefore, we can define a Cauchy relation to express G(r,r’, w)

m g 00 o
G(r,r’,w):/ dw’M+/ dsz (4.46)
o

w—w —in w—w +in’

—0o0

where p is the Fermi level and A is the spectral function. Such decompo-
sition can be particularly useful as one has to deal with real quantities like
A, instead of complex ones, like G. Such analysis holds for all the quantities
that could be expanded analytically to the whole complex plane.

In conclusion, we have demonstrated the existence of the analytical continu-
ation of G(w) into the complex plane. It permits to work in the thermody-
namic limit i.e. infinite systems. We draw a special attention on the necessity
of working in the physical Riemann sheet: it should be selected by consid-
ering the only solution that approaches the real-valued function uniformely.
The latter point can be of great importance when one wants to perform the
integration to obtain G in the complex plane. For instance, the analytical
continuation of f(w) into a non physical Riemann sheet would give

f(z) = In (’Z - 60) — . (4.47)

zZ — €

Up to now, we have defined a mathematically correct framework to treat
the case of infinite systems. Let us consider the solution of the Dyson equa-
tion (4.42) which has been analytically continuated in the physical Riemann
sheet:

. . . -1 .
G(z) = [z - GO(Z)E(Z)] Go(2) . (4.48)
The latter expression can be expanded as a perturbation series in terms of

Go, & being the perturbation. However, such series will not converge when

z is equal to a pole of é(z), therefore the condition of divergence is given by
5

det [I - éo(z)i(z)] —0. (4.49)

Using the properties det [égl} # 0 and that det(A)xdet(B)=det(AB), then
Eq. (4.49) becomes
det [zz ~Hy+ i(z)] ~0. (4.50)

Solutions of Eq. (4.50) of the form 2 = z, are simply the eigenvalues of the
Hamiltonian Hy+(z) which is generally non hermitian. Therefore, following

5There is an interesting property of G(z) and Go(z): they are inversabile due to the
absence of zero [143]
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Morse and Feshbach [115], we can state that Hy+ %(z) admits left and right
eigenfunctions W;(z) and W¥;(z) such that
[Ho + i(z)} U,(2) = E,(2)Wi(2), (4.51)
[Ho + i*(z)} Ti(2) = EX(2)T(z). (4.52)

Eq. (4.52) are called the quasiparticle equation. A biorthonormal condition
holds for W and VU: for E;(z) # Ey(z), (Vi(z),Vs(2)) = d;v. Then, the

Green’s function reads

é(rl, ro, Z) = Z \I]l(erj)EEI’;(iI).% Z) . (453)

Eq. (4.53) is called the biorthonormal representation of G. Such represen-
tation of Green’s function differs significantly from the Lehmann represen-
tation (4.22): first, the numerator in the biorthonormal form is frequency
depedent together with the poles themselves. Besides, the resolution of equa-
tion (4.52) should be performed for every value of z, which results in a com-
plete set of eigenfunctions and eigenvalues for each z. However, noticing that
the numerator in the Lehmann representation is frequency independent, one
only needs one set of eigenfunctions for all real frequency [116]. Consequently,
one can use the Mittag-Leffler theorem to represent G(z) as a function of its
residues and poles. The poles of é(z), z; are obtained by solving

zi = Ei(z). (4.54)

The function Ei(2) is analytic, following the same argument used for G(2)
and X(z). Besides, E;(z) is the analytical continuation in the complex plane
of
Ei(w) = lim Bi(w F i), (4.55)
n*)

where F depends on the position of € compared to the Fermi level p. Us-
ing mathematical considerations (for more details see |113]), Farid proved
that equation F;(w) = w does not have a solution. Therefore, solution
of Eq. (4.54) should be sought in the complex plane. In order to respect
the time-reversal symmetry of the system, the reflection condition El(z*) =
E*(z) holds. If one assumes that there exists a solution z of Bq. (4.54)
with Im(zp) # 0 then z} is also a solution of Eq. (4.54). Consequently, such
solution violates the principle of causality. Therefore, the excitation energies
should be sought in the non physical Riemann sheets.

The fact that these energies have an imaginary part stems not only from the
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mathematical arguments developed previously but also has a profound phys-
ical meaning. In a system where there exists a continuum of excitation, any
excitation will decay due to the presence of an infinite number of excitations
infinitisemally close to the initial excitation. Thus, one-particle excitation in
a infinite system must have a finite lifetime.

Coing back to the expression of G(z), one would like to calculate the residue
of G(z) so that to use Mittag-Leffler theorem [117]. Let us consider expansion
of the denominator z — E(z) in a region closed to z, such that

1z
z—Ei(2) 22—

, for sufficiently small |z — 2| (4.56)

where Z, is called the renormalization factor

~ —1
OF
7, = <1 gl ) (4.57)

The biorthonormal expression of Green’s function (4.53) becomes then

G(ry, 1o, 2 ZZ (1, 2) Wi (v, 7). (4.58)

z— z

In practice, one needs to know Fj;(z) in the neighborhood of the poles z; and
compute 8%2(3). Any static approximation to the self energyi.e. will results
in Z; = 1, simplifying further Eq. (4.58). As a consequence of the imaginary
part of the QP energies, the spectral function of interacting Green’s function
is not a delta-function anymore but a lorentzian as it includes the finite
lifetime of excitation .

1 m((il=li)
Al = | e Re(s e+ mgee) )

The non interacting excitation energy ¢; is shifted by Re((i|X]i)) while the
imaginary part of (i|X]i) gives a finite lifetime to the excitation. The cor-
responding excitation is called quasiparticle: it corresponds to an electron
together with its interaction with the environment. It can be considered to
be a new particle often refered as a dressed particle due to the inclusion of
some interactions within the quasiparticle formalism. Quasiparticles interact
much more weakly between each other than bare electrons, which may reveal
extremely useful when doing some expansion.

The pronounced peak in the spectral function corresponds to a quasiparticle
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excitation. The width of the peaks is given by |[Im((i|X]i))|: the longer is
the lifetime of the excitation, the more the quasiparticle ressembles the bare
electron. Thus, the imaginary part of the self-energy plays the role of an in-
verse lifetime. However, the spectral function of interacting Green’s function
can present other features apart from the quasiparticle peak called the inco-
herent part of the spectrum: usually broaden peaks appear away from the
quasiparticle peak which correspond to collective excitations. They are called
satellites. As the spectral function of interacting Green’s function fulfills a
sum-rule (4.25), the overall integration of A over the whole range of energy
must be constant. As a consequence, the presence of satellites will naturally
reduces the strength of the quasiparticle peak: one says that the peak has
been renormalized. Such renormalization corresponds to transfer of energy
from the quasiparticle excitation to the collective modes represented by the
satellites. In Fig. 4.1, the real part of Z; Re{Z;} represents the integral of
A over a region centered around the quasiparticle peak. If one deals with
an independent particle picture, Z7 = 1. When the incoherent part of the
spectrum becomes predominant i.e. 1-ReZ; becomes large, then the excita-
tion cannot be seen in a particle-like picture but for example as a collective
excitation®. Z; is then a useful measure of the one-particle character of the
excitation.

In conclusion, we have presented an equation whose eigenergies are the
removal and addition energies. Then, solving the QP equation, we have
access to the correct excitations energies. However, a last task is necessary,
namely we have to find the self-energy.

4.4 Hedin’s equations and the GW approxima-
tion

In order to derive a closed set of equations defining G and ¥ the Schwinger’s
functional derivative approach [119] can be used. We generalize the Green’s
function of a system to the case of the presence of a fully non-local external
potential U(ry,re,t) [112], the interacting one-particle Green’s function can

6Tt is usually said that this case corresponds to a break down of the band-structure pic-
ture: indeed, spectral function A should be able to describe the electronic band structure
with its quasiparticle peaks. However, when such peaks are particularly renormalized due
to the coupling to other excitations, the band-structure tends to disappear and only the
spectral function can described the system.
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—— Non-interacting electrons
—— Interacting electrons

Satellite

Figure 4.1: Matrix elements of the spectral functions of interacting (dashed
line) and non-interacting (solid line) electron systems. [118]

then be written in the interaction picture as

(N|T[S(1)4!(2)]]N)

e AT

. (4.60)

where S is the time evolution operator that is dependent on U such that

T8 =T [exp (—@' / Z dt / drldrg@@T(rl)U(rl,rg,t)@/;(rg))] O (461)

The mysterious potential introduced by Schwinger may be interpreted in the
following way: expressing the equation of motion for G, we have noticed
that we need to introduce the two-particle Green’s function and so on. The
physical implication of such observation is that particles moving in the sys-
tem will interact with other particles of the system and create and destroy
two-particles, three-particles excitation and so on along its way. This can be
described introducing the concept of polarization of the medium. However,
the fact that the propagation of one particle requires the sum over an infinite
number of excitations makes a brute force application impossible. One can
simulate these processes by introducing the fictitious extrernal potential that
will be made vanishing at the end of the calculation.

Indeed by varying the propagator G' (4.60) with respect to the external po-
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tential U and using classical derivation rule, one gets

s - WITBSHOBRIN)
(NITIS]INY

(NITBS)N)
(NIT[S]IV)

(4.62)

The derivative of the exponential will add two extra field operators to the two
already present in the definition of the one-particle Green’s function. There-
fore, using commutation relations between field operators, one can make G,
appear and obtain the relatively simple relation 7
0G(1,2)
5U(3,4) G(1,2)G(4,3) — G2(1,4,2,3) . (4.63)
This relation is very useful as it allows us to express (G5 in terms of G.
Therefore, it is now possible to express the self-energy by means of G and its
derivatives only. It is also worth noting that the derivative of G with respect
to U is a correlation function as it is the difference between the propaga-
tions of two interacting particles and the propagations of two independent
particles. At first sight, the expression provides much more information than
needed. In the QP equation, the two-particle Green’s function is only a three
point function. In practice, inserting expression (4.63) in Eq. (4.41) results
in considering a local potential U in our derivation. We can consider now
the exact quantity present in the quasiparticle equation
+ Yy + iy 0G(1,2)

G-2(1,37,2,37") = G(1,2)G(37,37) 50(3) (4.64)
where U(3) = U(1,3)d(1,3). Inserting the aforementioned expression (4.64)
in Eq. (4.41), one obtains two terms from the integral: one is a classical
Hartree potential —i [ d3v(1,3)G(3,3") which stems from the first term of
the right hand side of Eq. (4.41) and the other term describes all the effects
beyond the classical Hartree description and originates from the correlation
function 6G/5U. We introduce the derivative of the closure relation GG~ =
T as it permits to express G~! and its derivative as a function of G and its
derivative.

5G ., 0G

Using relation (4.65), the self-energy ¥ can be expressed as

5G1(4,2)

e (4.66)

3(1,2) = —z’/d34v(1+,3)G(1,4)

"We use the compact notation but one should remember that U is local in time, i.e.,
tas = t3 + 6 where § is an infinitesimal.
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Schwinger’s trick allows one to express the self-energy in terms of the one
particle Green’s function and its derivative at vanishing local potential U.
The latter three-point quantity is still unknown but can be approximate in
terms of perturbative approaches.

4.4.1 Perturbative approaches

There are several ways to solve the problem of finding a practical expression
for . We will first investigate two of them: the Gy perturbation method
and the ¥ perturbation method [116, 150].

Gy perturbation method

The perturbative expansion is a rather popular method to solve many-body
problems: it relies on an expansion in terms of some quantity (such as the
Coulomb potential or Gy). The expansion is expected to require a limited
number of terms to describe the physics of the system. For example, starting
from Dyson’s equation we obtain the following equation

G(1,2) = Go(1,2) —i/d3d4Go(1,3)v(3,4)
(4.67)

x [G0(4,4+) - ﬁ] G(3,2).

One can replace G(3,2) in the integrand by the unperturbed Green’s function
Go(3,2) as at first order G(1,2) = Go(1,2). In the presence of an external
local potential U, G, satisfies

Go(1,2) = [izgg-—— ho(t1) ——[f(rl)}_» 5(1,2) (4.68)

Then Eq. (4.67) reads
mLm:%agy4/ﬁﬂam3w@®
5 (4.69)
X lGO(ZL, 4+) — m} Go(3,2) + higher order terms.

The two first terms can be expressed exactly as a function of G, which yields

aLm:%ﬂ£%4/%MQﬂﬁm@®

x {Go(4,4+)Go(3,2) — Go(3,4)Go(3,2)} + higher order terms.
(4.70)
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The first term between curly brakets represents the Hartree interaction while
the second term represents the exchange interaction. If one restricts to these
two terms and neglect higher order terms, the approximation is simply non-
self-consistent and perturbative Hartree-Fock. One can start over to second
order and so on. However, the convergence of such series expansions is be-
lieved to be poor. Indeed, the poles of GG lies reasonably off the real axis due
to their finite lifetime, which is not the case for GGy which has an infinite life-
time. Therefore, one tries to construct an operator G that describes damped
excitation energies with undamped excitations through Go,. However, one
can take benefit of Dyson’s equation like in the following > perturbation
method.

Y. perturbation method

Instead of expanding G in a perturbation series, one can perform a perturba-
tion series of ¥ and then solve for G. Starting from Eq. (4.66) and replacing
G by G yields

S(1,2) = _@-5(1,2)/d30(1,3)00(3,3+)+w(1,2)00(1,2). (4.71)

In order to iterate to higher orders, one should make > appear in the right
hand side of Eq. (4.66), by replacing the term G~! by G™! = G;' — U — X,
Then one can construct the second order term

2(2)(1,2):/d34v(1,S)Go(l,2)1}(2,4)G0(4,3)G0(3,4+) .
4.72
- /d34v(1,3)G0(1,4)v(4, 2)Go(4,3)Go(3,2) .

¥ is a functional of v and Gy, of second order in v. A third iteration of
Eq. (4.66) can be realized to obtain the third order term and so on to obtain
any order. Then the X perturbation method consists in solving ¥ to the
desired order and calculate G using Dyson’s equation. The method looks
much heavier than the Gy perturbation method. However, the approxima-
tion made for ¥ will be summed to all orders in G owing to Dyson’s equation.
Consequently, it is believed that less perturbation terms are needed to de-
scribe 28,

Starting from Eq. (4.71), one obtains using Dyson’s equation, the Hartree-
Fock (HF) approximation. Expression (4.71) is composed of two terms: the

8this statement may be hindered by the loss of cancellation between perturbation terms
because of the truncated perturbation series.
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first one describes the Hartree potential vy and the second one the exchange
interaction. As the Hartree term is local, one can recast the one-particle
Hamiltonian h(1) and the term of self-energy usually designates ¥ — vp.
Therefore, the HF self-energy reads

Zm(l, 2) = iv(rl, Iro, ti_, t2)5(tii_ - tQ)Go(rl, Iy, tiﬂ tg) . (473)
The HF self-energy is static and consequently Lehmann’s amplitudes can be

considered as one-particle wavefunctions. Considering Lehmann’s represen-
tation of G(ry,ry,w) and in frequency space, the HF self-energy reads

Sa(ry, T, w) = 2im Y 01t — e1,) i, (11) Ty, (12) X v(ry1,T2) . (4.74)

The step function depending on the Fermi level p restricts the sum over
all states to the occupied states only. This particularity originates from
the interaction potential used (i.e., the bare Coulomb interaction) which is
static. * Thus, for periodic systems, the matrix elements of ¥, read

m ij G ~ij G
G2l =~ 3 S0l — ) Y TS gy
“a G

where p; ; are matrix elements of plane waves

pij(a+G) = / dr i (r)e (O Ty (r). (4.76)

This elemental brick will be very useful in the following discussion in order
to obtain the Fourier transform of complicated quantities. The scaling of
the computational time of >, is N, X Ny X Ng where N, is the number of
occupied states, Ny the number of k-points and Ng the number of G-vectors.

We have presented several attempts to extend ¥ (or G) in terms of G
and v. However, the former quantity can be far from G in an interacting
system while the latter suffers from its lack of physicality in the context of
a solid: the effective interaction between electrons is much weaker than the
bare one in a solid as it is reduced by the dielectric constant of the medium.
The dielectric constant is a mean-field quantity that sums over all possible
polarization effect in the medium. It seems therefore natural to choose the
fully interacting Green’s function G and the screened Coulomb interaction
W to express our self-energy. W(1,2) first introduced by Hubbard [151], is
the potential at point 1 when a test charge sits at point 2, including the
polarization effects from all the electrons. This approach was the one of
Hedin when he derived its celebrated set of 5 equations.

9Any static approximation to the interaction potential with the appropriate time or-
dering 0(to — tf) will result in self-energies that only depend on the occupied states only.
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4.4.2 Hedin’s equations

Following Hedin [152], let us first introduce the total classical potential V(1).

V(1) =U(1) - i/dgv(1,2)a(2,2+), (4.77)

which is the sum of the external local potential U and the Hartree potential.
Using chain rules for the derivation, Eq. (4.66) is recast in the form:

5G1(4,2) 8V (5)

¥(1,2) = —i/d345v(1+,3)G(1,4) SV(5) U3’ (4.78)
where the following quantity is introduced
_ oV (1)
'(1,2) = —=£ 4.
=10.2) = S (479

Eq. (4.79) is the inverse of the dielectric function of the material. We also
introduce the irreducible vertex function
- 6G71(1,2)

I(1,2,3) = “—vE (4.80)

Irreducible means that Hartree contributions are included in V. By intro-
ducing the screened Coulomb interaction

W(1,2) :/d351(3,2)v(1,3). (4.81)
Y finally reads
¥ = z‘/d34G(1,4)W(3, 1MT(4,2,3). (4.82)

This expression is the seed of the GW method. However, some quantities
still remain to be expressed more explicity, notably e~! and I". Starting with
the inverse dielectric function, we insert expression (4.77) in Eq. (4.79) and

obtain (3.3%)
0G(3,3
—112:512—'/d3 1,3)————. 4.83
One can introduce the reducible polarizability of the system x(1,2) = —idp(1)/6U(2).
As opposed to the definition of irreducibility, reducible means that the quan-

tity p is only sensitive to the bare external potential. The link between
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irreducible y and reducible x representation of the polarizability is given
using the chain rule for the derivation

V(1,2) = —i / d35G5§/1£31)+) ggg’; (4.84)

We can insert the expression of e~! (4.83) back into
V(12 = X(1,2)+ [ B3 Ox(2), (4.85)

The irreducible polarizability can be expressed as a function of G and T
Using expression (4.65), one can show that the irreducible polarizability reads

X(1,2) = —i/d34G(1,3)f(3,4,2)G(4,1). (4.86)

Let us now turn to the irreducible vertex I'. By differentiating the Dyson
equation G™! = Gyt — V — ¥, one gets

1'(1,2,3) = 5(1,2)5(1,3)+5§‘£1(§> (4.87)
1'(1,2,3) = 5(1,2)5(1,3)+/d45§2<(i”§§ 5?&?&‘;’) (4.88)
(4.89)

Expression (4.65) can be used in order to calculate 0G//§V. The irreducible
vertex then reads

1'(1,2,3) _5(1,2)6(1,3)+/d4567§§&:§;(?(4, 6)G(7,5)T(6,7,3) (4.90)

One can see that ¥ depends (not exclusively) on T' and W as well as T
depends on ¥ and W depends on I' through chi. The intrication of the
equations require that a closed set is defined to make the resolution possible.
Such a set was introduced by Hedin [152] and counts five equations of five
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quantities
G(1,2) =Go(1,2) + /d34G0(1,3)E(3,4)G(4,2) (4.91)
'(1,2,3) =46(1,2)8(1,3) (4.92)
+ / d4567%6¥(4, 6)G(7,5)(6,7,3)
X(1,2) = —i/d34G(2,3)G(4, NI(3,4,1) (4.93)
W(1,2) —U(1,2)+/d34v(1,3)>z<3,4)vv(4,2) (4.94)
%(1,2) :i/d34G(1,4)W(3, 11T(4,2,3) (4.95)

The resolution of this system of equations is extremely difficult. However,
one can think of an iterative process: starting from a simple ¥ for example,
one can build the interacting Green’s function G, the vertex function I' the
irreducible polarizability y, the screened coulomb interaction W and finally
construct a new self-energy that can be considered as a new starting point for
a second iteration. That was the proposition of Hedin in order to solve such
system. However, the derivation of the second order vertex function shows
that already at the second iteration, the vertex has an excessively compli-
cated form. So one should hope that few iterations are actually required
to reach a solution. One can notice that the choice of W instead of v was
already motivated by the same consideration: expansion in powers of W was
supposed to converge faster than in powers of v.

In conclusion, we have presented two methods relying on perturbation
theory and series expansion. While there are important differences between
the two schemes, both relies on a fast convergence of the series in order to
truncate. However, the previous assumption is at least for extended systems
an hopeless dream due to the choice of Gy and v as expansion parameters.
Hedin presented a closed set of 5 equations that rely on the screened Coulomb
interaction W instead of the bare Coulomb interaction v. Few cycles around
Hedin’s pentagon are believed to achieve convergence and yield good results.
However, after one single iteration some of the quantities (particularly the
vertex I') becomes excessively complicated. Therefore, it is necessary to
introduce some approximation in order to solve Hedin’s system of equations.
We will see in the next section what kind of approximation should be made
to Hedin’s pentagon in order to calculate the QP excitation energies.
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Figure 4.2: Symbolical representation of the practical solution of the Hedin’s
equations. [118]

4.4.3 GW approximation

In order to solve the set of equations, a symbolical representation might be
useful (Figure 4.2). One can see that any approximation, at any node of
the pentagon will propagate to the other 4 variables. One possibility is to

approximate the vertex function is I'(1,2,3) = §(1,2)d(1, 3) as it is the first
term of I' in Eq. (4.90). The self-energy is then expressed as

$(1,2) = iG(1,2)W(2,1%), (4.96)

and Y becomes Y = —iGG. With this ansatz, G, ¥ and y have to be cal-
culated self-consistently from the Dyson equations. Alternatively, one can
start from the Hartree picture assuming > = 0. It follows that G = Gpy
where Gy is the Hartree Green’s function and I'(1,2,3) = §(1,2)d(1,3). The
irreducible polarizability reduces simply to the independent particle one yq.
As a consequence, the dielectric function and W are expressed within the
random phase approximation (RPA). All effects beyond these approxima-
tions are considered small with respect to the first-order. The self-energy is
expressed through the simple form

$(1,2) = iGp(1,2)We(2,17) . (4.97)

One should notice the use of Hartree Green’s function Gg. A further cy-
cle around Hedin’s pentagon will result in the appearance of the interacting
Green’s function and then higher order in Gy and W. However, the prac-
tical implementation of the GW is rather different from this procedure and
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is rather a compromise between using a fully interacting G as in (4.96) or a
Hartree G as in (4.97): most often the “best available” non interacting Gy
is used.

In the next section, we will present some of the approximations that are
usually made in order to make GW numerically tractable. In order to obtain
more physical insight, we look here at a simple approximation introduced by

Hedin in his seminal paper of 1965 [152], the so-called COHSEX approxima-
tion [152]. Following Hedin’s notations [153], we can express the screening
as
e (e, 1" W)
Wir,r',w) = /dr” P (4.98)
1 2w; Vi(x)Vi(r')
= P (4.99)

v —r/| w? — Wi

(2

where w; are excitation energies such as w; = E(N,i) — E(N,0) — i0 with
E(N,i) total energy and ¢ being an infinitesimal and V*(r) is called the fluc-
tuation potential

VZ(I') — /dr’ <N72WT(T'W(T/)|N> ) (4.100)

v — |

The first term of the right hand side of expression (4.99) is simply the bare
Coulomb interaction giving rise to ¥,. The second term W, = W — v con-
tains the full frequency dependent screening. We will focus on its contribution
to the self energy X, obtained from the frequency Fourier transformation
of (4.97)

Vil

w+wesgn(p —e) —¢’

(i1 Spa(@)li) = )

k=£0,1

(4.101)

where ¢; are the one particle removal or addition energies. One is interested
in the diagonal matrix element of the polarization self-energy (i|X,q|7) eval-
uated at w = ¢'°. In the denominator of expression (4.101), two energies
compete : the difference of single-particle excitation ¢; — ¢, and wy. In order
to compare the order of magnitude of each of these quantities, let us consider
the example of Na for whom the smallest excitation enery ¢; = —0.378 Ry
and the smallest w; = 2.414 Ry. Therefore, wy, > |e; — ¢|. Besides, |VF|?
approaches zero when |¢; — €| increases. Therefore, the matrix element of

10We will see later that we should in fact consider w = E), where Ej, is the QP energy.
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the polarization self-energy might be approximated as

(iSpaleli) = 3 semlu—a) -, (1102)
k40,1 k
Vi l? Vit l?
= 2 e — ! 4.1

PO Dl (4.103)

k+#0,l€ occ k+#0,l

Note that matrix elements of the static screening read
(i§|Woa(0)]i'5") = —22 Gabiy (4.104)

The polarization self-energy can hence be expressed as a function of (ij|W,01(0)]7'5")

(1% pa(e)lih = = 3 (W O)]1) + 5 S (W O)l)  (4.105)

l€ occ l

The first term of expression (4.105) gives rise to the statically screened ex-
change (SEX) when associated with the Fock term ¥,. The second term is
called the Coulomb hole (COH) contribution and using the closure relation
can be simplified further to 1/2 (i|W,a]7). The Coulomb hole contribution
can be viewed in a classical picture: 1/2W,, represents the energy required
to add a point charge F(r —ry) from infinity to ro. The factor % corresponds
to the adiabadicity of the process. Thus, the matrix element (i|W,,|i) corre-
sponds to the energy corresponding to the charge distribution |¢;(r)|?. The
introduction of an instantaneous screening W changes the sum over all states
into sum over occupied states only. The COHSEX method requires therefore
relatively little effort to be implemented compared to the exact GW approx-
imation. The COHSEX approximation is known to overestimate bandgap in
semiconductors by 20% [154]. Such difference is believed to originate from
the absence of dynamical effects. However, it has the merit of highlighting the
physics behind the GW approximation and the central role of the screened
Coulomb interaction W. COHSEX is generally not employed to calculate
excitation energies. Nevertheless, it is particularly useful in the practical
implementation of GW when one wants to iterate G and Y to approximate
self-consistency [155]. We will present in the next section the technical details
of the GW approximation.
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4.5 GW approximation in practice

4.5.1 All electron or pseudopotentials

Since the early practical implementation of GW in the 80’s [151], a contro-
versy appeared about how to treat electron and core interaction [156, ,

|. Results obtained in all electron methods [158] questioned the use of
pseudopotential to represent the core valence interaction '!. Therefore, one
may ask is the standard core-valence partitioning still valid in GW 7 . To
answer this question, let us consider the partitioning of Green’s function
G = G, + G, 2 and the polarizability P = P, + P.'* where ¢ and v refer to
core and valence electrons [160] yielding a GW self-energy

Y ~iG W +1G,W, +:iG,W,P.W, (4.106)

where W, is the valence polarizability such as W, = v + vP,W, '* The first
term refers to the screened exchange of core electrons. It is approximatively
the bare exchange term as the screening is ineffective for small distance. The
second term is what is usually calculated within the GW approximation: the
self-energy of the valence electrons. The third term is the screened polar-
ization due to the core electrons acting on the valence electrons. The first
and third term are most often considered at DFT level via the pseudopoten-
tial formalism. Within all-electron formalism, it can be calculated exactly,
though. Calculation of these contributions validate the use of pseudopoten-
tials: indeed the contribution of both terms is believed to be rather small.
Such approximation has been first validated on atoms [161, |, where the
contribution of both terms was estimated ~ 1 eV. For s — p semiconductors,
with shallow d electrons such as GaAs or Ge, the approximation breaks down
and contributions of the core-valence interaction to the bandgap as high as
0.3 eV arise [151]. The case of d electrons is of particular interest: the first
term of expression (4.106) depends mostly on the overlap between core and
valence wave functions. In the case of d electrons, the spatial overlap with s
and p electrons of the same shell is rather large: then the use of pseudopoten-
tials becomes problematic. However, it is possible to incorporate all states

'While the motivation was praiseworthy, the underestimated GW bandgaps they at-
tributed to the use of pseudopotential was in fact due to the rather limited number of
unoccupied states they used in their calculation. [159]

12The partitioning of G is obtained by restricted the sum over states in Eq.(4.22) to
core and valence states.

13The partitioning of P is realized in a similar manner as the one for G, by restricting
sum over transitions to transitions from core or valence to unoccupied states.

14 As a consequence, one can express the screening as W = W, + W, P.W.
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within the same shell n in the pseudopotential formalism and get closer to
the all-electron results [163]: such procedure has been applied with success
to the case of Cu 3d [1641] and CdS [165]. The third term (4.106) is generally
small and DFT is enough to obtain an estimate of it.

In conclusion, pseudopotential and all-electron GW calculations are equiva-
lent as long as the valence-core partitioning is chosen properly.

4.5.2 Perturbative, non perturbative or self-consistent?
Perturbative Gy,

The standard approximation is the “best G, best W” strategy, which over-
comes the (possibly heavy) iterative procedure. The idea is to calculate G
and W from the best mean-field theory that is available. In this context,
best refers not only to the quality of the wave functions and energies but also
to the computational cost one has to pay to obtain those quantities. Then
one can perform a perturbative correction to the existing excitation energies.
Let us first stress the analogy between the QP equation and the Kohn-Sham
ones. If one considers the exchange and correlation potential vy, to be a
simplified self-energy

N(r, v’ 1, t) = vee(r)d(r — 1) (t — 1), (4.107)

then the QP equation reduces simply to the KS equation. Consequently,
the solution of the Kohn-Sham equation in terms of wave functions ¢; can
be interpreted as approximate Lehmann’s amplitudes of Green’s function G,
the KS energies ¢; being the excitation energies. Therefore it appears clearly
that Kohn-Sham orbitals can be used as a starting point for the construction
of Green’s function and the self-energy. Furthermore, the KS energies and
wave functions can be expected to be close enough to the quasiparticle ones
to use of a perturbative scheme. This supposes that the wave functions
are well described within DET-LDA [154, 155] i.e. ¢; = ¥;, U, being the
quasiparticle wave function. The first order corrections to the KS energies ¢;
read then

(9i|2(E) — vxeldi) = Ei — € (4.108)
where F; is the quasiparticle energy. One should note that the self-energy

should be evaluated at w = E;. Usually, a Taylor expansion around e¢; is
performed and only the linear term is conserved

0% (w)
Ow

(Dl 2(E:)|bi) = (dilE(€i)|di) + (B — &) (]

w=e€

¢3) + O((E; — &)%)
i (4.109)



86 4. Many Body Perturbation Theory

Therefore, the quasiparticle energy F; can be expressed as

where Z; is the renormalization factor of Eq. (4.57). The calculation of Z;
involves the linearization of 3 which is only fully efficient in the proximity of
the Fermi energy. In fact, the frequency dependence of GW being contained
entirely in X, the linearization procedure should not be difficult as . be-
haves particularly well in the region of the Fermi level due to the absence of
poles.

GoW,y usually improves considerably the bandgap compared to DFT-KS
within LDA (see Fig. 4.3). However, the quality of the final results de-
pend strongly on the starting point: if the DFT-KS starting point is too
far from the experimental band structure as it is the case for CuBr or ZnO
(see Fig. 4.3), the resulting GoW, will suffer from it. An underestimation of
the bandgap leads to an overestimation of the screening and therefore, the
LDA underestimation of the GyW, correction to the bandgap. In practice,
this shortcoming could be corrected by applying a simple scissor operator to
the bandgap. However, the deficiencies of DFT-KS are multiple and depend
strongly on the type of material. For example, ZnO is famous for the under-
estimation of the p — d repulsion which tends to close its bandgap: hence, in
order to obtain the correct bandgap it is necessary first to treat correctly the
shallow 3d states of Zn. The perturbative approach being computationally
favorable, the starting point may be improved in order to get closer to the
experimental results. Several schemes have been proposed to fulfill this task
which are based on some of the methods presented in chapter 2

e Exact exchange (EXX) [166]: This scheme is still within DFT with a
local Kohn-Sham potential. Therefore, the application of the pertur-
bative scheme requires that DFT-KS wave functions per se are good.
Besides, EXX involves summation over unoccupied states which makes
the numerical application as heavy as the GoWj itself. It gives improved
results for systems particularlly difficult to describe such as ZnO: it
is interesting to notice that EXX succeeds in opening the bandgap,
however it fails in positioning correctly the Zn 3d bands. EXX is self-
interaction free and as a consequence, Rinke et al. postulated that
the poor description of these localized states within GW was due to
omission of electron-hole excitations or vertex [166].

e Hybrid functionals through generalized Kohn-Sham [131]: HSE03 or
PBEO functionals gave single particle energies very close to the QP
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Figure 4.3: Comparison between the calculated and the experimental band
gaps for a certain number of materials from Ref. [170].

ones, resulting in small GW corrections. The great advantage of that
scheme with respect to EXX is the improvement of the wave functions
due to the use of a non-local potential.

e LDA+U. Kioupakis et al. [L67] were the first to use LDA+U as a start-
ing point of GW in order to study bee hydrogen. They showed that the
bandgap was stable over a large range of values of U. Moreover, the
metal insulator transition was perfectly described by GoWyQLDA+U.
LDA+U corrects significantly the lack of localization for the electron 1s
of Hydrogen, which allows a perturbative many-body treatment only.
Jiang and co-workers [168] used LDA+-U as an enhanced starting point
for the study of Cerium oxide. One of the points raised in their work
was the difficulty to treat simultaneously itinerant states that are rather
well described in KS-DFT or GW and extremely localized states like
d or f electrons which may be well described within GW, or require
the incorporation of higher order correlation effects like in Dynamical
Mean Field Theory (DMFET) [169].
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Figure 4.4: Comparison between the calculated and the experimental band
gaps for a certain number of materials from Ref. [170].

Self-consistency

The GW approximation restricts Hedin’s pentagon to a simple triangle:
starting from G, one obtains W through the polarizability x then ¥ and
owing to Dyson’s equation GG. Cycle around the GW triangle is called full
self-consistency. The efficiency of such iterative scheme has only been stud-
ied for models or simple systems: electron gas [171], metals [172] or simple
semiconductors [173]. The results for spectroscopy were not encouraging at
all: a systematic deterioration of the description of bandwidths, quasiparti-
cle excitations and lifetimes was found. On the contrary, the ground state
total energies were found to be strikingly closed to the ones of QMC [174].
Such agreement is related to the fact that fully self-consistent GW fulfills
conservation laws 119, | such as the number of particle, energy and total
momentum. The solution to most of the problems seems to be the inclusion
of the vertex I' in the self-consistent scheme: self-consistency and vertex cor-
rections have shown opposite effects that cancel each other [170, , -
However, the ab initio calculation of realistic G realistic vertex corrections
is today still out of reach. In view of that, fully self-consistent schemes seem
to fail to predict the excitation energies.

Holm et al. showed that the dynamical part of GW was responsible for
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the poor performance of self-consistency [171]. Therefore, self-consistent GW
has only been considered within a static approximation [178, , , 179).
Such approaches known as restricted self-consistent GW present other advan-
tages besides removing the dynamical part of X: the quasiparticle equation
can be simplified considerably as the self-energy is frequency independent and
can be made hermitian. Therefore, one only needs to solve the QP equation:
doing so, one obtains Lehmann’s amplitudes or QP wavefunctions® and ex-
citation energies which permits to construct the self-energy operator. Thus,
the self-consistence is achieved straighforwardly by solving the QP equation
iteratively. Two main types of self-consistent schemes have been explored:
the self-consistent COHSEX [155] and the Quasiparticle Self-consistent GV
(QSGW) [170].

e Self-consistent COHSEX takes advantage of the hermitian nature of
the COHSEX self-energy. Most importantly, it does not require the
inclusion of unoccupied states in the calculation of the self-energy and
screening is evaluated only statically. The bandgap predicted is usu-
ally too large. However, the recipe involves the use of the sc-COHSEX
eigenstates as a starting point for a perturbative GoW, step. Sc-
COHSEX+Gy W, yields particularly good results for standard s — p
semiconductors and insulators [155], but also for transition metal ox-

ides [180, 181].

e QSGW partially includes dynamical effects in a very subtle way. Let

us follow the derivation made by Kotani et al. [179]. We consider the
bare QP equation with the following Hamiltonian:
v?
Hy=——+ v (r, 1) (4.111)
where v°f(r, r’) is a non-local frequency-independent effective potential.

The real or dressed QP equation is similar to the effective potential
being replaced by the non-local frequency-dependent self-energy. The
idea behind QSGW is to map the frequency dependent self-energy into
an effective potential the v°f. Such mapping involves two important
steps: get rid of the frequency dependence of ¥ and make ¥ hermitian.
Thus, the self-consistent scheme consists in constructing X(r, r’, w), and
then the corresponding effective potential v°% (r, r’). The convergence is
attained when the solution of the bare QP equation {¢;, ¢} ~ {E;, U;}
around the Fermi level, where {E;, ¥;} is the solution of the dressed

15The hermitianity of the QP Hamiltonian implies that Lehmann’s amplitudes are con-
sidered as QP wave functions.
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QP equation. The latter condition allows one to construct a relatively
simple effective potential such as

o = 25T {Re Sl + Re[S(e)) sl (@12

QSGW gives similar results compared to sc-:COHSEX+GoW, and yields
particularly good bandgaps (see Fig. 4.4). Moreover, it is a less crude
approximation compared to the static COHSEX that tends to dras-
tically overestimate some bandgaps. QSGW has proven its ability to
treat a broad range of materials [182, , , |. However, in this
thesis, we prefered the COHSEX approach as it does not involve sums
over empty states for each iteration.

In conclusion, we have presented two approaches used for the practical
implementation of GW: one based on first order perturbation theory called
GoW, and one based on the iteration of the GW triangle. Depending on the
system one wants to study, one is more relevant than the other. However, the
perturbation being usually performed on top of DFT-LDA, the two mains
reasons that prevent the use of GoW, are the lack of localization of the wave
functions and the severe underestimation of the bandgap which results in the
overestimation of the screening.

In the next section, we will describe the calculation of X within a plane wave
basis set and describe the self-consistent procedure used for the calculations
presented in this thesis.

4.5.3 Practical implementation
Calculation of y

Let us assume that we know G,. Therefore, the independent particle polar-
izability simply reads then

Xo(rl,rg,u}) = —% /dw'Go(rl,rg,w +w/)G0(r1.r2,w’) (4113)

If one introduces Lehmann’s representation of non-interacting Green’s func-
tion (4.22), expression (4.113) becomes

2 Uy (r)Vs (r
Xo(r1,ro,w) = _c Z /dw’ ki 1). kz.< 2)
2 K k. W+ W — e, +insign (e, — 1) : |
o 4114
Wy, (r1) V5 (r2)

J

X —
w' — €, + insign(ex; — )
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The integration appears to be particularly cumbersome due to the presence
of poles. However, one can take advantage of the residue theorem. By
considering a closed path of integration, the integral of an analytical function
of a complex variable z, f(z) is given by

ff(z)dz = 273 Z Res.—. f(2) (4.115)

where Res.—. stands for the residues of the pole z,. By choosing an adequate
integration path, ¢.e. either using an arc in the upper or lower imaginary
plan, one can reduce the integration over frequency to a sum over the poles
of the function of expression (4.114). First Green’s function has poles at
W' = €, —w — insign(ex, — p) and the second at W' = e, — insign(ex;, — p).
Hence, x( simplifies to

2
= D W, (1) T (11) Ty, (12) e, (1)
Nch ok J
y [9(% —0(p —ex)  O(p— e )0(a, — p)
w—(ex, — €, T11)  w— (&, — e —in)
(4.116)

Xo(rl, Iy, w)

The poles of xq lie in the lower plane when the transition energies are positive
(€k, < €x,) and in the upper plane when the transition energies are negative
(€x;, > €x,). In a region centered on p whose width is exactly the bandgap, xo
has no pole. The Fourier transform of the polarizability reads in a compact
form

Xo.c.c (Qw) = Z(fz = fj) %

i,J

pij(a+ G)pj;(a+ G')
w — (& — €;) +insign(e; — €;)

(4.117)

where 7 stands for k;, f the occupation number of states ¢. The evaluation
of Wea = 83G,v(q + G') is made with the help of the random phase
approximation polarizability

cece(q,w) =dga —v(a+G)xoce(aw) (4.118)

where x is the random phase approximation (RPA) polarizability y = (1 —
vX0) 'xo. Then, we have to construct the operator ¥ in order to solve the
QP equation (4.52). First, we partition the self-energy as ¥ = X, + ¥,
where ¥, is simply the Fock self-energy >, = ¢«Gv and 3. is the correlation
part of the self-energy defined as X, = X — 3,9, The correlation part of

160ne can notice the analogy with the definition of the correlation part of the exchange
and correlation potential. Correlation being extremely difficult to define, its definition
usually involves everything beyond exchange interaction.
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the self-energy is frequency dependent since it involves the energy-dependent
interaction W), = W — v:

Ye(ry,ro,w) = %/dw'ei”/aG(rl,rg,w + W) Wy(r1, o, ') (4.119)

The most time-consuming task is the evaluation of the frequency integral.
We have previously shown that G and W have poles along the real axis in the
upper and lower imaginary half plane. The integration over the complicated
pole structure of both G and W can be avoided by using a physical argument:
observing the imaginary part of e~!, which can be measured in an electron
loss experiments, one can realize that the spectra of e7*(w) are dominated
by plasmon peaks. Plasmons are quanta of the collective oscillations of the
electron density. The plasmon frequency of the free electron gas is

ne?

w,=h (4.120)

m*eg

where n is the electronic density, e the elemental charge, m* the effective
mass of the electron and g the dielectric constant of the material. Usu-
ally, semiconductor plasmon peaks lie high in energy ~ 20 eV. Therefore,
it appeared natural to model W by a single plasmon-pole model as it was
proposed in the original paper of L. Hedin [152]. Within this approximation,
g1 reads )

QG7G/
— (Wg,@ —in)?

tag(@w) =daa + = (4.121)
where Qé,(;/ and Wg @’ are two parameters to determine and 7 is an infinites-
imal ensuring the right time-ordering. One needs two constraints for each
(q,G,G’) to evalute the two parameters of the model. Several procedures
have been proposed which give similar results:

e Godby and Needs [185]: one has to calculate the dielectric function at
w = 0 and at some frequency on the imaginary axis, typically of the
order of the plasmon frequency w,. The dielectric constant behaves
smoothly on the imaginary axis, which makes the fitting procedure
easier to obtain g ¢/ and Wg @'

1

e Hybertsen and Louie [110]: one calculates e~' at w = 0 and enforces

the f-sum rule
7™ ,(@+G)-(q+G)p(G-G)

—1
/dwwlmerG,(q, w) = 5% a1 GP 00) (4.122)
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where p(G) is the crystalline charge density. The parameters Qg e
and Wg g are straightfowardly derived as

(a+G) (q+G)p(G -G

O = w2 4.123
0%,
De.a &G (4.124)

5G,G’ - gG,G/<q’ w = O) ‘

While the Godby and Needs model privileges the region of interest,
e., the low energy region, the sum rule in the Hybertsen and Louie
model does not favor the region of interest.

e In order to correct the shortcomings of HL plasmon pole, von der Lin-
den and Horsch [186] proposed a generalized plasmon pole model based
on the fulfillment of a generalized f-sum rule but only for diagonal el-
ements of eg g/ Engel and Farid [187] improved further the von der
Linden and Horsch model, proposing a scheme that yields plasmon
poles independent of G, G'.

All these models give very similar results considering the bandgap value.
However, Shaltaf et al. [188] have recently shown that if one is interested the
absolute position positions of the quasiparticle energy, the choice of the plas-
mon pole model is of primer importance. They studied the band offset at the
interface between Si/SiOy and found important differences in the band edge
shifts AFE), . depending on the plasmon pole model used. The results were
compared to the full frequency integration, which is the reference method.
The authors concluded that the Godby and Needs model outperforms all
the other plasmon pole models and yields very good agreement compared to
fully frequency integration. In this thesis, we will use exclusively the Godby
and Needs plasmon pole model. If one performs the frequency integration of
Eq. (3.62) using the single plasmon pole model, the diagonal matrix element
for X, can be evaluated by means of Cauchy’s residue theorem

27TZZPZJQ+G ng(q+G)
i GG a+G'’
QGG/ [ Q(M—Gj) + ‘9(63' — 1)

Wwtwee —€—1in w—Wwgg —€ i
(4.125)

(@[ %e7)

X
WG,G’

The matrix elements of ¥, have poles above (w < u) and below the real axis
(w > p) apart from a region centered around the Fermi level and whose width
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is 2. Their evaluation scales as N, x Ny x N& where Ny, is the number of
bands, Ny is the number of k-points and Ng the number of G vectors. The
calculation of X, not only involves the occupied states but also unoccupied
states. The convergence with respect to the number of bands is actually very
slow as demonstrated by recent reports [159]: it is clearly the bottleneck of
GW calculations and large efforts are currently undertaken to reduce the
computational load [189, 5].

In conclusion, the plasmon pole model is a standard method that allows
one to reduce considerably the computational cost of GW as it allows the
analytical integration over frequency in Eq. (4.119). While dictated by the
observation of electron loss spectrum, the choice of the plasmon pole model
is not relevant when the physics of the material requires the precise details
of the frequency dependence of W [190]. The single plasmon pole model can
give good results even in presence of complicated structures in the electron
energy loss spectrum [180].

The alternative to the plasmon-pole model is to perform the full frequency

integration. Several ways exist [160, 191] and present advantages and draw-
backs. We will focus on one of them which appears to be the most stable one:
the contour integration method [191]. The integration over the real axis is

replaced by an integration along the closed path displayed in Fig. 4.5. Using
the residue theorem, we can express Y. as

Se(w) = QL lzm 3 lim G(2)W,(2)(z — z,)
g pEpoles of G or W e (4126)

+i00
_ / 4 G + YW, ()

100

The second term on the right hand side of Eq. (4.126) is the contribution
from the imaginary axis. It is removed from the integration on the total
contour in order to retain only the contribution along the real axis. As
shown previously, G and W behave well along the imaginary axis due to
the absence of poles. Hence, it is believed that the integration along the
imaginary axis is numerically more affordable and stable than along the real
axis. Therefore, let us concentrate on the first term, the sum over the poles
of both G and W. The choice of the contour path allows one to reduce the
number of poles inside the contour. Only some poles of G are enclosed in the
closed integration path:

e in the upper-right quadrant, only when ¢; > w, the poles of occupied
states (i.e. i > ¢;) which lie above the real axis.
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Figure 4.5: Location of the poles of Green’s function G (crosses) and of the
screened Coulomb interaction W (open circles) and path of the contour integral
(arrows) used in the method. [118]

e in the lower-left quadrant, only when ¢; < w, the poles of unoccupied
states (i.e. pu < ¢;) which lie below the real axis.

If one translates all these conditions in terms of #-functions, one obtains
for the first term of Eq. (4.126)

D =10 —e) 06 — w) + 0w — €)0(e; — )]
— £ (4.127)

x Wy(e; — w +insign(e; — p)) .

The evaluation of the second term of Eq. (4.126) can be carried out fully
numerically [191] or semi-analytically |118]. The latter is performed taking
advantage of the fact that the form of the frequency dependence of G is
known and that the screening W is rather smooth along the imaginary axis.
This solution permits to reduce the sampling of ¢! along the imaginary
axis. This is of primer importance as the contour integration methods scales
as N& X Ny x Ny X N,,, where N,, is the number of frequencies along the
imaginary axis. The contour-deformation method is therefore much more
cumbersome than the simple plasmon-pole model.



96 4. Many Body Perturbation Theory

Self-consistency

In the case of self consistent calculations, the screening and self-energy have
to be recalculated typically ten times. This could in principle b done using
Yg.¢' in a planewave basis. However, a different path has been followed in or-
der to reduce the computational load. Let us consider the case of an hermitian
approximation to the self-energy > and a basis set of LDA wavefunctions.
As the DFT-LDA Hamiltonian is hermitian, then the LDA wavefunctions
form a complete set of orthonormal basis functions. Thus, the quasiparticle
wavefunctions |\1181:> can be written as

Z cieif | UEDM) (4.128)

where ¢ ;; is the projection coefficient cy;; = <\IIQP|\IILDA). Thus, we can
build the full matrix (i|%]j) in the LDA Hilbert space and diagonalize the
Hamiltonian. As ¥ is hermitian, the calculation of its matrix elements can
be restricted to one half of the matrix. Moreover, the projection matrix ¢
will be unitary such as ‘c-c = 1. The self-consistent procedure will use a
similar basis at each cycle in order to connect wave functions from iteration
[ to wave functions of iteration [ + 1

(g2 ch L) (4.129)

Then, the expansion of the QP wave functions in the LDA wave functions
basis set is recovered by means of matrix multiplication ¢ = ¢* - ¢ L...cl.
A question may arises: how good is the LDA basis ¢ Bruneval et al. stud-
ied extensively the size of such basis for different materials [118]. He pro-
posed a simple test in order to determine the number of DF'T wave functions
to consider in the basis: his argument relies on the expected difference of
Hartree-Fock wave functions with respect to LDA ones. QP wavefunctions
are believed to be closer to the LDA wave functions. Therefore, if one can
expand HF wave functions on the LDA basis sets, then it will be possible to
expand QP ones too. A relatively small number of LDA basis functions was
required to reproduce HF wave functions [155, 148]. The use of such basis set
is particularly interesting for localized states that demand several thousands
of basis functions in the plane wave basis set.

In the case of important changes of the wave functions, the QP electronic
density might be significantly different from the LDA one. Consequently,
important oscillations of the the matrix element of the Hartree potential have
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been reported, which result in degeneracy breaking of the states due to small
errors blowing up or non convergence of the self-consistent GW calculations.
Therefore, a damping procedure is realized through the mixing of the density
in order to prevent any oscillations. Thus, the electronic density at iteration
I pL. depends on the previous iteration [ — 1

Pin = P + (1= a)piy! (4.130)

where p;, is the density used as input ze the artificially damped density and
Pout 1S the real output density calculated from the wave functions. In prac-
tice, a value of a below 0.6 usually yields a sufficient damping to achieve
convergence [118]. In some extreme cases, one has to decrease « to 0.2 when
the changes of the wave functions are too important |[180].

In conclusion, we have presented Many-Body Perturbation Theory and
showed how we can calculate bandgaps within this theoretical framework.
Then we have detailed the practical implementation of the GW. The most
time- and ressource-consuming part is the calculation of the dynamical part
of the self-energy. However, it can be significantly simplified by the use of a
plasmon-pole model. We have also introduced the LDA basis sets which allow
us to considerably lower the computational workload. In the next section, we
will present GW results for ZnO and consider the different approximations
of GW presented in this chapter. Then, we will investigate the In-based
chalcopyrite compounds using DFT, Hybrids and GW technics.






Chapter 5

Results

5.1 Effect of self-consistency on d electrons

Since the early days of GoW, calculations, the quality of KS wavefunctions
has been questioned. Hybertsen et al. [151] found small differences between
LDA and QP wave functions for Si. Bruneval et al. studied the effect of self-
consistency in GW and in particular the quality of the LDA wave functions
when compared to their GW counterparts [155] for Si, Ar and Al. Their anal-
ysis showed that away from high symmetry k-points, the difference between
DFT and QP wavefunctions can be more significant even for simple materi-
als such as silicon. Unfortunately, they only considered sp materials and left
the question how bad is the description of d electrons in DFT ¢ unanswered
for more complex systems. Around the same time, Van Schilfgaarde et al.
stressed the importance of off-diagonal elements of ¥ in the calculation of
CGOQ7SCN or SI’TIO3 [ y ]

Following the spirit of Bruneval et al, we applied the different methods pre-
sented in Chapter 2 and 3 to zinc-blende (zb) phase of ZnO. This direct
bandgap semiconductor has attracted great interest in recent years due to
its application as a transparent conducting oxide (TCO) (see Chapter 1 for
example). Under ambient conditions, ZnO crystallizes in the wurtzite (wz)
structure and consequently only experimental results for the wz phase are
available. Nevertheless, zb-ZnO represents a good toy model to investigate
the approximations we will use for CIS compound. Indeed, calculations of
the zinc blende phase are computationally tractable due to the small number
of electrons in the primitive cell. Moreover, ZnO presents striking similarity
with CIS: presence of shallow 3d electrons and underestimation of the pd
repulsion resulting in a underestimated bandgap in DFT.

First, a discussion about the experimental data is necessary. As stated

99
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before, the zinc-blende phase of ZnO has not been synthetized experimentally.
Therefore, all experimental data originate from wurtzite samples. At the
DFT level, we have compared the binding energy of Zn 3d states and the
bandgap of wurtzite and zinc-blende phases. It results that the zinc blende
phase has a smaller bandgap and deeper 3d states than the wurtzite phase.
Therefore, one can consider that the zinc blende represents the upper bound
for the 3d binding energy and the lower bound for the bandgap. As these
two quantities are predicted respectively too high and too low in DFT, the
comparison with experimental data will be meaningful. Besides, binding
energies of 3d states observed experimentally suffer from a rather large range
of values. The popular reference [191] explored the valence band structure
of ZnO by means of x-ray photoemission spectroscopy: the binding energies
of the Zn 3d was measured at 8.8 eV below the top of the valence band.
Results compared well with previous UV experiments [195]. However, one
recent experiment has shown that the binding energy of 3d electrons might
be considerably smaller than what was predicted before (=~ —7.5 eV) [190,
, 198]. The reasons for such situation are many:

e Sample quality and surface effect: photoemission is a surface sensitive
techniques.

e Charge effects: Good samples can get charged in a photoemission ex-
periment and this charge can affect the band positions.

e Alignment of the Fermi level: Even though the surface and the bulk
Fermi levels normally agree, a band bending may occur which also can
introduce uncertainties of about 0.5 eV.

In the following discussion, we choose therefore to consider the whole
range of experimental data.

Figure 5.1 shows the band structure and density of states calculated in
DFT-LDA. The valence band maximum is threefold degenerated, a carac-
teristic of the zinc blende structure. It is situated at I" and is formed by
O 2p (67%) and Zn 3d (32%) states. The conduction band minimum also
occurs at I' and is formed by s orbitals centered on the anionic and cationic
sites. The DFT bandgap (0.5 eV) is severely underestimated with respect to
experiments but compares well with previous DFT calculations [199]. One
should notice that the use of pseudopotentials including semicores might de-
crease slightly the bandgaps, which explains the small discrepancy (~ 0.1
eV) between our results and previous pseudopotential calculations. Let us
now turn to the density of states which shows two pronounced peaks at 4
eV and 6 eV below the VBM. They originate from shallow core level of Zn
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Figure 5.1: Left panel: ZnO bandstructure within LDA at the experimental
lattice parameter. Right panel: the corresponding density of states.

3d. I'i24 is doubly degenerate and composed of purely e, states while I'y54 is
triply degenerate and is mainly composed of ty, (83%) states with a signif-
icant contribution coming from the O 2p states (17%). The binding energy
of this structure calculated in DFT present large disagreement with experi-
ments (see Tab. 5.1).

In this thesis, I have performed GoW, which succeeds in (i) opening the
bandgap by 1.5 eV and in (ii) correcting the position of Zn 3d states. Still,
both bandgaps and binding energies disagree significantly with experiments.

Symmetry DFT-LDA GoW, sc-COHSEX+GoWy QSGW  Expt.

I 0.5 2.09 3.99 3.8 3.6
I'i50 0.0 0.0 0.0 0.0
I'i24 -4.4 -5.8 -6.9 -6.6 75
54 -0.6 -6.6 -7.8 -7.4
I'y, -17.5 -17.7 -19.2 -19.0  -20.9

Table 5.1: Features of the band structures of zb-ZnO within different approxi-
mations: DFT-LDA, GoWy, sc-:COHSEX+GyWy and QSGW calculated in this

thesis. Experimental results for wurtzite structure are taken from ref [194, 196]
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Because the states involved in the bandgap have a significant 3d component,
the inclusion of non diagonal elements of > might be necessary to correct the
discrepancy with experiments [200].

The next step in our analysis will be to perform sc-COHSEX+GoWj. The
bandgaps calculated with this method agree well with experiments. The
binding energies of Zn 3d states are considerably improved compared to
GoWjy. Furthermore, sc-COHSEX+GoW, and QSGW yield similar results
and are in agreement with previous calculations [179]. Besides, we can com-
pare our pseudopotential results against all-electron calculations [192] and
demonstrate that the core-valence interaction are rather well described within
the pseudopotential formalism for ZnO. In order to establish how much the
change of wavefunctions affect our result, we also perform a self-consistent
calculation only on energies, i.e., updating the energies in Green’s function
G and the screening W but keeping the wave functions fixed (Tab. 5.2). One
can see that self-consistency on energy predicts a bandgap too large com-
pared to experiments while the position of 3d states are higher than for the
full self-consistency. Besides, the bandwidth of Zn 3d states increased by
0.3 eV between the two flavors of self-consistency. While the discrepancy is
important for the bandgap, the difference in the binding energies of 3d states
is rather small.

We will now look at the matrix elements of the different quantities which
enter the QP equation within the COHSEX approximation: Hartree hamil-
tonian (Hpartree), Hartree-Fock self-energy (X,) and the correlation part of
the COHSEX self-energy (X.). The two former terms depend only on the
wavefunctions and not on the energies while the latter depends on both. A
similar analysis has been carried out in Bruneval’s work [118] for CuyO and
the author concluded that large variations of the matrix elements can occur
under change of the wavefunctions but the variations of (Hyartree) and (X,)
self energy mostly cancel each other resulting in the overall innocuity of the
change in wavefunctions. First let us consider the top valence band I'ys,.

Symmetry sc-COHSEX+GoWj (E) sc-COHSEX+GoW, (WF and E)

I 4.55 3.99
I'i50 0.0 0.0
194 -6.7 -6.9
I'i54 -7.3 -7.8

Table 5.2: Band structure features within different flavors of self-consistency:
on energies only and on both energies and wavefunctions.
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The use of sc-COHSEX wavefunctions to construct both operators results in
the decrease of the absolute value of their matrix elements. However, the de-
crease of (2,) is in absolute value more pronounced than the one of { Hyartree):
in this particular case, the conclusion of Bruneval et al. breaks down, change
in wavefunctions results in an upward shift of 0.8 eV that explains mainly the
difference in the bandgap between the two types of self-consistency. Despite
the relativaly small amount of d character of I'y5,, changes may be important
even at high symmetry k-points.

In conclusion, we can expect a large change of the DFT wavefunctions in CIS
where the VBM is composed of a higher percentage of d states. Besides, the
remaining difference between GoW, and the self consistent scheme for the
bandgap might come from the strong overestimation of the screening in W,,.
Let us now turn to the effect on Zn 3d states which is believed to be even
stronger: Tab. 5.2 shows that the matrix elements change by more than 4
eV in some cases. Symmetry of the states seems to play an important role
as the effects for ty, states is significantly enhanced compared to ey,. The
d states are pushed downwards with the use of improved QP-wavefunctions.
One might wonder about the fact that self consistency on energy seems to
contradict this conclusion. However, the result is just enhanced by an artifact
of the iterative procedure: at each iteration,(Hyariree) + (22 is added to the
QP energies. The table shows that this term is of the order of several eV and
cannot be cancelled to a large extent by (X.). Therefore, the states are nat-
urally shifted down and improvement over GoWj is obtained. Nevertheless,
one might question the relevance of doing a calculation updating energies
only in the case of systems involving d electrons. Figure 5.2 displays the
difference between the partial electronic density corresponding to the state

scCOISEX+GoW, (E) | scCOHSEX +GoW, (WE&E)
Symmetry <HHartree> <Ex> <Ec> <HHartree> <Ex> <Zc>
I 19.3 -9.3 41 18.9 -7.6 -4.4
50 31.5 -32.0 -0.25 30.5 -29.2 -0.25
Toa 377 -48.0 22 405  -49.0 1.9
M54 31.0 -41.3 2.0 36.95 -45.8 2.0

Table 5.3: Matrix elements of COHSEX constructed with self-consistent
COHSEX wavefunctions and energies or LDA wave functions and self-
consistent COHSEX energies
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I'15, in sc-COHSEX and in DFT-LDA expressed as

Ap= 30 (] el (5.1)

a=(k,i)

Compared to DFT-LDA, sc-:COHSEX removes electronic weight from the
region centered on the zinc site to add it in region centered on the oxygen
site. Therefore, the hybridized state I';5, has a stronger O 2p character in sc-
COHSEX than in DFT-LDA. Considering the projection of the VBM wave
function on the LDA-basis set, one can immediately see that deep Zn 3d
DFT-LDA states contribute significantly to the QP wave functions. The ad-
mixture of Zn 3d states in the VBM originates from the energetic proximity
of O 2p states and I'y54, inherited from the underestimation of the binding
energies of 3d electrons by DFT. On the other hand, sc-COHSEX also cures
the I'i5q and 9y states calculated within DFT-LDA !: removing electronic
weight around the O site, sccCOHSEX predicts an almost pure Zn 3d char-
acter for I'54.

In summary, our conclusions are

o sc-COHSEX+GoW, and QSGW methods predict binding energies and
bandgaps in good agreement with experiments.

e When the usual DFT starting point is bad, self-consistency becomes
necessary.

e Large changes in the wavefunctions might occur even at high symmetry
k-points and impact significantly the bandgap.

5.2 Theoretical prediction of structural param-
eters of CIS

The chalcopyrite structure has been introduced in Chapter 1 and the tech-
niques used to investigate its structure via ab initto methods in Chapter
2. The Hellmann-Feynman theorem allows one to calculate forces acting on
atoms and therefore to predict the phase of the materials by means of energy
minimization. The main limitation of the Hellmann-Feynman theorem is the
choice of the total energy functional to describe the ground state of the ma-
terial. In practice, DFT-LDA or GGA functionals are employed and yield

1Schréer et al. [201] noticed the accidental admixture of Zn 3d with O 2p states within
DFT-LDA.
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Figure 5.2: Top panel: (a) Isosurfaces of the DFT-LDA wave function at I'y5,
(VBM) (b) Isosurface of the difference between the QP wave function and the
DFT-LDA wave function at I'15, (VBM). The value defining the isosurface cor-
responds to 0.4 of the value defining the isosurface in (a). The Blue isosurfaces
are negative changes and red isosurfaces are positive changes. The magenta
balls represent zinc atom while red balls represent oxygen ones. Bottom panel:
Projection of the QP wave function at I'y5, in the DFT-LDA basis set.

particularly good results for sp materials with standard bonding. As stated
in chapter 1, there are two different bonds in CIS, namely Cu-(S,Se) and
In-(S,Se), whose difference gives rise to the anion displacement u. Bonding
occurs under the condition of spatial overlap of the orbitals of two different
atoms with the same symmetry. In CIS, the bonding states are hybridized
states of (Cu, In) with (S, Se). In the case of Cu-(S, Se), the bonding is
realized due to Cu 3d-(S, Se)p hybridized states. The origin of the bonding
between In and the anion is on the other hand rather unclear as it involves
two different kinds of hybridization: In 4d-(S, Se)s and In 5s-(S, Se)p. Jaffe
et al. [1] favored the existence of the latter while they only mentioned the
rather elongated form of the (S, Se)s towards the Indium atom. More recent
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Figure 5.3: Electronic density along the Cu-Se bond (left panel) and the
In-Se bond (right panel). Small black sphere refers to Cu, light grey ones refer
to Se and large to In.

reports [202] acknowledge the participation of both bonding states though.

The participation of localized states such as Cu 3d and In 4d in the bond-
ing can make the DFT treatment inappropriate. We will show that this
observation is indeed relevant for the case of CIS. Figure 5.3 depicts the elec-
tronic density along Cu-(S,Se) and In-(S,Se) bond predicted in DFT-GGA.
First, one can realize that both bonds are rather ionic as the maximum of
density is shifted towards the anion site. Besides, the In-(S,Se) bond appears
to be more ionic than Cu-(S,Se) because dma > > dax °5) where dian>)
is the distance between the maximum of density along X-(S,Se) bond and
the cation X. High electronic density closed to Cu and In originates from d
states and seem to participate in the bonding density. Such assumption will
be proved in the forthcoming discussion.

We performed lattice relaxation by means of energy minimization using dif-
ferent energy functionals. Results are summarized in Table 5.4.

The lattice parameter a and the tetragonal distortion n are well described

by DFT with the usual deviation from experiments between LDA and GGA:
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GGA overestimates the lattice parameter while LDA underestimates it. How-
ever, u is systematically underestimated by DFT: GGA give a slightly better
u than LDA but it is attributed to the change in the lattice parameter.
The anion displacement is systematically underestimated: it is related to
the underestimation of the Cu-(S,Se) bond length relative to the In-(S,Se)
bond length. If one considers the smallest experimental values available, the
discrepancy is of the order of 2.2% for both type of anions. The deviation
increases up to 7% if only single crystal samples are taken into account [203].
Besides, Jaffe et al. have already investigated the effect of v on the bonding:
the increase of u results in a lowering of the charge on the stretched Cu-S
bond and therefore in reducing the Cu 3d character of the bond. Inversely,
one can think that the change in the Cu 3d character of the bonding states
may impact on the value of u. Following this spirit, it is natural to relax the
structure with techniques curing partially the localization problem of DFT
when treating Cu 3d states: GGA+U and Hybrid functionals. For GGA+U,
we use a value of U previously used for CIS [31], Ux 6 eV. One can no-
tice an overall improvement of all the structural parameters. While LDA+U
only slightly modifies the lattice constant, HSE06 predicts a in agreement
with experiments by less than 1%. The most striking improvement concern
the anion displacement u: LDA-+U significantly increases u compared to
standard DFT while Hybrid functionals reach a much better agreement with
experiments.

A large review of the literature for CulnSes shows that previous DFT cal-
culations of CIS [211, , , 211] seem to fail systematically when based on
local or semi local approximations (see Figure 5.4 bottom panel). However,
our calculations using hybrid functionals (PBEO, HSE06 or B3LYP) display
values for the anion displacement closer to experiments (see Figure 5.4 bot-
tom panel). In order to understand the discrepancy between hybrids and

LDA GGA GGA+U HSE06 Expt.

a 543  5.58 5.57H 2.545  5.52
CulnS, 7 1.004 1.004 1.003 1.004 1.006
v 0.216 0.220 0.223 0.229  0.230
a 570 597 5.97 5.817  5.784
CulnSe, 7 1.004 1.004 1.004 1.004 1.004
v 0.216 0.218 0.222 0.227  0.235

Table 5.4: Structure parameters of Culn(S,Se)s within different approxima-
tions of the total energy functional.
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Figure 5.4: Histogram representing the experimental distribution of w for
CulnSes (top panel) [203, , , , , , , | (see discussion in
Appendix 2) and theoretical distribution of u for the same compound (bot-
tom panel). In the latter, red histograms correspond to LDA/GGA DFT
calculation [211, , ) | while magenta one to Hybrid calculations
(HSE06,PBEO and B3LYP) we performed.

local and semi-local functionals, let us focus on the electronic density calcu-
lated within these two methods. Figure 5.5 shows ptSE% — pGGA along the
Cu-S bond and the In-S bond for value of v = u%%*. HSE(06 acts similarly
along both bonds: the cation density is significantly localized close to the
nuclei, which results in a loss of electronic density at mid-bond distance.
Inversely, HSE06 delocalizes the electronic density around the anion site to-
wards mid-bond. The In-S bond seems to undergo a much more important
correction than the Cu-S bond.

In the GGA+U calculation, we only consider the U correction to the Cu
3d electrons. Applying the GGA+U to In 4d electrons? improves significantly
the structural parameters: the lattice paremeters are within 1%-agreement
with experiments (¢ = 5.52 A for CulnS, and @ = 5.818 A for CulnSe,),
comparable to those obtained with HSE06. The anion displacement w is also
dramatically impacted by the Hubbard correction applied to In 4d states:
uw = 0.231 for CulnSy and u = 0.228 for CulnSey;. The correct treatment
of the In 4d states are hence the key for a good description of parameter w.

2We choose Uy = 7 eV for In 4d as previously reported in the literature [215]
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Figure 5.5: Difference of the electronic densities predicted within GGA and
within HSE06 at v = uSGA along Cu-S (left panel) and In-S bond(right panel).
The medium black sphere refers to the Cu atom, the large white sphere to the
In atom and the small grey spheres to the S atoms.

It also proves that the In 4d and (S, Se) s states are mainly responsible for
the In-S bonding. GGA+U outperforms hence significantly standard GGA
as long as both Cu 3d and In 4d states are corrected and gives structural
parameters very close to the ones predicted within HSE06 at a significantly
lower computational cost.

In summary, our conclusions are

e Bonding in CIS occurs between Cu 3d and (S, Se) p states for the Cu-(S,
Se) bond and between In 4d and (S, Se) s for the In-(S, Se) bond.

e Prediction of the internal anion displacement is hindered by the lack of
localization of Cu 3d and In 4d states.

e Numerical methods that cure the self-interaction problems and there-
fore that localize correctly Cu 3d and In 4d states yield values of u in
good agreement with experimental results.
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Figure 5.6: Schematic molecular orbital diagram of the bonding between Cu
3d and (S, Se) p states in CIS.

5.3 Electronic structure of Culn(S,Se),

As a ternary compound, CIS presents a complex electronic structure. Let us
first focus on the upper part of the valence density of states. It involves the
bonding between Cu 3d states and anion p states. The fivefold degenerate 3d
states of copper transform into a threefold degenerate I'j5(d) combination and
into a twofold degenerate I'15(d) combination. I'j5(d) states are characterized
by lobes pointing toward adjacent anions while I'15(d) are formed by lobes
pointing between nearest-neighbors anions. Therefore, I'15(d) can hybridize
with states of the same symmetry to form bonding states and antibonding
states such as depicted in Fig. 5.6.

One can show by perturbation theory that these states will repel each
other with a strength proportional to % where (p|V'|d) is the p-d re-
pulsion matrix element and Ae,, the energy separation between I';5(p) and
I'15(d), Aepa = I'i5(p) — ['15(d). Therefore if Ae,q is small enough like in
the case of CIS, the VBM will be shifted upward and as a result will close
the bandgap: this is the so-called bandgap anomaly of I-1I1I-VI ternary com-
pounds [216].3 It is explained partially by the p-d repulsion often refered as
the d-orbital hybridization contribution AE;I and by structural effects AEgS
stemming from either the anion displacement u or the tetragonal distortion

3The bandgap anomaly is the name given to the bandgap closing of the I-III-VI com-
pound compared to their binary isoelectronic counterpart.
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Figure 5.7: Total density of states (top panel) and partial density of states
(bottom panels) of CulnSs. Red lines refer to d states, blue lines to p states
and green lines to s states. Fermi level is at 0 eV.

n [1]. Tt results that the upper part of the valence density of states is domi-
nated by pure Cu 3d, (S,Se) p, Cu 3d-(S,Se)p bonding and antibonding states.
On the other hand, the lower part of the valence density of states (down to
20 eV) mainly originates from In-(S,Se) bonding states, pure In and (S,Se)
states. In order to distinguish between all these states, we will introduce the
partial density of states. The partial density of states, also refered to the
projected density of states, corresponds to the local density of states around
an atom of specific angular momentum [. The [-projected density of states
of an atom « reads

PDOS™ (w ZZ/ 0¥ (6, )05, (1) X 6w — ) (5.2)

k;ji m

where V is a volume around atom « and Y} ,,, are the spherical harmonics
with {0, ¢} the spherical angular coordinates. One can then identify which
atoms and orbitals participate in the density of states in a particular energy
range. Figure 5.7 shows the density of states of CulnS, calculated within
DFT-GGA, together with its partial density of states.

Down to 6 eV below the Fermi level, the valence is formed exclusively
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by Cu and (S,Se) states. The strong peak at 2 eV below the Fermi level
originates from Cu 3d states. A small heteropolar gap of 1 eV separates the
non bonding states of Cu 3d from the non bonding states of S 3p (or Se
4p). This is the first major disagreement with experiments as this gap is not
present in photoemission experiments [217]. The structure at w = —6.5 eV
is assigned to the bonding states In p-(S, Se) s. At much lower energy, two
structures dominate, the anion s electrons around 13 eV below the Fermi level
and the In 4d electrons 15 eV below the Fermi level. One can notice some
admixture between In 4d and S 3p which confirms the hypothesis formulated
previously about bonding occuring between In 4d and (S,Se) s states. The
overall agreement with experiment is rather good with only exception of the
heteropolar gap and the position of the In 4d states. The position of the
valence features for the different methods are summarized in Tables 5.5.

Figure 5.8 shows the density of states calculated within GGA+U and
HSE06. The geometry has been relaxed with the functional used to com-
pute the DOS. GGA+U gives significantly different results than GGA: the
Hubbard term acting on the Cu 3d states pushes the upper valence bands
downwards, filling partially the heteropolar gap. The overall upper valence
structure is improved and now agrees with experiments. However, the bind-
ing energies of states lying at lower energies are significantly worsened com-
pared to GGA. This can be understood easily by the fact that GGA+U only
acts on Cu 3d, which is believed to be the largest source of error of the GGA
calculation. Such dissymetric treatment between Cu 3d states and states with
different symmetry or originating from different atoms may result in a non
physical solution when large hybrization is present (as is the case for CIS).
On the other hand, HSEO06 improves further the density of states: first, the
heteropolar gap is recovered while slightly smaller than in GGA. The main
difference with GGA occurs for the position of (S,Se)s and In 4d states that
lies significantly lower in energy. This trend worsens the agreement with
experiments for (S,Se)s while it improves the agreement for In 4d. Still, the

GGA GGA+U HSE06 Expt. [218, ]

E, -0.02 0.6 1.3 1.54
In-S 6.3 5.9 6.7 6.9
S 3s band  12.5 12.2 13.6 13.0
In 4d band 14.9 14.5 16.4 18.2

Table 5.5: Comparison of calculated and observed band structure of CulnSs
(eV).
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Figure 5.8: Total density of states of CulnSs calculated with DFT-LDA (top
panel), GGA+U (middle panel) and HSE06 (bottom panel). Red dashed line
with red crosses corresponds to photoemission experiments [217]. Fermi level
is at 0 eV.

latter lies still 2 eV higher than observed in the photoemission experiments.

Prediction of the anion displacement u is one of the largest disagreements
between the different methods. It is therefore natural to see the effect of u
on the density of states. Figure 5.9 displays the density of states of CulnS,
calculated within the GGA for different values of u, keeping a and 7 fixed.
Some states are more impacted than others by the variations of u: the bind-
ing energy of In-S bonding states and In 4d states remain constant while
those of S 3s are strongly dependent on u. This argument is in favor of the
hypothesis stating that the bonding between In and the anion proceed more
through the In 4d and (S,Se) s orbitals rather than In 5p and (S,Se) p. The
other astonishing effect of u is the variation of the bandwidth of the upper
part of the density of states. As a consequence, the heteropolar gap is sig-
nificantly affected. The p-d repulsion seems therefore particularly sensitive
to the anion displacement. Parallely, we already know that it is responsible
for the bandgap anomaly. Hence, u might have a significant impact on the
bandgap too.

Considering that experimental data are usually obtained from polycrys-
talline or thin film samples, one can think of w as a distribution over the
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Figure 5.9: Density of states calculated within the LDA in different regions of
the valence. The black curve refers to the relaxed value of u in GGA (urelaxed —
0.219), the red curve to u = 0.235 and the blue curve to v = 0.21

whole experimental range and therefore, filling of the heteropolar gap by Cu
3d and S 3p states might occur. This simple study of the effect on u on the
density of states shows that u plays a central role in the determination of the
electronic density of CIS. Furthermore, as theory significantly disagrees on
the value of u, and experiments yield a large dispersion of measured values
of u, we believe that a systematic study of the bandgap versus u should be
performed.

In conclusion,

e The electronic structure of CIS is extremely complex and involves many
types of orbitals from three different atomic species.

e The top valence spectrum is formed by Cu 3d and (S,Se) p bonding/antibonding/non
bonding states.

e The lowest part of the valence spectrum is composed of In and (S,Se)
states mainly.

e The p — d repulsion has an important impact on the bandgap known
as the bandgap anomaly.
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5.4 Analysis of the bandgap

The quantity of interest for PV applications being the bandgap, let us turn to
its theoretical treatment. This section will be divided in two subsections: one
discussing the bandgap at the DFT level and beyond (GGA+U or Hybrid)

and a second one discussing the bandgap at the GW level.

5.4.1 Prediction of the bandgap within DFT and Hy-
brid functional

DFT-KS is by no means able to reproduce experimental bandgaps as it has
been shown in the theoretical part of this thesis. However, DFT is a rather
common starting point for any advanced ab initio methods and is often a
good indicator about which physics is present in the material. We performed
different DFT calculations with different flavors of technicalities: LDA or
GGA, pseudopotential versus PAW, inclusion of semicores (3s and 3p for Cu
and 4s and 4p for In) in the pseudopotential.

DFT-LDA/GGA predicts a strong dependence of E;, upon w: dE;/du ~
13 eV (see table 5.6 and Figure 5.10), which is in agreement with previous
DFT-corrected *calculation [220, 1, 216].

If one considers Au = 0.02 defined in Sec. 5.2, the change of bandgap
will be ~ 0.2 eV which is inconsistent with the observation of the bandgap
stability in CIS. The use of PAW instead of pseudopotentials shifts rigidly
the curve while GGA tends to open up the gap more than LDA. They do not
modify the slope of the dependence though. However, in most of the range
of u, the bandgap remains negative. Similar prediction of a negative bandgap
by DFT have been obtained for InN [221] or polymorphes of Cu,S [222].
The overestimation of the p — d repulsion in DFT is responsible for such
remarkable feature of the band structure. The case of Cu,S is of particular

“In [220], the authors used a constant scissor operator to open up the bandgaps. Such
approach only modified the absolute position of the curve E, versus u, not its slope. On
the other hand, in [1, 216], the authors scaled the exchange potential of the LDA functional
in order to open up the bandgap.

GGA GGA+U HSE06 GoW, scGW
PuleV] 13 17.7 206 150 378

Table 5.6: Slope of the dependence of bandgap of CulnSs on the anion dis-
placement u
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Figure 5.10: Bandgap of CulnSy calculated in DFT versus the anion dis-
placement w: impact of the DFT functional and the treatment of core-valence
interaction on the dependence of the bandgap on

interest as its valence density of states shows important similarities with the
one of CIS:

e the valence band maximum is formed by an hybridization of Cu 3d and
S 2p states.

e a large peak in the density of states at 3 eV below the Fermi level
originates exclusively from Cu 3d states.

e a 1.5 eV wide heteropolar gap separates this peak from the non bonding
S 2p states at 4 eV.

e in DFT-KS, the conduction band minimum composed of Cu 4s states
lies below the VBM, which results in a negative bandgap.

Similarly, the valence band maximum in CIS occurs at I'. It is composed of
hybridized states Cu 3d (~ 50%) and (S,Se)p(~ 50%). Its form is character-
istic of the chalcopyrite phase: the triply degenerate zinc blende state I', is
split in the doubly degenerate I'5, and the simply degenerate I'y,. The differ-
ence between I'5, and Iy, is called the crystal-field splitting Acp. Spin-orbit
coupling may further split the doubly degenerate I';, states.
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Eg=-0.15 eV

Figure 5.11: Schematic structure of the top of the valence bands and the bot-
tom conduction band at I" of CulnSs for v = 0.230. Isosurface plot represents
the wavefunction of each states.

Inspecting the valence band structure close to the I' point, one can notice
the presence of a band lying just below the three states forming the valence
band maximum at I". This band is depicted in Figure 5.11. It has mainly In
p character and a rather delocalized form, while the top valence is thought
to be formed by localized antibonding states of Cu 3d and (S,Se) p. GW
results will confirm that the band with In p character is indeed the true
CBM. We also used GGA+U and HSEOQ6 in order to predict bandgap of CIS.
Figure 5.12 depicts the bandgap calculated in GGA+U or HSEO6 versus u.
One can see a clear improvement of GGA+U and HSE06 compared to DFT:
CIS is predicted as a semiconductor for a larger range of u. Furthermore,
HSE06 reaches the experimental bandgap of 1.5 eV for u ~ 0.235. These
two methods appear to be extremely powerful due to the relatively good
agreement with experiments and the low computational workload. Besides,
it was shown in the previous section that they significantly improve the struc-
tural parameters. The dependence of E;, upon u gets significantly stronger
18 eV (GGA+U) to 21 eV (HSE06) compared to DFT. Considering again
Auw, it yields variations of the bandgap of 0.27 eV (GGA+U) and 0.315 eV
(HSEO06). In order to resolve the apparent contradiction between the exper-
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Figure 5.12: Bandgap of CulnS; versus the anion displacement u: impact of
different functionals (Hybrid, GGA+U) on the dependence of the bandgap on
u.

imentally observed stability of the bandgap and the theoretically predicted
strong dependence of E, on u, we will present the GW results, which is the
state-of-the-art method to treat the bandgap.

5.4.2 Prediction of bandgap by means of GW methods

DFT-LDA or -GGA seems to be a particularly bad starting point: it pre-
dicts a semi-metal while the real nature of CIS is semiconductor. Therefore,
a simple first order perturbation correction will not be sufficient to correct
the bandgap as the occupation number of the bands has to be modified too.
Two alternatives are possible when such case is encountered: the choice of
a different starting point |199, , | or the use of an iterative scheme
of GW [178]. We have chosen an hybrid solution, i.e. we construct a bet-
ter starting point with a simplified iterative GW before performing a first
order perturbation GoWj, namely sc-COHSEX+Go Wy [155, | (see sec-
tion 4.5.3).

We use as a starting point DFT-LDA with pseudopotentials including
the whole n = 3 shell for Cu and the whole n = 4 shell for In. First, we
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Figure 5.13: GW corrections versus the DFT-LDA energies. Red dots rep-
resent the GoW)y corrections on top of DFT-LDA while blue crosses represent
sc-COHSEX+GgWy corrections. The shaded pattern in the background rep-
resents the DFT-LDA density of states.

perform a perturbative GoWj. As already expressed in the previous section,
the perturbative approach may seem inadequate due to the relatively bad
starting point that represents DFT-LDA. However, the Gy, results reveal
some interesting points about the physics of CIS.
First, we get a confirmation of the presence of a negative bandgap in DFT.
Figure 5.13 depicts the GW correction of each state as a function of the DFT
energies of the states. Occupied and unoccupied states should present a fairly
different GW correction: however one of the occupied states, the true CBM,
despite its non zero occupation number displays a different GW correction
compared to other occupied states. It originates from its rather delocalized
character which make its correction ressemble those of the other conduction
bands. While it is not very pronounced in the perturbative approach, it is
emphasized by the self-consistency.

Already at this perturbative level, the occupation numbers of states close
to the Fermi level at I' should be modified accordingly to the new ordering of
the energies induced by the GW correction. > Doing so, the bandgap opens

5One can consider the reorganisation of the band according to the new Fermi level as
the first iteration of the self-consistency.
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up on a wider region of u. Nevertheless, GoW)j still underestimates drasti-
cally the bandgap.

The second interesting point about GoW, occurs for large values of u, i.e..k
u > 0.240 where the initial DF'T bandgap is already positive. While the
dependence upon u of EgoWO is very similar to the one of DFT in the range
where DFT predicts a negative bandgap, this dependence becomes suddenly
stronger for u > 0.240 (cf Tab. 5.6). Such dramatic increase is again in dis-
agreement with the experimentally observed stability of the gap: considering
the range for Au, then the variation of E,; reaches ~ 0.6 eV.

In this spirit, we performed a scCOHSEX-+G W, calculation. It opens up
the bandgap significantly with respect to the perturbative approach, giving
reasonable results compared to experiments for the experimental range of
u. The scCOHSEX+GyW, corrections are depicted in Fig. 5.13: they are
strongly state-dependent and because of the rich structure of the CIS den-
sity of states, vary significantly from one state to the other. A large positive
correction to one occupied state is observed close to the Fermi level, which is
the fingerprint of the negative bandgap character predicted in DFT. Looking
now to the variation with respect to u, on the region delimited by the two
shaded areas of Fig. 5.12, HSE06 and scCOHSEX+GyW) are in overall good
agreement with each other, the only exception being the slope of the bandgap
dependence. This slope is similar to the one we found in GyW, when the
starting point predicts a semiconductor character for CIS. The sc-COHSEX
increases the slope while the perturbative GoW, on top of it, retains the slope
but closes the bandgap by 0.3 eV. Therefore, dynamical correlation effects
do not play a major role in this dependence which is due exclusively to static
many-body effects. The self-consistent COHSEX treatment catches there-
fore the physics of CIS in a much simpler formalism than the full dynamical
self-consistent GW. On the other hand, neither DFT, DFT-+U, nor hybrids
can describe it successfully. In order to understand its origin, we will try
to answer some of the questions that have been raised in the previous two
sections.

In conclusion,

e The self-consistent GW scheme (, i.e., sc-:COHSEX+GyW,) predict
bandgaps in agreement with experiments.

e The dependence of E, upon u is strongly increased within the scGW
formalism with respect to the other methods.



5.5 Many-body effects on the energy gap of CIS 121

3 T T T T T T T

oo | DA PP with sc

2.5- o GGA+U 7
- vv HSEOQOG6 1
+—+G,W,

Figure 5.14: Bandgap of CulnS, versus the anion displacement u: impact of
many-body effects and flavors of GW on the dependence of the bandgap on u

5.5 Many-body effects on the energy gap of
CIS

5.5.1 Why is the bandgap so dependent on the value
of u ?

The answer to this question was partially given by Jaffe et al. [216]: the
character of the states forming the VBM and the CBM are similar to the
character of the states forming the bond. While this statement may look in-
tuitively correct, it is however difficult to prove it within DFT as the exchange
and correlation potential is density dependent and not orbital dependent. In
order to get more insight into the physics of the problem, we choose to in-
vestigate the contribution of the Hartree-Fock self-energy to the VBM and
CBM.

The exchange part of the self energy is given by expression (4.74). The
quantity of interest will be the matrix element of X, for VBM and CBM. We
can define the following quantity

Ol (ew) = —/drzdrl@,k(h)sz,v(rl)vk(rlar2)¢f,k(r2)¢c,v(r2) (5.3)
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Figure 5.15: af’:k versus ¢ for I'y,. Magenta line refers to the contribution of
Cu 3p and violet line refers to the contribution of Cu 3s

. : .
Then, matrix element (c, v|3;|c, v) is expressed by means of O ks ()

(e, v|2;]c,v) = Z a;ffkh(cyv) (5.4)

1€ oce

where the sum over ¢ restricts to occupied states only.

Figure 5.15 shows oy ; as a function of the index of states in the case
of the valence band maximum I'y,. The self-interaction case i.e. ¢; = ¢,
has not been displayed as it is cancelled by the Hartree potential and it
is order of magnitude larger than the other contributions. However, the
contribution from the Cu 3s and Cu 3p states have been depicted: there are
many reports in the literature about the importance of including the core
contributions in order to treat correctly the exchange interaction [165, 164].
Besides, it gives an idea about the magnitude of the contributions originating
from other states. Considering Fig. 5.15, one can see that there are many
significant (i.e., higher than the semicore ones) contribution to 3,. They
can be categorized in two groups:

e group I situated down to 1 eV below I'y, corresponding to anti-bonding
states.
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Figure 5.16: a,ffk versus ¢ for I'1.. Magenta line refers to the contribution of
In 4p and violet line refers to the contribution of In 4s

e group I situated 3.5 eV below I'y, at I' only corresponding to bonding
states

Thus, the GW correction to the VBM is dependent not only on the anti-
bonding states, as expected by the anti-bonding character of I'y,, but also on
the bonding states. A similar analysis can be carried out for the conduction
band maximum (Figure 5.16) and yields similar results.

First, the absolute value of the contribution is much smaller compared
to I'y,. I'1e is a conduction band with a delocalized character and therefore
(1|22 |T1e) is relatively small (= —7 eV) compared to (I, [2,|T) &~ —32 eV.
I'y. is formed by hybridized In 5p and S 3p states. In 4s and Cu 4p contri-
butions have been displayed too. Despite the rather small overlap between
Indium 4(s,p) and 5p, core states from indium participate significantly in
the matrix element (I';.|2,|T"1.). Tt gives an indication about the effect of
semicore states on the GW corrections [163] and the adequacy of the pseu-
dopotential approach versus all electron methods [158, 159, 223]. Three main
groups of bands contribute significantly to (I'yc|X,|T'1.).

e group [ situated 13 eV below the Fermi level corresponding to In 4d
and S 3s bonding states

e group II situated 6 eV below the Fermi level corresponding to In 5p
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and S 3p bonding states.

e group III situated 4.5 eV below the Fermi level corresponding to pure
S 3p states.

The GW correction to CBM depends essentially on In-S bonding states.
The main contribution arises from the In 4d-S 3s which, as have shown in
the previous section, constitute the main contribution to the electronic den-
sity between In and the anion.

In conclusion, the strong dependence of the bandgap calculated within
GW can be explained by the large contribution of the bonding orbitals to
some part of the self-energy. The treatment of the exchange and correlation
by means of density-dependent potential hinders the interaction between
VBM/CBM and In-(S,Se) or Cu-(S,Se) bonding states.

5.5.2 How do VBM and CBM depend on u?

While GW was initially used to evaluate bandgaps, recent works [188, |
have drawn attention to the relative position of the band edge in order to
calculate bandoffsets at heterojunctions or to correct defect formation ener-
gies. The GW correction to the band edge is however much more sensitive to
many parameters than the bandgap: for example, the convergence of the QP
band edge positions may be difficult to achieve [5] and the absolute positions
may depend on the plasmon pole model [188]. In the following discussion,
we will concentrate more on the u-dependence of the corrections to the VBM
or CBM, which should not be affected by the aforementioned difficulties. In-
deed, all calculations have been performed at the same degree of convergence
and using the same technicalities. Figure 5.17 displays the GW correction to
the CBM and the VBM for the different flavors of self-consistency: on ener-
gies only or on both energies and wave functions. The effect on the bandgap
is also depicted in the left panel of Figure 5.17.

The GW corrections to the CBM and the VBM seem to be extremely sen-
sitive to the type of self-consistency employed. On the contrary, the bandgap
and its dependence on u remain almost unaffected. The effects on the abso-
lute values of CBM and VBM cancel each other, resulting in the innocuity of
the self-consistency scheme on the bandgap. Therefore, full self-consistency
is only mandatory if one is interested in the absolute GW correction to the
band edges. Besides, the slope of the u-dependence of AESY and AESY
appears to be very similar: indeed, the slope of AESY versus u is -13.3 eV
against 12 eV for AES". Both band edges participate equally in the large u
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Figure 5.17: Left panel: Bandgap of CulnSs versus anion displacement u
for two flavors of self-consistency: dashed line, self-consistency on both wave
functions and energies and solid line self-consistency on energies only. Right
panel: GW corrections to the VBM and the CBM versus u for different flavors
of self-consistencies.

dependence of the bandgap. One should notice that the previously mentioned
slope should be added up to the u-dependence predicted in DFT-LDA.

Let us focus now on the discrepancy between the two flavors of self-
consistency. In order to investigate which role the change of wavefunc-
tions plays in the self-energy operator, we introduce the notation 0E,, =
AEYFE — AET where WF&E and E refer to the type of self-consistency.
Moreover, we introduce the partioning of the COHSEX hamiltonian

HCOHSEX — HHF 4 ESEX + ECOH, (55)

where HUF is the Hartree-Fock hamiltonian, ¥5E% the correlation part of
the SEX self-energy L55X = ¥5EX _ yHE and YCOH the Coulomb-hole
self-energy. We also introduce the notation A() such as for HHY

A(H™) = (Hyrep) — (Hg') - (5.6)

Figure 5.18 displays the decomposition of § E, , according to A{HTF) A (¥5EX)
and A(XCOH). Tet us first consider the conduction band: the difference in
AESW is constant ~ 0.3 eV over the full range of u. It is explained by
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Figure 5.18: Left panel: Decomposition of the difference between the sc-
COHSEX correction to the CBM obtained from tw flavors of self-consistency:
WF&E and E only versus u. Right panel: the same the left panel but for the
VBM.

an almost u-independent change in both three constituents of the COHSEX
Hamiltonian. While the change in the wave functions significantly affects
A(HUEY and A(XSEX) (~ 0.5 eV), both quantities cancel each other, leaving
SESY mainly dependent on A(XOH).

We can delineate two regions of w:

e the first one for small u where §ES" mainly originates from A(X5FX),

e the second one for large u where it originates from A(X¢OH).

On the other hand, the case of the valence band is more complex. One
can see that the change in operators are extremely u-dependent. Again,
important cross cancellations occur between changes in HF hamiltonian and
in the correlation part of the screened exchange self-energy. The strong u-
dependence of X°OH highlights the importance of the changes in the VBM
wave function: indeed let us recall the form of Coulomb Hole self energy

(0|2 |y) = %/dr [W(r,r) —v(r,r)] ]qﬁv(r)|2 ) (5.7)
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Figure 5.19: Isosurfaces of Ap for v = [0.200,0.215.0.235,0.250] from left
to right. Red surfaces are the positive variations while blue surfaces are the
negative ones

As Fig. 5.18 shows, the bandgap is only mildly influenced by the choice of
the self consistent scheme, therefore the screening may be equivalent for both
schemes. Therefore, changes in (v|S“°H|v) can only be attributed to change
in |v). Moreover, the variation of the latter will be weighted by W,,: changes
in the value of the dielectric constant might affect A(XOH). Figure 5.19
depicts the change of state I'y, [c.f. (5.1)] as a function of u. For small u,
there is an important electronic transfert from the S atom to the Cu atom,
increasing the Cu 3d character of the VBM. However, for large u (i.e., for
u = 0.25), the opposite transfer occurs: there is an electronic transfer from
the Cu atom to the S atom. The changes in the wavefunction influences
also the other operators but in a much more complex way as several states
participate in their construction.

Let us now turn to another intriguing feature of Figure 5.18: the strong u-
dependence of H'F and 58X, In fact, decomposing further the Hartree-Fock
Hamiltonian into a Hartree-Fock self energy and a Hartree Hamiltonian, one
can see that big differences occur in both ¥ and H"#tree byt the changes
in the latter cancel partially the changes in the former (see Fig. 5.20). One
can think of ¥5¥X as a Fock exchange-like term where the bare Coulomb
potential v has been replaced by W — v. For small u, the bandgap is small,
making the dielectric constant large and consequently W — v ~ —v. There-
fore, it is not surprising that A(X5%) has a different sign than A(H"F) and
its absolute value is significantly larger than the one of A(H"Y). For large
u, the bandgap becomes larger which results in a smaller dielectric constant.
Therefore, A(X5EX) will be softened in the same way the A(XHF) is smoothed
by A(HHartree) Tt explains the relative similarity of (HUF) and (X5EX) for
u = [0.235 — 0.25].
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Figure 5.20: Matrix elements of the Hartree Hamiltonian (left panel) and
the Fock exchange self-energy (right panel) at VBM. Red curve refers to the
use of DFT-LDA wave functions and energies to construct HHartree and 33,
blue curve refers to the use of DFT-LDA wave functions and GW energies,
and black curve refers to the use of GW wave functions and energies.

In conclusion,

e The GW corrections to CBM and VBM account equally for the strong
u-dependence of the bandgap.

e The effects of the QP wave functions are rather important on the band
edge position but not on the bandgap.

e Changes in the wave functions induce an almost u-independent change
of the operators for the CBM. It is not the case for the VBM.

e The VBM wave function changes significantly between DFT and sc-
COHSEX.

e The screening plays a central role in the dependence of the valence edge
upon u.
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5.5.3 Why do GGA+U and Hybrid fail to predict such
a strong dependence ?

Let us consider first the case of GGA-+U. Anisimov et al. [93] established a
connection between LDA+U and GW. They made the following approxima-
tion:

e the bandgap is formed by occupied and unoccupied d states

e d states are well separated from the other states, therefore only the
contribution from d states are retained in the calculation of the self-
energy.

Then, the on-site interaction U is simply given by

U= /drldr2¢d(r1)¢§(r1)W(r1,r2,w = 0)pa(r2) s (rs) (5.8)

U depends strongly on the screening which may follow the variation of the
bandgap. However, in Figure 5.12, the on-site interaction U was being kept
fixed for all u. This explains why GGA+U cannot reproduce the slope of E,
Versus u.

The same analysis can be performed for the hybrids. While HSE06 and
GGA+U do not seem to have much in common, they both share the use
of fixed parameters. Considering HSE06, it contains two parameters: the

mixing parameter b = i and the range separation parameter u. Following
Fuchs et al. |131], the exchange and correlation functional reads
Eye = EGS% 4 (b x ESITT — b x E5C9Y). (5.9)

This expression ressembles the expression used in GoWjy. The second term
of the right hand side can be viewed as a correction to the GGA exchange
and correlation functional. This quantity only corrects the short range part
of the exchange potential. Then, bEMY can be considered as a model GW
self energy, with a model screening W

W=bxuvx60(u—r), (5.10)

where g is the range separation parameter and 6 is the function employed

to realize the range separation®. For most hybrids, b ~ 0.25. Hence, it

corresponds to a dielectric constant ., = 4 in the model GW. As already

SHere we have generalized the discussion, but for the case of the HSE hybrid, 6(r) =
erf(r)
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Figure 5.21: Bandgap of CulnS; versus the anion displacement u: impact of
the parameter b of HSE06 on the dependence of the bandgap on wu.

pointed out in the discussion about LDA+U, the dielectric constant has a
strong dependence on u. Employing a constant mixing parameter amounts
to constraining the bandgap by enforcing the dielectric constant. It is there-
fore interesting to relax this constraint by setting b = 1/e2P4 with ¢fPA
calculated after the self-consistent COHSEX within the RPA approximation.

Figure 5.21 displays the bandgaps calculated within the modified HSE06
called HSEe,,. For small u, the dielectric constant predicted in sc-COHSEX
is rather large compared to the other value in the range of u. As a conse-
quence, in this range of u, HSEe, results are very close to GGA ones: indeed,
b for HSEe, depends inversely on ., so the contribution of the screened Fock
exchange term (for HSE06) almost vanishes. Hence, we will exclude this point
from the interpolation of the £, versus u curves. The HSEe,, method yields
surprisingly good agreement with scGW not only from the point of view of
the slope dE,/du = 37.9 but also with respect to the absolute position of
the curves. We recover the GW results by varying the mixing parameter b
of HSE06 according to the dielectric constant €., calculated after the self-
consistent COHSEX. The dielectric constant is rather underestimated due
to the overestimation of the bandgap within COHSEX [170]. Tt can also be
affected by the approximation used to estimate it: dynamical effects or low-
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Figure 5.22: Matrix elements of the Hartree Hamiltonian (left panel) and
the Fock exchange self-energy (right panel) at CBM. Red curve refers to the
use of DFT-LDA wave functions and energies to construct HHartree apnd ¥,
blue curve refers to the use of DFT-LDA wave functions and GW energies,
and black curve refers to the use of GW wave functions and energies.

ering of the screening at finite distance. Overall, the agreement in absolute
value of the bandgap for HSEe,, might be incidental: the fact that HSE06
already contains a part of screening compensates for the underestimation of
the dielectric constant. This fact is further confirmed by the insensitivity
of the slope upon variations of the range separation parameter p while the
absolute position of the curve is strongly impacted.

5.5.4 Why is there a discontinuity in Gy, ?

The last feature of Figure 5.14 that remains unexplained is the discontinuity
in GoWy at u = 0.245. First, it seems to occur when the DF'T starting point
predicts a positive bandgap. Second, it increases considerably the slope of
the curve. Figure 5.22 displays the matrix elements of HMar®ee ¥ for the
CBM. Starting from DFT-LDA, the real conduction band is assigned a non
zero occupation number.

Therefore, it will enter summation over states that are weighted by the
respective occupation number of each bands: the electronic density that ap-
pears in the Hartree potential and the Fock exchange term. In order to
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investigate this phenomenon, we will consider construction of the operator
with DFT wave functions and energies which implies DFT occupation num-
ber (red line in Figure 5.22) or DFT wave functions and QP energies which
implies just change in the occupation numbers (blue line in Figure 5.22) and
finally QP wave functions and energies (black broken lines in Figure 5.22)
Focusing on the Hartree term, we see little difference when the conduction
state is included or excluded from the electronic density. However, there is
a 2 eV upward shift of (¢|>,|c)(difference between red and blue curve). It is
self-interaction-like problem. The matrix element of the Fock term is partic-
ularly sensitive to the spatial overlap between the wave functions involved in
Y, and the wave functions |c¢). By changing the occupation number of the
conduction state, it is included or excluded of the summation over states in
the exchange part of the self energy.

5.6 Link between structural parameters and de-
fects

The strong u-dependence of the bandgap is rather surprising if one considers
the rather broad experimental range of u on one side, and the observed sta-
bility of the bandgap on the other side. Besides, industrial PV applications
require high stability of the electronic properties in order to obtain repro-
ducibility. Therefore, our findings seem in total contradiction with the use
of CIGS in the PV industry. Indeed, one question still remains unanswered
from the experimental point of view: why is CIGS so good for photovoltaic
application despite large defect concentrations and presence of structural de-
fects?. Defects usually create deep levels inside the bandgap where carriers
get trapped. CIGS presents also lots of structural defects like grain bound-
aries. These two facts are apparently totally disconnected from one another.
We propose the existence of a hidden link between the concentration of de-
fects and structural deviation in the lattice. In order to be realistic, we choose
to consider only the copper vacancy as the predominant defect: this choice
is driven by both experimental observation of copper poor samples and ab
inttio calculations that demonstrate the low formation energy of V,. Hence,
let us assume that the bandgap is a function of v and concentration of copper
vacancy [Vea| so that E; = Eg(u, [Vey]). A variation of the bandgap AE,
can hence be expressed as

9L OE
AE, = PP g
9= u ST O

AlVeu), (5.11)
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where u is the anion displacement and [V,| is the concentration of Cu va-
cancies. Moreover, it is possible to relate the concentration of Vg, to the
formation energy with a Boltzman distribution as

—AHg

[Veu] = Neye ™7 (5.12)

with T is the growth temperature for which the diffusion of defects is quenched
(T~ 500—600° C) and AH the formation enthalpy of V¢,. The latter quan-
tity is the keystone of our reasoning as it allows one to vary the concentration
of defects. We will see in the subsequent section how it relates to the struc-
tural parameter wu.

5.6.1 Formation energy

First, we will introduce the concept of formation energy in a rather general
way before focusing on the particular case of V,. Equation (5.12) shows that
the formation energy is the energetic barrier necessary to overcome in order
to create a defect. Intuitively, the formation energy can be simply thought
as the difference of total energy between two systems: the system with one
defect and the system without defect. However, in order to conserve the
number of particle in our system, one should add or remove the energy of the
single atom that has been removed, exchanged or added depending on the
type of defects considered. This total energy can be calculated considering
either an isolated atom or a more realistic reservoir like fcc metallic Cu. The
formation energy of defect « is then expressed as

AEf(a) = Byt (CIS, @) — Eioy (CIS) 4 neypigon 4 nppps® + ns7se,u§(flse , (5.13)

where Ei is the ground state energy of the supercell, n are numbers of
atoms that take part into the defects, u’s are the chemical potential of the
reservoirs. Furthermore, the formation energy depends also on the chemical
potential of the atomic species jicym,sse: this potentials are bounded by the
domain of stability of CIS and the domain of formation of possible binaries
phase(CuySe or InySes). Therefore, one can calculate the defect formations
enthalpies for the specific deposition condition ¢.e. Cu-poor or Se-rich. The
formation enthalpy then reads

AHf(a) = AEf(CY) + Ncullcy + Ninin + 1S SeltS,Se - (514)

The case of a charged defect is more complex as an electron should be trans-
ferred to or from an electron reservoir. Therefore, the absolute energy of
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this reservoir should be known as done previously for the reservoir of atoms.
Intuitively , the previous expression can be extended by adding the term
VE(a,q) = Eior(er,q) — Eior(cr,q = 0) which corresponds to the energy nec-
essary to add a charge ¢ on the defect site. Another term arises from the
energy difference between the system with N electrons and the system N —|g|
electrons with ¢: it describes the relaxation of the host system under the in-
clusion or removal of one electron. The formation enthalpy reads

AHf(a,q) =AE¢(a) + E(a,q) + 0E(CIS, —q)+

(5.15)
Nculcu + NinMUin + Nng seMs,Se + qu .

The calculation of the defect formation energy involves many terms, each of
them is subject to errors. Lany et al. [227] identified the two main sources
of error for ZnO:

e the band edge corrections due to the DFT underestimation of the
bandgap: other methods such as GW or EXX can significanly improve
the treatment of the bandgap compared to DFT, however the quality
of the total energy they can provide is still under debate. One can
overcome this problem by using a smartly designed partitioning of the
formation energy: introducing fictitious charge state, one can recast
the formation energy expression and use the GW method to evaluate
some quantities while DFT is used to estimate others [225].

e corrections due to supercell size: usually supercells up to 1000 atoms
are used to calculate formation energy. It corresponds to very high
concentration of defects (10** — 10* ¢m™®) and are rather far from
the situation of an isolated defect (~ 10 cm™2). The supercell size is
responsible for many spurious and undesired effects: Moss-Burstein-like
band filling [226], supercell-supercell interaction of charged defects due
to the periodic boundary condition [227] (like image charge), quadripole
interaction or elastic contribution due to the induced pressure of the
defect.

All those errors are usually corrected ez post facto. While it could be effi-
cient if the effects previously mentioned are small, it fails in situation where
the bandgap is strongly underestimated. Figure 5.23 shows the formation en-
ergy of Vo in ZnO versus the Fermi energy calculated with different methods
and corrections. One can see that the domain of stability of the neutral and
charge defect varies considerably from one corrective scheme to the other.

In the case of interest, a simple scheme has been proposed to correct the
formation energy for the case of a shallow acceptor like Ve, [224]. A defect
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Figure 5.23: Formation energy AH of the O vacancy in ZnO under O-
poor/Zn-rich conditions as calculated in theoretical works using different cor-
rection schemes. For more details about the legend, refer to [224].

usually creates a Defect Localized State (DLS). If this state occurs in the
bandgap, then the defect is said to be deep. However, if the DLS occurs as a
resonance in the continuum of the host bands, the electrons or holes localized
on the DLS relaxes to a Perturbative Host State (PHS), which is the CBM or
the VBM. Then, the defect is said to be shallow and in this particular case,
the occupied shallow state is believed to follow the movement of the CBM
or VBM. Therefore, changes in the VBM or CBM will have a direct effect on
the formation energy. One can immediately see the connection between the
formation energy and the change of the VBM position due to variations of
u. Lany et al. proposed a scheme in order to correct the bandgap problem
for shallow acceptor such as

AF; = AEPTT — AELPATY (5.16)

where AEPFT is the formation energy calculated within DFT and AEYPATY
is the correction to the VBM obtained from a LDA+U calculation. While
their goal was to correct the bandgap error inherited from the DFT, our goal
is slightly different: not only get the correct bandgap but also the dependence
of VBM as function of u. Therefore, we obtain the u-dependent formation
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energy
AF¢(u) = AEPTT — AECCW (y) (5.17)

We assume that the main contribution to the total energy comes from the
valence band maximum. We consider the evolution of the position of the
VBM within DFT, taking as a reference the In 4d states: © the change in the
position of the VBM is an order of magnitude smaller than AEiCGW. Then,
this corrective scheme is physically sound. We perform a GGA calculation on
a 432-atom supercell, considering only the neutral copper vacancy. Indeed,
the domain of predominance of the neutral defect with respect to the charged
defect lies close to the VBM i.e. Ey is close to the VBM which corresponds to
experimental observations. Then, the formation energy AE;(Ve,) = 0.75eV.
In order to evaluate the formation enthalpy, we need to define the chemi-
cal potential of copper pc, by considering the growth conditions. We set
fou to -0.6 eV considering experimental evidences in the case of Cu-poor
growth conditions [228]. As a consequence, the formation enthalpy is very
low AH¢(Vey) = 0.1 €V, which will yield large concentration of defects. We
have to make sure that the domain of concentration of V¢, we are work-
ing with corresponds to the experimentally observed Cu-deficiency. It will
also determine the size of the supercell that we should use to describe the
influence of the copper vacancy on the bandgap. At T = 600°C, expres-
sion (5.12) yields concentration of copper vacancy such as [Vg,| ~ 5 x 10%
em ™ which corresponds to rather small supercell (16 to 64-atom supercell).
From the experimental point of view, samples usually display a content ratio
of the metallic cation of 0.88< Cu/(In+Ga)< 0.95 [15]. In Ref. [203], the ra-
tio goes down to 0.77. Hence, the Boltzmann distribution describes correctly
the important copper deficiency observed in real samples. Besides, the rather
high doping allows us to apply computationally expensive GW methods to
compute the bandgap.

5.6.2 [Evaluating the evolution of E, as a function of V(,

For very high doping, a shrinkage of the bandgap is usually observed. In the
case of CIS, under high concentration of V,, any ab initio methods from
DFT-KS to the most advanced GW techniques fail to reproduce such trend.
Instead a large opening of the bandgap occurs. This has been attributed
to the relaxation of the p-d repulsion which is the key mechanism behind
the bandgap anomaly in CIS. We performed GoW, on supercells whose size
ranges between 16 and 64 atoms. These supercell sizes correspond to 25% (16
atoms),12% (32 atoms) and 6% (64 atoms) deviations of stoichiometry. The

"We have already shown that In 4d states are not affected by variations of u
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Figure 5.24: Top left panel: Value of the bandgap of CulnSs calculated in
GoWy versus the concentration of copper vacancy. Top right panel: Value
of the bandgap of CulnSs calculated in scGW versus the anion displacement.
Bottom panel: AE*SW of CulnSs versus the anion displacement.

use of the perturbative approach is motivated by the fact that the starting
LDA gap of the system with vacancies is already positive. As shown in previ-
ous section for the case of the pure compound when u < 0.235, a perturbative
approach can fully catch the physics of the material and is computationnally
more tractable for such large size of supercells.

The exact relation between E, and [V, is not known. However, using
a logarithmic scale, we found a linear dependence of E, on [V¢y,|. We can
perform a linear regression as shown in Figure 5.24

E, = 0.231><1n(WC“])+1.67 (5.18)
NCu
OF, 0.231
— 5.19
Mo ~ Ve (519)

We have obtained a simple formulation of the partial derivative of E, with
respect to [Vey| in the range of concentrations V¢, that we are interested
in. In order to simplify further expression (5.21), we should find a way to
express A[Vq,] as a function of Au. Therefore, in the next section we will
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investigate the effect of V¢, on the anion displacement.

5.6.3 Does V¢, have an influence on u ?

We assume that u can act on the concentration of copper vacancies. But
does Vi, induce changes in the value of u 2 Indeed, the presence of a copper
vacancy produces a void in the crystal, that results in the inward relaxation
of the neighbor anions. Besides, the crystal loses all the proper symmetries
of the chalcopyrite phase which can ensue long range structural changes. In
order to assess this problem, we extract the distribution of local u from a
relaxed 64-atom supercell with one V,. The anion displacement is defined
as a local quantity: each anion is surrounded by 4 cations (2 copper and 2
indium), resulting in two In-S and two Cu-S bonds. In the case of a perfect
crystal, the lengths of the former is equal for each anion and the same for
every anion resulting in one unique u. However, in a defect supercell, these
bond lengths vary over the supercell. One can then define for each anion, 4
different values of u. Figure 5.25 shows the distribution obtained with a GGA
relaxation for different sizes of supercell. The distribution presents a mean
value close to that of the perfect crystal, uS%4=0.2184, and the standard
deviation decreases with increasing supercell size. Furthermore, additional
distributions appear at small and large values of u (u < 0.216 and u > 0.219).
They originate from the region close to the vacancy. The maximum variation
of u recorded with respect to the mean value u%“# is less than 0.003 which
represents a change in bandgap of 0.1 eV.

We can conclude that [V,] has only a mild effect on the anion displace-
ment except in a region localized around the copper vacancy. We can there-
fore simplify expression (5.11) by assuming that u is not a function of [V]
and that [Vi,] is an exclusive function of u. Therefore, Eq. (5.11) can be
rewritten as

0B, OE, d[Ved
AE, = g g A 2
7 { ou +8[ch] du } “ (5:20)
0E, 0, [Vou dAEXGW
AE, = el v b 21
g { u Ve ksT  du b (5:21)

and with Eq. (5.19), one obtains

(5.22)

0F 0.231 dAE*CW
AE, = — . Au.
7 { ou kgT du } "

If the second term of Eq. (5.22) is important, we can hope that it decreases
the contribution of the first term. Physically speaking, it results in saying
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Figure 5.25: Distribution of local v depending on the size of the supercell of
Vcu:CulnSs. Blue line refers to the value of u for the perfect crystal relaxed
in GGA.

that there is an effective link between the anion displacement and the concen-
tration of defects. In the next subsection, we will consider such compensating
model quantitatively.

5.6.4 The feedback loop

The feedback loop process is recalled in Figure 5.26.

In order to evaluate the variations of AE, with and without the feedback
loop, we have to evaluate numerically the last two partial derivatives. The
variations of both E, and AE*“W are almost linear with respect to u. To
perform the linear regression, we choose a restricted range of values of u that
encompasses both the theoretical and the experimental values i.e. [0.215-
0.235]. Doing so we obtain

AE, = 322 x Au without feedback loop, (5.23)

g

AE, = —1.9 x Au with feedback loop and T=600°C.  (5.24)
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Ad(Cu-S) = AE_ = AE(V, ) = AV ] = AE,

Cu

Figure 5.26: Scheme of the feedback-loop that stabilizes the gap.

Considering a variation of Au = 0.02, the bandgap will change by 0.65
eV without feedback loop and by only 0.07 eV with the feedback loop (for
T=600°C). Therefore, the effect of the concentration of copper vacancy coun-
terbalances not only qualitatively but also quantitatively the variation of w.
The linear dependence of the bandgap upon [V¢,| calculated within DET is
much stronger than the one calculated within GW. Thus, if one had used
DFT bandgap instead of GW ones, one would have ended up with a AE,
much larger than the one obtained here.

In conclusion,we have demonstrated the strong link between defects and
structural parameters. The experimentally observed stability of CIS with
respect to variation of stoichiometry and morphology of thin films can be
explained by such mechanism. The use of a method beyond standard DFT
is needed in order to treat correctly the localization problem of 3d states
and the underestimation of the bandgap. Moreover, it reveals the strong
dependence of the bandgap on the anion displacement. Many of the results
obtained for CIS might hence require to be revised using MBPT techniques.



Chapter 6

Conclusion

This work has led to various conclusions, ranging from understanding the
physics of CIS in much more detail than previously to insights concerning
new emerging ab inilio technics such as hybrid functionals. The goal of
the thesis was to investigate the physics of the electronic structure and of
defects in CIS, concerning the latter in particular the energy levels that can
appear inside the bandgap. Calculating defects still remains extraordinary
CPU time-consuming even for simple materials such as silicon. Regarding
the difficulties encountered to obtain a correct ab initio treatment of CIS,
one may think the study of defects in CIS is a rather impossible mission.
However, we expect this thesis could provide the necessary tools to tackle
this problem in a very near future. From the point of view of the physics of
CIS, we demonstrated that

e the geometry of CIS is not well described by KS-DFT using standard
functionals. Usually, KS-DFT e.g. in the LDA is one of the standard
methods to predict crystal structure: experience has shown that despite
its simplicity it performs surprisingly well for a large class of materials.
CIS is not the only material where problems arise, but previous ab

witio calculations had not pointed to such an obstacle in the case of
CIS.

e the wrong description of the anion displacement by KS-DFT stems from
the lack of localization of the wave functions. The non proper treatment
of the self-interaction problem due to a poor description of the exchange
interaction results in the delocalization of the 3d and 4d states. It was
known for a long time that Cu 3d were actively participating in the
bonding, on the other hand, we prove the importance of the In 4d
states in the In-(S, Se) bonding. The problem of localization has been
resolved by the use of hybrid functionals or LDA-+U. The latter method
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6. Conclusion

has shown promising results at the same level as Hybrid functionals but
at the same computational cost as KS-DFT.

the experimental results display a broad range of values of u: by consid-
ering the only X-ray diffraction technics, we realize that obtaining the
anion displacement was an incredibly difficult tasks. We conclude that
the experimental range of u was not only due to experimental accuracy
but also to the material itself. Indeed, only few experiments study
single crystal samples, the difficulty in obtaining good single crystal
samples and the advent of CIS polycrystalline and thin film samples in
the photovoltaic industry results in such a wide distribution of u.

while KS-DFT already displays an alarming strong dependence of the
bandgap on u, GW increases this trend. We reveal that the origin of
this dependence is linked to the nature of the valence band maximum
and the conduction band minimum and their space proximity with
states participating in the bonding. The agreement with experiments
considering this effect is however extremely bad, as CIS is famous for
the stability of its bandgap against the morphology of thin films for ex-
ample. It is one of the many reasons (and maybe the most important
one) why CIS is such an invaluable material for photovoltaic applica-
tions.

Hybrid functionals (and to some extent LDA+U) show their limits
when screening is central to the physics of the material. Indeed, screened
hybrids fail to reproduce the strong dependence of the bandgap versus
the anion displacement, which was found to originate from the fixed
mixing parameter for the Fock exchange part.

the deformation of the structure induces changes in the defect con-
centration through a complicated process, resulting in compensation.
The deviation of stoichiometry systematically observed experimentally
should also produce a large effect on the bandgap: however, it is not
seen experimentally. Therefore, we propose a mechanism based on the
observed concurrent effects of variations of u and variations of the con-
centration of V¢,.

In summary, this work has given insight into the interplay between ge-

ometry, defects and electronic structure of CIS. The seeming contradiction
between the large variety of samples and the observed stability of the bandgap
could be resolved. Moreover, this work might leave more open issues than
answers to existing questions. Many ab initio works have been published
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for the last 20 years, relying on DF'T only. Unfortunately, this thesis shows
that not only is DFT bad at predicting bandgaps (as expected) but also,
in the particular case of CIS and with standard functionals, bad at treating
the ground state itself. The latter has many implications, mainly about the
validity of previous studies: what about the phonon calculations realized with
DFT-relazed lattice structures |212, , |, for instance. Most of them
might still be valid, but doubt is permitted concerning some of them. For
instance, we have obtained some preliminary results on defect formation en-
ergies which demonstrate that such doubts are legitimate. However, the ab
initio treatment of CIS is not hopeless with respect to the complexity of the
methods one should use to correctly describe the electronic properties of CIS:
as we found, for instance LDA+U can efficiently replace hybrid functional.
Such discovery opens the way to an improved treatment of larger systems
such as surfaces, interfaces and grain boundaries. A careful check of the
LDA-+U formalism in the presence of intrinsic defects should be performed
before moving to such systems. Indeed, it will not be surprising that the
state charges of In and Cu change and consequently U itself. As one can see,
there are lots of calculations still waiting to be performed to fully understand
the physics of CIS. However, we wish that this thesis could open new paths
in the ab initio study of CIS and could help to design better PV cells.






Appendix A

Pseudopotentials

Usually for most of the electronical properties of a solid, core electrons do not
play any important role. We can estimate most of the properties just look-
ing at the behavior of the valence states. Moreover, all electron methods,
despite the use of localized basis that considerably decrease the computa-
tional charge, has restricted ab initio studies to small systems up to recently.
The idea of the pseudopotential is simple: replace the effect of the core elec-
trons and the nucleus on the valence electrons with an effective potential
called pseudopotentials. Technically, the pseudopotential is enforced to be
relatively smooth to limit the number of basis functions.

A.1 How to construct a pseudopotential

The general method used independently of the type of pseudopotentials to
generate is the following:

e use the frozen core approximation [231]: in order to do so, determine
which electrons can be considered as valence and which as core elec-
trons. By considering the energy level of each state, the separation can
look obvious but in the particular case of GW, difficulties may arise
when dealing with d electrons.

e approximate the wavefunctions in the core region: the pseudized wave-
function should ressemble as much as possible the all-electron wave-
function, but being as smooth as possible in the core region. Multiple
schemes have been developped in order to pseudize the wavefunctions.
We will focus on two of them : the Hamman schem [232| and the
Trouillier Martins scheme [233] which are both norm conserving,.
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e invert the Schrodinger equation to obtain the potential. The ultimate
procedure then is to unscreen the potential from the Hartree and the
exchange and correlation potential.

Starting from the following Schrédinger equation, assuming spherical con-
dition as it is the case for the isolated atom:
1 I(1+1)

il v 2
2 + 72

+ (0 (r) — ) (e, m) =0 (A1)

where wu,;(€;, ) is the radial component of the wavefunction of state (n,1), n
being the principal quantum number and 1 the azimuthal quantum number.
Due to orthogonality constraints, u,; presents an oscillatory behavior close
to the radius, which is particularly difficult to describe when using plane
waves as basis set. Therefore, the pseudized w,; will be approximated by
a smooth nodeless function of r in the core region and by the all electron
Uy, outside this region. The core region is defined by a cutoff radius 7cy.
Moreover, as an additional constraint, the pseudized eigenenergies should be
equal to the all electron ones € = €. For both schemes precedently cited,
the form of the pseudized wave function orginited from work by Kerker [234]:
r*lexplp(r)] if 7 < rew with p(r) a polynomial function of r whose degree
sets the number of conditions necessary to solve this non linear system of
equations. In the case of Trouillier Martins scheme, the polynomial is of
degree 6 in r2, which yields 7 conditions to determine all the parameters of
the function. Additional conditions can be added in order to get a complete
defined set of equations:

e 5 of them are the continuity of w,; at the ry, and the subsequent
derivative.

e one of them is the conservation of the charge in the core region (guar-
antee the norm conservation).

e the last one being the the zero curvature of the pseudopotential at the
origin (insure that your pseudopotential will be smooth).

Some of these conditions can be relaxed to get smoother pseudopotentials:
the ultrasoft pseudopotential takes advantage of such idea by removing the
norm-conservation constraint and correcting the resulting charge deficit by
introducing atom-centered augmentation charges. The Hamann scheme uses
a lower degree polynom p(r) lowering the number of conditions to fulfill to
three. Most notably, the last condition is removed making the Hammann
scheme a little bit “harder”, ¢.e., leadiong to a deeper potential than the
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Trouillier Martins ones. Besides, the matching of all electron and pseudized
wave function is exponentially beyond r. while it is exact for TM. As a
result, cut off radii used in Hamman scheme are usually smaller than the
TM ones 7, ~ 0.5 — 0.75 x ra

After generating the pseudized wavefunction, it is easy to see that invert-
ing equation (A.1), we can express the pseudopotential as

S,8CT S l(l + 1) 1 d2 S
Uil = ellD — 972 + QUZL; (T’) WUZZ(T) . (AQ)

One should notice that the potential is orbital dependent and that the node-
less characteristic of pseudized wavefunction is of primer importance when
inverting the SE. Still, the pseudopotential should undergo a last manipu-
lation before getting actually used in calculation. We are interested in the
ionic component of the pseudopotential ie the interaction between the nu-
cleus and the core electrons with the valence electrons. However the potential
expressed in equation (A.2) contains the Hartree and the exchange and cor-
relation potential, which are removed as follows

v (r) = v = g ] = oo, ] (A.3)
where pf” is the electronic density constructed with the pseudized wavefunc-
tion. The total ionic potential can be then rewritten in a compact way as

Vion = Z |Yi,n>vgi <Y2,n| . (A4)
l,n

Further simplication can be obtained by noticing that v, ; reduces at large
r to the ionic Coulomb potential Z°"/r independent of n and 1. Therefore
the pseudopotential can be expressed as a local pseudopotential plus a few
n,l-dependent short range potential.

Vion = Ull())sc + Z ‘Yz,n>5v})S<Y27n‘ ) (A5)
l,n

where v;® = v° — v, While the first term is local in r-space, the second
one is angularly semi-local while radially local. As a consequence, the ex-
pression of the latter term is the most time and computer consuming in a
calculation. Assuming a N-dimensional basis set, the use of the semi-local
form requires the evaluation and the storage of ~ (N? + N)/2 matrix el-
ements. For very large system, evaluation of this matrix element becomes
quickly prohibitive. Kleinman and Bylander proposed a scheme to trans-
form the semi-local term into a fully separable non-local quantity [235].ie
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dv(r,r") = Fy(r) fiF;(r"). The disconnected spacial variables r and 7’ permit
to express dv; as a projector

v = EfPlaN&l (A.6)

with the condition that dvfBul® = dv[*u®. Then the ernergy and the pro-
jector are expressed as

(w”0v" |00 ™)

EXB S e A A.

| I A0
dvPur®

’§l> = | l I:Z)s >ps <A8)

({807 vy ™)) 12

This procedure considerably reduces the computational cost of pseudopoten-
tial to simply N matrix elements. However, the major drawbacks of such
method is the possible apparition of unphysical states called ghost states.
While semilocal potentials are totally free of such problem, the fully non lo-
cal potentials are not. The reason is that the latter will require an integrable
differential Schrodinger equation while the former just a linear differentiable
Schrédinger equation. The Wronskian theorem ensures that the eigenfunc-
tions are energetically ordered according to their node structure. However
this corollary does not hold for integrable differential equation and as a con-
sequence ghost states can occur for fully non-local potentials.

A.2 How to test pseudopotentials 7

In practice, pseudopotentials are generated considering the atomic system
with a fixed electronic configuration. However, in solids, charge transfer and
ionization occur and pseudopotentials should be able to handle such cases:
it is the so called transferability property of pseudopotential. Careful check
is required by performing pseudopotential and all electron calculations on
atoms with different state occupations. Figure A.1 shows such tests in the
case of the indium pseudopotential. While the promotion of one 5s electron
to Hp gives rise the ionization of a the atom is much more tedious test
Another important concern is the use of Kleinman-Bylander approxima-
tion that might result in the appearance of ghost state. No systematic tests
have been able to detect ghost state: however Gonze et al. introduced simple
quantities like the KB cosine CXB defined as the cosine of the angle between
lu;®) and |dv;*u;"), whose careful check allows one to detect the presence of
a ghost state [236]. A more brute force method to detect ghost state is the
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the atom.
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Figure A.2: Logarithmic derivative of the radial component of the different
wavefunctions: all-electron wavefunction (blue curve), semi-local wavefunction
(red curve) and fully non-local wavefunction (dashed black line) for Se.

inspection of the logarithmic derivative of the radial wavefunction w,(e,r)
defined as

D(e,m°") = difnlnul(e, r) , (A.9)

p=pout

where r°" is an arbitrary radius chosen outside the core region. One can

immediately noticed that D(e, 7°"*) will have poles for € = €. Ghost states
will result in additional poles at lower energies. Besides, the logarithmic
derivative should be correct to 1st order around the reference energy ¢; due
to the norm-conserving scheme. One of the pathological cases of ghost states
is the selenium pseudopotential. Let us consider a pseudopotential of Se gen-
erated using Hamann scheme with the following cutoff radius r* = 0.9 bohr,
r® = 1.06 bohr and r? = 1.765 bohr (the d component refers to the 4d excited
states). The channel I = 2 is taken as the local component. Figure A.2 shows
the logarithmic derivative for the components s,p and d. There is a ghost
appearing just below the reference energy of the s component. Several strate-
gies can be undertaken in order to make the ghost state disappear: (i) change
r® or (ii) change the local component from [ = 2 to [ = 0 (iii) switch from
Hamann scheme to TM scheme. We choose the second option as it allows
us to improve the scattering properties of the pseudopotential independently
of the presence of ghost states. Figure A.3 shows the logartihmic derivative
after modification of the pseudopotential: the ghost state disappears.
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Figure A.3: Logarithmic derivative of the radial component of the different
wavefunctions: all-electron wavefunction (blue curve), semi-local wavefunction
(red curve) and fully non-local wavefunction (dashed black line) for Se.

Special attention has been drawn when building pseudopotentiel in order
to get good scattering properties together with transferability for all of the
pseudopotentials used in this thesis.

A.3 Projected Augmented Wave (PAW)

Norm-conserving pseudopotentials encounter a certain success, however they
require important number of basis functions to represent localized states.
There is an example in this thesis with the use of a energy cutoff of 90
Hartree, yielding 35,000 plane waves to represent the wave functions of CIS.
An efficient alternative to norm conserving PP is the projector augmented
wave (PAW) method [237]. Being historically posterior to the UltraSoft
pseudopotentials [238], it borrows one of the central ideas of the former:
the use of atom-centered augmentation sphere. One can define a smooth
part of the valence wave function ¢, and a linear transformation that relates
the all electron valence wave functions to the smooth part v, = T¢,. The
transformation 7 is supposed to be unity except within spheres centered on
nuclei called augmentation spheres Qg

T=1+)Y Tx. (A.10)
Qr
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Let us consider we can expand the smooth wavefunction in partial waves
inside each spheres

|1Z> = Z Cz’@Eﬁ ) (A.11)

)

then by acting with 7 on W} we can construct the all electron wavefunction
[0) = [9) + Y el — 1)} (A-12)

One can notice that the last term of equation (A.12) corrects the double
counting of the smooth function in full space, 7.e in both the augmentation
spheres and the intertitial space between the spheres, and in the augmen-
tation spheres. The general structure of equation (A.12) is recovered when
expressing any operator of the original all-electron problem. For example, in
the case of DF'T calculation, one can express the electronic density as

n=rn+y nf—af (A.13)
Qr

In addition to giving access to all-electron wavefunctions, the PAW permits
to evaluate quantities at two different levels: using smooth functions in full
space, or using localized functions in the augmentation spheres. One expects
this particular feature of the PAW technic to decrease the computational load
and to make the investigation of larger systems possible. Technical difficul-
ties arise from the use of two different grids: the first one covers the full space
and is used for the smooth functions while the second one is a radial grid
in order to sample the augmentation sphere. In some cases (evaluation of
Hartree potential for example), interpolation of functions should be realized
from one grid to the other and further simplifications are used in order to
keep the advantages of the scheme.

In this thesis, we have used the formalism of pseudopotentials except
when dealing with large supercells with defects. The PAW implementation
of GW, while certainly cumbersome [191, |, allows one to treat larger
systems, by reducing considerably the number of plane waves in order to
represent the wave functions.



Appendix B

X-Ray Diffraction

One of the many ways to access the atomic structure of a solid is X-Ray
Diffraction. The principle is very simple: the incoming X-ray electromagnetic
radiation with momentum k; is scattered by the electronic cloud surrounding
the atoms and results in an outcoming radiation of the same frequency with a
momentum k;. The intensity of the scattered radiation is the consequence of
multiple interferences between the waves scattered by different atoms. This
interference pattern can be then understood following Bragg’s law expressed
for lattice planes defined by their Miller indices (h,k,[)

thklsin(ﬁ) = n/\, (Bl)

where dpy; is the distance between equivalent lattice planes in reciprocal
space, 0 the angle between the scattering plane and the incident wave, n an
integer and A\ the wavelengths of the X-ray. This relation gives the angular
positions of the reflection peaks as seen in § — 26 graph obtained from XRD
experiments. Inversely, lattice parameter and tetragonal distortion can be
extracted from the angular positions of the reflections. The intensity of
the reflection is proportional to the square of the Fourier transform of the
electronic density and depends only on the positions of the atoms inside the

unit cell
2

I(hkl) ‘ / p(r)e ks —ki)r (B.2)

Analysis of the extinction of Bragg peaks permits to estimate the internal
structure parameter like anion displacement. One should notice that it can
be strongly influenced by the presence of defects. An alternative to the
calculation of the electronic density is the use of atomic scattering factor f,
(o =Cu,In,(S,Se)), which describes the density as a superposition of spherical
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electronic density around each atoms.

Z fae—i(kf —k;).ro

Such a decomposition is very useful as it permits to assign the contribution
of each type of atoms to the different Bragg peaks.

As stated before, the scattered waves formed an interference pattern made
of constructive and destructive interferences. Therefore, not all the recipro-
cal lattice vectors will lead to a Bragg peak. For the chalcopyrite lattice
structure, there are 3 categories of allowed reflections

2

I(hkl) (B.3)

e (h,k,1/2) all even or odd yielding structure factor as

Frrg = (fou + fin + fose) X gi(h, k, L u), (B.4)

where ¢ is an arbitrary function. These reflections refer to the under-
lying zinc-blende structure of chalcopyrite.

e (h,k) even or (1/2) odd or vice and versa yielding structure factor as
Fhii = fsse X g2(h, K, L u). (B.5)

The structure factor of these Bragg peaks depends only on the anion
scattering factor and therefore on the anion displacement.

e (h) even and (k,1) odd or (k) even and (h,1) odd yielding structure factor
as

1
Fh,k,l = E(fCu - fln)g3(h7 kv l) + 2fS,Seg4<h7 kv la 'LL) . (B6)

The structure factor decomposition of this Bragg peaks have a cationic
and anionic component making it sensitive to the anion displacement
too.

Figure B.1 shows the u-dependence of the intensity of these peaks calcu-
lated using atomic scattering factors. Similar results were found by Jaffe et
al.|1] using equation B.2. A strong dependence on the anion displacement
appears for category (ii) and (iii) but their relative intensities compared to
the (112) peak Iy /1112 never reach the detection limit of XRD (= 1%). Be-
sides, the presence of defects might alter significantly the analysis. Therefore,
other technics should be considered in order to obtain the value of the anion
displacement: for example Extended X-Ray Absorption Fine Structure [210].
It is based on X-Ray absorption. Contrary to X-Ray diffraction, X-Ray ab-
sorption experiments consist of shooting photons in the x-ray range of energy.



155

287——— 70———
(i) (i) ]
[103] |

286.5- 4 60
- 112 |
L= 286 + 50 1
285.5 -+ 40 |
i | [101] | i

285

L, I L
2 0.2& 0.24 38.2 0.2& 0.24 %.2 0.2& 0.24

Figure B.1: Structure factor of some allowed reflections versus the anion
displacement u. Left panel shows category (i), middle panel category (ii) and
right panel category (iii)

The photon will be eventually absorbed by a core electron, which results in
the creation of a core hole and an unbound electron. At the same time, one
can think of this electron has a quantum wave that produces interferences
with other electron quantum waves originating from different atoms. This
interferences may be either constructive or destructive and result in wrig-
gles in the X-ray spectra. The interpretation of such spectra can be studied
and reveals interesting features of the atomic structure or the electronic and
vibrational properties of the materials. However, the analysis of EXAFS
is an exhausting task as a single electron scattering theory is not sufficient
to explain the spectra. Multiple scattering effects must be included, which
makes the interpretation of the spectra excessively difficult: thereby, struc-
tural changes together with the effects of defects may mix up and assignment
to one feature of the spectra of the specific effect is very difficult.

Figure 5.4 depicts the distribution of values of u for CulnSe; obtained
experimentally with different methods ranging from x-ray diffraction to EX-
AFS. One can see a rather broad dispersion of u. It could be due to the
samples: different growth technics, different morphologies or different dop-
ing properties. Merino et al. [203] proposed a possible explanation to such
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experimental dispersion: low values of u u = 0.222 seems to originate from
polycrystalline samples while single crystal samples show larger values of u
(u =~ 0.235). Despite the multiplicity of the causes for such effect, the facts
are there: the value of u is extremely sample dependent and it is therefore
difficult to attribute a precise value to u. The same holds for CulnSy but
unfortunately, the lack of experimental data [211, , 243] does not permit
us to visualize any distribution of u. Let us define the range of u for CulnS,
being the difference between u™® and 4™ the two extremal experimental
value. Thus defined, the experimental range of CulnS, is comparable to the
one of CulnSe,;. Moreover, the shaded regions depicted in graphics repre-
senting I/, versus u is defined such the non-physical value of u i.e. wu lies
outside both the experimental range and the range predicted by means of ab
initio methods.



Appendix C

G W study of delafossite CuAlO2

The knowledge obtained from the work on CIS has allowed us also to work
on related calsses of materials. Therefore, I have proposed and carried out,
in collaboration with Fabio Trani and Miguel Marques from Laboratoire de
physique de la matiére condensée et nanostructures, University of Lyon, a
study on the transparent conducting oxide CuAlO,. In this appendix, we
present the publication which results from this work:

Effects of FElectronic and Lattice Polarization on the Band Structure of
Delafossite Transparent Conductive Ozides, J.Vidal, J., F. Trani, F. Bruneval,
M. A. L. Marques, and S. Botti, Physical Review Letters, 104,136401,(2010).

We use hybrid functionals and restricted self-consistent GW, state-of-
the-art theoretical approaches for quasiparticle band structures, to study
the electronic states of delafossite Cu(AlIn)O,, the first p-type and bipo-
lar transparent conductive oxides. We show that self-consistent GW gives
remarkably wider band gaps than all the other approaches used so far. Ac-
counting for polaronic effects in the GW scheme we recovered a very nice
agreement with experiments. Furthermore, the modifications with respect to
the Kohn-Sham bands are strongly k-dependent, which makes questionable
the common practice of using a scissor operator. Finally, our results support
the view that the low energy structures found in optical experiments, and
initially attributed to an indirect transition, are due to intrinsic defects in
delafossite samples.

Many high-technology devices, such as flat panel displays, touch screens,
or even thin-film solar cells, require the use of thin transparent contacts.
These contacts are usually built from insulating oxides that, for a certain
range of doping, become conductive while retaining transparency in the vis-
ible spectrum. The most common examples of these so-called transparent
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conductive oxides (TCOs) are electron (n-)doped SnO,, InyOs, and ZnO.
Hole (p-)doping of wide gap semiconductors was for long time very hard
to obtain [244, |. Tt is therefore not surprising that the discovery of p-
doping in CuAlQO, thin films with a carrier mobility of about 10cm?/(V's)
attracted great interest [216, 217]. Other members of the delafossite fam-
ily, like CuGaO, [218] and CulnO, [219], were discovered shortly after. The
latter compound is particularly interesting as it exhibits bipolar (n- and p-
type) conductivity by doping with appropriate impurities and tuning the
film-deposition conditions [219]. This opens the way to the development
of transparent p-n junctions, and therefore fully transparent optoelectronic
devices, functional windows and stacked solar cells with improved efficiency.

CuAlQO, is by far the most studied system of the family of delafossite
TCOs, both theoretically and experimentally. However, there is still no
agreement neither on the origin of the p-type conductivity, nor on the elec-
tronic bands of the pure crystal. Measurements of the direct optical band
gap (E{") of CuAlO, fall in the range from 2.9 to 3.9V [246, 247, 250, 251,

, , , , , , , , |, with most values in the interval
3.4-3.7eV. These experiments also yield a large dispersion of indirect gaps
(E), from 1.65 to 2.1eV, with one experiment measuring 2.99 eV [260].
Unfortunately, there is only one photoemission experiment [250] that gives
a value of 3.5eV for the quasiparticle band gap. Note that the optical and
quasiparticle gaps differ by the exciton binding energy. Concerning CulnOs,,
optical experiments measured Egir between 3.9 and 4.45eV 219, , |,
with only one estimation of E* at 1.44eV [262].

From the theoretical perspective, the situation is also quite complex, even
if the full Cu 3d shell should exclude the strongly correlated electron regime.
These materials are usually studied within density functional theory (DFT),
using the standard local density (LDA) or generalized gradient approxima-
tions (GGA). However, it is well known that the Kohn-Sham band struc-
tures systematically underestimate the band gaps. For similar compounds,
like CuyO and Culn(S,Se)s, Kohn-Sham LDA calculations lead to unrea-
sonable band structures, in particular due to the misrepresentation of the
hybridization between the d electrons of the metal and p electrons of the

anion [181, |. To overcome this situation, hybrid functionals have been
recently proposed, with very promising results [267], especially for materi-
als with small and intermediate band gaps [265, |. Other approaches

include LDA+U, that tries to improve the description of electronic corre-
lations through the introduction of a mean-field Hubbard-like term. This
method has been quite successful in the study of the electronic structure of
strongly correlated systems, but it relies on a parameter U, that is often
adjusted to experiments.
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Arguably the most reliable and used ab initio technique to obtain quasi-
particle band structures is the many-body GW approach [152]. The common
practice within this framework is to start from a DFT calculation, and eval-
uate perturbatively the GW energy corrections to the band structure. This
procedure, which we will refer to as GoW,, is justified when the departure
wave functions and band structure are already close to the quasiparticle ones.
This is indeed the case in many systems, explaining why G¢Wj has been ex-
tremely successful in describing electron addition and removal energies for
metals, semiconductors and insulators [267|. However, it has been recently
shown that G, fails for many transition metal oxides [181, 180].

To solve this problem one can perform restricted self-consistent (sc¢) GW' |

]. This technique has the advantage of being independent of the starting
point at the price of large computational complexity. Fortunately, there is
an alternative procedure that yields wavefunctions that are extremely close
to those obtained in a full sc-GW calculation, namely sc-COHSEX as ex-
plained in Ref. [155]. The dynamical effects that are absent in COHSEX
calculations can then be accounted for by performing a final perturbative
GW step. This method, that we will refer to as sc-GW, has been applied to
many oxide compounds, yielding excellent results for the band gaps and the
quasiparticle band structure [181, , , |-

Note that these theoretical techniques yield quasiparticle bands, and not
optical gaps. To evaluate these latter quantities one mostly resorts to the
solution of the Bethe-Salpeter equation. For the delafossite structures there
is one such calculation starting from a GGA+U band structure [184]. Tt
yields for CuAlO, a very large exciton binding energy of about 0.5eV for
the first direct transition. The choice of the parameter U was found to have
significant consequences on the width of the band gap, but it did not affect
significantly the exciton binding energy. We can thus assume that 0.5eV is
a reasonable estimate of this latter quantity.

In the following, we present calculations of the band structures of CuAlO,
and CulnO, using some of the most accurate theoretical tools available in
the community. These include the standard LDA, hybrid functionals (namely
B3LYP and two flavors of HSE), LDA+U, GoWj and sc-GW. As discussed
above, we expect sc-GW to be the most accurate ab initio approach. When
the comparison was possible, we found our results in excellent agreement
with previous calculations (Refs. [250), , , , , , 271] for LDA,
Ref. [271] for B3LYP, and Ref. [272] for GGA+U).

The hybrid and LDA+U calculations were performed with VASP [273]
and ABINIT [271] respectively, using the PAW formalism and an energy
cutoff of 44Ha. The parameter U was set to 8¢V as in Ref. [184]. Our
GW calculations were performed with ABINIT, starting from LDA band
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structures. The energy cutoff was 120 Ha for the ground state calculation,
and the k-point grid was a 4 x 4 x 4 Monkhorst-Pack. Note that it was
absolutely essential to use the method of Ref. [5], due to the extremely slow
convergence with respect to the number of conduction states.

In Figs. C.2 and C.1 we show direct and indirect photoemission gaps
and the band structures of CuAlO,, obtained using different theoretical ap-
proaches. The minimum EJ" of CuAlO, is always found at L, where the
dipole transition between the band edge states is allowed [270]. All calcula-
tions, except sc-GW, give a fundamental Eénd between the conduction band
minimum at [ and the valence band maximum along the I'-F line. The exper-
imental data for optical gaps are also presented with an error bar that reflects
the dispersion of the most likely values found in literature. LDA exhibits, as
expected, the smallest gaps. Basically every approach beyond it opens up the
gap by different amounts and modifies the band dispersions. The direct and
indirect gaps have similar behaviors in the different theories, and both in-
crease when going from LDA<GyWy<HSE03<HSE06<B3LYP<sc-GW. On
the other hand, the difference Egir — Eig“d seems to decrease with the sophisti-
cation of the method, reaching nearly zero for the sc-GW calculation. This is
a consequence of the drastic change of the conduction band dispersion, which
displaces the conduction minimum from I" to L when sc-GW is applied (see
Fig. C.1). Only LDA+U does not follow the trend, as it is the only case in
which E" — E" gets significantly larger than in LDA.

Looking at the direct gap, we point out that most of the methods give
results that are within the experimental range, when an exciton binding
energy of around 0.5eV [181] is considered. This is true for LDA+U, GoW,,
the hybrids HSE03 and HSE06. However, for sc-GW and even for B3LYP,
the theoretical gap is larger by about 1-1.5eV than the experimental findings.
For CulnO; (see Fig. C.3) we have to make the comparison with care, as the
smallest Egir is located at I', where optical transitions are forbidden [270]. A
meaningful comparison with experiments must consider the gap at L. Thus,
we find that both trends and quantitative results are analogous to those for
CuAlO,. In particular, sc-GW yields again E{" larger by 1-1.5€V than the
experimental range.

We stress again that, to date, sc-GW is arguably the best method avail-
able to estimate band gaps of wide-gap semiconductors, and that it gives
excellent results for compounds like Cu,O and Culn(S,Se), [181, 263]. It is
unlikely that the presence of defects can lead to such a large shrinkage of
Egir. However, there is another effect that has been neglected up to now:
the change of screening due to the polarization of the lattice. In fact, accord-
ing to the experimental data [275], unfortunately available only for CuAlOa,
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Figure C.1: (Color online) Band structures for CuAlOg: comparison of
LDA (red dashed lines) with sc-GW (left panel), HSE03 (central panel), and
LDA+U (right panel).

the polaron constant ' for this system is large (a;, ~ 1), indicating a non-
negligible contribution of the lattice polarization to the electronic screening.
It is known that in other ionic compounds with similar polaron constants
this can lead to a shrinkage to the band gap by about 1eV [276]. A full
sc-GW calculation including in an ab initio framework the effects of the
lattice polarization is to date beyond reach. However, a reliable estimate
can be obtained using the model proposed by Bechstedt et al. [276], which
gives a static representation of the polaronic effects based on difference of
experimental static dielectric constants. By performing a perturbative GIW
step including model polaronic effects on top of the sc-COHSEX, we found
a uniform (k-independent) shrinkage of the band gap by 1.2eV. As we can
see in Fig. C.2, this correction brings our results for £ well within the
experimental range (once the excitonic correction of about 0.5 eV is also con-
sidered). As it is observed in Ref. |276], the polaronic model employed can
only overestimate the correction. All these results point to the conclusion
that the agreement of the other methods with experiment was fortuitous and
due to a cancellation of errors.

'The polaron constant is defined as ap = (1/ex — 1/€0)(h/2ma}wro)'/?, where ap is
the Bohr radius, wy,o the longitudinal optical frequency of the highest E, phonon mode,
€s and €y the low frequency electronic and the static dielectric constants, respectively.
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Figure C.2: (Color online) Band gaps of CuAlOg using: LDA, LDA+U,
hybrid, GoWy, sc-GW , and sc-GW including model polaronic corrections. The
horizontal zones contain data extracted from optical experiments (see text).

Looking now at the indirect gap, we focus on Fig. C.2 as there are more
experimental data for CuAlO,. All the hybrids and GW calculations yield in-
direct gaps much larger than the experimental range 1.65-2.1eV, even taking
into account any possible excitonic and polaronic effects. Moreover, sc-GW,
the best method used in this work, yields the highest Eénd at around 5eV,
while the difference Egir — Eénd is in general much smaller than the experi-
mental value (=2eV), and even vanishing for the sc-GW calculation. From
Fig. C.3 we realize that these conclusions are as well valid for CulnO,, where
the best estimates for the indirect band gap is much larger than the experi-
mental value of 1.44 eV [262].

These are very strong arguments in favor of Robertson et al. [271] that
suggested that the experimental “indirect gap” absorption was due to defects,
and should not be present in the defect-free compound. Also Pellicer- Porres
et al. [260] questioned the interpretation of the low energy peaks as indirect
transitions, as the absorption coefficient is more than two orders of magnitude
larger than in typical indirect absorption edges. The most promising defects
that could be responsible are oxygen interstitials O;, as DF'T calculations
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Figure C.3: (Color online) Band gaps of CulnOgy using: LDA, LDA+U,
hybrid, GoWy, sc-GW. The horizontal zones contain data extracted from
optical experiments (see text).

within the LDA predict low formation energies and the introduction of states
in the gap at 0.7 and 1.4 eV [277]. However, a full clarification of this issue
will require sc-GW or hybrid calculations for these, and other more complex
defects.

Finally, we analyze more in detail the band structures of CuAlOy shown
in Fig. C.1. LDA calculations (red dashed lines) are compared with sc-GW,
HSE03, and LDA+U calculations. The main effect of LDA+U is to open
the LDA gap by an amount that can be controlled by the parameter U. The
difference EJ™ — E*? is in this approximation enhanced, due to a change
of the character of the lowest conduction band along the symmetry lines.
Hybrid calculations using HSEO3 give a comparable Egir and a modified
dispersion of both valence and conduction states close to the Fermi energy,
which reduces E{™ — E*?. The conduction band minimum (CBM) within
HSEO03 is still located at I', but the difference between the CBM at L and
I' gets significantly smaller. For sc-GW |, besides the further increase of the
band gaps, the dispersion of the bands is strongly affected by the many-
body effects. In fact, the GW corrections exhibit an unusual dispersion of
around 1eV when looking at the different k-points, displacing the CBM from
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I' to L. We note that often in semiconductor physics one assumes that the
quasiparticle corrections can be modeled by a rigid shift (the so-called scissor
operator). From our results it follows that one should refrain from using this
simple approximation for these important materials. We can also conclude
that hybrid calculations give a better description of band dispersions than
LDA-+U, even if the two approaches yield similar band gaps.

In conclusion, it is clear that the delafossite family exhibits complex and
unusual band gap physics that can not be captured by standard theoretical
approximations. We found that the direct band gap is well reproduced by
the best many-body approaches if polaronic effects are taken into account.
We can expect that this situation, of a large gap that is reduced substantially
by polaronic effects, is quite general and is present in many more materials
that previously expected. In fact, the apparent good agreement between
calculated gaps (with hybrid functionals or GyWW,) and experimental gaps
for materials as simple and widely studied as LiF can be accidental: the
underestimation of the gap by these methods is compensated by the neglect
of polaronic effects. Furthermore, the modifications with respect to the LDA
Kohn-Sham bands are strongly k-dependent, which makes questionable the
common practice of using a scissor operator. The band dispersion obtained by
hybrid functional calculations is in between the LDA and sc-G'W dispersion,
while the LDA+U calculations open up the gap but do not give a significant
improvement of the band dispersion. Finally, our calculations rule out the
interpretation of the low energy features in the absorption spectra as arising
from a putative indirect band gap. These structures should rather come
from intrinsic defects, as proposed in Refs. [260), |. However, a complete
understanding of the electronic and excitation properties of these systems
will only be achieved, in our opinion, by a high-level theoretical scheme (like
sc-GW) including both defects and effects from the lattice polarization in an
ab initio framework. Work along these lines is already in progress.
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