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Je tiens à remercier plus particulièrement Xavier Morandi, neurochirurgien,
pour son apport scientifique, technique et humain à ce projet. Les résultats
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1 Résumé français 11
1.1 Neurochirurgie guidée par l’image . . . . . . . . . . . . . . . . . 11
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Plate-forme logicielle pour le planning préopératoire et
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Chapter 1

Résumé français

Ce document constitue une synthèse de travaux de recherche en vue de l’obten-
tion du diplôme d’habilitation à diriger les recherches. A la suite ce cette in-
troduction rédigée en français, le reste de ce document sera en anglais. Je
suis actuellement chargé de recherches INRIA au centre de Rennes Bretagne
Atlantique. J’ai rejoint en Septembre 2001 l’équipe Vista dirigée par Patrick
Bouthemy, puis l’équipe Visages dirigée par Christian Barillot en Janvier 2004.
Depuis Janvier 2010, je travaille dans l’équipe-projet Serpico dirigée par Charles
Kervrann dont l’objet est l’imagerie et la modélisation de la dynamique intra-
cellulaire.

Parmi mes activités passées, ce document va se concentrer uniquement
sur les activités portant sur la neurochirurgie guidée par l’image. En parti-
culier, les travaux effectués sur le recalage non-rigide ne seront pas présentés
ici. Concernant le recalage, ces travaux ont commencé pendant ma thèse avec
le développement d’une méthode de recalage 3D basé sur le flot optique [72],
l’incorporation de contraintes locales dans ce processus de recalage [74] et la
validation de méthodes de recalage inter-sujets [71]. J’ai poursuivi ces travaux
après mon recrutement avec Anne Cuzol et Etienne Mémin sur la modélisation
fluide du recalage [44], avec Nicolas Courty sur l’accélération temps-réel de
méthode de recalage [42], et sur l’évaluation des méthodes de recalage dans
deux contextes : celui de l’implantation d’électrodes profondes [29] et le re-
calage inter-sujets [92].

1.1 Neurochirurgie guidée par l’image

L’utilisation de systèmes dits de neuronavigation est maintenant courante dans
les services de neurochirurgie. Les bénéfices, attendus ou reportés dans la
littérature, sont une réduction de la mortalité et de la morbidité, une amélio-
ration de la précision, une réduction de la durée d’intervention, des coûts
d’hospitalisation. Tous ces bénéfices ne sont pas à l’heure actuelle démontrés
à ma connaissance, mais cette question dépasse largement le cadre de ce doc-
ument. Ces systèmes de neuronavigation permettent l’utilisation du planning
chirurgical pendant l’intervention, dans la mesure où le patient est mis en cor-
respondance géométrique avec les images préopératoires à partir desquelles est
préparée l’intervention.

Ces informations multimodales sont maintenant couramment utilisées, com-
prenant des informations anatomiques, vasculaires, fonctionnelles. La fusion
de ces informations permet de préparer le geste chirurgical : où est la cible,
quelle est la voie d’abord, quelles zones éviter. Ces informations peuvent main-
tenant être utilisées en salle d’opération et visualisées dans les oculaires du mi-
croscope chirurgical grâce au système de neuronavigation. Malheureusement,
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1. Résumé français

cela suppose qu’il existe une transformation rigide entre le patient et les im-
ages préopératoires. Alors que cela peut être considéré comme exact avant
l’intervention, cette hypothèse tombe rapidement sous l’effet de la déformation
des tissus mous. Ces déformations, qui doivent être considérées comme un
phénomène spatio-temporel, interviennent sous l’effet de plusieurs facteurs,
dont la gravité, la perte de liquide céphalo-rachidien, l’administration de pro-
duits anesthésiants ou diurétiques, etc.

Ces déformations sont très difficiles à modéliser et prédire. De plus, il
s’agit d’un phénomène spatio-temporel, dont l’amplitude peut varier considéra-
blement en fonction de plusieurs facteurs. Pour corriger ces déformations,
l’imagerie intra-opératoire apparait comme la seule piste possible.

1.2 Contributions

Entre 2004 et 2009, j’ai donc travaillé sur une méthode de correction de ces
déformations basée sur l’acquisition et l’analyse d’images échographiques in-
traopératoires. Ce travail a porté sur deux aspects, logiciel d’une part pour
la construction d’une plate-forme logicielle pré-opératoire et intra-opératoire;
méthodologique d’autre part sur l’analyse d’images.

1.2.1 Plate-forme logicielle pour le planning préopératoire et la
navigation intraopératoire

La préparation des données préopératoires (planning), ainsi que l’acquisition
et l’exploitation des données intraopératoires ont nécessité le développement
d’une plate-forme logicielle financée sur une ODL INRIA.

La plate-forme logicielle préopératoire a pour but l’import des données, la
segmentation de la peau, du cerveau, de la lésion (la segmentation est manuelle
car la segmentation automatique des lésions sur des données cliniques est très
difficile [43]), des sillons au voisinage de la lésion, et de la fusion avec des in-
formations fonctionnelles et structurelles. Une première version de cette plate-
forme a été déployée fin 2009 dans le service de neurochirurgie de l’hôpital
Pontchaillou à Rennes afin d’être utilisée par les médecins sans aide extérieure.
La figure 1.11.1 présente quelques vues de cette application.

Après cette étape de planning, il était nécessaire d’acquérir et d’analyser
en salle d’opération des données échographiques. Ce projet a bénéficié du sou-
tien de Rennes Métropole (100 keuros) à travers le financement d’un appareil
d’échographie et du module sononav permettant de coupler l’échographe avec
la station de neuronavigation. Une plate-forme logicielle intraopératoire, dont
des vues sont présentées sur la figure 1.21.2, permet l’acquisition et le traitement
des données intra-opératoires.

1.2.2 Méthodes d’analyse d’images

L’acquisition et le traitement des données échographique a nécessité le développ-
ement d’une chaine de traitement d’images, partant des données brutes non re-
construites, et s’achevant par une étape de recalage permettant le calcul d’une
transformation géométrique compensant les déformations des tissus mous. Ces
différentes étapes sont l’objet central de ce document :

• La calibration est indispensable pour connaitre la position des pixels de
l’image échographique dans le repère de référence utilisé par le système

2



1.2. Contributions

Interface de l’application

vue 3D view surface de la peau

Surface corticale et segmentation de la lésion Sillons extraits

Vaisseaux extrats Fibres DTI

Figure 1.1: Visualisation du logiciel de planning. Les vues représentent les
étapes de planning, incluant l’import des données, la visualisation 3D, la seg-
mentation de la peau, du cerveau, des sillons et vaisseaux, et la fusion avec le
DTI.

3
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Figure 1.2: Vues de l’application intraopératoire, où la vue échographique est
superposée à l’image IRM préopératoire.

de neuronavigation [150]. La calibration temporelle correspond à l’aligne-
ment temporel entre le signal de position et le signal vidéo [151]. Ces deux
étapes de calibration sont nécessaires afin d’obtenir des données quanti-
tatives fiables [149]. Sur ces aspects, nous avons proposé une méthode
extrayant de manière robuste des caractéristiques sur les images échogra-
phiques.

• La reconstruction consiste à calculer un volume régulier 3D à partir de la
séquence d’images échographiques et de leurs positions. Nous avons pro-
posé une méthode incorporant explicitement l’information de trajectoire
de la sonde dans cette étape de reconstruction [39].

• La réduction d’artefacts vise à réduire l’influence du bruit des images
échographiques dans les processus de traitement d’images. En effet, les
images échographiques sont corrompues par des variations de signal im-
portantes, qui peuvent être de différente nature : forte atténuation du
signal en profondeur, ombres acoustiques, et bruit important. Pour se
faire, nous nous sommes appuyés sur une modélisation simple mais effi-
cace de ce bruit afin de débruiter les images par une approche de type
NL means [36] d’une part, et détecter les ombres acoustiques d’autre
part [73].

• Enfin, les étapes de recalage cherchent à aligner de manière rigide [38]
ou non-rigide [40] les images échographiques intraopératoires et l’IRM
préopératoire. Nous avons proposé une méthode mettant explicitement
en correspondance les structures hyperéchogènes.

Ce document va donc présenter de manière synthétique les étapes de traite-
ment d’images, des chapitres 33 à 66, le lecteur pouvant trouver les détails tech-
niques dans les publications associées: références [149–151] pour le chapitre
33, référence [39] pour le chapitre 44, références [36, 41, 73] pour le chapitre 55,
références [37,40] pour le chapitre 66.
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Chapter 2

Introduction

This document constitutes a synthesis in preparation for my habilitation degree
in computer science. I am now researcher at INRIA Rennes since September
2001. From September 2001 to January 2004, I was a researcher in the Vista
project headed by Patrick Bouthemy, and moved to the Visages project headed
by Christian Barillot. In January 2010, I moved to the Serpico team headed
by Charles Kervrann that focuses on ”imaging and modeling intracellular dy-
namics of molecular architectures”. This document presents part of my work
among the Visages team. Actually, this habilitation thesis will focus on image
processing aspects of intraoperative ultrasound in neurosurgery.

My work on non-rigid registration will not be described here. The work
on non-rigid registration began during my PhD thesis, where the three main
contributions were the design of a 3D non-rigid registration method based on
optical flow [72], the incorporation of local constraints [74] and the retrospec-
tive evaluation of inter-subject registration [71]. I continued working on image
registration, with Anne Cuzol and Etienne Mémin using fluid motion descrip-
tion [44], with Nicolas Courty on GPU accelerated registration [42] and on
evaluation of non-rigid registration techniques: with Mallar Chakravarty and
co-authors [29] for deep-brain stimulation planning; with Arno Klein and co-
authors [92] concerning inter-subject brain registration.

2.1 Image guided neurosurgery

In the last decade, it has become increasingly common to use image-guided
navigating systems to assist surgical procedures [51]. The reported benefits
are improved accuracy, reduced intervention time, improved quality of life,
reduced morbidity (and perhaps mortality), reduced intensive care and reduced
hospital costs. Image-guided systems can help the surgeon plan the operation
and provide accurate information about the anatomy during the intervention.
Image-guided systems are also useful for minimally invasive surgery, since the
intraoperative images can be used interactively as a guide.

Current surgical procedures rely on complex preoperative planning, includ-
ing various multimodal examinations: anatomical, vascular, functional explo-
rations for brain surgery. Once all information has been merged, it can be
used for navigation in the operating theatre (OR) using image-guided surgery
systems. Image-guided surgery involves the rigid registration of the patient’s
body with the preoperative data. With an optical tracking system, and Light
Emitting Diodes (LED), it is possible to track the patient’s body, the micro-
scope and the surgical instruments in real time. The preoperative data can
then be merged with the surgical field of view displayed in the microscope.
This fusion is called “augmented reality”.
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2. Introduction

Unfortunately, the assumption of a rigid registration between the patient’s
body and the preoperative images only holds at the beginning of the procedure.
This is because soft tissues tend to deform during the intervention. This is a
common problem in many image-guided interventions, the particular case of
neurosurgical procedures can be considered as a representative case. When
dealing with neurosurgery, his phenomenon is called “brain shift”.

Although the impact and the magnitude of soft tissue motion have been
studied over the last few years, this phenomenon is still poorly understood.
Soft tissue deformation can be explained by physiological (steroids, diuretic
medication, mechanical ventilation) and mechanical factors (CSF leakage, pa-
tient positioning, tumor nature and location, craniotomy size, gravity [117],
etc).

The magnitude of brain shift shows striking differences at each stage of
surgery. Brain shift must be considered as a spatio-temporal phenomenon, and
should be estimated continuously, or at least at key moments, to update the
preoperative planning. To do so, one possibility is to deform the anatomical
and functional images according to the estimated deformation.

2.2 Summary of contributions

Between 2004 and 2009, I have worked on designing a soft tissue deformation
correction workflow based on intraoperative tracked ultrasound. To do so,
two aspects of the project needed to be considered: a technical side needed to
acquire and process data and perform clinical evaluation, and a methodological
side to design novel image analysis methods.

2.2.1 Software platform for preoperative planning and intraoperative
navigation

From a technical side, it was necessary to acquire ultrasound image intraop-
eratively. Rennes city council granted 100keuros for this project, what was
used to purchase a sonosite ultrasound equipment the sononav module for the
Medtronic neuronavigation system. The project has also been supported by
an INRIA ”ODL” grant.

The preoperative software platform is designed to build a 3D scene from
raw MR data, containing only relevant information needed to plan surgery,
including skin and brain surface, manual lesion segmentation since fully auto-
matic lesion segmentation is difficult in clinical routine [43], sulci and vessel
segmentation in the vicinity of the tumor, extraction and mapping of fMRI and
DTI data. Figures 2.12.1 presents some visualization of the obtained 3D scenes.

The pre-operative software platform has been deployed at the neurosurgery
department in Rennes University Hospital to be used daily and autonomously
by neurosurgeons.

Once pre-operative information have been acquired, it can be used in the
operating room (OR) during surgery. To enable the visualization of this in-
formation (on a workstation and in the ocular of the microscope), we have
developed a intraoperative software platform. Thanks to the stealthlink li-
brary provided by Medtronic - the vendor of the neuronavigation system used
in neurosurgery - it is possible to acquire the position of the tools tracked by the
neuronavigation system. We were thus able to visualize the pre-operative data,

6



2.2. Summary of contributions

Application interface

3D view skin surface

Brain surface and lesion segmentation Extracted sulci

Extracted vessels DTI fibers

Figure 2.1: Visualization of the pre-operative software. Figures present the
successive steps of the planning, including data import and 3D visualization,
segmentation of skin surface, brain, sulci and vessels extraction, DTI fusion.
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2. Introduction

Figure 2.2: Visualization of the intraoperative application. The acquired ul-
trasound image is overlaid in green on top of the pre-operative MR image.

and acquire intraoperative tracked ultrasound images. Figure 2.22.2 presents a
visualization of the intraoperative application.

2.2.2 Image analysis methods

From an image analysis point of view, I worked on image processing methods
composing a workflow that takes raw unreconstructed ultrasound images as
an input, and provides geometrical transformations intended to accommodate
soft-tissue deformations. To do so, several steps are needed to process the data:

• Calibration is needed to determine accurately the coordinates of the ul-
trasound pixels in the coordinate system of the reference frame [150]. In
addition, temporal calibration is mandatory to align temporally the image
signal (acquired through a video card) to the position signal provided by
the 3D localization system [151]. For these two tasks, we have proposed
a method that extracts accurately and robustly relevant features that
will be used to calibrate the system spatially [150] and temporally [151].
We have also assessed that accurate calibration is critical for quantitative
image analysis [149].

• Reconstruction means computing a 3D regular lattice volume out of the
unreconstructed set of B-scans. To do so, we have proposed a technique
that incorporates the probe’s motion into the reconstruction process [39].

• Artifact reduction is helpful for quantitative image analysis. Ultrasound
images are corrupted by an important noise, often called speckle, and
exhibit imaging artifact like signal attenuation and acoustic shadows.
To remove or detect these artifact, we have used a simple yet efficient
modeling of the ultrasound noise to denoise ultrasound images using a
adapted NL-means method [36] and to detect acoustic shadows [73].

• Registration finally computes the geometrical transformation that aligns
rigidly [37] or non-rigidly [40] the intraoperative ultrasound to the preop-
erative MR. To do so, we have proposed a method based on the extraction
and matching of hyperechogeneic structures.

8



2.2. Summary of contributions

The image analysis methods that were developed within this project will be
the core of this document. Methods will be presented in a synthetic manner,
and the interested reader is referred to corresponding publications for technical
details: publications [149–151] for chapter 33, publication [39] for chapter 44,
publications [36,41,73] for chapter 55, publications [37,40] for chapter 66.
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Chapter 3

Calibration

3.1 Introduction

3.1.1 3D ultrasound data

In our application, 3D ultrasound data is mandatory to capture the 3D na-
ture of the deformation. 3D ultrasound data can now be acquired by differ-
ent means: sensorless ultrasound, 2D probe associated with constrained or
known motion motion (3D mechanical probes, tracked ultrasound) or direct
3D probes.

• Sensorless technique uses image speckle to determine out-of-plane motion
between two consecutive B-scans.

• Mechanical probes correspond to an internal mechanical sweep (usually
a fan motion) implemented within the ultrasound probe.

• Tracked ultrasound correspond to a standard 2D probe that is moved
freely, and where the probe’s motion is either observed (by a optical or
magnetic sensor mounted on the probe) or known, for instance if the
probe is mounted on a robotic arm.

• Recently, 3D probes have appeared with the development of 2D phase
arrays. Actually, these probes are now capable of 4D image acquisition.
The field of view of these probes is however limited at the moment com-
pared to standard 2D probes.

In the context of image-guided surgery, not all these probes are relevant. In
particular, mechanical probes are too cumbersome for neurosurgery where the
probe footprint should be as small as possible. Sensorless techniques are inap-
propriate since the neuronavigation system is equipped with a 3D localization
system and it would make no sense not to use it. 3D probes is an appeal-
ing technique, however, the field of view is too limited at the moment to be
used, but it is foreseen that it should become the ”ideal”acquisition technique
when this limitation disappears. There has been some promising work to create
”mosaics” with various acquisition, so as to increase the field of view [172].

3.1.2 Spatial and temporal calibration

3.1.2.1 Spatial calibration

When using ultrasound for image-guided procedures, the probe needs to be
tracked using the position system of the neuronavigation system. This enables
positioning the ultrasound image with respect to preoperative images. Calibra-
tion is then needed to correctly position the ultrasound image in the coordinate
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system of the camera, and embraces spatial and temporal calibration. This is
illustrated in figure 3.13.1.

Figure 3.1: Coordinate systems : Ri (image), Rr (receiver), Rt (transmitter in
case of magnetic positioning, camera for neuronavigation systems), Rc (recon-
struction volume, surgical field of view).

The spatial calibration problem can be formulated in the following way
( [140]):

xc = TcTtTrxr, with xr =


sxu
syv
0
1

 (3.1)

where Tr denotes the rigid transformation from B-scan to probe’s tool coor-
dinates, Tt is the rigid transformation from probe’s too to camera coordinates,
Tc stands for the rigid transformation from camera to reference arc coordinates,
u and v are the image pixel coordinates, sx and sy denote scaling factors or
pixel spatial resolution (see Figure 3.13.1).

Performing the spatial calibration amounts to estimating the matrix Tr (3
translations and 3 rotations) and the scaling coefficients sx and sy. The cali-
bration is generally carried out in the following way: after scanning a phantom
whose 3D geometrical properties are known, the calibration is based on this
geometry being recovered in the sequence of ultrasound images.

Tr is a rigid-body transformation :

Tr(tx, ty, tz, α, β, γ) =
[
R(α, β, γ) t(tx, ty, tz)

0 1

]
(3.2)

where t(tx, ty, tz) is a translation vector, (α, β, γ) the rotation angles around
axis (z, y, x) and R(α, β, γ) is a rotation matrix.

3.1.2.2 Temporal calibration

Temporal calibration consists of estimating the latency between the position
sensor timestamps and ultrasound image timestamps. Temporal calibration
depends on the experimental setup, including video grabber and PC used,
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echographic machine and video transfer format, position sensor and transfer
rate, image quality of the phantom used for calibration. Therefore, temporal
calibration is specific to each experimental setup.

3.1.3 Related work

Spatial calibration has been investigated by different groups and exhaustive
survey paper exists on the subject [80, 116]. Methods can be grossly sorted
according to the type of phantom used, ranging from single point phantom
[13,46,97,169], single point tracked by a stylus [6,68,136,171], multiple points
from a stylus [89], three-wire phantom [28], plane phantom [5,140,150,170], two-
plane phantom [20], 2D shaped board phantom [16, 107, 156, 175], Z-phantom
[21,31,35] or ”image registration” approach [19].

The different phantoms have drawbacks and advantages, regarding the con-
text of use. In particular, some phantoms (especially point phantoms) require
a manual segmentation of the point that is tedious and time-consuming. These
phantoms are not suited when calibration needs to be repeated often.

Temporal calibration has previously been achieved by estimating the la-
tency using visual criteria for augmented reality [82]. This system was com-
posed of an ultrasound probe held with a mechanical arm and a virtual real-
ity helmet tracked by a magnetic sensor. For images acquired at 10Hz, the
measured latency was 220ms. Some authors have used a water bath phan-
tom to match changes in the position and line signals [81, 141, 168]. Other
groups [89, 122, 123] proposed a temporal calibration method using a point
based phantom. Latency estimation is performed with a least-square minimiza-
tion of the distance between the phantom point and the estimated position of
this point. Gooding et al. [62] have proposed an image alignment method that
relaxes the hypothesis of a constant latency between two scans.

3.2 Proposed method

3.2.1 Phantom

In our work, we have decided to rely on a plane-phantom since the latter is
easy to design. Two aspects cannot be neglected for a correct calibration:
first, a 9% alcohol solution needs to be used in he water bath to obtain a
speed of sound comparable with the one expected by the ultrasound machine.
Second, a complete sequence of probe motion needs to be achieved to solve the
calibration, including a wide range of angles and positions as described in [140].
The major difficulty of such phantom is the robust and accurate detection of
the plane. As a matter of fact, when the angle between the beam and the
water bath decreases below 70 degrees, the combined effect of beam thickness
and wave reflection leads to a weak signal in the ultrasound image as can be
seen in figure 3.23.2. We have therefore focused on proposing a reliable feature
extraction method.

The plane phantom is also suitable for temporal calibration, since some
probe motion lead to a change of the line signal that can be easily identified.
However, not all probe motion correspond to image changes, as translations
over the water bath at a given angle and altitude will not change the appearance
of the line. Therefore, using adequate probe motion, the line feature can be
matched with the position signal in order to achieve temporal calibration.
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3.2.2 Feature extraction

In this section, the feature extraction process from ultrasound images is de-
scribed. These features will be used for the spatial and temporal calibration
processes. For the spatial calibration, a point set corresponding to the water
bath is extracted. For the temporal calibration, a line regression method is
used. The feature extraction is performed in the following steps:

• The point extraction is performed retaining the highest gradient and high-
est luminance points. The threshold is fixed (in percentage) compared
to the maximum in intensity and gradient in the first image. These two
features are needed because, as it can be seen in figure 3.23.2, either inten-
sity or gradient information alone would not be sufficient for a reliable
extraction. Since the points of interest extraction is done by threshold-
ing, this step is sensitive to outliers. To obtain a robust algorithm, the
consistency of the extraction is checked successively using 2D informa-
tion (Hough transform) and 3D information (spatio-temporal continuity
of the point set).

• To reject outliers in each image, the Hough transform [79] is used to
isolate features of a particular shape within an image. A convenient
equation for describing a set of lines uses parametric or normal notion :
x cos θ + y sin θ = r, where r is the length of a normal from the origin to
this line and θ is the orientation of r with respect to the X-axis in the
B-scan. For any point (x, y) on this line, r and θ are constant. When
viewed in Hough parameter space (r, θ), points which are collinear in the
cartesian image space become readily apparent as they yield curves which
intersect at a common (r, θ) point. The transform is implemented by
quantizing the Hough parameter space into finite intervals or accumulator
cells. Each (xi, yi) is transformed into a discretized (r, θ) curve and the
accumulator cells which lie along this curve are incremented. Peaks in
the accumulator array represent strong evidence that a corresponding
straight line exists in the image. The Hough transform is used to extract
in each B-scan a line whose equation is: ax + by + c = 0. Given the
equation of the line and the point set, we have to reject possible outliers.
Using the Euclidian distance as selection criterion, only the closest points
to the line are retained using a fixed threshold.

• 3D consistency: spatio-temporal continuity of the point set. To ensure
coherence in all the ultrasound sequence, we reject image where the line
extraction is not correct. Continuity of probe motion should lead to a
smooth variation of parameters a, b and c. Figure 3.33.3 plots the evolution
of a, b and c for the US sequence. We think that a discriminant parameter
is the intersection of the line with the axis y = 0, that is to say parameter
− c
a . Let us note ∆ the successive differences of the parameter − c

a :
∆k

4= − ck

ak
+ ck−1

ak−1
. Figure 3.33.3 (bottom right) shows the evolution of ∆

for the same sequence. Peaks of this plot correspond to incorrect line
detection (see Figure 3.43.4).

There are only two probe motions that produce two important plane
motions in the ultrasound images : translation in y axis and rotation
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around the z axis, in the image coordinate system. Considering an im-
portant translation motion of 5cm/s in y axis, with an acquisition rate
of 5 images per second and typical scale factors equal to 0.01 mm/pixel,
∆ which corresponds to the plane motion in the B-scan is equal to 100
pixels. For the rotation motion around the z axis, for an angle equal to
10 degrees between two successive B-scans and an B-scan width equal to
500 pixels, the value of ∆ is under 100. This justifies our choice to set
the rejection threshold to 100.

Figure 3.2: Representative images of ultrasound sequences of the water bath.
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Figure 3.3: Evolution of the line parameters (a, b and c) and ∆ for a classical
calibration sequence.

3.2.3 Spatial and temporal calibration

3.2.3.1 Spatial calibration

Calibration parameters and plane parameters are estimated by minimizing the
Euclidian distance between the plane and the points of interest.

T̂r = arg min
T
{1

2

N∑
i=1

d3D(π,Mi)2} (3.3)

where N is the cardinal of the point set, d3D(π,M) is the 3D Euclidian distance
between the plane π and the point of interest Mi in 3D space. The cost function
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( a) ( b) ( c)

Figure 3.4: Line detection with the Hough transform for three successive im-
ages. In ( a) and ( c), good detection; in ( b), bad detection, the line is rejected.

can be readily derivated with respect to all parameters and is optimized using
Levenberg-Marquardt algorithm [119].

To shorten the computation time, we propose a hierarchical multiresolution
algorithm [26]. The complexity of the algorithm only depends on the number
of points of interest used to minimize f . Thus, we can divide the optimization
procedure into different stages. For instance, with a fixed number N of interest
points, the first optimization part is performed with a third of N points. This
result is used as an initialization for an optimization using two thirds of N
points. Then the second part with two thirds of N points, and finally, with
all extracted points. This hierarchical decomposition permits us to split the
algorithm complexity and in this way, to shorten computation time.

Optimization might be sensitive to outliers due to speckle noise in the US
image, even if the 2D and 3D consistency of the extracted point set is ensured.
Nevertheless, the set of interest points has been retained by thresholding what
is sensitive to outliers. Therefore, we use a Least Trimmed Squares estimator
(LTS)( [152]) during the optimization stage. The LTS estimator T minimizes
a criterion C with r2

1 ≤ r2
2 ≤ · · · ≤ r2

N the ordonated remainders, and h the
number of points used for the estimation : T̂ = arg minT

∑h
i=1 r

2
i , with N

2 ≤
h ≤ N . The breaking point of LTS estimator is equal to 0.5 and E is close to
1. For each point, the computed remainder is equal to the distance between
the plane and the point.

3.2.3.2 Temporal calibration

For the temporal calibration, the estimated lines are manipulated with their
equation x cos θ + y sin θ − ρ = 0, where ρ is the length of a normal from
the origin to this line and θ is the orientation of ρ with respect to the X-axis
in the B-scan. Then, the couple of parameters ( cos θ

sin θ ,
−ρ

sin θ ) is used to detect
ruptures in the line signal. First, B-spline approximation of the evolution of
line parameters is performed. Let T = {τi, i = . . . , n} denotes the knot set. A
m order B-spline is defined as [30]:

Bi(t) = (τi+m+2 − τi)
∑m+2
j=0

(
(τi+j−t)m+1

+ )Qm+2
l=0:l 6=j(τi+j−τi+l)

)
, with

(τi+j − t)m+1
+ =

{
(τi+j − t)m+1 if t ≤ τ
0 if t > τ.

The approximation model is the following: Yi = g(ti) + Wi, with g(ti) =∑q+1
j=0 βjBj(ti) where Yi is the raw signal, g is the regression spline, Wi are
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independent random variables and Bj are the B-splines. In our case, we used
cubic B-splines (m = 3) with equidistant knots. Then, in order to reject
line outliers, a statistical test is performed on the differences between these
approximations and line parameter evolutions.

The latency is estimated by matching the position sensor signals with the
line parameters. Using a plane phantom, only certain motion lead to changes
in the US image. However, a change of one extracted line parameter always
corresponds to a variation of probe motions. Thus, changes in both signals are
detected and matched. Line parameter curve −ρ

sin θ is less noisy and variations
are larger than for the signal cos θ

sin θ related to the line slope. Thus the latency
estimation is carried out by matching position sensor signals with the evolution
curve of sr = −ρ

sin θ which we will call ”reference signal”.
Let sr denotes the reference signal and spi the position sensor signals, i ∈

{1, . . . , 6} (3 translations and 3 rotations). Let G be the point set for which
gradient of sr is zero: G = {x, dsrdt (x) = 0}. Latency L is estimated so as to
minimize the sum of gradient for the points in G. We thus minimize:

L = arg min
u

∑
x∈G

6∑
i=1

(
dspi
dt

(x+ u)
)2

Position sensor signals and reference signal are noisy. A Gaussian filtering
is applied to remove high frequency variations (σ = 1). Then each signal is ap-
proximated using B-splines. Accurate gradient estimation is performed using
the analytical formulation of every signal obtained from B-spline parametriza-
tion. The continuous parametrization of the signals allows the estimated la-
tency to be lower than the image acquisition rate.

As outliers may perturb the latency estimation, robust estimators are intro-
duced in order to reject points with high gradient value for all position signals.
The robust formulation takes into account only the position signals which take
part into the visible changes in the image and thus in the reference signal vari-
ations. We chose to use M-estimators for their proven effectiveness. Contrary
to the spatial calibration where the number of outliers might be high (an where
the LTS estimator was needed so as to reject as much as 50% of outliers), we
expect that outliers will be limited in our case because the position signal has
been filtered and parametrized. In that case, the M-estimator, whose rejection
rate is lower than the LTS, is more adequate. Let y = {yi, 1 ≤ i ≤ m} be
the data set with avec yi = f(θ, xi) + ri. Parameters θ are estimated taking
into account the data xi and the noise ri. The principle of these estima-
tors consists in minimizing the sum of the residuals: θ̂ = arg minθ E(θ) with
E(θ) =

∑
i ρ(yi − f(θ, xi)). The function ρ is called M-estimator. Additional

details about properties of M-estimators can be found in [18]. σ is fixed arbi-
trarily at 5. We experienced that the method leads to comparable results for
a large range of variation of parameter σ.

In addition, we introduce a confidence measure for the points of interest.
Basically, we aim at retaining only peaks, i.e. points that are significantly
informative. This is motivated by the complexity of the image sequences (noise
and low frame rate). A quality measure of the points of interest is proposed to
improve the robustness and is defined as: q(x) = 1

n

∑n
i=1

(
dsr
dt (x)− dsr

dt (xi)
)2

,
where xi is a neighbor of x, n is the number of neighbors considered. The larger
q(x), the more interesting x. A small q(x) corresponds to a flat area which is
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not relevant for matching. The zero gradient point selection is carried out by
retaining only points for which the q value is large, corresponding to ”peaks”.
The threshold is a percentage of the set of the extracted points of interest.

3.3 Quantitative evaluation

3.3.1 Introduction

Accurate calibration is critical for quantitative image analysis. Validation is
however difficult, since the true calibration parameters are unknown, and eval-
uation criterion that were proposed reflect calibration errors, but also other
types of errors due to the system components like position sensor errors, align-
ment errors and segmentation errors. Validation encompasses several aspects:

• Calibration reproducibility was proposed by [140] using the following
criterion:∆xt = ‖Tr1xr − Tr2xr‖, where xr is a corner point of B-scan
or a variant (image center, or the worst image corner depending on the
paper), Tr1 and Tr2 two calibration transformations for the same ultra-
sound sequence. ∆xt is the reproducibility measure. When ∆xt is close
to zero, the reproducibility of the calibration method is good.

• Calibration precision was used by some groups [19, 22, 46, 120, 138] and
amounts to scanning a point from different positions. The point location
in each image being transformed in the 3D space, a set of N points is
obtained, and the precision is measured via the compacity of the point
set: µ = 1

N

∑
i |T2D−>3Dpi − p̄|, where p̄ is the center of mass of the N

points pi.

• Calibration accuracy usually refers to the previous method, except that
the 3D position of the point is know, for instance by using a pointer.

With Wiro Niessen and colleagues at Utrecht University, we have proposed
different criteria (point, distance, volume and shape) to assess three calibration
methods, namely the one presented here, the stradx method [140] and the
calibration method implemented in the medtronic neuronavigation system [21].

3.3.2 Evaluation criteria

We have proposed point, distance, volume and shape criteria to evaluate the
calibration methods:

• The first criterion evaluates the performance of point localization in 3D
space. This criterion is crucial for navigation accuracy using 3D recon-
structed ultrasound data. A single point phantom was used to perform
this evaluation [46, 102]. It consists of a spherical bead with a diameter
of 1.5mm attached to the bottom of a water bath. The bead was imaged
through water from different positions. The spatial precision was eval-
uated from different view points. Since the bead position is unknown,
only the variation in position and not the localization accuracy could be
assessed. For image acquisition, the US probe was aligned for optimal
imaging of the bead. Using different positions and orientations, this was
repeated six times for each depth. Six depths were used: 6, 7, 8, 9, 10 and
12 cm, leading to in total 36 3D position measurements. The spherical
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bead position were detected manually in the 2D images. The manual
detection has been checked by two experts. The 3D location of these
points were computed using each of the three calibration matrices (the
calibration matrix maps the 2D position to the 3D position). For each
calibration, the mean error between the mean location and the whole
measurement set was computed.

• The second and third criteria evaluate the capability of measuring dis-
tances and volumes. While calibration evaluation is generally performed
on point sets, the accuracy of distance and volume measurements is very
important to evaluate in the context of 3D ultrasound. A CIRS, Inc.
1 3D ultrasound calibration phantom was used which contains two cali-
brated volumetric egg-shaped test objects. The characteristics of this egg
are the length of the axes and the volume. The respective axes lengths of
the egg are 3.9cm and 1.8cm, and the total volume of the egg is 6.6162
cm3. For image acquisition of the CIRS, Inc. phantom, four depths
were used: 6, 8, 10 and 12 cm. For each depth, two different probe mo-
tions were used: translational motion and fan-like motion. The distance
measurements were performed using the StradX software. Once the cal-
ibration parameters were loaded, the two axes of the egg were measured
using the StradX reslicing facility. The axis lengths were then measured
in the resliced planes using the StradX measurements facility.

• The volume estimation has been performed using two methods: based
on the axis lengths and based on the manual segmentation. Owing to
the simple egg shape, its estimated volume V̂ can be computed from the
axes using the following equation: V̂ = 4

6π.a
2
2.(a

+
1 + a−1 ) (the volume of

the egg is the sum of two volumes of half ellipsoids, where a+
1 = 2.7cm,

a−1 = 1.2cm and a2 = 0.9cm). Manual segmentation was performed
using the StradX software. Egg contours were segmented every three
images and smoothly interpolated by StradX. Since the segmentation is
intrinsically 2D, this step does not depend on calibration parameters.
Therefore, the manual delineation is exactly the same for each evaluated
calibration method. Finally, the egg volume was estimated from the
segmentation using StradX volume estimation facility.

• We investigated the use of a shape based criterion to assess the accuracy
of the tested calibration methods. The surface of the egg S is defined
by the point set satisfying the following implicit equation:f(x, y, z) =(
x
a1

)2

+
(
y
a2

)2

+
(
z
a2

)2

= 1, where a1 = 2.7cm if x > 0, a1 = 1.2cm
if x < 0, and a2 = 0.9cm. A leat-square fitting method was used and
enables to compute an analytic distance between a point and the implicit
surface. The radial Euclidean distance [12, 32] is the distance between
the point P and the intersection of the OP line and the surface, where O
is the egg center. The radial Euclidean distance d of a point P (x, y, z)
to the surface S is given by the following equation: d(P,S) = ||OP || ∗
|1− f 1

2 (x, y, z)|. The estimation of the center of the egg is performed by
minimizing the radial Euclidean distance between the point set and the

1http://www.cirsinc.com
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estimated shape. Then, the shape criterion was obtained by computing
the the mean radial Euclidian distance between the point set provided
by the manual segmentation and the model of the egg-shaped object,
constrained with a fixed and known axis length.

3.3.3 Results

This section will provide only a summary of the obtained results that are
considered as the most significant. The interested reader is referred to [149] for
detailed results.

• Point localization. The results for 3D point localization can be seen in
Table 3.13.1. Results are averages over six depths (6, 7, 8, 9, 10 and 12 cm).
Mean error, standard deviation, maximum error and median error are
given in mm. The mean error varies between 1.6 mm (Medtronic and
Rennes) and 2.7 mm (Stradx). As can be seen, Medtronic and Rennes
methods provide similar results.

• Volume measurement. For each of the 16 image sequences (4 depths, two
acquisitions per probe movement (translation and fan)), the egg-shaped
object volume has been estimated using both the estimated axes lengths
and a manual segmentation method. Results are indicated in Table 3.23.2.
Using manual segmentation, volume estimation varies between 91.82%
(Stradx) and 105.20% (Medtronic) of the theoretical volume. Using axes
length-based method, results varies between 81.87% (Stradx) and 89.60%
(Medtronic).

• Shape criterion. The radial Euclidean distance between the egg shape and
the point set provided by the manual segmentation has been computed
for each of the 16 image sequences. Results are indicated in Table 3.33.3.
The best results were achieved by StradX and Rennes methods with a
mean distance of 0.069cm and 0.067cm respectively.

Calibration method Mean Std. Dev. Max Median
Medtronic 1.62 0.67 3.13 1.56

Stradx 2.70 0.92 4.87 2.58
Rennes 1.67 0.66 3.29 1.52

Table 3.1: Evaluation of the 3D point localization criterion. The results are
given in mm.

3.4 Discussion

In this chapter, a robust feature extraction method was presented. The ex-
tracted features (the water bath, represented by either points or lines) have
been used to perform spatial and temporal calibration of tracked 3D freehand
ultrasound. In addition, it was shown that mis-calibration directly impacts
quantitative processes like distance, volume and shape measures.

Calibration is crucial for quantitative measures. At first glance, one could
expect that calibration errors could be compensated by rigid registration. That
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Calibration method Mean Std. Dev.
Manual segmentation-based method

Medtronic 6.96 (105.20 %) 0.19 (2.93 %)
Stradx 6.08 (91.82 %) 0.28 (4.24 %)
Rennes 6.54 (98.83 %) 0.20 (3.06 %)
CT-scan data 6.66 (100.6%) 0.20 (3.06%)

Axis length-based method
Medtronic 5.93 (89.60 %) 0.30 (4.54 %)
Stradx 5.42 (81.87 %) 0.40 (6.03 %)
Rennes 5.86 (88.51 %) 0.21 (3.15 %)
CT-scan data 6.18 (93.40%) 0.55 (8,31%)

Table 3.2: Volume measurements of the test object as a function of the calibra-
tion methods and the volume estimation method. Results are given in cm3 with
between brackets the percentage that each measure represents compared to the
manufacturer specifications (the total volume of the test object is 6.62 cm3).

Calibration method Mean Error Std. Dev.
Medtronic 0.074 0.026

Stradx 0.067 0.021
Rennes 0.069 0.019

Table 3.3: Shape criterion computed using different calibration methods and
from the CT scans. The radial Euclidean distance has been computed between
the point set provided by manual segmentation and the model of the egg-shaped
object. Results are given in cm. Volume computation (in cm3) based on axis
estimation (in cm) is also given with between brackets the percentage that each
measure represents compared to the manufacturer specifications.

could be the case for a pure translational probe motion which is unlikely to
occur in clinical practice. Due to the coupling between translations and rota-
tions, mis-calibration will cause B-scan planes to be mutually mis-aligned, and
after reconstruction, this mis-alignment cannot be corrected for easily.

For the image-guided neurosurgery application, we have acquired ultra-
sound images thanks to the sononav module provided by Medtronic. At the
time the work on calibration was carried out, this module was not available.
However, for pragmatic and legal reasons, it was more convenient to acquire
the ultrasound images through the neuronavigation system already used in
neurosurgery. As a consequence, we could not use our calibration technique
and were bound to the calibration of the commercial system.
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Chapter 4

Reconstruction

4.1 Introduction

4.1.1 Motivation

To analyze the sequences of B-scans, two types of approaches can be used:
the reslicing (without reconstruction) or the true 3D reconstruction including
interpolation step. The first is used by the StradX system [141] and enables
the analysis of the data without reconstruction. The sequence of B-scans can
be arbitrarily resliced and distance/volume measurements are performed with-
out reconstruction. This strategy is very powerful for manual analysis of 3D
datasets. However, 3D isotropic reconstruction is still necessary in clinical con-
text when automatic segmentation or registration procedures are required. The
second approach is based on the interpolation of the information within the B-
scans to fill a regular 3D lattice thus creating a volumetric reconstruction. Due
to the non uniform distribution of the B-scans, this step is acutely expensive
with respect to computation time and reconstruction quality: an efficient re-
construction method should not introduce geometrical artifacts, degrade nor
distort the images.

4.1.2 Related work

A review of freehand reconstruction method was published recently [160], while
reviews of medical image interpolation were also published earlier [101]. Meth-
ods can be grossly sorted into voxel-based methods, pixel-based methods and
function-based methods:

• Voxel based method consist in parsing the reconstructed volume and in-
terpolating the intensity from the set of input 2D images, either with
no interpolation (Voxel Nearest Neighbor) [158], or higher order interpo-
lation [16, 166, 169]. Among this class, the registration-based interpola-
tion [133, 134] may also be included, where the registration between two
slices is taken into account to interpolate linearly.

• Pixel-based methods proceed in two steps: first, input 2D pixels are
distributed in the 3D volume, and second, a hole-filling step is performed.
The bin-filling step can be done using pixel nearest neighbor [61, 124] ,
maximum value [124], first value [129] or last value [169]. The hole filling
step may use a local neighbourhood [78,84,124], a 3D kernel around filled
voxels [84,93] or a 3D kernel around input pixels [14,60,114,129].

• Function-based methods are used to interpolate intensity values through
the input pixels and fill the 3D volume. The interpolation function may
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Figure 4.1: Illustration of DW and PT principles. The two orthogonal projec-
tions for DW interpolation method and the construction of a “virtual” plane
πt containing X for PT method.

be either explicit, like radial basis function [148] or implicit using Bayesian
techniques [155].

4.2 Reconstruction method

This work builds on the distance weighted interpolation and proposes to in-
corporate probe trajectory information. The distance weighted interpolation
is first presented in section (4.2.14.2.1). Then, the probe trajectory information is
incorporated in section (4.2.24.2.2).

4.2.1 Distance Weighted Interpolation

At each point X of the reconstructed volume, the linear interpolation amounts
to computing: fn(X) = 1

G

∑
ti∈Kn(X) gtif̃(Xti), where Kn is the interpolation

kernel. In other words, Kn is the set of the different indexes of the B-scans
that are involved in the interpolation, n is the interpolation order. For a
given interpolation degree, the n closest B-scans before X and the n closest B-
scans after X are considered. For the DW interpolation, Xti is the orthogonal
projection of X on the tith B-scan. f̃(Xti) is the intensity at position Xti and
is obtained by bilinear interpolation. Finally, G is the normalization constant
with G =

∑
gti, where gti is the distance between X and Xti (see Fig. 4.14.1).

4.2.2 Probe Trajectory Interpolation

The orthogonal projection of points to the nearest B-scans is a straightfor-
ward solution. However, it does not take into account the relationship between
a given point and its projections. As seen in section 4.14.1, registration based
interpolation uses homologous points to interpolate, thus increasing the com-
putational burden. We propose to incorporate the probe trajectory into the
interpolation process. In other words, homologous points are defined as being
successive points along the probe trajectory.

We believe there is correlation between the underlying signal structure and
the probe trajectory. When imaging cross-sections of a tubular structure for
instance, the intuitive displacement of the probe that follows the Structure
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4.2. Reconstruction method

Of Interest (SOI) will lead to some correlation between the probe trajectory
and the anatomical structure. In intra-operative exams, we observed that the
surgeon was concentrated in keeping the focus of the US scans on the SOI
(i.e. the lesion). This is confirmed by observing the location of the SOI, which
is kept at the same position in the x-y place during the sequence (see Fig.
4.24.2). Therefore, we think that the introduction of probe trajectory into the

Figure 4.2: A longitudinal reslice of the non reconstructed intra-operative data
(i.e. the stack of B-scans). The x position in B-scans (horizontal axis of the
reslice) of the structure of interest is correlated along the sequence, the vertical
axis of the reslice corresponding to the B-scans latencies. The cerebral falx is
visible at left and the lesion at center.

interpolation process is relevant.
Instead of using orthogonal projections as in classical DW, we propose to

project along the probe trajectory. Firstly, the time stamp t ∈ R, t ∈ [ti, ti+1]
of the “virtual plane” πt is estimated. The “ virtual plane” is the plane which
passes through X in the sense of the probe trajectory (see Fig 4.14.1). Then, t is
used to compute the “virtual plane” parameters (translation and rotation) by
interpolation of πti and πti+1 positions. Finally, the 2D coordinates of Xt (the
projection of X on πt) are used to obtain the projections of X on πti and πti+1

in the sense of the probe trajectory.

4.2.2.1 Determination of the “virtual” plane time stamp

Under the assumption that the probe motion is constant between two consec-
utive B-scans, the latency ratio is equal to the distance ratio:

t =
dti+1

dti + dti+1
(ti) +

dti
dti + dti+1

(ti + 1) (4.1)

where dti is the distance (in the sense of orthogonal projection) between the
current voxel and the B-scan of time stamp ti (dti = ‖X − XDW

ti ‖). The
assumption of constant probe speed between two slices is justified by the frame
rate. The lowest frame rate is usually 10Hz, which means that 100ms separate
two frames. It is therefore reasonable to assume a constant motion magnitude
between two frames (i.e. no significant acceleration). Once the time stamp of
the “virtual” plane is computed, the probe position can be interpolated.

4.2.2.2 Determination of the “virtual” plane parameters

The position of each B-scan is defined by 3 translations and 3 rotations. Thus
the interpolation of origin position and rotation parameters is needed. We use
the Key interpolation for the translations and the Spherical Linear Interpola-
tion (SLERP) for the rotations.
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Interpolation of origin position. For the origin of the B-scan, a cubic interpo-
lation is used to estimate the origin of the “virtual” plane at time stamp t. The
Key function is used to carry out a direct cubic interpolation and is defined as:

ϕ(t) =

 (a+ 2)|t|3 − (a+ 3)t2 + 1 if 0 ≤ |t| < 1,
a|t|3 − 5at2 + 8a|t| − 4a if 1 ≤ |t| < 2,
0 if 2 ≤ |t|

(4.2)

With a = − 1
2 , ϕ is a C1 function and a third order interpolation is obtained

[165]. In practice, four B-scans are used for cubic interpolation. This seems to
be an optimal trade-off between computational time and reconstruction quality.
For example, the interpolation of the origin position along x axis Tx reads as:

Tx(t) =
ti+2∑

k=ti−1

Tx(k)ϕ(t− k) (4.3)

.

Interpolation of rotation parameters. The rotation parameters of each B-scan
are converted into a quaternion which is a compact representation of rotations
within a hyper-complex number of rank 4: q = w+ ix+jy+kz. This represen-
tation of rotations, allows to take into account the coupling of rotations during
the interpolation step. The quaternion representing the rotations of the “vir-
tual” plane is obtained through a Spherical Linear Interpolation (SLERP) [159]
at time stamp t: qt = qti

sin((1−t)θ)
sinθ + qti+1

sin(tθ)
sinθ , where qti and qti+1 are the

unit quaternions corresponding to B-scans of time stamps ti and ti+ 1; and θ
represents the angle between qti and qti+1 computed as: θ = cos−1(qti.qti+1).
The orientation of the “virtual” plane is contained in qt. Then, XPT

ti and XPT
ti+1

are obtained directly, since they have the same 2D coordinates (defined in each
B-scans) as Xt.

4.3 Results

4.3.1 Simulated intra-operative sequences

In freehand ultrasound imaging, like in other contexts, validation is not easy
because the “ground truth” does not exist. In order to overcome this prob-
lem, magnetic resonance sequences were built on geometry of the ultrasonic
intra-operative sequences. Firstly, the intra operative trajectories were used
to re-slice the preoperative magnetic resonance volume of the patient. Then,
a stack of MR-scans was built on the images obtained by the re-slicing. Fi-
nally, the reconstructed MR volume was compared to the “ground truth” (i.e
the corresponding preoperative MRI volume). As the US-sequences, the MR-
sequence1 is composed of 59 MR-scans (223 × 405) and MR-sequence2 of 46
MR-scans (223× 405).

Since the “ground truth” is known, the validation metric directly compares
the reconstructed volume Ṽ and the corresponding volume V in preoperative
MRI. Firstly, the MR sequence, obtained by reslicing the pre-operative MRI
accordingly to the US trajectory, was reconstructed with the three evaluated
methods (VNN, DW and PT). Secondly, the corresponding MR volume V (in
terms of field of view and resolution) was computed using cubic interpolation.
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4.3. Results

Figure 4.3: Illustration of the validation framework used for the MR-sequences.

Finally, the reconstructed volumes obtained with VNN, DW and PT were
compared to the “ground truth” V (see Fig. 4.34.3) by the means of Mean Square
Error.

Figure 4.44.4 shows the influence of the mean distance between two consecu-
tive B-scans on the reconstruction error. The mean square error is computed
between the “Ground Truth” and the reconstructed volume. The PT method
outperforms the VNN and DW approaches especially on sparse data. Figure
4.54.5 presents slices extracted from initial MR volume and the reconstructed
MR volume. Visually, the PT method more preserves edges and contrast.
Compared to DW method, the PT method improves the reconstruction result
especially on edges whose direction is correlated with probe trajectory.
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Figure 4.4: Variation of mean reconstruction error relatively to the distance
between two consecutive MR-scans with interpolation degree of 1. Left MR-
sequence1, right MR-sequence2. Three methods are evaluated: VNN, DW and
PT. The PT method outperforms others methods especially on sparse data.
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“Ground truth”

VNN DW PT

Figure 4.5: Results for MR-sequences of brain. Top: the “ground truth” and
the reconstructions obtained via the different methods for a mean distance
between MR-scans of 1.8mm. On the bottom: the images of the difference
between the “ground truth” and the reconstructed volume. Visually, the PT
method preserves more the edge continuity and the contrast. The difference
images show that the PT method creates less artifacts and appears closer to
the “ground truth”, especially on ventricles edges.

4.3.2 Ultrasound intra-operative sequences

For intra-operative sequences, the sonosite cranial probe was coupled with the
Sononav Medtronic system. The sequences were acquired during neurosur-
gical procedures after the craniotomy step but before opening the dura. US-
sequence1 is composed of 59 B-scans (223×405) and US-sequence2 of 46 B-scans
(223× 405).

The reconstructions of B-scans dataset US-sequence1 are presented in Fig-
ure 4.64.6 and US-sequence2 are presented in Figure 4.74.7. Visually, the VNN
method leads to many discontinuities and creates artificial boundaries (see im-
age at the top right of Fig. 4.74.7). The DW method generally smooths out the
edges and spoils the native texture pattern of US image more than PT (see at
the bottom of Fig. 4.74.7).

4.4 Discussion

In this chapter, we have proposed a new method to reconstruct 3D freehand
ultrasound images. This method incorporates probe trajectory into the re-
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MRI VNN

DW PT

Figure 4.6: Results for US-sequence1 of brain. Top: the preoperative MRI and
the US reconstruction obtained with the VNN method. On the bottom: the
reconstruction obtained with DW and PT approaches. The low-grade glioma
and the cerebral falx appear in gray in MR image and in white in US images.
From left to right the VNN, DW and PT methods. The images highlight the
inherent artifacts of VNN (i.e. discontinuities) and DW (i.e. blur) methods.
These results underline that the PT method preserves the edges continuity and
the native texture of US image more than VNN and DW method.

MRI VNN

DW PT

Figure 4.7: Results for US-sequence2 of brain. Top: the preoperative MRI and
the US reconstruction obtained with the VNN method. On the bottom: the
reconstruction obtained with DW and PT approaches. The low-grade glioma
appears in gray in MR image and in white in US images. Visually, the PT
method preserves more the edges continuity especially on sulci edges (see at
the center bottom of images).
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construction process. Validation has been performed using a simulated MR
sequence, computed from a real MR image and a real intraoperative trajec-
tory. Experiments have been conducted on real intraoperative data and have
shown that this method offers a good tradeoff between reconstruction quality
and computation time. It can be noted that this technique is suited for GPU
computation facility since the method is intrinsically parallel. By doing so, a
real-time reconstruction technique would be available.

Extensive validation and comparison between reconstruction techniques of
3D freehand ultrasound has never been proposed to the best of our knowledge,
as opposed to general reconstruction and interpolation techniques [64, 115].
Offering validation data and validation metrics to the community would yet be
beneficial. Data that were used for our validation could be disseminated. In
particular, this would give the opportunity to compare 3D freehand ultrasound
reconstruction techniques.
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Chapter 5

Artifacts detection and reduction

5.1 Introduction

Ultrasound is an appealing imaging modality because it is real-time, non-
invasive, cheap, light in the operating room. The main issue is image quality
that is sensitive to many artifact. Among them, the acoustic wave is totally
reflected when it reaches a boundary separating two layers of very different
acoustic impedance. As a consequence, air interfaces and bone interfaces lead
to an almost total reflection of the signal.

In addition, ultrasound images are corrupted by a strong noise, often called
speckle. This noise is due to complex interactions between the acoustic wave
and local scatterers, the wave energy being either diffused, or reflected. Mod-
eling ultrasound image noise is of high interest to be incorporated in image
processing methods like segmentation, registration, denoising, etc. However,
modeling the ultrasound image formation, either with a physics-based approach
or a statistical approach, is difficult.

Filling the gap between ultrasound wave propagation to ultrasound image
noise is very challenging. With simplification hypothesis, many models have
been proposed, ranging from simple Rayleigh to complex k-homodyne distri-
bution [7, 33, 53, 63, 83, 113, 118, 142, 143, 174, 176]. Physics-based modeling are
relevant when the raw RF signal is available. More commonly, the acquired
signal is an analog video signal from the ultrasound machine. Then, the signal
has endured some processing: logarithm amplification of radio-frequency sig-
nals performed on the display image [1]; additive Gaussian noise of sensors [1];
additive Gaussian noise introduced by the acquisition card and probably image
processing techniques (filtering, enhancement) implemented by the manufac-
turer.

Due to the complexity of determining a good noise model, let us first express
the expected characteristics of such good model:

• The noise amplitude should be correlated with the signal, since we observe
that the noise is higher in hyperechogeneic areas in ultrasound images.

• The noise model can be manipulated analytically. For instance, the K-
homodyne model is too complex to be used, while the Rice or Rayleigh
model are adequate.

• The model should be generic enough to comply with log compression.

For these reasons, we have used a simple yet efficient noise model in this
section. This model reads as:

u(x) = v(x) + vγ(x)η(x) (5.1)

31



5. Artifacts detection and reduction

where v(x) is the original image, u(x) is the observed image, η(x) v N (0, σ2)
is a zero-mean Gaussian noise. This model is more flexible and less restrictive
than the usual RF model and is able to capture reliably image statistics since
the factor γ depends on ultrasound devices and additional processing related
to image formation.

Contrary to additive white Gaussian noise model, the noise component in
(5.15.1) is image-dependent. In [109], based on the experimental estimation of
the mean versus the standard deviation in Log-compressed images, Loupas et
al. have shown that γ = 0.5 model fits better to data than the multiplicative
model or the Rayleigh model. Since, this model has been used successfully in
many studies [9,66,95,173]. Clearly, this model is relevant since it is confirmed
that the speckle is higher in regions of high intensities versus regions of low
intensities [95,162].

In this chapter, this noise model will be used in a Bayesian formulation
of he NL-means filter, and will then be used to detect acoustic shadows in
ultrasound images.

5.2 Denoising

5.2.1 Introduction

The speckle in US images is often considered as undesirable and several noise
removal filters have been proposed. Unlike the additive white Gaussian noise
model adopted in most denoising methods, US imaging requires specific filters
due to the signal-dependent nature of the speckle intensity. In this section,
we present a classification of standard adaptive filters and methods for speckle
reduction.

5.2.1.1 Adaptive Filters

The adaptive filters are widely used in US image restoration because they are
easy to implement and control. The commonly-used adaptive filters - the Lee’s
filter [100], Frost’s filter [57], and Kuan’s filter [98] - assume that speckle noise is
essentially a multiplicative noise. Many improvements of these classical filters
have been proposed since. At the beginning of the 90’s, Lopes et al. [108]
suggested to improve the Lee’s and Frost’s filters by classifying the pixels in
order to apply specific processing to the different classes. Based on this idea,
the so-called Adaptive Speckle Reduction filter (ASR) exploits local image
statistics to determine specific areas to be processed further. In [85], the kernel
of the adaptive filter is fitted to homogeneous regions according to local image
statistics. Analyzing local homogeneous regions was also investigated in [94,
130] to spatially adapt the filter parameters. Note that the Median filter has
been also examined for speckle reduction in [109]. Very recently, a stochastic
approach to ultrasound despeckling (SBF) has been developed in [163, 164].
This local averaging method removes the local extrema assumed to be outliers
in a robust statistical estimation framework. Finally, the Rayleigh-Maximum-
Likelihood (R-ML) filter has been derived with similar methodological tools
in [11].

5.2.1.2 Partial Differential Equations (PDE) -based approaches

Adapted formulations of the Anisotropic Diffusion filter (AD) [135] and the
Total Variation minimization scheme (TV) [154] have been developed for US
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imaging. In [178,179], the Speckle Reducing Anisotropic Diffusion (SRAD) was
introduced and involves a noise-dependent instantaneous coefficient of varia-
tion. In [1] the Nonlinear Coherent Diffusion (NCD) filter is based on the
assumption that the multiplicative speckle in US signals is transformed into
an additive Gaussian noise in Log-compressed images. Recently, the Oriented
SRAD (OSRAD) filter has been proposed in [96]; this filter takes into account
the local directional variance of the image intensity, i.e., the local image ge-
ometry. Finally, the TV minimization scheme has been adapted to ultrasound
imaging in [47, 157]. Unlike the previous adaptive speckle filters, all the con-
sidered PDE-based approaches are iterative and produce smooth images while
preserving edges. Nevertheless, meaningful structural details are unfortunately
removed during iterations.

5.2.1.3 Multiscale methods

Several conventional wavelet thresholding methods [34, 48, 49] have also been
investigated for speckle reduction [58, 126, 182] with the assumption that the
logarithm compression of US images transforms the speckle into an additive
Gaussian noise. In order to relax this restrictive assumption, Pizurica et al.
[137] proposed a wavelet-based Generalized Likelihood ratio formulation and
imposed no prior on noise and signal statistics. In [2, 17, 56, 65], the Bayesian
framework was also explored to perform wavelet thresholding adapted to the
non-Gaussian statistics of the signal. Note that other multiscale strategies have
been also studied in [3, 177, 181] to improve the performance of the AD filter;
in [4], the Kuan’s filter is applied to interscale layers of a Laplacian pyramid.

5.2.1.4 Hybrid approaches

The aforementioned approaches can be also combined in order to take advan-
tage of the different paradigms. In [66], the image is preprocessed by an adap-
tive filter in order to decompose the image into two components. A Donoho’s
soft thresholding method is then performed on each component. Finally, the
two processed components are combined to reduce speckle. PDE-based ap-
proaches and a wavelet transform have been also combined as proposed in [127].

5.2.2 NL-means

In this section, the formulation of the NL-means method is briefly recalled.
Then, the method is adapted to incorporate the dedicated ultrasound noise
model.

The previously mentioned approaches for speckle reduction are based on the
so-called locally adaptive recovery paradigm [55]. Nevertheless, more recently,
a new patch-based non local recovery paradigm has been proposed by Buades et
al [24]. This new paradigm proposes to replace the local comparison of pixels by
the non local comparison of patches. Unlike the aforementioned methods, the
so-called NL-means filter does not make any assumptions about the location
of the most relevant pixels used to denoise the current pixel. The weight
assigned to a pixel in the restoration of the current pixel does not depend on
the distance between them (neither in terms of spatial distance nor in terms
of intensity distance). The local model of the signal is revised and the authors
consider only information redundancy in the image. Instead of comparing the
intensity of the pixels, which may be highly corrupted by noise, the NL-means
filter analyzes the patterns around the pixels. Basically, image patches are
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compared for selecting the relevant features useful for noise reduction. This
strategy leads to competitive results when compared to most of the state-of-
the-art methods [23,41,86–88,90,111].

In the original NL-means filter [24], the restored intensity NL(u)(xi) of
pixel xi, is the weighted average of all the pixel intensities u(xi) in the image
Ωdim:

NL(u)(xi) =
∑

xj∈Ωdim

w(xi, xj)u(xj) (5.2)

where dim denotes the image grid dimension (dim = 2 or dim = 3 respec-
tively for 2D and 3D images), Ωdim ⊂ Rdim is the bounded image domain,
w(xi, xj) is the weight assigned to value u(xj) for restoring the pixel xi. More
precisely, the weight evaluates the similarity between the intensities of the local
neighborhoods (patches) Ni and Nj centered on pixels xi and xj , such that
w(xi, xj) ∈ [0, 1] and

∑
xj∈Ωdim w(xi, xj) = 1 (see Fig. 5.15.1). The size of the

local neighborhood Ni and Nj is (2d+ 1)dim. The traditional definition of the
NL-means filter considers that the intensity of each pixel can be linked to pixel
intensities of the whole image. For practical and computational reasons, the
number of pixels taken into account in the weighted average is restricted to a
neighborhood, that is a “search volume” ∆i of size (2M+1)dim, centered at
the current pixel xi.

i

Nj

Niw (xi,xj)

xi

xj

Figure 5.1: Pixelwise NL-means filter (d = 1 and M = 8). The restored
value at pixel xi (in red) is the weighted average of all intensity values of pixels
xj in the search volume ∆i. The weights are based on the similarity of the
intensity neighborhoods (patches) u(Ni) and u(Nj).

For each pixel xj in ∆i, the Gaussian-weighted Euclidean distance ‖.‖22,a is
computed between the two image patches u(Nj) and u(Ni) as explained in [24].
This distance is the traditional L2-norm convolved with a Gaussian kernel of
standard deviation a. The standard deviation of the Gaussian kernel is used
to assign spatial weights to the patch elements. The central pixels in the patch
contribute more to the distance than the pixels located at the periphery. The
weights w(xi, xj) are then computed as follows:

w(xi, xj) =
1
Zi

exp−
‖u(Ni)− u(Nj)‖22,a

h2
(5.3)
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where Zi is a normalization constant ensuring that
∑
xj∈Ωdim w(xi, xj) = 1,

and h acts as a filtering parameter controlling the decay of the exponential
function.

The main drawback of this filter is its computational burden. In order to
overcome this problem, we have recently proposed a fast and optimized imple-
mentation of the NL-means filter for 3D Magnetic Resonance (MR) images [41]
using block-wise approach and adaptive dictionaries.

5.2.3 Adaptation to ultrasound noise model

In [88], a Bayesian formulation of the NL-means filter was proposed. Equiv-
alent to the conditional mean estimator, it has been shown that an empirical
estimator v̂(Bik) of a block Bik can be defined as (see publications [36,88] for
more details):

v̂(Bik) =

|∆ik
|∑

j=1

u(Bj)p(u(Bik)|u(Bj))

|∆ik
|∑

j=1

p(u(Bik)|u(Bj))

(5.4)

where p(u(Bik)|u(Bj)) denotes the pdf of u(Bik) conditionally to u(Bj). In the
case of an additive white Gaussian noise, the likelihood p(u(Bik)|u(Bj)) will

be proportional to e−
||u(Bik

)−u(Bj)||22
h2 , and the corresponding Bayesian estimator

v̂(Bik) is then similar to the initial NL-means method.
The dedicated noise model 5.15.1 leads to:

u(x)|v(x) v N (v(x), v(x)2γσ2) (5.5)

which yields

p(u(x)|v(x)) ∝ exp− (u(x)− v(x))2

2v(x)2γσ2
. (5.6)

Given a block Bi, the likelihood can be expressed as:

p(u(Bi)|u(Bj)) ∝ exp−
P∑
p=1

(u(p)(xi)− u(p)(xj))2

2(u(p))2γ(xj)σ2
(5.7)

which amounts to replacing the L2-norm by the Pearson distance defined as:

dP (u(Bi),u(Bj)) =
P∑
p=1

(u(p)(Bi)− u(p)(Bj))2

(u(p))2γ(Bj)
(5.8)

5.2.4 Results

The adapted filter has been tested on a variety of synthetic images with different
noise models, and compared to existing methods. Results published in [36] have
shown that the adapted NL-means outperforms other techniques.

The proposed denoising method was compared visually to the SBF and
SRAD filters on real intraoperative brain images. The parameters for the SBF
and SRAD filters are the parameters given respectively in [178] and [163]. The
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parameters of the OBNLM filter were set as follows : h = 8, n = 2, α = 3,
M = 6 and µ1 = 0.6.

Figure 5.25.2 shows the denoising results. Visually, the OBNLM filter effi-
ciently removes the speckle component while enhancing the edges and preserv-
ing the image structures. The visual results produced on real image by our
method are competitive compared to SRAD and SBF filters.

Original SRAD SBF OBNLM

Original SRAD SBF OBNLM

Figure 5.2: Results obtained with the SRAD and SBF filters and the pro-
posed filters on real intraoperative brain images. The OBNLM filter efficiently
removes the speckle while enhancing the edges and preserving the image struc-
tures.

5.2.5 Quantitative analysis on registration accuracy

As stated before, denoising might not be always of interest for clinicians since
speckle contains spatial patterns useful for diagnosis. However, speckle is an is-
sue for image processing tasks like image segmentation and registration. There-
fore, we have tried to assess the impact of denoising on registration.
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5.2.5.1 Validation framework

The evaluation framework is based on the warping index criterion proposed
in [165] as explained below. Let I be an image and T be a geometric trans-
formation. Two transformed images IT and IT−1 are computed as follows:
IT (x) = I(T (x)) and IT−1(x) = I(T−1(x)). These two transformations, cou-
pled with bi-cubic interpolation, introduce similar interpolation artifacts in
both images. The warping index ω is the distance between the estimated trans-
formation by the registration process R̂ and the true transformation R = T ◦T :

ω =
1

|Ωdim|
∑

x∈Ωdim

∣∣∣∣∣∣R−1(x)− R̂−1(x)
∣∣∣∣∣∣

2
(5.9)

where ||.||2 is the L2-norm. With several initial transformations, the quality
of a registration procedure can be estimated by computing the mean warping
index and its variance.

The registration procedure is based on the sum of square differences with
a simplex optimization within a multiresolution scheme. The registration pro-
cedure is stopped at a 0.4 mm isotropic image resolution level.

5.2.5.2 3D intraoperative brain image

The real volume used for this experiment (see Fig. 5.35.3) is an intraoperative
ultrasound image of 510 × 432 × 174 voxels in size and isotropic resolution of
0.2mm3.

Figure 5.3: 3D intraoperative ultrasound brain image used for the evaluation.
Left: original noisy image. Right: zoom on the upper part processing on the
lesion.

5.2.5.3 Comparison with other denoising methods

During this experiment the TV, AD, SRAD, FROST, N L-means and adapted
N L-means filters were successively considered. In this experiment, the mean
ω̄ and the variance V ar(ω) of the warping index were based on 50 random
image registrations with larger transformations. The 50 matrices T correspond
to a translation uniformly distributed in [−5, 5] mm and a rotation uniformly
distributed in [−π/18, π/18]. The same initial transformations were used for
all denoising methods.

For all methods, the optimal parameters were sought in a large range to
ensure that the best result -in terms of registration accuracy- are provided for
each denoising method.
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Filter ω̄ (mm) V ar(ω) (mm) Success rate
Original image 0.3631 0.0196 94%
AD 0.3048 0.0185 96%
SRAD 0.3003 0.0095 96%
TV 0.2999 0.0092 94%
Frost’s filter 0.3330 0.0123 92%
NL-means 0.2961 0.0091 96%
OBNLM 0.2815 0.0075 98%

Table 5.1: Registration accuracy results obtained with the tested filters. The
OBNLM filter obtains the best mean and variance of warping index as well as
the best success rate.

In order to preserve the homogeneity of samples, the transformations for
which at least one filter failed (i.e., the registration between the denoised im-
ages with this filter failed) were rejected from the analysis. Among the 50
transformations initially used, only 44 transformations were considered during
statistical analysis.

Table 5.15.1 presents the success rate, the mean ω̄ and the variance V ar(ω) of
the warping index obtained with the compared filters. These results show that
the error rate after registration is smaller with the adapted N L-means filter
with the best success rate.

A one-way Analysis of Variance (Anova) was used to assess the statistical
significance of the observed differences. Figure 5.45.4 shows the distribution of
the warping indexes for all the compared filters. The p-value obtained with the
“anova1” function of matlab was 0.05. This means that at least one sample
mean was significantly different than the other sample means.

Figure 5.4: ANOVA: distributions of the warping indexes obtained for the AD,
the TV, Frost’s, the SRAD, the N L-means and the OBNLM filters.

Then, a multiple comparison test [77] (matlab implementation) was per-
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Figure 5.5: Multiple comparison procedures: study of the statistical differences
between the warping indexes obtained with the compared methods. By select-
ing the “noisy” group as reference, only the OBNLM method is statistically
different than the other denoising methods in terms of registration accuracy.

formed to determine which method was significantly different from the others.
Contrary to paired t-tests between each couple of groups, the multiple compari-
son procedure provides an upper bound on the probability that any comparison
can be incorrectly found significant. By selecting the “noisy” group as refer-
ence (i.e. without denoising), the multiple comparison procedures showed that
only the OBNLM was significantly different in terms of registration accuracy
(see Fig. 5.55.5).

5.3 Detection of ultrasound acoustic shadows

5.3.1 Introduction

The image formation process of ultrasound images is bound to the propagation
and interaction of waves in tissues of various acoustic impedances [161]. More
precisely, at the boundary of two materials, the wave energy is transmitted
and/or reflected. If the wave energy is almost totally reflected, this will result
in an acoustic shadow in the region of the image beyond the boundary. The
motivation for detecting acoustic shadows is twofold. First, the presence of an
acoustic shadow reflects the presence of an interface where the acoustic energy
was almost completely lost. This is typically an interface tissue/air or tis-
sue/bone. Therefore, acoustic shadows are useful to detect calcifications, gall-
stones or bone structures, detect lesions [52], discriminate benign tumors [167],
predict stability of Peyronie’s disease [15] or diagnosis leiomyoma [27]. Sec-
ondly, acoustic shadows might limit the efficiency of image processing tech-
niques like segmentation, registration [103,104,132] or 3D reconstruction. The
automatic processing of ultrasound in a quantitative analysis workflow requires
to detect and account for acoustic shadows. This paper will focus on the im-
pact of shadow estimation on image processing tasks and more precisely on 3D
reconstruction and 3D registration of ultrasound intraoperative data.

Only a few papers have presented automatic methods to detect acoustic
shadows. Methods can be broadly sorted in two groups: intensity-based meth-
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ods [52,112] and geometric methods [103,132]. Intensity-based methods rely on
a direct analysis of the intensities to detect dark regions. Madabhusi et al. [112]
describe a method that combines a feature space extraction, manual training
and classification to discriminate lesions from posterior acoustic shadowing.
Drukker et al. [52] use a threshold on a local skewness map to detect shadows.
Geometric methods take into account the probe’s geometry and analyze inten-
sity profiles along the lines that compose the B-scan. Leroy et al. [103] fit an
heuristic exponential function to determine whether a shadow occurred, while
Penney et al. [132] manually estimate the image mask to determine dark areas.

The method proposed in this paper is a hybrid method combining a geo-
metrical approach with a modeling of ultrasound image statistics. Contrary
to previous papers, the image mask, the probe geometry and the statistical
detection threshold are estimated automatically. Rather than fitting heuristic
function to detect shadows, a statistical analysis is performed along each trans-
ducer line to detect potential shadows regions. These ruptures (or breaks) along
the intensity profiles are tested as potential shadow boundary with a statistical
test based on the previously presented noise model 5.15.1.

5.3.2 A geometric and photometric method

The shadow detection procedure consists of two phases. Since the presence of
acoustic shadows is bound to the geometry of the probe and to the propagation
of the signal along the lines that compose the B-scan, it is necessary to estimate
the probe’s shape in the first phase. The probe’s shape is related to the probe
geometry (linear, curvilinear) and corresponds to the image mask in the B-
scans (see figure 5.65.6-a). Then, in a second phase, a signal analysis is performed
along the lines that compose the B-scan. An acoustic shadow is detected along
a line when two criteria are met:

1. A rupture along a line exists and

2. The signal distribution after the rupture is statistically compliant with
an estimated noise model.

The detection method is thus decomposed into the following steps:

5.3.2.1 B-scan geometry extraction

Given a sequence of 2D ultrasound images (see a typical image in figure 5.65.6-
(a)), it is necessary to separate the image and the background. In many cases,
the geometry (e.g., fan vs linear) will be known a priori, it will be possible to use
a precomputed mask and this step of the procedure can be skipped. However,
when this is not the case, estimating the mask amount to computing a 2D mask
given the 2D + t sequence. To do so, maps of longitudinal mean and variance
are computed, and multiplied pixelwise to compute a feature map. For a given
point, the longitudinal mean (respectively variance) is defined as the mean
(respectively variance) of a 2D pixel location over time. Background pixels
are dark and have low (or zero) variance. Points in the image foreground have
the highest values of the feature map (compared to the background). Then,
points with the highest values of the feature map are retained (see figure 5.65.6-
(b)). To remove false detections exist, a morphological closing and opening
are performed to clean the input mask (see figure 5.65.6-(c)). To estimate the
probe geometry, a trapezoid model is fitted to the input mask. The trapezoid
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model is the simplest model capable of capturing the geometry of a linear or
curvilinear probe. The 5 parameters of the model are estimated by optimizing
the total performance measure.

(a) Typical image (b) First mask

(c) Cleaned mask (d) Trapezoid estimation

Figure 5.6: Illustration of the automatic mask extraction. (a) shows a typi-
cal image of the acquired sequence. (b) shows the first mask obtained after
selecting the highest values of the longitudinal statistics. (c) shows the mask
after morphological operators were applied to remove patient information. (d)
shows the final trapezoid model estimation.

5.3.2.2 Line rupture detection

Once the probe’s geometry is estimated, it is possible to know whether the
direction of scanning is top-down or bottom-up when a curvilinear probe is
used. For a linear probe, the user must specify the direction of scanning (it is
generally top-down except if the video grabber flipped the image). Afterwards,
it is necessary to sample line profiles corresponding to the transducer lines. For
each B-scan, an arbitrary number of lines can be drawn and for each line, k
samples are computed by trilinear interpolation in the corresponding B-scan.
As mentioned previously, the shadow is defined as a signal rupture along the
line, followed by a low signal afterwards. Therefore, signal ruptures are detected
first. To do so, the line signal is smoothed with a low-pass filter. Then, a local
symmetric entropy criterion is computed. For each point p of the line signal S,
a sliding window of size n is used to compute the rupture criterion R:

R =
i=n∑
i=1

(
S(p− i) log

S(p− i)
S(p+ i)

+ S(p+ i) log
S(p+ i)
S(p− i)

)
The first term is the relative entropy of the ”past” (the signal before the rup-
ture) knowing the ”future” (the signal after the rupture) which can also be
viewed as the Kullback-Leibler divergence of the past distribution given a ref-
erence signal (the future). In order to symmetrize the criterion, the second
term is added and expresses the relative entropy of the future knowing the
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past. The loci where R is maximal indicate a signal rupture. The rupture cri-
terion R is quite general since it relies on the statistical dependency between
the future and the past samples in a sliding window. Rupture positions are
determined as zero-crossings of the gradient of R.

5.3.2.3 Shadow detection

It is generally assumed that acoustic shadows are areas where the signal is
relatively low. In this paper, we assume that acoustic shadows are areas where
the noise is low. Since noise is modulated by signal intensity in ultrasound
images, this is not a strong assumption. When a rupture is detected and
tested as a candidate for a shadow, let us denote E(uf ) (respectively V(uf ))
the mean (respectively the variance) of the signal after the rupture. The shadow
detection test states that the intensity noise after the rupture is low and not
compliant with the noise modeling of equation 5.15.1. Therefore, the test reads
as:

V(uf ) < E(uf ) · σ2. (5.10)

Thus it is necessary to estimate the parameter σ. To do so, we follow the
approach described in [76]. On local square patches that intersect the B-scan
mask, the local mean µ and variance ϑ are computed. The parameter σ2 can be
interpreted as the linear regression parameter of the variance versus the mean:
ϑ = σ2 · µ.

This computation relies on the hypothesis that the patch contains only one
tissue type. This cannot be ensured in practice as illustrated in figure 5.75.7-(a)
where two regions R1 and R2 intersect the patch. Therefore, a robust Leclerc
M-estimators (with parameter σ = 20) is used to compute a robust mean and
variance. Let us note xi the samples that compose the patch, then the robust
mean is computed as µ =

P
i λixiP

i λi
. The robust estimator iterates between

the computation of the weights λ and the weighted mean µ until convergence.
After convergence, the weights λ are used to compute the robust variance as
Vr(x) =

P
i λ

2
i (xi−x̄)2P

i λi
. Figure 5.75.7-(b) shows a plot of variance versus mean of

all image patches using a classical computation, while figure 5.75.7-(c) show the
same plot with a robust computation of mean and variance. These figures show
that the robust computation leads to a better constrained linear regression.

The remaining issue is the size of the square patch used to compute the
regression parameter σ. One may expect that using small patches will bias the
computation of mean variance, while using large patches will lead to inconsis-
tent results, since a patch will contain several tissue classes, as illustrated in
figure 5.75.7-(a). Figure 5.85.8 shows the results of the regression parameter when
the patch size varies, with a classic computation of statistics 5.85.8-(a) and a
robust computation of statistics 5.85.8-(b). This shows that the classical compu-
tation leads to a biased estimation of σ. When the patch size increases, the
patch is composed of different tissue classes and the observed variance is the
sum of the noise variance and the inter-tissue variance. On the opposite, the
use of robust statistics leads to a consistent and reliable estimation of σ over a
wide range of patch sizes.
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(a) Image patch (b) Raw statistics (c) Robust statistics

Figure 5.7: Estimation of parameter σ of the noise model 5.15.1. On square
patches, local statistics are computed to determine the parameter σ. Each
dot represents the local statistic (variance on vertical axis versus mean on
horizontal axis) of a single patch computed from a real intraoperative image.
Since a square patch may not contain only one tissue, as illustrated on the
left, robust statistics are used to compute the mean and variance. As a matter
of fact, when a patch is composed of two tissue types, the variance increases
and this is visible in figure (b). On the contrary, the use of robust statistics
(c) enables a more accurate regression and estimation of σ compared to the
regression using standard statistics (b).
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Figure 5.8: Influence of patch size on parameter σ2 computed with classical
statistics (a,) and robust statistics (b). The use of robust statistics leads to
a consistent and reliable estimation of the regression parameter. When the
size patch increases, a patch contains several tissue classes and the observed
variance is the sum of the noise variance and the inter-tissue intensity variance.
Therefore, the regression parameter increases.

5.3.2.4 Regularization

Since acoustic shadows are due to an anatomical structure that reflects the
wave energy (which more precisely depends on the angle between the beam
and the interface), the detection of acoustic shadows should vary smoothly
between two consecutive lines. A simple regularization scheme is therefore
adopted: for each line, the detection index is defined as the position of the
detected shadow along the line. A 2D median filtering of the detection indexes
was first performed on a local neighborhood of adjacent lines to regularize the
solution.
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When the acquisition is continuous, the variations of acoustic shadow pro-
files should also vary smoothly between consecutive slices, since the frame rate
of the imaging system is usually above 10Hz and the movement of the probe is
relatively slow. Thus, a longitudinal regularization is performed by taking into
account adjacent lines from the 2 neighboring B-scans, achieving an anisotropic
2D + t median filtering.

5.3.3 Results

5.3.3.1 Comparison with manually delineated ROI

Since the automatic method detects both the B-scan geometry and the shad-
ows as shown in figure 2.22.2-c, the image ROI (i.e., the B-scan mask without the
detected shadows) was compared to a manual delineation of this area. Three
real intraoperative sequences were chosen for this experiment, with depth vary-
ing from superficial acquisition 5.95.9-(a) to deep acquisition 5.95.9-(c). The extent
of the acoustic shadows and signal attenuation increases with the acquisition
depth.

(a) (d)

(b) (e)

(c) (f)

Figure 5.9: Left: Real intraoperative data used for the comparison with manual
delineation. Data was chosen so as to represent three different depth acquisi-
tion: superficial, medium and deep. Right: the corresponding ROI detected
with the automatic method.

Four experts manually delineated the areas using the ITKsnap software
[180]. The corresponding segmentations are presented in Fig. 5.105.10. Visually,
the experts segmentations exhibit very large differences. This fact supports
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the use of an objective automatic process to delinetate these areas. As an
evaluation criterion, the Dice coefficient, as well as the specificity and sensitivity
were compared between the automatic method and the manual raters. Results
are given in Tables 5.25.2, 5.35.3 and 5.45.4. Results show that the automatic method
is very consistent with respect to the raters segmentations.

(Expert 1) (Expert 2) (Expert 3) (Expert 4)

(Expert 1) (Expert 2) (Expert 3) (Expert 4)

(Expert 1) (Expert 2) (Expert 3) (Expert 4)

Figure 5.10: Expert segmentation of the image ROI for the dataset 5.95.9-(a)
(top row), 5.95.9-(b) (middle row) and 5.95.9-(c) (bottom row). Despite reasonably
high kappa values, the manual segmentation are visually significantly different,
what advocates for an automatic process.

Rater 2 Rater 3 Rater 4 Automatic method
Rater 1 0.980 0.969 0.967 0.977
Rater 2 0.981 0.974 0.986
Rater 3 0.964 0.978
Rater 4 0.975

Table 5.2: Comparison between the various segmentations (manual raters, and
automatic method) for the superficial dataset (5.95.9-(a)). For each comparison,
the criterion is the Dice coefficient. The automatic method leads to results as
consistent as the manual raters with an excellent detection rate.
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Rater 2 Rater 3 Rater 4 Automatic method
Rater 1 0.964 0.936 0.958 0.933
Rater 2 0.943 0.977 0.939
Rater 3 0.945 0.976
Rater 4 0.942

Table 5.3: Comparison between the various segmentations for the medium
depth dataset (5.95.9-(b)) as in Table 5.25.2. The automatic method leads to results
as consistent as the manual raters with an excellent detection rate.

Rater 2 Rater 3 Rater 4 Automatic method
Rater 1 0.855 0.781 0.819 0.817
Rater 2 0.822 0.848 0.897
Rater 3 0.752 0.879
Rater 4 0.840

Table 5.4: Comparison between the various segmentations for the large depth
dataset (5.95.9-(c)) as in Table 5.25.2. The Dice coefficient decreases compared to
superficial acquisitions, since the relative size of the ROI compared to the image
size decreases.

5.4 Discussion

In this chapter, a dedicated ultrasound noise model was used to detect and/or
correct image artifact like noise or acoustic shadows. The noise model is simple
and can be manipulated easily. Yet it has revealed to be efficient since it has
demonstrated good capability to capture the image artifacts. This artifacts
detection/reduction clearly aims at improving image processing processing and
not visual image interpretation.

The acoustic shadow detection method may be incorporated in a CT to
ultrasound registration technique. As a matter of fact, bone surfaces produce
a strong energy reflection, leading to an acoustic shadow. The detection of
acoustic shadows in ultrasound images, and the shadow interface, is a feature
that may be registered to a bone segmentation in CT images. This could be
applied to an automatic image-to-patient registration for spine surgery [13].

Validation is still an issue, as well as the comparison of methods (detection
of acoustic shadows and noise reduction). In both cases, generally no ground
truth is available. We have tried to cope with this limitation and to propose
evaluation metrics. The dissemination of such data and metrics would be
valuable since different methods would then be evaluated on the same basis.
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Chapter 6

Registration

6.1 Introduction

In the context of Image-Guided NeuroSurgery (IGNS), the feasibility to quan-
tify or compensate for the brainshift using ultrasound imaging has been shown
in several studies [8,25,35,59,70,91,106,110,131]. Deformations are estimated
using rigid and non-rigid registration techniques.

The rigid registration between the preoperative MR image and the intraop-
erative field is performed using the neuronavigation system before the beginning
of the procedure. This rigid image to physical space registration is based on
fiducials on the patient’s head or on surface matching between the scalp surface
extracted from the MR image and a cloud of points acquired on the patient’s
head with a position localizer. In phantom [35] or animal studies [110], the ac-
curacy of this rigid registration between intraoperative B-scans and operative
field has been quantified between 1.5mm and 3mm. In many studies performed
with different image modalities [50, 54, 67, 69, 75, 106, 121, 125, 146, 153], the
brainshift has been measured between 5mm and 25mm. The necessity to im-
prove the accuracy of the rigid registration between the intraoperative B-scans
and the operative field is thus required to estimate or compensate for brain-
shift. In case of ultrasound utilization, this improvement is generally based on
an image-based rigid registration between intraoperative US and preoperative
MR image.

The formation of ultrasound images is based on the difference of acoustic
impedance of tissues while MR images are based on paramagnetic properties of
the tissues. Thus, the information and artifacts present in US and MR images
have very different nature. The registration of these two modalities is still a
difficult task. Registration approaches based on classical similarity measures
such as the Sum Square Difference (SSD), Mutual Information (MI) or Corre-
lation Ratio (CR) are known to fail [147]. Previous works have studied three
options to register US and MR images: (a) the matching of homologous fea-
tures segmented from both images [35, 59, 91, 139, 145], (b) the preprocessing
of the images to make US images and MR images more similar in order to use
classical similarity measures [8, 105, 132] and (c) the intensity-based registra-
tion based on a specific similarity measure matching the US and MR image
intensities [147].

Landmark-based registration represents the majority of the approaches in
the context of US to MR registration [35, 59, 91, 139, 145]. The motivation is
bound to the difficulty of finding a function matching US image intensities with
MR image intensities. These methods are based on the matching of (a) points
manually defined [59], (b) lines representing the vascular system [35,139,145], or
(c) cortical surface [91]. The main disadvantage of landmark-based registration
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is finding the landmarks and sensitivity to segmentation.
Intensity-based approaches using histogram-based similarity measures tend

to overcome the problem by preprocessing the images in order to register similar
images. In [8], the segmentation and the gradient magnitude of the MR image
are used to simulate a pseudo-US, then the Correlation Coefficient (CC) is used
as the similarity measure. In [105], the Normalized Mutual Information (NMI)
is used to register the gradient magnitude images of both modalities. Intensity-
based approaches use the MR image gradient in the registration procedure
because US images are considered as similar to gradient images.

To the best of our knowledge, Roche et al. [147] was the only attempt to
incorporate the transformation of MR image into pseudo-US in the similarity
measure by introducing the the Bivariate Correlation Ratio (BCR). The reg-
istration procedure is split into two steps: (a) the estimation of a polynomial
function matching the intensity and the gradient of the MRI with the US image
and (b) the estimation of the transformation minimizing the BCR.

In this chapter, we propose a new objective function based on a probabilistic
map of hyperechogeneic structures composed of the mean curvature (Mlvv) of
the preoperative MR image and the segmentation of the pathological tissues.
The Mlvv operator was introduced to detect the sulci and the cerebral falx [99]
which are the hyperechogeneic structures of the brain in ultrasound images.
Being robust and specific to distinguish the positive and negative curvature of
MR isophots, the Mlvv operator is more relevant than the gradient magnitude
operator to detect the sulci in MR brain image.

6.2 Method

6.2.1 Matching hyperechogeneic structures

Contrary to histogram-based approaches that match all the information in
both images, the proposed approach consists in matching only hyperechogeneic
structures [37]. To do so, the “hyperechogeneic” structures present in MR
image (i.e. the structures visible in MR image expected to be hyperechogeneic
in intraoperative US) are detected. In brain imaging, these structures are the
liquid interfaces as the cerebral falx and the sulci, and the lesion when the
corresponding tissue is hyperechogeneic such as cavernoma or glioma.

The registration process is based on the estimation of the transformation
T̂ maximizing the joint probability for a voxel X = (x, y, z) to be included in
hyperechogeneic structures in both modalities:

T̂ = argmax
T

∫
Ω

p(X ∈ ΦUS , T (X) ∈ ΦMR) dX (6.1)

where p(X ∈ ΦUS) is the probability forX to be included in an hyperechogeneic
structure from the US image and p(X ∈ ΦMR) is the probability for X to be
included in an hyperechogeneic structure (in the sense of the ultrasound image)
from the MR image. Assuming that the probabilities are independent, we can
write:

T̂ = argmax
T

∫
Ω

p(X ∈ ΦUS).p(T (X) ∈ ΦMR) dX (6.2)

6.2.2 Construction of the probability maps

In order to construct the probability maps, we define a function f matching
the intensity of both the US image and the MR image with the probability for
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X to be included in hyperechogeneic structures:

p(X ∈ Φ) = f(u(X)) (6.3)

where u : Ω 7−→ R is an image defined on Ω.
For the intraoperative US image U , the evaluation of f is done during

surgery and is only a normalizing function:

p(X ∈ ΦUS) = U(X)/2n (6.4)

where n is the number of bits of the unsigned encoded image.
For the preoperative MR image V , the evaluation of f is done prior to

surgery and is based on both the detection of the liquid interfaces with the
Mlvv operator and the segmentation of the pathological tissues:

p(X ∈ ΦMR) =
Mlvv(V (X))

2n
IM1(X) + Ψ(X)IM2(X) (6.5)

where IM is the indicator function for the set M:

• M1 = {X ∈ Ω, such that Mlvv(V (X)) > 0}

• M2 = {X ∈ Ω, such that X belongs to the lesional tissue}

The Mlvv operator is defined in 3D as :

Mlvv(V (x, y, z)) = − 1
2‖~w‖2h
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where ‖~w‖2 = ∂V (X)
∂x

2
+ ∂V (X)

∂y

2
+ ∂V (X)

∂z

2
. Ψ(X) is the probability given to

X in the segmentation of pathological tissue M2. Ψ() is used to incorporate
a priori on pathology. For pathological tissue such as cavernoma or low-grade
glioma, Ψ(X) is high since these tissues are hyperechogeneic.

The following operations are performed before surgery: the Mlvv is com-
puted from T1-w MR images on the segmented brain by masking the patholog-
ical tissue. Then, only the positive values (i.e. the sulci and the falx) are kept.
Finally, the Mlvv map is fused with the segmentation M2. In our experiments,
the segmentation of pathology was manually performed by the neuroanatomist
before the surgical procedure. Moreover, the simplest case for hyperechogeneic
pathologies was chosen: Ψ is constant (i.e., ∀X ∈ M2,Ψ(X) = 1). This seg-
mentation could be automated and the different parts of pathologies (lesion,
coagulated blood, cyst, necrotic tissue, etc) could be defined with different
values corresponding to their hyperechogeneic level. A scheme of the overall
workflow is given in figure 6.16.1.

6.2.3 Non-rigid parametrization

The proposed similarity can also be embedded with non rigid transformations.
Since the registration procedure is based on hyperechogeneic features match-
ing, a global parametrization is chosen. Indeed, the probability maps can be
considered as fuzzy segmentations of hyperechogeneic structures. As a global
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Figure 6.1: Illustration of the performed workflow to achieve the registration.
The skull stripping, the denoising, the Mlvv computation and the segmenta-
tion of lesion are performed before the neurosurgical procedure. Then, the 3D
reconstruction of intraoperative volume, the reslicing of the MR map and the
estimation of the transformation is estimated during the neurosurgical proce-
dure.

non-rigid parametrization, a set of cosines basis functions was chosen. This
kind of parametrization has been already presented in the literature as in [10]
for instance.

The set of cosine basis functions is defined by their pulsation ωf (i.e. fre-
quency). Estimating the transformations therefore amounts to estimating
the magnitude parameters ({αfi , β

f
i , γ

f
i ; i ∈ [1, 2, 3]}) and phases parameters

({φfi , ψ
f
i , ρ

f
i ; i ∈ [1, 2, 3]}) for each cosine basis function. The set of pulsations
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W of the basis functions is defined as W : {ω0, ..., ωF } and is fixed a priori.
Finally, the parametrization can be written as:

UF (X) =
F∑
f=0

 αf1cos(ω
fx+ φf1 ) + βf1 cos(ω

fy + ψf1 ) + γf1 cos(ω
fz + ρf1 )

αf2cos(ω
fx+ φf2 ) + βf2 cos(ω

fy + ψf2 ) + γf2 cos(ω
fy + ρf2 )

αf3cos(ω
fx+ φf3 ) + βf3 cos(ω

fy + ψf3 ) + γf3 cos(ω
fz + ρf3 )


(6.7)

where X = (x, y, z) are the coordinates of the voxel in the reference image
(i.e. the probability map extract from MR image) and UF (X) are the coordi-
nates of the homologous points in the floating image (i.e. the normalized US
image). By extension of the equation 6.26.2 to the non rigid transformations, the
registration procedure can be written as:

argmax
P

∫
Ω

p(X ∈ ΦMR).p(UF (X) ∈ ΦUS) dX (6.8)

where P : {αfi , β
f
i , γ

f
i , φ

f
i , ψ

f
i , ρ

f
i ; i ∈ [1, 2, 3]; f ∈ [0, ..., F ]} represents the set

of basis function parameters.

6.2.4 Optimization

These parameters are iteratively estimated from the lowest frequency to the
highest frequency. First, the Simplex optimizer is used to estimate the 18
parameters for ω0. Then, these parameters are fixed and the 18 parameters
for ω1 are then estimated. This procedure is repeated until f = F . In the
experiments, the same setW was used for all the patients. This set is composed
of 10 pulsations (i.e. F = 10) regularly distributed between [ω0, ω10].

6.3 First results

In this section, results on patient data set is presented. The proposed approach
was validated on hyperechogeneic pathologies (2 patients with cavernoma and
1 patient with low-grade glioma). For all patients, as previously described, the
same simple model Ψ(X) = 1 was chosen before neurosurgery. The accuracy
of the registration was visually checked by the neurosurgeon over the volumes.
According to the neurosurgeon, the overlay of the modalities was improved
after rigid and non rigid registration procedures in all cases.

Patient Rigid registration Non rigid registration
Estimated error Estimated deformation

1 5.72 mm 2.71± 1.03 mm
2 4.94 mm 3.74± 1.19 mm
3 6.50 mm 1.81± 1.02 mm

Table 6.1: Result of the overall workflow for 3 patients. Left: Patient iden-
tification. Middle: estimation of the error provided by the neuronavigation
system (i.e. rigid registration). Right: magnitude of the estimated non rigid
deformation (i.e. non rigid registration).

Table 6.36.3 shows the quantitative results obtained for three patients after
rigid and non rigid registrations. These estimations were computed as the mean
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Euclidean distance over all the voxels before and after registration. The esti-
mated errors produced by the neuronavigation system were significantly higher
than the errors reported in the literature (< 3 mm [35, 110]). This difference
may be due to the clinical context of our study where the constrains differ from
phantom studies. The magnitude of the estimated non rigid deformations was
close to the deformation reported by others studies [106,121,125].

Figures 6.26.2, 6.36.3 6.46.4 show the result of the registrations for three patients.
In all cases, before opening the dura, the rigid registrations greatly improved
the registration of the US and MR images performed by the neuronavigation
system (see top of Fig. 6.26.2, 6.36.3 and 6.46.4). After opening the dura different
cases appeared. For patient 1, the cavernoma did move to the craniotomy (see
bottom of Fig. 6.26.2). Visually, the non rigid registration correctly compensated
this movement. It is interesting to note that the real deformation observed
for this patient is close (visually and in term of magnitude) to the synthetic
deformation applied to this data set during the previous experiment. For pa-
tient 2, a large expansion of the glioma did occur creating out-bulging shift
(see bottom of Fig. 6.36.3). The expansion may be due to the great size of the
glioma for which the growing generated constrains on surrounding tissues. In
this extreme case, the non rigid registration did not entirely recover the large
local deformation on the top of glioma. Nevertheless, the non rigid procedure
did compensate the movement on cerebral flax and bottom of glioma. For pa-
tient 3, the sulci did shift to the central part of the cortex (see bottom of Fig.
6.46.4). This deformation seems to be correctly compensated, especially on sulci,
cavernoma and cerebral falx.

6.4 Discussion

In this chapter, a registration framework between intraoperative brain ultra-
sound and preoperative MR images was presented. This framework builds on
the matching of hyperechogeneic structures. This feature was chosen since it
is straightforwardly computed intraoperatively, due to its local nature it is less
sensitive to imaging artifact. This similarity measure can then be used for a
rigid or non-rigid parametrization. First results show the efficacy of this simi-
larity to register intraoperative ultrasound to preoperative MRI. This type of
registration technique may be easily implemented using GPU in order to lead
to real-time registration.

At the moment, the similarity balances between two hyperechogeneic struc-
tures, the liquid interfaces (falx, sulci) and the lesion. A parameter function Ψ
is involved. At the moment, the simplest choice was made for Ψ: ∀X,Ψ(X) = 1.
Future work should concentrate on relaxing this choice, either using a more
precise segmentation of the lesion (determining the tumoral tissue from the
cystic part that might be hypoechogeneic for instance), or by ”learning” the
optimized function for a set of clinical cases.

Further work should investigate the non-rigid parametrization that is very
constrained at the moment. The parametrization was constraint so as to speed
up the registration, however this is not satisfying. The parameters (set of
frequencies) should be either estimated or learned over a database of real cases.
Probably better, the parametrization model itself should be learned and this
will be discussed in the conclusion.
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6.4. Discussion

Patient 1
Before opening the dura
Estimated error : 5.72 mm

Before rigid registration After rigid registration

After opening the dura
Estimated deformation : 2.71± 1.03 mm (max = 5.54 mm)

Before non rigid registration After non rigid registration

Figure 6.2: Top. Left: overlay of the US image acquired before opening the
dura with the re-sliced MR image after rigid registration based on the matrix
provided by the neuronavigation system. Right: overlay of these images before
rigid registration. Bottom. Left: overlay of the US image acquired after
opening the dura and the rigid registration of the MR image. A displacement
of the cavernoma to the craniotomy has occurred. Right: overlay of these
images after non rigid registration.

Although first results are promising, extensive experiments and evaluation
of the method are needed. Validation is also problematic and should be ad-
dressed. As for many validation contexts, no ground truth is available and
simulated deformation are too limited. This issue will also be discussed in the
conclusion of the manuscript.
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6. Registration

Patient 2
Before opening the dura
Estimated error : 4.94 mm

Before rigid registration After rigid registration

After opening the dura
Estimated deformation : 3.74± 1.19 mm (max = 7.31 mm)

Before non rigid registration After non rigid registration

Figure 6.3: Top. Left: overlay of the US image acquired before opening the
dura with the re-sliced MR image after rigid registration based on the matrix
provided by the neuronavigation system. Right: overlay of these images before
rigid registration. Bottom. Left: overlay of the US image acquired after
opening the dura and the rigid registration of the MR image. A large expansion
of the glioma has occurred. Right: overlay of these images after non rigid
registration.
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6.4. Discussion

Patient 3
Before opening the dura
Estimated error : 6.50 mm

Before rigid registration After rigid registration

After opening the dura
Estimated deformation : 1.81± 1.02 mm (max = 4.26 mm)

Before non rigid registration After non rigid registration

Figure 6.4: Top. Left: overlay of the US image acquired before opening the
dura and the re-sliced MR image after rigid registration based on the matrix
provided by the neuronavigation system. Right: overlay of these images before
rigid registration. Bottom. Left: overlay of the US image acquired after
opening the dura and the rigid registration of the MR image. A movement of
the sulci near the cavernoma has occurred. Right: overlay of these images after
non rigid registration.
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Chapter 7

Further work

Il semble que nous naissons à mi
chemin du commencement et de
la fin du monde. Nous
grandissons en révolte ouverte
presque aussi furieusement contre
ce qui nous entraine que contre
ce qui nous retient.

René Char

In this document, a few contributions to image processing methods for
intraoperative ultrasound in neurosurgery have been proposed. From the ac-
quisition to the analysis of the data, these steps require successively calibration,
reconstruction, artifact reduction and registration. Some conclusions have been
drawn along this document, and further work awaits us:

7.1 Capturing intraoperative deformations

• To meet the requirement of surgery, a real-time workflow is needed. Real-
time, in this context, means less than 1min between data acquisition and
displaying the reformatted preoperative MRI. At the moment, around
4min are needed. Efforts to reach this goal are technological rather than
methodological. In particular, GPU computation facilities may be suc-
cessfully used to this aim.

• The reconstruction step may eventually be skipped by developing regis-
tration without reconstruction techniques. The advantage would be a de-
creased computation time. The rigid implementation is straightforward,
but the non-rigid extension is less trivial since the regularization of the
deformation field should then be adapted to the local spatial resolution
of the data.

• Visual servoing and Bayesian techniques may be useful in such project, in
order to capture a possible relationship between the ultrasound acquisi-
tion field of view and an expected registration error. If such relationship
can be established, then it would be possible to guide the surgeon’s ac-
quisition and/or to reject sequences that will lead to an unacceptable
registration error.

• In the registration chapter, the choice of a ultrasound to MRI registration
has been made. It would be valuable to compare the obtained deforma-
tions to an ultrasound to ultrasound registration [144]. The advantage
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7. Further work

would be a monomodal registration problem and thus easier, the draw-
back being that field of views between ultrasound images to be registered
should overlap so as to capture relevant deformations.

• The temporal resolution of 3D ultrasound data is rather low because the
surgeon needs to stop surgery for data acquisition. Therefore, only a few
acquisition are possible (generally, one before opening the dura, one after
opening the dura, one during surgery and one at the expected end of
resection). This leads to a difficult problem of estimating deformations
of possibly large magnitude. A solution would be to think the problem
in terms of continuous deformation flow. Additional observations, like
2D images of the microscope, could be added as a constraint to this
estimation problem.

• Finally, the matter dissipation effect caused by the resection process needs
to be incorporated in the registration problem. It makes no sense to
register tissue that has been removed, nor to regularize the deformation
field at points where it should not be defined. A cooperative framework,
including resection segmentation and registration, could be developed to
this aim.

7.2 Intraoperative tissue characterization

In image-guided neurosurgery, the compensation of soft-issue deformation is
only a piece of the puzzle. The final objective is to answer the question if there
is tumoral tissue left at the expected end of resection. This is particularly
relevant for low-grade glioma where the expected lifespan is correlated to the
quality of resection. Therefore, although brainshift compensation is the first
step, intraoperative tissue classification is needed.

• The classification of tumoral tissue using B-mode ultrasound seems chal-
lenging since the quality of images at the end of surgery is rather low,
due to imaging conditions (the cavity, although filled with liquid, con-
tains bubbles). The hyperechogeneic rim is visible at the end of resection
cavity, probably due to inflammation, and assessing the thickness of the
rim may help. As a matter of fact, one may hypothesize that an het-
erogeneous rim might indicate the presence of residual lesion, while an
homogeneous rim would indicate total resection. However, additional
developments are needed:

– At the expected end of resection, relevant information is at the fon-
dus of the intraoperative cavity, but the imaging thickness should
be limited and the spatial resolution increased. To this aim, high-
frequency ultrasound (above 20Mhz) would then be useful.

– The use of contrast agent, for instance USPIO (ultra-small particles
of iron oxide), would increase the contrast of ultrasound images.
In particular, it has been shown recently [45, 128] that USPIO in-
duces a frequency-shift. The advantage is that USPIO is capable of
traversing the BBB (Brain Blood Barrier) and when recaptured by
macrophages, will be fixed in the tumor. As a consequence, the use
of USPIO would increase the capability of ultrasound to delineate
tumor borders.
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– In addition to contrast agent, elastography would probably provide
stiffness information that would be helpful. It is known, for instance
for low-grade glioma, that stiffness differs from normal brain tissue.
That information could potentially be more specific to delineate
brain tumors.

• To assess the nature of the tissue, optical imagery like fluorescence or
confocal microscopy would definitely be of great interest. However, there
are still some technical limitations that may disappear in the next future.

• To fully exploit all the information available, multimodal and multiscale
classification techniques will be needed, since data are of extremely dif-
ferent spatial and temporal resolution.

7.3 Clinical context: learning and validation

Finally, further work should focus on the clinical context:

• It would be valuable to introduce clinical a priori in the proposed meth-
ods. For instance, external parameters like patient’s position, craniotomy
size, direction of gravity, tumor volume and position, etc. could be
used fruitfully as constraints. In addition, learning aspects should be
introduced, for instance in the registration process (learning a relevant
parametrized deformation model).

• In the future, clinical usefulness and validation should be addressed. This
topic is difficult, from an ethical point of view, and from a methodological
point of view. It will be reasonable to start with simple questions like ”is
the resection quality better when using image-guided techniques?”.
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2. P. Coupé, P. Hellier, C. Barillot. INRIABrainshift. Dépôt à l’agence pour la
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Elastic registration. Dépôt à l’Agence pour la Protection des Programmes,
2003.
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