Calcul de la fonction d'Artin d'une singularité plane

Abstract : Let K be an algebraically closed field of characteristic zero, and let A = K[[t1, . . . , tN]], N>0 be the ring of formal power series in t1, . . .,tN with coefficients in K. Let I = (f1, . . . , fp) be a nonzero ideal of the ring A[[x1, . . . , xe]] of formal power series in x1, . . . , xe with coefficients in A. The Artin function, denoted β, is a numerical function defined as follows: if t = (t1, . . . , tN), then for all integer i and for all F(t) = (F1(t), . . . ,Fe(t)) in Ae , β(i) is the smallest integer which verifies the following : if for all j, fj(F(t)) is in (t)β(i)+1, where (t) is the maximal ideal in A, then there exists G(t) = (G1(t), . . . ,Ge(t)) in Ae such that fj(G(t)) = 0 for all 0
Document type :
Theses
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00543687
Contributor : Anne-Marie Plé <>
Submitted on : Monday, December 6, 2010 - 3:20:54 PM
Last modification on : Friday, May 10, 2019 - 12:14:02 PM
Long-term archiving on : Monday, March 7, 2011 - 3:34:54 AM

Identifiers

  • HAL Id : tel-00543687, version 1

Citation

Sahar Saleh. Calcul de la fonction d'Artin d'une singularité plane. Mathématiques [math]. Université d'Angers, 2010. Français. ⟨tel-00543687⟩

Share

Metrics

Record views

483

Files downloads

385