T. A. Skotheim and J. Reynolds, Handbook of conducting polymers: Theory, synthesis, properties, and characterization, 2007.

C. Li, Electrochemical sensors for biomedical applications: proceedings of a symposium held at the May 1986 Meeting of the Electrochemical society, 1986.

C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao, Nanotechnology and biosensors, Biotechnology Advances, vol.22, issue.7, pp.505-518, 2004.
DOI : 10.1016/j.biotechadv.2004.03.004

M. Pumera, S. Sánchez, I. Ichinose, and . Tang, Electrochemical nanobiosensors, Sensors and Actuators B: Chemical, vol.123, issue.2, pp.1195-1205, 2007.
DOI : 10.1016/j.snb.2006.11.016

X. Zhang, Q. Guo, and D. Cui, Recent Advances in Nanotechnology Applied to Biosensors, Sensors, vol.9, issue.2, pp.1033-1053, 2009.
DOI : 10.3390/s90201033

G. Liu and Y. Lin, Nanomaterial labels in electrochemical immunosensors and immunoassays, Talanta, vol.74, issue.3, pp.308-317, 2007.
DOI : 10.1016/j.talanta.2007.10.014

A. K. Sarma, P. Vatsyayan, P. Goswami, and S. D. Minteer, Recent advances in material science for developing enzyme electrodes, Biosensors and Bioelectronics, vol.24, issue.8, pp.2313-2322, 2009.
DOI : 10.1016/j.bios.2008.09.026

W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. Rimberg, Real-time detection of electron tunnelling in a quantum dot, Nature, vol.38, issue.6938, pp.422-425, 2003.
DOI : 10.1103/PhysRevB.44.1646

B. Pan, D. Cui, P. Xu, Q. Li, T. Huang et al., Study on interaction between gold nanorod and bovine serum albumin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.295, issue.1-3, pp.217-222, 2007.
DOI : 10.1016/j.colsurfa.2006.09.002

E. Ruiz-hitzky, M. Darder, P. Aranda, and K. Ariga, Advances in Biomimetic and Nanostructured Biohybrid Materials, Advanced Materials, vol.24, issue.3, pp.323-336, 2010.
DOI : 10.1002/adma.200901134

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials, vol.45, issue.6, pp.435-446, 2005.
DOI : 10.1126/science.1104274

H. Lineweaver and D. Burk, The Determination of Enzyme Dissociation Constants, Journal of the American Chemical Society, vol.56, issue.3, pp.658-666, 1934.
DOI : 10.1021/ja01318a036

V. Bille, D. Plainchamp, S. Lavielle, G. Chassaing, and J. Remacle, Effect of the microenvironment on the kinetic properties of immobilized enzymes, European Journal of Biochemistry, vol.12, issue.1, pp.41-47, 1989.
DOI : 10.1016/0022-5193(67)90004-5

S. Bacha, A. Bergel, and M. Comtat, Modeling of amperometric biosensors by a finite-volume method, Journal of Electroanalytical Chemistry, vol.359, issue.1-2, pp.21-38, 1993.
DOI : 10.1016/0022-0728(93)80398-2

I. Iliev, P. Atanasov, S. Gamburzev, A. Kaisheva, and V. Tonchev, Transient response of electrochemical biosensors with asymmetrical sandwich membranes, Sensors and Actuators B: Chemical, vol.8, issue.1, pp.65-72, 1992.
DOI : 10.1016/0925-4005(92)85010-T

P. N. Bartlett and R. G. Whitaker, Electrochemical immobilisation of enzymes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.224, issue.1-2, pp.27-35, 1987.
DOI : 10.1016/0022-0728(87)85081-7

P. N. Bartlett and R. G. Whitaker, Electrochemical immobilisation of enzymes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.224, issue.1-2, pp.37-48, 1987.
DOI : 10.1016/0022-0728(87)85082-9

R. A. Kamin and G. S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Analytical Chemistry, vol.52, issue.8, pp.1198-1205, 1980.
DOI : 10.1021/ac50058a010

H. Hecht, D. Schomburg, H. Kalisz, and R. Schmid, The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme, Biosensors and Bioelectronics, vol.8, issue.3-4, pp.197-203, 1993.
DOI : 10.1016/0956-5663(93)85033-K

D. Schomburg, M. Salzmann, D. Stephan, and V. Massey, Enzyme handbook, Éd, 57) Swoboda, pp.2209-2215, 1964.

J. Wang, Electrochemical Glucose Biosensors, Chemical Reviews, vol.108, issue.2, pp.814-825, 2008.
DOI : 10.1021/cr068123a

C. Mousty, Biosensing applications of clay-modified electrodes: a review, Analytical and Bioanalytical Chemistry, vol.18, issue.1, pp.315-325, 2009.
DOI : 10.1007/s00216-009-3274-y

J. Pelmont, Biodégradations et métabolismes: les bactéries pour les technologies de l'environnement, Éd, 2005.

A. Volbeda, M. Charon, C. Piras, E. C. Hatchikian, and M. Frey, Crystal structure of the nickel???iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, issue.6515, pp.580-587, 1995.
DOI : 10.1038/373580a0

P. M. Vignais and B. Billoud, Occurrence, Classification, and Biological Function of Hydrogenases:?? An Overview, Chemical Reviews, vol.107, issue.10, pp.4206-4272, 2007.
DOI : 10.1021/cr050196r

P. M. Vignais, B. Billoud, and J. Meyer, Classification and phylogeny of hydrogenases, FEMS Microbiology Reviews, vol.25, issue.4, pp.455-501, 2001.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

O. Pilak, B. Mamat, S. Vogt, C. H. Hagemeier, R. K. Thauer et al., The Crystal Structure of the Apoenzyme of the Iron???Sulphur Cluster-free Hydrogenase, Journal of Molecular Biology, vol.358, issue.3, pp.798-809, 2006.
DOI : 10.1016/j.jmb.2006.02.035

N. Armaroli and V. Balzani, The Future of Energy Supply: Challenges and Opportunities, Angewandte Chemie International Edition, vol.42, issue.1-2, pp.52-66, 2007.
DOI : 10.1002/anie.200602373

D. L. Hallahan, V. M. Fernandez, E. C. Hatchikian, and D. Hall, Differential inhibition of catalytic sites in Desulfovibrio gigas hydrogenase, Biochimie, vol.68, issue.1, pp.49-54, 1986.
DOI : 10.1016/S0300-9084(86)81067-7

D. Lacey, A. L. Fernández, V. M. Rousset, M. Cammack, and R. , Activation and Inactivation of Hydrogenase Function and the Catalytic Cycle:?? Spectroelectrochemical Studies, Chemical Reviews, vol.107, issue.10, pp.4304-4330, 2007.
DOI : 10.1021/cr0501947

URL : https://hal.archives-ouvertes.fr/hal-00335154

J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, Nature, vol.9, issue.4356, pp.737-738, 1953.
DOI : 10.1016/0006-3002(53)90232-7

R. L. Letsinger and K. K. Ogilvie, Nucleotide chemistry. XIII. Synthesis of oligothymidylates via phosphotriester intermediates, Journal of the American Chemical Society, vol.91, issue.12, pp.3350-3355, 1969.
DOI : 10.1021/ja01040a042

R. L. Letsinger and P. S. Miller, Nucleotide chemistry. XIV. Protecting groups for nucleosides used in synthesizing oligonucleotides, Journal of the American Chemical Society, vol.91, issue.12, pp.3356-3359, 1969.
DOI : 10.1021/ja01040a043

R. L. Letsinger, K. K. Ogilvie, and P. S. Miller, Nucleotide chemistry. XV. Developments in syntheses of oligodeoxyribonucleotides and their organic derivatives, Journal of the American Chemical Society, vol.91, issue.12, pp.3360-3365, 1969.
DOI : 10.1021/ja01040a044

S. L. Beaucage and M. H. Caruthers, Deoxynucleoside phosphoramidites???A new class of key intermediates for deoxypolynucleotide synthesis, Tetrahedron Letters, vol.22, issue.20, pp.1859-1862, 1981.
DOI : 10.1016/S0040-4039(01)90461-7

L. J. Mcbride and M. H. Caruthers, An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides, Tetrahedron Letters, vol.24, issue.3, pp.245-248, 1983.
DOI : 10.1016/S0040-4039(00)81376-3

D. Forget, D. Boturyn, E. Defrancq, J. Lhomme, and P. Dumy, Highly Efficient Synthesis of Peptide-Oligonucleotide Conjugates: Chemoselective Oxime and Thiazolidine Formation, Chemistry - A European Journal, vol.7, issue.18, pp.3976-3984, 2001.
DOI : 10.1002/1521-3765(20010917)7:18<3976::AID-CHEM3976>3.0.CO;2-X

O. P. Edupuganti, Y. Singh, E. Defrancq, and P. Dumy, New Strategy for the Synthesis of 3?,5?-Bifunctionalized Oligonucleotide Conjugates through Sequential Formation of Chemoselective Oxime Bonds, Chemistry - A European Journal, vol.117, issue.23, pp.5988-5995, 2004.
DOI : 10.1002/chem.200400390

S. Cosnier, Recent Advances in Biological Sensors Based on Electrogenerated Polymers: A Review, Analytical Letters, vol.61, issue.7, p.1260, 2007.
DOI : 10.2116/analsci.15.1175

S. Cosnier and A. Karyakin, Electropolymerization: Concepts, Materials and Applications, Éd, 2010.
DOI : 10.1002/9783527630592

M. Umana and . Waller, Protein-modified electrodes. The glucose oxidase/polypyrrole system, Analytical Chemistry, vol.58, issue.14, pp.2979-2983, 1986.
DOI : 10.1021/ac00127a018

N. C. Foulds, C. R. Lowe, and E. A. Hall, Faraday Trans, Chem. Soc. Biosens. Bioelectron, vol.82, issue.5, pp.1259-431, 1986.

T. E. Campbell, A. J. Hodgson, and G. Wallace, Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies, Electroanalysis, vol.257, issue.4, pp.215-222, 1999.
DOI : 10.1002/(SICI)1521-4109(199904)11:4<215::AID-ELAN215>3.0.CO;2-#

R. John, M. Spencer, G. G. Wallace, and M. R. Smyth, Development of a polypyrrole-based human serum albumin sensor, Analytica Chimica Acta, vol.249, issue.2, pp.381-385, 1991.
DOI : 10.1016/S0003-2670(00)83010-X

S. Grant, F. Davis, J. A. Pritchard, K. A. Law, S. P. Higson et al., Labeless and reversible immunosensor assay based upon an electrochemical current-transient protocol, Analytica Chimica Acta, vol.495, issue.1-2, pp.21-32, 2003.
DOI : 10.1016/j.aca.2003.08.026

F. Davis, A. V. Nabok, and S. P. Higson, Species differentiation by DNA-modified carbon electrodes using an ac impedimetric approach, Biosensors and Bioelectronics, vol.20, issue.8, pp.1531-1538, 2005.
DOI : 10.1016/j.bios.2004.06.039

N. Haddour, S. Cosnier, and C. Gondran, Electrogeneration of a Poly(pyrrole)-NTA Chelator Film for a Reversible Oriented Immobilization of Histidine-Tagged Proteins, Journal of the American Chemical Society, vol.127, issue.16, pp.5752-5753, 2005.
DOI : 10.1021/ja050390v

URL : https://hal.archives-ouvertes.fr/hal-00414009

). Silva, S. Cosnier, S. Almeida, M. Moura, and J. , An efficient poly(pyrrole???viologen)-nitrite reductase biosensor for the mediated detection of nitrite, Electrochemistry Communications, vol.6, issue.4, pp.404-408, 2004.
DOI : 10.1016/j.elecom.2004.02.007

G. Ramsay and S. M. Wolpert, Utility of Wiring Nitrate Reductase by Alkylpyrroleviologen-Based Redox Polymers for Electrochemical Biosensor and Bioreactor Applications, Analytical Chemistry, vol.71, issue.2, pp.504-506, 1999.
DOI : 10.1021/ac980885l

M. Shaolin, X. Huaiguo, and Q. Bidong, Bioelectrochemical responses of the polyaniline glucose oxidase electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.304, issue.1-2, pp.7-16, 1991.
DOI : 10.1016/0022-0728(91)85487-A

K. Grennan, G. Strachan, A. J. Porter, A. J. Killard, and M. R. Smyth, Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement, Analytica Chimica Acta, vol.500, issue.1-2, pp.287-298, 2003.
DOI : 10.1016/S0003-2670(03)00942-5

J. Wang, M. Jiang, and B. Mukherjee, Flow Detection of Nucleic Acids at a Conducting Polymer-Modified Electrode, Analytical Chemistry, vol.71, issue.18, pp.4095-4099, 1999.
DOI : 10.1021/ac9903205

K. Ghanbari, S. Bathaie, and M. Mousavi, Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor, Biosensors and Bioelectronics, vol.23, issue.12, pp.1825-1831, 2008.
DOI : 10.1016/j.bios.2008.02.029

D. Purvis, O. Leonardova, D. Farmakovsky, and V. Cherkasov, An ultrasensitive and stable potentiometric immunosensor, Biosensors and Bioelectronics, vol.18, issue.11, pp.1385-1390, 2003.
DOI : 10.1016/S0956-5663(03)00066-6

M. Wilchek and E. A. Bayer, The avidin-biotin complex in bioanalytical applications, Analytical Biochemistry, vol.171, issue.1, pp.1-32, 1988.
DOI : 10.1016/0003-2697(88)90120-0

H. Sigel, D. B. Mccormick, R. Griesser, B. Prijs, and L. Wright, Metal ion complexes with biotin and biotin derivatives. Participation of sulfur in the orientation of divalent cations, Biochemistry, vol.8, issue.7, pp.2687-2695, 1969.
DOI : 10.1021/bi00835a001

R. Griesser, H. Siegel, L. D. Wright, and D. B. Mccormick, Interactions of metal ions with biotin and biotin derivatives. Complexing and hydrogen-bond formation of the ureido group, Biochemistry, vol.12, issue.10, pp.1917-1922, 1973.
DOI : 10.1021/bi00734a013

R. Griesser, B. Prijs, H. Sigel, W. Foery, L. D. Wright et al., Stability and structure of binary and ternary metal ion complexes with biocytin, the sulfoxide and sulfone, N-acetyl-L-lysine, and L-alanine, Biochemistry, vol.9, issue.17, pp.3285-3293, 1970.
DOI : 10.1021/bi00819a001

C. Mousty, J. Bergamasco, R. Wessel, H. Perrot, and S. Cosnier, Elaboration and Characterization of Spatially Controlled Assemblies of Complementary Polyphenol Oxidase???Alkaline Phosphatase Activities on Electrodes, Analytical Chemistry, vol.73, issue.13, pp.2890-2897, 2001.
DOI : 10.1021/ac0100143

S. Cosnier, C. Gondran, A. Le-pellec, A. Senillou, H. W. Duckworth et al., CONTROLLED FABRICATION OF GLUCOSE AND CATECHOL MICROBIOSENSORS VIA ELECTROPOLYMERIZED BIOTINYLATED POLYPYRROLE FILMS, Analytical Letters, vol.2, issue.1, pp.61-1613, 1970.
DOI : 10.1016/S0031-9422(00)81472-7

. Ayant-démontré-la-possibilité-d, établir une connexion électrique entre l'hydrogénase, le viologène, les nanotubes de carbone multi-parois et l'électrode, nous avons voulu explorer, de manière préliminaire, les potentialités de connexion de cette enzyme via l'immobilisation du viologène sur les MWCNTs par des interactions ?. Pour cela

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, pp.2204-88, 1952.
DOI : 10.1063/1.107080

A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol.32, issue.3, pp.335-349, 1976.
DOI : 10.1016/0022-0248(76)90115-9

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, vol.44, issue.9, pp.1621-1623, 2006.
DOI : 10.1016/j.carbon.2006.03.019

M. Kusaba and Y. Tsunawaki, Thin Solid Films, pp.506-507, 2006.

D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas et al., Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor, Carbon, vol.40, issue.10, pp.1799-1807, 2002.
DOI : 10.1016/S0008-6223(02)00057-X

S. Bondi, W. Lackey, R. Johnson, and X. Wang, Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization, Carbon, vol.44, issue.8, pp.1393-1403, 2006.
DOI : 10.1016/j.carbon.2005.11.023

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

J. Mintmire, B. Dunlap, and C. White, Are fullerene tubules metallic?, Physical Review Letters, vol.68, issue.5, pp.631-634, 1992.
DOI : 10.1103/PhysRevLett.68.631

J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Physical Review B, vol.59, issue.4, p.2514, 1999.
DOI : 10.1103/PhysRevB.59.R2514

P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, vol.87, issue.21, p.215502, 2001.
DOI : 10.1103/PhysRevLett.87.215502

D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of Carbon Nanotubes, Chemical Reviews, vol.106, issue.3, pp.1105-1136, 2006.
DOI : 10.1021/cr050569o

H. Jaegfeldt, T. Kuwana, and G. Johansson, Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide, Journal of the American Chemical Society, vol.105, issue.7, pp.1805-1814, 1983.
DOI : 10.1021/ja00345a021

E. Katz, Application of bifunctional reagents for immobilization of proteins on a carbon electrode surface: Oriented immobilization of photosynthetic reaction centers, Journal of Electroanalytical Chemistry, vol.365, issue.1-2, pp.157-164, 1994.
DOI : 10.1016/0022-0728(93)02975-N

B. Neises and W. Steglich, Simple Method for the Esterification of Carboxylic Acids, Angewandte Chemie International Edition in English, vol.17, issue.7, pp.522-524, 1978.
DOI : 10.1002/anie.197805221

J. Baur, C. Gondran, M. Holzinger, E. Defrancq, H. Perrot et al., Label-Free Femtomolar Detection of Target DNA by Impedimetric DNA Sensor Based on Poly(pyrrole-nitrilotriacetic acid) Film, Analytical Chemistry, vol.82, issue.3, pp.1066-1072, 2010.
DOI : 10.1021/ac9024329

N. Haddour, S. Cosnier, and C. Gondran, Electrogeneration of a Poly(pyrrole)-NTA Chelator Film for a Reversible Oriented Immobilization of Histidine-Tagged Proteins, Journal of the American Chemical Society, vol.127, issue.16, pp.5752-5753, 2005.
DOI : 10.1021/ja050390v

URL : https://hal.archives-ouvertes.fr/hal-00414009

C. Aravinda, S. Cosnier, W. Chen, N. V. Myung, and A. Mulchandani, Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor, Biosensors and Bioelectronics, vol.24, issue.5, pp.1451-1455, 2009.
DOI : 10.1016/j.bios.2008.08.044

H. Lineweaver and D. Burk, The Determination of Enzyme Dissociation Constants, Journal of the American Chemical Society, vol.56, issue.3, pp.658-666, 1934.
DOI : 10.1021/ja01318a036

P. Mailley, Thèse de doctorat : « Immobilisation d'enzymes dans des poly(pyrroleamphiphiles ) : caractérisation et application à la biodétection ampérométrique du glucose, 1995.

M. R. Eftink, M. L. Andy, K. Bystrom, H. D. Perlmutter, and D. S. Kristol, Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests, Journal of the American Chemical Society, vol.111, issue.17, pp.6765-6772, 1989.
DOI : 10.1021/ja00199a041

M. Holzinger, L. Bouffier, R. Villalonga, and S. Cosnier, Adamantane/??-cyclodextrin affinity biosensors based on single-walled carbon nanotubes, Biosensors and Bioelectronics, vol.24, issue.5, pp.1128-1134, 2009.
DOI : 10.1016/j.bios.2008.06.029

M. Wilchek and E. A. Bayer, The avidin-biotin complex in bioanalytical applications, Analytical Biochemistry, vol.171, issue.1, pp.1-32, 1988.
DOI : 10.1016/0003-2697(88)90120-0

N. Haddour, Thèse de doctorat : « Réalisation d'assemblages biologiques électroactifs : application aux biocapteurs d'affinité. », 2005.

R. Wessel, Thèse de doctorat : « Etude électrochimique de métallodeutéroporphyrines biomimétiques électropolymérisables Application aux (bio)capteurs ampérométriques, 2001.

A. L. Lacey, V. M. Fernández, and M. Rousset, Native and mutant nickel???iron hydrogenases: Unravelling structure and function, Coordination Chemistry Reviews, vol.249, issue.15-16, pp.1596-1608, 2005.
DOI : 10.1016/j.ccr.2005.03.009

N. Armaroli and V. Balzani, The Future of Energy Supply: Challenges and Opportunities, Angewandte Chemie International Edition, vol.42, issue.1-2, pp.52-66, 2007.
DOI : 10.1002/anie.200602373

A. Volbeda, M. Charon, C. Piras, E. C. Hatchikian, and M. Frey, Crystal structure of the nickel???iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, issue.6515, pp.580-587, 1995.
DOI : 10.1038/373580a0

J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases, Chemical Reviews, vol.107, issue.10, pp.4273-4303, 2007.
DOI : 10.1021/cr050195z

A. Volbeda, Y. Montet, X. Vernède, E. C. Hatchikian, and J. C. Fontecilla-camps, High-resolution crystallographic analysis of Desulfovibrio fructosovorans 6NiFe9 hydrogenase, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.1449-1461, 2002.
DOI : 10.1016/S0360-3199(02)00072-1

S. Malki, G. D. Luca, M. L. Fardeau, M. Rousset, and . Belaich, Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans, Archives of Microbiology, vol.167, issue.1, pp.38-45, 1997.
DOI : 10.1007/s002030050414

S. Dementin, B. Burlat, A. L. De-lacey, A. Pardo, G. Adryanczyk-perrier et al., A Glutamate Is the Essential Proton Transfer Gate during the Catalytic Cycle of the [NiFe] Hydrogenase, Journal of Biological Chemistry, vol.279, issue.11, pp.10508-10513, 2004.
DOI : 10.1074/jbc.M312716200

É. Lojou, X. Luo, M. Brugna, N. Candoni, S. Dementin et al., Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes, JBIC Journal of Biological Inorganic Chemistry, vol.152, issue.200, pp.1157-1167, 2008.
DOI : 10.1007/s00775-008-0401-8

URL : https://hal.archives-ouvertes.fr/hal-00335503

S. Cosnier, C. Innocent, and Y. Jouanneau, Amperometric Detection of Nitrate via a Nitrate Reductase Immobilized and Electrically Wired at the Electrode Surface, Analytical Chemistry, vol.66, issue.19, pp.3198-3201, 1994.
DOI : 10.1021/ac00091a032

S. Cosnier, B. Galland, and C. Innocent, New electropolymerizable amphiphilic viologens for the immobilization and electrical wiring of a nitrate reductase, Journal of Electroanalytical Chemistry, vol.433, issue.1-2, pp.113-119, 1997.
DOI : 10.1016/S0022-0728(97)00207-6

A. F. Diaz, J. Castillo, K. K. Kanazawa, J. A. Logan, M. Salmon et al., Conducting poly-N-alkylpyrrole polymer films, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.133, issue.2, pp.233-239, 1982.
DOI : 10.1016/0368-1874(82)85140-X

A. Deronzier and J. C. Moutet, Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications, Accounts of Chemical Research, vol.22, issue.7, pp.249-255, 1989.
DOI : 10.1021/ar00163a004

C. Innocent, Thèse de doctorat : « Immobilisation de biomolécules dans des poly-pyrroles fonctionnalisés : application à l'électroanalyse. », Chem. Rev, vol.110, issue.55, pp.1348-1385, 1995.

N. L. Weinberg and H. R. Weinberg, Electrochemical oxidation of organic compounds, Chemical Reviews, vol.68, issue.4, pp.449-523, 1968.
DOI : 10.1021/cr60254a003

R. E. Ionescu, S. Cosnier, and R. S. Marks, Protease Amperometric Sensor, Analytical Chemistry, vol.78, issue.18, pp.6327-6331, 2006.
DOI : 10.1021/ac060253w

X. Luo, M. Brugna, P. Tron-infossi, M. T. Giudici-orticoni, and É. Lojou, Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation, JBIC Journal of Biological Inorganic Chemistry, vol.13, issue.8, pp.1275-1288, 2009.
DOI : 10.1007/s00775-009-0572-y

C. Nmr, 300 MHz): ? (ppm) = 174

U. Vis, THF): ? max (nm) = 243

C. Nmr, CDCl 3 , 300 MHz): ? (ppm) = 171

U. Vis, THF): ? max (nm) = 243

U. Vis, THF): ? max (nm) = 243

C. Nmr, CDCl 3 , 300 MHz): ? (ppm) = 151

. Pyrrole-tosylate, 25 g, 3.2 10 -3 mol) was dissolved in a fresh solution of acetone saturated with sodium iodide and the solution was stirred for 3 h at 60 °C. After the mixture has been left overnight at room temperature, 20 mL of CH 2 Cl 2 and 20 mL of water were added. Organic phases were washed with water (3 x 50mL) and dried with sodium sulphate. The solution was filtrated and evaporated to give 1, g of pyrrole-I (XIV) (yield: 99 %)

. Pyrrole-iode, 11 g, 3.2 10 -3 mol) was dissolved in 30 mL of absolute ethanol and a 4-fold molar excess of triethylamine (1.6 mL, 12 10 -3 mol) was added; the solution was stirred overnight at 85 °C. Excess of triethylamine and the solvent were evaporated and the product was dissolved in methanol to realize anion exchange I -?BF 4 -by deposition on the column conditioned with tetrafluoroborhydric acic (1 % V/V in water) After rinsing step of the column with acetonitrile and evaporation of the solvents, g of pyrrole-ammonium (XV) was obtained

C. Nmr, CDCl 3 , 300 MHz): ? (ppm) = 120

. France, coated with two identical Au layers (Ø = 5 mm, thickness = 200 nm) One gold layer was modified with an electrogenerated poly(pyrrole-NTA) film by oxidative electrolysis

. Mc, A Plexiglas cell (V cell = 50 µL) connected to a micro pump (P1, Pharmacia) was used with an applied constant flow rate of 50 µL min ?1 . The inlet and outlet tubes were placed in the same sample for circulating flow

J. Baur, M. Holzinger, C. Gondran, and S. Cosnier, Immobilization of biotinylated biomolecules onto electropolymerized poly(pyrrole-nitrilotriacetic acid)???Cu2+ film, Electrochemistry Communications, vol.12, issue.10, pp.1287-1290, 2010.
DOI : 10.1016/j.elecom.2010.07.001

. Ce-mémoire-est-consacré-au-développement, Cu 2+ a été utilisé pour l'élaboration de capteurs à ADN ou de biocapteurs enzymatiques. Ainsi, il a pu être utilisé avec son partenaire d'affinité, l'histidine, pour l'immobilisation réversible d'oligonucléotides sondes marqués avec des histidines Grâce à une détection sans marquage de la cible, la spectroscopie d'impédance électrochimique, le plus faible seuil de détection de la littérature (10 -15 mol.L -1 ) pour les biocapteurs à détection impédancemétrique a été décrit. Par la suite, un concept totalement novateur et original a été étudié pour l'utilisation ce polymère afin de réaliser l'immobilisation de biomolécules biotinylées. Cette nouvelle interaction NTA/Cu 2+ /biotine a été illustrée par l'ancrage d'enzymes et d'oligonucléotides marqués avec des biotines. Dans un second temps, des architectures tridimensionnelles à base de nanotubes de carbone fonctionnalisés de façon non-covalente ont été considérées. Tout d'abord, la fonctionnalisation multiple de nanotubes de carbone par interactions ?-? avec des pyrènes modifiés en utilisant les trois systèmes affins les plus courants (adamantane/?-cyclodextrine, avidine/biotine et NTA