D. B. Allison, A mixture model approach for the analysis of microarray gene expression data, Computational Statistics & Data Analysis, vol.39, issue.1, pp.1-20, 2002.
DOI : 10.1016/S0167-9473(01)00046-9

J. Ambroise, C. Chiquet, and . Matias, Inferring sparse Gaussian graphical models with latent structure, Electronic Journal of Statistics, vol.3, issue.0, pp.205-238, 2009.
DOI : 10.1214/08-EJS314

URL : https://hal.archives-ouvertes.fr/inria-00591491

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate : a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B (Methodological), vol.57, pp.289-300, 1995.

Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, vol.29, pp.1165-1188, 2001.

Y. Benjamini, A. Krieger, and D. Yekutieli, Adaptive linear step-up procedures that control the false discovery rate, Biometrika, vol.93, issue.3, pp.491-507, 2006.
DOI : 10.1093/biomet/93.3.491

M. A. Black, A note on the adaptive control of false discovery rates, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.25, issue.2, pp.297-304, 2004.
DOI : 10.1073/pnas.1530509100

G. Blanchard and E. Roquain, Two simple sufficient conditions for FDR control, Electronic Journal of Statistics, vol.2, issue.0, pp.963-992, 2008.
DOI : 10.1214/08-EJS180

URL : https://hal.archives-ouvertes.fr/hal-00354980

Y. Blum, G. Lemignon, S. Lagarrigue, and D. Causeur, A factor model to analyze heterogeneity in gene expression, BMC Bioinformatics, vol.11, issue.1, p.368, 2010.
DOI : 10.1186/1471-2105-11-368

URL : https://hal.archives-ouvertes.fr/hal-00729426

C. E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilità, pp.3-62, 1936.

A. Buja and N. Eyuboglu, Remarks on parallel analysis. Multivariate behaviour, 1992.

D. Causeur, C. Friguet, M. Houée, and M. Kloareg, Package for Large-Scale Significance Testing under Dependence, Journal of Statistical Software, vol.40, issue.14, 2010.
DOI : 10.18637/jss.v040.i14

URL : https://hal.archives-ouvertes.fr/hal-00730155

M. Chavent, V. Kuentz, and J. Saracco, Analyse en facteurs : présentation et comparaison des logiciels sas, spad et spss, 2007.

A. Dabney, J. D. Storey, and G. R. Warnes, qvalue : Q-value estimation for false discovery rate control, 2009.

M. Davidian, A. Tsiatis, and S. Leon, Semiparametric estimation of treatment effect in a pretestposttest study with missing data, Statistical Science, vol.3, pp.261-301, 2005.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society, Series B, vol.34, pp.1-38, 1977.

S. Dudoit and M. J. Vanderlaan, Multiple testing procedures with application to genomics, 2008.
DOI : 10.1007/978-0-387-49317-6

S. Dudoit, J. Fridlyand, and T. P. Speed, Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data, Journal of the American Statistical Association, vol.97, issue.457, pp.77-87, 2002.
DOI : 10.1198/016214502753479248

S. Dudoit, J. Shaffer, and J. C. Boldrick, Multiple Hypothesis Testing in Microarray Experiments, Statistical Science, vol.18, issue.1, pp.71-103, 2003.
DOI : 10.1214/ss/1056397487

B. Efron, Large-Scale Simultaneous Hypothesis Testing, Journal of the American Statistical Association, vol.99, issue.465, pp.96-104, 2004.
DOI : 10.1198/016214504000000089

B. Efron, Correlation and Large-Scale Simultaneous Significance Testing, Journal of the American Statistical Association, vol.102, issue.477, pp.93-103, 2007.
DOI : 10.1198/016214506000001211

B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher, Empirical Bayes Analysis of a Microarray Experiment, Journal of the American Statistical Association, vol.96, issue.456, pp.1151-1160, 2001.
DOI : 10.1198/016214501753382129

Y. Escouffier, Le Traitement des Variables Vectorielles, Biometrics, vol.29, issue.4, pp.751-760, 1973.
DOI : 10.2307/2529140

L. R. Fabrigar, R. Maccallum, D. T. Wegener, and E. J. Strahan, Evaluating the use of exploratory factor analysis in psychological research., Psychological Methods, vol.4, issue.3, pp.272-299, 1999.
DOI : 10.1037/1082-989X.4.3.272

J. Fan, Y. Fan, and J. Lv, High dimensional covariance matrix estimation using a factor model, Journal of Econometrics, vol.147, issue.1, pp.186-197, 2008.
DOI : 10.1016/j.jeconom.2008.09.017

J. K. Ford, R. Maccallum, and M. Tait, THE APPLICATION OF EXPLORATORY FACTOR ANALYSIS IN APPLIED PSYCHOLOGY: A CRITICAL REVIEW AND ANALYSIS, Personnel Psychology, vol.40, issue.2, pp.291-314, 1986.
DOI : 10.1207/s15327906mbr1702_5

C. Genovese and L. Wasserman, Operating characteristics and extensions of the false discovery rate procedure, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.64, issue.3, pp.499-517, 2002.
DOI : 10.1111/1467-9868.00347

T. R. Golub, D. K. Slonim, C. Tamayo, P. Huard, M. Gaasenbeek et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol.286, issue.5439, pp.531-537, 1999.
DOI : 10.1126/science.286.5439.531

M. Guedj, G. Nuel, S. Robin, and A. Celisse, kerfdr : semi-parametric kernel-based approach to local fdr estimations, 2007.

T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, 1990.

J. C. Hayton, D. G. Allen, and V. Scarpello, Factor Retention Decisions in Exploratory Factor Analysis: a Tutorial on Parallel Analysis, Organizational Research Methods, vol.7, issue.2, pp.191-205, 2004.
DOI : 10.1177/1094428104263675

I. Hedenfalk, D. Duggan, Y. D. Chen, M. Radmacher, M. Bittner et al., Gene-Expression Profiles in Hereditary Breast Cancer, New England Journal of Medicine, vol.344, issue.8, pp.539-548, 2001.
DOI : 10.1056/NEJM200102223440801

S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal of Statistics, vol.6, pp.65-70, 1979.

J. Hsu, T. Chang, and J. Wang, Simultaneous confidence intervals for differential gene expressions, Journal of Statistical Planning and Inference, vol.136, issue.7, pp.2182-2196, 2006.
DOI : 10.1016/j.jspi.2005.08.029

J. C. Hsu, The factor analytic approach to simultaneous inference in the general linear model, Journal of computational and graphical statistics, vol.1, pp.151-168, 1992.

J. C. Hsu and B. Nelson, Multiple comparisons in the general linear model, Journal of computational and graphical statistics, vol.7, pp.23-41, 1998.

J. Josse, J. Pagès, and F. Husson, Testing the significance of the RV coefficient, Computational Statistics & Data Analysis, vol.53, issue.1, pp.82-91, 2008.
DOI : 10.1016/j.csda.2008.06.012

URL : https://hal.archives-ouvertes.fr/hal-00360535

K. G. Jöreskog, Factor analysis by least square and maximum likelihood methods, Statistical methods for digital computers, pp.125-165, 1977.

H. F. Kaiser, The varimax criterion for analytic rotation in factor analysis, Psychometrika, vol.7, issue.3, pp.187-200, 1958.
DOI : 10.1007/BF02289233

H. F. Kaiser, The application of electronic computers to factor analysis. Educationnal and Psychological Measurment, pp.141-151, 1960.

C. Kendziorski, H. Newton, M. Lan, and M. Gould, On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles, Statistics in Medicine, vol.7, issue.24, pp.3899-3914, 2003.
DOI : 10.1002/sim.1548

K. I. Kim and M. Van, Effects of dependence in high-dimensional multiple testing problems, BMC Bioinformatics, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2105-9-114

M. Kloareg and D. Causeur, Improving type ii error rates of multiple tests by use of auxiliary variables and application to microarray data, 2007.

E. L. Korn, J. F. Troendle, L. M. Mcshane, and R. Simon, Controlling the number of false discoveries: application to high-dimensional genomic data, Journal of Statistical Planning and Inference, vol.124, issue.2, pp.379-398, 2004.
DOI : 10.1016/S0378-3758(03)00211-8

R. Kustra, R. Shioda, and M. Zhu, A factor analysis model for functional genomics, BMC Bioinformatics, vol.7, 2006.

C. E. Lance, M. M. Butts, and L. C. Michels, The Sources of Four Commonly Reported Cutoff Criteria, Organizational Research Methods, vol.99, issue.2, pp.202-220, 2006.
DOI : 10.1037/0033-2909.88.3.588

M. Langaas, B. H. Lindqvist, and E. Ferkingstad, Estimating the proportion of true null hypotheses, with application to DNA microarray data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.6, issue.4, pp.555-572, 2005.
DOI : 10.1006/nimg.2001.0764

D. N. Lawley, VI.???The Estimation of Factor Loadings by the Method of Maximum Likelihood., Proceedings of the Royal Society of Edinburgh, vol.ccxxii, issue.01, pp.64-82, 1940.
DOI : 10.1037/h0072648

J. T. Leek and J. Storey, Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis, PLoS Genetics, vol.3, issue.9, p.161, 2007.
DOI : 10.1371/journal.pgen.0030161.sg011

J. T. Leek and J. Storey, A general framework for multiple testing dependence, Proceedings of the National Academy of Sciences, pp.18718-18723, 2008.
DOI : 10.1073/pnas.0808709105

J. T. Leek, sva : Surrogate Variable Analysis, 2008.

G. Lemignon, C. Désert, F. Pite, S. Leroux, O. Demeure et al., Using transcriptome profiling to characterize qtl regions on chicken chromosome 5, BMC Genomics, pp.10-575, 2009.

S. Leon, A. Tsiatis, and M. Davidian, Semiparametric Estimation of Treatment Effect in a Pretest-Posttest Study, Biometrics, vol.90, issue.8, pp.1046-1055, 2003.
DOI : 10.1198/000313001753272466

C. Liu and D. Rubin, Maximum likelihood estimation of factor analysis using the ecme algorithm with complete and incomplete data, Statistica Sinica, vol.8, pp.729-747, 1998.

I. Lönnstedt and T. P. Speed, Replicated microarray data, Statistica Sinica, vol.12, pp.31-46, 2002.

R. Maccallum, K. Widaman, S. Zhang, and S. Hong, Sample size in factor analysis., Psychological Methods, vol.4, issue.1, pp.84-99, 2008.
DOI : 10.1037/1082-989X.4.1.84

M. Man, X. Wang, and Y. Wang, POWER_SAGE: comparing statistical tests for SAGE experiments, Bioinformatics, vol.16, issue.11, pp.953-959, 2000.
DOI : 10.1093/bioinformatics/16.11.953

K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, 1979.

G. J. Mclachlan, D. Peel, and R. W. Bean, Modelling high-dimensional data by mixtures of factor analyzers, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.379-388, 2003.
DOI : 10.1016/S0167-9473(02)00183-4

G. J. Mclachlan, R. W. Bean, and L. B. Jones, A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays, Bioinformatics, vol.22, issue.13, pp.1608-0615, 2006.
DOI : 10.1093/bioinformatics/btl148

R. G. Montanelli and L. G. Humphrey, Latent roots of random data correlation matrices with squared multiple correlations on the diagonal: A monte carlo study, Psychometrika, vol.70, issue.3, pp.341-348, 1976.
DOI : 10.1007/BF02293559

M. Norris and L. Lecavalier, Evaluating the Use of Exploratory Factor Analysis in Developmental Disability Psychological Research, Journal of Autism and Developmental Disorders, vol.99, issue.1, 2009.
DOI : 10.1007/s10803-009-0816-2

A. B. Owen, Variance of the number of false discoveries, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.69, issue.3, pp.411-426, 2005.
DOI : 10.1111/j.1467-9868.2004.00439.x

K. Pollard, Y. Ge, S. Taylor, and S. Dudoit, multtest : Resampling-based multiple hypothesis testing

I. Pournara and L. Wernisch, Factor analysis for gene regulatory networks and transcription factor activity profiles, BMC Bioinformatics, vol.8, issue.1, p.61, 2007.
DOI : 10.1186/1471-2105-8-61

K. Preacher and R. Maccallum, Exploratory factor analysis in behavior genetics research : Factor recovery with small sample sizes, Behavior Genetics, vol.32, issue.2, pp.153-161, 2002.
DOI : 10.1023/A:1015210025234

X. Qiu, A. Brooks, L. Klebaniv, and A. Yakovlev, The effects of normalisation on the correlation structure of microarray data, BMC Bioinformatics, vol.6, issue.1, p.120, 2005.
DOI : 10.1186/1471-2105-6-120

W. Revelle and T. Rocklin, Very Simple Structure: An Alternative Procedure For Estimating The Optimal Number Of Interpretable Factors, Multivariate Behavioral Research, vol.14, issue.4, pp.403-414, 1979.
DOI : 10.1207/s15327906mbr1404_2

D. Robertson and J. Symons, Maximum likelihood factor analysis with rank-deficient sample covariance matrices, Journal of Multivariate Analysis, vol.98, issue.4, pp.813-828, 2007.
DOI : 10.1016/j.jmva.2006.11.012

S. Robin, A. Bar-hen, J. Daudin, and L. Pierre, A semi-parametric approach for mixture models: Application to local false discovery rate estimation, Computational Statistics & Data Analysis, vol.51, issue.12, pp.5483-5493, 2007.
DOI : 10.1016/j.csda.2007.02.028

URL : https://hal.archives-ouvertes.fr/hal-01197551

J. M. Robins, A. Rotnizky, and L. P. Zhao, Estimation of Regression Coefficients When Some Regressors are not Always Observed, Journal of the American Statistical Association, vol.137, issue.2, pp.846-866, 1994.
DOI : 10.1002/sim.4780110608

D. B. Rubin and D. T. Thayer, EM algorithms for ML factor analysis, Psychometrika, vol.34, issue.1, pp.69-76, 1982.
DOI : 10.1007/BF02293851

D. Salsburg, The lady tasting tea : How statistics revolutionized science in the twentieth century, 2002.

S. Sarkar, Two-stage stepup procedures controlling FDR, Journal of Statistical Planning and Inference, vol.138, issue.4, pp.1072-1084, 2008.
DOI : 10.1016/j.jspi.2007.03.058

S. K. Sarkar, procedures, The Annals of Statistics, vol.30, issue.1, pp.239-257, 2002.
DOI : 10.1214/aos/1015362192

J. Schäfer and K. Strimmer, A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics, Statistical Applications in Genetics and Molecular Biology, vol.4, issue.1, p.32, 2005.
DOI : 10.2202/1544-6115.1175

T. Schweder and E. Spjotvoll, -values to evaluate many tests simultaneously, Biometrika, vol.69, issue.3, pp.493-502, 1982.
DOI : 10.1093/biomet/69.3.493

URL : https://hal.archives-ouvertes.fr/hal-00764552

J. Shaffer, Multiple hypotheses testing : a review Annual review of psychology, pp.561-584, 1995.

Z. Sidak, Rectangular Confidence Regions for the Means of Multivariate Normal Distributions, Journal of the American Statistical Association, vol.62, issue.318, pp.626-633, 1967.
DOI : 10.2307/2283989

B. W. Silverman, Density estimation for statistics and data analysis, 1986.
DOI : 10.1007/978-1-4899-3324-9

R. J. Simes, An improved Bonferroni procedure for multiple tests of significance, Biometrika, vol.73, issue.3, pp.751-754, 1986.
DOI : 10.1093/biomet/73.3.751

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, 2004.
DOI : 10.2202/1544-6115.1027

C. Spearman, "General Intelligence," Objectively Determined and Measured, The American Journal of Psychology, vol.15, issue.2, pp.201-293, 1904.
DOI : 10.2307/1412107

D. W. Stewart, The Application and Misapplication of Factor Analysis in Marketing Research, Journal of Marketing Research, vol.18, issue.1, pp.51-62, 1981.
DOI : 10.2307/3151313

J. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proceedings of the National Academy of Sciences, pp.9440-9445, 2003.
DOI : 10.1073/pnas.1530509100

J. D. Storey, A direct approach to false discovery rates, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.82, issue.3, pp.479-498, 2002.
DOI : 10.1111/1467-9868.00346

J. D. Storey, The positive false discovery rate: a Bayesian interpretation and the q -value, The Annals of Statistics, vol.31, issue.6, pp.2013-2035, 2003.
DOI : 10.1214/aos/1074290335

J. D. Storey, J. E. Taylor, and D. Siegmund, Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.73, issue.1, pp.187-205, 2004.
DOI : 10.1016/S0378-3758(99)00041-5

J. D. Storey, J. Y. Dai, and J. T. Leek, The optimal discovery procedure for large-scale significance testing, with applications to comparative microarray experiments, Biostatistics, vol.8, issue.2, pp.414-432, 2007.
DOI : 10.1093/biostatistics/kxl019

J. D. Storey, The optimal discovery procedure: a new approach to simultaneous significance testing, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.9, issue.3, pp.347-368, 2007.
DOI : 10.1093/biostatistics/kxh021

G. H. Thomson, THE FACTORIAL ANALYSIS OF HUMAN ABILITY, British Journal of Educational Psychology, vol.9, issue.2, 1951.
DOI : 10.1111/j.2044-8279.1939.tb03204.x

A. Tsiatis, M. Davidian, M. Zhang, and X. Lu, Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: A principled yet flexible approach, Statistics in Medicine, vol.50, issue.23, pp.1-10, 2000.
DOI : 10.1002/sim.3113

V. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, pp.5116-5121, 2001.
DOI : 10.1073/pnas.091062498

W. F. Velicer, C. A. Eaton, and J. L. Fava, Construct Explication through Factor or Component Analysis: A Review and Evaluation of Alternative Procedures for Determining the Number of Factors or Components, pp.41-71, 2000.
DOI : 10.1007/978-1-4615-4397-8_3

P. H. Westfall and S. S. Young, Resampling-based multiple testing : examples and methods for p-value adjustment, 1993.

H. Yifan, H. Xu, V. Calian, and J. C. Hsu, To permute or not to permute, Bioinformatics, vol.22, pp.2244-2248, 2006.

A. Dans-des-revues-internationales, @. C. Friguet, M. Kloareg, and &. D. Causeur, A factor model approach to multiple testing under dependence, Control of the FWER in Multiple Testing Under Dependence, Communications in Statistics -Theory and Methods -38, pp.1406-14152733, 1080.

@. C. Friguet and &. D. Causeur, Estimation of the proportion of true null hypotheses in high-dimensional data under dependence, Article soumis -CSDA, 2010.

@. D. Causeur, C. Friguet, M. Houée, and &. , Kloareg -Factor Analysis for Multiple Testing (FAMT) : an R package for large-scale significance testing under dependence, 2010.

@. C. Friguet, M. Kloareg, and &. , Causeur -Multiple tests for high-throughput data assuming a factor modeling of dependence 40èmes Journées de Statistiques Société Française de Statistiques, 2008.

@. D. Causeur, M. Kloareg, and &. , Friguet -Impact of dependence on the stability of model selection in supervised classification for high-throughput data International Indian Statistical Association (IISA) Conference "Frontiers of Probability and Statistical Science, 2008.