. Puis, le mélange de réaction est injecté sur colonne gel filtration Superdex, Pharmacia) équilibrée en 100mM NaCl, 2mM DTT, 50mM Hepes, pp.7-12

. Etant, instabilité de p40-Cter en solution, la protéine est concentrée au maximum à 5 mg/mL soit 350 mM. Les échantillons doivent également être repréparés souvent (toutes les 48h), ce qui consomme beaucoup de protéine. Pour limiter la consommation trop rapide des stocks de p40-Cter

A. Abbas and A. Lichtman, Cellular and Molecular Immunology, 2003.

A. Abo, A. Boyhan, I. West, A. Thrasher, and A. Segal, Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245, J Biol Chem, issue.24, pp.26716767-16770, 1992.

A. Abo, M. Webb, A. Grogan, and A. Segal, from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane, Biochemical Journal, vol.298, issue.3, pp.585-591, 1994.
DOI : 10.1042/bj2980585

T. Ago, H. Nunoi, T. Ito, and H. Sumimoto, Mechanism for Phosphorylation-induced Activation of the Phagocyte NADPH Oxidase Protein p47phox: TRIPLE REPLACEMENT OF SERINES 303, 304, AND 328 WITH ASPARTATES DISRUPTS THE SH3 DOMAIN-MEDIATED INTRAMOLECULAR INTERACTION IN p47 phox , THEREBY ACTIVATING THE OXIDASE, Journal of Biological Chemistry, vol.274, issue.47, pp.27433644-33653, 1999.
DOI : 10.1074/jbc.274.47.33644

T. Ago, F. Kuribayashi, H. Hiroaki, R. Takeya, T. Ito et al., Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation, Proceedings of the National Academy of Sciences, vol.100, issue.8, pp.1004474-4479, 2003.
DOI : 10.1073/pnas.0735712100

B. Babior and . Oxidase, An Update, Blood, vol.93, issue.5, pp.1464-1476, 1999.

B. Babior and . Nadph-oxidase, NADPH oxidase, Current Opinion in Immunology, vol.16, issue.1, pp.42-47, 2004.
DOI : 10.1016/j.coi.2003.12.001

URL : https://hal.archives-ouvertes.fr/hal-00820744

B. Bersch, E. Rossy, J. Coves, and B. Brutscher, Optimized set of two-dimensional experiments for fast sequential assignment, secondary structure determination, and backbone fold validation of 13C/15N-labelled proteins, Journal of Biomolecular NMR, vol.27, issue.1, pp.57-67, 2003.
DOI : 10.1023/A:1024746306675

G. Bokoch, Chemoattractant signaling and leukocyte activation, Blood, vol.86, issue.5, pp.1649-1660, 1995.

G. Bokoch and B. Diebold, Current molecular models for NADPH oxidase regulation by Rac GTPase, Blood, vol.100, issue.8, pp.2692-2696, 2002.
DOI : 10.1182/blood-2002-04-1149

N. Borregaard, J. Heiple, E. Simons, and R. Clark, Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation, The Journal of Cell Biology, vol.97, issue.1, pp.52-61, 1983.
DOI : 10.1083/jcb.97.1.52

F. Boulay, N. Naik, E. Giannini, M. Tardif, and L. Brouchon, Phagocyte Chemoattractant Receptors, Annals of the New York Academy of Sciences, vol.86, issue.1 Phagocytes, pp.69-84, 1997.
DOI : 10.1038/382833a0

J. Bravo, D. Karathanassis, C. Pacold, M. Pacold, C. Ellson et al., The Crystal Structure of the PX Domain from p40phox Bound to Phosphatidylinositol 3-Phosphate, Molecular Cell, vol.8, issue.4, pp.829-839, 2001.
DOI : 10.1016/S1097-2765(01)00372-0

G. Brown, M. Stewart, H. Liu, V. Ha, and M. Yaffe, A novel assay system implicates PtdIns PtdIns(3)P, and PKC delta in intracellular production of reactive oxygen species by the NADPH oxidase, Mol Cell, vol.3, issue.111, pp.35-47, 2003.

B. Brutscher, J. Simorre, M. Caffrey, and D. Marion, Design of a Complete Set of Two-Dimensional Triple-Resonance Experiments for Assigning Labeled Proteins, Journal of Magnetic Resonance, Series B, vol.105, issue.1, pp.77-82, 1994.
DOI : 10.1006/jmrb.1994.1104

B. Brutscher, DEPT spectral editing in HCCONH-type experiments. Application to fast protein backbone and side chain assignment, Journal of Magnetic Resonance, vol.167, issue.2, pp.178-184, 2004.
DOI : 10.1016/j.jmr.2003.12.010

P. Callis, La and Lb Transitions of tryptophan: applications of theory and experime,tal observations to fluorescence of proteins In: Methods in enzymology: fluorescence spectroscopy, pp.113-115

G. Cornilescu, F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology, Journal of Biomolecular NMR, vol.13, issue.3, pp.289-302, 1999.
DOI : 10.1023/A:1008392405740

A. Cross, phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558, Biochem J, vol.349, pp.40113-117, 2000.

P. M. Dang, A. Fontayne, J. Hakim, E. Benna, J. Perianin et al., Protein Kinase C ?? Phosphorylates a Subset of Selective Sites of the NADPH Oxidase Component p47phox and Participates in Formyl Peptide-Mediated Neutrophil Respiratory Burst, The Journal of Immunology, vol.166, issue.2, pp.1206-1219, 2001.
DOI : 10.4049/jimmunol.166.2.1206

A. Davis, P. Mascolo, P. Bunger, K. Sipes, and M. Quinn, Cloning and sequencing of the bovine flavocytochrome b subunit proteins, gp91-phox and p22-phox: comparison with other known flavocytochrome b sequences, J Leukoc Biol, vol.64, issue.1, pp.114-123, 1998.

I. De-mendez, N. Homayounpour, and T. Leto, Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation., Molecular and Cellular Biology, vol.17, issue.4, pp.2177-2185, 1997.
DOI : 10.1128/MCB.17.4.2177

F. Deleo, L. Yu, J. Burritt, L. Loetterle, C. Bond et al., Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries., Proceedings of the National Academy of Sciences, vol.92, issue.15
DOI : 10.1073/pnas.92.15.7110

C. Dewas, M. Fay, M. Gougerot-pocidalo, and J. El-benna, The Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 1/2 Pathway Is Involved in formyl-Methionyl-Leucyl-Phenylalanine-Induced p47phox Phosphorylation in Human Neutrophils, The Journal of Immunology, vol.165, issue.9, pp.5238-5244, 2000.
DOI : 10.4049/jimmunol.165.9.5238

C. Dewas, P. Dang, M. Gougerot-pocidalo, and J. El-benna, TNF-alpha induces phosphorylation of p47(phox) in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF-alpha and granulocyte-macrophage colony-stimulating factor, J Immunol, issue.8, pp.1714392-1714400, 2003.

D. Diekmann, A. Abo, C. Johnston, A. Segal, and A. Hall, Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity, Science, vol.265, issue.5171, pp.531-533, 1994.
DOI : 10.1126/science.8036496

O. Dorseuil, L. Reibel, G. Bokoch, J. Camonis, and G. Gacon, The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1, J Biol Chem, vol.271, issue.1, pp.83-88, 1996.

M. Eftink, [11] Fluorescence methods for studying equilibrium macromolecule-ligand interactions, pp.221-224
DOI : 10.1016/S0076-6879(97)78013-3

E. Benna, J. Faust, R. Johnson, J. Babior, and B. , Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase, J Biol Chem, issue.11, pp.2716374-6378, 1996.

S. Etienne-manneville and A. Hall, Cell polarity: Par6, aPKC and cytoskeletal crosstalk, Current Opinion in Cell Biology, vol.15, issue.1, pp.67-72, 2003.
DOI : 10.1016/S0955-0674(02)00005-4

L. Faust, J. Benna, B. Babior, and S. Chanock, The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis., Journal of Clinical Investigation, vol.96, issue.3, pp.961499-1505, 1995.
DOI : 10.1172/JCI118187

P. Finan, Y. Shimizu, I. Gout, J. Hsuan, O. Truong et al., Kellie S: An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex, J Biol Chem, issue.19, pp.26913752-13755, 1994.

A. Fontayne, P. Dang, M. Gougerot-pocidalo, and J. El-benna, Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation, Biochemistry, issue.24, pp.417743-7750, 2002.

J. Freeman and J. Lambeth, NADPH oxidase activity is independent of p47phox in vitro, J Biol Chem, vol.271, issue.37, pp.22578-22582, 1996.

A. Fuchs, M. Dagher, A. Jouan, and P. Vignais, Activation of the O-2-Generating NADPH Oxidase in a Semi-Recombinant Cell-Free System. Assessment of the Function of Rac in the Activation Process, European Journal of Biochemistry, vol.297, issue.2, pp.587-595, 1994.
DOI : 10.1016/0968-0004(93)90051-N

URL : https://hal.archives-ouvertes.fr/hal-00820798

A. Fuchs, M. Dagher, and P. Vignais, Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system, J Biol Chem, vol.270, issue.11, pp.5695-5697, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00820795

A. Fuchs, M. Dagher, J. Faure, and P. Vignais, Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system, Biochim Biophys Acta, issue.1, pp.131239-131286, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00820791

D. Goldblatt and A. Thrasher, Chronic granulomatous disease. Immunodeficiency review, Clinical and Experimental Immunology, vol.94, issue.1, pp.1-9, 2000.
DOI : 10.1073/pnas.94.22.12133

Y. Gorzalczany, N. Sigal, M. Itan, O. Lotan, and E. Pick, Targeting of Rac1 to the Phagocyte Membrane Is Sufficient for the Induction of NADPH Oxidase Assembly, Journal of Biological Chemistry, vol.275, issue.51, pp.27540073-40081, 2000.
DOI : 10.1074/jbc.M006013200

N. Grandvaux, S. Elsen, and P. Vignais, Oxidant-Dependent Phosphorylation of p40phox in B Lymphocytes, Biochemical and Biophysical Research Communications, vol.287, issue.4, pp.1009-1016, 2001.
DOI : 10.1006/bbrc.2001.5665

S. Grizot, Etude des relations structure-fonction des facteurs cytosoliques du complexe de la NADPH Oxydase, 2001.

S. Grizot, F. Fieschi, and M. Dagher, Pebay-Peyroula E: The active N-terminal region of p67phox

Y. Groemping, K. Lapouge, S. Smerdon, and K. Rittinger, Molecular Basis of Phosphorylation-Induced Activation of the NADPH Oxidase, Cell, vol.113, issue.3, pp.343-355, 2003.
DOI : 10.1016/S0092-8674(03)00314-3

A. Grogan, E. Reeves, N. Keep, F. Wientjes, N. Totty et al., Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils, J Cell Sci, vol.110, pp.3071-3081, 1997.

C. Han, J. Freeman, T. Lee, S. Motalebi, and J. Lambeth, Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox), J Biol Chem, issue.27, pp.27316663-16668, 1998.

P. Heyworth, J. Curnutte, W. Nauseef, B. Volpp, D. Pearson et al., Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558., Journal of Clinical Investigation, vol.87, issue.1, pp.352-356, 1991.
DOI : 10.1172/JCI114993

P. Heyworth, A. Cross, and J. Curnutte, Chronic granulomatous disease, Current Opinion in Immunology, vol.15, issue.5, pp.578-584, 2003.
DOI : 10.1016/S0952-7915(03)00109-2

Y. Hirano, S. Yoshinaga, K. Ogura, M. Yokochi, Y. Noda et al., Solution Structure of Atypical Protein Kinase C PB1 Domain and Its Mode of Interaction with ZIP/p62 and MEK5, Journal of Biological Chemistry, vol.279, issue.30, pp.27931883-31890, 2004.
DOI : 10.1074/jbc.M403092200

H. Hiroaki, T. Ago, T. Ito, H. Sumimoto, and D. Kohda, Solution structure of the PX domain, a target of the SH3 domain, Nature Structural Biology, vol.8, issue.6, pp.526-530, 2001.
DOI : 10.1038/88591

J. Huang, N. Hitt, and M. Kleinberg, Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558, Biochemistry, vol.34, issue.51, pp.16753-16757, 1995.
DOI : 10.1021/bi00051a024

O. Inanami, J. Johnson, J. Mcadara, J. Benna, L. Faust et al., Activation of the Leukocyte NADPH Oxidase by Phorbol Ester Requires the Phosphorylation of p47PHOX on Serine 303 or 304, Journal of Biological Chemistry, vol.273, issue.16, pp.2739539-9543, 1998.
DOI : 10.1074/jbc.273.16.9539

T. Ito, Y. Matsui, T. Ago, K. Ota, and H. Sumimoto, Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions, The EMBO Journal, vol.20, issue.15, pp.3938-3946, 2001.
DOI : 10.1093/emboj/20.15.3938

J. Janin and M. Delepierre, Biologie structurale: principes et méthodes biophysiques, Hermann éditeurs des sciences et des arts edn, 1994.

A. Johansson, A. Jesaitis, H. Lundqvist, K. Magnusson, C. Sjolin et al., Different Subcellular Localization of Cytochrome b and the Dormant NADPH-Oxidase in Neutrophils and Macrophages: Effect on the Production of Reactive Oxygen Species during Phagocytosis, Cellular Immunology, vol.161, issue.1, pp.61-71, 1995.
DOI : 10.1006/cimm.1995.1009

J. Johnson, J. Park, J. Benna, L. Faust, O. Inanami et al., Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity, J Biol Chem, issue.52, pp.27335147-35152, 1998.

M. Jurkowska, E. Bernatowska, and J. Bal, Genetic and biochemical background of chronic granulomatous disease, Arch Immunol Ther Exp, vol.52, issue.2, pp.113-120, 2004.

K. Kami, R. Takeya, H. Sumimoto, and D. Kohda, Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p, The EMBO Journal, vol.21, issue.16, pp.4268-4276, 2002.
DOI : 10.1093/emboj/cdf428

D. Karathanassis, R. Stahelin, J. Bravo, O. Perisic, C. Pacold et al., Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction, The EMBO Journal, vol.277, issue.19, pp.5057-5068, 2002.
DOI : 10.1093/emboj/cdf519

Y. Kato, R. Tapping, S. Huang, M. Watson, R. Ulevitch et al., Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor, Nature, issue.6703, pp.395713-716, 1998.

H. Koga, H. Terasawa, H. Nunoi, K. Takeshige, F. Inagaki et al., Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase, J Biol Chem, issue.35, pp.27425051-25060, 1999.

A. Kume and M. Dinauer, Gene therapy for chronic granulomatous disease, Journal of Laboratory and Clinical Medicine, vol.135, issue.2, pp.122-128, 2000.
DOI : 10.1067/mlc.2000.104458

F. Kuribayashi, H. Nunoi, K. Wakamatsu, S. Tsunawaki, K. Sato et al., The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase, The EMBO Journal, vol.21, issue.23, pp.6312-6320, 2002.
DOI : 10.1093/emboj/cdf642

T. Lamark, M. Perander, H. Outzen, K. Kristiansen, A. Overvatn et al., Interaction Codes within the Family of Mammalian Phox and Bem1p Domain-containing Proteins, Journal of Biological Chemistry, vol.278, issue.36, pp.27834568-34581, 2003.
DOI : 10.1074/jbc.M303221200

K. Lapouge, S. Smith, Y. Groemping, and K. Rittinger, Architecture of the p40-p47-p67phox Complex in the Resting State of the NADPH Oxidase: A CENTRAL ROLE FOR p67 phox, Journal of Biological Chemistry, vol.277, issue.12, pp.27710121-10128, 2002.
DOI : 10.1074/jbc.M112065200

T. Leto, A. Adams, and I. De-mendez, Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets., Proceedings of the National Academy of Sciences, vol.91, issue.22, pp.9110650-10654, 1994.
DOI : 10.1073/pnas.91.22.10650

J. Leusen, K. Fluiter, P. Hilarius, D. Roos, A. Verhoeven et al., Interactions between the cytosolic components p47phox and p67phox of the human neutrophil NADPH oxidase that are not required for activation in the cell-free system, Journal of Biological Chemistry, vol.270, issue.19, pp.27011216-11221, 1995.
DOI : 10.1074/jbc.270.19.11216

E. Ligeti, J. Doussiere, and P. Vignais, Activation of the superoxide radical generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogs of GTP, Biochemistry, vol.27, issue.1, pp.193-200, 1988.
DOI : 10.1021/bi00401a029

W. Lim, F. Richards, and R. Fox, Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains, Nature, vol.372, issue.6504, pp.375-379, 1994.
DOI : 10.1038/372375a0

L. Lopes, M. Dagher, A. Gutierrez, B. Young, A. Bouin et al., Phosphorylated p40phox as a negative regulator of NADPH oxidase, Biochemistry, issue.12, pp.433723-3730, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00820744

K. Madden and M. Snyder, CELL POLARITY AND MORPHOGENESIS IN BUDDING YEAST, Annual Review of Microbiology, vol.52, issue.1, pp.687-744, 1998.
DOI : 10.1146/annurev.micro.52.1.687

B. Mayer, SH3 domains: complexity in moderation, J Cell Sci, vol.114, pp.1253-1263, 2001.

L. Mcphail, SH3-dependent assembly of the phagocyte NADPH oxidase, Journal of Experimental Medicine, vol.180, issue.6, pp.2011-2015, 1994.
DOI : 10.1084/jem.180.6.2011

F. Morel, F. Boulay, J. Doussière, and P. Vignais, Bases mol??culaires de la granulomatose septique chronique, m??decine/sciences, vol.8, issue.9, pp.912-920, 1992.
DOI : 10.4267/10608/3258

J. Moscat and M. Diaz-meco, The atypical protein kinase Cs, EMBO reports, vol.20, issue.5, pp.399-403, 2000.
DOI : 10.1093/embo-reports/kvd098

R. Nakamura, H. Sumimoto, K. Mizuki, K. Hata, T. Ago et al., The PC motif : a novel and evolutionarily conserved sequence involved in interaction between p40 phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase, European Journal of Biochemistry, vol.251, issue.3, pp.251583-589, 1998.
DOI : 10.1046/j.1432-1327.1998.2510583.x

K. Nakamura and G. Johnson, PB1 Domains of MEKK2 and MEKK3 Interact with the MEK5 PB1 Domain for Activation of the ERK5 Pathway, Journal of Biological Chemistry, vol.278, issue.39, pp.27836989-36992, 2003.
DOI : 10.1074/jbc.C300313200

Y. Nisimoto, H. Otsuka-murakami, and D. Lambeth, Reconstitution of Flavin-depleted Neutrophil Flavocytochrome b558 with 8-Mercapto-FAD and Characterization of the Flavin-reconstituted Enzyme, Journal of Biological Chemistry, vol.270, issue.27, pp.16428-16434, 1995.
DOI : 10.1074/jbc.270.27.16428

Y. Nisimoto, S. Motalebi, C. Han, and J. Lambeth, The p67phox Activation Domain Regulates Electron Flow from NADPH to Flavin in Flavocytochromeb 558, Journal of Biological Chemistry, vol.274, issue.33, pp.22999-23005, 1999.
DOI : 10.1074/jbc.274.33.22999

Y. Noda, M. Kohjima, T. Izaki, K. Ota, S. Yoshinaga et al., Molecular Recognition in Dimerization between PB1 Domains, Journal of Biological Chemistry, vol.278, issue.44, pp.27843516-43524, 2003.
DOI : 10.1074/jbc.M306330200

N. Okamura, B. Babior, L. Mayo, P. Peveri, R. Smith et al., The p67-phox cytosolic peptide of the respiratory burst oxidase from human neutrophils. Functional aspects., Journal of Clinical Investigation, vol.85, issue.5, pp.1583-1587, 1990.
DOI : 10.1172/JCI114608

M. Paclet, L. Henderson, Y. Campion, F. Morel, and M. Dagher, Localization of Nox2 N-terminus using polyclonal antipeptide antibodies, Biochemical Journal, vol.382, issue.3, 2004.
DOI : 10.1042/BJ20040954

URL : https://hal.archives-ouvertes.fr/hal-00820738

J. Park, Phagocytosis induces superoxide formation and apoptosis in macrophages, Experimental & Molecular Medicine, vol.35, issue.5, pp.325-335, 2003.
DOI : 10.1038/emm.2003.44

P. Patino, R. J. Noack, D. Erickson, R. Ding, J. De-olarte et al., Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the nicotinamide adenine dinucleotide phosphate (reduced form) oxidase component p67-phox, Blood, issue.7, pp.942505-2514, 1999.

T. Pawson, Protein modules and signalling networks, Nature, vol.373, issue.6515, pp.573-580, 1995.
DOI : 10.1038/373573a0

C. Ponting, Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: Binding partners of SH3 domains?, Protein Science, vol.270, issue.11, pp.2353-2357, 1996.
DOI : 10.1002/pro.5560051122

C. Ponting, T. Ito, J. Moscat, M. Diaz-meco, F. Inagaki et al., OPR, PC and AID: all in the PB1 family, Trends in Biochemical Sciences, vol.27, issue.1, p.10, 2002.
DOI : 10.1016/S0968-0004(01)02006-0

M. Quinn and K. Gauss, Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases, Journal of Leukocyte Biology, vol.76, issue.4, 2004.
DOI : 10.1189/jlb.0404216

R. Ren, B. Mayer, P. Cicchetti, and D. Baltimore, Identification of a ten-amino acid proline-rich SH3 binding site, Science, vol.259, issue.5098, pp.1157-1161, 1993.
DOI : 10.1126/science.8438166

B. Roitt, Male: Immunology, fifth edition: Mosby, 1998.

L. Sanz, P. Sanchez, M. Lallena, M. Diaz-meco, and J. Moscat, The interaction of p62 with RIP links the atypical PKCs to NF-kappa B activation, The EMBO Journal, vol.18, issue.11, pp.3044-3053, 1999.
DOI : 10.1093/emboj/18.11.3044

L. Sanz, M. Diaz-meco, H. Nakano, and J. Moscat, The atypical PKC-interacting protein p62 channels NF-kappa B activation by the IL-1-TRAF6 pathway, The EMBO Journal, vol.19, issue.7, pp.1576-1586, 2000.
DOI : 10.1093/emboj/19.7.1576

M. Sathyamoorthy, I. De-mendez, A. Adams, and T. Leto, (phox) down-regulates NADPH oxidase activity through interactions with its SH3 domain, J Biol Chem, issue.14, pp.40-2729141, 1997.

G. Scita, P. Tenca, E. Frittoli, A. Tocchetti, M. Innocenti et al., NEW EMBO MEMBERS' REVIEW: Signaling from Ras to Rac and beyond: not just a matter of GEFs, The EMBO Journal, vol.19, issue.11, pp.2393-2398, 2000.
DOI : 10.1093/emboj/19.11.2393

A. Segal, R. Garcia, H. Goldstone, A. Cross, and O. Jones, of neutrophils is also present in human monocytes, macrophages and eosinophils, Biochemical Journal, vol.196, issue.1, pp.363-367, 1981.
DOI : 10.1042/bj1960363

D. Sheehan, Physical Biochemistry: principles and applications, 2000.

J. Simorre, B. Brutscher, M. Caffrey, and D. Marion, Assignment of NMR spectra of proteins using tripleresonance two-dimensional experiments, J Biomol NMR, vol.4, issue.3, pp.325-333, 1994.

R. Smith, J. Connor, L. Chen, and B. Babior, The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase., Journal of Clinical Investigation, vol.98, issue.4, pp.977-983, 1996.
DOI : 10.1172/JCI118882

A. Someya, I. Nagaoka, and T. Yamashita, Purification of the 260 kDa cytosolic complex involved in the Superoxide production of guinea pig neutrophils, FEBS Letters, vol.13, issue.2, pp.215-218, 1993.
DOI : 10.1016/0014-5793(93)80276-Z

R. Stahelin, A. Burian, K. Bruzik, D. Murray, and W. Cho, Membrane Binding Mechanisms of the PX Domains of NADPH Oxidase p40phox and p47phox, Journal of Biological Chemistry, vol.278, issue.16, pp.27814469-14479, 2003.
DOI : 10.1074/jbc.M212579200

H. Sumimoto, Y. Kage, H. Nunoi, H. Sasaki, T. Nose et al., Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.915345-5349, 1994.
DOI : 10.1073/pnas.91.12.5345

H. Sumimoto, K. Hata, K. Mizuki, T. Ito, Y. Kage et al., Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase

T. Szyperski, G. Wider, J. Bushweller, and K. Wuthrich, 3D 13C-15N-heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13C-15N-double-labeled proteins, Journal of Biomolecular NMR, vol.3, issue.1, pp.127-132, 1993.
DOI : 10.1007/BF00242481

H. Terasawa, Y. Noda, T. Ito, H. Hatanaka, S. Ichikawa et al., Structure and ligand recognition of the PB1 domain: a novel protein module binding to the PC motif, The EMBO Journal, vol.20, issue.15, pp.203947-3956, 2001.
DOI : 10.1093/emboj/20.15.3947

S. Tsunawaki, H. Mizunari, M. Nagata, O. Tatsuzawa, and T. Kuratsuji, A Novel Cytosolic Component, p40phox, of Respiratory Burst Oxidase Associates with p67phox and Is Absent in Patients with Chronic Granulomatous Disease Who Lack p67phox, Biochemical and Biophysical Research Communications, vol.199, issue.3, pp.1991378-1387, 1994.
DOI : 10.1006/bbrc.1994.1383

S. Tsunawaki, S. Kagara, K. Yoshikawa, L. Yoshida, T. Kuratsuji et al., Involvement of p40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox, Journal of Experimental Medicine, vol.184, issue.3, pp.893-902, 1996.
DOI : 10.1084/jem.184.3.893

D. Uhlinger, S. Tyagi, K. Inge, and J. Lambeth, The respiratory burst oxidase of human neutrophils. Guanine nucleotides and arachidonate regulate the assembly of a multicomponent complex in a semirecombinant cell-free system, J Biol Chem, issue.12, pp.2688624-8631, 1993.

V. Van-drogen-petit, A. Zwahlen, C. Peter, M. Bonvin, and A. , Insight into Molecular Interactions Between Two PB1 Domains, Journal of Molecular Biology, vol.336, issue.5, pp.1195-1210, 2004.
DOI : 10.1016/j.jmb.2003.12.062

S. Vergnaud, M. Paclet, E. Benna, J. Pocidalo, M. Morel et al., Complementation of NADPH oxidase in p67-phox-deficient CGD patients, European Journal of Biochemistry, vol.269, issue.4, pp.1059-1067, 2000.
DOI : 10.1046/j.1432-1327.2000.01097.x

P. Vignais, The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Cellular and Molecular Life Sciences (CMLS), vol.59, issue.9, pp.1428-1459, 2002.
DOI : 10.1007/s00018-002-8520-9

S. Vijay-kumar, C. Bugg, and W. Cook, Structure of ubiquitin refined at 1.8 ?? resolution, Journal of Molecular Biology, vol.194, issue.3, pp.531-544, 1987.
DOI : 10.1016/0022-2836(87)90679-6

F. Wientjes, J. Hsuan, N. Totty, and A. Segal, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains, Biochem J, pp.40-296557, 1993.

F. Wientjes, G. Panayotou, E. Reeves, and A. Segal, Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox, Biochem J, pp.317919-924, 1996.

F. Wientjes, E. Reeves, V. Soskic, H. Furthmayr, and A. Segal, The NADPH Oxidase Components p47phox and p40phox Bind to Moesin through Their PX Domain, Biochemical and Biophysical Research Communications, vol.289, issue.2, pp.382-388, 2001.
DOI : 10.1006/bbrc.2001.5982

D. Williams, W. Tao, F. Yang, C. Kim, Y. Gu et al., Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency, Blood, issue.5, pp.961646-1654, 2000.

M. Wilson, D. Gill, O. Perisic, M. Quinn, and R. Williams, PB1 Domain-Mediated Heterodimerization in NADPH Oxidase and Signaling Complexes of Atypical Protein Kinase C with Par6 and p62, Molecular Cell, vol.12, issue.1, pp.39-50, 2003.
DOI : 10.1016/S1097-2765(03)00246-6

J. Winkelstein, M. Marino, R. Johnston, J. Boyle, J. Curnutte et al., Chronic Granulomatous Disease: Report on a National Registry of 368 Patients, Medicine, vol.79, issue.3, pp.79155-169, 2000.
DOI : 10.1097/00005792-200005000-00003

D. Wishart and B. Sykes, The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data, Journal of Biomolecular NMR, vol.4, issue.2, pp.171-180, 1994.
DOI : 10.1007/BF00175245

M. Yaffe, The p47phox PX Domain, Structure, vol.10, issue.10, pp.1288-1290, 2002.
DOI : 10.1016/S0969-2126(02)00860-2

S. Yoshinaga, M. Kohjima, K. Ogura, M. Yokochi, R. Takeya et al., The PB1 domain and the PC motif-containing region are structurally similar protein binding modules, The EMBO Journal, vol.22, issue.19, pp.224888-4897, 2003.
DOI : 10.1093/emboj/cdg475

S. Yuzawa, K. Ogura, M. Horiuchi, N. Suzuki, Y. Fujioka et al., Solution Structure of the Tandem Src Homology 3 Domains of p47phox in an Autoinhibited Form, Journal of Biological Chemistry, vol.279, issue.28, pp.27929752-29760, 2004.
DOI : 10.1074/jbc.M401457200

S. Yuzawa, N. Suzuki, Y. Fujioka, K. Ogura, H. Sumimoto et al., A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase, Genes to Cells, vol.2003, issue.5, pp.443-456, 2004.
DOI : 10.1107/S0907444903011636

C. Zwahlen, K. Gardner, S. Sarma, D. Horita, R. Byrd et al., C-Labeled Proteins with High Resolution, Journal of the American Chemical Society, vol.120, issue.30, pp.7617-7625, 1998.
DOI : 10.1021/ja981205z

P. Dans, . Journal-of-biological-chemistry»-claire, #. Massenet, S. Chenavas, #. et al., Eva Pebay-Peyroula and Franck Fieschi ( # indiquent une contribution équivalente des auteurs) Consequences of p47 phox C-terminus phosphorylations on binding towards p40 phox and p67 phox : structure and function comparison study of

J. Publication-en-préparation-sylvie-chenavas, V. Simorre, E. Dubosclard, P. Pebay-peyroula, B. Gans et al., Franck Fieschi NMR characterization of a heterodimer of p67 phox -p40 phox PB1 modules in solution

B. Communication-orale-et-publication-d-'actes-de-congrès-sylvie-chenavas, P. Brutscher, J. Gans, and . Simorre, Eva Pebay-Peyroula, Franck Fieschi Etude structurale en solution du complexe PB1 p67phox, Congrès international de Biochimie, pp.118-122, 2004.