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Chapter 1

Introduction

This document presents the research | have undertakentsebeginning of my
PhD thesis. The Laboratoire de Probabilits et Modles Atagof Universit Paris
6 hosted my PhD (2001-2004). | was then recruited in the @eliEnseignement
et de Recherche en Traitement de I'information et SignalEt®le Nationale des
Ponts et Chausses, which is now a common research labovaitbryhe Centre
Scientifique et Technique du Btiment and part of the Labarabinformatique
Gaspard Monge de I'Universit Paris Est. Besides, since 2087T of my research
has been done within the Willow team of the Laboratoire astnfatique de I'cole
Normale Superiure.

My main research directions are statistical learning theod machine learn-
ing techniques for computer vision. Machine learning is seaech field posi-
tioned between statistics, computer science and appli¢dematics. Its goal is
to bring out theories and algorithms to better understanddaal with complex
systems for which no simple, accurate and easy-to-use neads$. It has a con-
siderable impact on a wide variety of scientific domains|udmg text analysis
and indexation, financial market analysis, search engbesformatics, speech
recognition, robotics, industrial engineering... Theaepment of new sensors
to acquire data, the increasing capacity of storage and otatipnal power of
computers have brought new perspectives to understandandreore complex
systems from observations. In particular, Machine le@ytachniques are used in
computer vision tasks that are unsolvable using classiesthods (object detec-
tion, handwriting recognition, image segmentation ancbéaion).

The core problem in statistical learning can be formalizedhe following
way. We observe input-output (or object-label) pairg; = (X1,Y1),..., 2, =
(X,,Y,). A new inputX comes. The goal is to predict its associated output
Y. The input is usually high dimensional and highly structlfguch as a digital
image). The outputis simple: itis typically a real numbeanrelement in a finite
set (for instance, 'yes’ or 'no’ in the case of the detectiéma specific object in
the digital image). The usual probabilistic modelling iattthe observed data (or
training set) and the input-output par= (X, Y') are independent and identically
distributed random variables coming from some unknownitistion P, and that,
for various possible reasons, the output is not necessadgterministic function
of the input.

The lack of quality of a predictiop’ wheny is the true output is measured by
its loss, denoted(y, y'). Typical loss functions are the 0/1 o8y, y') = W,
(the loss is one if and only if the prediction differs from tinee output) and the
square loss¥(y,y’) = (y — y')?. The latter loss is more appropriate than the
0/1 loss when the output space is the real line, a small diffe between the



prediction and the true output generating a small loss. &tget of learning is to
infer from the training set a functiomn from the input space to the output space
having a low risk, also called expected loss or generatinatiror:

R(g) = E(X,Y)NPE(Y, g(X)).

Statistical learning theory aims at answering the follayguiestions. What are
the conditions for (asymptotic) consistency of the leagrsnoheme? What can we
learn from a finite sample of observations? Under which arstances, can we
expect the risk to be close to the risk of the best predictimetion, that is the one
we could have proposed had we a full knowledge of the proibadiktribution P
underlying the observations? How accurate is the predidiiolt on the training
set? For instance, how low is its risk? What kind of guarasitsn we ensure?
Both theoretical and empirical (i.e., computable from thserved data) upper
bounds on the risk or the excess risk are of interest. Can werstand/explain
the success of some prediction schemes? Besides, we alsotélkpt a new
theoretical analysis leads to the design of new predictiethods.

This document details my contributions to these issuesspadifically to:

e the PAC-Bayesian analysis of statistical learning,
o the three aggregation problems: givefunctions, how to predict as well as

— the best of thesé functions (model selection type aggregation),
— the best convex combination of thes&nctions,
— the best linear combination of theddéunctions,

¢ the multi-armed bandit problems,

Being in computer science departments where image procgasid computer
vision are core research directions leads me to addresseavarcety of topics in
which machine learning plays a key role. It includes objecbgnition, content-
based image retrieval, image segmentation and image dimmogand vanishing
point detection. This document will not detail my contrilouis on these topics.
My related publications can be found on my webpage.



Chapter 2

The PAC-Bayesian analysis of statistical learning

2.1. INTRODUCTION

The natural target of learning is to predict as well as if wd kiaown the dis-
tribution generating the input-output pairs. In other wsgrnle want to infer from
the training set/}" = {(X1, Y1), ..., (X,, Y,)} a prediction functior§ whose risk
is close to the risk of the Bayes predictgr= argmin, Z(g), where the minimum
is taken among all functiong: X — Y (such that (Y, g(X)) is integrable). The
goal is therefore to propose a good estimgtof ¢*, where the quality of the es-
timator is not in terms of the functional proximity of the gdretion functions but
in terms of their risk similarity.

Since the distributiorP of the input-output pair is unknown, the risk is not
observed, and numerous core learning procedures haversedauits empirical
counterpart:

o) = = D0 Yy (X))

either by minimizing it on a restricted class of functions atmost equivalently
by minimizing a linear combination of this empirical riskcha penalty (or reg-
ularization) term whose role is to favor “simple” function$he term “simple”
typically refers to some a priori of the statistician, andften linked to either
some smoothness property or some sparsity of the predictranion. The tradi-
tional approach to statistical learning theory relies andtudy ofR(g) — r(g).

In the PAC-Bayesian approach, randomized prediction sekeane consid-
ered. LetM denote the set of distributions on the §¢1(; Y) of functions from
the input space to the output space. A distributiom M is chosen from the
data, and the quantity of interesti g), whereg is drawn from the distribution
p. This risk is thus doubly stochastic: it depends on the zatibn of the training
set (which is a realization of the-fold product distribution”®” of P) and on the
realization of the (posterior) distributigh

Basically, one can argue that the difference between theoappes seems
minor: the understanding &, ,R(g) for any distributions implies the under-
standing ofR(g) (simply by considering the Dirac distribution &, and that the
converse is also true (to the extent thakifg) < B(g) holds for any estimataj
and some real-valued functid, thenE, ;R(g) < E,.,B(g) also holds for any
posterior distributiorn).

The main difference lies rather in the very starting pointhaf PAC-Bayesian
analysis. To detail it, let me introduce a distributior M, that is non-random (as
opposed t®, which depends on the sample). The central argument isdlmage



the following property of the Kullback-Leibler (KL) diveemce: for any bounded
functionh : §(X;Y) — R, we have

suj\y/)t {Ey-ph(g) — K(p,7)} = log Egore™@, (2.1.1)
pe

wheree denotes the exponential number, afidp, 7) is the KL divergence be-
tween the distributions andr: K (p, 7) = E,.,log (2(g)) if p admits a density
with respect tar, denoted?, and K (p, m) = +oo otherwisg. To control the dif-
ferenceE,.;R(g) — E,,r(g), putting aside integrability issues, one essentially
uses: for any > 0,

sup,en AEgnp R(9)—Egnpr(9)] =K (p,7)
A R(9)—r(9)]

AlR(9)—7(9)]

AEg~sR(9)—Egnpr(9)l-K(pm) E . pene
- 1

EZf~P®"6
— EZ{LNP®7L ]EgNﬂ

= EQNWEZ{LNP@m €

= Byr <E(X Y)Npei[R(g)g(ng(X))}) .
(2.1.2)

A first consequence is that PAC-Bayes bounds are not (dijacsieful for pos-
terior distributions withK'(p, 7) = +oo: this is in particular the case whegn
is a Dirac distribution and assigns no probability mass to single functions. So
classical results of the standard approach does not dearethe PAC Bayesian
approach. On the other hand, the apparition of the KL termvsttbat the PAC-
Bayesian analysis fundamentally differs from the simpl&sis given in the pre-
vious paragraph.

To illustrate this last point, consider the case of a pri@trihution putting
mass on a finite s&¥ C §(X;Y) of functions. For simplicity, consider bounded
losses, say < /(y,y’) < 1foranyy,y € Y. By using Hoeffding’s inequality
and a weighted union bound, one gets that forany0, with probability at least
1 — e, we have for anyy € §

R(g) —r(9) < \/ log(ﬁgflg)gl),

hence for any distributiop such thaip(§) = 1,

log(m=1(g)e—!
EgwpR(g9) = Egepr(g) < EQNP\/ ( 22 )

\/K(p, m) + H(p) +log(s ) (2.1.3)
( , 1.

1see Appendik ;A for a summary of the properties of the KL dieercg.

IA




where the second inequality uses Jensen’s inequality aaa®in’s entropyH (p) =

— > geq P(9) log p(g). This is to be compared to the first PAC-Bayesian bound
from the pioneering work of McAlleste[ JIP2], which statést with probability

at leastl — ¢, for any distributiorp € M, we have

K(p,m) +log(n) +2 +log(e™!)
E,,R(g9) —E;,r(g \/ o 1 .

The main difference is that the Shannon entropy has beeaaegiwith alogn
term. In fact, the latter bound is not restricted to priotrsitions putting mass
on a finite set of functions: it is valid for any distributian On the contrary, the
basic argument leading t§ (Z.]L.3) does not extend to comtimset of functions
because of the Shannon’s entropy term (fquutting masses on a continuous set
of functions, this term diverges).

The previous discussion has shown the originality of the B&@esian anal-
ysis. However it does not clearly demonstrate its usefsln®sveral works in the
last decade have shown that the approach is indeed usaluhariPAC-Bayesian
bounds lead to tight bounds, which are often representafitiee risk behaviour
even for relatively small training sets (see e.f.] [B8] 138, f8r margin-based
bounds from Gaussian prior distributiong,][83] for an Adadtosetting, that is
majority vote of weak learnerd], J[1]18] in a clustering seffifl, Chap.2][[89] for
compression schemes, [90] 51] for PAC bounds with spaisityeing prior dis-
tributions).

My contributions to the PAC-Bayesian approach are the uselafive PAC-
Bayesian bounds to design estimators with minimax ratesti(®¢2.3), the com-
bination of the PAC-Bayesian argument with metric and (gehe&haining ar-
guments (Sectiof 4.4), the use of PAC-Bayesian bounds fmopeonew estima-
tors and minimax bounds under weak assumptions for the ggtjpa problems
(Chaptef3). Before detailing them, | give in the next settoglobal picture of
PAC-Bayesian bounds, with a particular emphasis on the¢isakbetween the
different works since they have not been underlined so ftrerliterature.

2.2. PAC-BAYESIAN BOUNDS

We consider that the losses are betweamd1, unless otherwise stated. The
symbolC will be used to denote a constant that may differ from linane. The
bounds stated here are the original ones, possibly up tormmmprovements. Most
of them rely on a different use of the duality formufa (2. lahy the Markov in-
equality, which allows to prove a Probably Approximativ€lgrrect (PAC) bound
from the control of the Laplace transform of an appropriateiom variable: pre-



cisely, if a real-valued random variablé is such thatEe" < 1, then for any
e > 0, with probability at least — &, V' < log(e™).

2.2.1. NoN LOCALIZED PAC-BAYESIAN BOUNDS. McAllester’s first bound
states that for any > 0, with probability at least — ¢, for anyp € M, we have

\/K p, ) + log(2n) + log(e~1)
2n —1 '
In [B4,[117], Seeger has proposed a simplified proof and igatthe bound when

the losses take only two valuesr 1 (classification losses). The result is that with
probability at least — ¢, for anyp € M, we have

K(p,m) +log(2/Ae )

n

E,-,R(g) — Eye,r(g (McA)

(S)
where, with a slight abuse of notatiofi,(E,.,r(g), E,,R(g)) denotes the KL
divergence between the Bernoulli distributions of respeqiarameter&,..,r(g)
andE,.,R(g). The concise proofs of (MdA) andl|(S) are given in Append[des B
and[C.
Since we hav&,,R(g) —E,,r(g) < \/K(EngT( ),Eg~pR(g)) (Pinsker's

g~p

inequality), (B) implies[(McA). Besides, whét),.,R(g) is small, (§) provides a
much better bound thaf (MEA) since, from a cumbersome stiidlyeofunction
t= K(Egepr(9), Egnpr(g) +t), @) implies

’ngvp (9) — ngp’r’(g)‘ < \/2Engr<g)[1 EngT(g)]CK + @’ (S)
n an

with X = K(p,n) + log(2+/ne1). In particular, when the empirical risk of the
randomized estimator is zero, this last bound id 6f order, while [McA) only
gives al/+/n order.

Still in the classification setting, Catorji [40] proposediffedent bound: for
anye > 0andX > 0 with 2¥(2) < 1, with probability at least — ¢, for any
pEM,

K(Egpr(9), EgpR(g)) <

Egopr(g)  K(p,7) +log(e )
EreBl9) < T30y Y T p = 2u) Y
where ¢

Since typical values of (the ones which minimizes the previous right-hand side)
are in[Cy/n; Cn] and since¥ (\/n) =~ 1/2 for \/n close to0, we roughly have

K(p,) + log(c™)
)\ )

A
EHNPR( ) EQNPT(9> + %ngvpr(g) +



which gives by choosing optimallyf

K(p,m)+ log(a*l)'

Ey,R(9) é Egpr(g) + \/QEgNPT( ) (C1)
My PhD thesis used in variant ways the following Bernsteipfse PAC-Bayesian
bound, which is a direct extension of the argument givind)(Gar any A > 0,
with probability at least — ¢, for anyp € M,

EgpR(g) < Egopr(g) + )\\I’ <)\)Eg~p Varz (Y, g(X))

L Klo.7) ilog(sl). A

The basic PAC-Bayesian bound used in Zhang’s wdrkg [13@,d¥s not require
any boundedness assumption of the loss function and stetefot any\ > 0,
with probability at least — ¢, for anyp € M,

g

_X g~p

K(p, )+ log(s™1)
5 .

Catoni’s book [4]1] concentrates on the classification tbsktead of using

log Eye~nt(9(X) < E,,r(g) + (2

Y A2 /A
log Ee ™09 < —ZR(g) + ;‘I’(ﬂ R(g),

n

which would give [C]L) from[{}z), Catoni used the equality
logEe™ n n(Vg(X) =log (1 — R(g)(1 — e_%)),
and obtain that with probability at leakt- ¢, for anyp € M,

K(p, ) +log(c™")
, :

To compare Seeger’s bound with the bounds having the fresnser) in
the classification framework, one needs to apply the santedianalysis which
leads from [[C]1) to[(C1’). As a result, both](A) ar{d (Z) lead to

_X ]og[l — (1 —e ”)EngR( )] < Engr(g) + (C2)

)]) K(p,m) + log(e~1)

EgupR(9) S Egmpr(9) + \/2Eg~p (R(g)[l — R(g o

, (2)

2Technically speaking, we are not allowed to choaseéepending orp, but using a union
bound argument, the argument can be made rigorous at theetheitthelog(¢ 1) term becomes
log(C'log(Cn)e~1).



(C7) leads to

K , T +10 871
EgpR(9) S Egrpr(g) + \/2E9NpR(g) (p; ) g( )’

n

(8) gives, once more, from studying the functiors K (E,.,r(g), E,,r(g) +1),

oF, R —E,_RIK 2K
EngR(g)SEngr(g)Jr\/ o~p1(9) - g~pF(9)] +%’

with X = K (p, 7) + log(2y/ne "), and finally {CR) leads to

—1

By R(6) S Byeyrls) + | 2B Rlo)1 — By i) 2T 1BE)
Althoughwe havé, ,R(g)[1-E,-,R(9)] > E,,R(g9)[1—R(g)] (from Jensen’s
inequality), the two quantities will be of the same orded aiso of the order of
E,.,R(g) for the typical posterior distributions, i.e., the ones ethtoncentrate
on low risk functions. As a consequence, in the classificasietting, all these
bounds are similar (even if this similarity has not been bited so far in the
literature).

In fact, the works which lead td (C1)[ A)[](Z) and {C2) rathifer in the
way these bounds are refined and used. The main common refinésnibe
PAC-Bayesian localization, which can be seen as a way taceethe complexity
term and the influence of the particular choice of the pristribution7. Before
detailing the localization idea, let us see how to designsimator from PAC-
Bayesian bounds.

2.2.2. ROM PAC-BAYESIAN BOUNDS TO ESTIMATORS The standard way to
exploit an upper bound on the risk of any estimators is to mize it in order to
get the estimator having the best guarantee in view of thedhoT his will be
achievable if the bound is empirical, that is computablenfithe observations.
Bounds [McA), [T), [CLL),[(A) and(G2) are of this type (urdifZ]) for instance).

When minimizing PAC-Bayesian bounds, one gets a posteistitalition cor-
responding to a randomized estimator. The minimizer can fiitéew in the fol-
lowing form

eh(9)
7Th(dg) = (9 . 7T(dg)

Egleeh
for some appropriate functioln: § — R. This is essentially due to the equality
argmin,c { — Eg,h(9) + K(p, m)} = .

Let us now detail the case of McAllester’'s bound as it is repngative of what
can be derived from the other PAC-Bayesian bounds. Bgt) = E,.,r(g) +

10



2n—1
we haveE, ,R(g) < B(p). From this, one can deduce that there exists
(A1, Ao] s.t. B(m_5,) = min, B(p) with Ay = \/4(2n — 1) log(4ne—1) and )\, =
2\ +4(2n—1). Besides, the parametemwhich can be called inverse temperature
parameter by analogy with the Boltzmann distribution irtist&gal mechanics

satisfies

\/K(”’”)“"g(‘*m_l). McAllester's bound implies that for any distributigne M,

A= \/4(2n — 1)[K(n_5,, 7) + log(4ne1)]

and) € argmin{ — {108 Egure ™) 4 gy o+ log(dne ) }
A>0
The posterior distribution is thus a distribution which centrates on low em-

pirical risk functions, but is still a bit diffuse since toa@d a high KL complexity
term, the optimal parametercannot be larger thain. The next section shows
how to reduce the complexity term by tuning the prior digttibn.

2.2.3. LocALIZED PAC-BAYESIAN BOUNDS. Without prior knowledge, one
may want to choose a prior distribution which is rather “flat”. Now for a
particular choice of posterior distributioh from the equalityE,» K(p, 7) =

Ezn K(p, Ezn[p]) + K(Ezn[p], w), the prior distribution (recall that it is not al-
lowed to depend on the training set) which minimize the etqiean of the KL
divergence isEz» p, where the expectation is taken with respect to the training
set distributiof. Now using such a prior distribution does not lead to emairic
bound. To alleviate this issue and since the typical pasteistributions have the
form 7_,, for some\ > 0 (as seen in the previous section), one may consider the
prior distributionr_gp for somes > 0, use the expansion

K(p,m_gr) = K(p,7) + BBy, R(g) + log (Egure RO,

and obtain an empirical bound by controlling the last noseastable term by its
empirical version.

This leads to the following localized PAC-Bayesian boundolhvas obtained
by Catoni in [4P]: for any: > 0, A > 0 and¢ > 0 such tha ﬁgi\D(%) < 1, with
probability at least — ¢, for anyp € M, we have

Eypr(9) , K(pmgn) +(1+8)log(2e™")
E p p . C3
g~p(g) < 1_ 84:82\1,(%) (1 =8A[1 - Eigi‘l’(%)] )

% As noted by CatoniEz» K (p,Ezp[p]) is exactly the mutual information of the random
variableg drawn according to the posterior distributiprand the training sampl&*. This makes
a nice connexion between the learning rate of a randomizedasr and information theory.

11



The parametef characterizes the localization. Rpe= 0, we recover[(Q1) (up to
a minor difference on the confidence level). Ear 0, the KL term is (potentially
much) smaller when considering the posterior distributior,. with v > &A.

We use similar ideas in the case of the comparison of the ask&o ran-
domized estimators as we will see in Sectjod 2.3. Zhnd [L3%] localizes by
usingr, with h(g) = alog Eze MY9(X) instead ofr_s5. The argument there is
slightly different and does not lead to empirical boundstanrtsk of the random-
ized estimator with posterior distribution of the form,,. Nevertheless, it was
sufficient to prove tight theoretical bounds for this estionan different contexts:
density estimation, classification and least squares segne.

Ambroladze, Parrado-Hernandez and Shawe-Tajjor [6]qmeg a different
way to reduce the influence of a “flat” prior distribution. TiHecalization scheme
is based on cutting the training set into two parts and leeom fthe first part
the prior distribution to be used on the second part of thimitrg set. Catoni
[BT] uSesT_,, g1+ (c#/2 1)) 1O Obtain tighter localized bounds in the classification
setting. Alquier [1[b] uses_zx for general unbounded losses with application to
regression and density estimation.

2.3. COMPARISON OF THE RISK OF TWO RANDOMIZED ESTIMATORS

2.3.1. RELATIVE PAC-BAYESIAN BOUNDS. My PhD (its second chapter) used
relative bounds which compare the risk of two randomizetredbrs to design
new (randomized) estimators. The rationale behind devsjdhis type of bounds
is that the fluctuations aR(g2) — R(g1) +7(g91) —(g2) can be much smaller than
the fluctuations of?(g2) — (g2 ), and this can lead to significantly tighter bounds.
Technically speaking, relative bounds are deduced fromdst@ bounds by re-
placing§ by § x §, taking the los€(y, (g1, 92)(x)) = £(y, 92(2)) — L(y, g1(2))
(with a slight abuse of notation) and by considering prodiistributions org x g,
i.e. p = p1 ® py With p; andp, distributions orG(X; Y). This standard argument
transforms[(7) into the following assertion holding for $8s taking values in
[0, 1]. For anyX > 0 and (prior) distributionsr; andn, in M, with probability at
leastl — ¢, for anyp; € M andp, € M,
Egompo BR(92)—Eg,mp R(g1) < Egypor(92) — Egynpy (1)
A
# 20 ( 2) By B B ([, — (V.2 X))
+ K(pz,’ﬂ'g) + K(f;\hﬂ-l) +1Og(€_1). (231)

Getting empirical relative bounds calls for controlling thariance term. This is
achieved by plugging the following inequality, which hold#h probability at
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leastl — ¢, into the previous one

E92~P2E91~P1EZ[€(Yv gl(X)) - E(Ya gZ(X))]Q
< (1 + %)ngszgwm% Z[ﬁ(lﬁ,gl(Xi)) - E(Yiag2(Xz‘))]2
N < )\)QK(pQ,W2)+K(p177Tl)+10g(€1).

142
Jr271 A

Now, the localization argument described in Secfion P.2x3amger works as
it would change the left-hand side df (2]3.1) iftb+ &)Eg,~,, R(g92) — (1 —
£1)Eg,~p R(g1) for some positive constants and¢&,, and would therefore fail
to produce relative bounds. To solve this issue, | proveddhewing uniform
empirical upper bound on the KL divergence with respect tacalized prior: for
anye > 0 and0 < A < 0.19n, with probability at least — 2¢, for anyp € M,
we have

K(p7 ﬂ-*)\R) < 2K (/)7 W*Ar)

+ 2log EQINF_M@%EQW% S [0(Yi,91(X))—£(Yi,92(X:))]? + log(g—l)’

and get the following localized empirical PAC-Bayesiaratiee bound: for any
A > 0and0 < Aj, A < 0.19 n, with probability at least — ¢,

E92~sz(g2)_E91~p1R<gl) < Eyzfvpz"’(gﬂ - ngmT(gl)
1 & )
+ a’(A)EQ2NP2E91NP1 E Z[E(Y;, gl(Xi)) - E(Y;a gQ(XZ))]
i=1
#000) [Klpa, o) + Ky 7-0) + 210627
+10gEg1~7r7A2T€¥]E92NPQ% T [e(Yi,91 (X)) —£(Yi,92(X4))]2

2
+10gE91~7r N eMTlEstNPl% ?—1M(Yiagl(Xi))—f(Yi792(Xi))}2:| .
—Aqr

(2.3.2)

with a(X) = 2W(2)(1+ ) andb() = 31+ 20(2) (1 + 2)°].

2n

2.3.2. ROM THE EMPIRICAL RELATIVE BOUND TO THE ESTIMATOR Inview
of Section[2.2]2, it is natural to concentrate our effort dblS estimators of the
form w_,, for A > 0. Introduce for any) < j < logn ande > 0,

Aj = 0.19y/ne?

13



2
e(j) = log S By T Y0 (X))~ Y2 (X))
- GI~T—Xjr

L = log[3log®(en)e ]
and for any0 < i < j < logn ande > 0,

S(0,7) = 6 Egan o B~ S MV g1(X0)) — €(¥i, 92X

In
i=1

+b(X\;) [€(i) + C(j) + 2L].

Inequality (Z.3) implies that with probability at ledst ¢, forany0 < i < j <
logn, we have

Eg2m7r7)\er<g2> - EglNﬂf)\irR(gl) S EQQNﬂ'f)\j'rT<g2> - Egl'\’ﬂf)\irr(g:L) _'_ S(Z7~]>

This leads me to consider in the chapter 2 of my PhD thesisallening choice
of the temperature/complexity parameter in the classifinagetting.

Algorithm 1. Letw(0) = 0. For anyk > 1, defined,_; = A1y andu(k)
as the smallest integere]u(k — 1); logn] such that

EQQNﬂ'f)\er(gQ) - Eglfv#,;kilr'r(gl) + S(u(k - 1)7j) <0.

Classify using a function drawn according to the posteristribution associated
with the lastu(k).

This algorithm can be viewed in the following way: it “ranktie estimator
in the model by increasing complexity (if we consider thatr_, ., 7) is the
complexity of the estimator associated with, ), picks the “first” function in
this list and takes at each step the function of smallest ¢exiip such that its
risk is smaller than the one at the previous step. This isiplessince we have
empirical relativebounds. Subsequently to this work, different iterativeesohs
based on empirical relative PAC-Bayesian bounds have begoged [B[]5] 41].
The interest of the procedure lies in the following the@atguarantee.

n

THEOREM 1 The iterative scheme is finite: there exisfse N such thatu(K)
exists but not.(K + 1). With probability at least — ¢, for anyk € {1,..., K},
we have

EQNW,;MR(Q) SEgor . R(g),

—Ak—17

and

R(g) + Clog[log)(fn)a_l]

J

Eg R(g9) < min {EQNWAJ__IR

™ 3 . —_ N
A7 1<j<logn

1 A Plgy (X) g2 (X
+ —sup § logEg,orn | jEgoun | pe [91(X)#g2(X)] L L

Aj 0<i<j

14



To illustrate this last theoretical guarantee, let us atgrstomplexity and mar-
gin assumptions similar to the ones used in the pioneerirng efoMammen and
Tsybakov [9FF]. To detail these assumptions,ddbe the (pseudo-)distance on
§(X;Y) defined by

d(g1,92) = Plg1(X) # g2(X)].

Let§ C G(X;Y). Foru > 0, the setN C G(X;Y) is called au-covering net of
G if we have§ = UgeN{g’ € Gd(g,q) < u} Let H(u) denote thes-covering
entropy, i.e. the logarithm of the smallesttovering net of5. The complexity
assumption is that there exist > 0 andq > 0 such thatd (u) < C’u 7 for any
u > 0. Let

g* = argmin, s R(g).
Without great loss of generality, we assume the existensedf a function. The

margin assumption is that there exiétC” > 0 andx € [1, +oo] such that for
any functiong € G,

¢'[R(g) — R(g")]* < Plg(X) # ¢"(X)] < C"[R(g) — R(g")]".  (2.3.3)

For anyk € N*, introducer;, the uniform distribution on the smallest® covering
net.

THEOREM 2 For the prior distributionr = 5, ., 745, the randomized estima-
tor defined in Algorithm 1 (p.14) satisfies
Egor , R(g) = R(g") < On~ 71,

for some positive constant.

We also proved in]7, Chap.3, Theorem 3.3] that the rightedrsadie is the minimax
optimal convergence rates under such assumptions. Sia@gbarithm does not
require the knowledge of the margin parameteit is adaptive to this parameter.

Note that Assumptior[(2.3.3) is stronger than the usualrapsian as the lat-
ter does not assume the left inequality. In fact, to achiewemax optimal rates
under the usual margin assumption, while still assumingmuhial covering en-
tropies requires the chaining argumdt [7, Chap.3]. Thiddeus to study how to
combine the chaining argument with the PAC-Bayesian ambr@ad make the
connexion with majorizing measures from the generic chgigirgument devel-
oped by Fernique and Talagrafd J1120], which we detail in @ Bection.

2.4. COMBINING PAC-BAYESIAN AND GENERIC CHAINING BOUNDS

There exist many different risk bounds in statistical I&agrtheory. Each of
these bounds contains an improvement over the others faircesituations or
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algorithms. In [IP], Olivier Bousquet and | underline thekis between these
bounds, and combine several different improvements intoglesbound. In par-

ticular, we combine the PAC-Bayes approach with the optim&n bound pro-

vided by the generic chaining technique developed by Faengnd Talagrand, in
a way that also takes into account the variance of the cordidungctions. We

also show how this connects to Rademacher based boundsmtéhest in generic
chaining rather than just Dudley’s chainirig][55] comes fribva fact that it cap-

tures better the behaviour supremum of a Gaussian procggk [Ih statistical

learning theory, the process of interest and which is asgtigally Gaussian is
g+ R(g) —r(g).

| hereafter give a simplified version of the main results[df][1Let me first
introduce the notation. We still consider a §et 5(X;Y), g* = argmin,¢R(g),
and that losses take their valueg/inl]. We consider a sequence of nested par-
titions (A;);en Of the set§, that is (i).A; is a partition ofg either countable or
equal to the set of all singletons 6f and (ii) theA; are nested: each element of
Aj11 is contained in an element of;, and A, = {G}. For the partition4; and
for g € G, we denote by4;(g) the unique element ofl; containingg. Given a
sequence of nested partitio(d,),;cn, We can build a collectioniS;) ey of ap-
proximating subsets @ in the following way: for eachy € N, for each element
A of A;, choose a unique element @fcontained inA and defineS; as the set of
all chosen elements. We ha\®| = 1 and denote by, (g) the unique element of
S; contained in4;(g). Finally, we also consider that for eaghe N, we have a
distribution7¥) on G at our disposal.

Our bound will depend on the specific choices of the distidimst), the
nested partitiongA;), the associated sequence of approximating S&ts and
the corresponding approximating functiongg),g € §. Denoted, the Dirac
measure ory. For a probability distributiom on G, define its;j-th projection as

o] = Z plA;(9)]d,

geS;

whensS; is countable andp|; = p otherwise. For any > 0 andp € M, define
the complexity ofy at scalej by

K;(p) = K([pl;, [7);) +loglj (j + 1)e™],
and introduce the average distance betweerihel)-th andj-th projections by
1 2
D;(p) = EgNP{QEZNP{e(Y, P ())()) = £(Y, [y 1(9))()) }
1 n

g 2 {0 B 160) ~ £ ol )}

i=1
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THEOREM 3 If the following condition holds

lim sup {R(g) — Rlp;(f)] —r(g) +rlp;(f)]} =0, as. = (24.1)

j~>+oo g€9

then for any0 < 8 < 0.7, with probability at least — ¢, for anyp € M, we have

By Rlg) = Rlg') < Byeyr(a) = rle) + 2= 3 /0,05, (0)

A& D), (LK)
R R ) B (195557)

(2.4.2)

Assumption [(Z.4]1) is not very restrictive. For instandés isatisfied when
one of the following condition holds:

e there exists/ € N* such thatS; = G,

o almost surelylim; o SUp g ex yey 1£(v, 9(2)) = £(y, [pi(9)](2))] = 0
(itis in particular the case when the bracketing entropyhefde(S is finite
for any radius and when thg;’s and p,’'s are appropriately built on the
bracketing nets of radius going tovhen;j — +00).

The bound[(Z.4]2) combines several previous improvemdhtsontains an

optimal union bound, both in the sense of optimally taking iaccount the met-
ric structure of the set of functions (via the majorizing @& approach) and
in the sense of taking into account the averaging distidoutilt is sensitive to
the variance of the functions and consequently will leachsd €onvergence rates
(that is faster tharl/\/n), under margin assumptions such as the ones consid-
ered in the works of Ndlec and Massdrt J[IL00] or Mammen and alsyb [O7].
It holds for randomized classifiers but contrarily to usuaCFBayesian bounds,
it remains finite when the averaging distribution is concaetd at a single pre-
diction function. On the negative side, there still remaimsk in order to get a
fully empirical bound (it is not the case here sirigg(p) is not observable) and to
better understand the connection with Rademacher averages

Independently of the generic chaining argument, we useedudbr weighted
union bound argument, which is at the origin of tog log term in (Z:4.R) and
leads to the following corollary of the main result [n]10].

THEOREM 4 For anye > 0, with probability at leastl — ¢, for anyp € M, we
have

EgpR2(g9) — Egrpr(g) < C\/K(p’ ™+ log(2€71)’

n
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for some numerical constant > 0 [[0, Section 4.3].

This result means that neither thg(n) term in (McA) (p[8) or the Shannon’s
entropy term in[(2.1]3) (pl.6) is needed if we are allowed teermnumerical factor
slightly larger in front of the square root term.
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Chapter 3

The three aggregation problems

3.1. INTRODUCTION

Aggregation is about combining different prediction fuoos in order to get a
better prediction. It has become popular and has been inéstudied these last
two decades partly thanks to the success of boosting digusitand principally
of the AdaBoost algorithm, introduced by Freund and Sclegp®]. These algo-
rithms use linear combination of a large number of simplefioms to provide a
classification decision rule.

In this chapter, we focus on the least squares setting, inlwthie outputs are
real numbers and the risk of a prediction functiondl — R is

R(g) =E[Y — g(X)]*.

Our results are nevertheless of interest for classificatismas any estimate of the
conditional expectation of the output knowing the inpudeday thresholding to
a classification decision rule, and the quality of this plagstimator is directly
linked to the quality of the least squares regression estinisee[5B, Section 6.2],
[Lq] and specifically the comparison lemmas of its secticem®l, also[[95] 37, 28]
for consistency results in classification using other syate loss functions).
Boosting type classification methods usually aggregat@lsifunctions, but
the aggregation is also of interest when some potentialgpdicated functions
are aggregated. More precisely, when facing the data, #tistgtian has often to
choose several models which are likely to be relevant fortdlsk. These mod-
els can be of similar structures (like embedded balls oftional spaces) or on
the contrary of very different nature (e.g., based on ketreglines, wavelets or
on parametric approaches). For each of these models, wamadbat we have a
learning scheme which produces a 'good’ prediction fumciiothe sense that its
risk is as small as the risk of the best function of the moddiougpome small ad-
ditive ternf]. Then the question is to decide on how we use or combine/ggtgre
these schemes. One possible answer is to split the datanatgroups, use the
first group to train the prediction function (i.e. compute #stimator) associated
with each model, and then use the second group to build agbiedifunction
which is as good as (i) the best of the previously learnt ptexh functions, (ii)
the best convex combination of these functions or (iii) thstilinear combination
of these functions, in terms of risk, up to some small additerm. The three
aggregation problems we will focus on in this chapter com¢be second part

The learning procedure could differ for each model, or orcthretrary, be the same but using
different values of a tuning parameter.
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of this scheme. The idea of mixing (or combining or aggreggtthe estimators
originally appears in[[110Q, VI, T3P, 133].

We hereafter treat the initial estimators as fixed functioviich means that
the results hold conditionally on the data set on which theyehbeen obtained,
this data set being independent of thénput-output observationg}'. Specifi-
cally, letg,,. .. gq bed prediction functions, withl > 2. Introduce

gus € argmin R(g),
9€{g1,---,94}

gc € argmin R(g),

9E{30_1 0;95:61>0,...,04>0,59_, 0;=1}
and

gL € argmin R(g).

9€{30_1 0;9;:01€R,....04€R}
The model selection aggregation tg8&S) is to find an estimato§ based on the
observed dat&] for which the excess risk(g) — R(ggys) is guaranteed to be
small. Similarly, the convex (resp. linear) aggregaticsktgC) (resp. (L)) is to
find an estimatog for which the excess risk(g) — R(g¢) (resp.R(g) — R(g;))
is guaranteed to be small.
The minimax optimal rates of aggregation are given[in][128] eeferences

within. Under suitable assumptions, it is shown that therstestimatorgys, gc
andg_ such that

ER(jus) — R(gys) < C min (% 1) | (3.1.1)
X . . log(1+d/y/n) d
ER(jc) — R(ge) < Cmin A 2]

ER() - (D) < Cmin (,1).

whereg; (and ford < n, g¢) require the knowledge of the input distribution. We
recall thatC' is a positive constant that may differ from line to line. Takbv
[LZ3] has shown that these rates cannot be uniformly impravehe following
sense. Let > 0, L > 0 and Let?, ; be the set of probability distributions on
X x R such that we almost surely haVe= ¢(X) + &, with ||g||.c < L, and{ a
centered Gaussian random variable independent ahd with variancer?. For
appropriate choices af, . . ., g4, the following lower bounds hold:

log d
inf sup {ER(9) — R(gys)} > C'min (ﬁ, 1) :

g PGfPU’L n
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mpr{Em@—R@a}zcmm<¢bgl:WWQ%J>,

g PGfPU’L

inf sup {ER(j) — R(g{)} > C'min (i 1) :
9 PeP, 1 n
where the infimum is taken over all estimators. The threeexggion tasks have
also been studied in the least squares regression with fesidrd where similar
rates are obtaine@ [36,]90, 51].
This chapter will provide my contributions to the aggregatproblems (in the
random design setting) summarized as follows.

e The expected excess ri&kR(g) — R(gys) of the empirical risk minimizer
on{gi,...,gq} (Orits penalized variants) cannot be uniformly smallentha

C4/*22. Since the minimax optimal rate &<, this shows that these esti-
mators are inappropriate for the model selection task (@&t2.1).

e Catoni [39] and Yang[[131] have independently shown thabittemal rate
% in the model selection problem is achieved for the progvessiixture
rule. In [@], | provide a variant of this estimator coming rincthe field of
sequential prediction of nonrandom sequences, and cdltegrogressive
indirect mixture rule. It has the benefit of satisfying a tgghexcess risk
bound in a bounded setting (outputsjinl, 1]). | also study the case when
the outputs have heavy tails (much thicker than exponetaila), and show
how the noise influences the minimax optimal convergenee tatiso pro-
vide refined lower bounds of Assouad’s type with tight contgdSection

B2.2).

e In[B], I show a limitation of the algorithms known to satigB.1.1): despite
having an expected excess risk of ordén (if we drop the dependence in
d), the excess risk of the progressive (indirect or not) mixtwle suffers
deviations of ordet /\/n (Section3.2]3).

e This last result leads me to define a new estimatahich does not suffer
from this drawback: the deviations of the excess K ) — R(gps) is of
order'%¢ (Sectior{3-214).

e In my PhD (its first chapter), | provide an estimagobased on empirical
bounds of any aggregation procedures for which with higtabdity

¢,/ ledlen) - glways,

R(9) — R(g¢) <
c cleldloen) i pges) = R(ge).
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This means that forn s+ < d < e"with § > 0, the estimator has the
minimax optimal rate of taskC), and is adaptive to the extent that it has
also the minimax optimal rate of tagklS) whenR(gy,s) = R(g&) (Section

B3).

¢ Finally, Olivier Catoni and I[[1}4] provide minimax resultsrf(L), and con-
sequently also fofC) whend < ./n. The strong point of these results
is that it does not require the knowledge of the input distidn, nor uni-
formly bounded exponential moments of the conditionalrdiation of the
output knowing the input and has no extra logarithmic faatdike previous
results. In particular, provided that we kndwando such that|g; || < H
andsup, . E{[Y — ¢ (X)]?|X = 2} < o2 we propose an estimatgr
satisfyingER(g) — R(g;) < 68(c + H)* =2 (Section3H]).

| should conclude this introductory section by emphasizhrag we will not
assume that the regression functigi? : = — E(Y|X = z), which minimizes

the risk functional, is in the linear span &, . .., g;}. This means that bounds
of the form
ER(§) — R(g") < c[R(¢"9) — R(g*)] + residual term (3.1.2)

with ¢ > 1 are not of interest in our settifigas they would not provide the mini-
max learning rate wheR(g(®9) > R(g*).

3.2. MODEL SELECTION TYPE AGGREGATION

3.2.1. SYIBOPTIMALITY OF EMPIRICAL RISK MINIMIZATION . Any empirical
risk minimizer and any of its penalized variants are realbppalgorithms in
this task since their expected convergence rate cannot i@ty faster than

\/(logd)/n. The following lower bound comes fronj] [8] (sele 92, (39, 4.1
[PT, [72,[I0F] for similar results and variants).

THEOREM 5 For any training set size, there existl prediction functiong, . . ., g4
taking their values irji—1, 1] such that for any learning algorithri producing a
prediction function in{gy, ..., g4} there exists a probability distribution generat-

ing the data for whict” € [—1, 1] almost surely, and

BR(G) ~ Rliys) > min (/1220 1),

°These last bounds, which are relatively common in the litgeq are nonetheless useful in a
nonparametric setting in which the statistician is allowethke{g, ..., g4} large enough so that
R(g"9) — R(g*) is of the same order as the residual term.
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where [log, d| denotes the largest integer smaller or equal to the loganitin
base 2 ofi.

3.2.2. ROGRESSIVE INDIRECT MIXTURE RULES The result of the previous
section shows that, to obtain the minimax optimal rate ging8.1.1), an estima-
tor has to look at an enlarged set of prediction functiondilldar work, the only
known optimal estimator was based on a Cesaro mean of Bayestanators,
also referred to as progressive mixture rule.

To define it, letr be the uniform distribution on the finite sgjy, . . ., g4}. For
anyi € {0,...,n}, the cumulative loss suffered by the prediction functjoon
the firsti pairs of input-output, denoted! for short, is

i

Silg) = Y Vi — g(X0))%,

k=1

where by convention we take, identically equal to zero. Let > 0 be a parame-
ter of the estimator. Recall that ,y;, is the distribution o{ g, . . ., g4} admitting
a density with respect to that is proportional te=**:.

Theprogressive mixture rul@PM) predicts according tg)_lﬁ Yoo Egor ss, 9-
In other words, for a new input, the predicted output is
: Zn: S gi(a)e ile)

n+14< Z;Ll e—\ilg;)

A specificity of PM is that its proof of optimality is not aclved by the most
prominent tool in statistical learning theory: bounds aagbpremum of empirical
processes (seg [125], and refined workd as[[24, 87, P9, 34kéem@nces within).
The idea of the proof, which comes back to Barrpr [24], is Basea chain rule
and appeared to be successful for least squares and erdsseg[[39, 39, 25, IB1]
and for general loss i [J2].

Here my first contribution was to take ideas coming from thd fié sequential
prediction of nonrandom sequences (see €.q] [107, 46] fenargl overview and
[F5, [24,[4b,[I34] for more specific results with sharp cortsfaand propose a
slight generalization of progressive mixture rules, thalled progressive indirect
mixture rules.

The progressive indirect mixture rulé@PIM) is also parameterized by a real
number) > 0, and is defined as follows. For arye {0,...,n}, leth; be a
prediction function such that

=AY —g(X)]?

e a.s. (3.2.2)

g~T—AD;

- 1
Y — hi(X))?2 < 3 logE
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If one of theh; does not exist, the algorithm is said to fail. Otherwise édicts
according to1- 3" ;.

This estimator is a direct transposition from the sequéptiadiction algo-
rithm proposed and studied in[126] 65, 1127] to our “batclitisg. The functions
h; do not necessarily exist, but are also not necessarily enitchen they exist.
A technical justification of [(3.2]1) comes from the analysisPM synthetically
written in AppendiXD.

Whenmax (Y1, ]g1(X)],. .., |ga(X)|) < B a.s. for someB > 0 and for\

large enough, the functiorig exist (so the algorithm does not fail). Still in this
uniformly bounded setting, it can be shown that PM is a PIMXdarge enough.
On the other hand, there exisis> 0 small enough for which the algorithm
does not fail and such that PM is not a particular case of Phisk, is one cannot
take h; = Eyor s, g to satisfy [3.2]1) (see [P5, Example 3.13]). In fact, it is
also shown there that PIM will not generally produce a prigaiicfunction in
the convex hull of ¢4, . . ., g4} unlike PM. The following amazingly sharp upper
bound on the excess risk of PIM holds.

THEOREM 6 Assume thafy’| < 1 a.s. and||g;||« < 1foranyj € {1,...,d}.
Then, for\ < % PIM does not fail and its expected excess risk is upper bounded
logd

bym, that is

1
EznR| —— hi | — R(gys) < ———. 3.2.2
z; (n—l— 1 ; ) (9ms) < An+ 1) ( )

It essentially comes from a result in sequential predicaod the fact that
results expressed in cumulative loss can be transposedrteetting since the
expected risk of the randomized procedure based on segluerdictions is pro-
portional to the expectation of the cumulative loss of thgueatial procedure.
Precisely, the following statement holds.

LEMMA 7 LetA be alearning algorithm which produces the prediction fumrct
A(Zi) attimei+1, i.e. from the dat&Zi = (7, ..., Z;). Let£L be the randomized
algorithm which produces a prediction functiagh(Z}") drawn according to the
uniform distribution on{ A(0), A(Z1), ..., A(Z}")}. The (doubly) expected risk
of £ is equal toy%+1 times the expectation of the cumulative lossAobn the
sequence’, ..., Z,.1, WwhereZ, ., denotes a random variable independent of
the training setZ} = (71, .. ., Z,) and with the same distributioR.

My second contribution to model selection aggregatiorf]ing9o provide a
different viewpoint of the progressive mixture rule fronetbne in [7R], leading to
a slight improvement in the moment condition of the initiatsion of [72]. The
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result is the following and is extended to thg loss functions fory > 1 in [,
Section 7].

THEOREM 8 Assume thafg,|l. < 1foranyj € {1,...,d}, andE|Y|® < A for
somes > 2andA > 0. For \ = Cl(%)w(s”) with C; > 0, the expected excess
risk of PM is upper bounded by(%)s/(sm, that is

1 & . log d */¢*+?)
EZ{LR<R—+1 ;Engmi g) — R(gus) < C( - ) :

for a quantityC' which depends only off;, A ands.

The convergence rate cannot be improved in a minimax s¢hsBe&ion
8.3.2]. These results show how heavy output tails influeheel¢arning rate:
for the limiting cases = 2, the bounds are of order /2 while for s going to in-
finity, it is of order ofn !, that is the rate in the bounded case, or in the uniformly
bounded conditional exponential moment setting.

The lower bounds developed to prove the minimax optimalitthe above
result are based on a refinement of Assouad’s lemma, whictvalio get much
tighter constants. For instance, they improve the lowenbsdor Vapnik-Cervo-
nenkis classeq [p3, Chapter 14] by a factor greater i@, and lead to the
following simple bound.

THEOREM 9 LetJ be a set of binary classification functions of VC-dimension
For any classification rulef trained on a data set of size > % there exists a
probability distribution generating the data for which

ER(f) — inf R(f) > ;\/Z (3.2.3)

feg

3.2.3. LUMITATION OF PROGRESSIVE INDIRECT MIXTURE RULES Letg, de-

note a progressive indirect mixture rule (it could be a pesgive mixture or not)

for some\ > 0. Under boundedness assumptions (and even under some ex-
ponential moment assumptions) and appropriate choice ¢f satisfies an ex-
pected excess risk bound of ordégr— Then one would also expect the excess
risk R(g) — R(gys) to be of orderk’gd with high probability. In fact, this does not
necessarily happen as the foIIowmg theorem holdsifer2.

THEOREM 10 Letg; andg, be the constant functions respectively equdl &md
—1. Forany\ > 0 and any training set size large enough, there exist> 0 and
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a distribution generating the data for whigh € [—1, 1] almost surely, and with
probability larger thans, we have

. . log(ec—!
R(gx) — R(gus) > ¢ %

wherec is a positive constant only depending bn

More precisely, in[[8], it is shown that for large enoughand some constants
¢ > 1/2 andey, > 0 only depending on\, with probability at least /n“, we

have R(g,) — R(ghys) > c24/(logn)/n. Sincec; > 1/2, there is naturally no
contradiction with the fact that, in expectation, the esagsk is of orderl"%d.

3.2.4. GETTING ROUND THE PREVIOUS LIMITATION. | now present the algo-
rithm introduced in[[B], and called the empirical star estior, which has both
expectation and deviation convergence rate of ol%ér The empirical risk of a
prediction functiory : X — R is defined by

1 n

r(g) = — D _[¥i — g(X)*
=1

Let g©™ be an empirical risk minimizer among the reference funstion

G < argmin r(g).
g€{g1,--94}
For any prediction functiong, ¢, let [¢, ¢'] denote the set of functions which are
convex combination of andg”: [g,¢'] = {ag + (1 — )¢’ : a € [0,1]}. The
empirical star estimataj®®) minimizes the empirical risk over a star-shaped set
of functions, precisely:

G ¢ argmin r(g).
g€[§e™,g1]U---U[gem), g 4]

The main result concerning this estimator is the following.
THEOREM 11 Assume thaly’| < B almost surely andlg;||.. < B forany;j €

{1,...,d}. Then the empirical star algorithm satisfies: for any> 0, with
probability at leastl — ¢,

X . 200B%log[3d(d — 1)e™] _ 600B*log(de~!
R(g(star)> . R(gMS) < [ ( ) ] < ( )

n n
Consequently, we also have
_ 400B%log(3d)

ER(3*®) — R(gis) -

26



An additional advantage of this empirical star estimatothit it does not
need to know the constaft. In other words, it is adaptive to the smallest value
of B for which the boundedness assumptions hold. This was natabe of the
progressive mixture rules in which we need to take 1/(2B2) for the indirect
ones and\ < 1/(8B?) for the “direct” one in order to state Inequality (3]2.2).
On the negative side, the theoretical guarantee on the #&gexgcess risk i800
times larger than the one stated for the best PIM. Howewverigimore an artefact
of the intricate proof of Theorein L1 than a drawback of thewtlgm.

Another difference between progressive mixture rulesastie function out-
put by the estimator is inside;<;x<a[g;, ga], Which is not in general the case
for the progressive (indirect) mixture rules. We have alyeseen in Sectiop 3.2.1
that the empirical risk minimizer ofgy, ..., g4} has not the minimax optimal
rate. A natural question in view of the empirical star algon is whether empir-
ical risk minimization onJ,<;<x<4[g;, 9] would reach thélog d)/n rate. It can
be proved ford = 3 that, even under boundedness assumptions, the rate cannot
be better tham—2/? for an adequate choice of the functions and the distribution
(proof omitted by lack of interest in negative results).

Interestingly, Lecu and Mendelsop [91] proposed a varidrthe empirical
star algorithm, which also uses the empirical risk minimiZ&™ to define a set
of functions on which the empirical risk is minimized. Praady, for a confidence
levele > 0, let G be the set of functiong € {¢1, ..., g4} satisfying

T(g) < T(g(erm)) i CB\/lOg(ngl) \/2?1[9()(@) _ g(erm)(XZ_)]z

n
B?log(2ds1)
—

+C

where(C'is a positive constant. The final estimator is the empirisal minimizer

in the convex hull of. Itis also shown there that the selection of a subset of func-
tions§ before taking the convex hull is necessary to achieve thémaxconver-
gence rate since the empirical risk minimizer on the conugkdf {gi,..., 94}

has an excess risk at least of ordéx/n for an appropriate distribution antof

ordery/n.

The advantage of the empirical star algorithm over the eggdirisk mini-
mizer on the convex hull of is its adaptivity to both the confidence level and

the constantB, and a theoretical guarantee of the fofﬁ%‘%ﬁl) instead of
CM for the empirical risk minimizer on the convex hull éf
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3.3. CONVEX AGGREGATION

Whend < /n, the minimax learning rate for proble(@) and(L) are both of
order%, meaning that estimators solving problén) are solutions to probleifC)
for d < y/n. So, estimators fod < \/n are given in the section devoted to linear
aggregation (Sectign 3.4), and this section focuses ordbe when! > nato,

The literature contains few results for problg@) with constantc = 1 in
(B.1.2) and minimax optimal residual term fér> n2*9, with § > 0. The first
type of results is to apply the progressive mixture rule orappropriate grid of
the simplex[IZ_3]. Another solution is to use the exponé¢atigradient algorithm
introduced and studied by Kivinen and Warmuth [74] in theteghof sequential
prediction for the quadratic loss, and then extended torgéiess functions by
Cesa-Bianchi[[43]. Lemmf{ 7 has to be invoked to convert thégarithms and
the bounds to our statistical framework. Juditsky, Nazisyblakov and Vayatis
[F3] has viewed the resulting algorithm as a stochasticieersf the mirror de-
scent algorithm, and proposed a different choice of the &atpre parameter,
while still reaching the optimal convergence rate. All thmee results hold in
expectation, and it is not clear that the deviations of theesg risk bounds are
sub-exponential. The estimator presented hereafter dueshare this drawback.

To address problentC) (defined in pagg 20), the first chapter of my PhD
thesis establishes empirical excess risk bounds for anyasir that produces a
prediction function in the convex hull of;, . .., g; whatever the empirical data
are. Any such estimatgrcan be associated with a functipnmapping a training
setto a distribution otgy, . . ., ga} such thag(Z7') = E,;zr)g. Conversely, any
mappingp from Z" (the set of training sets of sizg to the set\ of distributions
on{gi,...,gq} defines an estimator

g = ]EgNﬁga

where we have dropped the training g€t for sake of compactness. Similarly,
there exists a distributiopt on{g1, ..., g4} such that

gc = ngvpég-

The assumptions are boundedness of the functiens ., g, and of the re-
gression functio®9 : 2 +— E(Y|X = x) and uniform boundedness of the con-
ditional exponential moments of the output knowing the inpRrecisely, there
exist B > 0, « > 0, andM > 0 such that for any’, ¢” in {g"9, g1,..., g4},
9" — ¢"||« < B and foranyr € X,

E (e 0"l X = z) < M.
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THEOREM 12 Under the above assumptions, there exigtC, > 0 depending
only on the constanmt/ and the productvB such that for any (prior) distribution
m € M, anye > 0, and any aggregating procedufe Z™ — M, with probability

at leastl — e,

R(Ey-pg) — R(gt) < min {(1+A>[r<Eg~ﬁg>—r<gé>}

o A€[0,C1]
2)\ — B? K(p,m) + log(2log(2n)e™!)
+ ;;Viﬂ'gwf,g(){i) _'_027 h .

(3.3.1)

This bound comes from the PAC-Bayesian analysis, and coesdg, the
complexity of an aggregating procedure is measured by thib&ak-Leibler di-
vergence ofp with respect to some prior distributianon {gi,...,g4}. In ab-
sence of prior knowledges is chosen as the uniform distribution, which allows
to bound uniformly the KL divergence ldyg d. Besides the usual empirical ex-
cess risk, Inequality{(3.3.1) depends on the empiricabvee ofg(z) wheng is
drawn according t@. Unlike the Kullback-Leibler term, this term is small for
concentrated posterior distributions.

All previous results of this chapter were easily generalieo loss of quadratic
type under boundedness assumptions, that is loss with del@ivative with re-
spect to its second argument uniformly lower and upper bedrty positive con-
stants. To my knowledge, the generalization cannot be dereds the analysis
strongly relies on the remarkable idenflity

R(Egvpg) = By gnmpe, BY — ¢/ (XY - ¢"(X)], (33.2)

which is specific to the quadratic loss and allows to apply?h€-Bayesian anal-
ysis for distributions on the product spageg, ..., g4} X {91, .-, 9a}-

Let pc be the distribution minimizing the right-hand side pf (3)Bwith =
the uniform distribution on{g, ..., g;} and where—(1 + \)r(g¢) is replaced
by its upper bound-r(g¢) — AMINgs~d g o0,50..0,2050, 6,=1) r(g). When
definingpc, for sake of computability of the estimat@} [7, Chap.1, Tieeo4.2.2],
one can also replace the minimum oy@rC;] by a minimum over a geometric
grid of the intervaln~!, C}] without altering the validity of the following theorem.

THEOREM 13 For anye > 0, with probability at leasti — ¢, we have

log(dlog(2n)e~1)
n

R(Eyeses) — Rlg) < OBy E V- 9(X)

%To be precise[]7, Chap.1JusétiE - ,9) = Eg, R(9) — 1Eg~pEgr Elg' (X) — g (X))?,
but it would have been more directto u .3.2).
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OB log(dlog(2n)e™1)
n Y

for some constant’ > 0 depending only onB and M.

SincekE Var,.,; g(X) < B?/4, the excess risk is at most of ordgr(@1em)

that is the minimax convergence rate of the convex agg@uytdsk ford > nato,
with § > 0. Besides, when the best convex combination occurs to betexvelr
the simplex defined byg,, ..., g4} the variance term equals zero, and thus, the
convergence rate i§81%C) that is the minimax convergence rate of model
selection type aggregation (at least fior log(2n)).

3.4. LINEAR AGGREGATION

To handle problem§C) and(L) in the same framework and also to incorpo-
rate other possible constraints on the coefficients of tieali combination, let us
conside® a closed convex subset Bf, and define

d
G = {Zejgj;(el,...,ed) c @}.
j=1

Introduce the vector-valued functigh: z — (¢1(2), ..., ga(z))" . The function
-9, 0;9; can then be simply writtetd, 7) with 0 = (61,...,0,)". Let

g" € argminR(g).
g€§

Thus, whero is the simplex ofR?, we havey* = g& and wher® = R¢, we have
g =9

Aggregating linearly functions to design a prediction fiimie with low quadratic
risk is just the problem of linear least squares regressibis a central task in
statistics, since both linear parametric models and n@mpetric estimation with
linear approximation spaces (piecewise polynomials basea regular partition,
wavelet expansions, trigonometric polynomials, ...) apyar. It has thus been
widely studied.

Classical statistical textbooks often only state reswltgtie fixed design set-
ting as a bound of ordet/n can be rather easily obtained in this case. This can be
misleading since it does not imply&n upper bound in the random design set-
ting. For the truncated ordinary least squares estimatyibrf; Kohler, Krzyzak
and Walk [6B, Theorem 11.3] give a bound of the form[of (3. paye 2R) with
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residual term of orde@ andc = 8. When the input distribution is known, Tsy-
babov [12B] provides a bound of ordéfn on the expected risk of a projection es-
timator on an orthonormal basis gffor the dot product f, g) — E[f(X)g(X)].

Catoni [3}, Proposition 5.9.1] and Alquidi [5] have used f#¢&C-Bayesian
approach to prove high probability excess risk bounds oéoidn involving
the conditioning of the Gram matri@ = E[g(X)g“(X)T} . Both results require at
least exponential moments on the conditional distribubidhe output” knowing
the input vectog(X).

It can be derived from the work of Birgé and Massart] [31] acess risk
bound for the empirical risk minimizer of order at Wo@tf—”, and asymptoti-
cally of orderd/n. It holds with high probability, for a bounded setand re-
quires bounded input vectors and conditional exponenttahents of the output.
Localized Rademacher complexitigs][$0] 26] also allowsttaolys the empirical
risk minimizer on a bounded set of functions. They lead toghtprobability
d/n convergence rate of the empirical risk minimizer underrggrassumptions:
uniform boundedness of the input vector, the output and #éharpeter sed.

Penalized least squares estimators using/thaorm of the vector of coeffi-
cients, or more recently, it6'-norm have also been widely studied. A common
characteristic of the excess risk bounds obtained for thesmators is that it is
of orderd/n only under strong assumptions on the eigenvalues (of sulmes)t
of Q.

In [[4], Olivier Catoni and | provide new risk bounds for thdge estima-
tor and the ordinary least squares estimator (Se¢tion]))3.4\& also propose a
min-max estimator which has non-asymptotic guaranteedsrai/» under weak
assumptions on the distributions of the outpuaind the random variablgs(.X),

j =1,...,d (Section[3.4]2). Finally, we propose a sophisticated PA@e3ian
estimator which satisfies a simpléfn bound (Sectiof 3.4.3).

The key common surprising factor of these results is theratesef expo-
nential moment condition on the output distribution whitdigving exponential
deviations. All risk bounds are obtained through a PAC-Bayeanalysis on trun-
cated differences of losses. Our results tend to say thatdtion leads to more
robust algorithms. Local robustness to contamination isihg invoked to advo-
cate the removal of outliers, claiming that estimators &hbe made insensitive
to small amounts of spurious data. Our work leads to a difitdiesoretical expla-
nation. The observed points having unusually large outwhen compared with
the (empirical) variance should be down-weighted in theregton of the mean,
since they contain less information than noise. In shomehautputs should be
truncated because of their low signal to noise ratio.
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3.4.1. RDGE REGRESSION AND EMPIRICAL RISK MINIMIZATION. The ridge
regression estimator dhis defined by i9e) — (4(ridge) 7y with

6% € argmin ({6, 3)) + |61,
0cO

where\ is some nonnegative real parameter a(d, g)) is the empirical risk of
the function(d, ). In the case when = 0, the ridge regressio§"® is nothing
but the empirical risk minimize§©™.

In the same way we consider the optimal ridge function oing the ex-
pected ridge riskj = (6, §) with

_ . . ;
6 € argmin { R((6, 9)) + |6}

Ouir first result is of asymptotic nature. It is stated undeakvieypotheses,
taking advantage of the weak law of large numbers.

THEOREM 14 Let us assume that

E[[Ig(X)|I"] < +o0, (3.4.1)
and E{Hg(X)H?[g(X) - Y]z} < too. (3.4.2)

Letu,..., v, be the eigenvalues of the Gram matéx= E[g(X)g(X)"],
and letQ, = @ + \I be the ridge regularization . Let us define theffective
ridge dimension

d
D= ; o = T [(Q A1 7Q) = E[JQ5(0) ).

When\ = 0, D is equal to the rank of) and is otherwise smaller. For any> 0,
there isn., such that for any: > n., with probability at leastl — ¢,

R(g"99%) + 092 < min {R((0. 7)) + Al6]]*}

+ Cesssup E{[Y — g(X)]Q}X} wa

n

for some numerical constant > 0.

This theorem shows that the ordinary least squares estirf@itained when
© = R?and )\ = 0), as well as the empirical risk minimizer on any closed
convex set, asymptotically reachdgn speed of convergence under very weak
hypotheses. It shows also the regularization effect of ithgerregression. There

32



emerges aeffective dimensio®, where the ridge penalty has a threshold effect
on the eigenvalues of the Gram matrix.

On the other hand, the weakness of this result is its asymptature : n.
may be arbitrarily large under such weak hypotheses, asdgtuws even in the
simplest case of the estimation of the mean of a real-valasdam variable by
its empirical mean, which is the case whée- 1 andg(X) = 1 [F3]. Typically,
the proof of Theorem 14 shows that is of order1/c. To avoid this limitation,
we were conducted to consider more involved algorithms aerdeed in the fol-
lowing two sections.

3.4.2. AMIN-MAX ESTIMATOR FOR ROBUST ESTIMATION This section pro-
vides an alternative to the empirical risk minimizer withnnasymptotic expo-
nential risk deviations of ordet/n for any confidence level. Moreover, we will
assume only a second order moment condition on the output@ret the case
of unbounded inputs, the requirement on the random vasable&X') being only
a finite fourth order moment. On the other hand, we assumetltaaeto of the
vectors of coefficients is bounded. (This still allows toveoproblem(L) as soon
as we know a bounded set in whighlies for sure.)

Let o« > 0 and consider the truncation function:

—log(l—x+x2/2) 0<z<1,
T(z) = 4 log(2) x>1,
—T(—x) x <0,

For anyg, ¢’ € G, introduce

D(g.9) =Y T(al¥i-g(X)]" - alyi -/ (X)]").

Let us assume in this section that for ghg {1, ...,d},

E{g;(X)’[Y — g"(X))} < +o, (3.4.3)
and
E[g}(X)] < 4oc. (3.4.4)
Define

8 = {g € span{g, ..., g4} : E[g(X)*] = 1}, (3.4.5)
o= E{lY - " (X)P} = VR, (3.4.6)
x = max /E[g(X)1), (3.4.7)
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\/E{ X)TQ'g(X)*}

E[0TQ g( T (349
VE{IY — (X \/IE{Y g (X))

B & (X)]} — , (3.4.9)

= max. \/IE{ (X)]2}. (3.4.10)

THEOREM 15 Let us assume th@B.4.3)and (8.4.4)hold. For some numerical
constants: andd, for

n > ckxd,
by taking
_ ! . (1 - C“Xd), (3.4.11)
2x[2VK'o + /X R] n

for any estimatoy satisfyingg € G a.s., for anye > 0, with probability at least
1 — ¢, we have

R(g9) — R(g") <i (max D(g,¢") — inf max D(g,¢ ))

no \ g'€s 9€5 ¢'€§

n

n 1— crxd
n

N ckK'do? N 8)((1°g(6 D ng) [2\/_0 + \/_32]

The above theorem suggest to look for function realizing rthe-max of
(9,9") — D(g,4’'). More precisely, an estimator such that

o d
D(g,q') < inf D +o0°—
ey PO < g Do) Hon

has a non asymptotic bound for the excess risk withi:a convergence rate and
an exponential tail even when neither the outpunor the input vecto(X)

has exponential moments. This stronger non asymptoticdoampared to the
bounds of the previous section comes at the price of regjatiea empirical risk
minimizer by a more involved estimator. Nevertheless,orable heuristics can

be developed to compute it approximatdly][14, Section 3, leads to a signifi-
cantly better estimator aff than the ordinary least squares estimator when there
is some heavy-tailed noise (see Apperdix G).

3.4.3. ASIMPLE TIGHT RISK BOUND FOR A SOPHISTICATECPAC-BAYES AL-
GORITHM. A disadvantage of the min-max estimator proposed in theique
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section is that its theoretical guarantee depends (intlpli@n kurtosis like coef-
ficients. We provide in[J14, Section 4] a more sophisticatgthator, having the
following simple excess risk bound independent of theséokis like quantities,
and still of order%. It holds under stronger assumption on the input vegtor)
(precisely, uniform boundedness), still assumes that ¢h&ss bounded, and
holds under a second order moment condition on the output.

THEOREM 16 Assume tha§ has a diamete for L°>°-norm:
sup [g'(z) — ¢"(2)| = H (3.4.12)
X

g’,g”€9,m€
and that, for some > 0,
sup E{[Y — g"(X)]’|X = 2} < 0% < 4o0.
zeX
There exists an estimatgrsuch that for any > 0, with probability at leastl — ¢,
we have

R(3) — (") < 1720 + 12 ST,

On the negative side, when the target is to solve problem it requires
the knowledge of & >-bounded ball in whichf;;, lies and an upper bound on
sup,eq E{[Y — fir (X)]*|X = z}. The looser this knowledge is, the bigger the
constant in front ofl/n is. On the positive side, the convergence rate is of order
d/n, without neither extra logarithmic factor, nor constardtéas involving the
conditioning of the Gram matrig) or some Kurtosis like coefficients.

To conclude this section, let us add that, when the outputitadmiformly
bounded conditional exponential moments, a relativelypgntGibbs estimator
also achieves thé/n convergence rate. Precisely we have the following theorem.

THEOREM 17 Assume thaf8.4.1?)holds for H < +oo, and that there exist
a > 0andM > 0 such that for any: € X,
E(ea\Y—gi(X)l ’X — x) < M.
Consider the probability distributiofi on G defined by its density with respect to
the uniform distributionr on g:
~ oA S [Yimg(X))?

A PSSO

where) > 0 is appropriately chosen (depending anH and M). For anye > 0,
with probability at leastl — ¢, we have

. d +log(2e~!
R(E,cq) - R(g") < ¢ TH18E)

where the quantity’ > 0 only depends on, H and M.
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3.5. HGH-DIMENSIONAL INPUT AND SPARSITY

From the minimax rates of the three aggregation problemsseeethat for
n < d < e", one can predict as well as the best convex combination up to a

small additive term, which is at most of ord%/%, but one cannot expect to
predict in general as well as the best linear combinationoup $mall additive
term. In this setting, one may want to reduce its target byngryo predict as well
as (still up to a small additive term) the best linear comtiameof at mosts < d
functions, that is the function

g e argmin R(g). (3.5.2)

9E{325=1 095:01€R,...04€R, 3], Tg, 20<s}

It is well-established thak! regularization allows to perform this task. The pro-
cedure is known as Lassp [313Z, 113] and is defined B = (912550 7) with

n

. 1
6= ¢ argmin—">" (Y; — (0, 7(X:)))" + A9,

n
OcRd i=1

where) > 0 is a parameter to be tuned to retrieve the desired numbelevire
variables/functiorfs As the L? penalty used in ridge regression, thé penalty
shrinks the coefficients. The difference is that for coedfits which tend to be
close to zero, the shrinkage makes them equal to zero. Tihigsalo select rele-
vant variables/functions (i.e., find thé& such that; # 0).

If we assume that the regression functidf? is a linear combination of only
s < d variables amondgi, ..., g4}, the typical result is to prove that the ex-
pected excess risk of the Lasso estimatorXaf order /(log d)/n is of order
(slogd)/n [BY, [I24,[I0p[93]. Since this quantity is much smaller tiam, this
makes a huge improvement (provided that the sparsity aggumip true). This
kind of results usually requires strong conditions on tlgeevalues of submatri-
ces of(), essentially assuming that the functigpsare near orthogonal. Here we
will argue that by combining the estimators solv{iMS) and(L), one can achieve
minimax optimal learning rate without requiring such cdiuis. The guarantees
presented here are also stronger than the ones associ#tetlwegularization
(penalization proportional to the number of nonzero coeffiy whatever crite-
rion (Mallows’ C, [P8], AIC [8] or BIC [[L14]) is used to tune the penalty constan
Recent advances on theoretical guaranteég-oégularization can be found in the
works of Bunea, Tsybakov and Wegkanfip][36] and of Birg and ldag82] for

4 The functionsgy, . .., g4 can be called the explanatory variables of the output. Nise a
that we can consider without loss of generality that the irgmace isR¢ and that the functions
g1, - - ., gq are the coordinate functions.
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the fixed design setting and in the work of Raskutti, WainWwrignd Yu [ITI#]
for the random design setting considered here. These sdeult,-regularization
are not as good for the ones for the estimator described srstgtion since the
(slogd)/n excess risk bound holds only when the conditional expextaif the
output knowing the input is inside the model.

Precisely, let us assuffhéhat for someB > 0, |g*]|. < B and|Y]| < B.
Let £, denote the first half of the training s¢¥,. .., 7, .}, and £, denote
the second half of the training sg¥,, 241, . . ., Z,, }, where for simplicity we have
assumedthatiseven. Forany C {1,...,d} of sizes, letg; be the sophisticated
estimator that satisfies Theor¢njtt&ined onL, and associated with the $gt =
{(0,9) : 11(6,9)|l« < B,0; = 0forany; ¢ I}. (One can alternatively consider
the Gibbs estimator of Theordm|17.) Ligbe the empirical star estimator (defined
in Section[3.2}4)rained onL, and associated with th(éj) functionsg; (that are
non-random giverf ;). This two-stage estimator satisfies the following thearem

THEOREM 18 For anye > 0, with probability at leastl — ¢,

R(3) — R(g") < CBQslog(d/s) + log(25*1)’ (35.2)

n

for some numerical constant > 0.

PROOF. From Theorem 11, since we ha{§ < (ed/s)’, with probability at least
1 —¢/2, we have

A ) ) log(ed/s) + log(2¢1)
_ < 25 .
R(g) Ic{1,I.].[ElI}l:m:s R(gl) < 12008 n

Let I* be a set ok variables containing the set of at mastariables involved in
g*. From Theorenp 16, with probability at lealst- /2, we have

g2s T log(4e™1)

R(gr-) — R(g*) < 1224 :

By using an union bound, we obtain

R(§) — R(g") < 1224BZ<510g(6d/ 5) +log(2e7) | s+ log(4el)).

n n

which gives the desired resulL]

SWe make boundedness assumptions for sake of simplicity.r@hets can be generalized to
outputs having exponential conditional moments since batlding blocks of the estimator can
handle this type of noisy outputs: for the empirical staoalym, see the supplemental material
of [H]. Further generalizations are open problems.
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Due to the particular structure of the empirical star algpon, the estimatod
can be written as a linear combination of at nibstunctions amondg, . . ., g4},
so that the estimator can be used for variable selectionfuretions involved in
g* do not necessarily belong to this set of at madunctions. | do not believe that
achieving such identifiability of these particular reletzaariables should be the
goal, since pursuing this target would definitely requiia the different variables
are not too much correlated, a situation which will rarelgus in practice.

Adaptivity with respect to the sparsity level gif can also be obtained. Indeed,
let s* be the number of nonzero coefficients of the functjorlefined by [(3.5]1).
By using a three-stage estimator procedure using sucedssine empirical star
algorithm at a given level of sparsity and then on thfeinctions thus designed,
it is easy that[(3.52) still holds withk replaced bys*. Note thatg* defined in
(B.5.1) depends on a sparsity leswelwhich can be taken equal tb Then we
haveg* = g/, and the three-stage procedure is adaptive to the spaesiy of
g - In the fixed design setting, Bunea, Tsybakov and Wegkadnjph&é shown
that these rates are minimax optimal, and it is natural teiciem that their lower
bound extends to our random design case.

Another possible use of the algorithms solving problémS) and(L) is when
we consider sparsity with group structure. This occurs winenvariables are
naturally organized into groups: in computer vision, thagumally occurs since
there exist different families of image descriptors, angl ghouping can be done
by family, scale and/or position. Lét, ..., I C {1,...,d} beD sets of grouped
variables. For a vectdt, let us say that a grouf, is active if there existg € I,
such that); # 0. let S(¢) be the number of active groups amaRg. . ., Ip

For a given sparsity level € {1, ..., D}, the target is

glareup) ¢ argmin R(g).
9€{(0,9);0€R?,S(0)<s}

There exist onl)(D) different sets o& groups that could be active. So a two-stage
estimatorg©°UP) similar to the one described before satisfies that with goibiba
at leastl — ¢,

D/s) + J +log(2e71)

I

R(g(group)) _ R(g(group)) < Cstlog(

n

where J denotes the number of nonzero coefficients in the linear aaiibn
definingg@™U ), This type of results has not been obtained yet for the gragsa
[[38] even when assuming low correlation between the veesalexcept for the
fixed design settind [69, 94].

We have presented in this section an example of theoreasalts easily ob-
tainable from the estimators solving proble(S) and(L). The results are ex-
pressed in terms of sub-exponential excess risk boundshwiere not obtainable
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before the introduction of the empirical star algorithm. &dvantage of the ap-
proach is its genericity: it is not restricted to particuiamilies of estimators.

There are yet some limitations. First, there is no variaklection consis-
tency with this approach, but as stated before, this strotyge of results would
require strong assumptions on the input vector distriloytioat are often not met
in practice. In the fixed design setting, for overlappingugp® Jenatton, Bach and
| [FQ] have proved a high dimensional variable consistemsyit extending the
corresponding result for the Lasgo []L88,]128].

Second, the approach does not extend easily to the casearidjeed additive
models, in which linear combinations of a fixed number of tiores are replaced
by functional space$ [IP4], such as reproducing kernelgtilgpaces in the cases
of multiple kernel learning[[§d, 23, 11, 148] 22} 81].

Finally, the most important limitation, which is often enecdered when us-
ing classical model selection approach, is its computatiorractability. So this
leaves open the following fundamental problem: is it pdssib design a com-
putationally efficient algorithm with the above guarant@es, without assuming
low correlation between the explanatory variables)?
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Chapter 4

Multi-armed bandit problems

4.1. INTRODUCTION

Bandit problems illustrate the fundamental difficulty otggon making in the
face of uncertainty: a decision maker must choose betwdkewiog what seems
to be the best choice in view of the past (“exploiting”) ortieg (“exploring”)
some alternative, hoping to discover a choice that beatsuhent best choice.
More precisely, in the multi-armed bandit problem, at eatelye, an agent (or
decision maker) chooses one action (or arm), and receivesaxad from it. The
agent aims at maximizing his rewards. Since he does not khewrocess gen-
erating the rewards, he needs to explore (try) the diffeaetibns and yet, exploit
(concentrate its draws on) the seemingly most rewardingarm

The multi-armed bandit problem is the simplest setting whame encoun-
ters the exploration-exploitation dilemma. It has a widege of applications
including advertizemen{]21, b2], economi€s|[£9, 85], gafid®] and optimiza-
tion [71,[48,[7p[35]. It can be a central building block ofgler systems, like in
evolutionary programmind [68] and reinforcement learr{ftfd], in particular in
large state space Markovian Decision Problems [79]. Theendrandit” comes
from imagining a gambler in a casino playing with slot machines, where at
each round, the gambler pulls the arm of any of the machinggets a payoff as
aresult. The seminal work of Robbirjs[]115] casts the bamdllpm in a stochas-
tic setting in which essentially the rewards obtained franaam are independent
and identically distributed random variables that are asiependent from the
rewards obtained from the other arms. Since the work of AGesa-Bianchi,
Freund and Schapir@19], it was also studied in an advetssaiting.

To set the notation, lek” > 2 be the number of actions (or arms) and> K
be the time horizon. A{-armed bandit problem is a game between an agent and
an environment in which, at each time step {1, ..., n}, (i) the agent chooses a
probability distributiorp, on a finite sef 1, ..., K}, (ii) the environment chooses
a reward vectoy; = (g14,--.,9x+) € [0,1]% (possibly through some external
randomization), and simultaneously (independently),atpent draws the arm
according to the distributiop, (iii) the agent only gets to see his own rewayg.
The goal of the decision maker is to maximize his cumulatveard) ;' | g, ;.

In the stochastic bandit problem, the environment cannobsé any reward
vectors: the reward vectors have to be independent and identically distributed,
and its components should be independent random varflalesan environment

The independence of the components is always made in thatlite, but is not fundamentally
useful (up to rare modifications of the numerical constants)
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is just parameterized by &-tuple of probability distributiongv,, ..., vk) on
[0,1]. Note that the term “stochastic bandit” can be a bit mislegdiince the
assumption is not just stochasticity but rather an i.i.duagption.

In the adversarial bandit problem, no such restriction issouthat past gains
have no reason to be representative of future ones. Thiseasteitvith the stochas-
tic setting in which confidence bounds on the mean reward efatims can be
deduced from the rewards obtained so far.

A policy is a strategy for choosing the drawing probabilitgtdbution p,
based on the history formed by the past plays and the assdadietvards. So
it is a function that maps any history to a probability distition on{1, ..., K'}.
We define the regret of a policy with respect to the best cohsliecision as

R, = max (gm — g[ht). (4.1.1)

.....

To compare to the best constant decision is a reasonabét sange it is well-
known that (i) there exist randomized policies ensuring B¥a, /n tends to zero
asn goes to infinity, (ii) this convergence property would nolchibthe maximum
and the sum would be inverted in the definition®f. This chapter will first
present my contributions to the stochastic bandit probjessentially:

e how to use empirical variance estimates in upper confideasedpolicies?

(Section4.2]4)

how thin is the tail distribution of the regret of standardiges, and how
can we improve it? (Sectign 4.2.5)

provide a minimax optimal policy (Secti¢n 4.2.6),

propose a model and an arm-increasing rule to deal with banalblems
with more arms than drawss’ > n (Section[4.2]7),

design and use a Bernstein’s bound with estimated varidondesve better
stopping rules (Sectidn 4.2.8),

e provide a policy to identify the best arm at the end of théime steps

(Section4.2]9).

Sbastien Bubeck and[T112] contribute to the adversariéihggby designing a new
type of weighted average forecaster characterized by ahdinpormalization
of the weights, and for which a new type of analysis can be ldpeel. The
advantage of the policy and the analysis is that it allowsridge the long open
logarithmic gap in the characterization of the minimax rfaethe multi-armed
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bandit problem, and to have a common framework for addrgsgimer sequential
prediction problems (full information, label efficientatking the best expert)

(Section4.B).

4.2. THE STOCHASTIC BANDIT PROBLEM

4.2.1. NOTATION. Let T;(t) denote the number of times ariris chosen by
the policy during the first plays. Defineu; = [ 2v;(dz) the expectation and
Vi = [(z—p;)?v;(dz) the variance of the distributian characterizing arm Let

.....

=1,...,

Let X, ; be thet-th reward obtained from armf 7;(n) > t, and fort > T;(n), let
X, be other independent realizations:of For anyi € {1,..., K} ands € N,
introduceX; ; andV; ; the empirical mean and variance®f, ..., X, ;.

Yi,s = %ixi,j and Vz‘,s = - Z(Xi,j - 72‘,3)2-
j=1

j=1

4.2.2. REGRET NOTION Previous works in the stochastic bandit problem do
not use the regret defined by (4]1.1), which is a regret witipeet to the best
constant decision, but a (pseudo-)regret that comparasweed of the policy to

.....

n

En = Z (gi*,t - glt,t) < R,.

t=1

Results concerning this regret are easier to state, and Wdolow hereafter
the trend of previous works to state the results in term&gaf In this section,
we gather results showing how to go from an upper bound?grio an upper
bound onR,,. The following lemma shows that logarithmic regret bound&a,,
extend to logarithmic regret bounds Bi&2,, when the optimal arm is uniquéhat
is 1u; < pg- for anyi £ i*. Besides, unlike known upper bounds BR,,, the ones
onER, depends on the varianég of the reward distribution of the optimal arm.
(When there are several optimal arms, it is the smallesamaé of the optimal
arms distributions which appears in the expected regratdgu
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LEMMA 19 ([T2]) Foragivens > 0,let/ = {i e {1,...,K}: A; <4} bethe
set of arms 9-close” to the optimal ones, and = {1, ..., K'} \ I the remaining
set of arms. In the stochastic bandit game, we have

— [nlog || 1 9
ER, — E < E —nA\;
Rn Rn - 2 + : 2Al eXp( n Z)’
iceJ
and also

— nlog|I| 2V + 2V, + 2A,/3 nA?
ER,—ER, <\ ——— — ! .
V"2 +Z; A; P\ T2V 1 2v + 20,3

In particular when there exists a unique aiimsuch thatA;« = 0, we have

Vi+Ai/3
A ’

ER, ~ER, <23 2
iti*

and also for any > 0

B (t 4+ nA;)?
P(R, — t) = - |
(R, i%:>)_—g;em’( nmin(1, 2V +2V; +2(t/n + A;)/3)

The unigueness of the optimal arm is really needed to haaitbgnic (inn)
bounds on the expected regret. This can be easily seen bigedng a two-armed
bandit in which both reward distributions are identicaldaon degenerated). In
this case, the expected pseudo-regret is equal to zero tlbiexpected regret will
be at least of ordey/n for any forecaster. This reveals a fundamental difference
between the expected regret and the pseudo-regret.

Previous works on stochastic bandits use the expected psegcet criterion
since it satisfies

K
ER, = AETi(n),
=1
meaning that one has only to control the expected samplingstiof suboptimal
arms to understand how the expected pseudo-regret behaves.

4.2.3. NTRODUCTION TO UPPER CONFIDENCE BOUNDS POLICIES Early pa-
pers have studied stochastic bandit problems under Bayassumptions (e.g.,
Gittins [61]). On the contrary, Lai and Robbirjs]84] have sidered a parametric
minimax framework. They have introduced an algorithm tbh#ofvs what is now
called the “optimism in the face of uncertainty principl&ttime ¢ = k, (mod K)
with k&, € {1,..., K}, their policy compares anpper confidence bountJCB)
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of the mean rewarg;, of arm k, to a reasonable target defined as the highest
empirical mean of “sufficiently” drawn arms. If the upper édence bound ex-
ceeds the target, arm is drawn, and otherwise, the arm defining the reasonable
target is drawn. Lai and Robbins proved that the expectegttreyg this policy
increases at most at a logarithmic rate with the number allstand that the al-
gorithm achieves the smallest possible regret up to soméogpabithmic additive
term (for the considered family of distributions). Agravif] proposed computa-
tionally easier UCB algorithms in a more general settinghlaae also logarithmic
expected regret (at the price of a higher numerical congtahe upper bound on
the regret). More recently, Auer, Cesa-Bianchi and Fis¢p8} have proposed
even simpler policies achieving logarithmic reguetformly over timegather than
just for a fixed number. of rounds known in advance by the agent. Besides,
unlike previous works, they have provided non asymptotioiots.

Upper confidence bounds policies can be described as folleragn timel to
K, draw each arm once. Attinte> K + 1, draw the arm maximizing; r, ;1)
whereB, ; , is a high probability bound op; computed from the i.i.d. sample
Xi1,...,X;s The confidence level of this high probability bound mighpeled
on the current round For instance, the UCBpolicy of Auer, Cesa-Bianchi and
Fischer [IB] uses

2logt

Bi,s,t = Xi,s + s

which is an upper bound gn holding with probability at least — +~* according
to Hoeffding’s inequality.

Auer, Cesa-Bianchi and Fischgr]18] also noted that pluggim upper confi-
dence bound of the variance in the square root term perfompgrieally substan-
tially better than UCB. Precisely, their experiments used

— _ 2logt 1\ logt
Bl-,s,tzxi,ﬁ\/mm (%,sﬂ/ °8 ’Z) o8 4.2.1)
S S

My first contribution to the multi-armed bandit problem wagtovide a theoret-
ical justification of these empirical findings, as describvethe following section.

4.2.4. UCBPOLICY WITH VARIANCE ESTIMATES. Rmi Munos, Csaba Sze-
pesvari and | [[15] have proposed the following slight madifion of the arm
indexes given by{(4.2.1):

— [2¢V; logt  3Clogt
Bi,s,t - Xi,s + C 2208 + < o8 5 (422)
S S

with ¢ > 1. The associated policy achieves a logarithmic regret as U@igh
a constant factor potentially much smaller than the one oBUCndeed, from
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[[8], UCBI satisfies 0
ER, < Z Kilogn, (4.2.3)
:;>0

whereas our algorithm, called UCB-V (V for variance), dagisfor¢ > 1,

2
ER, <c Y. (% + 2) log 1, (4.2.4)
k

:;>0

with ¢, > 0 a function of¢ satisfyingc; » < 10 ande, < C(Z:ff ¢+ g“) for
some numerical constaft > 0. We also proved that for specific distributions of
the rewards, UCB-V with{ < 1 suffers a polynomial expected (pseudo-)regret,
that isER,, > Cn® for someC > 0. The argument proving this later assertion
also implies that using exactly the upper boupd (#.2.1) camdtically fail in
some specific situatiofis

4.2.5. DEVIATION OF THE REGRET OFUCB POLICIES. In this section, we
consider that there is a unique optimal afmIn [[3], we show that the UCB-V
policy defined by[(4.2]2) satisfies

1\ 6/2
P(R, > Clogn) < ( ) : (4.2.5)
logn

for quantitiesC and C” depending ok, (, oy, ...,0x, A1, ..., Ak, but not on
n. The “polynomial” rate in [[4.2]5) is not due to the loosenekthe bound. It
can be shown that as soon as the essential infimum of the d@imé distri-
bution i = sup{v € R : 1;+([0,v)) = 0} is smaller than the mean reward of
the second best arm, the pseudo-regret admits a polynaaiiainty: there ex-
istsC’" > 0 (depending on the distributions, . . ., vx) such that for any”’ > 0,
there existsy, > 0 such that for any: > ng, P(R, > Clogn) > (m)c

In particular, there is no positive quantiti€s C’ for which for anyn, we hav§
]P’(En > Clogn) < %

The regret concentration, although it improves @agows, is thus pretty slow.
The slow concentration happens when the first dr@wsf the optimal arm are
unlucky (yielding small rewards) in which case the optimahawill not be se-
lected any more during roughly the first steps. As a result, the distribution of

2For instance, when the optimal arm concentrates its revaarsnd1 (Bernoulli distribution
with parametei /2), and when the other arms always provide a reward equale- 1/n'/6, the
expected regret is lower bounded ®y'/7.

3 An entirely analogous result holds for UCB1: using the vac&estimates or not does not
change the form of the tail distribution of the regret.

46



the regret can be seen as a mixture of a peaky mode corresgdndiituations in
which the optimal arm has a “normal” behaviour (with smaliaaons due to the
suboptimal arms) and a very thick-tailed mode correspanttirihe unlucky start
described above. Our theoretical study shows that the nfabssanode decays
only at a polynomial rate controlled iy Recall that the largef is, the more all
arms are explored, the larger the bound on the expected isdsee [4.2]4)). In
our experiments, this mode does appear (see Figyre 4.1).
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Figure 4.1: Distribution of the pseudo-regret for UCB-¥ € 1) for horizon
n = 16,384 (l.h.s. figure) andh = 524, 288 (r.h.s. figure). The bandit problem
is defined byK = 2, a Bernoulli distribution with parametér5 and a Dirac
distribution at0.495.

When the time horizon is known, one may consider the UCB policy with

— 16V 1 91
Bi,s,t = Xi,s + s 08T + Ogna (426)
S S

which is an upper bound on; which holds with probability at least — n=3.
The associated UCB policy, called hereafter UCB-Horizamaentrates its ex-
ploration phase at the beginning of the plays, and then bestto the exploitation
mode. On the contrary, the UCB-V induced lpy (4.2.2), whiabkbbdeceptively
similar to UCB-Horizon (with( = 3), explores and exploits at any time during
the interval[l, n]. Both policies have similar guarantee on their expecteteteg
However, on the one hand, UCB-Horizon always satisfies

!

P(R, > Clogn) < % (4.2.7)

whereC andC’ are quantities depending only @ty (, 01, ...,0x, A1, ..., Ak,
which contrasts with the significantly worse tail distrilout of UCB-V. On the
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other hand, unlike UCB-Horizon, UCB-V has the anytime propethe policy
satisfies the logarithmic expected regret bound for any tioré&zonn (since its
pulling strategy does not depend on the time horizon). Tlen@uestion here is
thus: could we have both properties? In other words, is theralgorithm that
does not need to know the time horizon and which regret has dis&ibution
satisfying [4.2]7)? We conjecture that the answer is no.

4.2.6. DSTRIBUTION-FREE OPTIMAL UCB PoLICcY. The inequalities[(4.2.3)
and (4.Z.4) may have surprised the reader since the rigid-$ides diverge faf;
going to0. For A; = o(n~%/2), this is an artefact of the bounds, which is easily
rectifiable. For instance, for UCB the more general bound (but less readable

one) is
— . 10
ER, < tiztg?ﬁ}%i:ni.éo min <Kz logn, tiAi).
In the worst casdi.e., Ay = 0 andA, = --- = Ag = /10K (logn)/n),

the right-hand side of the bound is equalfd0n(K — 1) logn. This has to be
compared with the following lower bound of Auer, Cesa-Biaind-reund and

Schapire [IP]:
— 1
infsupER,, > %VnK,
where the infimum is taken over all policies and the suprenstaken over all
K-tuple of probability distributions of0, 1]. We thus observe a logarithmic gap.

In [T, L2], Sbastien Bubeck and | close this logarithmic,dspusing a different
UCB policy based on

— log max (2,1
Bi,s,t = Xi,s + \/ s X(KS’ >>
S

which, fors < n/K, is an upper bound op; which holds with probability at
leastl — (K's/n)~? according to Hoeffding’s inequality. In this policy, an arm
that has been drawn more thafK” times has an index equal to the empirical
mean of the rewards obtained from the arm, and when it hasdregm close to
n/K times, the logarithmic term is much smaller than the one oBUGmplying
less exploration of this already intensively drawn arm. thas policy, we prove

THEOREM 20 For A = min A;, the above policy satisfies
1€{1,....K}:A;>0
— 23K 110nA?
R, < 3Tlog <max< 0[? ,104)) , (4.2.8)
and
ER, < 24VnK. (4.2.9)
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This means that this UCB policy has the minimax rate/, while still having
a distribution-dependent bound increasing logarithriyaaln.

4.2.7. UCBPOLICY WITH AN INFINITE NUMBER OF ARMS. When the num-
ber of arms is infinite (or larger than the available numbeexgeriments), the
exploration of all the arms is impossible: if no additionasamption is made, it
may be arbitrarily hard to find a near-optimal arm. [In J129iza6 Wang, Rmi
Munos and | consider a stochastic assumption omtkan-rewardof any new
selected arm. When a new ains pulled, its mean-reward; is assumed to be an
independent sample from a fixed distribution. Our assumptessentially char-
acterize the probability of pulling near-optimal arms. Tisagivenu* € [0, 1] as
the best possible mean-reward ahd 0 a parameter of the mean-reward distri-
bution, the probability that a new armdsoptimal is of orden” for smallJ, i.e.
Py > p* — 6) = ©(8°) for § — 0f]. In contrast with the previous many-armed
bandits [3P] 131], our setting allows general reward distions for the arms,
under a simple assumption on the mean-reward.

When there is more arms than the available number of expetamthe ex-
ploration takes two forms: discovery (pulling a new arm thas$ never been tried
before) and sampling (pulling an arm already discovereddeioto gain informa-
tion about its actual mean-reward).

Numerous applications can be found e.g. [IQ [30]. It incluldé®r markets
(a worker has many opportunities for jobs), mining for vallgaresources (such
as gold or oil) when there are many areas available for eaptor (the miner
can move to another location or continue in the same locatiepending on re-
sults), and path planning under uncertainty in which tha p&inner has to decide
among a route that has proved to be efficient in the past (@aptm), or a known
route that has not been explored many times (sampling), carednew route that
has never been tried before (discovery).

In [L29], we propose an arm-increasing rule policy. It hasghytime property
and consists in adding a new arm from time to time into thefssimpled arms. It
is done such that at timeg the number of sampled arms is of oraér? if ;* < 1
and3 < 1, and of ordem?/(+#) otherwise. It uses a modified version of the
UCB-V policy on this set of arms: specifically, the policy asgted with

— 4V, ;log(10logt)  6log(10logt
Bi,s,thi,ﬁ\/ | gi gt) | g(s gt)

The pseudo-regret of this policy is still defined as the défee between the
rewards we would have obtained by drawing an optimal arm (emteving a

4 We write f(§) = ©(g(d)) for 6 — 0 when3cy,c2,50 > 0 such that'd < &, c1g(d) <
f(0) < c29(9).
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mean-reward equal to*) and the rewards we did obtain during the time steps
1,...,n, hence, from the tower rul&&R, = nu* — >°;_, uz,. Its behaviour
depends on whether = 1 or ;i* < 1. Let us writev, = O(u,,) when for some
no, C > 0, v, < Cu,(log(u,))?, foralln > ny. Foru* = 1, our algorithms are
such thaltR,, = O(n?/(+9). Foru* < 1, we haveER,, = O(n?/0+0)if g > 1,

and (only)ER, = O(n'/?) if 5 < 1. Moreover we derive the lower bound: for
any$ > 0, u* < 1, any algorithm satisfieBR,, > Cn®/(+5 for someC > 0.

In continuum-armed bandits (see e.f. [[1, [/8, 20]), an infioftarms is also
considered. The arms lie in some Euclidean (or metric) spacdetheir mean-
reward is a deterministic and smooth (e.g. Lipschitz) fiomcof the arms. This
setting is different from ours since our assumption is séstih and does not con-
sider regularities of the mean-reward w.r.t. the arms. Hewndf we choose an
arm-pulling strategy which consists in selecting randotharms, then our set-
ting encompasses continuum-armed bandits. For exampisjd=y the domain
0, 1]¢ and a mean-reward functignassumed to be locally equivalent to a Holder
function (of orderxy € [0, +00)) around any maximum* (the number of maxima
is assumed to be finite), i.e.

p(x*) — p(z) = O(||lz* — z||*) whenz — z*. (4.2.10)

Pulling randomly an arm¥ according to the Lebesgue measure[@on]?¢, we
have:P(u(X) > p* —¢) = O(P(|| X — z*||* < ¢)) = O(e¥/*), fore — 0. Thus
our assumption holds with = d/a, and our results say thatf* = 1, we have
ER, = O(nf/0+8)) = O(n/(e+d),

Ford = 1, under the assumption thatis a-Holder (i.e. |u(z) — pu(y)| <
cllz —y||* for0 < a < 1), [[78] provides upper and lower bounds on the pseudo-
regretR, = O(n(*+)/Co+1)) " Our results give®R, = O(n"/@*)) which is
better for all values ofv. The reason for this apparent contradiction is that the
lower bound in [7B] is obtained by the construction of a verggular function,
which actually does not satisfy our local assumption (4]R.1

Now, under assumptionf (4.2, 10) for amy> 0 (around a finite set of max-
ima), [20] provides the ratER,, = O(y/n). Our result gives the same rate when
p* < 1 butin the casg.* = 1 we obtain the improved ratéR, = O(n'/(1)
which is better whenever > 1 (because we are able to exploit the low variance
of the good arms). Note that like our algorithm, the algarishin [20] as well as
in [[8], do not make an explicit use (in the procedure) of ttrasthness of the
function. They just use a “uniform” discretization of thendain.

On the other hand, the zooming algorithm |pf|[75] adapts tostheothness
of 1 (more arms are sampled at areas wherfis high). For any dimension,
they obtainER,, = O(n(@+V/(@+2)) 'whered’ < d is their “zooming dimension”.
Under assumption§ (4.2]10) we dedudte- -1d using the Euclidean distance as
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metric, thus their pseudo-regretisz,, = O(n(de-D+a)/(da-1)+20)) For |ocally
quadratic functions (i.ea = 2), their rate isO(n(¢t2/(@+49)) whereas ours is
O(n%+4)_ Again, we have a smaller pseudo-regret although we do reothes
smoothness of in our algorithm. Here the reason is that the zooming algorit
does not make full use of the fact that the function is locgilgdratic (it considers
a Lipschitz property only). However, in the case< 1, our rates are worse than
algorithms specifically designed for continuum armed bigndi

Hence, the comparison between the many-armed and contiaumed ban-
dits settings is not easy because of the difference in nafutlee basis assump-
tions. Our setting is an alternative to the continuum-arimaaldit setting which
does not require the existence of an underlying metric spaadich the mean-
reward function would be smooth. Our assumption naturadigisiwith possibly
very complicated functions where maxima may be locatedyrmpant of the space.
For the continuum-armed bandit problems when there aréwell\amany near-
optimal arms, our algorithm will be also competitive conggiito the specifically
designed continuum-armed bandit algorithms. This resalichres the intuition
that in such cases, a random selection strategy will perfoeth

Another contribution of our work is to show that, for infifgemany-armed
bandits, we need much less exploration of each arm than five-fanmed ban-
dits: as shown in the next section, the index, , is an upper bound op; which
holds with probability at least — [log(10¢)]~2. The use of this low confidence
upper bound (compared to the ones of UC&8d UCB-V for instance) can be
explained by the fact that many sampled arms have a meawy obadle to the op-
timal one, and consequently exploiting not the best one usitgne of the best
arms is enough to achieve the minimax pseudo-regret.

4.2.8. THE EMPIRICAL BERNSTEIN INEQUALITY. A key lemma to analyze
the policies using variance estimates as UCB-V and the oee insthe previous
section is the following maximal inequality, which in paxilar implies that the
arm index [4.2]2) of UCB-V is an upper bound @nwhich holds with probability

at leastl — 3¢t=¢. The interest of the lemma goes beyond the particular gettin
of the multi-armed bandit problems as it provideaa@ asymptoticonfidence
interval on the expectation of a distribution for which weselve a sample (and
for which we know a bounded interval containing its support)

LEMMA 21 LetU, Uy, ..., U, beindependent and identically distributed random
variables taking their values if, 1]. Let

S 1 o
Ut:;;Ui and W:;Z(Ul_Ut)
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1. For anye > 0, with probability at leastl — ¢, for anyt € {1,...,n} and

1
0, = "8G e have

_ - 1 = 14

2. For anye > 0, with probability at leastl — ¢, for anyt € {1,...,n} and

~ 1
0, = ™20 e have

U, —~EU| < min <\/2Et(x7t +£})+t@(%+ 1- 31‘4) : \/§> (4.2.12)

In particular, for any > 0, with probability at least — ¢, for anyt € {1,...,n},
we have
_ 2nV; 1 -1 1 -1
U, - EU| < \/ nh 05(35 ) | 3n Oig?”f ) (4.2.13)

Inequality (4.2.IB) is the one used in 15, 109], but its tighversion [(4.2.12)

should be preferred. The proof of this lemma is given in Aglef. Fott = n,
the lemma is an empirical version of Bernstein’s inequantyich differs from the
latter to the following extent: the true variance has begtaced by its empirical
estimate (at the price of havirgg(3s~1) terms instead abg(c 1), and a factoB
in the last term in the right-hand side instead ¢3. Inequality [4.2.7]3) relies on
the following empirical upper bound of the varianié¢ef U, which simultaneously
holds with probability at least — ¢: for anyt € {1,...,n}, we have

2
— nlog(3s71) nlog(3e—1) -
VS(\/W+T+ T(l—?ﬂé) .

This bound can be seen as an improvement of Inequality (6fBlanchard [33].
Fort = n > 2, i.e. without the stopping time argument due to Freedmah [57
allowing to have the inequality uniformly over time, Maugerd Pontil [IO[L] im-
proves on the constants of the above inequality when thereralpvariance is
close to0. Considering the unbiased variance estimafor= -+ St (U, —
U;)? = 75 V;, they obtain that with probability at least- e,

loge!) | floge 1))
Vs <\/Vt -1 +\/2@-1)) '
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Combined with Bernstein’s bound, this gives that with pilubiy at leastl — ¢,

_ 2log(3e1) (-, log(3e1) 4log(3e71)
0 —RU| < \/f(vt T ) DR

where the gain is on the factor of the logarithmic term whereimpirical variance
is much smaller thatog(3e71) /t.

Volodymyr Mnih, Csaba Szepesvari and T]]L09] have used Laf@fto ad-
dress the problem of stopping the sampling of an unknownmibligion » as soon
as we can output an estimateof the meanu of v with relative error§ with
probability at least — ¢, that is

P(li—pl < 6lul) >1—¢, (4.2.14)

For a distribution supported bya, a + 1] for somea € R, we have proposed
the empirical Bernstein stopping algorithm described guFe[4.2. It uses a ge-
ometric grid and parameters ensuring that the eleat{|U, — p| < ¢;, t > #;}
occurs with probability at leadt— <. It operates by maintaining a lower bound,
LB, and an upper bound, UB, on the absolute value of the medmeofandom
variable being sampled, terminates whén+ 6)LB < (1 — 0)UB, and returns
the mean estimate = sign(U;) LHBELU=U8 \We prove that this output indeed

satisfies[(4.2.14) and that the stopping tief the algorithm is upper bounded

> 21 2 3
o
T < C'-max , — log(—)—i—log(log—)).
(52u2 5lu|) ( € Jrg

Up to theloglog term, this is optimal according to the work of Dagum, Karp,
Luby and Ross[[49].

Besides, our experimental simulations show that it sigafity outperforms
previously known stopping rules, in particular AR T49] arttetNonmonotonic
Adaptive Sampling (NAS) algorithm due to Domingo, Gavaldal &Vatanabe
[L30Q,[54]. Figurd 4]3 shows the results of running differgopping rules for the
distributionv of the average of0 uniform random variables dp — 1/2, 1+ 1/2]
with varying ; and also on Bernoulli distributions. The experience is atpe
a hundred times so that the differences observed in Figlrer statistically
significant.

We also use the empirical Bernstein bound in the contextanfigaalgorithms.
Racing algorithms aim to reduce the computational burdepeoforming tasks
such as model selection using a hold-out set by discardiog p@dels quickly
[P8, IT2]. The context of racing algorithms is the one of maittmed bandit
problems. Let > 0 be the confidence level parameter. A racing algorithm either
terminates when it runs out of time (i.e. at the end of+thia round) or when it
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Parameters of the probleni; ¢ and the unknown distribution.
Parameters of the algorithng: > 0, t; > 1 anda > 1 defining the geometric grid
tr = [atk—1]. (In our simulations, we take = 0.1, t; = 20 anda = 1.1.)

Initialization:

C= @li-a9)
LB+ 0
UB +

Fort=1,...,t1 —1,
sampleU; from v

End For
Fork=1,2,...,
Fort =15, ..., 0641 — 1,

samplel; from v and compute the empirical meéi = St U

0 = %51 log(ct]).

¢, = min (\/m+€t<§ +/1- 317,:), \/é)
LB <+ max(LB, |U;| — ct)
UB « mln(UB, |Ut| + Ct)
If (1+6)LB < (1 —9)UB, Then
stop simulatingU and return the mean estimatgn

End If

End For

End For

= 5 =)
(Ut)(H )LB§(1 )UB

Figure 4.2: Empirical Bernstein stopping (EBGStop* in oyperiments).

can say that with probability at least— ¢, it has found the best option, i.e. an
option* € argmaXey . gyhhi-

The Hoeffding race introduced by ]98] is an algorithm basaddiscarding
options which are likely to have smaller mean than the ogdtone until only one
option remains. Precisely, for each time step and eachldistin, niK-confidence
intervals are constructed for the mean. Options with uppefidence smaller than
the lower confidence bound of another option are discardbd.algorithm sam-
ples one by one all the options that have not been discarde@yeempirical and
theoretical study show that replacing the Hoeffding’s uedy by the empirical
Bernstein bound leads to significant improvement. In paldic Table[4.JL shows
the percentage of work saved by each methed Qumber of samples taken by
method divided byi'n), as well as the number of options remaining after termi-
nation (see[[109] for a more detailed description of the &rpents).
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B EBGStop* .| | mm EBGStop*
.| | = EBGStop 1077w EBGStop
[ EBStop [ EBStop
= AA 5 = AA

=3 NAS
mm Geo NAS

61| EE NAS
mm Geo NAS

S

S

Average number of samples taken
Average number of samples take

=099  p=0.9 p=05  p=0.1 p=0.05 p=0.01

Figure 4.3.: Comparison of stopping rules on (l.h.s. figurerages of uniform
random variables with varying means and (r.h.s. figure) &dinrandom vari-
ables with means.99, 0.9, 0.5, 0.1, 0.05, and0.01, averaged ovel00 runs. The
average number of samples is shown in log scale.

Table 4.1: Percentage of work saved / number of options fieft termination.

Data set Hoeffding Empirical Bernstein
SARCOS 0.0%/11 44.9% / 4
Covertype2 14.9%/8 29.3% /5
Local 6.0%/9 33.1%/6

4.2.9. BEST ARM IDENTIFICATION. Racing algorithmdJ98] try to identify the
best action at a given confidence level while consuming th@mal number of
pulls. They essentially try to optimize the exploration dget” for a given con-
fidence level. In some applications, the budget size is fisagl® rounds), and
one may want to predict the best arm at the end oftle round. A motivating
example concerns channel allocation for mobile phone conncations. During
a very short time before the communication starts, a cetipttan explore the set
of channels to find the best one to operate. Each evaluatiarcbnnel is noisy
and there is a limited number of evaluations before the comeation starts. The
connection is then launched on the channel which is beliavée the best.

More formally, the setting of identifying the best arm is suarized in Fi-
gure[4.4. It differs from the traditional multi-armed baingiioblem by its target:
the cumulative regret is no longer appropriate to measwegérformance of a
policy. The aim is rather to minimize the simple regret:

T’nIAJn,

whereJ, is the final recommendation of the algorithm ahgstill denotes the gap
between the mean reward of the best arm or the mean reward sélbcted arm.
Let i* still denote the optimal arm. The simple regret is linkedhe probability
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Parameters available to the forecaster: the number of sowrahd the number of
armsk.

Parameters unknown to the forecaster: the reward distitmitq, ..., vi of the
arms.
Foreachround =1,2,...,n;

(1) the forecaster choosése {1,...,K},

(2) the environment draws the reW&th,T,t () from vy, and independently of the
past givenl,.

At the end of then rounds, the forecaster outputs a recommendatign €
{1,...,K}.

Figure 4.4: Best arm identification in multi-armed bandits.

of error
en =P(J, #£17),

since, fromEr,, = Zi#* P(J, = 1)A;, we havemin;.a,~o Ase, < Er, < e,.

In [[3], Sbastien Bubeck, Rmi Munos and | prove that UCB pefican still
be used provided that the exploration term is taken mucletargrecisely, for
H =3Y",-04; % and a numerical constant> 0, we introduce the UCB-E (E
for exploration) policy characterized by

— cn
Bis :Xis a 17
st =R T logm

which is an extremely high confidence upper boundugrfprobability at least
1 — exp(—9%), hence much higher than the confidence level of U@Bd UCB-
V), and by taking/,, as the arm with the largest empirical mean. We also propose
a new algorithm, called SR, based on successive rejectshiVethat these algo-
rithms are essentially optimal since their simple regretel@ses exponentially at
a rate which is, up to a logarithmic factor, the best possiblewever, while the
UCB policy needs the tuning of a parameter depending on tbbservable hard-
ness of the task, the successive rejects policy benefitsbiong parameter-free,
and also independent of the scaling of the rewards. As a bgeut of our anal-
ysis, we show that identifying the best arm (when it is un)qeguires a number
of samples of ordef! (up to alog(K) factor). This generalizes the well-known
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Figure 4.5: Probability of error of different algorithmsfe = 6000 (I.h.s.) and
n = 12000 (r.h.s.), andK" = 30 arms having Bernoulli distributions with param-
eters0.5 (one arm)0.45 (five arms),0.43 (fourteen arms)).38 (ten arms). Each
bar represents a different algorithm and the bar’s heigitesents the probability
of error of this algorithm. “Unif” is the uniform samplingrsttegy, “HR” is the
Hoeffding Race algorithm (run for three different valueglué confidence level
parameter), UCB-E is tested for four different values:o®, 4, 8, 16, Adaptive
UCB-E is tested for five different values of its parameter.r®&lextensive exper-
iments are presented if J13] and confirm the ranking of aligom$ observed on
these simulations: Ad UCB-E ¢, SR ¢ HR ¢ Unif, where '¢’ meaas letter
performance than'. (UCB-E is not ranked as it requires trentedge ofH .)

fact that one needs of order bfA? samples to differentiate the means of two dis-
tributions with gapA. A precise understanding of both SR and the UCB-E policy
leads us to define a new algorithm, Adaptive UCB-E. It comdbaut guaran-
tee of optimal rates, but performs slightly better than SIRrerctice as shown in
Figure[4.p.

Another variant of the best arm identification task is thebpgm of mini-
mal sampling times required to identify aroptimal arm with a given confidence
level, see in particulaf [b4] an@ [56]. Ih J62], Steffen @aivalder, Manfred Op-
per, John Shawe-Taylor and | also study a non-cumulativeetegtion, but in
the context of a continuum of arms. Precisely, we considestenario in which
the reward distribution for arms is modelled by a Gaussiacgss and there is no
noise in the observed reward, and provide upper and lowardsunder reason-
able assumptions about the covariance function definin@Gthessian process.

4.3. SEQUENTIAL PREDICTION

This section summarizes my work with Sbastien Bubéck [12ftdrts with
the adversarial bandit problem, and goes on with the exdarnsiother sequential
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prediction games.

4.3.1. ADVERSARIAL BANDIT. Inthe general bandit problem, the environment
is not constrained to generate the reward vectors indepégde in the stochastic
bandit problem. However, the target is still to minimize tbgret

Ry = max ; (9i — gr1)-
In the most general form of the game, called the non-oblsiadaptive adver-
sarial game, the adversary may choose the reward vect® a function of the
past decisiong,, ..., I;_;. Upper bounds on the regrat, for this type of adver-
sary have a less straightforward interpretation sincealget cumulative reward
is now depending on the agent’s policy! | will not provide @éeesults for this
type of adversary but the extension of the results presdmaezhfter can be found
in [L2].

Thus we will focus on the oblivious adversarial bandit gamewhich the
reward vecto; is nota function of the past decisiods, . . ., I;_;. The environ-
ment is then simply defined by a distribution n1]"*, while the agent’s policy
to the set of distributions of1,..., K}. Now we can see the game a bit dif-
ferently. The “master” of the game draws a matfix:):<;<x 1<:<», from the
distribution defining the environment, and at each time gtegraws the arm
I, according to the distributiop; = ¢(3;) chosen by the agent, whef€¢, =
{(I1,91,1)s -, (Lt—1,91,_,+-1)} is the past information. The regré, is a ran-
dom variable since it depends on the draw of the reward matrikthe draws
from the distributiong),’s.

In [L9], Auer, Cesa-Bianchi, Freund and Schapire have shibhaha fore-
caster based on exponentially weighted averages has a vpger bounded by
2.7v/nKlog K. As stated before, they also show that this is optimal up ¢o th
logarithmic factor: precisely, there is no forecastersging ER,, < ++v/nkK,
for any environment. 111, 12], we close the logarithmip p@tween the above
upper and lower bounds by introducing a new class of randesnmlicies. To
define it, consider a function : R* — R such that

1 increasing and continuously differentiable,
Y’ /1h nondecreasing, (4.3.1)
lim, , o ¢¥(u) < 1/K, andlim,_,o ¢ (u) > 1.

It can be easily shown that there exists a continuously reiffeéable functiorC' :
RYX — R satisfying for anyr = (1, ...,zx) € RE,

A -1
max_; < C(z) < max z; v (1/K), (4.3.2)

=1,... Kk 7 a=1,..



Parameter: functiop : R* — R* satisfying [4.3]1)
Let p; be the uniform distribution ovefl, ..., K}.

Foreachround =1,2,...,

(1) Draw an armi; from the probability distributiomn;.

(2) Compute the estimated gain for each argn; = zzillft:i and] update the

estimated cumulative gairs; ; = >"_, Gi.s-

(3) Compute the normalization constart; = C(G;) where G; =
(Git,...,GKky).

(4) Compute the new probability distributign, 1 = (p1.++1,- .., PK+1) Where

Pitr1 = V(Gir — Cy).

2 It estimatesy; ; even whery; ; is not observed sind&g; + = g; .

Figure 4.6: INF (Implicitly Normalized Forecaster) for thdversarial bandit.

and

D la =) = 1. (4.3.3)

So we can define the implicitly normalized forecaster (IN&yatailed in Figure
B.8. Indeed, Equality[(4.3.3) makes the fourth step in Fegub legitimate. From
#32),C(G,) is roughly equal tanax,—, . x G;,. This means that INF chooses
the probability assigned to arfras a function of the (estimated) regret. In spirit,
it is similar to the traditional weighted average forecgssee e.g. Section 2.1
of [AG], where the probabilities are proportional to a fumetof the difference
between the (estimated) cumulative reward of aramd the cumulative reward
of the policy, which should be, for a well-performing policyf order C(G,).
Weigthed average forecasters and implicitly normalizeddasters are in fact two
different classes of forecasters which intersection doatxponentially weighted
average forecasters such as the one considergd]in [19]ntéresting feature of
the implicit normalization is the following argument, whiallows to recover the
result of [IP] and more interestingly to propose a policyihg\wa regret of order
VnK. It starts with an Abel transformation and consequentlydghogonal”
to the usual argument which, for sake of comparison, has begmoduced in
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Appendix[FR. Lettings, = 0 € R*. We have

Zgltt = Zzpztgzt

t=1 i=1

- Z z: piat(éi,t - éi,t—l)
t=1 i=1
K n

—szn+lG2n+ZZGztpzt pthrl)

i=1 t=1
K K n

= sz‘,nﬂ (7/1 "(pint1) + C + Z Z Y(pis1) + Cr)(Pit — Pigs1)

i=1 i=1 t=1
K n

sznJrlw pszrl +Zzw 1pzt+1 pzt_pthrl)

i=1 t=1
(4.3.4)

where the remarkable simplification in the last step is d{dggked to our specific
class of randomized algorithms. The equality is intergssince, from [(4.3]2),
approximates the maximum estimated cumulative rewamll 1,..x Gin, Which

-----

.....

whereG;,, = > | ¢g;:. Besides, the last term in the right- hand S|de is roughly

equal to
Pi, t+1 Di, n+1
>y W = z /.

i=1 t=1 Y Pit

To make this precise, we use a Taylor-Lagrange expansioreahical argu-
ments to control the residual terms. Putting this togeteroughly have

-----

The right-hand side is easy to study: it depends only on tla¢frobability vector
and has simple upper bounds for adequate choices Bbr instance, for)(z) =
exp(nz) + £ with n > 0 andvy € [0,1), the right-hand side is smaller than
- vlog( )+”yC’ Fory(x) = (_im)q+%with77> 0,¢ > landy € [0,1),
itis smaller thaannKl/q + vC,. For sake of simplicity, we have been hiding
the residual terms but these terms when added togeiliéitérms!) are not that
small, and in fact constrain the choice of the parameteasdr if one wishes to
get the tightest bound. Our main result is the following.
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Parameters: the number of arms (or actioAsand the number of rounds with
n>K2>2.

Foreachround =1,2,...,n

(1) The forecaster chooses an afme {1,..., K}, possibly with the help of an
external randomization.

(2) Simultaneously the adversary chooses the reward vector
gt = (gl,t7 LRI 7gK,t) € [07 1]K

(3) The forecaster receives the gain; (without systematically observing it). He

observes
— the reward vectofg: +, . . . , gk +) in thefull information game,
— the reward vecto(gi 4, ..., gk) if he asks for it with the global con-

straint that he is not allowed to ask it more thartimes for some fixed
integer numbetl < m < n. This prediction game is thabel efficient
game,

— only gy, + in thebandit game,

— only his obtained rewargl, ; if he asks for it with the global constraint
that he is not allowed to ask it more thantimes for some fixed intege
numberl < m < n. This prediction game is theandit label efficient
game.

Goal : The forecaster tries to maximize his cumulative g&jf ; g7, +-

Figure 4.7: The four prediction games considered in this@ec

THEOREM 22 The INF algorithm withy (z) = (22

2 1 I
)"+ e satisfies

ER, < 11vnK.

4.3.2. EXTENSIONS TO OTHER SEQUENTIAL PREDICTION GAMES Letus now
describe a more general setting, in which the feedbackweddly the forecaster
after drawing an arm differs from game to game. The four gaanesletailed in
Figure[4J. As for the weighted average forecasters, theftiecaster can be
adapted to the different games by simply modifying the estasy, ; of g; ;. The
resulting slightly modified INF forecaster is given in Fig{#.8. Interestingly, we
can provide a unified analysis of these games for the INF é&stec. It allows to
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essentially recover the known minimax bounds, while somesi improving the
best known upper bound by a logarithmic term. It also leadsdb probability
bounds on the regret holding for any confidence level, whaoitrasts with previ-
ously known results. Let us now detail the main results ferléist three games of
Figure[4.B and for the tracking the best expert scenario.

INF (Implicitly Normalized Forecaster):

Parameters:
e the continuously differentiable function : R* — R’ satisfying [4.3]1)

e the estimateg; ; of g, ; based on the (drawn arms and) observed rewards at
timet (and before time)

Let p; be the uniform distribution ovefl, ..., K}.

Foreachround =1,2,...,
(1) Draw an arni; from the probability distributiorp;.

(2) Use the (potentially) observed reward(s) to build theineste g =
(G14,---59K,t) Of (914, ..., 9K+) and let:Gy = Zi:l s = (Git,...,GKy).

(3) Compute the normalization constaiit = C(G;).

(4) Compute the new probability distributign, 1 = (p1.++1,- .., Pk ++1) Where

piti1 = V(Giy — C).

Figure 4.8: The proposed policy for the four prediction game

The label efficient game.This game was introduced b/ [66]: as explained in
Figure[4.y, the forecaster observes the reward vector éig asks for it, and
he is not allowed to ask it more than times for some fixed integer number
1 < m < n. Following the work of Cesa-Bianchi, Lugosi and Stoltz] [4%}e
consider the following policy for requesting the rewardteecAt each round, we
draw a Bernoulli random variablg;, with parameteb = i—’: to decide whether
we ask for the rewards or not. To fulfil the game requiremestnaturally do not
ask for the rewards 5"} Z, > m.

THEOREM 23 Lete(z) = exp (Y2%2E3) and g, = ££Z, with § = 32, Then,
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for anye > 0, with probability at least — ¢, INF satisfies:

log K 27log(2Ke™!
< oy 222 +n\/—7 og(2Ke ),
m m

log(6K)

-

This theorem is similar to Theorem 6.2 ¢ [46]. The main d#fece and
novelty is that the policy does not depend on the confidenas,lso the high

probability bound is valid for any confidence level the same policyand the
log(K)

hence

ER, <8n

expected regret of this policy has also the minimax optiragd,ri.e.n

High probability bounds for the bandit gameHere the main difference with
Sectior{4 is to use the biased estlm@ge& it Jllt Z+— for some appropriate
small 5 > 0. It may appear surprising as |t mtroduces a bias in the esérof
g:.+. However this modification allows to have high probabilipper bounds with
the correct rate on the differend€;_, ¢;+ — >, ;+- A second reason for this
modification (but useless for this particular section) &ttt allows to track the
best expert (see Sectign 4]3.2). For sake of simplicity,fotiewing theorem
concerns deterministic adversaries (which is defined byealfiratrix of then K
rewards).

THEOREM 24 For a deterministic adversary, The INF algorithm with{z) =
(M)2 + \/%—K andg;, = f’j—i]l;t it \/— satisfies: for any > 0, with proba-

—X

bility at leastl — ¢,
R, < 10VnK + 2vVnK log(e ™).

(Consequently, it also satisfi@s?,, < 12v/nkK.)

The novelty of the result, which is similar to Theorem 6.1(/], is both
the absence of theg K factor and that the high probability bound is valid for the
same policy at any confidence level.

Label efficient and bandit game (LE bandit)n this game first considered by
Gyorgy and OttucsaK [p4] and which is a combination of twevpusly seen
games, the forecaster observes the reward of the arm heéesketady if he asks
for it, and he is not allowed to request it more tharimes for some fixed integer
numberl < m < n. We consider a similar policy for requesting the reward
vector as in the label efficient game. At each round, we drawra®&ulli random
variable Z;, with parametes = 22, to decide whether we ask for the obtained
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reward or not. To fulfil the game requirement, we do not askterrewards if
22;11 Zs > m.

THEOREM 25 For ¢(x) = (%)2 + ﬁ andg;; = gi,tﬂ;ji%, the INF algo-
rithm satisfies ’

K
ER, <40ny/—.
m

As for the bandit game, the use of the INF forecaster allowgetaid of the
log K factor which was appearing in previous works.

Tracking the best expert in the bandit gamén the previous sections, the cumu-
lative gain of the forecaster was compared to the cumulgiwe of the best sin-
gle expert. Here, it will be compared to more flexible strageghat are allowed
to switch actions. A switching strategy is described by aaeg,,...,i,) €
{1,..., K}"™. lts size is defined by

n—1

S<i17 . ain) = Z :“it+17éit’

t=1

and its cumulative gain is

G(il ..... in) — Zgit,t-

t=1

The regret of a forecaster with respect to the best switckingtegy withS
switches is then given by:

S E
Rn = . . maX . G(Z'l 7777 Z'n) - glt 7t.
(31,e-8n): 8 (i1 5eenyin ) <S

As in Sectior] 4.3]2, we use the estimates

- Ar,—; B
9it = Git — 4+ -,
Pit Dit

and0 < g < 1. The g term, which, as already stated, introduces a bias in the
estimate ofj, ;, constrains the differencesax,_, _x G;; —min,_; _x G;, to be
relatively small. This is the key property in order to trabk best switching strat-
egy, provided that the number of switches is not too large heve the following
result for the INF forecaster using the above estimates arekponential func-
tion ¢ (recall that for exponential, the INF forecaster reduces to the traditional
exponentially weighted forecasters).

.....
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THEOREM 26 Lets = Slog (4) + log(2K) with ¢ = exp(1) and the natural

conventionSlog(enk'/S) = 0 for S = 0. Consider)(x) = exp(nx) + % with

~ = min (%, \ /%) andn = /5%, and the estimateg, = gi7tﬂéfji + p% with

B = 2,/-F%. For these choices, forany < S < n — 1, for anye > 0, with

probability at leastl — ¢, INF satisfies:

K
RY <9VnKs+ 4/ n—log(s_l),
s

and
ER? < 10VnKs.
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Appendix A

Some basic properties of the Kullback-Leibler
divergence

The KL divergence between two distributions on some measeispace;

_ [ Egoplog(£(g) fp<m
K(p,m) = { +00 otherwise (A1)

satisfies forp < m, K(p,7) = Egurx(£(g)), with x the function defined on
(0, +00) by x(u) — ulog(u) + 1 — u. Since the functiory is nonnegative and
equals zero only at, we have

K(p,m) >0, (A.2)

and
K(p,m)=0< p=r. (A.3)
Leth: G — Rs.t.E, .e"9 < +oc. Define

eh9)

,Nﬂeh(gl)

Wh(dg) = E
g

-(dg)

By expanding the definition of the KL divergené&p, 1), we get
K(p, ) = K(p,m) — Eguph(g) + log Eyre@),
which implies from [A.R) and[(A]3)

sup {Ey,h(g) — K(p,m)} = log Eyore@, (A.4)
p

and
argmax {E,,h(g) — K(p,7)} = m. (A.5)

By differentiating, one may note that the functian— K (s, 7) is nondecreas-
ing on [0, +o0). Finally, if G is finite andr is the uniform distribution or§, we
have

K(p,m) =log(|S]) — H(p) < log(|S]), (A.6)
whereH (p) = — deg p(g) log p(g) is the Shannon entropy of
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Appendix B
Proof of McAllester’s PAC Bayesian bound

McAllester’s bound[[Mcp) ([1]8) states that with probalyilét leastl — ¢, for any
p € M, we have

K(p,m) +log(2n) + lo
E,.,R(g) — Ey,r(g \/ (o, zi—i CICHDRNTEY

Here is a short proof of this statement that essentiallp¥adithe one proposed by
Seeger.

Let us first recall that a real-valued random variablesuch thatEe" < 1
satisfies: for any > 0, with probability at least — ¢, we havel” < log(¢71). So
to prove [B.]l), we only need to check that the random variable

V =sup {(Zn — 1) [max (Eyan R(f) — Epapr(f), 0)}2 — K(p,m) — log(4n)}

p

satisfiesEe” < ,
From Jensen’s inequality applied to the convex function> [max(:c, 0)}
and the Legendre transform of the KL divergerice(A.4), weshav

V < sup {(2n — DE, ) [max (R(f) = (f),0)]* = K(p,7) — log(Qn)}

p

— log(2n) + log Ey(g) e DImaxBN (DO

hence
1 2
EeV < —EE. 4 e Dimax(R()=r(£).0)]
€ m, (e
1 .
= 5 Ert )<1+E (2n—1)(max(R(f)=r(f)0)]* 1}) from Fubini’s theorem
n
_ i w1+ / " p(eln-Dmax RO DO _ 1 5t
1+/+OOIP’ () > /el DY
= T’ -
0 2n —1
too n los(t+1) . . .
g Er ) <1 +/ T T d) from Hoeffding's inequality
0
+oo
= (1 —|—/ 2n 1dt)
0
=1

which ends the proof.
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Appendix C
Proof of Seeger’s PAC Bayesian bound

Here we sketch the proof of](S) [p.8), which states that witibpbility at least
1 — ¢, foranyp € M, we have
K(p,m) +log(2y/ne™")

K(Egpr (9)|[EgrpF(9)) < - ) (C.1)

whereK (¢q||p) = K(Be(q), Be(p)) with Be(q) and Bép) denoting the Bernoulli
distributions of parameterandp. The proof follows the same line as the one of
(McA). We introduce

V' =sup {nK(EP(df)T(fm|Ep(df)R(f)) — K(p,m) - 10%(2\/5)}7

p

and as in the previous proof, we only need to check Bt < 1. This is done
by using Jensen’s inequality for the convex functignp) — K(q||p) and using
the Legendre transform of the KL divergenge (A.4). We have

EeV < Ee™ {nEoan K (IR ~K (p.m)-los(2y/m) }

1
= " _EE, e KRG

2/n
= ﬁEﬂ(df) kZ:O P(nr(f) = k) (an(f)) (n[ln__Rk(f)] )ni

~ o (1) G (5

k=0

<1,

where the last inequality is obtained from computationagiStirling’s approxi-
mation.

The same procedure can be used to prove the other PAC-Bayssiads of
ChapteR, Sectioh 2.2. A similar way of approaching PAC-&&gn theorems is

given in [G0].

71



72



Appendix D

Proof of the learning rate
of the progressive mixture rule

Here is the proof in a concise form under the boundednessngiguns of The-
orem[§ that the expected excess risk of the progressive mixtue is upper

bounded by)\aidl) for A > % The condition on\ guarantees that for any

y € [—1,1], the functiony’ — e *#¥)* is concave orf—1,1]. Thus we can
write

1 n
ER <n — z; Egor_ys, g)

1 n
Sn +1 ;ER(EQNﬂAzi g) (Dl)
1 n
Thntl ZEZ#I[YZ‘H = Bgn_ss, 9(Xin))? (D.2)
=0
1 n
:n + 1EZ{L+1 Z[Y;Jrl - EQMLAZZ. g(Xi+1)]2 (D3)
=0
—1 - 1 —AlYi+1—-9(Xit1)]?
=~ n+1 —_— - Og ~ . € .
S B D 3108 Bgar TN (D-4)
n 1 i
=0
1 n ngﬂ 67}\22(9)
BYCES) I)Ez{wl ZZ; log (ng o—ATit1(9)
1
=— —E w1 logE, ., —AZnt1(9) D.5
Nn+ 1) gptilog By e (D.5)
1 e~ Zn+1(94s)
< - 715: n+1 1 _—
log d
—R(a* _logad
(gMS) + )\(’I’L + 1)7

where [D.1) comes from Jensen'’s inequality on the convegtiony’ — (y —

y')?, (D-3) uses that the distribution 5, depends only o}, (D-34) comes from
Jensen’s inequality on the concave functiors e *@—¥)* and (D.b) is the core
of the proof and explains why PM is based on a Cesaro mean.tépg[®.P) and
(D-3) are exactly the two steps of the proof of Lemfha 7. No& this analysis
gives a result similar to the one in Theor§m 6, except thatatir?2 is replaced
by§ > 8. For the progressive indirect mixture rule,.._,, are replaced b,

and the step[(D]4) is still valid from the very definitidn (3Rof /..
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Appendix E

The empirical Bernstein’s inequality

The goal of the empirical Bernstein’s inequality is to pawiconfidence bounds
on the expectation of a distribution with bounded suppay; & [0, 1], given

a sample from it. LeU, Uy, U,,... be independent and identically distributed
random variables taking their values[in1]. Let

t

1 d I _
Ut - ; Z Ui and % - ; Z(UZ - Ut)2.
i=1 i=1

Here we prove the empirical Bernstein’s inequality (Lemjrdh g[51), which
states that for any > 0, with probability at least — 2¢, for anyt € {1,...,n}

nlog(e™
t2

and?, = M2 \we have

U, — EU < min (,/za(vt + 4;) +Et(% +v1-— 31’4) , \/%> (E.1)

PROOF. Let A()\) = log Ee*V~EY) pe the log-Laplace transform of the random
variableU — EU. Let S, = 3_'_, (U; — EU;) with the conventiors, = 0. From
Inequality (2.17) of[6]7], we hafe

IP’( max S; > s) < inf ¢ MtAN,
1<t<n >0

LetV = Var U. Hoeffding's inequality and Bennett’s inequality implies
2

A(\) < min (% (& —1— A)V),

which by standard computations (see, e.g., Inequality ¢4$}3]) gives that for
anye > 0, with probability at least — ¢,

-1 -1
max S; < min ( nlL(é), 2nV log(e~1) + M) (E.2)

1<t<n 2 3

1This comes from a martingale argument due to Doob. For any> 0, the se-

quence(e*d ~tA M), is a martingale with respect to the filtratidir (U1, . . ., Ut)),, Since
E(er MUy, .. Uy) = e9-1=(=DAN) - Introduce the stopping im& = min (n +

1,min{t e N: S; > s}). From the optional stopping theorem, for aky- 0, we have
1= EekST—TA(/\) > P(T < n)ex\s—n/\(/\),
hence

IP’( max S; > s) =P(T <n) < inf e AsFnALY),
1<t<n A>0
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LetW = (U-EU)? andW; = (U;—EU;)?fori > 1. LetS, = SI_ (-W;+EW;)
andA’(\) = log EeA-WFEW)  As above, from Inequality (2.17) of [67], we have

IP’( max S, > s) < inf e A
1<t<n A>0

Now using that ™ < 1 —u + “72 for u > 0 andlog(1 + u) < ufromu > —1,
we havelog Ee W < logE(1 — AW + 22y < _\EW + £E(W?), hence
NN < A;IE(WQ). Optimizing with respect ta gives that for any > 0, with
probability at least — ¢,

max S < /2nE(W?2)log(e~1). (E.3)

1<t<n
Now we use the following lemma to boutit{172).
LEMMA 27 A random variabldJ taking its values if0, 1] satisfies
E[(U —EU)Y < V(1 =3V), (E.4)

whereV = E[(U — EU)?] is the variance of/. If U admits a Bernoulli distribu-
tion, one can put an equality i(E.4).

PrROOE We have

E[(U —EU)" — V(1 -3V) =E([U°-U +E(U)|[U — E(U)))
+3([EU)P - E(U)EU?)).

From Chebyshev’s association inequality (also referredtine Fortuin-Kasteleyn-
Ginibre inequality), both terms in the right-hand side avapositive. An alterna-
tive proof consists in expanding the terms in Lemma § of|[141d noticing that
this exactly gives[(E]4). The result for Bernoulli distrilmns comes from direct
computations.[]

Combining the above lemma with (E.3), we get that with pralitstat least
1—¢,

max S; < v/2nV (1 — 3V)log(s~1). (E.5)

1<t<n

We now work on the evertt of probability at least — 2¢ on which both [E]5)
and [E2) hold. The variance decomposition gives= 1> (U; — U;)? =

—(EU - U,)* + 130, W, henceS, = ¢(V — V;) — t(EU — U,)*. For any
1 <t <n,we have

U, —EU < min (\/% 2V, + %) (E.6)
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and
V =V, </2V(1 = 3V)l, + (U, — EU)? (E.7)

If U; < EU, then [EXL) is trivial. IfV; >V, (EX) is a direct consequence BT (E.6)
(since; —3V; > 3 — 2 > 1). Therefore, from now and on, we considér> EU
andV; < V. Then [EB) impliesU; — EU)? < ¢;/2, and (EJ) leads to

W>V—m—a/zz<f_ M) e

hence

_ 0(2 -3V (1 — 3V — (1 — 3V
¢V<¢%+&<2%D+V&<2%a§ V40 + éLgﬂQ

By plugging this inequality into[(E].6), we gdt (E.2). For tiw-sided inequality
(F-Z.I2), one just needs to add the same inequality as (&:.6){;. At the end,
three maximal inequalities are used (corresponding;te-U; and—W;), so that
the result holding with probability at least— ¢ containdog(3s~1) terms. O
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Appendix F

On Exploration-Exploitation with Exponential
weights (EXP3)

F.1. THE VARIANTS OF EXP3

Parametersy € (0,1/K] and~ € [0, 1].
Let p; be the uniform distribution ovefl, ..., K}.

Foreachround =1,2,...,
(1) Draw an armi; according to the probability distributigp.

(2) Compute the estimated gain for each arm:

Z' i A7, for the reward-magnifying version of EXP3
1— 1pg: L1y, for the loss-magnifying version of EXP3
Gir =1 L z Xy,—; + p?t for the tracking version of EXP3

"7’%]@7@- for the tightly biased version of EXP3

and update the estimated cumulative g&if; = >\, Gi .
(3) Compute the new probability distribution over the arms:
pr+1 =1 + (L = ¥)qe+1,

with
exp (1)

S oxp (10ne)

qit+1 =

Figure F.1: EXP3 (Exploration-Exploitation with Exponehtweights) for the

adversarial bandit problem.

There are several variants of EXP3. They differ by the wayis estimated
as shown in Figur€ H.1. For deterministic adversaries, des-inagnifying ver-
sion of EXP3 has the advantage to provide the best known aonst front of
the v/nK log K term, that isv/2 (note that our work succeeds in removing the
log K term but at the price of a larger numerical constant facteo).determinis-
tic adversaries, the reward-magnifying version of EXP3i¢lvhs the one in the
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seminal paper of Auer, Cesa-Bianchi, Freund and Schgpiiid¢t v = Kn) has
the advantage that the factein /n K log K can be replaced byax;—; _,, G,
whereG;,, = > 1, gi+. The tracking version of EXP3 is the one proposed in
Section 6.8 of[[46] (and the one presented in Sedtion]4.8.&lightly) overesti-
mates the rewards since we h&lg.,, g+ = g+ + i . This idea was introduced
in [[L74] for tracking the best expert. If [112], we have intradd the tightly biased
version of EXP3 to achieve regret bounds depending on tHermpeaince of the
optimal arm. Contrarily to the reward-magnifying versidreeXP3, these bounds
hold for any adversary and high probability regret bounésadso obtained.

F.2. PROOF OF THE LEARNING RATE OF THE REWARBMAGNIFYING EXP3

Here we give an analysis of the reward-magnifying EXP3 (eefim Fig-
ure[F1), which is an improvement (in terms of constant onfythe one in I,
Section 3].

THEOREM 28 Let Gmax = max;—;__x G;,. For deterministic adversaries, if
4nK < 57, the expected regret of the reward-magnifying EXP3 sasisfie

log K

ER, < + 7Gmax

In particular, if n = /22K (\ [ e K 1), we have
16

ER, < gnK log(K).

PROOF The conditiondn K < 5y is put to guarantee tha&( K) < n}(,

whereV : u — £=1=% s an increasing function. For any adversary, we have

Z gnt = Z Ek'\/ptgk,t
t=1 =

1__7 <10g Eithengi,t — log [e_ﬁEkwtﬁk,inthengi,t})
N t=1

S (s . til log(Dt)),

where

Gi,t

S = Z log By, eit = Z log ( ZNp;nGz —~ 1) = log E;.,, e"%n

ZNpl
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and

D, = e*&EkNPték,tEitheﬁéi,t
" . K
< e T ten I, (1 +ngi¢ + ¥ (n—)nZEI?t) (F.1)
fy )
_ o (1 4 nEiwptgi,t — VEip, Git L (ﬂ>n2Eith§?t
1 -y Y ’
; V()P K
g U i Yy _ _
< e Ty ek <1 + :EiNPtth - :Ewmgz‘,t + #EiNPlgi,t>
(F.2)
< e T PO (1 + %Eiwm.&i,t) (F.3)
-

<1

To get [E.l), we used thdt is an increasing function and thaj; , < - < %

— Dt
2
=2 =2 91, K~ ~
For (F.2), we usedl — V)qutgz‘,t S Eiop iy = p:: <> i1 Gii = KEip, Gis

For (E3), we usedK\II(%) < +. We have thus proved

n 1 . ~
S gns = —Llog By, e (F.4)
t=1 ?7

For a deterministic adversary, we hé@ém = EG,,, = G, ,, S0 that

n 1_ )
E Z gIt,t Z Tny log Einl enGi,n
t=1

1 _ ~
> 7 log Eip, eMECin (F.5)
U]

1—
— v log EZ-Nme”Gi’" > —
n

1—7v)log K
n i=1,...,. K

where Inequality [(F]5) which moves the expectation sigidmshe exponential
can be viewed as an infinite dimensional Jensen’s inequaky Lemma 3.2 of
[B]). For a deterministic adversary, we have proved

(1—7)log K
i=1,..,K — ' n i=1,.,K

hence the first claimed result.

The second result is trivial whep'4 K log K /(5n) > 1 since the upper bound
is then larger tham. Otherwise, we have = /4K log K /(5n) < 1 and4dnK =
5v so that the result follows from the first onél
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Appendix G

Experimental results for the min-max truncated
estimator defined in Section34;2

In Section[GJ1, we detail the different kinds of noises wekwwsith. Then, Sec-
tions[G.R[G 3 anfiG.4 describe the three types of functi@taiionships between
the input, the output and the noise involved in our experisieA motivation for
choosing these input-output distributions was the abiitgompute exactly the
excess risk, and thus to compare easily estimators. SdGt@mpresents the ex-
perimental results.

G.1. NOISE DISTRIBUTIONS

In our experiments, we consider different types of noisé dna centered and
with unit variance:

e the standard Gaussian nois&: ~ N(0, 1),

e a heavy-tailed noise defined b7 = sign(V)/|V|"/4, with V' ~ N(0,1) a
standard Gaussian random variable ard 2.01 (the real numbey is taken
strictly larger thar as forq = 2, the random variabl&” would not admit
a finite second moment).

e an asymmetric heavy-tailed noise defined by:

V[TV if V>0
o IV Y >0
-1 otherwise
with ¢ = 2.01 with V' ~ N(0, 1) a standard Gaussian random variable.

e a mixture of a Dirac random variable with a low-variance Gaas ran-
dom variable defined by: with probability W = /(1 — p)/p, and with
probability1 — p, W is drawn from

N(_ p(l—p) p _pﬂ—pg.

1-p '1—-p (1-p)?

The parametep € [p, 1] characterizes the part of the variancelof ex-
plained by the Gaussian part of the mixture. Note that thisenadmits
exponential moments, but far of order1/p, the Dirac part of the mixture
generates low signal to noise points.
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G.2. INDEPENDENT NORMALIZED COVARIATES(INC(n, d))
In INC(n, d), the input-output pair is such that
Y =(6",X)+ oW,
where the components of are independent standard normal distributiéris-

(10,...,10)" € R?, ando = 10.

G.3. HGHLY CORRELATED COVARIATES (HCC(n, d))
In HCC(n, d), the input-output pair is such that
Y =(0",X)+ oW,
where X is a multivariate centered normal Gaussian with covarianagrix ()
obtained by drawing &d, d)-matrix A of uniform random variables if0, 1] and

by computingQ = AAT, §* = (10,...,10)T € R¢, ande = 10. So the only
difference with the setting of Sectipn (.2 is the correlatietween the covariates.

G.4. TRIGONOMETRIC SERIES(TS(n, d))

Let X be a uniform random variable d6, 1]. Letd be an even number. Let
G(X) = (cos(2nX), ..., cos(dnX),sin(2rX), ... ,sin(dﬁX))T.
In TS(n, d), the input-output pair is such that
Y:20X2—10X—§+0W,

with o = 10. One can check that this implies

20 20 10 10 \*
N B T 1
T2 7T2(§)2 T 7T(§)

G.5. RESULTS

Table G L anfT G.2 give the results for the mixture noiselesB.3[G} and
G.5 provide the results for the heavy-tailed noise and edstrd Gaussian noise.
Each line of the tables has been obtained aft®¥) generations of the training
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set. These results show that the min-max truncated estimasooften equal to
the ordinary least squares estimagt¥®), while it ensures impressive consistent
improvements when it differs fro®®). In this latter case, the number of points
that are not considered if i.e. the number of points with low signal to noise
ratio, varies a lot froml to 150 and is often of ordeB0. Note that not only the
points that we expect to be considered as outliers (i.e. kge output points)
are erased, and that these points seem to be taken out bgtoogls: see Figures
G.7 and GJ2 in which the erased points are marked by surrograiicles.

Besides, the heavier the noise tail is (and also the largevdhniance of the
noise is), the more often the truncation modifies the indralinary least squares
estimator, and the more improvements we get from the min-mmcated es-
timator, which also becomes much more robust than the andieast squares
estimator (see the confidence intervals in the tables).

Table G.1: Comparison of the min-max truncated estimataenth the ordinary
least squares estimatgf's) for the mixture noise (see Sectipn [5.1) wijth= 0.1

andp = 0.005. In parenthesis, the5%-confidence intervals for the estimated
quantities.

| < 'S

RS ! <

EHRC ~ o \

o | | S = = = g

S |2 | = & S “ R

g |22 | = = W

R - | g S

5 |5 |% S S = =

glele| & 5 5 =
INC(n=200,d=1) 1000 | 419 | 405 | 0.567(£0.083) | 0.178(£0.025) | 1.191(40.178) | 0.262(+0.052)
INC(n=200,d=2) 1000 | 506 | 498 | 1.055(=£0.112) | 0.271(£0.030) | 1.884(40.193) | 0.334(40.050)
HCC(n=200,d=2) | 1000 | 502 | 494 1045(10.103) 0.267(£0.024) | 1.866(£0.174) | 0.316(%0.032)
TS(n=200,d=2) 1000 | 561 | 554 | 1.069(£0.089) | 0.310(%0.027) | 1.720(£0.132) | 0.367(£0.036)
INC(n=1000,d=2) | 1000 | 402 | 392 | 0.204(%0.015) | 0.109(£0.008) | 0.316(0.029) | 0.081(£0.011)
INC(n=1000,d=10) | 1000 | 950 | 946 | 1.030(£0.041) | 0.228(£0.016) | 1.051(£0.042) | 0.207(40.014)
HCC(n=1000,d=10} 1000 | 942 | 942 | 0.980(%0.038) | 0.222(£0.015) | 1.008(%0.039) | 0.203(%0.015)
TS(n=1000,d=10) | 1000 | 976 | 973 | 1.009(£0.037) | 0.228(£0.017) | 1.018(40.038) | 0.217(+0.016)
INC(n=2000,d=2) | 1000 | 209 | 207 | 0.104(£0.007) | 0.078(%0.005) | 0.206(+0.021) | 0.082(+0.012)
HCC(n=2000,d=2) | 1000 | 184 | 183 | 0.099(%0.007) | 0.076(%0.005) | 0.196(+0.023) | 0.070(+0.010)
TS(n=2000,d=2) | 1000 | 172 | 171 | 0.101(£0.007) | 0.080(=£0.005) | 0.206(£0.020) | 0.083(+0.012)
INC(n=2000,d=10) | 1000 | 669 | 669 | 0.510(=0.018) | 0.206(40.012) | 0.572(£0.023) | 0.117(£0.009)
HCC(n=2000,d=10) 1000 | 669 | 669 | 0.499(40.018) | 0.207(+0.013) 0061(i0.023) 0.125(+0.011)
TS(n=2000,d=10) | 1000 | 754 | 753 | 0.516(£0.018) | 0.195(£0.013) | 0.558(40.022) | 0.131(+0.011)
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Table G.2: Comparison of the min-max truncated estimateith the ordinary
least squares estimatg@f's) for the mixture noise (see Sectipn [5.1) with= 0.4
andp = 0.005. In parenthesis, the5%-confidence intervals for the estimated

guantities.
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INC(n=200,d=1) | 1000 | 234 | 211 | 0.551(%0.063) | 0.409(%0.042) | 1.211(£0.210) | 0.606(=£0.110)
INC(n=200,d=2) | 1000 | 195 | 186 | 1.046(0.088) | 0.788(x£0.061) | 2.174(£0.293) | 0.848(=£0.118)
HCC(n=200,d=2) | 1000 | 222 | 215 | 1.028(=£0.079) | 0.748(40.051) | 2.157(0.243) | 0.897(£0.112)
TS(n=200,d=2) 1000 | 291 | 268 | 1.053(£0.079) | 0.805(%0.058) | 1.701(£0.186) | 0.851(£0.093)
INC(n=1000,d=2) | 1000 | 127 | 117 | 0.201(£0.013) | 0.181(=0.012) | 0.366(%0.053) | 0.207(£0.035)
INC(n=1000,d=10) | 1000 | 262 | 249 | 1.023(£0.035) | 0.902(=0.030) | 1.238(%0.081) | 0.777(£0.054)
HCC(n=1000,d=10} 1000 | 201 | 192 | 0.991(40.033) | 0.902(£0.031) | 1.235(%0.088) | 0.790(%0.067)
TS(n=1000,d=10) | 1000 | 171 | 162 | 1.009(£0.033) | 0.951(£0.031) | 1.166(£0.098) | 0.825(+0.071)
INC(n=2000,d=2) | 1000 | 80 | 77 | 0.105(%0.007) | 0.099(40.006) | 0.214(£0.042) | 0.135(=£0.029)
HCC(n=2000,d=2) | 1000 | 44 | 42 | 0.102(£0.007) | 0.099(%0.007) | 0.187(0.050) | 0.120(=£0.034)
TS(n=2000,d=2) 1000 | 47 | 47 | 0.101(£0.007) | 0.099(=£0.007) | 0.147(£0.032) | 0.103(£0.026)
INC(n=2000,d=10) | 1000 | 116 | 113 | 0.511(40.016) | 0.491(40.016) | 0.611(40.052) | 0.437(+0.042)
HCC(n=2000,d=10) 1000 | 110 | 105 | 0.500(+0.016) | 0.481(£0.015) | 0.602(£0.056) | 0.430(=£0.044)
TS(n=2000,d=10) | 1000 | 101 | 98 | 0.511(£0.016) | 0.499(40.016) | 0.601(40.054) | 0.486(+0.051)
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Table G.3: Comparison of the min-max truncated estiméatenth the ordinary
least squares estimat@f'® with the heavy-tailed noise (see Sectjon|G.1).
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INC(n=200,d=1) | 1000 | 163 | 145 | 7.72(£3.46) | 3.92(%0.409) | 30.52(£20.8) | 7.20(£1.61)
INC(n=200,d=2) 1000 | 104 | 98 22.69(:&23.14) 19.18(:|:23.09) 45.36(:t14.1) 11.63(:t2.19)
HCC(n=200,d=2) | 1000 | 120 | 117 | 18.16(412.68) | 8.07(%0.718) | 99.39(%105) | 15.34(+4.41)
TS(n=200,d=2) 1000 | 110 | 105 | 43.89(£63.79) | 39.71(£63.76) | 48.55(£18.4) | 10.59(£2.01)
INC(n=1000,d=2) | 1000 | 104 | 100 | 3.98(%2.25) | 1.78(%0.128) | 23.18(%21.3) | 2.03(40.56)
INC(n=1000,d=10) | 1000 | 253 | 242 | 16.36(5.10) | 7.90(+0.278) | 41.25(+19.8) | 7.81(40.69)
HCC(n=1000,d=10) 1000 | 220 | 211 | 13.57(+1.93) | 7.88(+0.255) | 33.13(£8.2) | 7.28(£0.59)
TS(n=1000,d=10) | 1000 | 214 | 211 | 18.67(£11.62) | 13.79(£11.52) | 30.34(+7.2) | 7.53(+0.58)
INC(n=2000,d=2) | 1000 | 113 | 103 | 1.56(£0.41) | 0.89(£0.059) | 6.74(£3.4) | 0.86(=£0.18)
HCC(n=2000,d=2) | 1000 | 105 | 97 | 1.66(=0.43) | 0.95(£0.062) | 7.87(%£3.8) | 1.13(40.23)
TS(n=2000,d=2) | 1000 | 101 | 95 | 1.59(%0.64) | 0.88(0.058) | 8.03(£6.2) | 1.04(£0.22)
INC(n=2000,d=10) | 1000 | 259 | 255 | 8.77(£4.02) | 4.23(40.154) | 21.54(£15.4) | 4.03(£0.39)
HCC(n=2000,d=10) 1000 | 250 | 242 | 6.98(£1.17) | 4.13(%0.127) | 15.35(+4.5) | 3.94(%0.25)
TS(n=2000,d=10) | 1000 | 238 | 233 | 8.49(£3.61) | 5.95(£3.486) | 14.82(+3.8) | 4.17(+0.30)
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Table G.4: Comparison of the min-max truncated estimateith the ordinary
least squares estimatg®'s with the asymmetric heavy-tailed noise (see Section

G.D).
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INC(n=200,d=1) | 1000 | 87 | 77 | 5.49(£3.07) | 3.00(£0.330) | 35.44(£34.7) | 6.85(+2.48)
INC(n=200,d=2) | 1000 | 70 | 66 | 19.25(+23.23) | 17.4(£23.2) | 37.95(13.1) | 11.05(:2.87)
HCC(n=200,d=2) | 1000 | 67 | 66 | 7.19(+0.88) | 5.81(%0.397) | 31.52(£10.5) | 10.87(2.64)
TS(n=200,d=2) | 1000 | 76 | 68 | 39.80(:64.09) | 37.9(:64.1) | 34.28(+14.8) | 9.21(42.05)
INC(n=1000,d=2) | 1000 | 101 | 92 | 2.81(+2.21) | 1.31(£0.106) | 16.76(:21.8) | 1.88(=0.69)
INC(n=1000,d=10) | 1000 | 211 | 195 | 10.71(%+4.53) | 5.86(£0.222) | 29.00(£21.3) | 6.03(+0.71)
HCC(n=1000,d=10) 1000 | 197 | 185 | 8.67(+1.16) | 5.81(+0.177) | 20.31(£5.59) | 5.79(0.43)
TS(n=1000,d=10) | 1000 | 258 | 233 | 13.62(£11.27) | 11.3(£11.2) | 14.68(+2.45) | 5.60(40.36)
INC(n=2000,d=2) | 1000 | 106 | 92 | 1.04(+0.37) | 0.64(£0.042) | 4.54(£3.45) | 0.79(=0.16)
HCC(n=2000,d=2) | 1000 | 99 | 90 | 0.90(+0.11) | 0.66(+0.042) | 3.23(+£0.93) | 0.82(=£0.16)
TS(n=2000,d=2) | 1000 | 84 | 81 | 1.11(£0.66) | 0.60(£0.042) | 6.80(+7.79) | 0.69(40.17)
INC(n=2000,d=10) | 1000 | 238 | 222 | 6.32(£4.18) | 3.07(&0.147) | 16.84(£17.5) | 3.18(+0.51)
HCC(n=2000,d=10) 1000 | 221 | 203 | 4.49(+0.98) | 2.98(+£0.091) | 9.76(£4.39) | 2.93(£0.22)
TS(n=2000,d=10) | 1000 | 412 | 350 | 5.93(£3.51) | 4.59(+3.44) | 6.07(:1.76) | 2.84(+0.16)
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Table G.5: Comparison of the min-max truncated estiméateith the ordinary
least squares estimat@f's for standard Gaussian noise.
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INC(n=200,d=1) | 1000 | 20 | 8 | 0.541(%0.048) | 0.541(£0.048) | 0.401(%0.168) | 0.397(£0.167)
INC(n=200,d=2) [ 1000 | 1 | 0 | 1.051(£0.067) | 1.051(%0.067) 2.566 2.757
HCC(n=200,d=2) [ 1000 | 1 | 0 | 1.051(£0.067) | 1.051(+0.067) 2.566 2.757
TS(n=200,d=2) 1000 | 0 | 0 | 1.068(£0.067) | 1.068(%0.067) - -
INC(n=1000,d=2) | 1000 | 0 | 0 | 0.203(£0.013) | 0.203(%0.013) - -
INC(n=1000,d=10) [ 1000 | 0 | 0 | 1.023(£0.029) | 1.023(%0.029) - -
HCC(n=1000,d=10} 1000 | 0 | 0 | 1.023(£0.029) | 1.023(%0.029) - -
TS(n=1000,d=10) | 1000 | 0 | 0 | 0.997(=0.028) | 0.997(40.028) - -
INC(n=2000,d=2) | 1000 | 0 | 0 | 0.112(£0.007) | 0.112(%0.007) - -
HCC(n=2000,d=2) | 1000 | 0 | 0 | 0.112(£0.007) | 0.112(%0.007) - -
TS(n=2000,d=2) | 1000 | 0 | 0 | 0.098(=£0.006) | 0.098(%0.006) - -
INC(n=2000,d=10) | 1000 | 0 | 0 | 0.517(£0.015) | 0.517(%0.015) - -
HCC(n=2000,d=10} 1000 | 0 | 0 | 0.517(£0.015) | 0.517(%0.015) - -
TS(n=2000,d=10) | 1000 | 0 | 0 | 0.501(=0.015) | 0.501(%0.015) - -
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Figure G.1: Surrounding points are the points of the trgjisiet generated several
times from7'5(1000, 10) (with the mixture noise witlp = 0.005 andp = 0.4)
that are not taken into account in the min-max truncatednasar (to the extent
that the estimator would not change by removing simultaskall these points).
The min-max truncated estimator— f(:c) appears in dash-dot line, white—
E(Y|X = z)isin solid line. In these six simulations, it outperforms tirdinary
least squares estimator.
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Figure G.2: Surrounding points are the points of the trgjisiet generated several
times from7'S (200, 2) (with the heavy-tailed noise) that are not taken into actoun
in the min-max truncated estimator (to the extent that thienesor would not
change by removing these points). The min-max truncatéshasir z — f ()
appears in dash-dot line, while — E(Y|X = x) is in solid line. In these six
simulations, it outperforms the ordinary least squaresn@sor. Note that in the
last figure, it does not considé4 points among the00 training points.
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