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Chapitre 1

Introduction



In this thesis, we address some statistical problems linked with the war-
ming of atmospheric temperatures. The significant increase in their average
during at least the last thirty years, is today considered to be one of the
most important problem for humanity. This observed temperature increase
is probably caused by increasing concentrations of greenhouse gases due to
human activities. This phenomenon can lead to serious, both short-termed
and long-termed, consequences for our planet. “An increase in global tempe-
rature will cause sea levels to rise and will change the amount, and pattern,
of precipitation, probably including expansion of subtropical deserts” (Lu
et al., [94]). Other likely effects include increases in the intensity of extreme
weather events, species extinctions, and changes in agricultural yields. The
problem of extreme events is therefore a strong preoccupation. Heatwaves,
storms, or hurricanes, have become a common problem to many countries.

Besides these general topics, the security of industrial installations are
considered in this new framework. Cooling size has to be designed for the
100 future years taking into account the prediction of the temperature. This
is in particular the case for existing and forthcoming nuclear plants. Their
safety not only depends on the cooling of their own installations but also on
ecological problems, such as the temperature of rivers and seas. As often,
the problem of large risks presents a meta-mathematic part. It involves the
existence of scenarios for the emission of greenhouse gases but absolutely
needs a probabilistic approach and a reflection on the statistical methods.
This last point needs to be more specifically developed. It allows to clarify
some discussions, and some interpretations, about different predictions at
middle and long horizon.

Facing up to these problems, climate numerical models are used to make
predictions. Numerical models of the atmospheric circulation are the main
tools in climatology. These models of fluid mechanics are based on coupled
PDE (partial differential equations). Sciences in this field are of course in
progress, however, some important difficulties still remain, as the problem
of clouds representation for instance. Models are deterministic. Variability is
approached in two different ways. The first is due to the existence of nume-
rous models with quite different results. This variability is taken into account
in the GIEC work and doesn’t concern mathematics or even sciences. The
second comes from simulations. An often small number of trajectories is ob-
tained from small variations of initial conditions. The pseudo-randomness
comes from the chaotic properties of these dynamical systems.

The simulation models are continually improving, but for some particu-
lar points, these models still present some weaknesses. Concretely, they give
an inadequate representation of the variability of local temperatures for the
models are defined for a large spatial scale. To deduce the temperature in



some precise points, some statistical works on the observed temperature are
necessary in order to make corrections on model data. Besides the variability
of the data, it is commonly admitted that extreme values are not correctly
approached in simulation models. The methods concerning the problems of
confidence intervals still need to be significantly improved. Some of these
points will be detailed in Chapter 2.

This thesis work will then focus on the understanding of the recent evo-
lutions of extreme temperatures, related to the evolutions of the mean and
the variance. The aim is then to propose a methodology to infer the future
extreme levels, and on the other hand, to statistically generate coherent tem-
perature series in the climate change context. Our work is mainly a work
on a very specific kind of time series. Some important features of tempe-
rature series, apparently unknown until today, have been discovered in this
direction and published in different climate journals. These results are use-
ful from the climatologist’s point of view. They can be considered as one
criterion to check the goodness of numerical models. These specific proper-
ties of observed temperatures have been checked on some data produced by
numerical models.

We mainly study series of observed temperatures. On the other hand,
some works in this thesis are linked with reanalysis data and data from si-
mulation models. We discuss in Chapter 2 the nature of the observed data
that we will use in our works (source of the observations as well as models,
length and quality of the series, geographic distribution, etc...).

The length of data is a central parameter in order to speak about “tem-
perature increase”. The increase needs to refer to a precise period. Everyone
knows that there are “natural pseudo cycles” of temperatures as those linked
to sun activity and we are mainly interested in the recent, very probably
anthropic effect due to greenhouse gas emissions. We have worked mainly on
the more or less last fifty years but also on longer series in order to clarify
results as well as methods.

A statistical, quite rigorous, approach of the notion of “trends” is the
main goal of Chapter 3 on non-parametric methods. As said, “trends” are
not an intrinsic notion if the length of the observations is not fixed. Once the
length is fixed, it is possible to search for an intrinsic definition of trends,
not only on the intuitive mean but also, for instance, on the variability. In
any case, trend definition or computation have to respect an heuristic prin-
ciple : the latter evolution and the addition of new data must not change
the trends already defined.

Trends are, physically, a slow long-term deterministic movement, some-
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thing related to low frequencies of a signal. But pay attention, trends usually
do not contain seasonal cycles. These cycles have not a simple definition in
climate. The facts are that their own characteristics also have variations at
a similar speed as the trend on mean temperature for instance.

So the definition implies an intrinsic definition of smoothness (roughness
of a curve extracted or estimated from discrete data). This smoothness is
from a very important statistical interpretation linked to some scales of
time. We present the tools of non-parametric statistic which can be used for
our specific time series evolutions. Our basic model, more complicated than
almost all model classically studied in theoretical non parametric analysis is
of the following form :

X, = m(t) + S(t) + Su(t)s(t) Zs (1.1)

where t is the date, X; the observations, m(t) the trend in mean, S(¢) the
seasonal component and S2(t), s%(t) are respectively the seasonal variance
and the long term trend in variance. What about Z; 7 It is a stochastic
process, centred, normed, supposed or hoped to have at least a stationary
seasonal covariance. “Stationary seasonal covariance” means that the cova-
riance is a periodic function of the time interval between observations.

To begin, we have to estimate at least two trends m, s and two seasona-
lities S and S,.

In Chapter 3, in order to avoid complicated characteristics of the sea-
sonality, and only consider basic trends themselves, our study is limited to
rather homogeneous temperature series, such as daily maximum tempera-
tures in summer, or daily minimum ones in winter. Our model then
transforms into :

X, = m(t) + s(t)Y (1.2)

Y; is also supposed to have at least a stationary covariance. Y is non-
gaussian, its tails are light and in general of bounded support. For close
(in time) observations, it appears to be a weakly dependent, near of an
ARMA process but with seasonal coefficients, colored innovation and a
complex structure of the variance. The problem is to know what statisti-
cal non-parametric methods can be used (perhaps can be “saved”) in such
a situation. Data can be thought as “long” series with from 5000 to 10000
observations in general.

The non-parametric literature is very large. It is often classified by the
main method studied. There are roughly two kinds of methods : approxima-
tion by projection on a suitable basis as Fourier, Haar or wavelets, where
the choice of model order gives a threshold for the dimension of the image
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space; and another kind of methods, called “regularization methods” as
kernels, loess, lasso or splines. They use a tuning parameter (regularization
parameter) to transform an ill-posed problem, as least squares or maximum
likelihood, into a well-posed problem by adding a penalization term, which
depends on the tuning parameter and the sample size. In fact, splines can
be classified in the first family but is closer to the second one.

In our case, a logic and appropriate approach is to consider a trend as
linked to an “appropriate local window”. This bandwidth parameter has a
significant sense in our context because it is clearly linked to the “memory”
of the warming process. Loess (local polynomial estimation) is chosen be-
cause it presents many advantages. Asymptotically efficient estimations by
loess for both trends in mean and in variance will be considered giving some
theoretical arguments. The choice of the tuning parameter, traditionally,
can be done using different criteria as cross-validation (CV) and many other
criteria of model choice. Non asymptotic bounds for different risks are now
known and asymptotic results are defined. But as the data are complex, the
situation quickly becomes not simple. Non constant variance for the noise
is already a problem. Moreover, the noise Y is correlated, which makes the
situation even more difficult. Particularly, all intuitive extensions lead to
important difficulties when the choice of the tuning parameter is addressed.
For instance, CV has to be deeply modified to keep a sense. In Chapter
3, a study on the existing automatic selectors in the presence of correlated
errors will be carried out through simulations. Our contribution consists in
a new automatic algorithm for the choice of regularization parameters, na-
med “modified partition cross-validation” (MPCV). It will be proposed in
specific circumstances, where the datasets are long, the conditional variance
is non constant, and the noise is colored with an unknown correlation func-
tion. Our method is asymptotically efficient and has advantages concerning
computation times.

Still in Chapter 3, the estimation of the functional multi-parameters mo-
dels is considered. The context is different than the previous one. Now, the
law of the data is known, and the independence of the observations is sup-
posed. However, we have the same purpose : describe the dynamics of the
data through the parameters. Therefore, nonparametric estimations are also
needed. Both approaches by loess and by spline are possible. In loess, the
estimation of the parameters leads to maximize the local likelihood (LL),
whereas in spline, it leads to maximize the penalized likelihood(PL). In this
situation, the spline estimation is preferred, it shows its advantages in the
flexibility and also the numerical implementation. Here the non-orthogonal
(in the statistical sense) parameters in the distribution function once more
set difficulties on the choice of smoothing parameters. Again, facing the lack
of methods in the literature, we propose a new algorithm for an automa-
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tic choice of smoothing parameters. This method is based on the iteratively
weighted least squares and iterate cross validation of Gu ([61]). Its asympto-
tic performance is really complicated to show. We prefer to check it through
a simulation study. This part prepares tools for chapter 5 which deals with
non-stationary extreme models.

Chapter 4 is one of our articles. In this paper, studies on ordinary trends,
m(t) in mean and s%(t) in variance, of these homogeneous temperature series
are realized. A strong dynamic relation between these deterministic trends,
which can change with the considered season, is discovered. We measure
this dynamic relation using different functional analysis tool and check it on
a very large sample of stations in Europe. This relation is also checked on
some simulation models and the results show that the models do not take
into account this characteristic of the observed temperature.

Then chapter 5 is dedicated to extreme models in non stationary situa-
tion. The basic theory assumes that the series studied are stationary, they
do not present any cycle nor trend. However, when dealing with climatic
data, this assumption has to be carefully considered. An interesting subject
is to study how climate changes might affect the occurrence of high and
low temperatures. This leads us to non-stationary extreme models where
the trends in samples of extreme values are estimated. We extend GEV and
POT classical models to our situation. Let us consider only here GEV mo-
dels. If we take one block of successive dates, say one month, long term
variations are negligible on a such short period. Asymptotics provided by
probability theory can be applied on the observations which are weakly de-
pendent. Once the seasonal effects are eliminated, the distribution of the
maxima in a given block depends on the label of the block and not on the
trend effect into the block, which is negligible. So the maximum of a block
can be supposed to have an approximate GEV distribution with parame-
ters depending on the block label. Of course, as usually, we do not check if
the regularity conditions required to apply the asymptotic theory are veri-
fied. The quality of this approximation is the same as in the stationary case,
not worse ! In this context, the extreme parameters of the distribution of the
maxima are functions of the date (or of the block label). An alternative algo-
rithm to estimate the extreme parameters accompanied by an automatically
updated choice of smoothing parameters is introduced, using the results of
Chapter 3. To make more sense, the application of non-stationary extreme
models are usually used on the daily maximum temperature in summer or
the daily minimum temperature in winter.

Until now, the previous chapters, without taking into account the seaso-
nality, give us complete features of the trends of the “central field”, which
corresponds to the mean and variance functions of the whole time series and
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the trends of the extreme field, which in turn corresponds to the mean and
variance functions of extreme values. It is then interesting if we can find links
between these factors. Consider the H hypothesis, which states that the cen-
tered and scaled data, called reduced data through the thesis, ¥; = Xt;(;r;(t),
follows a stationary distribution. If H is valid, the trends in the extreme
field would only be due to translation/scaling effects of the central field and
it is easy to show that these trends can be computed only using the mean
m(t), the variance s?(t) and the constant parameters of the extreme model
of Y;. Instead of H, we can consider a weaker K hypothesis : the extreme
model exty of Y; is stationary. This avoids taking into account some small
dynamic deformations of the central part of the distribution of the reduced
data whose physical interest is in general not evident. The K hypothesis is
checked by a statistical test. The extreme parameters are first estimated as
constants, noted él, 6, is multidimensional. Then we estimate them non-
parametrically and note the nonparametric estimator ég. Calculate some Lo
distance between two these estimators A =|| 6, — 6y ||. In order to test if
A is significantly small, which means that K is probably true, we built the
table of A distribution using simulations (or bootstrap). From that we can
calculate the p — value of this test to accept, or not, the validation of K. In
the non-valid case of K, A is shown to converge to some C > 0. The power
of test is also derived in the same way. The theoretical asymptotic properties
of this test will be proved. Then the K hypothesis will be checked on many
stations in Europe. The results show a strong significance of K on the tem-
perature series : more for the daily maximum temperature in summer and
less for the daily minimum one in winter. All these contents are in Chapter 6.

Chapter 7 corresponds to one of our published article. This paper give
the synthesis of all the previous chapters. It gives a general look on what we
called “multidimensional trends”. Multidimensional trends imply the trends
in the central field and those in extremes. Multidimensional trends contain
in themselves strong links between their trends, more or less strongly de-
pending on stations. This relation is checked by the K hypothesis.

We finish the first part of the thesis : detection of trends in the central
as well as extreme field and tests for the stationarity of extremes, by a very
important application : the prediction of return levels. In Chapter 8, which
is also a submit paper, we present the return levels in the non-stationary
context. The definition of return levels in the non stationary context is ex-
tended from the one of the stationary case. To apply it in practice, we need
some extrapolations of the model of temperature extremes. Extrapolation
for non stationary cases is, of course, a metamathematical problem. What
kind of “persistence” one has to choose 7 Too often, the idea of extrapolating
the estimated functional trends in the future time is used. This behaviour of-
ten leads to non physical sense for many parametric families as polynomials.
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We propose some reflections about this problem using some new asymptotic
theory.

A parametric approach is necessary for this extrapolation. The extreme
parameters in this application can be estimated by polynomials of high de-
gree or continuous piecewise linear functions (CPL). Modeling by linear
piecewise functions needs to be associated to a specific mode of extrapola-
tion, which is not necessarily the extension of the last period, in order to
avoid edge effects. Dealing with the polynomial estimation, CPL, although
without mathematical support, seems in practice to have the advantages to
give coherent physical results. Nevertheless, these classical methods show
their weakness, concretely, the “sampling effect”. A very hot (or very cold)
last period can affect seriously, in a negative way, the results of the return le-
vels. In order to obtain more robust return levels, a new method is proposed.
This method is based on the fact that K is usually valid on the temperature
series. Through K, we can estimate the return levels by passing the elements
of the central field (m(t) and s(¢)) which give the results much more stable
and robust. The uncertainty of these estimates will be approached through
bootstrap confidence intervals.

The next chapter opens a new paradigm : taking into account the sea-
sonality, a temperature series is considered as a realization of model .
The purpose is to model the “reduced series” Z;. The first question one can
put on the series Z; is : is Z; stationary (at least in some useful sense). This
question is important for many reasons :

1- Validation of non-parametric estimations, done in previous chapters,
required the second order stationary (stationarity of covariance) or at least
some boundedness of the covariance. In fact this requirement is more concer-
ned with theories than with applications.

2- Validation of a model, to be used in particular to build a simulation
model, requires the generation of the date by a stationary white
noise to be able to use bootstrap validation or simulation one.

3- Of course, non stationarity for initial non reduced data, can be exten-
ded without restriction to every characteristic as skewness, kurtosis, high
quantiles, extremes. But this extension has to have a statistical meaning.
Data are large but not huge and neither infinite. So non-stationary proper-
ties without any statistical evidence have, in this framework, no practical
interest.

In our case, the stationarity needs to be extended to a broader sense :
“periodic stationarity”. In fact, the seasonality shape has deformations due
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to the warming effect. We give a discussion on this seasonality change in
Chapter 9. To catch this variable seasonality, without confusion with trend
components, is not simple at all. Therefore, for instance, we satisfy ourselves
with the traditional long term annual cycles, which are constant year after
year, and accept that the seasonality still remains in the residuals. Effective
treatments of this changing seasonality remain a very interesting work for
the future.

We now skip to the second part of the thesis . We will study the random
part, once the deterministic one has been extracted as the “main signal”.
The random part is the centred and scaled temperature.

To model this reduced temperature, which, as we shall see, has boun-
ded support for its marginal densities, we need to develop some theoretical
points in Chapter 10. The temperature, for continuous time, is of course
a continuous process. For quite evident physical reasons, as detailed in the
literature, it has the Markov property and so is of a diffusion type. From the
boundedness of the distributions, this diffusion has inaccessible boundaries.
It is not stationary, but only periodically stationary. The drift and the vola-
tility are periodic functions. In fact, the boundedness of the distributions is
provided by the study of extremes, only using extreme theory, without the
need of a model of reduced series.

As usual, we only can observe the temperature process at discrete times
of the form kA, with A being the lag of observations. We get data for A =3
hours. We do not have continuous filter observations of the form, for ins-
tance, [ K(t — z)T,dz with K compact. Discrete observations are checked
as being Markovian series. We also study functions of these observations,
as daily maximum or minimum, which can lose this markovian property, as
mean daily temperature do in practice. Now the discrete process, skeleton
of the continuous one, for equispaced observations, is a Markov chain, per-
iodically stationary and observed at dates KA. The exact likelihood is very
complicated and one has to use an approximated likelihood for A near zero,
which also appears too complicated in our situation, and nobody knows if
A is small or not! So we have to look for a simpler, but of course, also less
accurate, model.

We use approximations by first order Euler schemes. In the case where
we neglect the seasonality, they have the form :
Zn =b(Zp-1) + a(Zn-1)en (1.3)

These processes are sometimes called functional autoregressive processes
with conditional heteroscedasticity : FARCH.
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The next step consists in estimating the drift and the diffusion coefficient
of these processes and to precise their properties. First we give new results
on the theory of extremes of stationary continuous time diffusions, in the
specific case of finite inaccessible boundary points, to obtain the behaviour
of the diffusion coefficient near the boundary, knowing that the boundedness
of marginal densities implies that the diffusion coefficient is null outside the
interval defined by the upper and lower bounds.

We translate these results in constraints for the coefficients of the discrete
process we have to estimate. Then we study non parametric and parame-
tric estimators. For discrete observations, many methods can be used. Using
different non-parametric estimators, we can see that the drift b is linear, as
often found in the literature, and the diffusion coefficient (or the volatility)
a is almost linear in the central part.

We have to consider €, as Gaussian for coherence with the continuous
time process and also for physical reasons. If we think of the continuous
process driven by a Brownian motion, it is physically logical to keep the
gaussianity of the noise. There exists a large literature about models given
by . The geometric ergodicity, and thus the existence of a stationary
solution, are proved under some hypothesis as strict positivity of the noise
density, strict positivity or uniformity of the lipchitzian character of the dif-
fusion coeflicient, and some other weaker conditions.

Such hypothesis are not satisfied in our case, so we give slight modifi-
cations in order to keep the statistical properties of the model, including
extremes behaviour but allowing gaussian noise and stationarity. We check
our construction using simulations in different cases and bootstrap. We take
a parametric piecewise polynomial model for a® and then use it for simula-
tions.

There exists, in the literature, many models of simulation of the tem-
perature. Most of them are done, with an econometric purpose, to study
energy prices for instance. Only a few ones are in a climate scope. All these
models have a linear drift and there are many kinds of residuals. It seems
that none of them give a good reproduction of distributions, specifically in
the tails. Our model gives, from a statistical point of view, almost correct
extremes and good quantiles between 1% and 99%. These models can be
useful in order to compute different risks for very hot or cold periods, as
waves of heat or very cold winters (in different meaning).

We also make a crude study, by simulations, of the effect of A size on the
model. It is difficult to extend to diffusion Pitterbag’s theory of the effect of
the size of the mesh A on the comparison between extremes in continuous
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time and extremes for dates t of the form ¢ = kA. Pitterbag’s work concerns
only stationary gaussian processes. Extensions to a diffusion remain an open
problem.

Chapter 11 discusses the modeling of the reduced temperatures, noted
Zy, given by equation . As discussed above, the seasonality still remains
in Z; and it affects both the central and extreme fields of these reduced
series. This characteristic will be shown in the chapter. On the other hand,
Zy has usually a short memory never exceeding 5, which needs to be taken
into account. Then, a model combining this facts with the extreme theory
in Chapter 10 for Z; is :

P pl . .
; 2jmt i 29Tt
Z(t) = E o1 + g <0{k cos ——— + 9%71% sin %5> Z(t—k)+alt, Zi—1)e
k=1 j=1
[ N(O, 1)
(1.4)

where a(t, Z;—1) is the diffusion coefficient which depends on both the dates
t and the states Z;_;.

In practice, a® is estimated as a polynomial of high degree with seasonal
coefficients, and the constraints at the boundaries that a is canceled outside
the bounded support are taken into account. The upper and lower bounds
are estimated using extreme theory and depend on months, thus the seaso-
nality is also considered for extremes.

Therefore, in our model the seasonal coefficients are used both in the
mean and the variance terms of Z;. The conditional variance is canceled
out of the boundaries to guarantee the boundedness of Z; in theory. These
constraints are also seasonal.

The models will be applied on many kinds of temperatures : at a fixed-
hour (the discrete version of the temperature process) and daily mean, maxi-
mum or minimum temperature. The goodness-of-fit of these models will be
considered through simulations from many points of view : the residuals
including their squared values, density functions, quantiles, extreme para-
meters. These quantities are evaluated at a precise date or precise month.
Our model, in general, performs well and shows its better goodness-of-fit
compared with other models. However it has some limits that we try to dis-
cuss.

Thus modeling the temperature is a very interesting, but very complicated
subject, especially considering the recent greenhouse effects. Our model for
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instance gives a quite good response to this problem. An important remai-
ning problem is that our model has many parameters, which can become
numerically heavy for simulations. A perspective work is to find a simpler
model, in the sense of less parameters, which can still take into account all
these features (complex seasonality, boundedness, volatility depending on
state and on time).

We were obliged to limit the data treated in the thesis. We do not dis-
cuss problems involving several stations and problems specified to very long
observed series for instance. This work is needed to check the generality of
our methods, that means it must not be valid only on one particular station,
one particular climate in Europe or one specific length of series.

It remains an important work to do in order to improve the model, if
data are provided with a shorter interval of sampling, which has not been
the case so far.

To summarize, this thesis gives a complete treatment on time series :
trends, seasonalities, extremes, links between these factors, and is finished
by the construction of a simulation model. The statistical methodologies
proposed are general. Here we apply them on air temperatures, which is a
popular subject of this last century. Some of our methodologies have been
applied to water temperatures or precipitations. Many interesting pheno-
mena of the temperature are revealed throughout this study and give us a
more complete view about the strong complexity of this stochastic process.
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2.1 Introduction

For more than a century, human activities have contributed to the release
of growing quantities of greenhouse gases in the atmosphere, such as carbon
dioxide, methane, nitrous oxide or halocarbon. These greenhouse gases rein-
force the natural greenhouse effect of the atmosphere and contribute to the
modification of the earth climate. The global mean surface temperature has
risen by +0.74C (+-0.18C) when estimated by a linear trend over 1906-2005
[4th TPCC assessment report], with an acceleration of the trend over the last
50 years. Most of this temperature increase, supported by changes in other
climatic indicators like the northern hemisphere snow coverage or the sea
level rise, is very likely due to the observed increase in anthropogenic green-
house gas concentration, according to the last 2007 IPCC assessment report.

Air temperature has a great influence on EDF’s activities : electricity
consumption is strongly linked to air temperature, especially in winter due
to an important part of electrical heating but increasingly in summer with
the development of air conditioning installations. Electricity production is
also conditioned by air and water temperature, particularly in summer. The-
refore, the evolution of temperature extremes, very low winter temperatures
as well as very high summer ones, is of crucial interest in the climate change
context.

The impact of climate changes on extreme weather events is a growing
subject of research studies in the scientific community. Some evidence on
the evolution of the distribution of extreme and very high values can be
found in papers of Understanding changes in weather and climate extremes
(2000 in Bulletin of the American Society : Easterling et al.,[40], Meehl et
al.,[99]). These papers also include a large bibliography on physical aspects
of the problem and on data and studies for various areas in the world.

Many recent works focus on regions of different size, from parts of Europe
to the entire world. They are concerned with the evolution of universally ac-
cepted indices proposed in order to represent high values of climate variables,
such as temperature or precipitation.

Based on particular standards, these indices do not examine very high,
rare events, but enable fair evaluations for very large scales (see Yan et
al. ([I54]), Frich et al. ([56])). Until recently, these studies suffered from
a lack of spatial coherence, especially over FKurope, due to the lack of a
high time resolution dataset for this continent. This drawback has now been
overcome, as the European project ECA&D (European Climate Assessment
and Dataset) has provided a coherent dataset of long time series, checked
for homogeneity, over the whole European continent (Klein Tank et al.,[90] ;
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Alexander et al.,[4]).

These studies however focus, as mentioned, on an internationally agreed
set of extreme indexes which describe rare events, but not the extremely rare
values needed in the industrial dimensioning context. As a matter of fact,
dimensioning of civil engineering works is based on the statistical evaluation
of return levels for some defined return periods (20, 50 or 100 years de-
pending on the required reliability). For example, air conditioning for some
sensitive industrial sites is based on 100-year return levels of high local air
temperature. Thus the main goal of this thesis work is to understand the
possible evolution of temperature extremes and to propose methodologies
to infer future long period return levels. To do so, it seemed relevant to first
carefully study how the past warming tendency affected the occurrence and
level of extreme temperature events. Then, from this knowledge, a statistical
simulation of the temperature evolution, taking climate change into account
and correctly reproducing the behavior of the tails of the distributions, has
been investigated. As a matter of fact, such an evolution could be of great
interest in the electricity consumption forecast, as temperature is one of the
leading explaining variable.

2.2 State of the art

The climate change is in fact complex. It has an effect, with statistical
evidence, on both the central field and extreme events of the temperature.
Therefore, the analysis of past temperature distribution evolution need to
be approached by a careful statistical non parametric study of the evolu-
tions of the mean, variance and extremes. As recalled in the introduction,
the temperature increase is bound to continue, and changes in mean tempe-
rature as well as in variability and extremes are predicted. Katz et al.([85])
have already mentioned that the variability change has more impact on ex-
tremes than the change in the mean. Some authors have also looked at the
impact of climate changes on both the mean and the variability. Schar et
al.([133]) pointed out the role of increasing variability in the occurrence of
the 2003 heat wave in Europe. Ferro et al.([50]) proposed a technique to
explore changes in probability distributions and applied it to climate model
simulations.

The other methodological point in these studies concerns the trend es-
timation. Generally, trends in mean are derived using ordinary least square
regression methods (Angell [84], Percival & Rothrock [34]). On the other
hand, trends are usually studied separately : papers are devoted either to
trends in mean or in variance, or to trends in extreme events. The trends



2.2 State of the art 22

in extreme events are analyzed using linear least squares fit on the series
of the previously mentioned “extreme index” (Kiktev et al. [89], Klein &
Koénnen [5]). Mudelsee et al.([96]) use kernel fitting to study flood risk in a
nonparametric way. In this study, we would like to address the non para-
metric derivation of trends, as well as the links between trends in different
quantities such as mean, variance and extremes. Generally, a trend is com-
puted (not defined) as a slow, and thus regular component of a time series,
leaving a quite stationary series, with less variable residuals. In other words,
it comsists in extracting some deterministic signal from a noisy dataset. In
most studies, as stated before, this is done using ordinary least squares fit-
ting, which will be referred to as classical trends.

Another problem is usually seen when working with the temperature
data is the choice of scale for the time. There are many such scales possible,
their choice depend on the purpose of the researchers. The long term one
is traditionally the year effect, which can give an objective meaning to the
measure of the unity, to measure “long time” effects (or low frequencies).
The next effect is clearly the seasonal one in the period of one year. Then we
can study higher frequency data if we have observations for instance every
three hours, or every hour, and so on. All these scales : Short, medium and
large are affected by the warming effect. Moreover, there exists the corre-
lation between the observations, which is natural for climate factors, and
this correlation is stronger on small scale temperatures. These facts have of
course social consequences and need a careful statistical treatment.

Climate models describe the climate system of the earth in the physical-
mathematical equations that can be solved numerically. It is used to recons-
truct past climate and to study its future. The law governing the behavior of
the atmosphere, soil, oceans, sun, and their interactions are translated into
computer language. We finally get numerical description of climate pheno-
mena and prediction following different scenarios. However careful studies
of strong qualitative scaling of observed data and model simulations showed
the difference between data from model simulations and observations.

This shows uncertainty in model simulations. They often do not cor-
rectly reproduce the stochastic items such as variability of the tempera-
ture, the chaotic nature of the climate system, and the influence of human
being(Dessai and Hulme,[37]). Schwierz et al. ([I36]) present an overview
of the uncertainties in climate model projections that arise from various
sources. They identified uncertainties stemming from the complexity and
non-linearity of the climate system, its irregular evolution and the changing
climate sensitivity, the emission scenarios selection and their implications
for the radiative forcing, and the inevitably incomplete and inadequate re-
presentation of the climate system in a weather or climate model. The links



2.3 The data used 23

between trends and the extreme characteristics are also not satisfactorily re-
presented in model simulations. A statistical simulation of the temperature
evolution, taking climate change into account and correctly reproducing the
behavior of the tails of the distribution could thus be helpful and needs to
be investigated.

All these problems will be treated with care throughout our thesis. In
the following, we will give more details on our datasets, the observations,
reanalysis and model simulations.

2.3 The data used

The identification of changes in extremes requires the availability of long,
reliable and homogeneous observation series on a daily basis. Our study
concentrate on the series of temperature in Europe. For Europe, the data-
sets of daily temperature was lacking, only monthly datasets were available,
and this statement of fact leads to the creation of the European Climate
Assessment and Dataset project in 1998. Since 2002, this project provides a
database of long and criticized series for Europe and the Middle East (Klein
Tank et al.,[42]).

2.3.1 ECA & D series

The initial temperature series used in this study consist of 55 of the lon-
gest and most homogeneous daily temperature series (mean, maximum and
minimum) made available by the ECA & D project (Klein Tank et al.,[42]).
For each of the collected series, the ECA & D project tested for homogeneity
using different test to identify breaks. The results are summarized for each
series over different periods in classifying it as “suspect”, “useful” or “un-
determined” and in indicating the years when breaks have been identified.
In the first place, only series quoted as “useful“ over the 1946-2006 and the
1901-2006 periods have been retained. Then, among these series we keep
only those for which no break has been identified with the three methods
used in the ECA & D project. Table summaries the series and their per-
iod lengths whereas Figure shows their geographical location in Europe.
The period lengths are the maximum periods of available (non-missing) data
since 1946 (for 53 series) or 1901 (for the 2 Deols and Dresden series “useful”
over this period).
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Location Country Period for Tx Period for Tn
Alger Algeria 1946-1998 1946-1998
Armavir Russia 1946-2003 1946-2003
Birr Ireland 1954-2006 1954-2006
Bourges France 1946-2001 1945-2000
Bremen Germany 1946-2001 1946-2001
Calarasi Romania 1946-2006 1946-2006
Cognac France 1946-2006 1947-2006
Deols France 1901-2006 1921-2006
Dresden Germany 1917-2006 1917-2006
Elatma Russia 1946-2003 1946-2003
Elista Russia 1946-1999 1946-1999
Erfurt Germany 1951-2006 1951-2006
Halle Germany 1946-2006 1946-2006
Helgoland Germany 1953-2006 1953-2006
Hopen Norway 1949-2006 1946-2006
Hoseda Russia 1946-2003 1946-2003
Hurbanovo Czech Republic 1948-2006 1948-2006
Ile de Groix France 1949-2006 1949-2006
Kaliningrad Russia 1947-2006 1947-2006
Karasjok Norway 1951-2006 1946-2006
Kaunas Lithuania 1946-2006 1946-2006
Kem Russia 1946-2005 1946-2005
Kempten Germany 1952-2006 1952-2006
Kleine Brogel Belgium 1954-2006 1954-2006
Kojnas Russia 1946-2003 1946-2003
La Rochelle France 1946-2006 1955-2006
Leipzig Germany 1946-2006 1946-2006
List Germany 1948-2006 1948-2006
Lugansk Ukraine 1946-1996 1946-1996
Magdeburg Germany 1947-2006 1947-2006
Moermansk Russia 1946-2003 1946-2003
Narjan Mar Russia 1946-2006 1946-2006
Onega Russia 1946-2006 1946-2006
Orenburg Russia 1946-2003 1946-2003
Orleans France 1946-2006 1946-2006
Osijek Hungary 1946-2006 1946-2006
Petrozawodsk Russia 1946-2003 1946-2003
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Petsjora Russia 1946-2003  1946-2003
Potsdam Germany 1946-2001  1946-2001
Siauliai Lithuania 1946-2006  1946-2006
Smolensk Russia 1946-2003  1946-2003
Sortavala Russia 1946-2006  1946-2006
Syktyvar Russia 1946-2003  1946-2003
Troitzko Russia 1946-2003  1946-2003
Uman Ukraine 1946-2006  1946-2006
Uzhgorod Ukraine 1946-2006  1946-2006
Valley United Kingdom  1946-2001  1946-2001
Vardoe Norway 1951-2006  1951-2006
Verona Italy 1951-2006  1951-2006
Vichy France 1946-2006  1956-2006
Vilnius Lithuania 1946-2006  1946-2006
Vilsandi Estonia 1949-2006  1946-2006
Voru Estonia 1946-2004  1946-2004
Vytegra Russia 1946-2006  1946-2006
Wologda Russia 1946-2006  1946-2006

TABLE 2.1 — Location and period length of the ECA&D selected daily tem-
perature series.The series with different period lengths for maximum tem-
perature(Tx) and minimum temperature (Tn) are written in italics

2.3.2 European ENSEMBLES project gridded dataset

The production of gridded daily datasets from observations is one of the
deliverables of the European ENSEMBLES project (http ://www.ensembles-
eu.org) : the research team RT5.1 of the project is due to produce observa-
tional daily gridded datasets for temperature and precipitations. The EN-
SEMBLES project is supported by the European Commissions 6th Frame-
work Program as a 5-year Integrated Project from 2004 to 2009 under the
Thematic Sub-Priority “Global Change and Ecosystems”. Different datasets
are now available, for daily minimum, maximum and mean temperature and
daily precipitation amount, covering the period from 1950 to 2006 on a 0.25
and 0.5 regular grid as well as on a 0.22 and 0.44 rotated pole grid. The
datasets for daily minimum (Tn) and daily maximum (Tx) temperature on
a 0.5 regular grid have been used in this study.

2.3.3 ERAA40 reanalysis

The European Centre for Medium range Weather Forecasts (ECMWEF :
http :// www.ecmwf.int) has conducted a reanalysis project, in order to
promote the use of global analyses of the state of the atmosphere, land and
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Location of the 55 ECA series
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FIGURE 2.1 — Locations of the selected ECA&D temperature series

surface conditions over the period from mid-1957 to 2001. The three dimen-
sional variational technique has been applied using the T159L60 version of
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the Integrated Forecasting System to produce the analyses every six hours.
The 2m-temperature dataset over a 2.5 regular grid has been used in this
study. From this dataset, the maximum (minimum) of the four daily values
has been considered for the daily temperature maximum (minimum). This
leads to slightly under-estimated values compared to the “true” daily maxi-
mum or minimum, but with a comparable order of magnitude. From these
different datasets, the analysis has been made on a spatial window covering
Furope between longitudes 10 and 65 East and between latitudes 35 and 80
North. The hot season has been defined as the 100 days between the 14th of
June and the 21st of September, whereas the cold season has been defined
as the 90 days between the 1st of December and the 28th of February. These
periods have been selected because most extreme events occur between these
dates.

In Chapter 4, we work on the daily maximum or minimum temperature
in the purpose of finding the global evolution of extreme temperature in
the summer and the winter. In Chapter 6, we work on the same kind of
datasets but we concentrate on the maxima (or minima) of these series to
construct the extreme models. In Chapter 11, we work on the temperature
with different frequencies from 3 hours to 24 hours to study a discretized
version of diffusion process.

2.3.4 Simulation models

The data from simulation models are not our central data. They are only
used sometimes for the purpose of giving a general view of some behaviours
and also the uncertainty of simulation models.

Six different climate models will be used in our work. These models are :

e beer-bem2-0 of the university of Bergen in Norway

e cnrm-cm3 of the French meteorological office research centre (Centre
de Recherches Mtorologiques de Mto-France)

e ipsl-cm4 of the Institut Pierre-Simon Laplace in Paris, France

e mpi-echamb of the Max Planck Institute for meteorology in Hamburg,
Germany

e ingv-echam4 of the National Institute of Geophysics and Volcanology
in Bologna, Italy

e ukmo-hadgeml of the United Kingdom Meteorological Office Hadley
Centre, over the period 1950-1999

Simulations of these models obtained in the framework of the fourth
IPCC assessment are available from the PCMDI web portal.
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3.1 Introduction

This chapter is devoted to the study of all the non parametric methods
used in this thesis. Some classical results are most often repeated when they
need modifications to be applied to temperature series. On the other hand,
we will develop some theoretical points when the existing literature is not
sufficient. Non-constant variability, correlated errors and non-orthogonal pa-
rameters are all known to provide difficult problems in stochastic modeling
and estimation. Temperature series present all these characteristics. In this
feature, the data length is also an important element.

Temperature series X; presents also quite evident year and day seasona-
lities but in a complex form. All the coefficients chosen to represent these
seasonalities and the dynamic of the residuals are affected by the warming
effect.

In this chapter, to simplify the exposition, we neglect the seasonalities.
Later we come back to the seasonality and justify our advance. This assump-
tion is acceptable when the datasets are rather homogeneous, for example
when only the daily maximum temperature in summer are considered, but
this kind of assumption needs to be considered with caution.

In this case, the question is how to choose a representation of the series
simple enough to have a statistical meaning while taking into account the
main features of the series. We can think about a model of the forms :

Xt = my + Stg¢ oOr Xt =m; + Mt (31)

where m; is the mean trend, s? the variance one and &; or 7; the residual
process.

There are many ways to estimate m; in a quite objective sense. First, the
most naive way is to compute a mean for every “year” (can be a season) a :
mq = Y Xt/Ng where N, being the length of the year (or season). Then m,
can be used as a nonparametric estimator of m. This method is often used
in climate applications. Other simple methods are to use a linear regression
or piecewise linear regression instead of a nonparametric estimation .

Over a long period, say a century, such methods are quite arbitrary be-
cause they force the regression function to take a defined-in-advance para-
metric form. They avoid a statistical choice of the parameter of smoothness,
but replace it by the degree (in general high for long series) of a polynomial
or a piece-wise linear line. Nonparametric methods present the advantage of
giving an objective approach of “what is a low frequency for this trend ?”.
Non parametric regression surfaces can consume a large number of degrees
of freedom in the patterns of complex data. In our case, a logic and appro-
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priate way is to find out what is “the significant window” one has to choose
to make a (weighted) moving average of the observations. This bandwidth
parameter is significant in our context because it is clearly linked to the
“memory” of the warming process. There exists a large number of non para-
metric methods linked with this kind of "window” parameter. The simplest
is the (weighted) moving average method, then we have the kernel method
and the most popular is the loess (local polynomial regression) method. The
fact that the model has a trend in the variance, and that evidently &; or
7 is not a white noise make the use of nonparametric approaches difficult
and dangerous without caution in choosing the bandwidth parameter. In
this context, we will use loess to estimate the trends in model . The
asymptotic properties of loess, and an estimate procedure for this kind of
model, will be detailed below.

If we work without seasonalities, as we previously said, one can suppose
that ; is a stationary process or at least of stationary covariance, and for
us weakly dependent. Of course this is a first assumption ; there are no sta-
tistical evidence of non stationarity. In the simplest case, we therefore need
to estimate at least m(t), s(t), the covariance function of ¢; or that of 1, and
perhaps, in very particular cases, the distribution of ¢, to have a complete
description of the model .

In the literature, there are no asymptotic results, neither are there good
and well justified algorithm which would be able to answer this problem in
the general case of model . So we try to give a partial answer, to es-
timate (3.1). These trends m(t) and s(t) represent the main characteristics
of the central part of the distribution of X;. From now on, we will call this
part “the central field” for the sake of lightness.

Another important subject of this thesis is the modeling of the extreme
temperatures. Roughly speaking, the problems related to this subject are
linked with the construction of probabilistic and statistical properties re-
lated to very high or very low temperatures. In order to understand how
climate change might affect such extremes, it is necessary to explore the
changes that have occurred both in the past and in the present. That means
we need to build the trends of extremes. In this case, they are represented as
the functional parameters of the extreme value distribution. In order to have
flexible representation for trends, we estimate the extreme parameters non
parametrically. In this case where we know the distribution of the noise, or
at least an approximation, likelihood based methods of approximation are
then preferred. In practice, both the two nonparametric methods loess and
splines can be used. For numerical considerations, the spline approach gives
a faster algorithm. Moreover, when we use local likelihood (loess), some-
times, a rupture in the curve of the estimates can happen when the tuning
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parameter is small. For these reasons, when working with the extreme mo-
dels, we will use cubic splines to estimate the extreme trends.

The choice of smoothing parameters is really important, but very diffi-
cult. Moreover in our case, the problems cited above, such as correlated and
non stationary data or estimations of non-orthogonal parameters, compli-
cate the choice of smoothing parameters. There exists a number of available
works dealing with these problems, in general with poor theoretical basis.
They do not always give good results or need really heavy numerical compu-
tations for large datasets. In this chapter, we develop some new algorithms
to solve optimization problems in two different contexts : estimation of the
trends in the central field by loess with the presence of correlated errors,
and estimation of non-orthogonal extreme parameters in extreme models by
splines. An important part of this chapter concerns the validation of these
algorithms, which are mainly justified through simulations.

3.2 Application of loess

In this section, we will develop some points on asymptotic properties for
our specific context : the variance is not constant and the errors are corre-
lated.

The basic idea of loess is similar to the one of the kernel estimation :
estimate the mean function by using the information of the nearest neigh-
borhood. However instead of approximating locally the mean function by
a constant, the loess estimator is obtained by locally fitting a pth degree
polynomial to the data via weighted least squares. Throughout our work,
the local linear fit is used, that means p = 1 is taken.

The earlier works on local least squares regression estimators are due to
Stone ([145]) and Cleveland ([21]). Advantages of loess compared with ker-
nel regression estimation are its better boundary behavior, its adaptation
to estimate regression derivatives and its good minimax properties. Some
significant references are Fan ([45], [46]), Hastie and Loader ([74]), Fan and
Gijbels ([47]). In these papers, the independence of the observations is assu-
med. The statistical properties of local polynomial regression for dependent
stationary data, have been studied in recent works of Masry and Fan ([98])
and Francisco-Fernandez and Vilar-Fernandez ([53],[54]).

In our case, fixed designs and short-range dependence nonparametric re-
gression models are considered.
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3.2.1 Estimation of mean trend m

In this part, we start from results of Ruppert and Wand ([131]), Francisco-
Fernandez and Vilar-Ferndndez ([53]). They studied the loess estimation of
the regression function in the context of dependent errors but constant va-
riance, and second-order stationary process. We give appropriate extensions
to our more general model.

Let X; be the observations. We consider first the model :
Xy =m(t)+s(t)e, t=1,....,T (3.2)

where m(t) and s(t) are regular (in general twice derivable functions), s(¢) >
0 and ¢; is a stationary process, or at least the model

X = m(t) 4+, t=1,...,T

with some constraints of boundedness.

As for parametric regressions (see significant examples in chapter 5 on
extremes), no asymptotic theory exists for this kind of model, for T" — oo,
because nothing has been said on the behavior of m and s out of [1,T7]. So in
general, we study its corresponding asymptotic properties on a compact set,
say [0,1], by the time transformation t — t/T. Therefore, the asymptotics
of the estimates m(t) and §(¢) are in fact the asymptotics on i, (t/n) and
$p(t/n). We note however m(t) and 5(t).

The only remaining problem for us (see chapter 10 on the diffusion) is
the possible confusion with discretization problems of a continuous time pro-
cess. We discuss this point in the chapter on diffusion processes.

We now give some notations to make the description of the asymptotic
properties easier.

Let x € (0,1), z = k/n, k € N, n is often omitted. Let m and s be
functions defined on (0, 1). For every n, let M, (respectively S,,) be the vec-
tor (m(z1), m(z2),...,m(z,))T (vespectively (s(x1),s(z2), ..., s(zn))T). The
vector of observations is X,, = (X1,..., X)T.

Let K be a kernel and K,, defined by K,(z) = iK (%) where h,, is
the bandwidth.

We shall need the following quantities : X, () is the n x 2 design matrix
1l z—2
1 1
Xy =—
n

1l z—=x,
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Wy () is the n x n weight matrix defined by :
Wn(x) - (n)ildiag [Kn(x - 1'1), cee 7Kn(x - xn)}
For r € N, let u],(z) = %E;Zl (x — ;)" Kp(x — ;). Up(x) is the 2 x 2

matrix defined for 0 < 4,7 < 1 by Ufz’j(iﬂ) = Ulw'z+j72(x)-

Let vfy(z) = L S (v — 23)" K (x — @) X; and Vy(2) = (0 (2), v} (2))7.

n n ren

In what follows, x is omitted when there is no ambiguity. We note that
U, =XI'W,x, and V,, = X, W, X,,.

The local linear estimator of m(z) is constructed from :

B(z) = argéninz [X; — Bo — Br(x — 2;)P]P Ky (2 — ) (3.3)

i=1
The minimum is reached for 8, = (BO,:c; Bl,x)T- B is given by :
B=xTw,x,) XTW,x,X = U; 'V, (3.4)
Then we have 7 (z) = fo(x). Let M, = X, 8 the vector (m(z1), ..., m(zn))~.

Now we investigate the asymptotic properties for the bias and variance
of the estimator m(z). The following assumptions will be needed in our ana-
lysis :

A.1.(kernel) K is symmetric, with a bounded support, and uniformly
Lipschitz. The odd moments of K are null.
A.2.(bandwidth) h,, € (0,1), h,, — 0 and nh,, — occ.

A.3.(m and s) m € C?(0,1), s € C?(0,1).

A .4. (correlations) Denote n; = s;e;, then
SUPl/nzzlgi,jgn | cov(ni,mj) | = D < oo.
n

A’ 4 lim1/n) 330 o e | cov(ni,ng) | < oo

A5 supl/ny 3 o icn | cov(ng,n]z) | = Dy < 0.
The assul:rllption A4 is linked to non-stationarity. If €; is stationary, with
autocovariance function ~, A’4 is implied by Y, k| v(k) | < oo. It is a
stronger hypothesis than > | v(k) |< oo which leads to

It
2 2 - =e<o

i=1 j=1
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but do not imply A4.

In order to explore the asymptotic properties of the estimator m, we
need some lemmas. The proof of the following lemma is based on two re-
marks proceeding from Al.

K with bounded support implies Card{i, K,,(x; — x) # 0} = O (ﬁ) for
every n and Card{l, K, (x; — x)K(x;—x) # 0} = O (ﬁ) for every x and

every 1.

Note K*(t) = el U1 (1,1)TK(t) with eI = (1,0....,0). K*(t) is called
equivalent kernel (see Fan & Jijbels,[47]). We have m( ) =y Kz — 2) X5,
S K (x;—x)=1and > ;| (v — x)K*(x; —x) = 0.

Let p} = [ W K" (u)du, (j,7) € N? and let
wh" = 1 i (x — 2;) K7 (x — 2;)
n

=1

then :

Lemma 3.2.1 1/ limh,w)' = [W/ K (u)du = %

2/ limhy, ™ (w}")? = [u¥ K?(u)du = p%j

3/ Let o7 (x) = v! (x) — Bl (x) and Vy,(x) = (02(z), v} (z))T. So V,(x) =
X ()W (2)(X,, — M,,) then :

limeov(hy, "o, (), hy,"v," (2)) < Dy
The proof of 3 is straightforward using A1, A4 and point 2 of the lemma.
From this lemma we cannot have a limit, only a majoration of the variance
except if A’4 is satisfied.
The asymptotics of the estimator m(x) will be studied. The following
lemma is a consequence of the theorem 4.1 of Ruppert and Wand ([I30]).

Lemma 3.2.2

My, = %0 (2)Ba(z) + ™ (z) [ (- ”1)2] + o(h2)
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Directly from the definitions, we have : U, Y (x)V,(z) = Bn(z)—E(Bn(z)).
Then

Bue) = Ba(o) = U Talo) + U 2 | ] o0

We get the following theorem from Lemma [3.2.1] and Lemma [3.2.2

Theorem 3.2.1

] mn - s =" [ M) i o

where I, = (1,..., 1) : unit vector of dimension p.
L] A D . ~1
< — .
Var ([ hn:| Bn(x)) < U, "GU, (3.7)

2 2
where Gg = [ “3 Mé]
H1 Mo

If%Z@ Zj Enin; D70 0 < oo then

Var ([ hj Bn(:c)) = %U;ngUgl +0 <nlhn> (3.8)

Remark : This kind of theorem gives a trade-off between bias and variance
which highly depends on the derivability hypothesis made on m. In this
sense, its practical interest is quite relative ; it is more an indication than a
true asymptotic result. If m®) is supposed to be continuous of course the
bias becomes of order hﬁ“.

By writing (3.6 and (3.8]) under the form of K* and then using the fact
that K* = K in the linear case (p = 1), we get the mean square error of the
estimator m(x) :

Theorem 3.2.2

. 1 S| 1
MSE (i, (z)) = [2him<2> (xm;] + n—hnugc +0 <nhn + hﬁ) (3.9)
where C =limi 3", > j=1 Eminj if it exists.
n
and MSE (i, (x)) is bounded by the same quantity when we replace C, if it
does not ezist, by supL 3", > =1 [Emingl.
n
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These asymptotic results are valid for an interior point at, at least, an
hy distance from the boundary. What is the difference with a point in the
boundary ? Does there exist a boundary bias?

Let us choose a left boundary point in the form z = ch, with ¢ > 0,
whereas we select a right boundary point of the form x = 1 — ch. Let us also
assume that m(® (z) and s(z) are right continuous at the point 0 and left
continuous at the point 1.

Modifying the results of Fan([45]), we can write the MSE of the estima-
tor m at the left boundary point x = ch as :

2

m(2)(0+) +8(0)

C—”++ (RY)  (3.10)
2 nh ¢ ’

MSE(rnn ()| X)) = h'a(c) [

where Cf = 1/nY"0_ S02F E(ning) and with . = [ _#K(t)dt

:U’%,c — M1,cM3,c
afe) = M2e el
Ho.ch2,e = 11 o
S (b2, — upn )2 K? (u)du
(UO,CMQ,C - N%,c)Q

From and , we note that the squared bias of the local linear
regression estimator is smaller at the boundary point than at an interior
point, but the variance tends to be larger at the boundary because there
are fewer observations in estimation. However the MSE of a boundary point
has the same form as the one of an interior point. The expression of
an interior point corresponds to with ¢ = 0o. We can conclude that
the linear local polynomial estimation does not suffer from boundary effects.
Usually, we say that local polynomial estimation has an automatic boundary
bias correction.

ple) =

(3.11)

3.2.2 Estimation of variance trend s

As presented in Chapter 2, the variance of temperature changes with
time. For example, when we consider the daily maximum temperature for
the last 30 years, the variance has an increasing tendency with time. For this
reason, a non constant variance needs to be taken into account in our mode-
ling. It is of common interest to estimate variances in a variety of statistical
applications. In our case, this variability is identified through the model :
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yi = m(z;)+s(x;)e; by estimating s(x) by loess from squared residuals. The
literature on this type of model is rather sparse. There were some works on
the heteroscedasticity model with kernel-based methods such as Miiller &
Stadtmiiller([101]), Hall & Carroll([67]), Brown & Levine([13]); with local
polynomials such as Ruppert and al.( [131]), Fan and Yao([4§]).

From the existing works, it is well-known that without knowing the re-
gression function m, we can still estimate the variance asymptotically as
well as if the regression were given. The effect of preliminary estimation of
the mean has only a second-order effect on the asymptotic performance of
32(x) (see Ruppert et al., [I31]). We will show in this section that by adding
appropriate assumptions, these properties are still true when the noise is
correlated.

If m is given, one can solve the problem of estimating s?> by using the
following nonparametric regression residual model given by :

ri = (Xi —m(x))?
and
r? = s2(x;) + e

It can be considered as equivalent, in some precise sense, to :
ri = s(x;)e;
in which the relation E(r?) = s?(x;) is kept as in the previous one.

For least square consideration, the two parameters m and s play the same
role. Now, if m is unknown, an intuitive approach is to first estimate m and
to then plug it, in order to estimate the new sample 72 = (X; — m(x;))2.

The loess method is then applied to this series to estimate s2.

Suppose that m has been estimated as in the previous sub-section by
m(z) = Bo(z) with a bandwidth h;. Now we estimate s%(z) by 8%(z) = ao
by the same method with a bandwidth ho where :

(&g, 1) = argminz [#2 — ag — ay(x; — 2)]° K <xh2 ) (3.12)

@Q,x1 i=1
This estimator of s? is called residual-based estimator.

We need to show that the asymptotic performance of the estimate 32
from this plug-in method is the same as if the mean function m were known.
We follow the work of Ruppert et al. [131] to study the asymptotic properties
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of this residual-based estimator of s2, but we have to extend the hypothesis.

We keep the same notations as in the previous sub-section, note hl is
the bandwidth in the estimate of m and h2 is the one in the estimate of s2.

We make on s the same assumptions as on m. Now we have to control
the correlation of 2.

Let % = cov(r?, 7']2) = cov(n?, 77?) and suppose satisfied the condition :

A.5. supi 77 > i1l kYW | = Dy < 0
n
Let T',, be the covariance matrix (Hiléi’jgn ), S2 = (s%(x1), ..., s%(xp)) T

and S2 = (58%(z1), ..., 8 (z))T. Let Ly, Ly be the smoother matrix corres-
ponding respectively to the estimators 7 and §2. That means m = L1 X,
and §2 = Lor?.

Consider the lemma below :
Lemma 3.2.3
E(8%(z) — s*(z)) = (Ly — I)S? + Lobk (b2 + diagonal (L1 X, LT — 201 %,,)
where bl (z) = (L1 — I)M,, and
cov(82) = Ly(Ly — I)(Ly — )Ty (L1 — D (Ly — DTLY (3.13)
Then we obtain the following theorem :

Theorem 3.2.3 If

{(hn)* + (nhy) "'} = o((h7)?) (3.14)
asn — 0o. Then :
220N 2 7(}%21)2 1/.2\» 242
E[$*(x) = s°(2)] = =5 ma(s7)" (@) + o (hy)%) (3.15)

and

. 1
var[§?(z)] < mung + of (3.16)

i)

n
If nh_)r{)loi D1 D=1 k" =1 exists and Dy < 0o, we can put | instead of
Ds.
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The proof is the same as that of the theorem on the estimate of m.

From this theorem, we can see that the leading bias and variance terms
of 32 estimated by a local linear estimation are analogous to those obtained
by the mean estimator m, except that the terms linked with m are now re-
placed by s2. The asymptotic properties of the estimator of the variance are
the same as those in the case where m is known. These terms depend only
on the bandwidth k2, indicating that the initial bandwidth h! has only a
second-order effect on the asymptotic performance of the variance estimator
52, which is determined by . So there is no loss in asymptotic efficiency
due to the estimation of m if the condition is fulfilled.

The only problem left in the argument of Ruppert et al.([131]) is the
condition in the choice of bandwidth. We can use an automatic selec-
tor to choose hl but this is not possible for h2 because of the second-order
effect of h} on h2. The choice of h2 must therefore depend on hl. Ruppert
et al. proposed an alternative strategy to conserve the optimal asymptotic
properties : first choose hl through an automatic bandwidth selection and
then apply the same bandwidth to estimate squared-based variance. In the

end, (3.14]) will be satisfied.

Fan and Yao ([48]) applied a local linear regression to the squared resi-
duals and demonstrated that, without knowing the regression function, we
can still estimate the variance asymptotically as well as if the regression were
given. Their basic idea is analogous to that in Ruppert et al.[I31], however
the errors are not demanded independent and condition of second-order ef-
fect of h. on h2 are not needed. The choice of bandwidth for the estimation
of variance is therefore more flexible. The assumption required in their study
is that the observations are made from a strictly stationary and absolutely
regular process. Their assumption cannot be satisfied by our temperature
data. As often, asymptotic results are interesting to prove the consistence
of the estimators. But their lack of adaptivity, in particular in the choice of
the order of derivatives which controls the bias value, limits their practical
usefulness.

3.2.3 Bootstrap confidence intervals

It is now necessary to quantify the uncertainties associated with the esti-
mation of the mean and variance evolutions. A confidence interval based on
the residual bootstrap resampling will be constructed. It is simple, and has
been chosen because it does not rely on the evaluation of quantities accor-
ding to some asymptotic property. There exists a widely developed theory
for asymptotic confidence intervals (uniform or pointwise confidence inter-
vals) such as Hall ([65],[66]), Faraway ([49]); Haidle and Mammen([71]);
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Neumann([103]). Recently, a complete treatment on the uniform confidence
bands, for both the mean and the variance for the spline method, has been
done in Wang and Yang([147]). We do not discuss about uniform bands
here. Our choice will be to construct a pointwise confidence interval based
on bootstrap percentiles. It is well adapted to our estimation method be-
cause it does not artificially assume normality and it is simple to implement
with our large datasets.

A classic bootstrap can not be satisfied because of the presence of de-
pendence in the datasets. We use here the moving blocks bootstrap (Lahiri,
[91]) with an appropriate size of block.

The procedure can be described as :

e Estimate m(x) and s(z) and calculate the residuals &; = Xls;lml, 1<
1 < n.

e Construct B bootstrap samples of same size of € : by taking randomly
(3] blocks, of chosen size b, of the elements in £ with replacement, we obtain
e, j=1,..,B.

e Construct the bootstrap samples of X by using : X I = m; —|—§Z-5;‘j . Es-
timate the new trends from these samples m* and s* with j = 1,...., B,i =
1,...,n.

e At each 7,1 < i < n, take the 5th percentile and 95th percentile from
the vectors (m}!,...,m:P) and (s¥!, ..., s¥%). We then obtain the confidence

interval of 90% for m(x) and §(z).

3.3 Automatic selection of the smoothing parame-
ters for correlated data

The use of nonparametric regression involves the choice of a smoothing
parameter which controls the balance between goodness of fit to the data
and smoothness of the regression function. In order to avoid subjectivity and
to simplify the work of the statisticians while not using unrealistic asymp-
totic results, the use of an automated selection method is desirable. In the
previous section, we showed some rules of parameter choice for the local and
smoothing spline regressions. When the data are independent, these methods
often perform well. However it is well known that the presence of correla-
ted errors greatly affects the selection of smoothing parameters. If the data
are dependent, the smoothing parameter selectors designed for independent
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data will produce poor results. If we consider the model X; = m(x;)+¢;, the
bandwidth selection methods “perceive” the trend in the data due to the
mean function m, and attempts to incorporate that trend into its estimate.
When the data are uncorrelated, this “perception” is valid, but it breaks
down in the presence of correlation (Opsomer et al., [10§]).

In the different contexts, many authors such as Opsomer ([107] ), Altman([106])
and Chu and Marron ( [20]), Hart ( [82]), in the context of kernel regres-
sion, Francisco-Ferndndez and Vilar-Ferndndez ([53]), in the context of loess,
and Wang ([I48]), in the context of splines, showed that the effect of igno-
ring even minor amounts of error correlation when selecting a smoothing
parameter could potentially be severe. An analysis of the problem and a
complete literature on automatic selections for correlated data are carried
out in Opsomer et al. ([I08]). When the data are (mostly) positively correla-
ted, the smoothing parameter is underestimated by an automatic selection
(for independent case) which produces then a rough estimate. On the other
hand, when data are (mostly) negatively correlated, a larger bandwidth will
be chosen which results in an oversmooth estimate. More details about the
performance of ordinary cross-validation when data are correlated is detai-
led in Hart ([72]).

In the heteroscedastic model :
yi = m(x;) + s(x;)ei (3.17)

when we estimate the trends by local linear polynomial, the effect of depen-
dence on the smoothing parameter can be seen in the form of an asympto-
tically optimal bandwidth.

As presented in the previous subsection , supposing the appropriate hy-
pothesis are satisfied, we have asymptotic mean squared error :

1 21
MSE()X) = | gitm @ ahd]| + i+ of

B 3.18
nhn+n) (3.18)

Then by minimizing MSE, we can obtain an asymptotically “optimal”
local bandwidth at each point x

CM2 1/5
hoPH(z) = . 3.19
20 | (19

When the data are independent, we obtain the same form of h;? " but C

is replaced by the variance s%(x). So if the autocovariance function is very
often positive, C' is large and the optimal bandwidth is larger than the one
in the independent case. So, when we wrongly assume independence of the
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errors, by using the ordinary automatic bandwidth selection, we obtain a
bandwidth that is far from the optimal bandwidth.

We place our study in the local linear estimation context because this
estimation will be applied in the next sections. We will present some existing
automatic selections which could correct the correlation effect. A simulation
study will be added to compare these methods. We will propose a new ap-
proach to solve this problem. It is a modified version of the partitioned cross
validation(PCV) of Marron ([97]). The main idea of PCV is to partition the
data into g subgroups by taking every gth values. Then PCV is derived from
the average value of ordinary cross-validation of each group. This method is
really efficient to remove the dependence within data, but it has been shown
that it fails to converge to the optimal bandwidth by Chu and Marron([20]).
Our method, called modified PCV, gives a correction to PCV. Its asymp-
totic forms show that the bandwidth chosen by MPCV is convergent if g is
correctly chosen. A practical strategy will be given for the choice of g. And
some simulation studies show a better performance of MPCV compared with
other methods for heteroscedastic correlated data. Moreover, it has a slight
numerical implementation, which is an advantageous point when working
with large samples.

3.3.1 The existing automatic selections in the presence of
dependence

Many methods to solve the problem of correlation were proposed inde-
pendently. Chu and Marron([20]) proposed two new cross validations, mo-
dified cross-validation and partitioned cross-validation, based on the idea
of leaving out the neighbour observations from two sides of a point in es-
timating the mean function at this point. When the correlation is short
ranged, an appropriate choice of the number of left out points will greatly
decrease the effect of correlation in the cross-validation. More recently, Hall
et al.([68]) proposed a bootstrap based approach, called block bootstrap which
can be applied even in the long range dependence case. Another idea for the
choice of bandwidth in the dependent case is to estimate the correlation
structure parametrically (by supposing the errors are an ARMA process).
One method proposed by Hart [73] following this approach is time series
cross validation. Another fully nonparametric method without, specifying
the correlation function, is the plug-in method. Plug in bandwidth selec-
tion is performed by estimating the unknown quantities in the expression of
asymptotic optimal bandwidth and replacing them by their estimators.

These methods are studied in the different contexts : kernel, loess and
spline estimations and give usually good results in the asymptotic point
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of view. However, they were studied only in the model with a constant va-
riance : X; = m(x;)+¢&; where ¢ is assumed to follow a covariance stationary
process. We will study them in a larger model with the presence of a variance
term X; = m(xz;) + s(x;)e; where s(x) is the scale function, ¢ is also assu-
med to follow a covariance stationary process. In some methods, we need
to do some modifications to take into account the presence of non constant
variance term.

Time series cross-validation will not be mentioned here because our resi-
duals has a variance term, not placed in ARMA case. Of course, if one wants
to use it in this model, a modification of TSCV is possible. The performance
of these automatic selections will be studied for our specific model through
a simulation study. This study is also for a comparison between our new
method with the others.

3.3.1.1 Modified cross-validation (MCV)

This technique is a modification of the classical cross-validation method.
MCYV is proposed and studied in detail by Chu and Marron ([20]).1t is sim-
ply the “leave -(2] 4 1)-out” version of CV criterion, for each { > 0.

For any [ > 0, the MCV criterion can be written as

1 .
MCVi(h) = — 7 [X; — i () (3.20)

i=1
where 1! (z) is the "leave-2l + 1-out” (remove ith observation and I obser-

vations of his left and his right ) estimate of m(x). When [ = 0, MCV is
ordinary cross-validation.

For the linear smoother (kernel,loess, splines...), we remark that :

m(x) = %, so the leave-2[ + 1-out estimator is :
i=1 "7

_ Zkgz[ifl,z#l] Wi (w) X
Zkgz[i—l,iﬂ} wi ()

bt ()

After some calculations, we get :

X — 1 (z:)
L= hei-rivy wr(@i)

So we can write (3.20) more simply :

Xi — mzl(ﬂjz) =
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I X)) o
Mevie) =, ; [(1 — S )] 320

with S is the smoother matrix n x n in the formula : m = 5 }

[ is a parameter to choose, such that X; and X;,,y; are practically in-
dependent. From the asymptotic property of MCV((see [20]) we can get the
relative choice of [ in practice : [ can be chosen empirically as the smallest
value such that ¢(l) ~ 0 where c¢(k) is the k order autocovariance of e. It is
however not evident because the autocovariance function of ¢ is unknown
and so have to be estimated as in plug-in method.

3.3.1.2 Partitioned cross-validation (PCV)

Partitioned cross-validation was first proposed by Marron (1987,[97]).
While in partitioned cross-validation(PCV), the observations are partitioned
into g subgroups by taking every gth observations, for example the first
subgroup consists of the observations 1,1 + g,1 + 2g,..., the second subgroup
consists of the observations 2,2 + ¢,2 + 2g,.... Cross validation is performed
for each subgroup, and the bandwidth estimate for all the observations is a
simple function of the optimal bandwidth which minimize the average value
of subgroup CV values :

PCV(h) = S CVos(h) (3.22)
k=1

where C'V{ 1,(h) is the ordinary cross-validation score for the k" subgroup.

Note hg is the minimizer of (3-22). Chu and Marron ([20]) proved that
hy is of the order (n/g)~*/® and since the optimal bandwidth is of the order
n~ /% (under the previous choice of the second derivative), the partitioned
cross-validation bandwidth is defined to be the rescaled fzo h PV = g_l/ 5?10.

When g = 1, PCV is simply ordinary cross-validation. g must be chosen
with care. Chu and Marron showed that the asymptotic mean of the band-
width from PCV is significantly different with the optimal bandwidth which
minimizes the mean average square error with large g.

3.3.1.3 Block bootstrap (BB)

Hall et al. ([68]) proposed block bootstrap approach to choose the smoo-
thing parameter. The main idea is to estimate directly the mean average
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squared errors through resampling of “blocks” of residuals from a pilot
smooth function. Hall et al.(([68])) showed that the block bootstrap has
interesting empirical properties, even under long-range dependence.

The global bootstrap bandwidth used here is obtained as follows :

Let 1 and mo denote two loess estimators of m corresponding respec-
tively two bandwidths h; and hs. M is used to compute centred residuals
and Mg to generate bootstrap data.

Put éli = Xz - ml(l’i), 671 == 1/nZéh and él == éli — 51. These are
the centered residuals. Construct the block bootstrap errors ¢ following the
method of Hall et al.(([68])). We can describe it simply in our case where
S [0, 1],1‘1 =0,z,=1":

- Take [ the block length where [ should be of smaller order than nh.
- Take b which satisfies (b — 1)l < n < bl. We take here b = [7].

- Note B; = {&;, ..., €;411—1} the block of centred residuals that starts from
position ¢, with ¢ = 1,2, ...,n — [. Resample randomly, with replacement, b
time from the sequence of all B;, we then obtain b blocks B}, with 1 < j <'b.

- Put the elements of these blocks B into a string of length bl and then
we obtain a new series €* called block bootstrap errors.

Then let X} = mo(x;) + € and mj (z) is the regression estimator from
the sequence y* by loess corresponding to the bandwidth h.

Then we look for A* that minimizes the estimated MASE :
MASE(h) = 1/n>_ [inj,(x) — na(x))?

Realize this procedure N times (N chosen), then we get hpp as the ave-
rage value of N obtained h*.

3.3.1.4 Plug-in method

Plug-in method replace the CV-based criteria by a plug-in approach.
Plug-in bandwidth selection is performed by estimating the unknown quan-
tities in the mean squared errors and then replacing them by the estimators
and minimizing the estimate mean squared errors with respect to the smoo-
thing parameter h.
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From the expression (3.19)), an asymptotically optimal global bandwidth
, which does not depend to the position of z, can be obtained :

Mgc 1/5
n(p3)? [ (m3(z))2dx

In the expression ([3.23)), there are two unknown elements : C and [ (m® (z))2dx.
We can estimate these quantities by using a pilot bandwidth hp;o. See
Francisco-Ferndldez and Vilar-Fernandez ([53]) for other ways to estimate
these unknown parameters.

ho = (3.23)

As described in Fan et al. [45], the estimator of m(")(z) the rth derivative
of m at x, obtained from fitting a pth-degree local polynomial based on the
bandwidth h > 0, for r < pis:

™) (23 h) = rlely | (XL (2)Wa ()X (@) XL (2) Wa(2) X,

where e,41 is the (p 4+ 1) x 1 vector with 1 in its r + 1 coordinate and 0
elsewhere.

So if we want to estimate m(?), a fit of pth degree local polynomial with

p > 2 is demanded. If we use a local fit of p = 2, then the estimator (2
can be written explicitly as :

m® (z) = zn: W <x - ‘”) X; (3.24)
i=1

where WQ(t) = 2!6%1(]7;1(1, ht, th)TK(t) and U,, = (Un,prjfg)lgi,jgg , UnJ =
Sy (- ) K ().

So a plug in approach will be : Estimate m(z) and m®)(z) by modeling
the observations y by loess (p = 2) with bandwidth hp;.. Estimate s(x) by
using loess from the squared residuals with same bandwidth h,;.. The au-
tocovariance function of € can be estimated from the residuals X%m From

these §(x) and ¢(k), we can estimate C(s,¢).

3.3.2 A new algorithm : Modified partitioned cross-validation
(MPCYV)

These previous methods haven been shown to work rather well for de-
pendent data with constant variance, when the parameters (size of blocks,
pilot bandwidth) are chosen “appropriately”. But it is not clear or there is
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not yet an algorithm to find appropriate parameters. Moreover, the nume-
rical computations of most of these methods are heavy, especially when the
dataset is large (5000 values for example). This is problematic because our
series of temperature have at least a length of 5000. These troubles motivate
us to find another approach which must be efficient in both the asymptotic
aspect and time of implementation aspect.

We propose here a modified version of partitioned cross-validation. The
computation of PCV is slight, however the choice of parameter g is not clear,
poor results can be obtained if g is not appropriate.

We will first give the asymptotic results of Chu and Marron in the case
of constant variance and present modified partititioned cross-validation with
the appropriate form of g. Then we modify the form of g in the heterosce-
dastic model and the use of MPCV in pratice will be mentionned.

We remind that in PCV, izo is the minimizer of :

1 g
PCVy(h) = p > CVo(h)
k=1

where C'Vp 1 (h) is the ordinary cross-validation score for the k' subgroup.

Inheriting the results of Chu and Marron and ignoring the weight func-
tion W (added to avoid the boundary effect) for model with s constant,
we have :

ho = Cpevigg"/"n /2 (14 o(1)) (3.25)

On the other hand, they showed that the optimal bandwidth hjs, as the
minimizer of the mean average square error (MASE), can be asymptotically

expressed as :
har = Cn~Y2(1 4 0(1)) (3.26)

where CPC’V(g) = [VPC’V(g)/4BQ]a C = [V/(4Bg)] with :

o0 o0

1 [ = £ ot 55 st

k=—0c0o k=—00 k>0

Chu and Marron define hpoy = hogfl/ > but Cpcy is significantly dif-

ferent from C' for all values of g, hpoy then is significantly different from
has. This difference can be seen in the simulation study in the next subsec-
tion.
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To modify this problem, we define hy;poy = hg and to approach g PCV
and hyps, we have to approach Cpcy(y) ¢'/® with C, that means we must have :

Z c(k)s*vy — g'/° ( Z c(gk)s*vy — 45> K (0) Z c(gk;))
k=—o00 k=—o0 k>0

When s varies with time, By is the same but Vpcy (4) changes :

~0 (3.27)

[n/g]
Vecvig =1/n Y. > Cov(s(xi)ei, s(Titgh)eitor) Vo

0<i<n k=[(1—i)/g]

[(n—4)/9]
— 4/nEK(0) S Cov(s(xi)er, s(@isng)eishg)

0<i<n k=1

We develop this expression into the autocovariance function of ¢ :

[(n—i)/g]
Cy(g,s,e) =1/n Z Z Cov(s(z4)€i, S(Tighg)Eithg
0<i<n k=1 (3.28)
n—g[(n—i)/g] '
= 1/nz Z SiSitkgC(kg)
=1 =
[n/g]
Ci(g,s,e)=1/n Z Z Cov(s(x;)ei, $(Titgk )Ektgj)
O<izn k=[(1-7)/g] (3.29)
= 1/n23 c(0) +2C4(g, s,¢€)
And the optimal ¢ satisfies :
‘CVO - 91/5(01 (97 S, E)VO + 4K(0)02(g> S, 5)) ~0 (330)

In practice, we execute the modified PCV approach as follows :
- Estimate hY; 5oy with different values of g.

- Retain the values of g for which iL?\/[PCV is not absurde, for example
not too near to 0.

- For each retained value g, estimate the trends m and s by loess with
bandwidth h$, p.y, the estimation procedure is explained in section we
then obtain an estimator ¢ and the estimator of autocovariance c(k).
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- With these estimators for each retained g, estimate C,C1(g, s,e) and
Cs(g, s, ). Calculate the expression | Cro—g'/°(C1(g, s, €)vo+4K (0)Ca(g, s,€)) |
and keep the value of g which minimizes this expression and corresponding

g
hMPCV

3.3.3 Simulation study

A simulation study will be carried out to compare the bandwidth se-
lections presented in the previous section. Different regression models are
considered : less variable and more variable, constant variance and variable
variance. The values are taken on an equally spaced design in the unit in-
terval. The correlated noise is taken from the ARMA family.

We take some criteria to compare the goodness-of-fit of these methods :

i/ Optimal bandwidth from the measurement of discrepancy :

1,
MASE() = 13 (n(as) = m(e)’ (3.31)
By minimizing (3.31]), we can find out the optimal bandwith with respect
to MASE. By taking 100 samples, we obtain hj;agr the average value of

100 optimal bandwidths with respect to MASE of each sample.

ii/ Mean average squared errors : we calculate (3.31)) for each bandwidth
obtained from the different methods.

3.3.3.1 Simulation study for all methods

For each method, we take 50 samples of size n, and the retained band-
width is the average value of the obtained bandwidth from each sample. For
the methods which demand a pilot parameter (bandwidth or size of blocks),
we try it with some values and the best result is retained (with respect to
the value of MASE).

e For hpsoy : the choice of | to remove 2] 4+ 1 in each smoothing window
is important. We try with [ = 2,5, 10.

e For hpcoy : Take g respectively from 3 to 10.

e For hpp : Let B be the number of bootstrap replicas, take B = 50.
We try the size of block [ = 2, 5,10, 20
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e For hyrpcov : Execute the procedure describe above with g varying
from 3 to 10.

Model 1 : m(x) = 5+ sinl0z, s(x) = 0.25, n = 500, € is an AR(1) with
p = 0.5.

Below we obtain the results of these selection methods :

MASE MCV PCV BB PI MPCV
h 0.166 0.190 0.125 0.145 0.176 0.170
MSE 0.004 0.007 0.007 0.006 0.003

TABLE 3.1 — hprase, hvov, hpov, hee, hprandhys poy with their estimated
mean squared errors in Model 1

In Table the asymptotic optimal bandwidth and the bandwidths ob-
tained by the automatic selections with their estimated mean squared errors
are shown.

Model 2 : Same m(z), errors ¢ as in Model 1 but variable s : s(x) =
0.4z + 1, n = 500

The results are presented in Table :

MASE MCV PCV BB PI MPCV
h 0.290 0.350 0.220 0.280 0.240 0.310
MSE 0.090 0.100 0.075 0.300 0.080

TABLE 3.2 — hyrase, hvov, hpov, hep, hprandhy; poy with their estimated
mean squared errors in Model 2

Conclusion

In our study, we use only the methods which do not have any assumption
on the correlation structure. In fact, a specific assumption for the errors can
give negative results because in our model, the variance is variable and itself
needs to be estimated. A misspecification on the structure of € can give a
bad result in estimating s(x). In our case, the selectors that do not suppose
any parametric structure for the errors could have better performance.

Modified cross-validation and block bootstrap work rather well in both
cases : constant variance and variable variance. Block bootstrap however is
better compared with MCYV in the case of variable variance and works much
more rapidly. MCV takes a much heavier computation time with respect to
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PCV and block bootstrap due to the computation of the smoother matrix.
Block bootstraps demands the pilot parameters, however it is rather stable
with the different pilot bandwidths and size of block .

Partitioned cross-validation does not give good results even when we
choose g with care (We tried many values of g and retained the best). This
confirms the remark in Chu and Marron ([20]) : this method is effective
in removing the dependence but there is a significant distance between the
hpcy and the optimal bandwidth.

Plug-in gives a good result when the variance is constant, however the
result for the case of variable variance is bad. The reason for this is that
when s is constant, the loss can be found in the estimator of second deri-
vative of m and autocovariance function of £, but when s is not constant,
the loss can be found also in the estimator of s. It is difficult to correctly
estimate at the same time all these unknown quantities, and the result is
that we can obtain a poor bandwidth.

In both models, modified partitioned cross-validation give good results.
Moreover, the optimal value of g is rather stable with different simulations.
And the advantage of MPCV, like PCV, is that it works numerically very
quickly. A very important remark for MPCV is that a bad choice of g im-
mediately gives an explosion in the results. Concretely, for model 1, the op-
timal g is 5. If we take g = 4, g = 6, we obtain respectively hy;pcy = 0.145
and hyrpoy = 0.18. But when we take g = 7, we obtain an absurd value
hpcoy = 0.05. This underestimated bandwidth is also obtained with ordi-
nary cross-validation.

The MPCV method, if it works correctly, is really promising due to its
numerical convenience. Now in oder to confirm the efficiency of MPCV and
also its stability with the number of observations, we will develop a detailed
simulation study with different trends m, s, correlation structures of € and
different values of n. Then an application will be done on the temperature
series.

3.3.3.2 Detailed simulation study on MPCV

* Simulation study

In the following tables, in order to make the lecture easier, bad results
will be marked in bold.

Model 3 : m(z) = 10+sinz, s(x) = 2+sinz and n = 300, 500, 1000, 5000.

In this model, m and s are rather linear.
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We will consider different correlation structures :

e ¢ is an AR(1) with different ¢, ¢ = 0.1,0.2,0.3,0.4,0.5,0.6 .

In Table the optimal bandwidth hj;asr and the results when ap-
plying MPCV : bandwidth hj;pcy, the optimal value of g and the loss

function (MASE) with m corresponding to hjspcy are given.

no| hyase g hpycv MASE
300 | 0.1 0.9 3 0.85 0.07
300 | 0.2 0.88 3 0.84 0.1
300 | 0.3 0.89 3 0.76 0.16
300 | 0.4 0.9 3 0.7 0.33
300 | 0.5 0.9 3 0.45 1
300 | 0.6 0.9 3 0.24 2.26
500 | 0.1 0.9 5 0.87 0.048
500 | 0.2 0.89 5 0.91 0.044
500 | 0.3 0.89 5 0.89 0.06
500 | 0.4 0.91 5 0.84 0.1
500 | 0.5 0.91 5 0.824 0.22
500 | 0.6 0.9 6 0.72 0.34
1000 | 0.1 0.897 7 0.895 0.02
1000 | 0.2 0.9 7 0.88 0.03
1000 | 0.3 0.91 7 0.9 0.034
1000 | 0.4 0.9 9 0.9 0.05
1000 | 0.5 0.9 9 0.89 0.05
1000 | 0.6 0.9 9 0.89 0.1
5000 | 0.1 0.88 8 0.9 0.004
5000 | 0.2 0.9 8 0.89 0.005
5000 | 0.3 0.88 9 0.87 0.007
5000 | 0.2 0.9 10 0.89 0.009
5000 | 0.4 0.88 11 0.89 0.01
5000 | 0.6 0.9 12 0.91 0.028

TABLE 3.3 — hyspcoy and their estimated mean squared errors with different

n in Model 3 with an AR(1) errors

e ¢ is an AR(3) with ¢ = (0.8,—0.4,0.3) . The results are presented in

Table [3.4]



3.3 Automatic selection of the smoothing parameters for

correlated data 53
n | harase hpaycov MSE
300 | 0.92 0.1 4.08
500 | 0.91 0.45 1.34
1000 | 0.88 0.85 0.15
5000 | 0.89 0.88 0.02

TABLE 3.4 — hyspcoy and their estimated mean squared errors with different
n in Model 3 with an AR(3) errors

Model 4 : m(z) = 5+sinl0zx, s(z) = 1+0.4z and n = 300, 500, 1000, 5000

The functions m(x) and s(z) are more variable than those of Model 3.
We will consider different correlation structures :

e ¢ is an AR(1) with different ¢ = 0.1,0.6 . The results are presented in
Table B.5

e ¢ is an AR(3) with ¢ = (0.8,—0.4,0.3) . The results are presented in
Table 3.6l

Conclusion

From the previous results, we can draw the following interesting conclu-
sions :

The change of the optimal bandwidth got from the mean squared errors
with the sample size is not really significant when the true function m os-
cillates slightly . However when m oscillates much, for example in Model
4, hpsase has a tendency to increase when the correlation increases and it
decreases with the sample size n.

For different mean, scale functions and models of the errors, the re-
sults show that MPCV performs well. When the size n increases, hjyspcoy
approaches the optimal bandwidth of MASE h;ask. From a value of n lar-
ger than 1000, we can obtain good results from modified partitioned cross-
validation.

When the correlation is weak, although with a small sample, MPCV
can draw a rather good result. However, when the correlation of the data
is strong, we can see that MPCV has difficulties to approach the optimal
bandwidth when there are not enough observations. When the correlation
increases, MPCV demands naturally a higher g but if we work with a small
sample, this means that in each partition there are few values. So when ap-
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no| hyase g hpycv MASE
300 | 0.1 0.266 2 0.26 0.05
300 | 0.2 0.27 3 0.29 0.06
300 | 0.3 0.287 3 0.278 0.087
300 | 0.4 0.3 3 0.236 0.176
300 | 0.5 0.32 3 0.217 0.29
300 | 0.6 0.35 3 0.11 0.54
500 | 0.1 0.237 3 0.25 0.039
500 | 0.2 0.249 3 0.248 0.048
500 | 0.3 0.26 4 0.279 0.054
500 | 0.4 0.276 5 0.29 0.077
500 | 0.5 0.287 5 0.284 0.1
500 | 0.6 0.326 6 0.32 0.13
1000 | 0.1 0.212 2 0.2 0.018
1000 | 0.2 0.217 3 0.219 0.025
1000 | 0.3 0.23 4 0.24 0.03
1000 | 0.4 0.244 4 0.246 0.037
1000 | 0.5 0.268 5 0.266 0.06
1000 | 0.6 0.275 6 0.277 0.08
5000 | 0.1 0.158 2 0.159 0.005
5000 | 0.2 0.155 2 0.154 0.0056
5000 | 0.3 0.164 3 0.168 0.007
5000 | 0.2 0.177 4 0.167 0.008
5000 | 0.4 0.196 5 0.192 0.011
5000 | 0.6 0.2 6 0.195 0.018

TABLE 3.5 — hyspcoy and their estimated mean squared errors with different
n in Model 3 with an AR(1) errors

n | harase hpycv MSE
300 | 0.42 0.09 0.88
500 | 0.40 0.24 0.37
1000 | 0.32 0.3 0.12
5000 | 0.25 0.24 0.028

TABLE 3.6 — hyspcoy and their estimated mean squared errors with different

n in Model 4 with the AR(3) errors

plying ordinary cross-validation in each partition, because of a lack of data,
the bandwidth cannot be well estimated. For example when we consider Mo-
del 3 with an AR(1) of coefficient ¢ = 0.6 and sample size n = 300, when
we take g > 3, we obtain haspoy = 0.05. The best result obtained in this
case is when g = 3 but even the best bandwidth is still far from the optimal
bandwidth.



3.3 Automatic selection of the smoothing parameters for
correlated data 55

The asymptotically optimal number of partitions g can change with the
sample size. The change of g depends on the mean function m. For Model
3, when m has a positive growth with time, g increases rapidly in function
of n, but for a oscillating trend as in Model 4, ¢ is almost constant with n.

3.3.3.3 Application of MPCYV to the temperature series

This paragraph is devoted to the application of MPCV on the tempera-
ture series. We will consider two series with different length : the series of
daily maximum temperature in Orleans (1946-2006) and the series of daily
maximum temperature in Déols (1901-2006). The applied procedures will be
explained in detail for each series. The data consist of the maximum values
of temperature in each summer day (summer is defined as 100 days : from
14th June to 21st September)

e Temperature series of Orleans :

The temperature in Orleans is measured over 60 years. The temperature
series comprises 6100 observations, its length is smaller than the other se-
ries for Déols. We apply MPCV on this series to estimate the mean trend.
g varies from 1 to 20 and for each value of g, we calculate its corresponding
harpov, then we have the following results :

harpov = 0.05, 0.05, 0.29, 0.29, 0.32, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56,
0.56, 0.56, 0.56, 0.56, 0.62, 0.62, 0.62, 0.62, 0.62.

From this result, we will consider g = 3,4,5,6,10,16 and calculate the
expression Cj , the left term in (3.30)) for each g. We obtain then :

g |3 4 5 6 10 16
C, | 22.23 2.53 1.4 5.88 26.08 59.3

From that, g = 5 is retained and the bandwidth chosen from MPCV is
0.32.

e Temperature series of Déols :
We realize the same procedure to the temperature series of Déols but this

time the series is longer, it contains 13100 observations. Applying MPCV
with g varies from 1 to 20, we obtain :
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harpov= 0.05, 0.05, 0.05, 0.05, 0.05, 0.08, 0.17, 0.17, 0.17, 0.17, 0.20,
0.32, 0.32, 0.32, 0.53, 0.47, 0.53, 0.47, 0.53, 0.53.

We will consider then g = 7,10,11,12,14,15 and calculate the corres-
ponding quantity C,, we get :

g |7 10 11 12 14 15
Cy | 2.98 7.63 6.17 3.90 12.02 4.14

g = 7 minimizes Cy, so we retain g = 7 and the chosen bandwidth is 0.17.

3.3.4 Conclusion on the new algorithm

Compared with the other selection methods, our new approach shows its
clear advantage. For the asymptotic aspect, with a sample size large enough,
the bandwidth given by MPCV approaches the optimal bandwidth. This is
true for different kinds of mean, variance functions and structures of corre-
lations of the errors (in the ARMA family). On the other hand, it shows the
numerical convenience which allows us to work with large samples, as we
have seen in the case of temperature series in Déols with more than 10000
observations.

For these positive points, we will use MPCV to choose appropriate band-
widths when applying loess to estimate the trends of the temperature series
in Europe.

3.4 Application of splines

We place ourselves here in a different case than in the previous one. The
distribution of the i.i.d observations X, ... , X}, is known. The approach by
maximizing the likelihood function is preferred. For nonparametric estima-
tions, it can be a local likelihood function for loess, or a penalized likelihood
function for splines. In numerical implementation, when applying these two
approaches to estimate the extreme parameters in extreme models (GEV or
POT), splines (with maximizing penalized likelihood) shows its advantages
in computing time compared to loess (with maximization the local likeli-
hood). Moreover, when the bandwidth in loess is too small, we can have
breaks characterized by some sudden jumps in the values of the estimators
(see Davison and Ramesh, [33] for extreme-events modeling). Therefore, we
will use splines to estimate extreme parameters.
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Whittaker ([149]) originated the idea of smoothing spline. The modern
formulation of smoothing spline as a nonparametric regression estimator and
its asymptotic properties are developed by Schoenberg ([134]), Reinsch([124]),
Wahba([146] )and recently, we have the works of Hastie and Tibshirani ([75]),
Green and Silverman ([59]), Gu([61]), Cox and O’Sullivan([26],[27]). The ba-
sic idea of smoothing spline is to fit the functions by piecewise polynomials.
An important point in smoothing splines is the presence of roughness (or
smoothness) penalty. Roughness penalties are motivated by the fact that wi-
thout imposing restrictions on the smooth functions, for example in fitting
a model by least squares, the residual sum of squares can always be reduced
to zero by choosing a function that interpolates the data. The roughness
penalty function commonly taken is fol F()2dt

Natural cubic splines are defined for all piecewise polynomials with the
additional constraint that the function is linear beyond the boundary points
(zero second and third derivatives at the boundaries). When maximizing the
penalized likelihood in the family of natural cubic splines, we find a unique
natural cubic spline solution. When there are at least two parameters to
estimate, the solution tends to solve a set of estimating equations by a back-
fitting procedure with a Fisher scoring or a Newton- Raphson algorithm.
However, when the knots x; are not regularly distributed and the number of
observations n is large, we can face difficulties when estimating with a na-
tural cubic spline. One solution is to restrict the choice of smooth functions
to a space of basis functions. Cubic B-splines is often chosen in numerical
functions in R. Both approaches are equivalent, but cubic B-splines gives
faster computation. For more details about cubic B-splines, see Green and
Silverman([59]).

Also in this section, an estimate algorithm for multi-parameters combi-
ning with the choice of smoothing parameters will be proposed. This algo-
rithm is based on the equivalence of the iteratively reweighted least squares
with backfitting within a Fisher scoring or a Newton- Raphson algorithm,
and performance-oriented iteration of Gu ([60]) (can be considered as in-
direct cross-validation). The empirical performance of this estimation algo-
rithm will be illustrated through simple simulations.

3.4.1 The estimators

Suppose we have the real numbers x; called knots 0 < 1 < 9 < ... <
xn < 1. A function g defined on [0, 1] is a cubic spline if it satisfies the two
following conditions :

1/ On each interval (0,z1), (z1,22), ..., (Zn, 1), g is a cubic polynomial.
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2/ g and its first and second derivatives are continuous at each z; and
hence on [0, 1].

g can be written in the form :
g(x) = 9071'4-9171'(1‘—.%1)+92,2‘(.’L'—$2‘)2+03’i($—$i)3 for x; <x < wip1 (3.32)
where ¢ =0,..,n+ 1,20 =0 and z,41 = 1.

Suppose that we observe a sequence X1, ..., X, of i.i.d random variables
with known distribution.

We immediately attack the case of multi-parameters, which means we
have at least two parameters 6 and ¢ to estimate . Fixing two smoothing
parameters A, 3, the problem is equivalent to maximize the penalized log-
likelihood depending on unknown functional parameters 6 and ¢ :

1 - 1 » 2 1 » 2
s = 210X 0.9) - [ ara- s [owra @3
1=
If we use natural cubic splines, the discretized form of (3.33)) is :
l _ ! il(X 0, 0) LT KD 15 TK (3.34)
n,An,Bn — n P i, U, @ 9 9 2 "2 .
where K = ATCA.
Let h; = tiy1 —t; for i = 1,....,n — 1. Ais a n X (n — 2) matrix with
entries A;j, for i =1,...,n and j =1,...,n — 2, given by :
1 1 1 1

Aii = — Aoy = —— — — = Ao — —
JJ hjv JJ+1 hj thv 5,J+2 A

j+1
and A;; =0 for | i—j |> 1. C is a symmetric (n — 1) x (n — 1) matrix with
elements : )
Cii = =
77 3 (

and Cj; =0 for | i —j |> 1.

The solution of this maximization problem leads to use an iterative Fi-
sher scoring or an iterative Newton- Raphson algorithm.

1
hj—1+4hj),Cjjt1=Cit1j = gl

In Fisher scoring, the following process must keep being iterated :

Weg + AK W9¢ :| |: Hnew—9:| . [ UQ—)\KQ]
WLpG chcp + BKB @new - Up — BKQP
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. 2 2
e W, = (2 [ ] [ ) = e T

For the Newton Raphson algorithm, W is replaced by the observed mi-
. 2 2
nus second derivative Wy, = dzag((—a(fafp1 sy —aefaion ).

It turns out to be the alternation of the two estimate processes solving
repeatedly for 8 and ¢ respectively. This procedure is called the backfitting
algorithm (just for multi-parameters). Backfitting combining with Newton-
Raphson (Fisher scoring) converges to the penalized maximum likelihood
estimate. The convergence of backfitting algorithm will be discussed in the
next subsection.

The smoother matrix in the final iteration , for example for 0 correspon-
ding to the smoothing parameters J, is calculated by :

So = Wog(Wag + AK) ™ (3.35)

The degree of freedom of the smooth 6 is trace(Sp).

3.4.2 Asymptotic properties

There are two problems of convergence that need to be considered : the
first one is the existence and convergence of backfitting with Newton- Raph-
son (Fisher scoring) algorithm to the solution of maximization (3.34), the
second one is the convergence or asymptotic properties of the penalized li-
kelihood type estimators (with respect to the true parameters).

3.4.2.1 Convergence of the backfitting procedure

The condition of convergence of the backfitting algorithm is explained in
Hastie et al.([75]). We can summarize the main results for the two-parameter
case, noted Sy and S, respectively the true smoother matrix of 6y and DB,
we have :

-If || SpS, ||< 1, then the backfitting algorithm converges to the unique
solution, which is independent on the initial values of the parameters.

-If Sp and S, are symmetric with eigenvalues in (-1,1], then the back-
fitting algorithm converge to one solution which depends on the starting
parameters.
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The asymptotic properties of the penalized likelihood estimators are ra-
ther complicated because they depend not only on the characteristics of the
true functions -their smoothness properties, of course, and their behavior at
the boundaries - but also the behaviour of the smoothing parameters. For
the sake of simplicity, we only discuss here the case of one parameter 6. The
extension to the multiparameter case presents no difficulty.

The asymptotic properties of the penalized likelihood estimator are dis-
cussed in details in the work of Cox and O’Sullivan([27]). Here we just
summarize their results applied to our special case : z is equispaced fixed
design on [0, 1].

We begin with some basic assumptions :

B.1. X;,1 <i<n arei.i.d elements with X; taking values in R.

B.2. The parameter space 6 : [0,1] — R with inner product < .,. > and
norm || . || is a Sobolev space :

W5([0,1;R) = {6 : [0,1] — R | 6D} are absolutely continuous and
6(®) € Ly[0,1] with p < s}.

B.3. For some bounded strictly positive constants K7 and K5, the pe-
nalty function J(6) = [(6®)? satisfies :

1
K | 61P< J(6) + / 0(t)2dt < Ky || 0|
0
for all 8 € ©.

B.4. The true function parameter 6y is in W3 for some s satisfying
3/2<s< 2.

We note that y € © is not required, which means that the estimates
can converge to a function which is not as smooth as the functions in ©.

We have the following theorem :

Theorem 3.4.1 (derived from Theorem 1 in [27)])
Suppose there is an a satisfying :

12<a<s/4—1/4 (3.36)
and a sequence A, — 0 satisfying

n~IA-(2et1/2) g (3.37)
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Then under assumptions B.1 through B.4, given € > 0 , there exist
constants M and ng such that ¥Yn > ny,

P{3 6,,, such that the first derivative DI, x, (0n.x,) =0, and Vb € [0, o],
H Hn,)\n — 0 Hbg M[)\%S/Q—b)/Q + n—1/2)\;(b+1/4)/2}} >1—¢
(3.38)

The first term on the right side of the inequality in gives an upper
bound on the order of the asymptotic bias and the second term gives the
order of the asymptotic standard deviation. The optimal upper bound of the
convergence rate is obtained when the equality is set. The order of A then :

An & 225+ (3.39)
which results in
| O — 6o [|7= O(n~2(/270)/ st (3.40)

We can choose « so that both (3.36) and (3.37]) hold when A, is given
by (:39).

Following these results, we can see that the asymptotic properties of pe-
nalized likelihood estimators for interior points depend on the characteristics
of the smoothness properties of the true parameters. The rate of convergence
is still held near the boundaries if 6 satisfies the natural boundary condition
0"(0) = 0”(1) = 6 (0) = 3)(1) = 0(Rice and Rosenblatt [125]) . These
conditions are in fact satisfied for the case of cubic splines.

3.4.3 Estimation algorithm for multi-parameters with band-
width selection

This subsection is devoted to an algorithm which allows us to estimate
two or more parameters by cubic splines. In the previous parts, we always
presented the estimate procedure in the context of given smoothing parame-
ters. But these parameters are unknown and an automatic selection is then
required. In our algorithm, the automatic choice of the smoothing parame-
ters is also proposed. This estimate algorithm is a combination of iteratively
reweighted least squares and performance -oriented iteration cross-validation
of Gu ([60]). We will first present the basic rules of these points in the one
parameter case.



3.4 Application of splines 62

3.4.3.1 [Iteratively reweighted least squares

As introduced in the introduction of this section, a procedure equiva-
lent to the Fisher scoring or Newton-Raphson algorithm is the iteratively
reweighted least squares. In the single parameter case (#), when fixing the
smoothing parameter A, the problem of maximizing penalized likelihood can
be solved via iterating on minimizing the penalized weighted least squares
(see O’Sullivan et al., [I09]) :

n

> e () 02 + A [ @0 (3.41)
i=1

where w(t;) = Ipg(0(t;)), 2(t;) = 0(t;) + 25(0(t;))/w(t:), Wee is the Fisher
information of § and 6(t;) is the estimation of the preceding iteration. The
{w(t;)} and {2(t;)} are called the pseudo data based on 6.

This process is very interesting because when using iteratively reweigh-
ted least squares, we can obtain numerically faster algorithms and the band-
width selectors can be more easily applied.

3.4.3.2 Iterative cross-validation

In the bandwidth selection of penalized likelihood-type estimations, a
general method is to compute the cross-validation (CV) in the final itera-
tion and the minimum of those CV gives the optimal smoothing parameters
as suggested by O’Sullivan, Yandell and Raynor ([I09]). However, the cost
of numerical computation of this method is expensive. Another method,
proposed by Gu ([60]), uses the cross-validation score (or maybe another se-
lection criterion) through the penalized weighted least square which
is calculated from the pseudo data based on the previous estimate in a so-
called performance-oriented iteration. We call this selector “iterative cross-
validation”. Iterative CV tracks an appropriate loss in an indirect manner
and while it may not be the most effective, the simultaneous updating of
smoothing parameter makes it numerically efficient.

Performance-oriented iteration, in the case of one parameter 6, can be
described as follows :

- Choose the initial values for 6.

- Tterate on ((3.41]) :

e In cach k" step :
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i/ choose a new A*) minimizing the cross-validation which is calculated
from the pseudo data based on the previous estimate 8*~1) that could be
written as :

= Nz -0 'L %
V(A 2) Z (2 A 7“)” (3.42)
=1

ii/ update 6 which corresponds to optimal K,
e Repeat i/, ii/ until § and A converge.
The condition of convergence : 6 is said to be convergent if :

Prew _ gold)2
(goldQ) < (5 ~ 0 (343)

For example 6 = 1077

3.4.3.3 A new algorithm

Combining the two procedures above, we derive an algorithm to esti-
mate multi-parameters of penalized likelihood type. The basic idea is to use
backfitting with reweighted least squares alternatively for these parameters,
and in each iteration, for each parameter, we use iterative cross-validation
to update its corresponding smoothing parameter. Suppose 6 and ¢ are two
parameters to estimate. This algorithm can be described as :

i/ Initialize § = 0°, ¢ = 0.

ii/ Fix ¢ and minimize iterative CV (3.42)) until convergence to find out
optimal 6(corresponding to fixed ¢). Update 6.

iii/ Fix 6(the value obtained from step ii/) and find out corresponding
optimal ¢ with the same method as for . Update .

Repeat ii/, iii/ until the convergence of the two parameters following the

condition (3.43]).

This optimization procedure can overcome the effect of correlation bet-
ween the estimate parameters in bandwidth selection. This procedure is
usually convergent if the initial parameters are suitably chosen. The non-
convergence can occur if the starting value is far from the optimal region.
On the other hand, when the initial values are reasonably chosen, the algo-
rithm converges rapidly. As discussed in Gu ([60]), the larger the smoothing
parameters, the more quadratic (3.41) will be. For a large fixed smoothing
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parameter, one can in general insure the convergence of the Newton iteration
starting from an arbitrary point. Therefore we would start with rather “suf-
ficiently smooth” functional parameters, corresponding to large smoothing
parameters, for example constant #° and ¢°. The empirical performance of
this estimate algorithm will be justified through simulation.

3.4.3.4 Simulation study

To verify the empirical performance of the previous estimate algorithm,
we will realize some simple simulations. We will consider here the simulations
of the non-stationary GEV distribution. The reason to try this distribution
is that we will apply this algorithm to extreme models and in any case, it is
one of the most complicated distribution with three parameters.

We consider three GEV models with different time-varying u,o,&. We
first consider a model with constant £ : in one £ is positive and in another &
is negative. Another model with all three time-varying parameters will also
be considered.

p(t) =5+ sinl0t
o(t)=t
o) = —0.1 (3.44)
where t = (1 : 500)/500
p(t) =5+ sinl0t
o(t)=t
£(t) = 0.2 (3.45)
where ¢ = (1 : 500)/500
and
p(t) =104t +t? + 5t
o(t) =2—t+1t2
£(t) = —0.3— 0.1 (3.46)
where t = (1 : 500)/500

For each model, we realize 50 simulation samples. Then, on each sample,
we estimate the extreme parameters following the estimate algorithm which
is described above. The empirical confidence intervals at 90% for u,o and
& are constructed from those estimates. To consider the quality of the esti-
mators, we calculate the average difference between the confidence intervals
from the simulations with the true values of p, o and &(with I, is the up-
per confidence band and I;;, s is the lower confidence band). The results from
three models are illustrated below :
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Model | Average Average Average Average Average Average
Tpsup — po | Tpting — 0 | Iogup —0 | Ioing —0 | Tsup — & | I&ing — 1
3.44 0.09 0.08 0.06 0.09 0.08 0.06
(13.45) | 0.07 0.08 0.062 0.09 0.09 0.065
(3.46) | 0.26 0.21 0.19 0.11 0.06 0.04

The algorithm can give us the good confidence intervals for the parame-
ters even when the true parameters are rather variable like in Model .
The fact that £ is negative and positive does not change the empirical per-
formance of the estimation method. A little improvement can be remarked
in the estimation of y and ¢ in model where £ is constant compared
to the ones of model where € slightly varies.

These results justify the asymptotic convergence of this estimate proce-
dure. This approach is not only valid for extreme models, but can be applied
for all distributions where we need to estimate the parameters nonparame-
trically.

In Figure for visualization purposes, we present the confidence inter-
vals for Model (3.44)) with a constant £ and Model (3.46) with a varying &.
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FIGURE 3.1 — Estimates of extreme parameters from the simulated

samples.Left panel. Model (3.44). Right panel. Model (3.46)). The dark black
lines are the true parameters.



Chapitre 4

Mean and variance
evolutions of the hot and
cold temperatures in Europe
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This chapter corresponds to our article [I12]. In this paper, we examine
the trends of temperature series in Europe, for the mean as well as for the
variance in hot and cold seasons. To do so, we use as long and homoge-
neous series as possible, provided by the European Climate Assessment and
Dataset project (ECA&D) for different locations in Europe, as well as the
European ENSEMBLES project gridded dataset and the ERA40 reanalysis.
The seasonality in a homogeneous season is in general not very important.
When the purpose is not to model the residuals, this seasonality can be
ignored. Moreover, in our trend identification method (in section , there
is any strong assumption on the noise. The noise can follow any distribution
law, it can not a white noise. Only assumption is that its covariance is sta-
tionary. This assumption can be check by a Fourier transformation which
will be show in appendix. We provide a definition of trends that we keep as
intrinsic as possible and apply non parametric statistical methods to ana-
lyze them. Obtained results show a clear link between trends in mean and
variance of the whole series of hot or cold temperatures : in general, variance
increases when the absolute value of temperature increases, i.e. with increa-
sing summer temperature and decreasing winter temperature. This link is
reinforced in locations where winter and summer climate has more variabi-
lity. In very cold or very warm climates, the variability is lower and the link
between the trends is weaker. We performed the same analysis on outputs
of six climate models proposed by FEuropean teams for the 1961-2000 per-
iod (1950-2000 for one model), available through the PCMDI portal for the
IPCC fourth assessment climate model simulations. The models generally
perform poorly and have difficulties in capturing the relation between the
two trends, especially in summer.

4.1 Introduction

Global and regional warming is observed and is now well established for
the twentieth century, at least for the mean temperature. This temperature
increase is bound to continue, and changes in mean temperature as well as in
variability and extremes are predicted. These have important implications
in terms of adaptation. Katz et al.([85]), have already mentioned that the
variability change has more impact on extremes than the change in the mean.
Some authors have also looked at the impact of climate change on both
mean and variability. Schér et al.([I33]), pointed out the role of increasing
variability in the occurrence of the 2003 heat wave in Furope. Ferro et
al.([560]), proposed a technique to explore changes in probability distributions
and applied it to climate model simulations. Here, we would like to focus on
observed datasets, in order to carefully study the observed properties of the
mean and variance of temperature series, before investigating climate model
simulations. As a matter of fact, climate models are designed to represent
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and simulate the possible evolution of global and regional mean temperature,
but their ability to reproduce observed trends, variability and extremes, at
least at local scales where they influence industrial activities, is not yet
fully demonstrated. Therefore, a careful study of the link between trends
in mean and variance of daily minimum and maximum temperature, is a
first step to analyze in detail the relationships between these trends and the
trends in extremes. In this context, we focused on daily maximum summer
temperatures and daily minimum winter temperatures. To do so, we used 55
as long and homogeneous temperature series as possible, for Europe. Those
were obtained from the European Climate Assessment and Dataset project
(ECA & D) (Klein et al., [42]). The study has then been conducted using the
ENSEMBLES project gridded dataset (Haylock et al.,[76]) and the ERA40
reanalysis. Trend identification is carried out using non parametric methods,
in order to avoid any assumption on the shape of trends. Then, the same
analysis is performed using the results of six climate models proposed by
European teams for the period 1961-2000 (1950-2000 for 1 model), obtained
in the framework of the fourth IPCC assessment report and made available
through the PCMDI portal.

The paper is organized as follows : section [4.2] presents the temperature
series used, then section describes the general statistical methods of
smoothing which are used for all series in this paper, for the mean as well
as for the variance. In section [£.4] we discuss the results obtained from the
different observed datasets. Section gives the results obtained from the
climate simulation models, before concluding in section

4.2 Presentation of the used data series

4.2.1 ECA & D series

The initial temperature series used in this study consist of 55 of the
longest and most homogeneous daily minimum and maximum temperature
series made available by the European Climate Assessment and Dataset
project (ECA & D) (Klein et al.,[42]). For each of the collected series, the
ECA & D project tested for homogeneity using different test to identify
breaks. The results are summarized for each series over different periods in
classifying it as “suspect”, “useful” or “undetermined” and in indicating the
years when breaks have been identified. In the first place, only series quoted
as “useful” over the 1946-2006 and the 1901-2006 periods have been retained.
Then, among these series we keep only those for which no break has been
identified with the 3 methods used in the ECA & D project. The period
lengths are the maximum periods of available (non missing) data since 1946
(for 53 series) or 1901 (for the 2 Déols and Dresden series “useful” over this
period).
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4.2.2 European ENSEMBLES project gridded dataset

The production of gridded daily datasets from observations is one of
the deliverables of the European ENSEMBLES project (www.ensembles-
eu.org) : the research team RT5.1 of the project is due to produce observa-
tional daily gridded datasets for temperature and precipitations. The EN-
SEMBLES project is supported by the European Commission’s 6th Frame-
work Program as a 5 year Integrated Project from 2004 to 2009 under the
Thematic Sub-Priority “Global Change and Ecosystems”.Different datasets
are now available, for daily minimum, maximum and mean temperature and
daily precipitation amount, covering the period from 1950 to 2006 on a 0.25
and 0.5 degree regular grid as well as on a 0.22 and 0.44 degree rotated
pole grid. The datasets for daily minimum (Tn) and daily maximum (Tx)
temperature on a 0.5 degree regular grid have been used in this study.

4.2.3 ERAA40 reanalysis

The European Centre for Medium range Weather Forecasts (ECMWEF :
www.ecmwf.int) has conducted a reanalysis project, in order to promote
the use of global analyses of the state of the atmosphere, land and surface
conditions over the period from mid 1957 to 2001. The three dimensional
variational technique has been applied using the T159L60 version of the
Integrated Forecasting System to produce the analyses every six hours. The
2-meter temperature dataset over a 2.5 degree regular grid has been used
in this study. From this dataset, the maximum (minimum) of the 4 daily
values has been considered for the daily temperature maximum (minimum).
This leads to slightly under-estimated values compared to the “true” daily
maximum or minimum, but with a comparable order of magnitude.

From these different datasets, the analysis has been made on a spatial
window covering Europe between longitudes 10 and 65 East and between
latitudes 35 and 80 North. The hot season has been defined as the 100 days
between the 14th of June and the 21st of September, whereas the cold season
has been defined as the 90 days between the 1st of December and the 28th
of February. These periods have been selected because most extreme events
occur between these dates. Daily maximum and minimum temperature have
been considered in the hot and cold season respectively.

4.3 Statistical tools

4.3.1 Trend definition

We first give some precision about the definition of a trend.

If X (t) is the observation series whose mean, variance and probability
density function are respectively m(t), s?(t) and X (t) can be expressed as
X(t) = m(t) + s(t)Y (), with Y (¢) centred with variance 1. Y (¢) can be a
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stationary process or not, in particular its distribution g(¢, z) can evolve with
t or not. For instance, even if the third moment depends on ¢ ; m(t) and s2(¢)
are the usual or central trends of X (¢). It can be proved that the different
methods of estimation discussed below are valid even if the process Y (t)
presents some dependence properties and some non stationarity properties.
If ¢ is still time dependent, it just means that the detrended process has a
remaining deformation trend. In this study, our aim is only to estimate the
central trends m(t) and s2(t).

4.3.2 Trend estimation
4.3.2.1 Estimation methods

Time series associated with climate variables such as temperature are
non-stationary and non-Gaussian. In order to estimate the central trends
m(t) and s?(t) as intrinsically as possible, in the first place we will avoid
using either moving average with a window length A or linear regression. The
window length h fixes the time scale taken into account, that is the period
over which the average is computed, and linearity is a strong assumption
concerning trends.

Parametric modeling such as linear regression is widely used to analyze
trends in mean or in variance. However, it can constrain excessively the
range of possible fits for exploratory modeling, it loses a large amount of
information and might not be adapted to complex issues arising from climate
studies, except for some particular cases.

In an other work (Yiou et al.,[110]), we have seen that seasonal means
and variances are correlated for some areas in Europe in winter and summer.
Here, we would like to go further in looking for the time evolutions of the
means and variances, and their possible connections, in the most general
way as possible, thus in using non-parametric methods. In the present work,
time scale has to be thought of as linked to the speed of evolution of annual
data. The evolution during a fixed year is mainly due to seasonality and
reveals only a small component of the large temporal scale evolution. Thus,
the choice of the set of functions able to describe trends is a quite difficult
problem. The idea is to fix a degree of smoothness such that the trend does
not show too many extrema and inflexions for a twice differentiable function.
In fact the choice has to be adapted to the analyzed data to keep the trend
identification as intrinsic as possible. A discussion of this topic can be found
in Wu et al.([I51]) concerned with the application of specific methods based
on physical characteristics, but this is out of the scope of this paper and can
not take into account a variation of the variance. Classical non parametric
methods such as cubic splines, penalized least squares, loess, wavelets etc.
have adaptive variants in the sense of Bickel ([11]).

Each method relies on some “technical” parameters and the adaptive
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character consists in an optimal (in a statistical sense) estimation of these
parameters from the data. Each of these methods allows a visual description
of the trend in the resulting plot of the response versus time, making them
very flexible. Here we use two popular methods : cubic splines smoothing(
Green and Silverman, [59]) and local polynomial estimators (loess) (Fan
and Gijbel, [47]). Cubic splines smoothing consists in looking for a twice
differentiable function which represents optimally the evolution of the mean
of the observed data. The smoothing parameter happens to be a penalization
term which does not allow too many inflexions.

Loess consists in looking for the polynomial of degree d that corresponds
best to the representation of the regression between the variable and the
covariate (here, the covariate is time) on an optimal window length. The
optimal window length is defined by the parameter A\, which corresponds, if
smaller than 1, to the proportion of the total number of data used for the
local regression. Then, local regression is applied with a tri-cubic weighting
proportional to

(1 — (dist/h)®)?

where dist is the distance between two values(1 day in our application) and
h the window length. This allows adding more weight to neighbour points
and less to more separated ones.

Thus, cubic splines give a trend function optimized on the whole se-
ries length giving the best curvature, whereas loess follows more locally the
regression between the two variables.

We used both cubic splines and loess to model functions of mean and
variance of the whole observation set (m(t) and s%(¢)), and both methods
give very similar results. Therefore, in the following, we will only present
the results for the loess, which is the most convenient. The proper choice
of the smoothing parameters for splines or loess is crucial. Adaptive proce-
dures such as cross-validation procedures help in making the right choice,
but their efficiency is hindered by highly auto-correlated series such as tem-
perature series. Cross-validation has to be modified in order to eliminate the
dependence. Here, the dependence between the dates can be considered as
zero if the dates are distant by more than 5 days. We thus used a cross va-
lidation method on data sampled every 10 days, and an optimal parameter
corresponding to a window length of around 11 to 15 years has been found.
Another approach is to choose a smoothing parameter using an empirical
and efficient way based on learning. We used this alternative as a visual
control of our previous choice.

A common problem with smoothing methods is related to boundary pro-
blems at the beginning and end of the observation period. The data are all
on one side of the fitting point in the boundary case. Thus, using the same
algorithm at the boundaries and in the interior leads to higher variability.
Loess and splines can automatically provide boundary bias correction. Fit-
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ting local polynomials at values in the boundary region, the bias is small,
and can therefore be ignored.

The calculations are conducted as follows :

e selection of the days of the studied season over the total period length
(this leads to a series of nyearl00 days for summer and nyear90 days for
winter, nyear being the number of years in the total period length)

e computation of m(t) from X (¢) using loess

e computation of [X (t) — m(t)]?

e computation of s(¢) from [X (t) — m(t)]? using loess

where the hat notation corresponds to estimates.

Thus, the time evolution of the variance takes into account the time evo-
lution of the mean. The estimation is not done using the likelihood (unknown),
but using least squares. This methodology has a theoretical support (Rup-
pert et al.,[I31]).

In order to illustrate the role of the smoothing parameter, the of figure
presents the trends m(t) identified in summer temperatures for the
long summer temperature series of Déols between 1901 and 2006 using a
linear local regression with a smoothing parameter corresponding to a 15-
year window (15 summers here, i.e. 1500 days) and using a moving average
on the same window. The two trends are superimposed over the evolution
of the summer means computed from the data series (for each day in a
summer, the temperature is set to the mean summer temperature). It can
be seen that loess is able to reproduce better small data variations, where
moving averages tend to lead to a higher smoothing (top panel). To capture
the same details as obtained with loess, the moving average window must
be twice as small, that is around 7 years, as shown in the bottom panel.

On the other hand, the choice of linear local regression has been compa-
red to the one of degree 2 local regression (figure [4.1b). It can be seen that
the details are enhanced in using quadratic local regression, but it has been
judged sufficient for the study to use linear local regression.

4.3.2.2 Bootstrap confidence intervals

It is now necessary to quantify the uncertainties associated with the
estimation of the mean and variance evolutions. To do so, the construction
of a confidence interval is based on the residual bootstrap resampling, which
is simple and chosen because it does not rely on the evaluation of quantities
according to some asymptotic property.

There exists a widely developed theory for asymptotic confidence in-
tervals (Hall [65], [66] ; Faraway [49] ; Hatdle and Mammen [71] ; Neumann
[104], [103]).

We choose to construct a pointwise confidence interval based on boots-
trap percentiles. It is well adapted to our estimation method because it does
not artificially assume normality and it is simple to implement for our large
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datasets.

Here because of the dependence of the data, we use moving blocks boots-
trap (Lahiri [91]) with a size of 10 days, and we simulate 2000 samples. The
results obtained for the evolution of the mean of summer daily maximum
temperature for the long series of Déols (19012006) are plotted in Figure
4.2

4.3.3 Possible link between the estimated trends m(¢) and
s*(t)

Using the previously presented non parametric methods, the function
m(t) and s2(t) are estimated by 72(t) and §2(t) . Suppose that these estima-
tions are two functions with a strong link, measured for instance by a scalar
product close to one (which indicates more a linear link). Could this link be
produced by some statistical artefacts?

Firstly, for a large dataset, all the procedures used here give consistent
estimators, roughly speaking the speed of estimation is of the order of N ¢
(N being the number of values in the dataset), @ > 0 and depending on
the chosen degree of smoothness for the trend. Besides, we suppose that the
trend functions are three times continuously differentiable.

The estimation errors m(t) — m(t) and s(t) — 52(t) are asymptotically
correlated but their correlation is too weak in N~ to be the source of the
identified link. In fact, for a large dataset (see the appendix and Ruppert et
al., [131]), we can first estimate m(t) and then s%(t),as we do, and this is as
efficient as a direct estimation of the pair (m(t), s2(t)).

Now can the link be induced by the density probability functions f(z,t)
of the data itself 7 As a matter of fact, all the information on the data X(t)
is given by its probability density function. However, a link between m(t)
and s2(t) does not necessarily imply some defined form of the probability
density function.

All the calculations are made using the free R statistical software.

4.4 Results for the different observational datasets

4.4.1 ECA & D temperature series

The first task has been to choose the smoothing parameter. As we want to
study a large number of series, it is either necessary to automate the adaptive
choice of the smoothing parameter or to fix it in advance. As previously
mentioned, a parameter corresponding to a window length of around 11-15
years has been found in most cases. Figure [4.3| shows the mean evolution for
long daily maximum temperature series of Déols (1901-2006) using different
window lengths : 10, 15 and 20 years (or summers as we only keep the 100
summer days each year). As expected, the larger the window is, the smoother
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the curve appears. In the following, the results for a 15-year window length
will be shown in order to simplify the exposition.

The loess technique with a 15-year window length is applied to compute
the evolution of mean and variance of daily minimum temperature in winter
and daily maximum temperature in summer. The results for the series of
Smolensk in winter and La Rochelle in summer are presented in Figure |4.4
together with the 90% confidence intervals . These results suggest a strong
link between the evolution of mean and variance, with the variance increa-
sing at the same time as the mean in summer and decreasing as the mean
increases in winter. In particular, there is a quite perfect correspondence
between the local extremes. To examine the dependence between those two
series, we can compute correlation coefficients which correspond to the sca-
lar product (divided by the Euclidean distances). Another way to look at
the resemblance between two curves is to compare their parallel slopes, thus
we can compute the correlation coefficients between their first derivatives
too.

We compute correlation coefficients between the two curves or their first
derivatives for all the 55 time series. Correlation coefficients are thought as
we said previously as a measure of the linear relation between two function
m(t) and s2(t), say of the possibility to get a good approximation of s2(t)
by an affine function a 4+ bm(t). This similarity could be evaluated through
other measures, such as for example the link between their first derivatives,
as stated before. Thus here, the link between the two curves, is measured by
the correlation coefficient and has been considered as significant if the cor-
relation coefficient exceeds 0.2 in summer and is lower than -0.2 in winter.
According to this criterion, all correlations but one (for the Petsjora series)
are significant in winter and all but 8 (Alger, Elatma, Kem, Smolensk, Sor-
tavala and Vilnius series) in summer. The top panel of Figure shows
the maps of the correlations coefficients between the evolution of mean and
variance of daily minimum winter temperatures on the right and the same
significant correlation coefficients between their first derivatives on the left.
The bottom panel shows the same results in the same way for daily maxi-
mum summer temperatures. Correlation coefficients between m(t) and s2(t)
or between their first derivatives give very similar results : they are rather
strong in winter, except along the coasts and in the most northern regions. In
summer, correlations are strongest for locations experiencing more tempe-
rate climate than for those with more continental climate. In the following,
we will only show the results for the correlation coefficients between the
evolutions of the mean and the variance (m(t) and s?(t)).

4.4.1.1 ENSEMBLES gridded dataset

In order to extend and verify the previous statement, the same analy-
sis of correlation coefficients between the evolutions of mean and variance
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for daily minimum temperature in winter and daily maximum temperature
in summer has been performed using the ENSEMBLES gridded dataset.
As previously mentioned, this dataset is on a 0.5 degree regular grid and
has been constructed from the best available observation datasets, inclu-
ding those used in the ECA & D project. Many grid point series show an
important number of missing values (all values missing in some cases) thus
the analysis has been made only for those series presenting less than 10%
of missing values. The remaining missing values have been replaced by the
climatological mean of the corresponding day. Results for correlation coeffi-
cients between the evolution of mean and variance of daily minimum winter
temperatures and daily maximum summer temperatures are presented in
figure The results are consistent with the previous ones, showing strong
negative correlations in winter for the central part of Europe except some
of the coastal areas. In summer, the picture is more contrasted : high posi-
tive correlations are found for France, the south of Great Britain and some
areas in south east of Europe, but weaker, although still positive, correlation
elsewhere.

4.4.2 The ERA40 reanalysis

The last test has been done using the results of the ECMWF ERA40
reanalysis project, in order to verify the results on a dataset whose homoge-
neity is ensured by construction. Results are presented figure [4.7] They are
very similar to the previous ones and confirm the relationships : the variance
decreases when the mean increases in winter for most of the central part of
Europe and the variance increases when the mean increases in summer in
France and Great Britain and in some parts of central Europe near the Black
Sea.

4.4.3 Results summary
4.4.3.1 Cold season

All datasets lead at similar conclusions with strong negative links bet-
ween the evolution of mean and variance of minimum daily temperature in
winter over a large part of central and northern Europe. However some re-
gions around the Mediterranean and the Black Sea show positive correlation
coefficients, in the ENSEMBLES gridded dataset (top of figure as well
as in the ERA 40 reanalysis (top of figure . Figure shows evolutions
of mean and variance for a grid point in the ENSEMBLES gridded dataset
near Smolensk, where the correlation coefficient is strongly negative, and a
grid point in Spain, where the correlation coefficient is positive, in winter.
The plot for the grid point near Smolensk strongly resembles the one for
the ECA & D Smolensk series (Figure , which is not surprising, as the
same series have been used to produce the ENSEMBLES gridded dataset.
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For the point in Spain with positive correlation coefficient, it can be noted
that the variance evolution is rather weak and the mean is rather warm,
which could explain our results. The same behaviour is found for all rather
strongly positive correlation coefficients in winter.

4.4.3.2 Hot season

In the summer season the picture is more contrasted, with rather high
correlation coefficients in France and Great Britain and in some parts around
the Black Sea. Correlation coefficients remain positive over a large part of
Northern and central Europe, although lower than 0.5. Here, the points
showing strong negative correlation coefficients correspond to two different
types of behaviour : most of them correspond to very hot summers, and
others seem to correspond to points where the effect of altitude is strong,
with rather mild summers (points in Switzerland and northern Italy). Figure
shows the evolution of mean and variance of maximum daily temperature
in summer for two points of the ENSEMBLES gridded dataset : a point
near La Rochelle, with a strong positive correlation coefficient, and a point
in Spain with a strong negative coefficient. The evolution of the mean and
variance for the grid point near La Rochelle is very similar to those of the
series of La Rochelle in Figure for the same reason as explained in the
previous section. For the point in Spain, the temperature is warm and seems
to be less variable when it is warmer.

The method used here to derive trends describes the evolution over a
continuous set of time scales and it is difficult to infer which scale is the
most responsible for the observed link between mean and variance (day
to day, intra seasonal scale or inter seasonal scale). This could be further
investigated using for example wavelet analysis. However, from an analogous
study made on seasonal mean and variance (Yiou et al., [I10]), it can be seen
that the intra seasonal variability plays an important role. This means that
in some regions, a very cold winter or a very warm summer is more variable.
This could be due to non-permanent hot or cold episodes, interrupted by
milder ones, and this could be the explanation for a strong link in France and
Great Britain during the summer period for example. This hypothesis should
be further investigated by studying episodes for some particular series. For
example in Spain, where summers are hot, the variance increases when the
mean is lower, and one could wonder if there exists a summer mean threshold
above which the behaviour reverses.

4.5 Results for 6 European climate models

The study on different observation datasets shows some robust relation-
ships between the evolution of mean and variance of daily minimum tem-
perature in winter and daily maximum temperature in summer. The aim
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of this section is then to investigate if climate models reproduce a similar
link. To do so, we used results of the simulation for the period 1961-2000
conducted with five different climate models and for the period 1950-1999
for one other climate model, elaborated by European research teams. The
models are :

e beer-bem2-0 of the university of Bergen in Norway

e cnrm-cm3 of the French meteorological office research centre (Centre
de Recherches Mtorologiques de Mto-France)

e ipsl-cm4 of the Institut Pierre-Simon Laplace in Paris, France

e mpi-echamb of the Max Planck Institute for meteorology in Hamburg,
Germany

e ingv-echam4 of the National Institute of Geophysics and Volcanology
in Bologna, Italy

e ukmo-hadgem1 of the United Kingdom Meteorological Office Hadley
Centre, over the period 1950-1999

Simulations of these models obtained in the framework of the fourth
IPCC assessment are available from the PCMDI web portal.

We applied the same methods as described above and obtained results
summarized in Figure for winter and Figure for summer. A com-
parison of these figures with those obtained from the observational datasets
(figures and shows that the models generally fail to reproduce the
observed link between the evolutions of the mean and the variance of tem-
perature. Except for cnrm-cm3, the models seem to perform better in winter
than in summer, especially the ingv-echam4 model and the beer-cm2-0 mo-
del. Curiously, these models share their atmospheric component (although in
a different version) with other ones (mpi-echamb for ingv-echam4 and cnrm-
cm3 for beer-bem2-0) whose results are less good. In summer, all models fail
to capture the observed link correctly. This puts in doubt the representation
of temperature variability by current climate models.

4.6 Conclusion and perspectives

In this paper we tried to use as far as possible the properties of non
parametric methods in statistics to obtain general qualitative properties on
the time evolution of temperatures in Europe over periods of at least 50
years.

The first conclusion is that the mean and variance for hot and cold
seasons have a very similar evolution : the variance increases as the mean
increases in absolute value, i.e. it increases when daily maximum summer
temperatures increase and when daily minimum winter temperatures de-
crease. This link seems to be more general in winter for a large part of
central Europe, even though it is weaker in coastal areas, whereas in sum-
mer it is limited to areas where summers can experience heat waves without
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being in average too mild or too warm. This result is found whatever the
observational dataset used, the ECA & D data series, the ENSEMBLES
daily gridded dataset or the ECMWEF ERA40 reanalysis, each available on
different period lengths over the twentieth and the beginning of the twenty
first century. Accordingly, the result seems to be robust. This could be ex-
plained by the fact that in these areas, cold winters or warm summers are
associated with some very cold or very warm episodes, interrupted by more
“normal” conditions, in relationship with the large scale atmospheric circu-
lation. This hypothesis will be investigated by advanced studies on episodes
during summer /winter seasons.

On the other hand, climate models generally fail to correctly reproduce
this link, although their behaviour seems to be better in winter than in
summer. The ingv-echam4 model, and to a lesser extend the bcer-bem2-0
model show rather good results in winter, whereas all the studied models
fail to correctly reproduce the observed link in summer. Thus, the models
cannot be trusted for the reproduction of temperature variability in their
current versions.

A further step will then be to carefully study the link between evolutions
of mean and variance and the evolution of extremes, using statistical extreme
value theory and similar techniques to derive non parametric evolutions. A
first analysis of this link is presented in Nogaj et al. ([105], but a more
systematic study is needed to obtain more robust results.
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Appendix

We have defined Y (t) = [X(t) — m(t)]/s(t). Deformation trends are
trends able to partially describe the remaining non-stationarity in the distri-
bution of Y (¢). A first result concerns the non-stationarity of the extremes
of Y(t) and is exposed in Nogaj et al. ([105]). Other remaining trends can
be found using the probability density function of the residuals Y (¢). This is
illustrated in Fig. with two estimates of this probability density func-
tion for the station of Déols in summer. The first one is constructed from
the data during the first 15 years of observation and the second one during
the last 15 years. We also can read in Table [4.1]the evolution of the skewness
(here simply the third moment because Y is centred, with variance 1 and
kurtosis, here the fourth moment, minus 3). These quantities do not seem
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to evolve with time, the relative variation being always less than 1/10. We
mentioned in Sect. 3.3 that our method can be applied for non-stationary
Y if the fourth moment is bounded. It can be seen that it is the case here,
it is bounded by 4 and moreover the estimation of the parameters of ex-
treme distribution shows that this distribution is bounded for Y (this can
also be seen on the previous estimation of the probability density function in
Fig[4.12). The correlation between the Y(t) is zero for time distances larger
than 4, so loess can safely be applied.

First 15 summer Last 15 summer

Mean -0.0066 -0.016
Median -0.13 -0.08
Variance 0.9932 0.9987
Skewness 0.3940 0.2814
Kurtosis -0.2587 -0.2745

TABLE 4.1 — Moments of the probability density function of Y'(¢) estima-
ted from the first 15 summers and the last 15 summers for the long daily
maximum temperature series of Déols, 19012006
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FIGURE 4.1 — Upper panel. Mean summer daily maximum temperature in
Déols over the 19012006 period (black line) and the corresponding trends
computed with LOESS with a window length of 15 years (red line) compared
to the same trend computed using a 15-year moving average window (green
line) (top panel) and to the same trend computed using a 7-year moving ave-
rage window (green line)(bottom panel). Lower panel. Mean summer daily
maximum temperature in Déols over the 19012006 period (black line) and
the corresponding trends computed with LOESS with a window length of
15 years with linear local regression (red line) and quadratic local regression
(green line)
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FIGURE 4.2 — Mean summer daily maximum temperature in Deols over the
19012006 period (black line) and the corresponding trends computed with
LOESS with a window length of 15 years and its 90% confidence intervals
(red lines)
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Deols 1901-2006 summer, window: 10 summers
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FIGURE 4.3 — Time evolution of daily maximum temperature mean in sum-
mer for the long 19012006 Déols series using three different window lengths
for the smoothing parameter : 10, 15 and 20 years (or summers)
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FIGURE 4.4 — Time evolution of mean (m(t)) and variance (s(t)) of mini-
mum daily temperature in winter in Smolensk (top) and of daily maximum
temperature in summer in La Rochelle (bottom) as computed using the loess
technique with a smoothing parameter corresponding to a 15-year window
and their 90% confidence intervals (dashed lines)
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55 ECA series: correlation between m(t) and s2(t) in winter
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FI1GURE 4.5 — Correlation coefficients between the evolution of the mean and
the variance (left) and between the first derivatives of mean and variance
evolutions (right) of daily minimum temperature in winter (top) and daily
maximum temperature in summer (bottom) for the 55 ECA & D series
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BCCR model: correlations in winter
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BCCR model: correlations in summer
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5.1 Introduction

This chapter addresses extreme value theory. This theory is concerned
with probabilistic and statistical questions related to very high, or very low
values. The statistical analysis of extreme events, linked with statistics of
the risks, is important in many fields, including insurance, finance, environ-
ment and, of course, climate studies. The statistical Extreme Value Theory
(EVT) is commonly used by engineers to predict the intensity of meteoro-
logical extreme events to which buildings or industrial installations have to
resist. The EVT relies on two general definitions of extreme events. The first
one considers extreme events as maxima of observations on given blocks of
time and then describes them with the Generalized Extreme Value (GEV)
distribution. The second considers those extreme events as exceedances over
a defined high threshold. The model of these exceedances is called Peak over
threshold (POT). Their distribution is a Generalized Pareto Distribution,
whereas their dates of occurrences are given by the jumps of a Poisson pro-
cess.

In this chapter, we will first shortly review the basic theory, including the
properties of the two classical models in the dependent and non-stationary
cases. The basic theory assumes that the series studied are stationary, that
they do not present any cycle nor trend. However, when dealing with cli-
matic data, this assumption has to be carefully considered. Moreover, our
subject is to study how climate changes might affect the occurrence of high
and low temperatures. This leads us to estimate the trends in samples of
extreme values.

As a matter of fact, climatic data also show seasonal cycles. Seasonality
and extremes are difficult problems in modeling the temperature.

The traditional approaches, to model trends for extremes, are parame-
tric. The main reason for this is that extremes are most often used to predict
return levels and so need to be extrapolated. The second reason is that the
seasonality and trends are incorporated, in a linear form, to basic theory.
However, due to the need to make assumptions on the parameters, more
specific for trends, these approaches reach limits rather quickly. Although
trends, or other features of a process, may vary smoothly, there are many
applications in which such variations do not have the form of low-order po-
lynomials or, more generally, can not be described by a parametric model.

In problems of this type, it is commonplace to use nonparametric or semi
parametric techniques to smooth data. Nonparametric, or semi parametric,
modeling is more flexible. It does not rely on any assumption of specific form
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for the trends. Furthermore, nonparametric fitting provides a natural way
to choose adequate parametric models.

In our context, we use both approaches. An important part of this chap-
ter deals with the nonparametric estimation for functional extreme para-
meters. A new automatic selection of smoothing parameter, especially for
extreme models, is proposed. The demonstration for its asymptotic conver-
gence seems complicated, simulations will be considered to test the perfor-
mance of the method.

For the parametric approach, the parametric form is assumed here as
polynomials or continuous piecewise linear functions(CPL). Although CPL
is not the best if one wants to obtain an optimal description of the evolution
of extreme events, it does give way to an interesting application in calcula-
ting the return levels by extrapolating recent reasonable linear trend.

For the nonparametric aspect, there are two main approaches : local
likelihood (LL) and penalized likelihood estimations (PL). PL method is
retained for its advantages, which will be detailed later. Penalized likelihood
estimation is especially attractive for us to estimate trends in extremes for
datasets with numerous series over a large geographical area.

In our context, we model extreme temperatures both by GEV and POT
models. Unfortunately, no work has been done on the choice of smoothing
parameters in penalized likelihood approaches for GEV models. For ins-
tance, there is the reparametrization method of Chavez-Demoulin concerned
POT models with two independent Poisson and Pareto sub-models. However
it seems difficult for GEV models because of the very complicated computa-
tions on partial differential equations that it demands for three parameters.
The new procedure that will be proposed in this chapter has already been
introduced in Chapter 3. Here, we will concentrate on its application to ex-
treme values.

5.2 Results from probability theory

5.2.1 Basic extreme theory for i.i.d sequences

There are some very complete books about the extreme value theory
in the probabilistic asymptotic framework. Embrechts et al.([41]), de Hann
and Ferreira ([30]) are such exhaustive books. Leadbetter et al.([92]) and
Resnick([I38]) are seminal books dealing with all the theory.

Let us first give some notations which are often used in the statistics of
extremes.
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Let € € R be called the shape parameter. The basic extreme value dis-
tribution G¢ is defined by :

if € #0,Ge(2) = exp —(1+€2) "Y€ when 1+ €2 > 0;
=1 if not (5.1)
if £ =0,G¢(z) = exp (—exp (—2)).

The expectation and variance of the distribution G¢(z) are expressed as :

E(Ze) = 1/6(T(1 = &) —1); V(Z) = 1/3(T(1 = 2¢) = T?(1-¢))  (5.2)
where Z¢ has the distribution Gg.

With this shape parameter £, the basic Pareto distribution H¢ is defined
by :

if € #0,He(z) =1 — (1+€2)71¢

. (5.3)
if £ =0,Ge(z) =1 — exp(—2).
The expectation and variance of the distribution H¢(z) are :
1
E(Z¢) = T—¢
1 (5.4)
Var(Ze¢) =

(1-¢)*(1 —2¢)

Generalized extreme value distributions (GEV) are defined as the dis-
tribution of u + 0Z¢. p € R is a location parameter, o € RT is the scale
parameter and Z¢ has the distribution G¢

If M follows distribution G¢(u, o), we have :

E(M) = p+ 0 E(Ze); V(M) = 0°V (Z¢) (5.5)
and we address the model M = ji + 0 Z.

With the same principal, generalized Pareto distributions (GPD) He (o, u)
are defined as the distribution of u + 0Z¢ where u is the threshold, o is the
scale parameter and Z¢ has the distribution H.

Then the expectation and variance of Y = X — u from the distribution
He¢(o,u) are :

B(Y) = 0B(Ze); V(Y) = 0®V(Z) (5.6)
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and the conditional expectation is :

o+ &y
1-¢

For GEV, as for GPD, the case £ > 0 is "heavy-tailed” or Fréchet, the
case £ = 0 is "medium-tailed”, or Gumbel, and the case £ < 0 is "short-

tailed”, or Weibull, the distribution has finite upper endpoint at p— o /¢ for
GEV and u — o /¢ for GPD.

EY —ylY >y>0)=

(5.7)

A function L is called slow varying if and only if for t > 0 :

L(tx)
z—oo L(x)

~1. (5.8)

A function F is said to have a regular a— variation (or to be a Karamata
function) if and only if there exists a such that :

F
lim (tx)

Jim oy = (5.9)

For details see de Hann et al. [35].

Now consider the basic theory on extreme values.

Theorem 5.2.1 (The GEV limit theorem)(see de Hann et al.[35])

Let F be a distribution of probability and let X1, ..., X,, be a sequence of
i.i.d variables with distribution F'. Let M,, = max(X1, ..., X,), then we have
P(M,, < z)= F(x)". If there exists two sequences (By) € R and (A,) € R}
such that MRT_,LBTL converges in distribution to some W then :

- There exists £ € R and (p,0) € R x RT such that W = G¢(p,0), F is
then said to belong to the domain of max attraction D¢ of Ge.

The following condition for the tail of F' are necessary and sufficient in
order that F' € Dg.

e £ > 0 : The distribution F' belongs to the domain of maz attraction of
Fréchet with the index & if and only if 1 — F(z) = = Y¢L(x) where L is a
slowly varying function.

e £ <0 : The distribution F belongs to the domain of maz attraction of
Weibull with the index € if and only if 1 — F(ry — 1) = zVEL(z) where T is
the finite endpoint and L is a slowly varying function.

e {=0:

The distribution F' belongs to the domain of max attraction of Gumbel if
and only if for some auxiliary function b for every v > 0

1-Fly+byv) = _,
- F(y) —e (5.10)
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as y — oco. Then

— 1. (5.11)

as y — oo.

A stationary POT(L,0, &) model is defined by the following model :

- P is an homogeneous Poisson process with intensity 7. Let ¢1, ..., ¢, be
the jumps of P and Y = {V¥;,,...,Y%,} is a sequence of pointwise i.i.d ran-
dom variables with Pareto distribution H¢(o). The sequence Y and P are
independent.

Theorem 5.2.2 (The POT limit theorem)

Let X1,..Xj,..., X, be a sequence of i.i.d random variables with distri-
bution F' € D¢. Let u,, be a sequence of thresholds, u, — oo.

Consider the set of {j, X; > up}. Its cardinal is N, and the conditional
distribution given by P(X; >y + up | Xj > up) = Fo(y).

Let n — oo, then if and only if nu, — e~! the point process defined on
(0,1) by the Poisson variable Ny(w) and (%, ..., %) converges to a Pois-
son process on (0,1) of the intensity I. The conditional distribution F,(y)
converges in distribution to some Pareto distribution He.

Remark : It has been shown (Pickands,[118]) that asymptotically, the
excess values above a high level will follow a generalized Pareto distribution
(GPD) if and only if the parent distribution belongs to the domain of attrac-
tion of one of the extreme value distributions (GEV). The assumption of a
Poisson process model for the exceeding times combined with GP distribu-
ted excesses can be shown to lead to the GEV distribution for corresponding
extremes.

In fact, we can relate parameters of GEV(u, 0,§) to parameters of POT
(u; A, 0%,&%) by
&=¢
o' =0+ E&(u—p)

log A = —élog (1 +£u—,u>

2

(5.12)

5.2.2 Extreme for stationary sequences with correlation

Let us begin with an example from de Hann et al. [35].
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Ezxample Let X; be a stationary centered Gaussian process with correla-
tion r,,. Let (A,,) and (B,,) be the sequences of normalization for a sequence
Y1, ..., Y, of standard Gaussian variables. Let (A,,), (B;) be the sequences
such that

lim P

Y,....Y,) — B
<ma$( IR TL) n < 33') N e:np(—e_w)

n—00 A,

If
lim rplogn =~v >0
n—oo

then

. maz(X1,...,Xn) — By,
< = —v <
nh_}n;()( A <z P(M+ N\/2y—~ <)

where M and N are independent, N is normal and M is standard Gumbel
distribution. So if r,, = o(1/logn), we obtain a Gumbel distribution.

The basic definitions and asymptotic results for a stochastic stationary
process whose marginal distribution F' € D¢ for some ¢ is due to Leadbetter
([92]). Let (A,,) and (B,,) be the normalized sequences of the maxima of a
sequence Y7, ..., Y, of i.i.d variables with distribution F'. Then Leadbetter
([92]) gives conditions (D,,) and (D},) such that :

max(Xi,...,Xn) — B 4
T LR (5.13)

Let up(z) = By, + Apz. Let I,p € N. Let Fj, i, the multivariate distri-
bution of X;,,..., X; , D(uy)(z) is satisfied if and only if Vp,V1 <4 < ... <

ip)
ip < j1 < ...<jp < n, there exists a sequence [,, — oo and l,, = o(u,) with
J1 —ip > ly such that :

| Fioovsipgtsegp (Un) = Fiy i (Un) o iy gy (un) |< @, (5.14)

for x,,;,, — 0.

It is easier to check condition D'(u,) : there exists u,, — oo such that :

[n/k]
nh—>nolo sup n Z P(X1 > up, Xj > uy,) =0 (5.15)
j=1

Theorem 5.2.3 For D(u,) and D'(uy,) true then (5.13)) is true

Many important results on extremes are given in Resnick ([138]), Davis
( [122]) and Rootzén([127]) about the case of linear process, especially in
cases where the innovation belongs to the Gumbel domain of attraction or
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has an heavy tail. For positive bounded innovation, see the paper of Davis
and McCormick([31]).

Non linear process results are given for ARCH and GARCH processes,
autoregressive processes with multiple threshold, and Markov chains (see
Smith et al.[I42] and Perfeckt [116]). In chapter 8, we are concerned with a
class of Markov process or multidimensional Markov processes.

5.2.2.1 The extremal index 6 for GEV

In fact, for GEV modelling, the effect of dependence is often a replace-
ment of the limit distribution G by its #-power G? where 6 is the “extremal
index”, 0 < 6 < 1. More precisely, if G corresponds to the GEV distribution
with parameters (i, 0,€) and & # 0 then :

cta-enffoc(59)] )
el’p{— [1+§* <z;*u*>]1/£ }

o
3

Accordingly, the location and scale parameters of the two distributions
are different but their shape parameters are equal. For dependent observa-
tions, the maxima are often in the same domain of attraction, as for the
independent case. We give a reference to Leadbetter et al. ([92]) for a detai-
led mathematical treatment and in fact the main result has a simple heuristic
interpretation.

where

pr=p——=(1-0%, 0" =06 and £ =¢

Another way to interpret the extremal index of stationary series is in
term of the propensity of the process to clusters at extreme levels. More
precisely, # is the inverse value of the average cluster size in the limiting
point process of exceeding times over high thresholds. When 0 = 1, the de-
pendence is negligible at asymptotically high levels. When 0.5 < 6 < 1, the
dependence is not strong, the average value of cluster length is lower than
2, and the parameter # can then be ignored. (The term 6% which plays the
important role in the difference of u*,o* with u, o is rather close to 1 with
€] < 0.5).

In order to estimate 6, the three common approaches are the block me-
thods, the runs method and the inter-exceedance times method. The two
first methods identify clusters and construct estimates for 8 based on these
clusters. For each, there are two decisive parameters : a threshold and a
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cluster identification scheme parameter. The third method is based on inter-
exceedance times and does not need a cluster identification scheme parame-
ter. The blocks method is used, in our case, to estimate the extremal index.
For more details and more bibliographies about other methods, one can see
Robert et al.([1260]).

5.2.3 Non-stationary EVT models

In this section, we present some existing theories about non-stationary
extreme models and the different methods to estimate their parameters. Es-
pecially, we will propose a new algorithm to estimate nonparametrically the
extreme parameters. The algorithm is based on the Fisher scoring algorithm
and accompanied with an automatic choice of smoothing parameter in each
iteration. This algorithm is introduced in Chapter 3 as a general method.
In this chapter, it is used particularly for extreme models.

Non stationarity on distribution

There are few results which that can be applied. The most known is due
to Mejzler (see de Hann et al.[35]) :

Theorem 5.2.4 Let X1,..., X, be a sequence of independent random va-
riables with distribution Fi, ..., F,,. If there exists sequences (Ay), (Bp) such
that

maz (X1, ..., Xp) — Bn

A — G

and if

A
|log Ay, | + | By | 00, | =2

|— 1 and |

x*(G) is the upper bound of G then :
- log G(x) is convez if 2*(G) = 0o
-log G(z* — e™™) is conver if v*(G) < oo.
Any G with this property is a limit in the previous formulation.

This result proves that without the hypothesis of identical distribution,
the set of limits GG is very large and of nonparametric character.

This kind of results is a limit for statistical applications in non stationary
situations.

Definition 5.2.1 A non-stationary GEV model is a sequence (Mp)nen of
independent random variables whose distribution is given by Ge, (tn,0on).
The parameters then are the functions of time.
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A non-stationary POT model is given by :

a/ a Poisson process P(t) on (0,1) with the intensity I(t).

b/ If P(1) = N, and if t1,...,tx are the jumps of P, there exists a se-
quence X1, ..., Xy, ..., X, such that (Xy,, ., Xt;, .., Xty ) are independent, have
a Pareto distribution He, (01;) and are independent of P.

5.3 Statistics of extremes

5.3.1 Basic methods for i.i.d data

For i.i.d random variables X1, ..., X;, with distribution F, F' € D¢, there
is a well-founded theory to evaluate the shape parameter ¢ (Hill and other
classical estimators , see de Hann et al. [35]) based on the behaviour of the
ordered statistics of the whole sample. In the same way, the upper bound of
F' can be estimated from the whole sample as extreme quantiles.

From a practical point of view, this theory is not sufficient. Even if £
is well estimated, many applications require a complete estimation of the
distribution of the maxima M, or of the distribution of exceedances and in-
tensity for a POT approach. At this point, the statistical theory encounters
some difficulties, serious enough to be contested by some people. The tradi-
tional aspect is to approach the distribution of M" Bu by a GEV distribution
Ge(p,0) ~ p+0Ge(0,1), so to consider the approx1mat10n M, ~ G¢(Bn, Ay)
as good enough to be used in the following way.

Let By, ..., Bj, ..., By(n) be disjointed adjacent blocks of (1,...,n) , | B; |=
b(n). If b(n) — oo, the previous consideration can be applied to every
block, which is considered as very large. But of course the number of blocks
N(n) = n/b(n) has to tend to infinity. And so we have to approximate simul-
taneously N(n) the distribution of the N(n) variables M, which are the
maxima of Xq, ..., X, 4p(n) for Bj = (aj,a; + b(n)). This requires a good
convergence of the empirical distribution Fy; of My, ..., M), to that of
GEV distribution G¢(p,0). This step is almost ignored in most practical
applications, for it is very difficult to take into account.

The traditional use of GEV models just consists in taking the distribu-
tion of M,, as G¢(p, o) and to then apply classical methods of parametric
estimation, such as maximum likelihood (m.l), moments or Bayes estimates.
In estimating the extreme parameters, the maximum likelihood is often pre-
ferred. An advantage of maximum likelihood over other techniques of pa-
rameter estimation is its adaptability to changes in model structure. That
is, although the estimating equations change if a model is modified, the un-
derlying methodology essentially stays unchanged. Nevertheless, a potential
difficulty with the use of likelihood methods for extreme models concerns the
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regularity conditions, that are required for the usual asymptotic properties
associated with the maximum likelihood estimator to be valid. Smith([140])
has obtained the following results :

e when £ > —0.5, maximum likelihood estimators are regular, in the
sense of having the usual Gaussian asymptotic properties.

e when —1 < £ < —0.5, maximum likelihood estimators are obtainable,
but do not have the standard asymptotic properties. The speed of conver-
gence is larger than /n in this case.

e when £ < —1, maximum likelihood estimators can not be applied.

Some care is needed to ensure that such algorithms do not move to pa-
rameter combinations violating the condition 1 —{(x — p)/o > 0 in GEV or
1—-¢(x—wu)/o>0in POT.

Mutatis mutandis the same approximations can be done for POT mo-
dels. The size block b(n) is now replaced by the threshold w, — oo. The
exceedances over u(n) are modeled in the stationary i.i.d case by a Pareto
distribution H¢(o) and the intensity is taken as constant. The situation is
simpler than for GEV because in this case the approximation is global.

The choice of threshold u, plays an important role in the POT ap-
proach. To make a good choice, two methods are available : the first one is
an explanatory technique from the characteristic of the expectation of the
model, and the other is an assessment of the stability of the shape parameter

e Stability of the shape parameter :

If the distribution of (Y, |Y, > 0) is GPD(0y,§) for a threshold u (Y, =
X —u), then with a higher threshold v > w, the distribution of (Y;|Y, > 0)
is a GPD(oy + &(v — u),§).

This means that £ does not change from some high value of the threshold.

In practice, we can try many values of u to estimate the parameters of
the GPD, then take a sufficiently high value from which & does not change
a lot.

o Mean excess over a threshold :

If X follows a generalized Pareto H (u;0,&), when § > —1 and o —ué > 0,
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we have :

o —u€
1+¢
In practice, we can choose the threshold from this linearity by a graphi-

cal technique plotting the mean excess against u. The threshold is chosen as
the smallest possible one which satisfies both the precedent properties.

E(X —u|lX >u) = (5.16)

In similar manner as with the block maxima approach, we need some
treatments when the dependence remains among exceedances over a high
threshold. Due to the clustered form of the exceedances showing a corre-
lation between themselves, the exceeding dates do not appear as a sample
of a Poisson process. Various suggestions, with different degrees of sophisti-
cation, have been made to deal with this problem. Among them, the most
widely-adopted method is declustering, which corresponds to a filtering of
the dependent observations to obtain a set of threshold excesses approxima-
tely independent.

We have a “cluster” of length k, which begins at the point ¢t + 1 over a
certain threshold v, if there exists a set of k + 2 consecutive observations so
that X < v, Xeyy > v with 1 <7<k and Xy <.

From this type of cluster, we describe the declustering procedure : in each
cluster U let t 4+ ¢* be the moment of the maximum Y;y;« in U. The set of
all Yy« of all the clusters is a sequence D,called “declustered” sequence, of
independent values. Then a sample of exceedances over a threshold u(u > v)
is a subset of D satisfies Y1+ > u .

The method is simple, but has its limitations. In particular, results
can be sensitive to the arbitrary choices made in cluster determination.
Information can be wasted while discarding all data except the cluster
maxima(Coles, [22]).

5.3.2 Estimation methods for the non-stationary case

In general, the only way to get asymptotic results in a nonparametric
framework is to reduce the time on [0,1] by the transformation j — j/N(n).
This is what we shall do.

In the non-stationary context of GEV, if in every block the distribution
is stationary but the distribution depends on the block label, then for block
J, we take the approximation G¢,(u;,05).



5.3 Statistics of extremes 103

At this step, as is often the case for statistical approaches of non-stationary
models, we can choose a parametric or nonparametric representation for the

function j — ¢(j) where ¢(j) = (&5, 5, 05)-

Now the distribution of the data is often non-stationary with “slow”
changes. Two approaches can be taken :

1/ Neglect the “slow” changes inside a given block.

2/ Suppose that there exists a function on [0,1] : ¢ — ¢(¢) in a gi-
ven block. The maximum value is reached for the jth position, then we
approach its distribution by a distribution G(£(5), fi(j),5(j)) where ¢(j) =
¢(j/N(n)).

Indeed, these two points of view can be confounded if one uses, as a
second type of probabilistic approximation, the approximation of the distri-
bution of the variables X1, ..., X4 n(n) by some Fj, and then that of M;
by Ge¢;(p(j),0(j)). These approaches are heuristically serious and can be
checked by simulations. There nevertheless remains that some mathemati-
cal results are required.

For the non-stationary POT models, there are difficult problems concer-
ning the Poisson intensity. One important problem of what is the asymp-
totic is discussed in the appendix of Chapter 8 on return levels. In fact,
for the exceedances, the whole set of observations can be considered as a
set of observations of random cardinal of the distribution He)(o(t)) in
the previous sense. We consider the observations Z;,, ..., Z;,, of distribution
Heg,y(0(t1))s -y Hepyyo(tn) and then we can apply parametric representa-
tions and use classical statistical tools.

Of course, combination of non independence and non stationarity can
be “justified” in the same way as in GEV. It seems easier to do this work
for POT models than for GEV ones. For the latter one, we need a theory of
maxima of triangular arrays of blocks which seems fastidious to write.

An implicit difficulty in any extreme value analysis is the limited amount
of data for the estimation of models. From this point of view, POT is more
advantageous than GEV. Modeling only block maxima (classical size of block
is a year) is really a wasteful approach because a lot of information is lost.
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5.3.2.1 Parametric estimation

For the parametric approach, some simple studies of the theoretical pro-
perties of particular classes of non-stationary processes are described in
Leadbetter et al. ([92]). Then, improvements and applications have been
proposed in different fields : Smith ([I41]) gives basic examples for environ-
mental applications, Coles ([22]) and Katz et al.([86]) developed the EVT
for the fields of oceanography and hydrology. In these works, extreme mo-
dels are fitted with polynomial trends. Recently, Parey et al.([114]) proposed
to approach the problem of the form of the trends, for air temperature ex-
tremes, by continuous piecewise linear functions.

The advantage of a parametric approach is that it can sometimes give a
direct asymptotic as j — oo, but only sometimes as is shown on an example
in the appendix of Chapter 8.

In our parametric approach, we assume most often the parameters of
GEV, or POT, given as polynomials or continuous piecewise linear function
(CPL).

CPL models are very useful in practice. First for the usual mean and
variance, they allow to split the observation periods into homogeneous parts
following increasing or decreasing criteria (see Chapter 8 on return levels).
For return levels also, they are probably the best tool to extrapolate para-
metric models.

However difficult problems, practical as well as theoretical, remain when
using CPL in our situation. The first problem is linked to what can be na-
med here “a sampling effect due to the boundaries”, for instance, in our
case due to some rare events in the first or last period. For example, when
considering the temperature series until 2003, we can obtain a very strong
linear trend because of the heat wave of 2003. We get catastrophic return
levels if we use the last and short piece as trend to extrapolate the parameter.

Another theoretical and practical difficulty is that CPL models are not
identifiable, i.e the same model can be defined by different sets of parame-
ters. The classical theory of likelihood is not valid anymore and one has to
use a specific theory similar to that given for mixture models as in Dacunha-
Castelle and Gassiat ([30]). This issue results in problems of estimation of
parameters that can have no consistent estimators. And as a matter of fact,
the theory of test of likelihood for nested models is no more applicable, the
limits are not the usual x? ones. This can be avoided under the constraint
of separation of angular nodes, e.g. by 10 years.
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The choice of the optimal degree with the previous constraint in poly-
nomial modeling are based on the Akaike criterion. This is no more valid
for CLP modeling, again because of a lack of identifiability. Nevertheless its
use can be justified if one finds a “clear” break (see the same problem for
mixture in [30]).

5.3.2.2 Nonparametric or semiparametric estimation

Nonparametric and semiparametric smooth are well-known and have
been applied in many fields. There are some works exploring these tech-
niques in the extreme value context. Davison and Ramesh([33]), Hall and
Tajvidi( [69]), Ramesh and Davison([I123]) proposed a local likelihood ap-
proach. Rosen and Cohen ([128]) instead suggested a penalized likelihood
for the location parameter of a Gumbel model. This idea was then developed
by Chavez-Demoulin([I7]). In this latter work, in order to apply efficiently
the automatic selection for smoothing parameters, a particular reparame-
trization to obtain orthogonal parameters is proposed. Related works were
performed by Pauli & Coles ([I15]) and Chavez-Demoulin & Davison([18])
who applied a similar approach and used bootstrap simulation, or a Bayesian
approach, to calculate confidence intervals for the assessment of uncertainty.

Two approaches, local likelihood estimation (LL) and penalized likeli-
hood estimation (PL), based on completely different principles, both give,
in practice, rather similar results with the appropriate smoothing parame-
ters. However, estimation of extreme models by penalized likelihood is ne-
vertheless clearly more advantageous than by local likelihood for different
reasons :

e PL requires much less computations compared with LL. For example,
in local linear method, when estimating location and scale parameter, it re-
quires computation of four-valued parameter estimators (rather than two).
Moreover, LL estimation could become heavily saturated, particularly when
design points are sparse (see Hall and Tajvidi, [69]).

e Automatic parameter selection does not work well in LL for local linear
cases ([123]). To overcome this problem, Hall and Tajvidi ([69]) used local
constant fits, but this approach can give serious down-weighted problems at
the boundaries.

For those reasons, penalized likelihood estimation is especially attractive
for us to estimate trends in extremes for datasets with numerous series over
a large geographical area. In our context, we model extreme temperatures
by both GEV and POT models.
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The algorithm

The estimation procedure, which is introduced in Chapter 3, will be used
here to estimate extreme parameters. Using penalized likelihood to estimate
the extreme parameters, we also need the regular condition that & > —0.5.

We use here expected second derivatives, rather than observed second
derivatives, to avoid the negative weight in iterative reweighted least squares.
The performance of this approach has been justified through simulation, as
shown in Chapter 3.

Let us recall that the estimate procedure is a combination of the equi-
valence of penalized likelihood maximization with iterative reweighted least
squares minimization and iterative cross-validation of Gu. We realize that
this procedure concerns three parameters p, ¢ = logo and ¢ for GEV and
on two parameters ¢ = logo and & for POT.

In the case of the GEV method, noting Iyy the expected second derivative
of 8, the estimation procedure is described as :

i/ Initialize : p = 1%, ¢ = log(c?), € = ¢°

it/ Optimize p by CV cycle with fixed ¢, :

p) =

I
Repeat the optimal procedure combining by CV : In the k" step, update :
Wi = Iw(ul(.k_l)), zZ; = ,ul(k_l) + %(ugk_l))/wi and find out optimal \*) and

%) by minimizing the cross-validation term :

OV ~:nw 5.17
D=2 Ty 47

Stop when %) and p* converge. Update p.

iit/ Optimize ¢ by CV cycle with fized p, & :

The same as optimization of u in /. Update ¢.
iv/ Optimize & by CV cycle with fized p, ¢ :

The same as optimization of u in ii/. Update &.
v/ Alternate : step ii/, i/, iv/ until convergence.

When considering £ as constant, the step iv/, optimization of £ with
given p, ¢, results in choosing the £ which maximizes the log-likelihood with
these fixed u, ¢.

This procedure is usually convergent if the initial parameters are suitably
chosen. From our experience, one can use the constant extreme parameters
as initial values. They are estimated from stationary extreme models.
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For the intensity of the POT model, we will simply estimate it by a ker-
nel method through density estimation from the dates of exceedances. It is
preferred to estimate the intensity by cubic splines with penalized likelihood
method. However in the likelihood function of Poisson, there exists an inte-
gral term that must be approximated. This approach is more complicated.
The kernel method can be sufficient for our purpose. The bandwidth in the
kernel estimation will be chosen by cross-validation (see Schabe, [132]).

5.3.3 Confidence intervals

In any statistical analysis, it is important to obtain measures of uncer-
tainty on the estimates. This is especially true for extreme value modeling,
where quite small model changes can be greatly magnified on extrapolation.
Here, we propose an assessment of uncertainty based on confidence intervals.

In the stationary context, confidence intervals of estimators can be deri-
ved from the approximate normality of the maximum likelihood estimators
. This approach which is based on the likelihood function still can be used in
non stationary inference. Here, we will calculate the point-wise confidence
intervals for extreme parameter based on a bootstrap resampling. We do
not give here the numerical results on uniform confidence bands. Important
theoretical, as well as practical, works on the confidence bands for spline
estimators were given in Song & Yang ([143]).

For the block maxima method, once the trend has been identified, the
block maxima series can be expressed as :

My, = i, + opex (5.18)

where M}, are the block maxima, fig,6; are the estimators of the location
and shape parameters and e are residuals having a GEV distribution of
location 0 and scale 1.

Bootstrap on the residuals to obtain the bootstrap samples M* of obser-
ved block maxima. From these bootstrap samples, use the same trend iden-
tification method to estimate the extreme parameters. We obtain samples
w*, o*, from which a 100(1 — 2a)% point-wise confidence interval can be

derived by taking two empirical quantiles ¢, and q;_.
For the POT method, a quite similar procedure can be applied.
The number of dates of threshold exceedances follows a Poisson distri-

bution.

For GPD of exceedances, we consider the following process for the values
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V% over threshold w :
Vi = u+ 6ie; (5.19)

7

where & is the estimated scale parameter and e the residual following a GPD
of scale 1.

The point-wise confidence interval of & is built by the bootstrap tech-
nique in the same way as for the parameters in GEV.

For the intensity I(t) of the non-homogeneous Poisson process, a different
work is required. A reference on the confidence intervals for the intensity is
Cowling et al.([25]).

Let j =1,...,5 be the indices of S samples of simulations .
e Simulate N variables from the Poisson distribution P(A) with A =
fol I(t)dt. Let note Nj, this sample.

e Take a sample t{, v tz\a{ from the density %I(t).

e Estimate a Poisson intensity I(¢)’ from the jumps t, ..., t?v .

e For every ¢ fixed, take the 5% and 95% quantiles of (I'(t),...,15(t)) as
the confidence interval of I(t).

5.3.4 Application to the series of temperature
5.3.4.1 Discussion on the behaviour of the shape parameter £

To illustrate the approaches outlined above, an application on the series
of temperature will be developed. Both GEV and POT models will be consi-
dered in the non-stationary context. In both models, there is not a statistical
evidence of the variation of the shape parameter £. In Nogaj et al.([105])
as in Chavez-Demoulin et Davison ([18]), the parameter £ is considered as
constant, after a long discussion to decide if it is possible to consider that the
asymptotic approximation is of the same quality for both models (constant
or not §) . The estimate of £ in the first cited paper was obtained using po-
lynomial trends and in the second one using nonparametric estimation. We
also refer to Parey et al.([114]) for a detailed discussion about the constancy
of &.

In this chapter, we discuss the behavior of £ in a more precise analysis,
using complete non parametric methods in GEV model. The role of the scale
parameter in POT is similar to the one it has in GEV. Finally a constant
¢ will be kept. Then both parametric and nonparametric approaches will
be used to estimate the parameters in extreme models (GEV and POT).
A comparison between the estimators from different methods allows us to
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assess their empirical performance.

In the following, we call “algorithm 1” the algorithm which corresponds
to the estimation of three “optimal” time-varying parameters from the pre-
vious estimate procedure, while “algorithm 2” corresponds to the estimation
of optimal time-varying pu(t),o(t) and a constant £ from the optimization
procedure.

First we take two distant stations, La Rochelle (France) and Uman(Ukraine),
and we will consider GEV models on the block maxima of daily maximum
temperature in summer (sequence X) in La Rochelle and block minima of
daily minimum temperature in winter in Uman. We consider the behaviour
of £ and its influence on the other extreme parameters.

In figure the left panel shows the study on the temperature in sum-
mer in La Rochelle(France), and the right one is for the temperature in
winter in Uman(Ukraine). For both cases, we illustrate the estimators of the
three parameters from algorithm 1 with the confidence intervals at the level
of 90 percent based on the normality of the estimators when the number of
observations is large. On the other hand, we add in the same graphics the
optimal estimators of the three parameters when ¢ is constant (algorithm
2) . We can see that the curves are very close. Moreover, the constant £ lies
completely in the confidence interval of the varying £. After this study, it
seems reasonable to consider £ as a constant.

In Chapter 6 on K hypothesis, we propose an other method to test the
constancy of £. Its asymptotic properties and methodology will be detailed
in that chapter.

5.3.4.2 Estimation of extreme parameters

For a more complete study, we take here two series of temperature : a
long and a short one. The long one will be the series of daily maximum tem-
perature in Déols(1901-2006) and the short one will be the series of daily
maximum temperature in Bourges(1946-2001). We take these two geogra-
phically close stations on purpose to consider the quality of the estimators.
If the estimators are correct, we must obtain the similar evolutions in the
two stations for the same period . In both series, we consider only the ob-
servations in summer : 14th June to 21st September, including 100 days.

GEYV application

In the block maxima approach, a study of the correlation structure of
extreme events over a fixed threshold is needed. More precisely, we calculate
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the cluster rate 0, which can be estimated by the ratio of the number of
clusters with the number of values above a fixed threshold. An initial thre-
shold is chosen as the threshold which corresponds to 8% of the dataset. The
value of @ found for the series in Déols and Bourges is respectively 0.51 and
0.54, which corresponds to an average cluster length smaller than 2. The de-
pendence in extreme values is then not very important and, we can ignore it.

In the parametric approach, firstly we use polynomials of degree 0 to
5 for p and of degree 0 to 3 for o. The optimal polynomials for p and o
are determined by AIC and likelihood-ratio test. Secondly, we estimate u by
one to three piecewise linear function with the optimal polynomial estimator
of o(constant in our case), in the same principal as for polynomials, we
can retain the optimal CPL. The two piecewise estimator of ¢ with the
optimal polynomial estimator of p is also considered. In the nonparametric
approach, we use the estimate procedure with fixed {(algorithm 2) where
the estimators are optimized by iterated CV. With a size of block as 25, we
obtain the results which are shown in Figure [5.2

For Déols, when estimated by polynomials, the degrees of optimal po-
lynomials retained for g and o are respectively 5 and 0. For Bourges, they
are respectively 3 and 0. Observing Figure the first remark is that the
estimate trends in Déols and Bourges are rather similar in the same period.
The series in Déols is much longer than in Bourges, which leads to much
more variable trends. In block maximum temperatures of Bourges, there are
two values significantly small because of the interpretation of a cold year
(1982), but a good news is that the extreme estimators are not affected by
them, and so give correct evolutions globally.

On the other hand, the different approaches are close to each other,
although they do not give us exactly the same curves. Nonparametric esti-
mators are very flexible and adapted to the characteristics of the datasets :
more variable for Déols’ temperature and smoother for Bourges. Comparing
with nonparametric estimators, polynomial estimators are rather flexible,
but have difficulties to follow some sudden changes in extreme events. CPL
works rather well for p, but not very well for 0. More precisely, when the
change occurs in the first or last years, CPL gives a too high-slope straight
line because of the edge effect. When using CPL to extrapolate the parame-
ters in the future, one should take the previous piecewise if the last piecewise
increases or decreases brutally.

POT application
We take a threshold corresponding to 1% of the dataset to decluster the

series of temperature. Using two strategies of threshold selection which were
discussed in section [5.3.1] we take respectively the threshold 30.9 for the
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series of Déols (corresponding to a number of exceedances NU=450) and
the threshold 30.5 for Bourges (corresponding to NU=250). With a fixed &,
we will use all three approaches like in GEV to estimate ¢ in GPD and the
intensity I in the Poisson process. The results are shown in Figure [5.3

For Déols, for the estimation by polynomials, the degrees of optimal po-
lynomials retained for I and o are respectively 2 and 1. For Bourges, they
are respectively 2 and 0.

As in GEV, the different estimators are close to each other and the
estimated trends in Déols and Bourges are rather similar over the same
period. Nonparametric estimation for the intensity follows the variability
of the exceedances in a better way, but we must take care of the choice of
the smoothing parameters. Here, the smoothing parameters are chosen by
cross-validation, but of course it does not always work well. The estimator of
I in Déols by kernel seems too variable, which means a too small bandwidth.

For CPL, we can clearly see the boundary effect in the estimation of o
for the last part. In general, we can ignore this kind of trend.

APPENDIX

1. Some developments of GEV

In the estimation procedure of extreme parameters, we use these follo-
wing informations about the first and second derivatives of the likelihood
function of GEV.

All the terms below are calculated at a point ¢ : u(t) = u, o(t) = o and
€ =¢.

Note a =1+ &/o(z — p), with a > 0 we have :

Log-likelihood :

—logo — (1—1—%) loga —a YEif € #£0

Uz p,0,8) =
(x5 p,0,€) { —log(o) — ZH — eap (— 24 if =0
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First derivatives :

= (5 + 1) 2 - éa—%—l,ifg £0

1 — 1
:—exp(—x M),iff:()
o

g g

1 1Ya—1 1
[ +< +£) = éU(OL )a JAfE#0

1 — — —
o o o o

1 1\ =z — _qeloga x—p o,

Second derivatives or components of minus observed information matrix.
(The cross second derivatives I*¢ and 1°¢ are complicated and as it is not in
our interest, we will not develop them here)

zuu:(f2§§>12_i<1+§),iff¢0

g a g

- [exp(x_'u> 1} AfE=0
g

o
199 = % — (1 + 2) a’—1 1 [2(1 — a)a_1/€_1 + <1 + 2) (1— a)za_l/g_ﬂ ,FEF£0
1

a2o? (o2

—p\? - 2z — 1 2@ —p) .
<w02”) +€$p<_w0ﬂ>< ($U3 “)>+02_ (ma3 M)’lffzo
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2log(a) = 2 x— 1 (z—p)? log(a) -
15 = Ogga + o ”+<1+§>%—a1/5052a+§0252
—21 2(x — — u)?
+a—1/5[ gf(a) (jg%u) (920252) },if& 20
1 —-1/6-1 1 1—a)a" /62
SRNEES P el R T L

= - [012+ea:p <_f’3;/‘> (ﬂfa—gﬂ) ~eap <_x;u) 012]

Components of Fisher expected information matrix : (revealed by Pres-
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cott and Walden(1980,[121]))

[ = B(—M) = ]%
197 = B(~1°%) = %(1 —2T(2+ &) +p)
€ _ p(_jg T (g ip_ 2, P
I = B(-1*) = 52{ +( 7+5) §+€2}
"7 = E(-I"7) = —075{19— I'2+¢)}
HE — p(—H€ :_n< _p>
=B = =22 1%
N N P 1-T2+¢ p
I°° = E(-1 )—052[1 'y—i-if q—i—€
where p = (1+¢)°T(1+2¢), ¢ = T2+ O{Y(1 + &) + (1 + )/ by =
0.5772157 : Euler’s constant. 1 is the digamma function ¥(r) = log’ T'(r).

2. Some developments of POT

We show here the expressions of fist and second derivatives of GPD
process, which contains only two parameters, thus is much simpler than in
GEV. All the terms below are calculated at a point o(t) = o and £(t) = &
with 0 > 0,a =1—¢(x —u)/o > 0.

Log-likelihood :

—(z —u)/o —logo,if £ =0
l(u;0,8) = _%+1)loga—log0,if§#0

First derivatives :

1"——1+<1 +1>(“(10_°‘),if§¢0

g X1
1 _

- — -2 Tife—0
o g

= _ <;+1) (1-a)/(¢a) + éloga,if £#0.

Minus components of the observed information matrix :
Note z = u/o

177 — %_ <1+1> 2(@—1) _ (10—;az>2’lf£#0

o i ao3
1 2(x
- (@—w ez
1 lz—u (1-a? 11-a
e = 41) (= — — f 0
(xi+ >(02 a Eoa? xi2 oa 1575

1 (1—a)? 2 1—a
S i
l ( -+ 1> 252 + w2 Ea 53 loga if&#£0
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Components of the expected information matrix :

1
o2 + 2

~1

(1T E)(1+2)

66 _ #
(L4861 + 28

(X

17t =

(5.20)
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FIGURE 5.1 — The behaviour of the shape parameter £. Left panel. the
winter in Uman. Right panel : the summer in La Rochelle. In black, optimal
estimators of the parameters by algorithm 1 and in red, optimal estimators
of the parameters with constant £ from algorithm 2.
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Deols: different estimators of mu Bourges: different estimators of mu
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FIGURE 5.2 — Estimation of extreme parameters in GEV by different me-
thods : optimal polynomials (black line), two piecewise linear function (green

line), three piecewise linear function (blue line), cubic spline (red line) and
the block maxima (dashed line)
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Deols: different estimators of the intensity I(t)
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Chapitre 6

A new test of stationarity.
Links between central field
and extreme trends
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6.1 Introduction

The studies in the non-stationary context allow us to understand better
the evolution of the mean and the variance, which are considered to be an
evolution of the “central field”, and those of the mean and the variance of
extreme events. It seems natural to ask if the temporal dynamics of the
entire data set, and that of extremes, are closely related. If they really are,
it is interesting to use this fact in the statistical studies of these variables.
More precisely, we can perhaps extract more information about the central
field in modeling extreme events. Consider the model :

X(t)=m(t) + s(t)Y(t) (6.1)
We have :

Xy —my

P(Y; < M) = P( < M) = P(X; < s;M + my)

St

Assuming that the maxima of X; and Y; converge to an extreme value
distribution, we can derive in the case of GEV (MaxX;~GEV(ux,ox,{x),
MaxV;~GEV (uy,ov,8y) ),

Ex(t) =&y (1)
Ux(t) = O’y(t)SX<t)
px(t) = mx(t) + py (t)sx(t)

and in the case of POT (X with threshold u,parameters ox,{x, intensity
I'; Y with threshold v, parameters oy, y, intensity J),

oy (t) + &) (s(t)v + m(t) — g)l
1+ 20 (s(t)v + m(t) — u)) J(t)

where s;v +m(t) —u > 0. For the case where s;v +my —u > 0, we can find
analogue relations for oy and J by inverting X with Y and u with v.

From these systems of equations, we find that if the extremes of Y; are
stationary, that means its extreme parameters are constant, the extreme
parameters of X are obtained by translation/scaling of the parameters m, s
of the central field. From this characterization, it motives us to study the K
hypothesis : “extremes of the centred and normed series Y are stationary”
and especially to study how to test K on the datasets.

Of course, in practice, if the answer is yes, K can not be rejected, this
just means that with the amount of data we have, it is not possible to have
a statistical evidence for the non-stationarity of the extremes of Y.
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The previous results on nonparametric statistics are applied to the case

where Mj, is the sequence of maxima (minima) in blocks of reduced tempe-

rature Y; = th_(;r;(t), where X is the maximal (minimal) daily temperature,

m(t) its mean and s%(t) its variance. We then discuss the physical meaning
for observed temperatures in Europe as well as for data provided by climate
models.

We only use the GEV approach, and not the POT, because it is easier to
apply to a large number of datasets (from European stations for instance).
The asymptotics of K are studied specifically on Weibull models where the
extremes are bounded with ¢ < 0, which is the case of the temperature.

Looking at the temperatures in Europe, if we estimate the mean and the
variance of of the daily minimum (or maximum) temperatures as suitably
smoothed functions of time (thought as continuous quantities, as intrinsic as
possible), and if the same quantities are estimated for monthly minimum or
maximum, what kind of links do we expect to find between these quantities ?

It is interesting to measure these similarities with something which looks
like a distance between functions of time. A more precise question can then
be asked : if the statistical extreme value models present a trend for some
parameters, is it possible to describe it, or explain it, at least in part, by the
parameters of the distribution of the whole dataset 7 How can this idea be
presented in the statistical language ?

Our work is based on homogeneous periods. The analyzed time series
will be noted X;, and the time evolution of its mean and variance respecti-
vely m and s2.

As a first step, the links between the different trends were cautiously
addressed in a previous work (Parey et al.,[I12]) dedicated to the strong
and complex link between mean and variance for summer or winter data.
This link is an important feature of temperature series. Inheriting this idea,
we will consider in this paper the links between the trends of the whole time
series (that we call central field) and the trends (functional parameters have
characteristics as mean and variance) of the extreme field. The extremes
are described using the statistical extreme value theory (EVT) and the re-
sults will be controlled using the generalized extreme values models (GEV)
(see Embrechts et al.,[41]). The peaks over threshold models (POT) are not
mentioned in our paper, we just consider POT on some datasets to verify
the methodologies. For more details on POT models, see Embrechts et al.
([41]), Chavez-Demoulin ([17], [18]) and Nogaj et al.([105]).
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At first, it seems quite natural to address the H hypothesis which states
that the centered and scaled data, Y; = (X;—m(t))/s(t), also called reduced
data, follow a stationary distribution H, but this is usually not verified in
general. If H was true, the trends in the extreme field would only be due to
translation/scaling effects of the central field and as it is easy to show these
trends can be computed using only the mean my, the variance sx and the
constant parameters of the extreme model of Y;.

This so-called H hypothesis has been often discussed. Katz and Brown
([85]) introduced “local properties” as the (relative) sensibility of the pro-
bability of extreme events to a change in mean, or variance, of the whole
observation set. In a more global perspective, Ferro and Stephenson ([50])
proposed a procedure for an analogous test of H using the estimates of a
limited set of percentiles at two different times. Then Nogaj et al. ([L05])
consider the validation of H by introducing two ways of estimating the same
model of extremes of X;. The direct approach is an application of the non-
stationary EVT to X;, ignoring the information of the whole observation
set. The second approach is an indirect one consisting in estimating during
a first step m and s from the whole data set, then fitting a (non)stationary
model for Y; in a second one and finally reconstructing the extreme para-
meters of X; in a final step. Then their differences are discussed to analyze
the validating circumstances of H.

6.2 Hypothesis K : stationarity of extremes of re-
duced data

¢

Unlike these papers, we do not study H but the weaker K hypothesis : ¢
the extreme model of Yi, noted exty , is stationary” . This avoids taking into
account some small dynamic deformations of the central part of the distri-
bution of the reduced data whose physical interest is in general not evident.
We have improved on the statistical tools in order to measure the departure
from K. The main tool is a test of K based on a simple mathematical fact
written here in an asymptotic framework.

Let 8 € © be a vector of functional parameters of a family of densities
with respect to the Lebesgue measure, where 6(t) is the value of 6 for some
t,0 <t < 1. We consider a sequence Y;, of observations. Then for K either
false or true, any “good” nonparametric estimator of (¢) is convergent. On
the contrary, if we try to estimate 6(t) as a constant by the maximum like-
lihood method, we obtain a good estimator if (t) is constant, and not if it
is not. So we built a statistical test choosing a distance between these two
estimators. Asymptotic theory allows approximating the level and the po-
wer of the test and easy simulations for a finite sample. We then apply these
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general results to families of GEV densities with a negative shape parameter
which needs some specific modifications for the proofs. Their difficulties are
due to the support.

We now consider GEV models. The considered observations are divided
into n consecutive blocks of days of same length. We select in each block
the maximum value of the observations in order to obtain the sequence
My, Ms,... , Mg,..., M,. The distribution of M}y is approximated by the
distribution of py + o Z¢, where Z¢, is a sequence of independent variables
with a GEV distribution G¢, of zero location parameter and unit scale pa-
rameter. We address here the model M}, = uy, + 0124, .

All those functions of the discrete time k will be considered as restric-
tions of functions defined for the continuous time ¢. Here we do not consider
discrete time k but the date t; of the maximum in the block k, for instance

fk (tk)-

In what follows, the statistical models for the extremes of the variables
X; and Y; are respectively denoted extx and exty.

The K hypothesis supposes that the extreme model exty of V; = (X; —
mt))/st) is stationary.

First, let us consider the relations between the parameters of
ertx and exty. oy (k) appears as the multiplier allowing to pass from the
scale function s of the global sample at time ¢, (corresponding to the maxi-
mum of block k), to the scale parameter ox (k). The same role for u(k) is
played by uy (k) through a translation of m(k) and a multiplication with sy.

From the formula , we can see that if Y; is stationary, which is
the H hypothesis, then the trends of the extremes can be exactly compu-
ted using m ,s and the constant parameters of exty. There follows that the
time dependency of extx is completely explained by m and s. A test for
the stationarity of Y; is considered in Ferro et al,([50]). However, H is too
strong if we stress on the problem : “slow deformation of tails, with about
the same speed as the global mean”. For us this is the main question. We
therefore suggest to test the K hypothesis “invariance in the extremes of Y;”,
avoiding to focus on the possible weak deformations in the centre of the Y;
distribution. In other words, we try to see if the hypothesis that “the tails
of Y, are stationary” is verified or not. This hypothesis is translated under
the form of the K hypothesis : “the parameters of exty are constant”.

If py (k) and oy (k) are constant, which corresponds to the validation of
the K hypothesis, we can see that the difference of behavior between the
trends of the whole sample and those of the extremes are completely due to
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m and s. From the formula of the mean and variance of extremes, and from
(8.2.3), we can express the mean and the variance functions of extremes
differently as :

Mearx (k) = m(k) + s(k)(py (k) + oy (k) E(Y))
seatx (k) = s(k).oy (k) /€.(V(Y))"/?

If K is true, then this formula shows that the strong relation described in
Parey et al.([I12]) between m and s is transported to a relation between the
mean function m of the whole observations and the mean function mx of the
extremes. Thus the verification of K implies a strong relation between the
trends in the central field and the trends of the extremes. This point gives
the “connection” between the K hypothesis and the study of the correlation

between the trends of the central field and extremes in our previous paper
(Hoang et al., [79]).

(6.2)

6.3 A new test for stationarity. Application to
extreme models

In this section, we propose a new test for the stationarity. Our approach is
different from that of Foutz and Strisvatava ([52]).The asymptotic properties
and numerical applications of the test will be described in the following.

6.3.1 Asymptotic theory of the test

The set of possible evolutions of exty parameters is very large. Of course
it can be due to a possible evolution of £, that we have previously more or less
excluded, or to more subtle deformations. So a direct test suffers from the
absence of natural alternatives. This is one of the reason why we prefer the
use of the distance A between functions of time to study K. If we estimate a
function of time f by g, A = (fiep (f(t) —g(t t))2dt)~1/? is a measure of
the quality of g as an estlmate of f- We have tWO estimates of the parameters
of exty : f a non parametric estimate, and f a constant estimate obtained
if K is true, this means that exty is stationary. Now, in any case (K true or
false), one can prove that f converges to f when the sample size T' tends to
infinity and the smoothing parameter A tends to 0.

The situation is of course different for f If K is true, f converges to f
with a speed of order v/T and in this case A( f f ) is, for a large sample, very
close to A(f, f) . On the contrary, if K is false, A(f, f) does not tend to zero
and the same is true for A( . f ). The intuitive reason is that we try to find
f in a set of functions “far away” from f when K is false. This argument
could be translated in an asymptotic result.
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Let X;,t = 1...N be a sequence of observations with distribution G(6(t))
where 6(t) is a functional parameter with values in R? and G(«) is a known
parametric family of distributions for « € C' C RP. §(t) € O, with © a set of
functions such that G(c) € © for every constant function ¢ € C. Let g(c, x)
the density of G(c) (supposed to exist).

In this part we want to test the following hypothesis :

Hy : 6(t) is a constant , or

Hj, : some coordinate of 6(t) is constant.

If the variables are not independent, we test if the marginal distribution
of order 1 stationarity. If they are independent, we test their identically
distributed property.

As an alternative hypothesis Hy, we consider inf. ||0(¢) — ¢|| > 0 where |||| is
some norm on ©.
As an example of such a model we can consider a GEV model with parame-

ters 0(t) = (u(t), o(t), £(1).

Let 6,,(t) be a nonparametric consistent estimator of §(¢), for instance, a
spline estimator (studied in section 3.2 of Chapter 3).Its speed of convergence
can be given when O is included in some Besov space.

We suppose that [|6,,(t) — 6°(t)|| — 0 where §°(¢) is the true value of the
parameter 6(t). We will use this kind of convergence result which requires
N large enough and also some regularity of functions in ©.

If 0°(t) = c for some ¢, then ||6,,(t) — c|| — 0.

Now we estimate 6(t) as a constant, even if it is not. Let ¢, be the
maximum likelihood estimate. Of course it does not converge to 0 if 6 is
not constant. We will prove that under some hypothesis, ¢, converges to
argmin K (G(0"),G(c)) or at least has a convergent sub-sequence (adherence

C

points) whose limit belongs to a set F' with :
F = {c,c = argmin K(G(GO),G(C))}

where K means the Kullback information K (f, k) = [ [log f(z)/g(z)]f(x)dz,
K >0 and G(6)) is a distribution function whose density is defined by

o) = [ gla00)de
We have always K(G(6°),G(6°)) > 0 if 6° is not constant.
Now suppose that ©, © C [Co(1,T)|P, a > 2, p > 1, is a vector of
functional parameters of a family of densities g(z, 8(t)) with respect to the
Lebesgue measure where 6(t) is the value of 6 for some ¢ € [0, 1].

We suppose that the following conditions A and B are satisfied :

A1l-g(z,0(t) is uniformly continuous in (z,t).
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A2- Let C be a compact set of constant functions denoted by vectors c,
C c © and {g(x,0(t)),z € RP,t € (0,1)} C C.
In general,we can easily extend the model to satisfy these conditions. From
now on, we suppose t € (0,1) in order to use classical asymptotic non-
parametric theory. We consider a sequence Xir of observations, ¢} = %
instead of X;.

B1- sup, g(y) | log(g(,0(t))| < h(z),h € L'(g).

B2- [[logg(x,00(t))g(z,c)]?dz < oo for every t.

B3- g(z,0(t)) > 0 for every (z,t).
The last condition will be relaxed later.

We have ¢, = argmax ZZQI log(g(Xy,,c))-
ceC
Let 6} the non parametric estimator by splines given by :

Th p T
9§(tk):ar§néax D log g(Xiy, 0r) — D A / (0;(t)%dt|,  (6.3)
€ k=1 j=1 1

with 6 = (61,...,6,) and A = (A1, ..., A,) are the smoothing parameters.

We know that when n — oo and A — 0, égf(t) — 0(t); the speed of
convergence depends on A (see Section 3.2). Our first purpose is to prove
that when the hypothesis K : “0(t) = ¢ for some ¢” is false, the distance
between OAK and ¢, tends to a positive constant, significantly different from
zero, and given in the following lemma.

Lemma 6.3.1 Let L,(0) = >, ,1ogg(X(t3),0(t})) , Lu(c) = >y, log g(X (7)), c).
We have then :

H(Lalt0) ~ Lo@) — [ Klol00(0).9)dt + K(G.90)  (64)

and K(g,g(c)) is continuous on C.

The first term in the limit measures the lack of stationarity of the true
model, and the second the lack of convexity of the global statistical model.
This first term is strictly positive for a non constant 6(t) . This is basic to
test the stationarity.

Proof
From the Riemann convergence, we have :

1
| Dl

T
> gl bo(t) = 9(o) = [ gl 0t

tneDy
then,

CE(L(e) = 13 [ oggla,chgle. ot da.
k

n
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From the continuity of g(x,0y(t)) in ¢ for every = and by Lebesgue theorem,

%E(Ln(c)) — /logg(a:,c)g(x)d:r (6.5)

Using the same trick and condition B2, it is easy to show that :

n

E <1Ln(c) _ / log g(z, c)g(:c)dx>2 — (1)

|n1|Ln(c) L / log g(, ¢)g(z)dz

In the same manner, we get

T
|711|/zk:logg(:c,Go(t’;?;))g(x,eo(tﬁe) E>//1 log g(, 00 (t))g(, 0o (t))dtdx

(6.6)

By addition and subtraction of [log g(z)g(x)dz to and , we get
Lemma [6.3.1] .

O

Lemma 6.3.2 F' = { lim Cn, Where ¢y, 1s a convergent sub-sequence of
n—oo
ént C F={c,K(g,9(c)) is minimum }.
Proof (extension of the proof of the mle consistency, see Dacunha-

Castelle and Duflo ([29],t2,p93)).
Let cand ¢ bein C .

Let wo(n) = sup [logg(c,.) —logg(c, )|
le—c']<n
So wo(n,.) < 2h(.), log(c,.) is g a.s in  uniformly continuous for ¢ € C, so

limw = 0 implies limEw =0.
i () = 0 implies lim Eui()

Let vy (n) = sup |vn(c) — vy(d)| where
le—c'|<y

un(c) = i;n::l [logg(c,XZ) —logyg <90 (i) inj)]

vn(n) < wo(n), so limEv,(n) = 0.
70

Then there exists a sequence (gy) which decreases to 0, so that for all k :

Tim P <yn (}{) > ek) ~0 (6.7)
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Let now € > 0 given and the set :

B, ={c¢,K(g,c) < ingK(g,cl) + 2¢} (6.8)
ce

Take k so that e < € and let C'\ B, covered by a finite number N (p) balls
with center ¢; and radius 1/k (in RP), 1 < i < N(p). We now study the
behaviour of the maximum likelihood in C. Consider ¢ € C'\ B.. We have :

vn(c) > vp(ci) — |vn(c) — vn(e)|

So
inf v,(c) > inf  wvy(e) —va(1/k 6.9
Jnt vne) > _inf on(er) = vnl1/) (6.9
On the other hand, &, = argmax ) ;_, log g(Xy,,¢) = argmin vy,(c).
ceC ceC
= (¢, ¢ B. inf v, inf vy, 6.10
(6 # B) € {_inf un(e) < infun(0)} (6.10)

Inequations and (6.10) bring to :

Pleng B < P (_int | onle) — infon(0) < wa(1/1)

So

P(Q/]-(\n ¢ B.) < P(vy(1/k) > ¢) + P( (Kiig]f\}(p)vn(c) - églgvn(c) < 5)
(6.11)

But v,(c;) — vn(c) = K(g,¢;) — K(g,c¢), ¢ € F (according to lemma [6.3.1)).
K(g,c;) > 2 h = inf K_,/,th li inf n(Ci) —
(g,ci) > m + 2e where m = infoco K(g,) en NLHC}O(ISi?N(p)U ()

. S : _
Clélg’un(c)) > 2¢ and HILIEOP(V(l/k) >e€)=0

So P(¢én, ¢ Be) — 0 .Then by the definition of the infimum, it exists a sub-
sequence of ¢, which converges to a value in F'.

. convergent sub-sequence of ¢p} C F .

So we have F!' = { lim é,,, é,
n—oo
The lemma [6.3.2] is proven.
U

Theorem 6.3.1 For every a such that a < min(|| 6p — ¢ ||,c € F) then a.s.
| 0% — ¢ ||> § for n large enough.
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Proof
We know that with appropriate conditions, é;} is such that || égf -0 ||— 0
when n — oo and A — 0 (see Section 3.2 of Chapter 3).

We have : || 63 — &, =] 60— éa || — || 05 — 60 |

In fact, as mentioned, || éﬁ —6p ||— 0 and using Lemma we have :

0o — én || inf || o —c > inf || 6 — 6.12
Il 0o = [|= inf |60 —c[= inf || 6o —c | (6.12)

Because of the non-constancy of 6y, inlg | 6o —cl|>a>0.
ce

From that, || égf — ¢, ||> § for n large enough. Theorem is thus proved.
U

This theorem can be applied in various directions. For testing H|), we
have to take ¢, and éin instead of ¢,, with ¢L a constant estimator for the
parameter we want to test, and 65 = (6)",65™). The proof for this case is
almost similar to that of Theorem [6.3.1] and we do not detail it here.

We now have to extend it to the case of GEV densities g whose support
is of the form (—o0,b(g)) where b(g) < oo, the support is bounded on the
right side when the shape parameter £ is strictly negative.

Now we need to start with a compact set C defined as C C R? and
{(M,a,g), —M<u<M;0<e¢ SUSM,—%+€§£§ —e} where € and
M are arbitrary constants. We choose this compact set because it will be
the usefull one for the studied application. The condition & > —% is not
necessary but is usual for giving the existence of the m.l.e. in the regular

case. In fact & > —1 is necessary.

With these conditions, it is not difficult to check conditions Al, B1, B2.
Of course Al and B3 are not satisfied. We need to find out un compact
Cy C C where Al and B3 can be valid. This means that g(z,c) exists
(0 < g(x,¢) < 00) for any cinCh.

In order to extend the previous theorem to the case of GEV distributions,
we need that for every ¢ € C, K(g, g.) < co. This leads to prove the following
lemma.

Lemma 6.3.3 For n large enough,

n
P{argmaXZg(c, My, € C1} =1
k=1

where C1 = {c,b(c) >= n%%b(eo(t)) with b(c) the upper bound of g(c,x)
te(0,

and b(6(t)) that of g(6(t), x).
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If the lemma is true, then we have to consider only ¢ such that g(c) is
absolutely continuous with respect to all g(6(t)), t € (0,1) and also with
respect to g.

From the form of the GEV density (¢ fixed), we check easily that k(g, g.) <
oo if ¢ € C1. The proof of Lemma [6.3.3]is shown here.

Proof

Suppose that there exists some ¢. such that b(c) < b(0y(t.)).

Then from the continuity of the map ¢ — b(é(¢)), this is still true for
t € I. with I. an open interval and ¢, € I.. Thus there exists an open interval
J. C I. and a > 0 such that

b(c) < b(B(t)) —afort e J.

The density of G¢(u, o) near the upper bound b =y — o /¢ is equivalent
to D(o, &) (b — x)~ /¢ for some constant D > 0 depending on ¢ and €.
So there exist Dy, Dy > 0 such that

> P(Yiym) > (0 (i) —a)> Dja~ ¢

k=1

and

f:p(yk) > b(6o (7’2) ) > Dan

k=1
From the dependence of the variables M}, and the Borel Cantelli lemma,
there exists ng such that for every subsequence ng > ng

<Zlogg Cva/kn ) =—o0)=1

and thus if ¢, = argmax)_, ;. log(c,Y}"), P(é, € Cy) for n > ng. Then
the lemma is proved.

O

6.3.2 Numerical study of the test

In order to make the previous test, there are different things to consider.
We see that the statistical test is based on some distance || 0} — ¢, || . If
the distance is a norm then

165 —én 2]l 60— én |l — 1| 63 — 60 | (6.13)

and ) R
|03 —én [|<[[ 0o —én | + || 6% — 0o || (6.14)
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The statistical error || ég‘ —0p | is always O(-L) where a depends on the
hypothesis made on ©( see Theorem in Section 3.2).

When K is true, the term || 0y — ¢, || is O(ﬁ) So in the case where

a < 1, following (6.14), the distance || éf — ¢y || is mainly the statistical
error in nonparametric estimation || 8% — 6g || -

When K is false, the main error in the right term of is || Op—¢n ||>
a > 0. Then the distance || éf\L — ¢y, || is significantly different from zero.

It is preferable not to use asymptotic distribution which highly depends
on properties of © and to proceed using bootstrap and simulation if it is
possible.

The formula M), = py, + 01 Z¢, allows to bootstrap the estimates of the
parameters if and only if £ is constant. In this case we have a model with
i.i.d residuals and the classical bootstrap can be used to create the empirical
distribution for the distance A =|| éf\L — ¢y ||. Simulation technique can be
also used.

If £(t) is a function of time, we have to use simulations in order to
compute the distribution of A.

6.4 Reconstruction and departures from statio-
narity in the tails of Y

The previous results can be illustrated on the original data X;. Using the
relations written in the previous paragraph, we can recover the GEV
model (extx) = G(pux,0x,&x) of X; from the knowledge we can get from
the GEV model (exty) = G(uy, oy, &y ) linked to Y; and that of mx and sx.

Here we have three estimates of the parameters of extx : the direct non
parametric estimate ¢, and the indirect ones using Y : f when the parame-
ter in the model exty is stationary and f without this constraint. f and g
are always convergent estimators of f . For f if K is satisfied, the error in
estimation is, for a size of observations large enough, smaller than the other
errors obtained for ¢ and f . On the contrary, as already said if K is false,
f estimates f with a bias of | f — f ||> a > 0.

In summary, we can compare three estimates of extx, the direct and
usual one and two indirect estimates obtained from m, s and exty, constrai-
ned or not. We proceed to the following sequence of estimations.

e Direct estimation of ux,ox,x of the GEV

e Estimation of m, s and computation of Y;
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e Estimation of uy, oy, &y of the GEV for both cases : with and without
K.

6.5 Results of application to data series of Europe

We work here on 55 data series from the ECA & D project (European
Climate Assessment and Dataset project, (Klein et al., 2002)). On the other
hand, some applications will be also made for ERA40 reanalysis data. The
summer has been defined as the 100 days between the 14th of June and
the 21st of September, whereas the winter has been defined as the 90 days
between the 1st of December and the 28th of February. These periods have
been selected because most extreme events occur between these dates. Daily
maximum and minimum temperature have been considered in the summer
and winter respectively.

In the summer, there are 100 observations for each year, so we use a
block size of 25 days for the method of block maxima (GEV) and in the cold
season, there are 90 observations for each year, then we use a block size of
30 days.

The constancy of £ is studied in Chapter 5. In this chapter, we see that
this constancy can also be tested by the previous test when we estimate £ as a
constant and as a function of time at the same time. This test however is not
executed here for its heavy computation (in the case where ¢ is functional).
After the study in Chapter 5, we accept the constancy of £&. Then we place
ourselves here in the semiparametric case when estimating GEV models for
temperature series : u, o are estimated nonparametrically and £ is a constant.

6.5.1 Links between trends in central field and in extremes

Our aim is to graphically compare m with mezrx, and s with se.;x in
a systematic way. megx and Sezpx are estimated in using with the
estimators of extreme parameters obtained by algorithm 2 above, while m x
and sx are estimated locally by loess (see Parey et al., [112] for details).

We first estimate these quantities from the datasets of five stations from
different places in Europe. Both seasons are considered. The results are
shown in figure [6.1

The first remark is that for several series, the trends in mean and the
trends in variance of the central field and extreme events are very similar.
Intuitively the relation between m and mx seems stronger than that bet-
ween s and sx.
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FIGURE 6.1 — Mean function, scale function of the whole observations (solid
line) and mean function, scale function of extreme events (dashed line) for

different seasons at the different stations.

Now we will study the K hypothesis for all the European ECA &D tem-
perature series. The test is realized at the level of 90 percent, which means
that if the true values of A are found inferior to the 90th percentile of the
simulated A or in other words, if the p-value =P(D>true value) where D
is the variable of the distribution of delta is superior to 0.1 for both p and
o , K cannot be rejected. In the case where K is rejected by our test, by
constructing the distribution of A with the nonparametric estimators (which
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are supposed not to satisfy K), the power of the test can be calculated. These
powers are high enough (more than 80%), which shows the credibility of our
test. One example is for the summer in Ile-de-groix where K is refused with
respect to p (p-value = 0) and o(p-value=0.05) and the power of test for u
is 96.7%, for o is 91.5%.

In this sense, we have the results for the ECA & D temperature series

(figure [6.2)).

55 ECA series: K hypothesis in winter 55 ECA series: K hypothesis in summer

mu and sigma v mu and sigma 4
mu OK : mu OK *
sigma OK sigma OK

FIGURE 6.2 — Validation of K on ECA & D data series

The K hypothesis is generally rather well accepted in summer, for both
w and o, whereas in winter it is less obvious. This is coherent with the fact
that the link between mean and variance of the central field has been found
stronger in summer than in winter (Parey et al., [I12]). There seems then
to be a different behavior in the two seasons concerning the evolutions of
the mean and variance and that of the extremes. One possible explanation
could be that in summer, the extremes and the variance are linked to the
occurrence of heat waves in a stronger way than in winter with cold waves.
In winter, the variability is more influenced by the large scale circulation,
through the weather regimes for example. This hypothesis will need to be
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ERA40: K hypothesis in winter ERA40: K hypothesis in su

non convergence .
mu OK

sigma OK >
mu and sigma Ol{

e muand sigmaﬁ,

non convergence,,
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mu and sigma OK ¢
e muand sigma_ v
g

FIGURE 6.3 — Validation of K on ERA reanalysis data series

further investigated.

The study of K can be extended to the reanalysis data. The results
of the validation of K on the daily maximum temperature in summer and
daily minimum temperature in winter are shown in figure 6.3} For reanalysis
datasets, K is always valid.

The K hypothesis, if satisfied, can provide a good way to evaluate the
extreme parameters of X from those of Y and the mean and variance evolu-
tions of X. Let us give one example in the case of the summer temperature
in Deols, where K is accepted in Figure[6.4 The reconstructions of u with K
and without K are quite good ; both of them approach the direct estimator.
The reconstructions of o are less good ; the reconstruction without K cannot
follow the other ones where the peaks are found. Once more, this is due to
the weak robustness of the estimators of the scale function.

The fact that the K hypothesis can generally be accepted in summer could
have an interesting application. As climate models currently have difficulties
to correctly reproduce the parameters of the tail of the temperature distri-
bution ([I11]), this result could be used to estimate the GEV parameters for
a future period from those of the current one (evaluated from the observed

mmer
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Direct estimation and reconstructions

34
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sigma
25
I
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FIGURE 6.4 — Direct estimations (in black), their 90% bootstrap confidence
intervals (dashed lines) and reconstructed parameters under K (in green)
and without H(in blue) for the GEV distribution fitted on the maxima of
the temperature series in summer in Deols.



6.6 Conclusion 136

series) and from the mean and variance change of the central field as pro-
jected by the climate models for the desired future period.

6.6 Conclusion

In this paper we have tried to use, as far as possible, the properties of the
non parametric methods in statistics to obtain general qualitative properties
on the time evolution of the temperatures in many stations in Europe during
periods of the last century. One has to understand that the conclusion de-
pends on the amount of data. Some subtle physical behaviors cannot receive
a statistical evidence with the observations provided by meteorological mea-
sures so far and thus sentences as “the effect of warming is stronger on the
extremes than on the mean” do not have any strong statistical support in
large parts of Europe even if the very recent climate behavior could suggest
the opposite.

The first conclusion is that the mean and variance of the central field and
the mean and variance of the extremes for both summer and winter have a
very similar evolution. These relations inherit one part of the relation bet-
ween the mean and variance which is described in Parey et al.,([I12]). This
analysis could be extended to other stations in other areas of the world in
order to see if it is a general behavior.

In order to evaluate to what extent the evolution of the extremes is due
to the evolutions of the mean and variance of the central field, we proposed
a methodology to test the so-called K hypothesis : the null hypothesis is
the stationarity of the model against the non stationarity, parameters being
smooth functions of time. As a particular case we studied the stationarity of
the extremes of the reduced series Y; obtained from the initial X; series. This
hypothesis can generally be accepted for a majority of the studied European
temperature series in summer. However, if the geographical repartition of
the satisfaction of the K hypothesis is coherent with that of the link bet-
ween evolutions in mean and variance in the central field in summer, it is
less obvious in winter. In summer, for stations experiencing more variable
conditions, the variance increases when the mean increases, and these in-
creases explain a large part of the evolution of the extremes. In winter, the
picture is more complicated and further analyses would be needed in order
to better understand this behavior.

For the stations and season where the general validity of the K hypothe-
sis is confirmed, this could be used to estimate future return levels from the
General Circulation Models projections. As a matter of fact, these models
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currently perform better in simulating the average behaviour of the tem-
perature than their extremes. However, the evolution of the variance has
been shown to have an impact on the evolution of both the mean and the
variance of extremes. Thus, a correct reproduction of the variance is also
an important factor in order to have a reliable estimation of the parameters
of extremes for a future period in using the K hypothesis. Thus, this point
should be emphasized in the development and validation of the climate mo-
dels.



Chapitre 7

Multidimensional trends: the
example of temperature
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This chapter is our article [79]. It can be considered as the synthesis
of the results from the previous chapters. It gives us a general look for
the trends in the central field and in extremes, so-called ” multidimensional
trend” in the climate change context. The definition for the trends in mean
and in extremes in the literature have not been defined clearly yet. In this
paper, we will discuss about the notion of multidimensional trend. For us,
trend’s notion is linked with nonparametric estimation. ” Trend” classically is
understood as a straight line, so increasing trend or decreasing trend. This
comprehension is really limited. Whereas the flexibility of nonparametric
estimation allows us to give a much larger definition for trend without any
assumption on its form.

Non parametric trends in mean, variance and extremes will be derived
for the temperature series in Europe. Besides that, a criterion to compare
the different trends will be proposed. The relation between trends in the
central field and themselves with trends is extremes will be studied to give
us more comprehension in the global environment of the temperature.

7.1 Introduction

Climate change is generally presented and discussed in term of trends in
the mean of climate variables over different spatial scales, from individual
observation stations to spatial means over geographical areas or the entire
globe. The study of temperature variability, confidence intervals and trends
in extremes are also worth of interest. Generally, trends in mean are derived
using ordinary least square regression methods [84) [34]. On the other hand,
trends are usually studied separately : papers are devoted either to trends
in mean, or to trends in extreme events. The trends in extreme events are
analyzed using linear least squares fit on the series of so called “extreme
indices” [89, [5]. Mudelsee[96] uses kernel fitting to study flood risk in a
nonparametric way.

In this paper, we would like to address the non parametric derivation
of trends, as well as the links between trends in different quantities such as
mean, variance and extremes, and then illustrate the point by considering
temperature series in Europe [42].

Generally, a trend is computed (not defined) as a slow and thus regular
component of a time series, superimposed on a series of quite stationary
and less variable residuals. In other words, computing a trend consists in
extracting some deterministic signal from noisy data. In most studies, as
stated before, this is done using ordinary least squares fitting, which will be
referred to as “classical” trends.

The point and main topic considered here can be formulated as follows :
once the trend in mean has been estimated, are there other trends which
could describe the temporal evolution of the series and how many are si-
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gnificant 7 Are they “independent” in some sense? If we leave out of this
study, for simplicity, the usual seasonality and all periodic phenomena, our
goal is then to look for multidimensional deterministic trends, which, when
removed, leave an as stationary as possible residual series. In practice, as
we will illustrate on temperature series, the search for stationarity has to
be stopped when the physical meaning of the trends becomes too weak or
when the trends are too strongly linked.

As our goal is to derive non parametric trends in the most objective and
general possible way, we first mention the general qualitative properties,
requirements and assumptions made to identify a trend. They can be listed
as follows :

- Choice of the time scale : When observations are given over a time
period T one has to decide which time scale (less than T') is of interest to
study the signal variation ; to simplify we will call it “the window length” in
this work. For example, if the topic of interest is the possible anthropogenic
effect on climate change, if one has to consider data over the industrial
period, the window length is more or less arbitrarily chosen as 30 years if
two to three centuries of observations are available. Over the most recent
period, the decade is often chosen as window length if the period length of
observations is at most fifty years. The window length for a given observation
period is indeed often chosen in a quite arbitrary way and this choice is very
important for instance in the case of the increasing mean temperature. We
will show in the paper that such a choice based on informal or subjective
ideas (heuristics) can be improved when using more intrinsic (mathematical)
considerations.

- Almost invariance by data extension and localization : Once
the length T of the observations has been fixed, if we add new observations
whose period length is a significant fraction of 7' (7'/2 for example), then the
modifications on the previously computed trend on any subinterval of the
initial dataset have to be small. Of course, if we consider a trend estimated
on a 50-year period of observations, and then include this period in a larger
period of say 300 years, the trend is obviously modified and the intrinsic
smoothness will change. Nevertheless, intrinsic choices allow to give an ob-
jective interpretation of this modification and can help to define changes or
breaks in the trend behaviour.

- Monotonicity : In order to easily interpret the physical phenomena,
the monotonicity can be imposed to a trend. For instance if trends are used
in order to define an extrapolation necessary to compute return levels, mo-
notonicity is required in general. Variants are in constraints on the number
of intervals where the trend is monotone or convex. There are general tools
to obtain constrained estimates as isotonic regression (see [I51] for example).

Starting from these considerations, the paper is devoted to the identifica-
tion of trends in mean, variance and extremes of a time series, together with
their possible links. It is organized as follows : first, the statistical frame-
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work is given in section before coming to the results for trends in mean,
variance and extremes of temperature series in Europe in section [7.3] The
link between the trends in mean and variance and the trends in extremes is
discussed in section [7.4] and a methodology is proposed to test if the trends
in extremes are due to trends in mean and variance, before concluding in
section

7.2 Statistical framework

7.2.1 Trend in mean

We first discuss the trend in mean, with the supposition that there is no
seasonal trend (or any trend with an obvious shorter window, this point can
be checked for example using a wavelet analysis).

The basic approach uses a moving average procedure, with a moving win-
dow length L. In this simplest case as for the more complicated forthcoming,
we define the model, here :

X(t) =m(t) +e(t) (7.1)
where X (t) is the observation series with unknown mean m(t) and e(t) is a
centred process, which is expected in general to be stationary and uncorre-
lated.

This ”signal4+noise” approach is first improved in using non parametric
statistics, and then often followed by the choice of a regression model in
parametric statistics.

Non parametric methods satisfy the previously given requirements, but
now the window length of interest is chosen in an intrinsic way and has a
precise definition. The main lines are the following :

-We suppose that m(t) is in a space M, for instance that of the two
continuously differentiable functions.

-We suppose that e(t) is stationary. An important point must not be for-
gotten : the statistical tools used to identify m(¢) depends on the properties
of e(t), for instance of its correlation or of its distribution.

-A criterion is chosen to define a ”good estimate” of m(t), for instance
the minimization of the integrated quadratic error.

= m(t) — m(t))? .
Brr= [ m(t) =) (7.2)

which requires the control of the bias and of the variance of the estimator
(it exists of course the same but local criteria for fixed t).

There are two families of methods : smoothers (splines, kernels, loess,
lasso) and approximations (Fourier, orthonormal systems as Fourier series,
wavelets families). See [151l 47, 59, 131], 139] for a general presentation of
these basic statistical tools.
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In all cases, the intrinsic window length is associated to a tuning pa-
rameter of the method (penalization parameter or kernel width in the first
case, threshold for coefficients in the second one). This parameter is estima-
ted from the data (adaptive estimation), normally with independent data,
using methods such as the cross validation (CV) or the generalized cross
validation (GCV) or other criteria as AIC (see [93, [75], [103]). Besides we
have another parameter, the degrees of freedom, calculated by the trace
of the smoother matrix df = tr(S) (see [75]) which is directly linked to the
tuning parameter. The more df is large, the less the function is smooth. The
degree of freedom is the only common parameter which allows to compare
different smoothing methods such as loess and splines. It fixes the window
length which becomes intrinsic because the degree of freedom only depends
on the data without any a priori choice [I51]. Similar notions can be inferred
for approximation methods. Details are given in [28] about the technical use
of CV and so the mathematical choice of the degrees of smoothness.

The methods are developed and deeply studied in the case e(t) is a
sequence of independent and equidistributed variables. In the case of de-
pendent data, they can be used with suitable and precise specifications and
modifications depending on the hypothesis made on the process e(t) : for
instance e(t) has a (short) memory (autocorrelation) or the variance of e(t)
is not constant. Examples are given for temperatures in our previous work
[112]. It remains to obtain more general results in mathematical statistics
to improve the intrinsic character of the tools.

Confidence bands are obtained by bootstrap using also modifications
(very close to that necessary for the choice of the tuning parameter) to take
into account the properties of e(t) [66] 911, [104].

7.2.2 Trend in variance

To derive the trend in variance, we first choose a model, here :
X (t) =m(t) + s(t)e(t). (7.3)

We shall use sequential “plug in” methods : once the trend m(t) for the
mean has been estimated (as m(t)), it is then natural to look for a trend for
the variance s2(t) of the same observations with the same window length of
interest.

The model is now :

Y (t) = X(t) — m(t) = s(t)e(t) (7.4)

where €(t) is a centred process with variance one, once again expected to be
stationary and uncorrelated. The purpose then is to estimate s(t).

For a large class of hypotheses on £(t) (like for m(t)), we can proceed
as for m(t) but on the data Y2(¢). It is worth noticing here that the fact



7.2 Statistical framework 143

to plug 7(t) instead of m(t) in the data in order to obtain Y2(¢) does not
modify, at least for large datasets, the efficiency of the usual non parametric
methods [96]. Of course, here as for m(t), statistical results are needed to
extend to very general ¢(t) the use of the tools.

Periodic seasonality and global warming are not independent, global war-
ming strongly depends on the season (even on the month) of the year(see
[78]). Technically, this is a difficult point .What happens for seasonal trends
if these trends in mean and variance exist 7 We do not discuss this problem
here, as it is neither a problem of usual separation of frequencies nor a pro-
blem of space time decomposition usually solved using wavelets for instance.
Here the main problems are that of the identification of parameters because
seasonality is not invariant for the time scale defined by the mean and va-
riance trends, and the mean and variance trends are highly seasonal. In a
parametric context it is a simple problem but it needs tricky solutions in a
non parametric context. We shall discuss it in a forthcoming paper. £(t), as
defined above, is not a stationary process because in general, and it is the
case for temperatures, its dynamics depends on the season. Of course all the
difficulties previously mentioned disappear, or at least are much attenuated,
if one limits the study to a homogeneous part of the year, for instance the
2 hottest months.

7.2.3 Trend in extremes

It is suspected that if a warming effect is observed for temperature, more
precisely increasing trends in mean and/or variance, then some linked phe-
nomena has to be expected for the extremes. For the extremes, the statistical
procedures are based on an asymptotic result coming from the probability
theory [135], which requires a large amount of data (the convergence is slow)
and some regularity conditions on the tails of distributions, in general quite
impossible to check but accepted for their weakness. Two other conditions
have to be verified in order to have a limit theory for the extremes :

- does the temporal structure of the process €(t) adjust to a theory of
extremes for this kind of process?

- what is determinant for the extremes (what “makes” the extremes?) :
the deterministic trend m(t) or the random fluctuations of e(t) ?

In our applications, the effect of the deterministic trend m(t) during a
short period (some months) can be neglected, with a statistical evidence,
with respect to the random fluctuation £(¢), whose distribution has parame-
ters which are the extreme trends. Now what happens when we consider a
larger time scale ?

We will consider here the classical block maxima approach [135]. The
time period of observations is divided into m consecutive blocks of days
of same length. Then, we select into each block of time the maximum va-
lue of the observations X (t) obtaining a sequence M, My, , M, , My, of the
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maxima. We suppose that the independence or at least a weak dependence
of the values is insured if the length of the blocks is sufficiently large. In this
case, the probability theory allows to suppose that there exist sequences i
and o; > 0 such that the distribution of Mj is approximated by one of
pi + o2, where Zg, is a sequence of independent variables with a distri-
bution G, .

if £ #0,G¢, (2) =exp—(1+ €,2) V€ when 1+ &2 > 0; =1 if not

: (7.5)
if § = 0,G¢, (2) = exp (—exp (—2)).

Then the discrete model of extremes is : My = up + 0rZ¢, and the
trends for the extremes are uj and oy (k being the block index) which will
be extended into continuous functions of time ¢.

The expectation and variance of the distribution are expressed as :

E(Z) = ;k<r<1 LG - 1:V(2) = é(ru C26) -T2(1-&)  (7.6)

So if Mj, is the maximum in a block £ with distribution G¢, , we have :
E(My) = puy, + o E(Z); V(M) = 0V (Z) (7.7)

where uy, op and &, are functions of the block index k and respectively
location parameter, scale parameter and shape parameter of G¢, . The loca-
tion parameter of the GEV models is not a “natural” parameter, it mixes
mean and variance. Thus we often consider in the following the mean and
the variance of extremes, which are more easily interpretable.

We first supposed that £ does not depend on time (see the discussion on
this hypothesis in [22]). pr and o > 0 depending on the block index k are
then the only trends. To be compared with the trends in mean and variance,
they must be defined for every time t. Thus, we now have to estimate the
trends px (t) and ox (t) (subscript X referring to the observation series X (t))
and also £x in using a non parametric method based in any case on the
likelihood, and not on least squares like for the mean trend (see [105] [I8]).
We use cross validations to choose the smoothing parameters for u; and
ok. These problems of optimization and choice of the tuning parameters are
quite difficult because of the correlation between the parameters (see [1§]).

7.2.4 Measure of the similarity of trends

The different trends considered here, for instance trends in the tempe-
rature mean and variance, show some similarities and are supposed to be
both affected by climate change. Thus, for physical reasons, they have to be
considered on the same time scale (or with the same window length).



7.3 Results for the European temperature series 145

Furthermore, the “dependence” between the different trends can be mea-
sured, as for random series, by a formal correlation defined as the scalar pro-
duct of their reduced form, respectively called nf and ng, centred around

their mean f = [ f(t)dt and normalized by | [ (f(t)— f)?:
teD teD

r(f.g) = / (nf (t), ng(t))dt (78)

teD

D is the ensemble of the dates in the total time period T

This correlation is a measure of the linear dependence of f and g and of
the quality of the approximation of g(¢) by a function of the form a + bf(t).
To analyze more accurately the links between trends, we can also calculate
the correlation coefficient between the first derivatives of f and g which is a
measure of the quality of the approximation once the best linear trend has
been removed. Another indicator of the similarity of trends is the number
and the distances between the locations of local extremes of the curves.
Other quantities can be used in order to measure the likeliness between
functions f and g including non linear transformations, for instance one can
estimate # such that the correlation between f and 6(g) is maximal.

7.3 Results for the European temperature series

7.3.1 Mean and variance trends

First we computed the trends in mean and variance of daily minimum
temperature in winter and daily maximum temperature in summer for 2 ob-
servation series in France : Paris-Montsouris over the 1873-2003 period (131
years) and Strasbourg over the 1949-2005 period (57 years). This avoided
to deal with the seasonal effect, as previously discussed in section[7.2.2] The
summer is defined as the 100 days between the 14th of June and the 21st of
September and the winter as the 90 days between the 1st of December and
the 28th of February. These periods have been chosen because the extremes
mainly occur during these times. In our applications to temperature series
in Europe [112], 110], we found degrees of freedom corresponding to a local
window length of 20% of the total length, it means 11 to 15 years depending
on the station. Therefore, the trends are computed here with loess and a
smoothing parameter corresponding to an 11-year window length for Stras-
bourg and a 26-year window length for Paris-Montsouris. The steps are then
the following :

- selection of the days of the studied season over the total period length
(this leads to a series of nyear100 days for summer and (nyear-1)90 days for
winter, nyear being the number of years in the total period length)

- computation of m(t) from X (t) using loess
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- computation of [X (t) — m(t)]?

- computation of 52(¢) from [X(t) — 7(t)]? using loess.

where the hat notation corresponds to estimates.

When computing the trends in mean and variance, it came out that
their evolutions seemed linked : variance increasing when mean increases in
summer and when mean decreases in winter. In order to verify this visual
link, the standard deviation evolution is super-imposed with that obtained
from a linear regression regarding the mean evolution. The results are shown
in figure (the length of the plotting area is proportional to the period
length of each series). Although the linear reconstruction is far from perfect,
it globally shows a similar evolution. In summer, the correlation is positive :
when mean increases, variance increases ; whereas in winter, the correlation
is negative : when mean increases, variance decreases.

In particular, in summer, the linear relationship seems stronger for the
last 50 years in Paris-Montsouris than for the beginning of the period, co-
herently with the result found for Strasbourg for which only the last period
is available. While in winter, this relationship is similar for whole times.

In order to verify if this is a common behaviour, the correlation coeffi-
cients between the 2 functions of time m(¢) and §(¢) have been computed
for a set of 55 observation series in Europe provided by the FKuropean Cli-
mate Assessment and Dataset (ECA&D) project [42], with period lengths
between 40 and 100 years. As mentioned in section the correlation
coefficients are used as a measure of the likeliness of the curves. The results
are plotted in figure and show that this is a quite systematic behaviour
in winter(correlation coefficients generally lower than -0.5, represented by
black dots), while it is also true in summer, although less systematically
(most points show a correlation coefficient larger than 0.5, represented by
black dots). A more detailed study of this link can be found in [I12].

7.3.2 The residuals

Now we consider that the data have been reduced, since the seasonal
effect is avoided by selecting the days of the hot and cold seasons respectively
and the mean and variance trends have been removed ; it remains a process

e(t) defined as :

(7.9)

where £(t) as random process can have a dynamic which is not stationary.
Once £(t) has been estimated as residuals, it is necessary to check the
hypothesis done on e(t) or £(t) which allows the application of the detrending
procedures. So one has to study the stationarity of e(t), its autocorrelation,
the boundedness and the stationarity of its moments of order larger than 2,
and then, if possible, to select a parametric model for £(¢), but this is not at
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FIGURE 7.1 — Standard deviation function §(¢) (solid line) and the estimate
of §(t) as a linear function of 7(t) : §(t) = am(t) + b (dashed line) for
summer (top panels) and winter (bottom panels) and for Strasbourg (left)
and Paris-Montsouris (right). Note that for the summer a > 0 and for the
winter a < 0 .

all a requirement in order to apply the detrending procedures. An amount
of non stationarity is possible in order to use the mathematical basis of the
method of estimation of trends.

For temperature, £(t) is often modeled in a quite convenient way, by
considering it as stationary, with an autocorrelation of slow order p, AR(p),
chosen by AIC criterion. As an example see figure [7.3| representing partial-
autocorrelation in the case of the Strasbourg temperature series in summer,
for which p=4.

Thus, one can fit for instance a model which has the form :

X(t) =Y X(t—k)+a(X(t)n(t) (7.10)
k=1

where a is an estimated non linear function bounded and uniformly Lip-
schitz, which is zero for X large enough in the summer, and 7 a sequence
of independent centred random variables. But in general this modeling can-
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FIGURE 7.2 — Correlation coefficients between the evolution of the mean
and the variance of daily minimum temperature in summer (left) and daily
maximum temperature in winter (right) for the 55 ECA&D series.
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FIGURE 7.3 — Partial- autocorrelation of the residuals £(¢) for the tempera-
ture series of Strasbourg in summer, the lag being expressed in days
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not take completely into account the behaviour of the extremes even if it
explains the behaviour of the very large (or low) percentiles (see [110]).

7.3.3 Trend in extremes

Applying the cross-validation with a specific algorithm to the time evolu-
tion of the parameters of the GEV model for the European temperature
time series, we find degrees of freedom corresponding to the local (intrinsic)
window length of 15 to 20 years. It is larger than the window length of the
central field (m(t) and s(¢)). This can be explained by the fact that the
extremes are more variable.

We then compute the trends for the mean of the series and of the ex-
tremes (m(t) and mx(t)), where mx refers to the mean of the extremes,
estimated from the GEV parameters as stated in formulas and
and for their variances (s?(t) and s%(t)) , s% being as for the variance of
the extremes, expressed from the GEV parameters in and . Here
X (t) are the summer daily maximum temperatures or the winter daily mini-
mum temperatures observed in Paris-Montsouris over the 1873-2003 period
and in Strasbourg over the 1949-2005 period, defined in the same way as
previously. In computing these trends, we obtained very parallel temporal
evolutions. Thus here again, we chose to plot the evolution of the mean or
standard deviation function of the extremes together with their estimation
via a linear regression with the mean or standard deviation of the whole
series. The results are shown in figure [7.4

We can see that the evolutions of the mean of the whole observations and
that of the extremes are strongly linked, whereas the same is true, although
in a less systematic way, for the standard deviations. In the same way as
previously, we verified the generality of the link in computing the correlation
coefficients between the curves for m(t) and mx (¢) for the 55 ECA&D series
over Europe. The results shown in figure confirm that the two means are
strongly linked, as well in winter as in summer, with correlation coefficients
generally larger than 0.5 (black dots).

7.4 Trends in extremes and trends in mean and
variance

7.4.1 The K hypothesis

As can be seen from the previous results, trends in total mean and in
the mean of the extremes, as well as trends in total variance (or standard
deviation) and in the variance (or standard deviation) of the extremes look
very similar. The question is then : is there some systematic link between
these trends, and how can this be tested ? Consider now Y(t) the reduced
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FIGURE 7.4 — Estimates of mean function and standard deviation function
of the extremes and their linear estimates in function of the mean function,
standard deviation function of the whole observations mx (t) = am(t) + b,
5x(t) = as(t)+b (dashed line) for summer (top) and winter (bottom) seasons
in Strasbourg (left) and Paris-Montsouris (right)

data : Y(t) = % Some works [50, [85] address the so called H hy-
pothesis : Y (t) is a stationary sequence. It is, as we shall see, a too strong
hypothesis and so we choose to study the weaker K hypothesis : the tails of
Y (t) are stationary, which is equivalent to say that the parameters of exty :

Ky, oy, {y are constant, where extx (ux, ox, {x) and exty (uy, oy, &y)
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FI1GURE 7.5 — Correlation coefficients of the mean of the central field against
the one of the extremes in summer (left) and in winter (right) for the 55
European ECA&D temperature series.

are respectively the GEV models for X (¢) and Y'(¢).
Their parameters are linked in the following way :

= oy (k)s(k) (7.11)

k being the block index. oy (k) appears as the multiplier allowing to pass
from the standard-deviation s(t¢) of the global sample at time k of the maxi-
mum of the temperature in block k, to the scale parameter of extremes.
In fact, as s(t) is a smooth function, s(k) is the standard deviation for the
days of block k. The same role for ux (k) is played by py (k) but here again
multiplied by s(k).

If uy (k) and oy (k) can be considered as constant, which corresponds to
the validity of the K hypothesis, we can see that the difference of behaviour
between the trends of the whole sample and those of the extremes is com-
pletely due to the mean and variance trends. And then, according to (7.6

and ([7.7) , we have :

mx (k) =m(k) + s(k)(py (k) + oY (k) E(Z))

sx (k) = s(k)oy (k)/€.(V(2))? (7.12)
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If K is true, these formulas show that the strong almost affine relation
found between m(t) and s2(t) implies a strong relation between the mean
m(t) and the mean function mx(t) of the extremes.

7.4.2 How to test K7

This is an example of a general method for testing the absence of trends.

The set of possible evolutions of exty parameters is very large. We have
previously more or less excluded a possible evolution of £ [33], but there
are many subtle deformations of the distribution of Y'(¢). So any test suffers
from the absence of natural alternatives. It is why we prefer the use of a
distance A between two functions of time, defined as :

st = ([ o -a2) v (7.13)

to test the K hypothesis. If we estimate a function of time f by g, A(f,g) is a
measure of the quality of g as an estimate of f. Here, we have two estimates
of the parameters of exty : f , the non parametric estimate, and f the
constant estimate obtained if K is true, that means if exty is stationary.
Now, in any case, K being true or false, one can prove that f converges
to f when the sample size T tends to infinity, the speed of convergence
depends on the supposed smoothness of f (see [I33]). The situation is of
course different for f , if K is true it converges to f with a speed of the order
of T and in this case A(f, f) is, for a large sample, very close to A(f, f)
On the contrary if K is false, f converges in general to a constant (this is
a theoretical result, [85] 28]) which is of course different from f and even
if it does not converge; A( f, f) does not tend to zero and remains larger
than some A > 0 and the same is true for A( f , f) The intuitive reason is
that we try to find f in a set of functions “far away” from f if K is false.
These ideas could be translated in an asymptotic result. We prefer the use
of a more numerical approach based on simulation. See [28] for details.
Our proposed solution is then to construct by simulation or bootstrap
the distribution of A( . f ) under the K hypothesis, that is the distribution
of the distances between the non parametric estimates and the constants in
case we know that the parameters are constant. To do this, we simulate 1000
samples of the stationary GEV (uy,0y,£y) distribution with the same size
as the series of the maxima of Y'(¢) (an alternative will be to use bootstrap
of the residuals for the model of extremes with very similar results). From
each sample, we estimate the extreme parameters in two ways : first, in
considering them as constant ; secondly, in considering them as functions
of time. Then we calculate the distances between these two estimations of
the parameters and so we obtain a distribution of the statistical error of
estimation under the K hypothesis. If our true distances are found lower
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than the 90th percentile, the K hypothesis is considered as satisfied : the
distances are only due to statistical errors.

What happens if exty is not stationary (from the test) ? This is a very
difficult question, probably without any precise answer with these data. For
example, when py (k) can be considered as constant and oy (k) as a function
of k, so the upper bound of the distribution of Y (k) which is the same as
that of X (k) (taken at time ¢ which is the date of the maximum in block k)
is py (k) — oy (k)/§. The deformation of the tail of the distribution can be
described by this trend on the upper bound (of course to keep a mass one to
the probability this is compensated by a slight modification of the central
part of the distribution). We tested the K hypothesis using this method for
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FIGURE 7.6 — The distribution of distances under the K hypothesis with
the real values of the same distance for the observations (vertical lines) in
summer for the series of Déols and for the location parameter u(top panel)
and the scale parameter o(bottom panel).

the series in Paris-Montsouris, Strasbourg and all European temperature
series. An example is shown in figure for the Déols temperature series in
summer (ECA&D series over the period 1901-2006). The distances computed
from the observed series (for both the location p and scale o parameters)
lie inside the distribution of the distances when K is satisfied, thus in this
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case, the K hypothesis can be accepted. When considering the 55 series
over Europe, the hypothesis can be accepted in about 80% of the cases, but
differences appear between summer and winter which need to be further
analyzed.

7.5 Conclusion

In this paper, we discussed the requirements and assumptions currently
associated to the identification of trends in data series and applied non
parametric statistical methods to derive trends in European temperature
series. We could then show that the trends in mean and variance are linked,
and that this link induces a strong relation between trends in the whole
dataset and trends in extremes. We developed a testing procedure to verify
if the extremes of the centred and normalized series are stationary. If the
hypothesis is verified, then the trends in extremes are only due to trends in
mean and variance of the whole dataset. This analysis has been conducted for
an important number of European temperature series, and showed that this
is the case for the majority of the series in Europe. Further detailed analyses
have then to be conducted in order to analyze the different behaviours and
to identify some physical explanations.
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Different ways to compute
temperature Return Levels
in the climate change context
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The climate change context has raised new problems in the computation
of temperature return levels in using the statistical extreme value theory.
As a matter of fact, it is not yet possible to accept the hypothesis that
the series of maxima or of high level values are stationary, without at least
verifying the assumption. Thus, in this chapter which correspond to one of
our articles [I13], different approaches are tested and compared to derive
high order return levels in the non stationary context. These return levels
are computed in extrapolating identified trends, and a bootstrap method
is used to estimate confidence intervals. The identification of trends can be
made either in the parameters of the extreme value distributions or in the
mean and variance of the whole series. Then, a methodology is proposed to
test if the trends in extremes can be explained by the trends in mean and
variance of the whole dataset. If this is the case, thus the future extremes
can be derived from the stationary extremes of the centered and normalized
variable and the changes in mean and variance of the whole dataset. The
return level can then be estimated as non stationary or as stationary for fixed
future periods. The work is done for both extreme value methods : block
maxima and peak over threshold, and will be illustrated with the example
of a long observation time series for daily maximum temperature in France.

8.1 Introduction

The statistical Extreme Value Theory (EVT) is commonly used by en-
gineers to evaluate the intensity of meteorological extreme events to which
industrial installations or buildings have to resist. These events are evaluated
as long period return levels, which correspond to very rare events.

The problem raised in this paper concerns the prediction of such very
rare events in a non stationary context. As a matter of fact, climate change
induces non stationarity in the climatic series, at least for temperature. In
this context of statistical evaluation, this means first to identify an evolution
of some parameters with time and then to extrapolate this evolution to
predict the possible future return levels. Then the question of the definition
of trends, which can reasonably be extrapolated in the future, is raised.
Once some parametric form, easy to extrapolate, has been identified, its
extrapolation means that the observed behavior is supposed to remain valid
in the future, the same causes leading to the same consequences. This is a
strong hypothesis attached to these methodologies, but difficult to overcome.
It is thus important to determine such trends in an as intrinsic manner as
possible, that is in avoiding high frequency variations or sample effects. The
best trend in a mathematical sense may then not be the optimal one for the
extrapolation purpose. Thus, the trend used for extrapolation may not be
the identified one over the total observation period length, it can be defined
on a sub-period or modified to rid of sample effects. This will be illustrated
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by examples.

The EVT exists since the mid 20th century (Gumbel ([62]), Leadbetter et
al. ([92])). Then, advancement has been proposed in different fields : Smith
(1989) gives basic examples for environmental applications, Coles ([22]) and
Katz ([86]) developed the EVT for the fields of oceanography and hydrology.
The EVT relies on two general definitions of extreme events : extreme events
can be considered as maxima of given blocks of time and then, they are
described by the Generalized Extreme Value (GEV) distribution, or they can
be considered as exceedances over a defined high threshold, and then, when
independent and in sufficient quantity, they follow a Generalized Pareto
Distribution, whereas their dates of occurrence follow the trajectory of a
Poisson process.

Probability theory assumes that the studied series are stationary (not
necessarily independent), so they do not present any cycle nor trend, quite
evident form of non stationarity. However, when dealing with climatic data,
this assumption has to be carefully considered. As a matter of fact, climatic
data often show a seasonal cycle. This can be sometimes overcome if the
study is restricted to the season when the extremes of the studied variable
mainly occur, but still needs some basic verification. Concerning trends, as
previously mentioned the actual climate change context carries with it the
possibility of recent trends in meteorological data, especially in the tempe-
rature series. Thus, the evaluation of temperature extremes can now hardly
be conducted without considering this issue of trends. Extensions have been
proposed to the EVT to deal with trends, and can be found in Smith ([I41])
as well as in Coles ([22]). Probability theory is applied for every block sepa-~
rately and so gives an estimate of the parameters depending on the block.
Then one can constraint these parameters to some predetermined analytical
dependence as polynomial or Continuous Piecewise Linear functions (CPL).

In Parey et al. ([114]), a methodology is proposed to estimate high tem-
perature return levels in a non stationary context from observed temperature
series in France, in extrapolating recent observed trends. Some insights are
given on the choice of the trend and the impact of observed extremes like
the 2003 heat wave, based on many observation series in France. Based on
these extensions, the present paper aims at further studying the identifi-
cation and extrapolation of trends in estimating temperature return levels.
The first point concerns the trend identification. Once the optimal trend in
a statistical sense has been identified, is it possible to determine if this trend
corresponds to a background climatic evolution or is strongly influenced by
the sample effect 7 The sample effect is here mainly due to the position, for
instance, at the end of the period of observation of several consecutive very
hot or very cold years. This position is considered as a pure random effect.
The second point concerns the confidence interval estimation : how can the
confidence interval for the return level be evaluated in this non stationary
context 7 Theses questions will be carefully investigated in this paper in
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applying methodologies to identify trends in both the extreme distribution
parameters and the mean and variance of the whole series. A methodology
is proposed to test the link between these two types of trends, for the two
EVT methods, block maxima and peak over threshold and use it to compute
future return levels.

The paper is organized as follows : first the mathematical tools are des-
cribed in section 2, then the main issues are illustrated on the example of
the observed daily maximum temperature at the station of Déols in France
for the period 1901-2006 (Klein-Tank et al., [42]). In section 3, the extra-
polation of trends in the extreme value distribution parameters is discussed
whereas the verification and the use of the link between trends in extremes
and trends in the mean and variance of the whole dataset are exposed in
section 4, before coming to the discussion in section 5. The appendix gives
some asymptotic results on the extrapolation of the parameters in the non-
stationary context for return levels computation.

8.2 Mathematical tools

8.2.1 General framework

The general framework of the study is the statistical EVT. As stated
before, the statistical EVT consists of two methods : the block maxima
and the peak over threshold. According to the block maxima method, the
block maxima M; of block j are modeled by independent variables with a
GEV distribution. The GEV distribution has 3 parameters : the location
parameter pu, the scale parameter ¢ and the shape parameter £. Regarding
the Peak Over Threshold (POT) method, the distribution of independent
values selected over a fixed high threshold asymptotically converges to a
Generalized Pareto Distribution (GPD), whereas their dates converge to a
Poisson process. The GPD has two parameters : the scale parameter o and
the shape parameter £. In theory, the shape parameter of the GEV and the
GPD distributions for the same series are identical. Then, the intensity of
the Poisson process is another parameter of the POT method.

In applying each of the methods, choices have to be made in order to
verify the assumptions. For the block maxima method, the block length
has to be determined in such a way that it is sufficiently long to allow the
asymptotic convergence of the maxima distributions and the independence
between two consecutive maxima. For the POT method, the threshold has
to be selected in such a way that the process of the dates of occurrence
follows a Poisson process and that the property of threshold stability of the
GPD is fulfilled (Smith, [141]). On the other hand, the values have to be in-
dependent, and a declusterization technique has often to be used. Goodness
of fit tests allow to check the fit of the obtained distribution of exceedances
to the GPD, the belonging of the set of dates to a Poisson process, and vali-
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date the hypotheses of independence. The threshold selection can be based
on the properties of the GPD, such as the constancy of the shape parameter
or the linearity of the mean of the exceedances over an adequate threshold
value.

8.2.2 Trends in the parameters of the extreme value distri-
butions

8.2.2.1 Trend identification

Non stationarity is translated for EVT models in the fact that parameters
are non constant functions of time. So once the general statistical framework
is set, trends can be considered on each parameter for both methods : the
location, scale and shape parameters of the GEV and the scale and shape
parameters of the GPD as well as the intensity of the Poisson process are no
more considered as constant, but are allowed to evolve with time (or with
any other covariate). The shape parameter £ is however the most delicate
to estimate, and it could be tricky to differentiate possible evolutions from
estimation errors. Tests on different periods of a long observation series have
proved that this parameter does not significantly evolve with time (Parey
et al., [I14]). On the other hand, more sophisticated non parametric studies
lead to the same conclusion (Hoang et al. ([79]). Thus, in the following, the
shape parameter £ will be considered as constant for both GEV and GPD
distributions.

Therefore, trends will have to be identified for the other parameters. As
the ultimate goal is then to extrapolate such trends in order to compute
return levels, parametric forms given by closed formulas have to be consi-
dered. Firstly, non parametric approaches allow to suggest the general form
of these trends, and it can be reasonably approximated by polynomials or
other family like the family of Continuous Piecewise Linear functions (CPL)
(Parey et al. ,[114]). These families of functions are often ordered (or par-
tially ordered) by an integer d as the polynomial degree or the number of
pieces of a CPL.

The choice of d is then based on the likelihood ratio test or on ano-
ther procedure of model choice based on likelihood as the Akaike criterion
(Davison ,[32]).

For the GEV distribution, the procedure is the following : for every pair
of integers (dmu, dsigma), one computes the coefficients which maximizes
the log-likelihood for the block maxima M; with a location parameter j(j)
and a scale parameter o(j) considered as polynomials of degree dmu for u(j)
and dsigma for o(j) with these coefficients. To choose the optimal model
in this polynomial class for p(j) and o(j), one of the previously mentioned
procedures can be used. In fact because the pairs of integers are not totally
ordered, the criteria valid only on nested models can not be applied and in
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this case the chosen solution is the one with the maximum likelihood. The
tests are at level a = 0.05 and the Akaike penalization is 2(dmu + dsigma).
The same procedure can be applied for CPL functions with some restrictions
due to mathematical complications.

For the POT method, the same principle is applied : for every integer
d (d > 1), the set of coefficients which maximizes the log-likelihood for
data X; with a Poisson intensity I depending on time as a polynomial of
degree d with these coefficients is computed. To choose the optimal model
for I(t), the best model for d is tested against the best model for d + 1
using a likelihood ratio test or a Akaike criterion and an associated level of
confidence of the test, for instance a = 0.05 . Degree d + 1 is chosen if the
test rejects degree d at level a. The same holds true for the scale parameter
o of the GPD. Here again, this procedure is suitable for CPL functions too.

The advantage of CPL models is to capture more details and to derive
linear trends which seems, as we shall see later, to be more appropriate for
the Return Level extrapolations. For instance for long periods, instead of a
quadratic trend (3 parameters) we can find a model with three pieces (6 pa-
rameters) which is much more informative. Still, statistical optimization is
harder for CPL functions than for polynomials and the mathematical theory
for model choice and estimation is more difficult (see Dacunha-Castelle &
Gassiat, [30]) for details on this point). The main difficulty of CPL func-
tions lies in their non identifiability, i.e the same model can be defined by
different sets of parameters. The classical theory of likelihood and so the
use of AIC criterion are not valid anymore. This issue results in problems of
estimation of parameters that can have no consistent estimators. This can
be avoided under the constraint of separation of angular nodes, e.g. by 10
years. A misuse of CPL models could however be to systematically conduct
the prediction in extrapolating the last linear piece. The slope of this linear
fragment may be too dependent on the distribution of the last observed
values in the last period. We thus define a specific statistical procedure in
order to control these edge effects and to choose the extrapolated trend.

It thus seems a practical advantage to benefit from both classes of func-
tions, polynomials and CPL, to avoid sampling artifacts.

8.2.2.2 Return levels in a non stationary context

Once the model for the evolution of the distribution parameters with
time has been selected, the return level has to be estimated in extrapolating
these trends. This necessitates that the parameters are monotonous func-
tions, thus often polynomials will be restricted to degree 2. In the stationary
case, the return level z, for a years is the level for which the probability of
exceedances every year is equal to 1/a. In the non-stationary case, knowing
the identified trend, z, will then be re-defined as the unique level such that
the expectation of the number of exceedances over z, in the next a years
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will be 1. We shall define the return level z, for a years starting from the
date tg , so the return level has to be thought as a function of the initial
date and of the number of years taken into account to make the projection.
Let D(to,a) be the set of all days that belong to tg, to 4+ 365a . Then, for the
block maxima method, return level z, is such that :

1 ¢ —1/¢
anto+365a{1—exp [— <1+O(t)(za—u(t))> ]} =1 (81)

t=to

nb is the number of days in each block, as each day in a block shares the
same probability of being the maximum.
For the POT method, z, is such that :

-1/¢
> (1 + i(za — u)> It)=1 (8.2)

teD(to,a) J(t)

I(t) is the mathematical expectation of the number of exceedances at date ¢

—1/¢
and the Pareto term (1 + %(za - u)) is the mathematical expectation

that the exceedance is larger than the level z,, u being the threshold.
The definition for the stationary case is a particular case of this one.
In each case, z, is then the result of a minimization procedure of :

1 ¢ —-1/¢
anto—l—?)%a{l—exp [— (14—0(0(,2@—;1,@))) ]}—lfor GEV

t=to
(8.3)
and

o1+ i(za - u)> e I(t) —1 for POT (8.4)

teD(to,a)

We will consider that the optimization procedure properly converges if
the value of the expressions (8.3)) and/or (8.4) for z, are lower than 1075.

8.2.2.3 Associated confidence intervals

In the stationary context, confidence intervals can be derived from the
standard deviation of the estimated return levels, using the approximate
normality of the maximum likelihood estimator or of any function of it.
This so-called “delta method” will be used here to evaluate the confidence
interval in the stationary case.

If a trend is identified, the confidence interval has to take both sampling
errors and trend identification errors into account. The proposed method is
based here on a bootstrap technique, which will be described first for the
block maxima method.
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Once the trend has been identified, the block maxima series can be ex-
pressed as :

M; = l5) + 5(j)e; (8.5)
where M are the block maxima, /i(j) and &(j) the estimated optimal func-
tions for the location and scale parameters and e; are residuals having a
GEV distribution of location parameter 0 and scale parameter 1.

Then, the residuals are computed from the observed maxima and the
estimated optimal trends. This residuals series is bootstrapped and a new
sample of block maxima is computed. From this new sample, the trend
identification method allows to compute the optimal trend of the same form
as the original one and a new return level is estimated. In applying this
procedure a high number of times (500 times here), a distribution of the
estimated return level is produced, from which a confidence interval can be
derived for a defined level, for example 90% .

For the POT method, a similar procedure can be applied, but with the
help of simulation. The number of dates of threshold exceedances follows a
Poisson distribution. Thus, first a new number of dates N* will be sampled
from a Poisson distribution on integers with parameter I corresponding to
the mean value of I(¢) over the observation period. Then, a new series of
N* dates of exceedances is drawn (simulated) as a sample of the probability
density function giving sets of new dates t1,...,ty+ and so new estimates
I*(t) of the intensity.

At these new dates, we shall get new values of V,, over the threshold wu.
Observed values can be expressed as :

Vi = u+ moy (8.6)

where & is the estimated scale parameter and 7 a residual following a GPD
of scale 1. A new set of values V*(u) can be produced in bootstrapping
the i.i.d. 7. Then, values sampled in this way are associated to the new set
of dates of exceedances, while for the other dates of the series, a value is
sampled from the original values under the threshold w. This procedure is of
course applied on the “declusterized” series, that is the series from which the
dependent values over the threshold and their dates have been eliminated.
Here again, in applying this sampling procedure a high number of times
(for instance 500), it is possible to estimate a high number of new sets of
parameters I * (t), € and 6*(¢) from which a distribution of the return level
can be derived by the previous formula. Thus, the confidence interval can be
computed as the lower and upper percentiles of this distribution according
to a fixed level, for instance 90%.
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8.2.3 Link between trend in extremes and trends in the whole
series : use of the K hypothesis

8.2.3.1 Non parametric tools to derive trends

In Parey et al. ([112]), non parametric methods have been introduced and
used to derive trends in mean and variance of the summer daily maximum
(and winter daily minimum) temperature series. A link has been identified
between the trend in mean and the trend in variance, the variance increasing
when mean increases in summer for different European location, and espe-
cially in France. The local polynomial estimators (loess) will be used here,
with the same smoothing parameter, to compute the trends in mean m(t)
and in variance s%(t) of the observed summer daily maximum temperature

X(t).

8.2.3.2 Link with the trends in extremes

The question then is whether a link can be identified between these non
parametric trends in mean and variance of the whole dataset and the trends
in extremes. To study it, Y (¢) is defined as the centred and normed variable
computed from the observed series X (t) as :

(8.7)

For GEV, the parameters for X (¢) can be obtained from those of Y (t)
using the following relationships :

Ex =&y
ox(t) = oy (t)s((t)
px (t) = m(t) + py (t)s(t)

If the extreme value model for Y () is stationary, then the return level of
X (t) can be obtained from the stationary return level for Y (¢) and the trends
in mean and variance of the whole dataset. Thus the trend in extremes is
mainly explained by the trends in mean and variance of the whole series.
Then, the trends are to be identified from the whole ensemble of data, which
let the identification be more robust as obtained from a much larger dataset.

A methodology to test the so called “K hypothesis”, which states that
the extremes of Y (¢) can be considered as stationary, has been proposed and
detailed in the GEV case in Hoang et al. ([78]). Only the general principles
are recalled here. The test consists in comparing the distance between the
two functions of time corresponding to the stationary and non stationary
estimations of the parameters of the extreme distribution of Y (¢) to a table
of such distances constructed in using a known stationary extreme value
distribution with the same parameters. The steps are then the following :
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1) compute a non parametric trend for the mean m(t) of the observed
values X (t), using loess : m(t).

2) compute the variance var(t) as (X (t) —7(t))? and its non parametric
trend using the same loess method : §2(t).

3) compute Y (t) = %

4) estimate fi; and &; , j being the block index, the location and scale
parameters of the GEV distribution :

e as constant in time jig and &y.

e as time varying /i(j) and 6(j).

e and their distances :

D being the set of days in the series.

5) simulate 1000 samples of the same number of maxima following GEV/(
10,00, é) Then compute the 1000 distances A between the parameters esti-
mated as constant and time varying from these samples, which are conside-
red as empirical distributions of distances for y and o.

6) situate Ay and Ao in these empirical distributions of distances, ob-
tained from the stationary distribution. Finally, decide to accept or reject
the hypothesis.

If the distance computed from the observed series lies inside the distri-
butions, for instance between the 5th and 95th percentiles, the K hypothesis
can be accepted and the distance is only due to statistical errors. Of course
this acceptance means no more that with this amount of data, it is impos-
sible to have a statistical evidence for the non-stationarity.

The same procedure can be applied for the POT method in computing
AT and Ao and comparing them to the distributions of such distances co-
ming from a sample of a known stationary situation. The main difference
lies in the fact that the non parametric evolution of I(t) is computed using
a kernel method rather that loess.

8.2.3.3 The use of this link to compute return levels and their
associated confidence intervals

Once the K hypothesis has been tested and can be accepted, one can
imagine different ways to use it in the computation of future return levels.
On one hand, the return levels and associated confidence intervals can be
evaluated in the non stationary context, but in extrapolating the trends in
mean and variance of the whole dataset instead of the trends in the para-
meters of the extreme value distributions. The trends in mean and variance
of the whole dataset will be computed here as a two-parts continuous piece-
wise linear function, based on the identification of one break point in their
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evolutions. This will be done in using the so called “brute force” proce-
dure proposed by Mudelsee ([I00]). Thus, m(t) and s(t), respectively the
time evolutions of the mean and standard deviation of the whole dataset,
are considered as two linear parts, and the second part is extrapolated to
compute the non stationary return levels, as follows :

_ 1/
% St +365a{1 — exp [— <1 4 & (Famm®) —[Ly)) ] }—1 = 0 for GEV

= oy s(t)
(8.8)
and

_ W
3 <1 + (i(z‘ls(:';(t) - u)) Iy —1=0for POT  (8.9)
teD(to,a)

Then, the confidence intervals are constructed in applying a bootstrap
procedure :

- bootstrap Y'(t) to obtain a high number of samples Y*(¢) and compute
the stationary parameters for the extreme value distribution of each Y*(¢).

- compute X*(¢) from each Y*(t) and m(t) and s(t).

- from each X x (t), estimate two piecewise linear trends with the pre-
viously identified break point, to obtain m*(¢) and s*(t).

- compute each return levels z; using or (8.9).

- get the confidence interval as the desired inter-quintile interval from the
sample z7 according to the chosen confidence level (5th and 95th percentiles
for the 90% confidence interval).

Another way is to consider that the return levels can be computed in
the stationary context for fixed periods of time, for example 30 years. Thus,
the present day return levels are the stationary ones evaluated over the
most recent period of the observed series. Then, using the K hypothesis,
the future return levels can be computed from the stationary distribution
of the extremes of Y'(¢) and the values of mean m and standard deviation s
over a future 30-year period. The confidence interval is computed in using
the delta method, taking both the errors in the extreme value distribution
parameters of Y (¢) and those of m and s, these last ones being evaluated
using a bootstrap technique. The values for m and s for a future period
can be retrieved either from the trend extrapolations or from climate model
simulations.

8.3 Example : extrapolation of trends in extreme
value distribution parameters

The temperature series chosen to illustrate the previously described me-
thodology to compute return levels in the non stationary context is provided
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by the European Climate Assessment and Dataset (ECA&D) project (Klein
Tank et al. ([42]). It consists of daily maximum temperature observed at
the station named Déols (in the center of France) over the period 1901-2006
(106 years). In order to limit the problem linked to the seasonal cycle in
temperatures, the high temperature return levels will be computed from the
sub-series corresponding to the summer days, when high temperatures are
susceptible to occur. The summer period has been defined from empirical
statistical analyses regarding the occurrence of very high temperatures as
the 100 days between the 14th of June and the 21st of September. Thus a
series of 106 times 100 days is extracted from the observation series to pro-
duce the series of daily maximum temperatures in summer in Déols between
1901 and 2006. The observed maximum occurred on the 2nd of August 1906
with a temperature of 40.5C.

8.3.1 The block maxima method

The study has firstly been conducted using the block maxima method.
The first step consisted in choosing the block length and verifying the iden-
tical distribution of the selected maxima between the blocks. To do so, the
repartition of the block maxima and of the annual maxima within each block
have been compared for two block sizes : 25 days (4 blocks per summer) and
50 days (2 blocks per summer). The results are summarized in table
The maxima are reasonably well represented in each block. However, for the
25-day blocks, annual maxima seems to occur more rarely at the beginning
(block 1) and at the end of the summer (block 4), revealing the remaining
of a seasonal cycle, even though the summer season only has been retained.
In order to avoid a fastidious deseasonalisation procedure, a 50-day block
length will be chosen, for which the repartition in each block is more similar.
This leads to 2 maxima per summer, thus 212 values over the period and
is a good compromise between the length of the series of extremes and the
length of the block able to insure independence and identical distribution of
the selected maxima.

The trend identification procedure for polynomials leads to a quadratic
trend for the location parameter p(j), j being the block number, whereas
the scale parameter o can be considered as constant. Figure [8.1] shows the
optimal identified trend superimposed on the block maxima evolution. The
extrapolation of this trend gives the following results for the 30-, 50- and
100-year return levels (RL30, RL50 and RL100 respectively), with their 90%
confidence intervals : RL30 = 42,0C [40,0 43,5]; RL50 = 44,6C [41,2-46,3] ;
RL100 : 54,01C.

The 50- and 100-year return levels are in italics as the convergence of the
optimization is not robust. This example shows how polynomial trends may
lead to very high, physically unrealistic temperature values. The quadratic
form is due to the occurrence of high temperature values at the beginning
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25-day blocks in summer 50-day blocks in summer
Block 1 Block 2 Block 3 Block 4 | Block 1 Block 2
Block maxima 92 115 105 112 102 110
Summer maxima 16 44 37 9 60 46

TABLE 8.1 — Repartition of the 424 block maxima and the 106 summer
maxima in the 4 blocks for 25-day blocks and of the 212 block maxima and
106 summer maxima in the 2 blocks for 50-day blocks. For the 25-day blocks,
the dates of the blocks are : block 1 from the 14th of June to the 8th of July;
block 2 from the 9th of July to the 2nd of August; block 3 from the 3rd
of August to the 27th of August and block 4 from the 28th of August to
the 21st of September. For the 50-day blocks, the dates of the blocks are :
block 1 from the 14th of June to the 2nd of August; block to from the 3rd
of August to the 21st of September
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FIGURE 8.1 — Optimal polynomial trend for the location parameter u(j) (j
is the block index) superimposed on the evolution of the block maxima, for
the daily maximum temperature in summer in Déols between 1901 and 2006

and at the end of the sample.

Another proposed way of evaluating the return levels is to look for the
optimal CPL trend, and use it to define the period over which the trend
should better be considered, if one wants to avoid high frequency fluctua-
tions contained in the sample. The optimal CPL trend for the daily maxi-
mum temperature in summer in Déols is found in 2 parts for the location
parameter p(j), while the scale parameter remains constant. The identi-
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fied break point is in year 1974. Figure [8.2] shows this optimal CPL trend,
superimposed on the block maxima evolution.
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FIGURE 8.2 — Optimal CPL trend for the location parameter p(j) (j is the
block index) superimposed on the evolution of the block maxima, for the
daily maximum temperature in summer in Déols between 1901 and 2006.

The extrapolation of this last linear part, which could be judged as more
representative of the recent warming trend, leads to the following return
levels :

RL30 = 42,0C [39,7 43,9]

RL50 = 44,1C [40,6 45,7]

RL100 = 49,3C [41,4-51,7]

Here again, although the convergence is better achieved, the optimization
is still difficult for the 100-year return level. The two approaches, using the
optimal polynomial trend or the last part of the optimal CPL trend, lead to
very similar results for the 30- and 50-year return levels. The extrapolation
to 100-year return levels remains however not reasonable, probably because
of the very high values encountered at the end of the sample, whereas when
beginning after the break point, the sub-sample starts with the lowest block
temperatures reached in the sample. It thus does not seem reasonable to
assume an unchanged trend on such a long period.
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8.3.2 The POT method
8.3.2.1 Trend extrapolation

The same analysis has then been conducted with the POT method.

The first task is here to choose the threshold and the declusterization
procedure. The declusterization procedure used is a simple one, consisting in
retaining only the maximum value when several exceedances concern conse-
cutive days. The threshold selection is then guided by the properties of the
GPD, as stated in section to which we add the necessity for the iden-
tified trends in the Poisson process intensity and in the scale parameter of
the GPD to remain constant. This leads to a threshold of 31,4C, with 400
independent exceedances for the whole series length.

Then, the optimal polynomial trend is identified for both the Poisson
process intensity I(t) and the scale parameter of the GPD o(t) : the result
is a quadratic trend for I(¢) and a constant o. The trend in the Poisson
process intensity is illustrated in figure [8.3] superimposed on the frequency
of threshold exceedances each summer. The 30-, 50- and 100-year return
levels obtained in extrapolating this trend are the following :

RL30 = 39,6C [38,8 40,9]

RL50 = 40,1C [39,3 41,4]

RL100 = 40,7C
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FIGURE 8.3 — Optimal polynomial trend for the Poisson process intensity
superimposed on the frequencies of threshold exceedances each summer, for
the daily maximum temperature in summer in Déols between 1901 and 2006
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Here again, for the 100-year return level, the convergence criterion is not
fulfilled. The obtained 30- and 50-year return levels are lower than those
obtained previously with the block maxima method.

As previously, the optimal CPL trend has then been identified. Here, the
results are different, since the optimal trend for the Poisson process intensity
has 3 parts, with the last one strongly influenced by the edge effect of the
recent hot summers in France, as can be seen in figure with break points
respectively in 1965 and 1999. The scale parameter is still constant. The best
fitted 2 parts evolution, although not optimal, identifies the break point in
1997, which confirms the strong edge effect of the last hot summers in the
series. In order to overcome this effect, the first idea could be to extrapolate
the second part rather than the last one. This trend is however very low,
and probably artificially low, as the effect of the recent high values is totally
excluded. It has thus been decided to cut the sample at the date of the
identified second break point, and to look for the same optimal trends over
the 1965-2006 period. The optimal trend is then linear for the intensity of
the Poisson process, while the scale parameter of the GPD remains constant.
The extrapolated return levels are then the following :

RL30 = 39,3C [37,5-41,3]

RL50 = 39,7C [37,7-42,2]

RL100 = 40,4C [37,8-44,5]

Poisson process trend

threshold exceedance frequencies
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FIGURE 8.4 — optimal CPL trend for the Poisson process intensity super-
imposed on the frequencies of threshold exceedances each summer, for the
daily maximum temperature in summer in Déols between 1901 and 2006
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8.3.2.2 Effect of a change in the location parameter of the GEV
or in the intensity of the Poisson process

It seems from the previous results that an evolution in the Poisson pro-
cess intensity of the POT method has a lower impact on the return level
than an evolution of the location parameter of the GEV distribution. In or-
der to confirm this observation, the derivation of the return level for the two
methods against these parameters are computed. The calculations here are
conducted for the stationary return levels, as their analytical expressions are
easier to derivate than the proposed expressions for the non stationary re-
turn levels (equations and above). The only aim is to understand
the effects of an increase in the location parameter of the GEV distribution
or in the intensity of the Poisson process on the estimated return level.

For GEV, the T-year stationary return level ZT writes :
g [1 — ((log(1 — T)*ﬁ)} (8.10)

£

in the case where £ # 0 like here, and then %LMT =1.
For POT, the same T-year stationary return level Zp writes :

Zr = —

Zr=u+ % [(Tny1)5 - 1] (8.11)

where n, is the number of exceedances each year. n, is thus the mean number
of declusterized exceedances of the threshold per year. Then :
aaZIT = o(Tn,I)* ! and % = 2 [(Tnyf)£ — 1}

With the values of the parameters in the studied case, this leads to
the results summarized in table One can see that the impact of an
increase in I on the return level is much lower and decreases when the return
period increases, whereas the impact of an increase of the scale parameter
o is much higher and increases with the return period. This explains the
observed differences between the return level extrapolation according to the
two extreme value methods.

Return period | 30-year | 50-year | 100-year
88% 0.0077 | 0.0041 0.0017
%r 2.87 | 3.03 3.22

TABLE 8.2 — Values of the derivation of the return level against the Poisson
process intensity I and the scale parameter of the Pareto distribution o for
the 30-, 50- and 100-year return periods

With the values of the parameters in the studied case, this leads to
the results summarized in table Omne can see that the impact of an
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increase in I on the return level is much lower and decreases when the return
period increases, whereas the impact of an increase of the scale parameter
o is much higher and increases with the return period. This explains the
observed differences between the return level extrapolation according to the
two extreme value methods.

8.3.3 Research of a break point in the evolution of the mean

Until now, the trends have been identified for the whole sample of ex-
tremes, that is over the entire period, and the CPL form of the trends lead
us to use sub-periods. Another idea could be to look for a break in the evo-
lution of the mean daily maximum temperatures in summer, and then to
consider only the period beginning after this break. In order to do this, the
method used consists in adjusting a 2 pieces linear trend to the series of
daily maximum temperatures in summer and identifying the break point as
the one for which the standard deviation of the residuals is the minimum.
All dates of the series are tested as potential break points, except the 5 first
and last summers in order to minimize the edge effects. This follows the me-
thod proposed by Mudelsee ([100]). This procedure leads to a break in the
trend of mean daily maximum temperature evolution in 1956, as illustrated
in figure 8.5

summer tmax Deols 1901-2006: mean evolution
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FIGURE 8.5 — Non parametric (loess, thin smooth line) and optimal 2 pieces
linear trends (bold) for the summer daily maximum temperature in Déols
between 1901 and 2006, superimposed on the evolution of the seasonal
means. The date of the break point is written in the top left corner
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Starting from this result, the evolution of the parameters of the extreme
value distributions for the GEV and POT methods has been computed over
the period 1957-2006. For GEV, the optimal polynomial trends are of degree
1 (linear) for the location parameter ? and 0 (stationary) for the scale para-
meter o. The extrapolated return levels and their 90% bootstrap confidence
interval are then :

RL30 = 40,8C [39,3 42,1]

RL50 = 42,2C [40,2 43,5]

RL100 : 45,6C [40,8-46,5]

These values are lower than those obtained previously for the trend iden-
tified over the total period length or over the 1975-2006 period after the
break in the trend of the location parameter, as the 50-year return level now
is comparable to the 30-year return level previously obtained.

When using the POT method, first the threshold has been selected in
the same way as previously as 31,0C, corresponding to 200 independent
exceedances. The optimal trends are of degree 2 (quadratic) for the intensity
I of the Poisson process and 1 (linear) for the scale parameter of the Pareto
distribution o. Then the extrapolated return levels and their 90% bootstrap
confidence intervals are the following :

RL30 = 41,3C [35,9 38,6]

RL50 = 42,9C [35,9 39,9]

RL100 = 46,9C [36,0 42,1]

What appears first is the fact that the extrapolated return levels lie
outside their bootstrap confidence intervals. This is due to the fact that
the 2003 maximum is far above the other high levels and over this shorter
period, it alone implies the obtained linear trend for the scale parameter.
Figure shows the selected independent values over the threshold on the
left, and the identified optimal trend of the scale parameter together with all
the different trends computed from the bootstrap samples in the evaluation
of the confidence interval (dotted lines) on the right. Very few trends in the
bootstrap samples are as steep as the optimal trend of the original sample
(some are even decreasing, depending on the location of the 2003 event in the
bootstrap sample). And, as seen before, the evolution of the scale parameter
has the greatest influence on the computed return level in the POT method.
This explains why the extrapolated return levels are outside the bootstrap
confidence intervals. This shows then that this methodology of extrapolation
of the trends in the parameters of the POT distributions is very sensitive to
unusually high values encountered at the end of the period, and cannot be
reliably applied in such cases. In this case, it is therefore recommended to
deal with the longest possible series to avoid such a drawback.
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Independent threshold exceedances Deols 1957-2006 30-year RL bootstrap sigma trend
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FIGURE 8.6 — Threshold exceedances over the 1957-2006 period with the
2003 maximum in bold (left panel) and the optimal scale parameter trend
(solid line) together with the 500 bootstrap scale parameter trends (dotted
lines) (right panel)

8.4 Example : use of the K hypothesis

As discussed in section [8.2.3] previous studies opened the possibility to
use the link between the evolution of the mean and variance of the whole
summer daily maximum temperature series and the trend in extremes to
derive future extreme levels. The steps are first to check the K hypothesis
for the Déols series and then to chose the way to evaluate mean and variance
in the desired future period.

8.4.1 The K hypothesis

As stated before, the K hypothesis supposes that the extremes of the
centered and normed series Y (t) are stationary. It has to be tested in com-
paring the distance between the evaluation of the parameters of the extreme
value distribution as constants and as time varying to a distribution of such
distances obtained from a similar distribution known as stationary, as des-
cribed in section The results for the Déols series in summer in the case
of block maxima and POT are illustrated in figure and show that the K
hypothesis can be accepted.
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FIGURE 8.7 — distributions of the distances between constant and time va-
rying parameters of the extreme value distributions in the case of constant
distribution and the same distances for Y (¢) in summer in Déols (red lines),
for GEV (location parameter p and scale parameter o ; left panel) and for
POT (intensity I of the Poisson process and scale parameter o of the GPD ;
right panel)

8.4.2 Non stationary return levels

As stated before, the K hypothesis can first be used to compute return
levels in the non stationary context, but in extrapolating the trends in mean
and variance of the whole data series instead of those of the extreme value
distribution parameters. In order to do so, it is first necessary to identify a
parametric trend in the mean and variance of the observed summer tempe-
ratures.

In section [8.3.3] a method has been used to identify a break point in the
trend in mean daily maximum temperature in summer in Déols. The same
method is applied to the evolution of the variance of the same temperatures,
and leads to the identification of a break point in the same 1956 year. These
two parts linear trends will then be used to compute the return levels in
extrapolating the second parts (figure .

The 30-, 50- and 100-year return levels are then computed following (9)
and (10) and their 90% confidence intervals using the bootstrap technique
described in section [R.2.3.3] above. The results are summarized in table [8.3]
Both methods lead to comparable values.
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Deols 1957-2006: summer mean temperature evolution
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Deols 1957-2006: summer temperature variance evolution
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FIGURE 8.8 — Extrapolation of the second part of the 2-part linear trends in
mean and variance of the daily maximum temperatures in summer in Déols,
beginning 1956.

30-year RL 50-year RL 100-year RL
GEV | 40.3[38.9-42.0] | 41.2[39.4-43.3] | 43.3 [40.5-46.3]
POT | 39.9[38.4-41.0] | 40.8[38.9-42.2] | 42.9 [40.0-45.4]

TABLE 8.3 — Non stationary return levels using the K hypothesis for GEV
and POT, with their bootstrap 90% confidence intervals

8.4.3 Stationary return levels

Another proposed approach consists in supposing that over fixed per-
iods of time, the return levels can be estimated in the stationary context.
These periods have however to be long enough to allow reliable return level
estimations, but not too long to be able to neglect the trends. The period
length will be chosen here as 30 years, the length being suggested by the
World Meteorological Organization to define climatology. Thus, the present
day climate return levels will be computed for the last 30 years of the obser-
vation series, that is here for the 1977-2006 period. Then, two future 30-year
fixed periods will be defined in accordance with the current outputs of the
climate simulations : the periods 2021-2050 and 2046-2065. Over these fu-
ture periods, the return levels will be computed from the stationary return
levels of Y'(t), defined over the observed period, and the changes in mean
and standard deviation between each future period and the present one. It
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must be recalled here that the definition of the return level in this stationary
context differs a bit from the one used in the previously set non stationary
context : here, the A-year return level is the value reached or exceeded in
average ones every A years over the studied period, whereas in the non sta-
tionary context, the same level corresponds to a value whose probability to
be exceeded in the next A years equals 1, that is the value which is expected
to be reached or exceeded only one day in the A future years.

Two ways of computing the changes in mean and standard deviation of
the summer daily maximum temperatures will be tested : the extrapola-
tion of the previously identified linear trends, and the use of climate model
simulations.

8.4.3.1 Mean and variance trends extrapolation

The previously identified trends in mean and variance of the observed
summer series are extrapolated, and the mean and standard deviations over
the periods 20212050 and 2046-2065 respectively are calculated. The results
are summarized in table [8.4l Thus the future return levels are estimated
using the stationary return levels for the centred and normalized variable
Y (t), zy, and the future values of the mean (mp) and standard deviation
(sp) as : zx = zy * S + mp where zx is the desired return level for the
original series X (¢). The 90% confidence intervals are computed in using the
delta-method, where the variances for the mean and variance are added to
the variance of z in the computation of the covariance matrix. The results
are shown in table Not surprisingly, the two extreme value methods give
similar results in that case.

1977-2006 | 2021-2050 | Increase | 2046—2065 | Increase
Mean 24.56 25.87 1.31 26.55 1.99
Standard deviation 4.50 4.68 0.18 4.79 0.29

TABLE 8.4 — Mean, standard deviation and their respective increases for the
periods 1977-2006, 2021-2050 and 2046—2065 computed from the observed
series of summer daily maximum temperatures in Déols (1977-2006) and
from the extrapolation of the second part of the identified 2-part linear
trends for the future 2021-2050 and 2046—2065 periods

8.4.3.2 Use of climate model results

In the framework of the European project ENSEMBLES, different Re-
gional Climate Models (RCM), forced using different General Circulation
Models (GCM) have been used to simulate future climate under different
greenhouse gas evolution scenarios. We will use here 6 of these models, with a
25 km resolution and using the Intergovernmental Panel on Climate Change
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30-year RL 50-year RL 100-year RL
2021-2050 GEV | 40.3 [39.5-41.1] | 40.7 [39.8-41.6] | 41.1 [40.1-42.1]
POT | 40.3 [39.1-41.5] | 40.7 [39.4-41.9] | 41.1 [39.7-42.5]
20462065 GEV | 41.2 [40.3-42.0 | 41.5 [40.6-42.3] | 42.0 [41.0-43.0]
POT | 41.1 [40.0-42.3] | 41.5 [40.3-42.8] | 42.0 [40.6-43.4]

TABLE 8.5 — 30-, 50- and 100-year Return Levels and their 90% confidence
intervals estimated in the stationary context according to the K hypothesis
for the 2 future periods, in extrapolating the mean and standard deviation
trends derived from the observation series, with the GEV and POT methods

(IPCC) Special Report on Emission Scenarios (SRES) A1B scenario. The si-
mulations cover the period 1950-2100 (1960-2100 for one of the models). In
order to assess return levels for the two selected future periods, the mean and
variance changes will be computed between the 2021-2050 and the 1977-
2006 periods, and the 2046-2065 and 1977-2006 periods respectively, for the
modeled series corresponding to the nearest grid point of the station Déols in
France, and added to the observed 1977-2006 mean and standard deviation.
Table [8.6] presents the simulations used and Table |8.7] summarizes the mean
and standard deviation changes for the two periods. As expected, there is
an important dispersion in the climate model results, as well for the change
in mean as for the change in standard deviation, and the values previously
obtained in extrapolating the observed trends lie in the range of the model
values. For the 2021-2050 period, the change in mean given by the models is
rather lower than the extrapolated one, except for DMI-ARPEGE. For the
2046—2065 period however, the change in mean computed from the extrapo-
lated trend is rather low compared to model values. A comparison between
the series of observed annual temperature maxima and modeled ones for the
nearest grid points (not shown) have shown that the DMI-ARPEGE model
exhibits a warm bias, DMI-ECHAMS5, SMHI-BCM and SMHI-ECHAMS5 a
rather cold one and KNMI-RACMO and MPI-ECHAMS5 give correct results.
The use of these changes, together with the stationary return levels for Y ()
as previously described, lead to the 30-, 50- and 100-year return levels (with
their 90% confidence intervals) summarized in table for both GEV and
POT methods. Here again, the two extreme value methods lead to com-
parable results, and besides DMI-ECHAMS5 which gives much higher levels
(but has been seen to have a warm bias over the current period), all models
give comparable orders of magnitude for the future return levels.

8.5 Discussion and perspectives

In this paper, we proposed different methodologies to estimate return le-
vels with the statistical EVT in a non stationary context. Starting from the
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Acronym DMI-AEPEGE DMI-ECHAM5 KNMI-RACMO MPI-ECHAMS5 SMHI-BCM SMHI-ECHAMS5
Institute DMI DMI KNMI MPI SMHI SHMI
Scenario Al1B Al1B AlB Al1B Al1B Al1B
GCM AEPEGE ECHAMb5 ECHAMS5 ECHAMb5 BCM ECHAMS5
RCM HIRHAM HIRHAM RACMO REMO RCA RCA
Resolution 25 km 25 km 25 km 25 km 25 km 25 km
Period 1950-2100 1950-2100 1950-2100 1950-2100 1950-2100 1950-2100

TABLE 8.6 — List of the ENSEMBLE project model simulations used

0.81
-0.02
0.33
1.16
0.46

Model 2021-2050 20462065
Change in mean Change in std Change in mean Change in std
DMI-ARPEGE 2.03 0.29 3.57
DMI-ECHAM5 0.47 0.01 1.47
KNMI-RACMO 0.89 0.17 2.62
MPI-ECHAMS5 0.70 0.09 2.20
SMHI-BCM -0.03 -0.11 1.38
SMHI-ECHAMS5 1.05 0.21 2.49

0.31

TABLE 8.7 — Changes in mean and standard deviation between each future
period and the current 1977-2006 period given by the climate simulations of
each model for the nearest grid point of Déols

identification of trends in the parameters of the extreme value distributions,
algorithms are given to compute the return levels and evaluate the confi-
dence interval taking the uncertainties of the trend into account, in using
a bootstrap procedure, both for the block maxima and the POT methods.
The return level must be re-defined here as the value expected to be rea-
ched or exceeded only once in a future period. The approach is illustrated
on the example of the daily maximum summer temperature in Déols, center
of France, over the 1901-2006 period. This example shows that the extra-
polation of the optimal parametric trends as polynomials or CPL functions
generally leads to similar results, but extrapolation sometimes gives unrea-
listic levels for long return periods, especially for quadratic evolutions. The
use of the CPL functions is helpful to identify sub-periods over which the
trend can be more reasonably extrapolated, but lets the sample begin with
the lowest identified temperature levels.

Another way to select such sub-periods is to search for a break point in
the linear evolutions of the mean and variance of the whole dataset and select
the second part as the studied sub-period. In this non stationary context,
the block maxima method generally leads to higher return levels than the
POT one, as the influence of an increase in the location parameter for the
GEV distribution is higher than that of an increase in the Poisson process
intensity for the POT method. On the other hand, the POT method has
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30-year RL 50-year RL 100-year RL
2021-2050 GEV
DMI-ARPEGE 41.4 [40.6-42.3] 41.8 [40.9-42.7] 42.2 [41.3-43.2]
DMI-ECHAM5 39.0 [38.2-39.8] 39.4 [38.5-40.2] 39.8 [38.8-40.7]
KNMI-RACMO 39.9 [39.1-40.7] 40.3 [39.7-41.7]  40.7 [39.7-41.7]
MPI-ECHAMS5 39.5 [38.7-40.3]  39.9 [39.0-40.7] 40.3 [39.3-41.2]
SMHI-BCM 38.1 [37.3-38.9] 38.5[37.6-39.3] 38.9 [37.9-39.8]
SMHI-ECHAMb5 40.2 [39.4-41.0] 40.6 [39.7-41.4] 41.0 [40.0-42.0]
2021-2050 POT
DMI-ARPEGE 41.4 [40.1-42.8] 41.8 [40.4-43.3]  42.3 [40.8-43.9]
DMI-ECHAM5 39.0 [37.7-40.3] 39.4 [38.0-40.8] 39.8 [38.3-41.4]
KNMI-RACMO 39.9 [38.6-41.2] 40.3 [38.9-41.7] 40.8 [39.3-42.3]
MPI-ECHAM}5 39.5 [38.2-40.8] 39.9 [38.5-41.8] 40.3 [38.8-41.8]
SMHI-BCM 38.1 [36.8-39.4] 38.5 [37.1-39.9] 38.9 [37.4-40.4]
SMHI-ECHAMb5 40.2 [38.9-41.5]  40.6 [39.2-42.0] 41.1 [39.6-42.6]
2046—-2065 GEV
DMI-ARPEGE 44.6 [43.7-45.5]  45.0 [44.1-46.0]  45.5 [44.4-46.5]
DMI-ECHAM5 39.9 [39.1-40.7] 40.3 [39.4-41.1] 40.7 [39.7-41.6]
KNMI-RACMO 42.2 [41.3-43.0] 42.5 [41.6-43.4] 43.0 [42.0-43.9]
MPI-ECHAM5 41.2 [40.4-42.0]  41.6 [40.7-42.5]  42.0 [41.0-43.0]
SMHI-BCM 41.3 [40.5-42.1] 41.7 [40.8-42.6] 42.1 [41.1-43.1]
SMHI-ECHAMS5 42.0 [41.1-42.8] 42.3 [41.5-43.2] 42.8 [41.8-43.8]
2046—-2065 POT
DMI-ARPEGE 44.6 [43.3-45.9] 45.0 [43.6-46.4] 45.6 [44.1-47.1]
DMI-ECHAMb5 39.9 [38.6-41.2] 40.3 [38.9-41.7] 40.7 [39.2-42.2]
KNMI-RACMO 42.2 [40.8-43.5] 42.6 [41.2-44.0] 43.0 [41.5-44.5]
MPI-ECHAMb5 41.2 [39.9-42.5]  41.6 [40.2-43.0]  42.1 [40.6-43.6]
SMHI-BCM 41.3 [40.0-42.6] 41.7 [40.3-43.1] 42.2 [40.7-43.7]
SMHI-ECHAMS5 42.0 [40.7-43.3] 42.4 [41.0-43.8] 42.9 [41.3-44.4]

TABLE 8.8 — 30-, 50- and 100-year Return Levels and their 90% confidence
intervals computed in the stationary context according to the K hypothe-
sis in using climate simulation results to calculate the mean and standard
deviation changes in the future, with both GEV and POT methods

been shown to be very sensitive to very high values located at the end of

the sample.

Another proposed way of estimating return levels in the non stationary
context is through the use of the link between the evolution of extremes
and the evolution of the mean and variance of the whole dataset. A method
to carefully study this link has been detailed in Hoang et al. ([78]). The
application of the described test to the summer temperature series of Déols
showed that the so called K hypothesis, under which the extremes of the
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centered and normalized data can be considered as constant, is accepted
for both GEV and POT approaches. Then, again two ways can be used
to estimate the future return levels. First, in keeping the non stationary
return level definition, one can compute the value reached or exceeded once
in a future period of time in extrapolating the trends in mean and standard
deviation of the whole data series instead of those of the extreme value
distribution parameters. On the other hand, the return levels for future fixed
periods (2021-2050 and 2046-2065 in this paper) can be obtained from the
stationary extremes of the centered and normalized quantity and the mean
and standard deviation of the summer daily maximum temperature in the
future period, in a stationary context. The return level is then the stationary
one, that is the value reached or exceeded in average once over the period.

The computation of future mean and standard deviation is proposed in
two ways : first, in extrapolating the identified trends in mean and variance
of the observed series, and then in using climate model simulations. This has
been tested for a selection of RCM simulations conducted in the framework
of the European ENSEMBLES project.

Table R.9 summarizes the different return levels obtained with the non
stationary definition and table those obtained with the stationary one
for fixed future periods. Globally, the extrapolation of trends in the pa-
rameters of the extreme value distributions have limitations when levels
associated to high return periods are concerned. As a matter of fact, the as-
sumption that the trend will remain the same becomes very strong for long
future periods. On the other hand, the trends in EVT are derived from quite
limited samples regarding the total number of values in the series, and are
therefore certainly less robust than trends identified from the whole sample.
In that sense, the use of the K hypothesis seems more promising. The best
way could then be to derive the mean and standard deviation changes from
an as wide as possible range of climate simulations, to get a distribution of
possible return levels for different future periods. However, further studies
should be devoted to the analysis of the climate model behaviour regarding
mean, and especially variance evolution at the local scale. This could then
be used to weight the different simulations in the distribution of obtained
return levels.
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30-year RL 50-year RL 100-year RL
Trends in EVT parameters
GEV 19012006 | 42.0C [40.0 43.5] 44.6C [41.2-46.5] 54.01C
1957-2006 | 40.8C [39.3 42.1] 42.2C [40.2 43.5] 45.6C [40.8-46.5]
POT 1901-2006 | 39.6C [38.8 40.9] 40.1C [39.3 41.4] 40.7C

1965-2006 | 39.3C [37.5-41.3]  39.7C [37.7-42.2]  40.4C [37.8-44.5]
1957-2006 | 41.3C [35.9 38.6] 42.9C [35.9 39.9] 46.9C [36.0 42.1]

Trends in total mean and
GEV 40.3C [38.9-42.0] 41.2C [39.4-43.3]  43.3C [40.5-46.3]
POT 39.9C [38.4-41.0]  40.8C [38.9-42.2]  42.9C [40.0-45.4]

TABLE 8.9 — 30-, 50- and 100-year non stationary Return Levels computed
in extrapolating the identified trends in the parameters of the extreme va-
lue distributions or the identified trend in mean and variance of the whole
sample according to the K hypothesis

APPENDIX

Slow and regular non-stationarity and parameters extrapola-
tion for return levels computation. (one part of a forthcoming paper
with Dacunha-Castelle, D. and Malek, F.)

As we have seen, the computation of return levels from the observations
of a time series requires an extrapolation of the parameters of the extreme
models. The following result seems useful in order to choose an extrapolation
as well as to precise in what conditions it can be applied, in particular when
the sample of observations is long enough. We illustrate our results on a
case of the Poisson intensity as a parameter of a POT model. The same
thing could be done for other parameters of the POT or GEV model. The
framework is the increase of the temperature. It is represented by functions
which tends slowly to infinity as a signal of very weak frequency. The term
“slowly” has a physical sense which can be translated as : the increase during
a large period of observation is small with respect to the usual variability
of these observations. To illustrate our purpose let us consider the following
examples.

Let us consider the family of Poisson processes with linear intensities :

I(t)=a+ bt (8.12)

Let us consider the physical asymptotic 1" — oo, which means that we
add data, and that we consider the non-stationarity shape of the parameters
as persistent. This is quite different as the asymptotics considered for non-
parametric statistics, in particular where the time is “sent” over (0, 1), and
the new observations are injected “between” the others, in order to tend to
a dense set of dates.
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30-year RL 50-year RL 100-year RL
2021-2050 GEV
Observed trends 40.3 [39.5-41.1]  40.7 [39.8-41.6] 41.1 [40.1-42.1]
DMI-ARPEGE 41.4 [40.6-42.3] 41.8 [40.9-42.7] 42.2 [41.3-43.2]
DMI-ECHAM5 39.0 [38.2-39.8] 39.4 [38.5-40.2] 39.8 [38.8-40.7]
KNMI-RACMO 39.9 [39.1-40.7] 40.3 [39.7-41.7] 40.7 [39.7-41.7]
MPI-ECHAM5 39.5 [38.7-40.3]  39.9 [39.0-40.7] 40.3 [39.3-41.2]
SMHI-BCM 38.1 [37.3-38.9] 38.5 [37.6-39.3] 38.9 [37.9-39.8]
SMHI-ECHAMS5 40.2 [39.4-41.0]  40.6 [39.7-41.4] 41.0 [40.0-42.0]
2021-2050 POT
Observed trends 40.3 [39.1-41.5] 40.7 [39.4-41.9] 41.1 [39.7-42.5]
DMI-ARPEGE 41.4 [40.1-42.8] 41.8 [40.4-43.3] 42.3 [40.8-43.9]
DMI-ECHAM5 39.0 [37.7-40.3] 39.4 [38.0-40.8] 39.8 [38.3-41.4]
KNMI-RACMO 39.9 [38.6-41.2] 40.3 [38.9-41.7] 40.8 [39.3-42.3]
MPI-ECHAM5 39.5 [38.2-40.8] 39.9 [38.5-41.8] 40.3 [38.8-41.8]
SMHI-BCM 38.1 [36.8-39.4] 38.5 [37.1-39.9] 38.9 [37.4-40.4]
SMHI-ECHAM5 40.2 [38.9-41.5]  40.6 [39.2-42.0] 41.1 [39.6-42.6]
2046-2065 GEV
Observed trends 41.2 [40.3-42.0]  41.5 [40.6-42.3] 42.0 [41.0-43.0]
DMI-ARPEGE 44.6 [43.7-45.5]  45.0 [44.1-46.0]  45.5 [44.4-46.5]
DMI-ECHAMS5 39.9 [39.1-40.7] 40.3 [39.4-41.1] 40.7 [39.7-41.6]
KNMI-RACMO 42.2 [41.3-43.0]  42.5 [41.6-43.4] 43.0 [42.0-43.9]
MPI-ECHAMS5 41.2 [40.4-42.0] 41.6 [40.7-42.5] 42.0 [41.0-43.0]
SMHI-BCM 41.3 [40.5-42.1]  41.7 [40.8-42.6] 42.1 [41.1-43.1]
SMHI-ECHAMS5 42.0 [41.1-42.8] 42.3 [41.5-43.2] 42.8 [41.8-43.8]
2046—-2065 POT
Observed trends 41.1 [40.0-42.3]  41.5 [40.3-42.8] 42.0 [40.6-43.4]
DMI-ARPEGE 44.6 [43.3-45.9] 45.0 [43.6-46.4] 45.6 [44.1-47.1]
DMI-ECHAM5 39.9 [38.6-41.2] 40.3 [38.9-41.7] 40.7 [39.2-42.2]
KNMI-RACMO 42.2 [40.8-43.5] 42.6 [41.2-44.0] 43.0 [41.5-44.5]
MPI-ECHAMb5 41.2 [39.9-42.5]  41.6 [40.2-43.0]  42.1 [40.6-43.6]
SMHI-BCM 41.3 [40.0-42.6] 41.7 [40.3-43.1]  42.2 [40.7-43.7]
SMHI-ECHAMb5 42.0 [40.7-43.3] 42.4 [41.0-43.8] 42.9 [41.3-44.4]

TABLE 8.10 — 30-, 50- and 100-year stationary Return Levels computed for
two future periods in evaluating the changes in mean and variance of summer
daily maximum temperature in extrapolating the observed trends or in using
climate model simulations, according to the K hypothesis

Suppose that the true value b° > 0, then the maximum likelihood esti-

o~

mators (mle) @, b are consistent and the pair ( vVT'(b—°) , IogT(a — a°))
converges in distribution to a bivariate Gaussian centered with covariance

I" calculated below.
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Let us now consider the quadratic case :

I(t) = a+ bt + ct® where I(t) > 0 for ¢ € [1,T] and the true ¢o > 0 then
the mle ¢ and other estimator b are consistent and the pair (7 32— 9,
T'2(b— b)) is asymptotically Gaussian but it does not exist any consistent
estimator a for a.

Suppose that in the two cases, a is considered as the value of the intensity
for the date 0. We see that a is very slowly convergent or not convergent
and in some sense forgotten. The error on a is of course translated on all the
calculations of the return levels, and, moreover, the result of the following
theorem proves that the determinant parameter for a long observation is the
one with the highest degree. This is more or less almost evident. This can
imply the following thing : we try to parameter the “rate” of the increase,
more than other details of the observations. For instance, it should be better
for us to work with models as t*Int? than polynomials.

Now we pass to the mathematical framework.

The usual technique using likelihoods and Kullback information has to
be modified in order to change the contrast theory as it is exposed, for
instance, in Dacunha-Castelle et Duflo ([28], chapter 3). In fact the asymp-
totic information does not allow to identify the model but only some of its
parameters. The model is asymptotically non-identifiable.

Let the intensity of the Poisson process P be of the form :

K
I(t) =Y efilt) (8.13)
k=1

with fOT fr(t) = oo and f}’z((?) —0fort —sooand k=1,..K — 1.
Ak associated to the largest parameter fx(t) has always a consistent

mle estimator. For other parameters, the existence of convergent estimators

2
depends on the behavior of W (T) = OT ]{Z ((?) dt, which can be considered as
the residual information remaining to estimate \g, once Ak is estimated.
Under very weak regularity hypothesis for the functions fi(t), the condi-

tion Uy(T) — oo is necessary and sufficient to assure the existence of a

consistent estimator A\;. Once A is estimated, we use, for every other pa-
rameters, a profiled contrast depending on A\g . It always leads to a least
square procedure. The speed of estimation is /W (7)), the estimator being
asymptotically efficient. The set of consistent estimators H < K has for
limit distribution a multidimensional Gaussian.

We shall use the following notations and results :

Let I(h) = f(;[ h(u)I(u)du, I be the intensity of the Poisson process
P(t), h be a function such that [ |h(t)| I(t)dt < co.

P(T)

T
P(h) = /0 h(w)dP(u) = 3 h(t:)
=1
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where 1, ..., tp(7) is the sequence of P(t) jumps for 0 <t < T
Elemental properties of stochastic integral imply :

E(P(h)) = I(h) ; Var(P(h)) = I(h*) ; Cov(P(h), P(g)) = I(hg)

Let a set of intensities of the linear form I = Eszl i fr(t) be with
0 € ©. The properties of the functions fi will be detailed below.

Let 6° be the true value of # and L7 (6°,6) be the log likelihood of P(t)
with intensity Iy with respect to the Poisson process whose intensity is Igo,
then (cf Dacunha-Castelle and Duflo ,[28])

T
L1(6°,6) = Plog(Ip) — log(Iy)) + / (Lo ) — Ipo(u))du

H) We suppose Iy twice continuously derivable in 6.

T
grad(L7(6°,0)) = P(grad(log [Iy])) — /0 grad(Ip(u))du

SO Ey [grad(Lr(6°,0))] =0
The Fisher information matrix for 6 = #° is
Jogo(T') =Epo [grad(Lr(6°) @ grad(Ly(6°))]
= — Ego[vLr(6°)]

T
:(/ OIgo(u) Olgo(u) 1 )
0 00; 80] Igo (u) K, g=1,

Kullback information is given by :
T T
Kr(6°.0) = [ log(po(w) ~log(ly (w) Tpo(w)du + | (o) ~ Ipo(w)d
0 0

Theorem 8.5.1 Let the family of Poisson process with intensity Ip(t) =
SR M), 0= {\, k=1,..K} € © be open and bounded in R
Suppose the following hypothesis are verified :
hi- For everyk = 1,...K, fris bounded on every compact set, denote
F(T) = [} fu(t)dt
h2-f(;t fr(uw)du — oo

h3- Let (t) = J{;((tt)) then ¢ is bounded on R™ and tli)rgogo(t) =
0.
These conditions imply that A > 0.
Then :

cl1) VEr(T) (Mg — A0r) converges to N'(0,\%).

where X[\{ 18 the mle estimator .
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c2) for k < K, there exists estimators X; of A\ convergent,
asymptotically Gaussian and efficient, if and only if the condition ¥ (T) =

OT };’Z(())dt — 00 is verified . In this case /W (T) (;\;—)\2) 5 N0, (AD)?).

If the condition on W (T) is not verified, there does not exist any consistent

estimator.

c3) Let H be the set of k < K such that V(T fT ]]:’“((i) dt — 0.

{VOT) v =X,k e H 5 /Fi(T) <AAK -0}

has a limit Gaussian law (centred) of the covariance matriz :

then

i = A% if 1<i<K
T FX(T) . . B
%K_Tlgrgo (1) Fr (T) if 1<i<K-—1

T 50550
0 frc(t)
i = M gy

I = (ryi]')i,j with ’Vij =

if 1<i<j<K-1

if and only if I’ has a limit.
If not, we only have that the distributions are tight, and that all the limits
of convergent subsequences are Gaussian.

Proof
Consider first the case K=2

Ig(t) = alfl(t) + Oégfg(t) and 0 = (al, ag).
The log-likelihood is

T
Erlanas) = [ gL 1 )0y ) + ()20

a1 f1(t) + a2 fa(t)
and 0

Kr(a),az) = aglog(aiJ +ag — af

Letb:g—;then
T 0 0

a 1+ 0%(t) 0 0
Lr(ay,a2) = | log(=2)+log(———2)dP+F,(T)(a1—ad)+F>(T)(as—
r(ar.az) = [ 1o8(52)loa( TG Z AP+ AT (=0} 4 Fo(T) (a2

az > 0 and b is bounded, so log(lltbsﬁg)) = O(¢(t)) and tends towards
0 from the hypothesis.

Let K7(69,0) = E(L7((6Y,0))) be the Kullback information of the Pois-
son processes on [0, 7], whose intensities are Iy, and Iy.

! Fu(T)
i gyt e) = i o - p gy
T 0
F;T)/U IOg(ll—:_bb (%))(a?fl(t)+a8f2(t))dt+KT(ag7a2)]

= K(aga a2)
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Now we have

T
Var(r(asaz)) = [ 10g (22 abi o) + ey
L var(Lr(ar,as)) = O(—)
B A7)
thus 1
mLT(ah%) £> K(ag,ag)

We shall use now an extension to non asymptotically identifiable models
of the theorem on the sequence of contrast functions to prove that the mle
estimator as converges to ag. Let OZ-T be the mle estimators for T fixed,
i=1,2.

Choose as contrast family for the parameter as, the profiled likelihood
%LT(QT, ag) .

It converges to K (a9, az), K(a3,az) = 0 if and only if ay = a, thus @’
converges to as.

In general, we shall see a1’ is not consistent.

Let

T 0
Lr(aoan) = [ tog(L = AP + (@1 - adF(T)

and

T
E(Tr(ad,a1)) = /0 log(

ay + ap(t)

T () 10+ @BR0)d+ (01— a) FL(T)

For ¢(t) — 0,
log(M) = so(t)(a?—al)(ag)‘l—%«pQ(t)((a?)Q—a?)(a8>‘2+o(w2(t))
Let - S
U(T) = /0 O (t)dt = ) ‘gg)) dt
E(Ly (a3, a)) = ((a‘f—a1)(aS)‘la?‘P(T)—%((a?)2—a?)(a%)‘lllf(TD(Ho(l))
If U(T) = [y ¢*(t)f2()dt = oo then W(T) ' E(Lr(a§, a1)) — sy(ar -
af)?

Let us study the limit of \/F»(T)(a — a3).

an
Note 8g for a5

J1(@) 3" (t)dt
(arfi(t) 4 az fo(t))tm

831822LT(G1,GQ) = /(_1)n+m dP(t)—l-ln:lFl(T)+1m:1F2(T)
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For n +m > 1, because we can choose ao in an open neighborhood of
a9, for T large enough so that :

n—1

E |07, 05 Ly (a1, a2)| <c/ 111(¢) 2 1h@F

n gm 2 T A®I" T AP
}8a18a2LT(a1,a2)| S C( ) fQ( ) dt) ) fg( ) dt
for some C' > 0.
thus !83 (Lp( al,ag**))‘ < 20F2(T).
and  E(04y04, (L1 (a14,09))? < CF(T)? + ¥(T).
and
Ouz (Lr(a1”, @2")) = By (Lr(af, a3)) + (@27 — a9)dZ, (Lr(af, a3))
¥ (a2 — 0208, (Lr(68, 02e2)) + (@7 — )@ — )32, 00, (L (are, a3))
=0

for ags and ao.x € (ag,aAQT) , Q1x € (a(l),aAlT).

Oay (L7 (a?,a9)) fo #%fz()dP—Fg(T) is a square integrable
martingale for Var(d.,(Lr(al,a)))) = Fg(T)(a% +o0(1))
2

Therefore, the central limit theorem for martingales gives :

1 law 1
— 94, (L7(a?,a9)) & N (0, =).
O (el ) N O, )

The strong law for martingales gives now :

1
F2( )82 (LT(alva’g)) - ;8

1 0,0
FQ(T) a(12 (LT(a1? aQ))
02, (Lr(a, a3))

ez, — )08, (el 02.)) + (017 = (@ — )22, 00 (Ll o)

Fy(T)(a2" — a3) =~

+

FQ(T) 82 (LT(acl]a ag))

Lz — a9)°08, (Lr(af, az) + (@7 — a)(@7 — a9)92, 00, (L1 (a1, 3))
FQ%T) as (L1(af, a3))

= op((@" ~ o)LL) + o( (a2, — VD)
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Fl(T) \/fT\/ dt< \/‘I/ \/FQ

Thus (@ a9) F;gf;)—o« " —a)\ET) = oy FoT)(@" —a)

Then (T (@3 — a9) 4 N(0,a9).
Let us now study the convergence in distribution of the pair (@37 —
al, @y —a3), as ¥(T) — o0 :

Oay (Lr(@", @")) = 0oy (Lr(af, a3)) + (@1" — a})03, (Lr(af, af))
1 ~ ~
+ 5 (a1 — a0)?05, (Lr(at, a3") + (@7 — a9)(a2" — 0900, 05, (Lr(ans, a2.)
=0

E(|05, (LT(%@))\ O(W(T))
E(|04,07, (L1 (a1, a2:))| = O(¥(T))

So as in the case of (ay — a9),
U(T)(@" —af) ¥ N(0,a})

But F; Y(T)(0ay0ay (L1 (a14, agi)) — (a9)~" and from Cov(P(h), P(k)) =
I(hk) we get

(T
lim cov((@1” —af,as —ay) = 1( ) a9

T—o0 T—>oo /W , /F2

if this limit exists.

This correlation is in general different from 0 for instance if f; = t°
and fo = t* | 0 < a < b. Moreover for monotone functions with very long
oscillations, the limit of the covariance can not exist.

Suppose now ¥ (T) < C < oo when T' — oo. For bounded Ay, every
estimator of Ay has a finite variance. Cramer-Rao inequality shows that
¥, '(T) is a lower bound of this variance and so the estimator can not be
consistent.

Let us now consider K > 2. Iy(t) = 215:1 A fr(t). The proof made for
K = 2 can be still applied for the behaviors of X[\(

The next step consists to use separately for every k£ < K the contrast
defined by :

Foyo [T oo k() + M fi(t) 0
L) = /0 s (LA I )+ O ADR(T)

N fie () N fwx(t) 2&&@

As previously, we get :

AD fiu(t)
A9 fre ()

+( )*(1+0(1)))
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W D) EL Ok X)) = 530 (A = M) if Wi(T) — 00

and B B e

U (T (L, AD) = LAk, AD)) = op(1).

So we obtain the convergence part of the theorem. Its Gaussian part is

obtained through the convergence in distribution of linear combinations of
the type ZkH:1 ar/Vik(T) (Mg — AD), which can be obviously treated as the

pair (v U,(T) (A =A%), /TL(T) (A — AD)).

O
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9.1 The seasonality in statistical study

In statistics, a time series exhibits cyclic or periodic fluctuations known
as "seasonality”. The concept of seasonality shares a feature with many
other concept used in daily language. For example when we work with the
daily temperature, there exists daily and annual seasonalities. For a regular
deterministic cyclic variation, we can model the seasonality simply by a
periodic or a trigonometric function. For a stochastic variation, it seems
natural to consider the autocorrelation structure or the spectrum of the
series. We can quote important contributions on the subject : Nerlove([102])
and Granger([58]) which are popular in econometric. Here we discuss some
main problems usually met with model adjustment of the seasonality for
temperature series.

Seasonality plays an important role in climate studies. When working
with temperatures, an accurate statistical model of the variability of the
daily temperature, or even of hourly temperature (in the case where we
have this kind of datasets), are needed.

The daily temperatures : daily mean, maximum or minimum or the tem-
perature at some fixed hour during the whole year present a strong seasonal
component that we need to remove in order to obtain a more homogeneous
series. The literature shows that it is not easy to completely detect the sea-
sonality from the temperature. In fact, the works done so far are usually
based on the assumption that the observed time series, or their logarithm,
can be meaningfully divided into at least two components : a deterministic
one (a trend, a cycle or a seasonal component) and irregular components.
However, this is too strong an assumption.

Many current published models are shown to be inaccurate for stations
that show strong seasonality in the probability distribution and autocorre-
lation structure of temperature (see see Jewson & Caballero, [83] for bi-
bliographies and discussion). A bad seasonal adjustment can also affect
the results of the estimation of models in a negative way. In particular,
dynamic relationships can be distorted by a seasonal overadjustment (see
Hylleberg([80])). As a matter of fact, the seasonality must be adjusted with
caution.

It is well-known that for temperature series, the seasonality exists not
only in the mean, but also in the variance, and in fact in the whole distribu-
tion. However, even after removing the seasonality from the mean and the
variance, the usual stationarity hypothesis on the residual series can still
not be acceptable. The seasonality still remains, for example in the auto-
correlation function. We can see it in many works on the weather derivatives
such as Cao and Wei ([16]),Campbell([14]), Jewson & Caballero ([83]). The
assumption on the stationarity can severely underestimate the characteris-
tics in certain seasons and overestimate them otherwise. Even more seriously,
even when we take into account this fact and remove the seasonality from
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the residuals, this ”famous” seasonality still exists (see Jewson & Caballero
([83]) for more details).

It is evident that the modeling of daily temperatures based on simpler
models has certain potential advantages. Such modeling, however, can not
catch the whole richness and complexity of the climate variability, and in
particular, the seasonality.

Facing this situation, the question : "Does the seasonality change along
with time ?” does not seem illogical. This question is for today pertinent
under the greenhouse effect. To respond to this question, we come to the
next section.

9.2 Transformation of the seasonality under global
growing of the temperature

Climate change involves not only changes in the mean, but also in the
characteristics of the corresponding seasonal cycle. The seasonality profile
is really changing, summers are ”longer” and winters are ”shorter”, if they
are defined by the presence of high, or low, temperatures. In the paper of
Frich et al.([56]), a study on the temperature series of Europe and Australia
in 1946-1999 period pointed out a reduction in the number of frost days and
a significant lengthening of the thermal growing season.

Recently, there are some significant studies on the variability of seasona-
lity of the temperature. Among them, there are the works of The Climate
Research Committee (USA) ([23]), Pezzulli et al.([117]),Wu et al.([152]) and
Barbosa ([8]). In the essay of Diaz and Brasley in [23], the seasonal change
for the decaded-scale in temperature anomalies (after removing the average
value of each months) were shown. Pezzulli et al. used Census Method II
Seasonal Adjustment Program (X-11) which is usually met in econometrics
to model trends and varying seasonalities. Wu et al. proposed "modulated
annual cycle” to catch of the dynamics of the seasonality. Differently, Bar-
bosa modeled the daily mean temperature series by autoregressive family
with high order p. All of them confirmed the change in the amplitude of the
annual cycle or seasonal cycle.

Here, a simple study will be carried out on some series of temperature
to get a better understanding of the transformation of the seasonality with
time. The study is applied to detrended series. In order to keep the original
values of temperature when studying the seasonality, the trend, which is re-
moved, is estimated from the centred series (subtract the average value of the
series). This trend is estimated by loess (the estimation method is describe
in Chapter 3). Three kinds of temperature will be considered at different sta-
tions : daily mean, maximum or minimum temperature. The method used
for the study is to choose a window of N-year size with N rather large.
Then consecutive windows are obtain by shifting the first window each A
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year until the end of the series. For each window, we estimate the seasonality
of its corresponding sub-series by fitting a trigonometric function :

k
2mt 27t
Oy + <9i,1 Ccos — + 01'72 sin >
Zi 1 365 365

where t is the dates, k£ is the number of trigonometric terms. k is taken
rather high to get flexible estimates. We take here k=4.

We consider here three different stations which different length of obser-
vations. The temperature series in Strasbourg consists of 57 years (1949—
2005), while the one in Déols contains 106 years(1901-2006). The tempera-
ture series in Paris-Montsouris is longest with 131-year observations (1873—
2003).

Three different types of temperature are studied : daily mean tempera-
ture in Strasbourg, daily maximum temperature in Déols and daily minimum
temperature in Montsouris. For the one of Strasbourg, N will be taken as 30
years and A is taken as 4 years. For the one of Déols, N, A are respectively
equal to 50 years and 4 years. While for the one of Montsouris, N = 50
years and A=10 years are considered. The results are shown in Figure[9.1
[9.2] and 0.3

Discussion

- In general, after observing these three figures, we can conclude that the
seasonality change slowly with time. Then with a longer observed time, this
change can be better seen. The change of the seasonality seems clearest in
Montsouris.

- The seasonality in Strasbourg changes slowly in the last fifty years.
Most remarkable are the changes in summers. The more we advance in
time, the higher the peak of the summer. This means the global warming is
reflected in the seasonality.

- The seasonality also changes slowly with time. However for the last
fifty year, the change is remarkable. Comparing with the seasonality in the
first fifty years, the winter is really warmer.

- The seasonality of the minimum temperature in Montsouris remarkably
changes. The average difference between the first and the last seasonalities is
nearly 2.5C, which is really significant. It is colder with time in Montsouris.

- In conclusion, the seasonality is changing in a complicated way under
the greenhouse effect. The difference of temperatures in a day or between
seasons is larger. More precisely, in a day, the maximum temperature tends
to higher and the minimum one tends to smaller. Then in modeling the sea-
sonality, a model which does not take into account this changing seasonality
can not give a complete estimation for the seasonality. The result of this is
that the seasonality still remains in the residuals.
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FIGURE 9.1 — Transformation of the seasonality in Strasbourg with size of
window N=30 years. The numbers correspond to the number of windows

9.3 How to detect the seasonality from the time
series ?

We all know that the long term traditional annual cycles, which are
taken to be exact repeating of themselves years after years, are no more ap-
propriate. For these modeling, an implicit a priori assumption is that tem-
peratures produce a constant seasonal cycle. This assumption is nowadays
questionable in the face of a nonlinear climate system under the external
forcing.

For this reason, a better way is to define a seasonal cycle which can
change with time. In order to take into account the dynamics of the sea-
sonality, a reasonable way is to use time-varying cycles in climate series,
allowing to retrieve fluctuations in the amplitude and phase of the perio-
dic components and to assess their statistical significance. The argument is
easy to understand, but it is very difficult to find a simple model which can
adjust this situation. The reason is that estimating the seasonality without
mixing up long-term changes in the mean and low-frequency variations in
the seasonal pattern, is not simple. We need a model which captures the slow
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FIGURE 9.2 — Transformation of the seasonality in Déols with the size of
window N = 50 years. Left panel. The estimated seasonalities in all the
windows. Right panel. The estimates in the first and the last window

variation changes in probability distribution and correlation from season to
season, but not much more rapid changes (as mean, variance function).

For example, one can think of a simple and reasonable parametric ap-
proach, to find a trigonometric polynomial which has coefficients slowly
changing with time. For example :

P
2mt 2mt

Z (9k71(a)cosi + Glgyg(a)cosi (9.1)

k=1 q q

where t is the date, a is the year and ¢ is the period length (¢=365 for the
temperature of the whole year).

The coefficients 0’s change with years.

If one estimate the parameter 6(a) from the observations of the year a,
the estimated seasonality also leads to take the higher frequency change in
mean and variance. This way of estimation does not only detect the slow
variation.

There are not many available works on time series decomposition me-
thods which take into account the seasonality change. Barbosa ([§]) modeled
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FIGURE 9.3 — Transformation of the seasonality in Montsouris with the size
of window N = 50 years. Left panel. The estimated seasonalities in all the
windows. Right panel. The estimates in the first and the last window.

the seasonality by an AR(p) with high value of p (for example p can equals
to 31). Recently, Wu et al.([I52]) gave an important work on the seasonality
change and they proposed the modulated annual cycle (MAC) which al-
lows the change of both amplitude and frequency of the seasonality. "MAC
shows the response of the climate system to the external forcing, reflects the
internal complexity of the climate system as well as the forcing”.

Wu et al. extracted MAC using the ensemble empirical mode decomposi-
tion (EEMD). The detailed description of the EEMD method can be found
in Wu & Huang ([150]).In practice, the EEMD is implemented through a
sifting process that uses only local extrema.

Using modulated annual cycle is a good idea, however its calculus is
complicated and has the heavy numerical computation. This method is not
convenient when someone works with large datasets.

In summary, there are not any methods adaptable to our case. Facing
this situation, another point of view can be taken. We use a traditional long
term annual cycle which is constant year after year by accepting that this
stationary annual cycle may not reflect well the intrinsic nonlinearity of the

300
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temperature. Then knowing that the seasonality still remains in the reduced
series (after removing the trend and seasonality components), we estimate
this reduced series by a periodic stationary process. This kind of process will
be studied in Chapter 9 on modeling the reduced temperatures.

Now placing ourselves in a case of a constant cycle for the seasonality,
the literature propose many methods, both parametric and nonparametric,
to perform estimations. In any way, we need a flexible estimation, as non-
parametric ones, to have objective estimators. For our temperature series,
we use the STL method, a rather simple method based on loess, which can
however give robust estimates on trend and seasonality. On the other hand,
the nonparametric estimators can be considered as good measures for the
goodness of parametric fits.

We will show here one example on the daily mean temperature in Bor-
deaux during the whole year, note X;. STL will be used to detect the seaso-
nality component in mean of X;. A parametric approach by trigonometric
functions is chosen. The number p of trigonometric terms is chosen by the
Akaike criterion.

We show an example on the daily mean temperature in Bordeaux. The
results of the estimated seasonality by different methods in Figure [9.4] show
the similarity of these two estimates : nonparametric by STL method and
parametric by trigonometric functions. The parametric estimation for a in-
variant seasonality is correct.

The estimated seasonality

J’ | || jJ ‘\ J“ \ JJ | J’ |

11/50 03/52 07/53 12/54

FIGURE 9.4 — Estimators of the seasonality in the mean : parametric one
(red line), nonparametric one (black line)
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9.4 Conclusion

This chapter discusses about the dynamics of the seasonality, but does
not give a solution to this problem. The change in seasonality of the climate
is well-known nowadays. However efficient methods to detect this dynamic
seasonality are not found. While the trend and seasonality components are
unobservable, it is a really complicated problem. The reason is that it is not
obvious to completely remove the seasonality without confounding with the
trends. More deeper and more detailed studies are necessary to reveal the
characteristics of the seasonality.

In our case, because of lack of methods, we consider the seasonality as
constant year after year and model it parametrically. Then the seasonality
in the residuals will be continuously treated. The effect of the seasonality is
still strong in the central field (mean, variance) and extreme field (extreme
parameters), which will be shown in the next chapter.



Chapitre 10

From continuous to
discrete-time models taking
into account extremes
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10.1 Introduction

Air temperatures are measured with different lags, from 10 minutes to
24 hours. Many statistical problems, linked with the mean, the extreme va-
lues, or the construction of simulation models, require physical coherence to
consider the observations as a discrete sample of a continuous process.

We address the following situation : first we remove trends and seasonal
components to obtain reduced discrete observations. They are provided by a
nonlinear stationary continuous time process, which obviously possesses the
Markov property, so it is a diffusion. Discrete observations, made for instance
at a fix hour, have to keep this Markovian property, and if the diffusion is
stationary the discrete chain have the same invariant density. One can hope
that the reduced variables are modeled by a stationary diffusion, stationary
in an extended sense : there can remain the seasonality in its coefficients.
For a short period of the year, thus without seasonality, the observations,
done at a fixed hour every day, can proceed from a stationary diffusion. The
data of interest, as daily maximum, minimum, or mean value for a day, are
functions of discrete observations with a possible loss of markovianity, for
example for the mean which is not only non Markovian but anticipative.

The boundedness of temperature distributions is implied by the statis-
tics of extreme values of the discrete reduced (or not) observations. This
characteristic is implied by negative shape indices. This boundedness pro-
perty is translated into a particular property for the underlying continuous
time diffusion : it has inaccessible bounded boundaries.

The starting point of the applied literature for models of simulation of
temperatures is a discretization of an Ornstein-Uhlenbeck process using an
Euler first order scheme, with a seasonal deterministic component, leading
to the so-called Vasicek model given by :

dXt = dﬁ(t) + Oé(ﬁ(t) — Xt)dt + O'(t)th (101)

where 8 and o are deterministic seasonal components for the drift and the
diffusion coefficient respectively, « allows the return to equilibrium for this
stationary diffusion, W is a Brownian motion.

The discrete version is :

Xn — Bn = (anl - anl)(l - 04) + Onén (102)

where ¢,, is a standard Gaussian white noise.

Since the first works (see Dornier and Querel, [44] for instance), some
other propositions have been made, (see Alaton et al. [2], Brody et al. [12],
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Benth and Saltyte-Benth [39]). Campbell and Diebold [14] propose changes
starting from the discrete version where aX,_1 is replaced by an
AR(p) process (the statistical procedure leads to k = 3), so a longer me-
mory and secondly &, is no more a white noise but a GARCH process
g2 = ~ve2_yn2_,, where 7 is a Gaussian white noise. ARMA or more ge-
nerally classical time series models (see Roustand et al. [129], Moreno [95],
and Cao et al. [15]) are not adapted to our problematic.

All these models only take what we call the “central part or field” com-
ponent of the whole dataset into account. In fact, tests about the quality
of the simulations, do not consider the extreme values, even if sometimes
clustering properties are considered. Nothing is said about the quality of
the model for tails.

In our specific application for very high (or low) temperatures, the non
gaussianity is evidently seen from data graphics. The choice of a linear mo-
del as an Ornstein-Uhlenbeck or a Vasicek one, whose diffusion coefficients
do not depend on the state Xy, implies that extremes have a Gumbel limit
distribution for the imbedded discrete model is Gaussian and so is not ap-
propriate.

An important difficulty is to take into account the boundedness of the
distributions. Problems of the estimation of the support of a distribution
are always difficult in statistics. In our case, they are critical because the
estimation of the support is one of the determinant elements to estimate the
risks of rare events.

Literature is much more developed on heavy tails, often linked to long
memory properties, than on bounded ones. So a large work remains to be
done. At least, working with hour time scale (the day or three hours), such
correlation properties never appear.

We first detail and give some new precisions on the specific features of the
extreme theory for stationary diffusions (see Berman [9],[10], Davis [122]),
for the bounded case, in order to apply them to estimate extreme parameters
from a discrete sample. A theoretical development will be carried out for the
bounded case with inaccessible boundaries.

If we do not take into account the seasonality, the dynamics of a sta-
tionary diffusion process are governed by the conditional mean (drift) and
variance (diffusion coefficient or volatility). A continuous-time diffusion pro-
cess can be written as :

dX; = b(Xt)dt + a(Xt)th (103)

where b is the drift and a is the diffusion coefficient of the diffusion process.
Wy is a standard Brownian motion.
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The temperature is a continuous process indexed by continuous time,
but observed, at least for our data, at discrete dates, in general regularly
spaced by a fixed lag A. Is A small or not 7 This question cant make sense
in itself from a mathematical point of view.

It is then tempting, for the next step, to work with the stationary boun-
ded discrete-time Markov chain, the skeleton of the continuous time diffusion
for t = kA. However, this leads, as usually in this domain, to many diffi-
culties. Indeed, we do not know how large A can be and still allow the use
of these approximations. Moreover, one can be faced with complex compu-
tations to estimate the parameters passing by the transition operator. So
simpler approximations for discretely sampled diffusions are needed. No-
thing can make us think, a priori, that they are sufficient for the physical
situation.

A natural and simpler discretization is to use a first order Euler scheme
of the diffusion on the reduced series. This first-order discrete process is
given by :

Xp =b(Xp—1) +a(Xn_1)en (10.4)

where b and a are suitable functions depending on some parameters and &,
is a white noise.

In fact the dynamic is seasonal so b and a are periodic functions for a
given value of the temperature. They must be written as b([n], X,,) where
a general date n is written as n = (year,[n]). We omit to mention this
seasonality in this chapter but we have to remember that it is the source of
difficult problems from the practical problematic!

There are many papers about these functional autoregressive processes
(the autoregressive order can be higher than one) with a non constant condi-
tional heteroscedastic variance (FARCH). In most of the papers, conditions
for geometric ergodicity are given. The literature will be detailed later. Ho-
wever our situation is more complicated. We need a model for a stationary
process whose distribution has a bounded support due to extreme proper-
ties. We shall prove that for the associated continuous models the diffusion
coefficient a is not lipschitzian at the boundary and null out of a bounded
interval. There are too much constraints for a discrete Markov chain, except
if we work with an (e,) bounded (we can give the bounds), which seems
physically difficult to admit.

So there are no Euler schemes which can approximate the discrete Mar-
kov chain if we want to keep all the features suggested by the continuous time
diffusion and specifically the gaussianity of the generating noise. We propose
another solution, only motivated by statistical applications and the need to
have a good simulation tool. If we keep the gaussianity, the boundedness is
lost, but also, as will be detailed later, the process has some deterministic
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part into its trajectory.

We choose, in the second step, the function a as a strictly positive func-
tion but almost negligible out of a bounded support. In fact for very long
observations we should lose the boundedness of the distribution. Neverthe-
less, we keep a bounded estimate for a where the bounds are estimated from
our data, or from an arbitrary long dataset with a fixed length. a can be
now adapted to the data length.

This is not of course a completely satisfactory solution, but we get a
good fit by simulation studies even for extremes. This study proves the limit
of the first-order Euler scheme when a rough discretization of diffusions, in a
stationary framework, reaches to the finite inaccessible boundary problem.
Many complicated discretization schemes can perhaps be used but nothing
in theory proves the existence of a scheme that satisfies all our needs. If
we want something clearly simpler than the exact discrete Markov chain, a
possible way, as we indicated, is to look for another approximation of the
density transition. This does not strictly demand an approximation for a
small enough A, but this needs, in any case, a very important and heavy
numerical work for optimizations.

These points will be studied and discussed more in detail below. Then
some of these points will be clarified by a simulation study.

10.2 Theoretical results on continuous-time diffu-
sions and their discrete time approximations

In this section, we will remind the classical theory of the continuous-time
diffusion with inaccessible boundaries r1,19. We develop then some specific
theoretical points for the bounded case, where 1 and r9 are finite inaccessible
boundary points. After that, a discussion on the diffusion approximations for
discrete samples wile be given. A specific model for discrete bounded data
will be proposed and its statistical properties will be detailed, accompanied
with a simulation study. The estimation for the diffusion coefficient with
the boundary constraints, inheriting the extreme theory for the bounded
continuous process, is also mentioned

10.2.1 Extremes of diffusion with inaccessible finite bounda-

ries

Let us state some results from probability theory concerned by the maxi-
mum on an interval for a stationary diffusion when the length of the interval
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increases. The main contributions on this subject are Berman([9],[10]) and
Davis([122]). The basic results are due to Berman ([9]) but the version of
Davis ([122]) fits a statistical framework better.

10.2.1.1 Main definitions and Berman result

Let X; be a recurrent diffusion defined on the open interval (r1,72) with
Lipschitzian coefficients @ and b and the endpoints 1 and r9 are inaccessible

where b is the drift and a is the diffusion coefficient of the diffusion process.
W; is a Brownian motion.

Let T, = inf{t > 0 : X; = a} denote the first passage time to state
a € (r1,72). Let s be the scale function of the process :

x u o b(v)
s:/ o PR gy (10.6)

If ri <a <z <b<ry then we have :

where P*(.) is the underlying probability measure of the process given that
Xo =xT.

(10.7)

Since the process is recurrent,

lm P*(T, < Tj) = lim 2L =512

btra b s(b) —s(a) PH(T, < o0) =1 (10.8)

we must have s(b) — oo as b — ry. Similarly, s(a) — oo as a — r;. From
the form of s, we can deduce that a(b) — 0 as b — r1 or b — r9. Conversely,
ifa(x) — 0asx — 71 or x — 19, one can show that 1 and ry are inaccessible.

It is one important property of the extremes of diffusion with inacces-
sible boundaries that we will use in the next sections.

Now consider the theorem 3.2 in Davis [122] on the behaviour of the
maxima of the process.
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Theorem 10.2.1 Suppose Z; is a recurrent diffusion on (r1,r2) with scale
function s(x) and finite speed measure m. If the endpoints r1 and ry are
inaccessible, then for any sequence wy — o and any x € (r1,7r2),

| PP(M7 < wy) — e VWm0 a5 t — 00 (10.9)

From the previous theorem, and without loss of generality, suppose that
the total mass of speed measure | m |= 1, we have the lemma

Lemma 10.2.1 Define the function F by :
F(z) = exp(—1/s(x)) (10.10)

Let My = max(Xy, 0 < t <T). If there exists some functions Ap € R*
and Bt € R such that
My — Br
Ar

converges in distribution to G, then G is a GEV distribution such that F is
in the extreme domain of attraction of G.

The GEV distribution G associated with the maximum value in a large
block of consecutive observations at discrete times is not in general the same
GEV distribution H associated to a sample of the marginal density . H and
G may even have different shape parameters (see Davis [122] for an example).
In what follows, we shall give a condition linked to the boundedness of the
distribution of this model.

From the lemma (|10.2.1]), we have :

Suppose a and b are continuous bounded Lipschitzian functions on the
open interval (r1,r2) and we suppose a > 0 on the open interval (rq,r2)
and @ = 0 at the boundary points, b is continuous on the closed interval,
(because s(z) tends to infinity as x tends to r; or rg, and so a tends to 0)
and

s —2b

—=— (10.11)

10.2.1.2 Bounded case

In this paragraph, we develop the extreme theory into a specific frame-
work : bounded process, i.e 1 and ro are finite and the maxima of process
is in the domain of attraction of Weibull with the shape parameter £ < 0.So
F is in the extreme domain of attraction of some GEV distribution G with
shape parameter £ < 0. We can obtain the following lemma :
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Lemma 10.2.2 Suppose that F' is in the extreme domain of attraction of
some GEV distribution G with shape parameter £ < 0, let o the common
upper bound of F' and G.

We have the following behavior of a near the upper bound ra,

~ —Qb(t) (7‘2 — t)

a(t) : (10.12)
I-¢

Remark : In the case £ > 0 the results are slightly different and more com-
plicated when & = 0.

This lemma thus proves that if two diffusions have the same drift, the
same & < 0 and the same upper bound, then necessarily near this bound the
diffusion coefficients are equivalent.

The proof is based on the proposition 0.7 in Resnick, [138].

Theorem 10.2.2 (Resnick). Suppose U : R™ — R is absolutely conti-
nuous with density u so that

Ulz) = /O " u(t)du (10.13)

If U € RV, , that means U is regularly varying with index ¢ (U(x)
equivalent to L(z)x¥), ¢ € R and u is monotone then

. wu(x)
x]grolo U2) = (10.14)

and if ¢ # 0 then (sgn ¢ )u(x) € RV,

Following the proposition 1.13 in Resnick, [137], if F' is in the domain of
attraction of the Weibull distribution with ¢ < 0, then 1 — F(ro — z7!) is
regularly varying with index 1/ when x — oo.

From the precedent theorem of Davis, we have
1—F(ro—a2 ) =1—exp(—1/s(ro —271)) o 1/s(ry — 2 1) when 2 — oo

Then 1/s(ry — 2~ 1) is regularly varying with index 1/¢ |, so s(ry — 2~ 1)
is regularly varying with index —1/¢.

Note s*(z) = s(ro—a '), s*(x) € RV_y ¢, the first and second derivative
of s*(z) are monotone. Applying twice the previous proposition of Resnick,
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we have :
+ 1 x[s"(rg —a 1L — 26/ (rg — 2! 1
1mxs,(x):—f—1<:>lim [ (r2 a? oz (ra ))]:—7—1
e s () & ne Sra—a ) ¢
1g” _ 1 1
o fig 182 1
n—oox s(rg — x~ 1) £

Combining with (10.11)), we can deduce the behavior of a near the upper
bound with t =7y — 2~ 2 — 00 :

_ =20(t)(rs — 1)

1
I-¢

a’(t) (10.15)

From this lemma, we can deduce the value of the first derivative of a?
at the upper bound rs :

. 2b(7“2)
C1-1/¢
and the same for the lower bound. square

These values will be used as constraints at the boundary. From the lemma
and the formula

(a®)(r3) (10.16)

V() = L (10.17)

| m | az(ac)ef 22w

elementary computations proves that the tail of v(z) has the same behaviour
as the tail of F' given by

F(z) = exp(—1/s(x))
Jroe :

In fact, from , we have when v — 19, €’ “9*(¥ is equivalent to
(ry — )Y€ with t — 0, then v(v) is equivalent to C(ry — t)~/¢ (C is an
appropriate constant) which in turn proves that the extremes computed on a
sample of i.i.d random variables of distribution v(z)dz have the same shape
coefficient as that of the diffusion.

In summary, the tail of the stationary distribution has the same shape
parameter as that of F.

10.2.2 Diffusion approximations for discrete samples

When studying the criteria of a good discrete approximation of a conti-
nuous time process, the question : “what are the statistical properties of
the discretization” is a very important problem, specifically for processes as
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diffusions whose trajectories are very irregular, and thus unobservable. This
is also true for numerical aspects of stochastic differential equations. We
show here the exact discretization of diffusion process and also their limits
in applications.

10.2.2.1 Discretization, imbedding and limits

Often the continuous time processes are built as limits or as sequences of
interpolations of discrete time ones. This is true, of course, for the Brownian
motion as for many diffusions starting, for example, with as popular discrete
time processes as a GARCH processes. There is a quite large literature, not
unified, on these topics. Another point of view, probably closer to the phy-
sical measures, is that it is given by the regularization of trajectories, say by
convolution of the continuous data with an infinitely derivable positive with
compact support function. This function is chosen in order to represent the
inertia of the effective system of measurement ( see Azais and Wschebor, [7]).
For more regular processes, as ARMA or more generally CAR (continuous
time autoregressive), or threshold processes, there are also many works, see
for instance Souchet ([I44]) and Guyon & Souchet ([63]).

For extremes, the discretization statistical effect is not completely un-
derstood even today. There are, as explained in the chapter 5 on extremes,
a lot of results on the limit distribution of the maxima of discrete time pro-
cesses and their possible use in statistics. For maxima of continuous time
processes a large bibliography, and many important results, can be found
in Azais and Wschebor ([7]). The link is also made between their work on
maxima of processes with irregular trajectories, as diffusions, and their re-
gularization. For this link between extreme of discretization and continuous
time process, the seminal work is the one of Pitterbag([I119]). A general fra-
mework for extensions can be found in Anderson & Turkman ([6]) and Albin
([3]) but with no significant applications until today.

We do not use in our work the results concerning imbedding of a discrete
time process as the ”skeleton” of a continuous one.

10.2.2.2 The exact discretization and their limits

The use of the exact transition density pa(z,y) can be tempting even
if we have to use approximations with respect to A,. Formulas giving pa
as functions of a and b are complicated. Dacunha-Castelle and Florens-
Zmirou [29] give a method to approximate pa in order to obtain a consistent
asymptotic theory if n — oo , nA,, — oo, A, — 0. This method has been
supplied by Ait — Sahalia [153] and the basic lemma was used to build exact
simulation methods in Beskos and Roberts[1].
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Thus if we assume here that the diffusion process is stationary
(and ergodic), and that a discrete observation (Xga,.,.,,,) of the sample
path is available, an asymptotic framework is available for A,, — 0 (high-
frequency data) while nA,, — co as n — oo.

pa expression as a function of a and b is based on the following formu-
las :( Dacunha-Castelle and Florens-Zmirou [29])

pa(z,y) = Aa(z,y) ELA(2,y)
B R maEEC
V(@rA)a(y)
T du v(z)
v(x) :/0 ac(lu)’ H(zx) :/0 C(u)du
1 !/

with C(v(z)) = g -

with Aa(e.y) +H@—H@ﬂ

LA =exp <A /01 [9(1 —us(x) +us(y)) + \/ZBu]du>

1
with g = —5(02 +C”)
(10.18)
where B is the Brownian bridge and with the condition g(z) = O(|z|?),
T — 00

Then the asymptotics are based on Taylor formulas applied to Axn and
LA as A — 0.

Its use in parametric statistics is almost practically impossible in general
cases. It is possible that for very simple parametric problems, we need heavy
computations for these approximations.

Contributions to this estimation problem can be found in Prakasa-Rao([120]),
Yoshida[I55]). A complete bibliography is available in Souchet([144]). Most
works concern drift estimation. They give asymptotic results for nA,, — oo
, Ap — 0.

There exists a very important literature on the estimation of discrete-
time diffusion and the asymptotic properties of the estimates for a fixed lag,
such as Florens-Zmirou ([51], Hansen et al.([70]), Kessler and Sorensen([88])
and Gobet et al.([57]).

The practical use of these results remains difficult for complicated mo-
dels, as that linked to the temperature because they are linked to non rea-
listic hypothesis, as reflexions at the boundaries. We do not present in this
thesis the numerical work done with these estimators.



10.2 Theoretical results on continuous-time diffusions and their
discrete time approximations 211

10.2.3 Approximate discretizations and their statistics

The simplest approximation is the one given by a FARCH model (func-
tional, heteroscedastic autoregressive model) associated to the equation :

XpA = b(X(n_l)A)dt + a(X(n_l)A)sn (10.19)

where €, is a white noise or more precisely a sequence of i.i.d random va-
riables with density E. These models can be extended in an obvious manner

to :
q

P
X, = Z bz(anz) + Z aj(Xn—j)5n—j+1 (1020)
i=1 j=1

There is an important literature about these processes. The most general
approach can be found in Doukhan ([38]) where various criteria are given
for the existence of a stationary solution and for geometric ergodicity. Some
papers (see Chen and An [19] , Wang [64] give more specific conditions. But
in general, if b is linear, these conditions are mainly : a > 0, a is bounded on
R and the density of E is almost everywhere positive. So bounded supported
noise are excluded.

Another approach is that of Wang [64]. Now a is uniformly lipschitzian,
the existence of unique stationary solutions, as well as the fact that the
geometrical decrease of the covariance as strong mixing properties, has been
proved.

The geometric decrease of the covariance allows the applicance of the
results of Leadbetter et al [92] about extremes of this kind of processes.

As remarked by Wang, the lipchitz condition can be weakened for some
explicit a but no results are given in this direction.

It seems that general results on distributions, and particularly some de-

tailed results concerning the case of the boundedness of the support of the
invariant measure, have not yet been given.
In our case, a? is estimated using the information provided by extremes
theory, is not uniformly lipschitzian for & < 0. We have to look for a model
with bounded marginals, but unfortunately we have the following almost
evident negative result.

Lemma 10.2.3 If E has a non bounded support (for instance E Gaussian)
then there are not bounded supported stationary solutions of (10.19)).
It can exist bounded solution of (10.19)) for a bounded noise.

In our applications, we want, for the noise, gaussianity as a condition of
physical coherence. Nevertheless, from Lemma [10.2.3] for every fixed A, the
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boundedness of the observations implies a non Gaussian noise with bounded
support. It is thus impossible to have such an approximate discrete model
with the following wanted properties : it is stationary with bounded inacces-
sible boundary and has a Gaussian innovation. Then what are the possible
choices for this situation ?

The process for bounded data, with parameters a and b, should
have the following properties if the noise is Gaussian :

e it is a markovian process , it is recurrent for the potential of open
bounded intervals being infinite whatever be the initial measure.

e suppose J = (r1,7r2) be the support of a. We see that the transition
density is such that :

1 1 (y — b(z)?
p(z,y) = mexp <_2(ya(:c)(2)> forz € J

p(x,b(z)) =1 for x € J and p(z,y) = 0 for z € J¢ and y # b(x)

Does this recurrent process has an invariant density and so a stationary
version 7

In order to answer this question, a convenient approximation for a sta-
tistical purpose will be studied. It will be a FARCH process, called a(n)
approximation of the process defined before.

Let a(n) defined by :

-a(n,z) =6(x) forx >ro—norz <ri+n>x > —ocowithn > d(z) >0
forx >rg—morx<ri+nandd—0asz— oco.

- a(n,x) is three times continuously differentiable in z and uniformly
lipschitzian.

This process, defined by a(n, z), has evidently from Wang results a sta-
tionary version and is geometrically ergodic and weakly mixing.

n and &(x) will be chosen depending on the sample size N for practical
applications.

Theoretically, the extremes of this process are in the Gumbel domain of
attraction. But if we choose 1 small enough, for instance if N = 10° then
n = 1075. Therefore, for a statistical point of view, the extremes of this
process are the same as those of the bounded continuous time process(the
“exact extremes”). Of course, this is only true form a statistical point of
view ! We shall see through simulations if we have the “same extend” as the
one of a discrete-time process associated to the original a(x) with almost
(in a very strong sense) all the observations in (r1,r2). Some more precise
practical considerations would be done using the elemental large deviation
theory.

To finish with these considerations, let us consider how the continuous-
time process could be considered as a limit of discrete ones. First we can
remark that the convergence of the discrete model, given by (10.19)), to a
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diffusion signifies that with parameters a and b, the noise 6,% has to depend

on A and to converge to a Gaussian noise as A tends to zero. A posibility

is to use coefficients a and b depending on A and on the sample size N.
For some A, let the equation :

X(n—i—l)A = b(XnA) + a<XnA)5(n+1)A (1021)

Let X2 = X2 for nA <t < (n+ 1)A.

Suppose sﬁ Gaussian or converges with a convenient speed to a Gaussian
noise. Then if A, is a sequence tending to zero, we shall see that the process
XA converges on the Skorohod space I to the solution of (10.19). We call
this process an FARCH gaussian approximation of the diffusion with loss
laa — a|. This is true in our case when the noise is Gaussian and a(n) is
a strictly positive sequence of bounded strictly positive functions. These
situations can be extended to a sequence aa,, (7,) converging uniformly on
R to an a with the previous properties. This is a consequence of a lot of
classical results such as those given in Inge Helland [81].

We do not know if it is true for the original a with a bounded support
(r1,m2), but it is true with a(n,) with n, — 0.

A complete theory of functional autoregressive processes, with variances
depending on the state, remains to be done. We do not enter it in this paper
because we do not want to study strong approximations of the “skeleton’ of
a continuous time diffusion and so we are, in this work, out of the scope of
this interesting problem.

10.2.4 The estimate procedure with the constraints of ex-
tremes

This subsection is devoted to the estimation of the coefficients in a dis-
crete version of a bounded diffusion. In our work, for caution, we first es-
timate both the drift coefficient and diffusion coefficient by nonparametric
methods, without any reference to any specific model. Both coeflicients are
then estimated by parametric models. Parametric modeling will be neces-
sary for the simulation procedure at a later stage (see Comte and Rozenholc,
[43] for an extended bibliography).

10.2.4.1 Estimation of the drift coefficient

X1 — X = b(Xp) + a(Xn)ens €0 ~ N(0,1) (10.22)

As we already said, the estimation of the coefficients of a diffusion process
has been considered in the literature for many years, with some of the papers
being concerned by continuously sampled data.
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We estimate the drift coefficient b in the supplied model first by local
smoothing loess with b being the conditional expectation E(X,—X,—1|Xn—1).
In general, we can see that the drift b is mostly linear. The drift function
has a quite clear physical meaning as the elastic part of the basic oscilla-
tor which is the deterministic justification of the Ornstein — Uhlenbeck first
model. So we suppose that this linear drift is valid up to the boundaries).
So in our paper we consider only the linear drift b(z) = ax + 3, with a < 0
and 8 = 0.

10.2.4.2 Estimation of diffusion coefficient

The form of the diffusion coefficient a is not monotonic as the drift b,
but more complicated. For this reason, many nonparametric methods will
be first considered to give flexible estimators for a. Then from that, we will
propose a specific parametric form for a.

10.2.4.2.1 Non-parametric estimates The diffusion coefficient a, in
model can be estimated by a kernel method. If K is a kernel (Epa-
nechnikov or Gaussian are used) and h is the corresponding bandwidth, then
the conditional density f(z,y) is estimated as

N 1 Xn— Xn—1—
S K (N7) K (i)
N 1 Xn_1—

S i K ()

For its mean and variance, the summand in the numerator is multiplied
by the adequate term. The kernel estimation uses local data. At the tails
the data become asymmetric, so there is boundary bias. In our case, firstly
because of the complexity of boundary correction for kernel, and secondly
because the kernel estimator is only used to compare with other estimators
in the central part and won’t be kept, we don’t mention the boundary cor-
rection for kernel estimation.

fulz/y) = (10.23)

The estimator of a? can also be obtained by the penalized likelihood
method. We start from the density

1 1(Xp — Xn1 — b(Xn1))?
aX, ) P [_2 a*(Xp-1) }

So the penalized likelihood is given as a function of a by :

. N 1Xi*Xif *BXZ‘, 2
L) =3 [_2< SRR

_ ;10ga2(Xi_1)] —2)\/ [(az)”(x)PdlU
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with a convenient regularization parameter A\, where b is estimated by linear
least-squares : b(X,,—1) = aX,,—1 as previously. The maximization of L gives
a as a cubic spline function.

The cubic spline estimation often has less boundary bias compared with
the kernel one because of its natural boundary condition. It is constructed
to have zero second and third derivatives at the boundaries, which reduces
the bias near the boundary (see Simonoff [139]) .

For non-parametric estimates, the usual boundary corrections seem dif-
ficult to apply in estimating the volatility. Moreover, in our applications,
the variation of a is naturally strong near the boundary, and so difficult to
capture. So the problem of estimation of a near the boundaries has to be
done with the help of the theory of extremes.

10.2.4.3 Parametric estimate

The parametric model is suggested by the previous results, the one on
extremes and the non parametric estimates. This analysis suggests using a
polynomial of high degree, with the constraints fixed by extreme theory at
the boundaries to get a parametric model convenient also for simulations.

Supposing that the &; in is Gaussian, for a > 0, the theory has be
done by Kessler ([87]). It seems that the results could be extended to the case
where a has a bounded support if the bounds are fixed. The reason is that
the parameter set is defined by a? which can be chosen differentiable with
respect to the parameters and x, despite the fact that a is not lipschitzian.
Then the statistical problem is regular and the Fisher information is finite.
We do not enter into details of the asymptotic results for a(n). We can use
Kessler results for instance.

We estimate a? by maximum likelihood method with the boun-
dary constraints with given linear b. Thus we maximize :

N 7
R (X —Xi1—b(X;1))% 1 5
L(N,a%b) = —— — —loga®(X;_ 10.25
( ) ;2 3 (X, ) 5 log (Xi—1)| ( )

The constraints used at the boundaries are provided by the results in
section 2 : at first, a® equals zero at the upper and lower bounds. Then,
a? satisfies the condition of first derivative at the two bounds, for
example the first derivative of a? at the upper bound r, must be :

oy 26(72)
(@) (r2) = 77
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and a similar constraint for the lower bound.

We have then four possible constraints. The degree of polynomials is
chosen by AIC criteria. Usually an appropriated degree is 8, which allows to
give a flexible estimator satisfying these constraints. Outside the intervals
(r1,72), @? is forced to take zero-value.

In this chapter, to simulate discrete-time diffusions, the values of & and
the two bounds are given. In the next chapter, these values are directly es-
timated from the data. To estimate the upper and lower bounds, we apply
stationary usual GEV distribution for stationary X;. The upper bound (and
change the sign, for the lower bound) can be estimated from a function of
the estimators of extreme parameters of GEV distribution : ro = u — o/&.

With a2 obtained from (10.25)), we re-estimate b with the linear form by

maximizing :

N
~ 1(X; — Xim1 —b(X;21))? 1., ~
L(N,a2,b) =" _ L i1 = b(Xi1) — —loga?(X;_1)| (10.26)
2 2(Y. 2
i=2 a?(Xi-1)

The results obtained show the stability of the estimation procedure for
2
a® and b.

10.2.5 Simulation study on the properties of the model with
a bounded «a

Let us consider the model :
Xnt1 — Xn =b(Xy) + a(Xpn)en, en ~ N(0,1) (10.27)

A reasonable way for us is to study the following practical problem :
what are the statistical properties of the process in (10.22)) if @ is constrai-
ned at the boundaries using the extreme theory, and ¢ is Gaussian ?

The difference in the extreme field of a Orstein-Ulhenbeck with a constant
diffusion coefficient, and our model with the diffusion coefficient null out of
the boundaries interval will be considered through simulations.

Another interesting point is to study the discretization schema of this
kind of continuous-time model with finite inaccessible boundaries. It is com-
plicated to simulate a continuous model, then we study on a discrete-time
model whose marginal distribution has not really a bounded support (be-
cause of a Gaussian generating noise), but conditionally with data inside the
given boundary points interval ri, 9. We will consider discrete-time model
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(110.27) and simulate a large number IV of its realizations, and then consider
its sub-samples as its discrete versions.

However, when studying on the real data, as the data are provided by a
bounded continuous-time process, they have naturally a bounded support.

10.2.5.1 Study on the properties of Model ((10.27))

Our trick, as said before, is to use an a(n) which has very small values
out of the boundaries, not zero but really negligible. The question is : do
two kinds of models, where a is practically the same, but for one, a is zero
outside the support, and for the other, a is nearly zero, give practically the
same realizations ? Or if they are different, this difference is significant or
not 7 In this part, we try to answer this question through simulations.

Then for the diffusion coefficient a, these two kinds are considered. We
will study the simulations of with an a positive everywhere, but
very small outside of (11, 73), and those with an a which equals zero outside
(r1,72). The constraints about the derivatives of a? at the two bounds
are also considered.

We take, in the two cases, the same a which is rather linear in the central
part. This form of a is considered to give a coherence with a of temperature
series, whose volatility is not constant but slightly linear (see in the next
chapter).

- In model i/, take the shape parameter of extremes {; = £ = —0.2 and
the lower and upper bounds respectively r; = —6,79 = 7. a® is taken as
a polynomial of degree 8 with four constraints at the boundary which are

mentioned in Section [10.2.4.2|: a?(z) = 0 when = & (r1,72) and a? satisfies
the condition (10.16)).

- Model ii/ is similar as model i/ except for a equals 104 for z > ro—107°
or for x < 7141075 and the first derivatives of a?(r1+107%) and a?(ro—1079)
satisfying the condition (|10.16]).

These a are shown in figure we cannot distinguish these two models .
a in Model ii/ is in fact positive everywhere.

We always take a linear drift coefficient. Here b(z) = —0.2z. When a is
negligible outside the boundaries, model ii/ can be replaced by model i/.
Through the simulation, we want to verify if the process from these
two kinds of a are not different in the extreme field.
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FIGURE 10.1 — Models of diffusion coefficient . The vertical lines are the 1%
and 99% empirical quantiles

Simulate 100 samples of NV values from model for each model of
a with N varies : N = 5000, 10000, 50000.We will study the difference in
the tail behaviour through the average values of three parameters of GEV
model, the upper bound and the number d of values which exceed initial ro
of the samples of simulation following i/, ii/ and with the initial parameters.
The extreme parameters are estimated using blocks of size 32. We consider
only the right tail, the same conclusion hold for the left tail.
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Initial pa- | N Model i/ Model ii/
rameters
£€=-0.2 | 5000 E(fi) = 2.28 E(ji) = 2.26
Ty = E(6) =1.24 E(6) =1.237

E(€)=—-0.156 | E(f)=—0.152
E(fy) =12 E(fy) = 11.43
E(d) = 024| E(d) = 024
(4.8.1073%) (4.8.1072%)
10000 E(fi) = 2.286 E(ji) = 2.274
E(6) = 1.243 E(6) = 1.247
E(€)=—-0.159 | E(£) = —0.154
E(fy) =10.55 | E(5) = 10.73
E(d) = 041 | E(d) = 053
(4.1.1073%) (5.3.1072%)
50000 E(j1) = 2.27 E(j) = 2.27
E(6) =1.237 E(6) = 1.236
E(€)=—-0.153 | E(£) =-0.15
E(fy) = 1042 | E(f) = 10.55
E(d) = 182|EWd) = 21
(3.6.1073%) (4.2.1073%)

The table shows that the tail behaviors of the simulated samples from
model i/ and ii/ of a are similar. These results show that we can use model
i/ where a = 0 outside the boundary in the place of model ii/.

The simulations from two models are nearly the same for extremes. It
is not surprising that, for a long simulated sample, some simulated values
overpass the higher upper bound, which is estimated from the GEV distri-
bution i — 6 /€ .

Now we will check the property of the unique solution of model
with model i/ of a. We simulate a large sample S of 1 000 000 values from
this model. We then re-estimate a and b parametrically following the para-
metric methods described in Section . If this model has an unique
solution, normally we should obtain after this estimation, a and b identical
with initial a and b.

And equally, the final residuals é; must be a normal distribution of zero
mean and unit variance.

Effectively, b is identical to b, @ is identical to a in the interval (q1,999)
where ¢q qg9 are the 1st percentile and 99th percentile of the sample S. Ho-
wever outside of this quantile interval, & is different because of the difference
of estimated extreme parameters with the initial parameters. &; is accepted
as the Gaussian noise following the Kolmogorov test (p-value = 0.87).
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Now, we want to see if the difference between these estimators, with
initial parameters, can give a practical difference in simulations, or not. To
study this fact, from &; and parametric estimators a and b , we build a
sample of bootstrap B of 1 000 000 values. Then, the statistical properties
of S and B will be compared.

Two samples have similar densities when we estimate them by the kernel
method. The estimators of extreme parameters are also considered :

Simulations | Bootstrap
a1 | 1.97 1.96
a1 | 0.71 0.71
& | -0.21 -0.24
71 | -5.30 -4.85
fo | 2.27 2.26
do | 1.25 1.24
& | -0.15 -0.14
72 | 10.30 11.42

There is not a significant difference in the shape parameters and the
bounds.

After this study, we can see that practically there exists a unique solu-
tion for this kind of models, with a canceled outside the support. So it is
reasonable to apply it in modeling the temperature series in the next chapter.

10.2.5.2 Difference in the extreme field with an Orstein-Ulhenbeck
model

We rewrite Model (10.27) :
Xnt1 — Xpn =0(X,) + a(Xn)en, en ~ N(0,1)

Here we take b with a linear form : b(x) = az with a < 0. a is firstly
considered as a constant a(z) = ac which gives Model 1, and then as a
constant ¢ = ac in the centre but goes down to zero at the boundaries,
which gives Model 2. Two boundaries are taken as r1 = —5,r9 = 5 . One
example of a in Model 2 is illustrated in figure [11.5

In order to take into account four boundary constraints , a° is estimated
by a polynomial of degree 8. Then a gives not exactly but nearly a constant
in the centre.

2
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Diffusion coefficient a

0.6

F1GURE 10.2 — Diffusion coefficient of Model 2

Now we simulate 50 samples of size N=10000 from these two models,
then we consider their empirical density and extreme parameters from the
GEV model with different values of a and ac.

Estimate the density functions of these two simulation samples by the
kernel method, we obtain two different curves, which are shown in figure
1L0. 5l

More concretely, we have the empirically statistical characteristics from
these simulated samples in Table

Conclusion

Some interesting conclusion can be drawn from these results. When «
is negative and near to zero, which means that the correlation between two
consecutive values is strong, and that we are near an explosive situation,
or at least near a transient process, the difference in the extreme field of
Model 2 with respect to Model 1 is clearer. And this difference is proportio-
nal with the value of ac. For instance, with the maximum value of ac (1.0),
the simulation sample of Model 2 is more bounded, with smaller variance,
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FI1GURE 10.3 — Empirical density functions of simulation samples from Model
1 and Model 2
Model 1 Model 2

Mean Variance Min Max | Mean Variance Min Max
= —0.15,ac=0.2 | -0.001 0.144 -1.428 1.440 | -0.001 0.144 -1.419 1.453
= —0.15,ac=0.5 | -0.002 0.902 -3.500 3.560 | 0.006 0.901 -3.555  3.610
= —0.15,ac=0.8 | -0.010 2.300 -5.755  6.835 | -0.008 2.270 -5.100 5.157
a = —0.15,ac=1.0 | -0.004 3.580 -7.190 7.013 | 0.002 3.452 -5.853 5.873
a = —0.3,ac=0.2 | 0.000 0.078 -1.085 1.061 | 0.002 0.079 -1.073 1.087
a = —0.3,ac=0.5 | -0.001 0.490 -2.719 2.705 | -0.002 0.490 -2.705 2.686
a = —0.3,ac=0.8 | 0.003 1.256 -4.272  4.346 | -0.009 1.248 -4.343  4.262
a = —0.3,ac=1.0 | -0.002 1.961 -5.520 5.415 | 0.006 1.938 -5.117 5.117

TABLE 10.1 — Comparison the statistical characteristics of simulation
samples from two models
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higher minimum and smaller maximum. The estimated values of the shape
parameter of £ in Model 2 is evidently more negative than those in Model
1.

However in the case where o approaches -1, which means that the corre-
lation between two consecutive values is small, the difference in the extreme
field of the two models is negligible. This remark can be seen in values of
the variance, the local extrema (minimum and maximum).

When the value of ac is small, which corresponds to a small volatility,
the simulations are then automatically more bounded.

In summary, when the correlations between the observations are strong,
a model with a constant volatility gives a heavier tail. So in this case, the
constraints which reduce the value of a near the boundaries are necessary.
For the temperature series, the correlation between sequential values are
rather strong. Then the constraints in the boundary for the diffusion coeffi-
cient a? is advised to obtain a better fit to extreme events.

10.2.5.3 Discretization properties of Model (10.27) with bounded
a

In this section, we will study the properties on the central field and ex-
treme events from the discretization of diffusion process. We will address
the influence of the size mesh working with simulations. The different sub
sequences are extracted from the higher frequency sequence. The size of the
initial sequence must be very large.

We will study the changes in the behaviour of the central and extreme
parameters with the mesh of discretization for the bounded support diffu-
sion coefficient a in . The diffusion coefficient in this case satisfies the
constraints at the boundaries. We will consider two models of a, constant
or slightly linear in the center. Different models for b and also AR(1)and
AR(3) processes are compared .

Following the theory in Section the marginal law and the shape

parameters must be invariant with the discretization.

It is very difficult to simulate the data from a continuous-time diffusion
with such a variance term. So we consider only a sample with a very large
size in order that a high-frequency data can be considered as an approach
of a continuous-time data. First, simulate a sample X of size N with N =
100000, then we consider its extracted subsequences X corresponding to
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different mesh of discretization A, A = 1,2,...,10. The density functions
estimated from these sub-sequences can be compared with the theoretical
density function of the continuous-time diffusion process :

dX; = b(Xt_l) + a(Xt_l)th (1028)
whose form is : .
v(z) = [ (10.29)
| a2(e)e”

which can be calculated when the functions a and b are known.

The different moments can be calculated based on the formula (10.29)).

10.2.5.4 Example 1

Here, an a constant in the center and first-order autoregressive AR(1)
for b are considered. We take o = —0.15, ac = 1, the lower and upper bounds
r1 = —5, r9 = 5. As before, this a?isa polynomial of degree 8 with the boun-
dary constraints. Fix the shape parameters of the two tails & = & = —0.2.

We estimate the densities by the kernel method. Its bandwidth is chosen
by cross-validation. Figure[10.4|illustrates these estimated densities, compa-
red with the continuous-time marginal one from the expression ((10.29).

All of them are similar and approach the theoretical one.

More details about the empirical moments and the theoretical moments
are shown in Table [10.2

A Mean | Variance | Skewness | Kurtosis
Continuous | 0.000 3.137 0.000 -0.190
1 -0.008 3.449 0.015 -0.262
2 -0.006 3.455 0.011 -0.270
3 -0.012 3.445 0.012 -0.260
4 -0.009 3.457 0.011 -0.281
5 -0.006 3.451 0.012 -0.274
6 -0.016 3.481 0.016 -0.286
7 -0.011 3.492 -0.001 -0.251
8 -0.003 3.400 0.001 -0.267
9 -0.008 3.408 0.017 -0.269
10 -0.009 3.445 0.027 -0.297

TABLE 10.2 — The empirical moments of discretized samples of example 1



10.2 Theoretical results on continuous-time diffusions and their
discrete time approximations 225

Density functions

(=} —— delta=1
[N —
o
—— delta= 2
—— delta= 3
L
-
< —— delta= 4
delta= 5
o
—
oS —— delta= 6
delta= 7
3_ — delta= 8
o
_ delta%
s | —— dg%: 10
o

FiGUuRrRE 10.4 — Marginal law with the discretization for example 1. The
theoretical density function is the black bold line

The tail behaviour will be considered through the values of the shape
parameters in stationary GEV models applying to block maxima. These pa-
rameters (in the left and right tails) are estimated from all discretized sub-
sequences of the series X. We take the block size of 40, then for A = 10, the
corresponding sub-series still have 250 values to apply the extreme theory.

10.2.5.5 Example 2

Here, linear a in the center and first-order autoregressive AR(1) for b
are considered. b = axr with o« = —0.15. The values of bounds and shape
parameters are the same as in example 1 : ry = -5, ro=b and &; = & = —0.2.
The same extreme parameters are taken on purpose to compare the tail be-
haviours of two examples. a is always a polynomial of degree 8 with the
constraints (see Figure . The same procedure than in example 1 is rea-
lized. We also estimate the scale parameters in both the right and left tails.
The results are in Figure Table and Figure [10.§
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Shape parameters of the right tail with different delta

-0.20

-0.25

Xl
-0.30
\
\
1
\\
1]
» 0

.........

-0.35

Lo PR e
[ p— - DR
< - R
- =3
= o =TT - / \ /
= S L /o o .
S TP e e - - - pf—'--;—/—ﬂe-ﬁ-o- ________ P P
T - / .- .-
._.—-—"". ° - B R T = -
8 | e -7
S -
T T T T T
2 4 6 8 10
delta

FIGURE 10.5 — Behaviour of shape parameters with the discretization for
example 1. Upper panel : the right tail. Lower panel : the left tail. The
dashed horizontal line is the average value of ¢’s.(The dotted dashed lines
are the 90% confidence interval

10.2.6 Example 3

Here the same a as in example 2 and third-order autoregressive AR(3)
for b are considered.

3
Xe=> 0: X+ a(Xi1)e (10.30)
=1

For instance, we take for the coefficients 61, 05, 03 the values 0.85, -0.4,
0.3, respectively. This model is not a usual discretized approximation of the
continuous-time diffusion process . In modeling the temperature, it is
usually more suitable to adjust the temperature by an autoregressive model
with an order higher than one (three for daily mean temperature). We then
consider the discretization characteristics of . The same procedure
will be explored with the aim to determine if the discretization properties of
the diffusion process are still valuable. In this case, we don’t have an explicit
formula to calculate the theoretical statistical elements because there is not
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FI1GURE 10.6 — Diffusion coefficient of example 2
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Ficure 10.7 — Marginal law with the discretization for example 2. The
theoretical density is the black bold line.

an Euler scheme to connect the autoregressive model with a continuous-time
diffusion. The results of this discretization can be found in Figure Table

and Figure [10.10
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A Mean | Variance | Skewness | Kurtosis

Continuous | 0.000 2.500 0.640 0.300
1 -0.019 2.871 0.582 0.127
2 -0.019 2.866 0.581 0.129
3 -0.021 2.861 0.576 0.116
4 -0.016 2.863 0.588 0.123
5 -0.020 2.865 0.594 0.165
6 -0.017 2.872 0.584 0.138
7 -0.025 2.836 0.563 0.105
8 -0.025 2.849 0.603 0.182
9 -0.019 2.870 0.564 0.068
10 -0.030 2.846 0.612 0.202

TABLE 10.3 — The empirical moments of discretized samples of example 2

A | Mean | Variance | Skewness | Kurtosis
1 | 0.0159 1.802 0.499 0.328
2 | 0.0168 1.809 0.496 0.311
3 | 0.014 1.804 0.491 0.363
4 | 0.0217 1.806 0.470 0.210
5 | 0.008 1.780 0.508 0.368
6 | 0.021 1.826 0.484 0.340
7 | 0.009 1.821 0.508 0.301
8 | 0.014 1.809 0.479 0.174
9 | 0.012 1.795 0.484 0.354
10 | -0.006 1.760 0.526 0.438

TABLE 10.4 — The empirical moments of discretized samples of example 3

10.2.6.1 Discussion

The marginal densities do not change in their central part with the dis-
cretization of different kinds of models : first-order autoregressive models
AR(1), longer memory process (AR(3)) for b, and a constant or linear in
the central part. Moreover, in examples 1 and 2, where the models are a dis-
crete version of the continuous-time diffusion process by the Euler scheme,
the estimated density functions are really close to the theoretical density
function. Usually the theoretical density has a more bounded support than
the discretized versions.

The estimators of the shape parameters in the different extracted sub-
sequences are close to one another in both tails. They vary around their
average value with a small variance (nearly zero).
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FIGURE 10.8 — Behaviour of shape parameters with the discretization for
example 2. Upper panel : the right tail. Lower panel : the left tail. The
horizontal line is the average value of these £. The dotted dashed lines are
the 90% confidence interval

The tail behaviour not only depends on the boundary constraints, but
also on conditional mean b and conditional variance a®. As we have seen,
in all three examples, the boundary constraints are the same, however each
example gives different values of shape parameters. In the first example,
when a is symmetric, the behaviour of both tails is the same. On the other
hand, in other examples, the two tails are different due to the asymmetry
of a. Both examples, 2 and 3, have the same a, but different conditional
mean (AR(1) and AR(3)), and this also results in a difference in the tail
behaviour. Example 3 gives heavier tails than example 2.

We can insist on this (almost) trivial conclusion : If one wants to have a
good estimation in the tails, he must have a good estimation in the central

field.

In the next chapter, we will apply a discrete-time diffusion, exactly
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FARCH model (functional autoregressive model with heteroscedastic va-
riance), on the temperature series. A complete estimation for this kind of
model, where the seasonality and the boundedness of the data are taken into
account, will be described in detail. This chapter prepared theoretical bases

for the next chapter.
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11.1 Introduction

When working on temperature time series, we separate a determinis-
tic and a random component. The deterministic component can be a trend
which presents a long-term evolution, or a periodic function, or a compo-
sition of these. The random component will be named from now on “the
reduced series”, after having been normalized by the standard deviation. It
is a random process with zero mean, unit variance and has some stationary
properties, but in the extended sense. The random component reflects the
intrinsic variability of the observed phenomenon around his trend and sea-
sonality, and perhaps errors of measurement.

Starting with the purpose of building models for the temperatures, the
general method is, as often, to find a white noise who generates the reduced
series. The point is that when we have such a “noise”, we have extracted all
the useful information on the mechanism generating the temperature. The
mechanism is here a purely statistical relation without physical content.

Air temperatures are measured only at discrete times, which results in
discrete time series. There are a lot of theories on continuous time series,
that have not an easy translation in terms of discrete ones. Therefore, the
model for the reduced series must be chosen with care and its goodness-of-fit
needs to be checked through simulations.

As previously, we consider temperature series as a realization of additive
process with a heteroscedastic variance :

Xy = m(t) + S(t) + s(t)Sy () Z, (11.1)

where m(t) is a slowly changing function, called “trend”, S(t) and S%(t) are
seasonal components in mean and variance with chosen period length. s?
is the trend in variance and Z; is the reduced series of zero mean and unit
variance.

The first step is to understand if there remains statistically in Z some
significant characteristics which are non stationary. And the first question
is 1 is Z; “periodic stationary” 7 In this case we generalize the stationarity
by the annual (or monthly) periodicity. As discussed in Chapter 9, the sea-
sonality is difficult to completely remove by classical methods. Indeed, many
statistics of Z; are affected by periodic phenomenon, which will be shown by
the following detailed studies. There are not many efficient statistical tools
for testing the stationarity of this kind of time series even if there exists
numerous tests for the classical stationarity. They can be generalized for the
periodic stationarity when cutting the series in seasons. But these tests, in
general, are not often robust in this domain (a detailed study is Cordery and
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Nazemosadat, [24]). Another effective way to test the periodic stationarity
of Z;, which is considered in this chapter, is to model Z; by a periodic sta-
tionary model and then consider the goodness-of-fit of the model through
simulations (or bootstrap).

Let X; be an observed series of temperature. We are interested in the
following series :
1/ temperatures at a fixed hour.

2/ daily mean temperatures.
3/ daily maximum temperatures.
4/ daily minimum temperatures.

When applying the discrete-time model on these kinds of temperatures,
the lag of discretization A shows less physical senses. For the temperature
measured at a fixed hour, A still has its meaning. But the other series,
for example daily mean temperatures, where we take the average value of
all measures in a day, cannot be considered as a discrete-time temperature
series with a fixed lag A. In practice, this fact has some influences on the
choice of models.

Basic features are the dynamics of the seasonality and the non-linear
dependence on the state of the variability (often called now in other fields
“vyolatility”) and the boundedness of the temperature (as mentioned in the
previous chapter). When the dynamics of reduced temperatures is seasonal,
the conditional mean and variance need to be periodic functions for a given
value of the temperature. They depend on both the dates [t] in the year
(seasonality) and the state (temperature) Z;. Moreover, constraints on the
boundaries of the distribution of Z; have to be translated in terms of zero-
variability outside the interval of possible values of Z;. These problems are
often ignored but one must realize that they are the main source of practical
difficulties. All these points will be taken into account in our model. The
performance of the model will be seen through simulations.
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11.2 Reduced temperatures and their characteris-
tics
11.2.1 How obtain the reduced series ?

We call back the procedure to obtain the reduced series Z. We rewrite
the process as :
Xt == m(t) + S(t) + StSV(t)Zt

where t is the dates, m(t), s?(t) are respectively the trends in mean and in
variance. S(t) and S%(t) are the seasonality components in mean and in
variance.

We then obtain the reduced series by the following steps :

e cstimate the seasonality in mean by a trigonometric polynomial where
the degree p of trigonometric terms is chosen by Akaike criterion.

e estimate my by loess from the series X (t) —S(t). The estimate method
is described in Chapter 3.

e estimate the seasonal term S (t) from the squared residuals (X (t) —
S(t) — m(t))? with the same way as S(t).

e estimate the variance function s2(t) by loess from the squared residuals

x(t) - $(t) — 1)\’
Sy (t)

X () = rnlt) = $(1
S0 (1)

is the reduced series with a zero mean and a unit variance.

Z(t) = (11.2)

Remark : For the purpose of constructing simulation models for the tem-
perature, many writers modeled the trend m by a parametric model, often
by a linear trend. Following our studies, this linear trend shows its insuffi-
ciency and inadequacy. Even when a seasonally linear trend (with seasonal
coefficients) a(t)t 4+ 5(t) is used as an estimator, the trend in mean is not
completely detected. The result of this is that Z; still has a significant trend,
which can be seen by simple graphics.
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FIGURE 11.1 — Boxplot of the reduced temperature Z; for a year

11.2.2 Seasonality effect on the reduced series

The reduced series Z; is in fact not stationary in an usual way, but in an
extended sense : cyclic or periodic seasonality as we show in the following
studies.

We use the daily mean temperature series in Bordeaux during the per-
iod 1950-2008. The previous estimation procedure will be used to obtain the
reduced series Z(t).

As mentioned in Chapter 9, the seasonality has its dynamic which can-
not be easily removed. Therefore, after removing the trend and seasonality
components in the mean and the variance of the observed series X;, the sea-
sonality still remains in the reduced series Z;. This behaviour can be firstly
seen in the boxplot of Z; (Figure for a year.

The central field of Z; is reasonably modeled by an autoregressive model
of order p, AR(p), because Z; has a conditional mean linearly dependent on
its past values. For instance, an AR(p) with p = 3 (chosen by the Akaike
criterion) is generally suitable to model daily mean temperature series. An
intuitive way to see better this linear dependence is to model Z; by a gene-
ralized additive model (GAM) of the form :

Zy = f1(Zi—1) + f2(Zi—2) + f3(Zi—3) + &4 (11.3)

where f1, fa, f3 are the non-parametric regression functions, which will be
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estimated by spline method.

The linear dependence of Z; on its past values is seen in Figure [11.2

f1(Z(t—1))

Ll T 1
T y 1 T

-2 o 2 a

f2(Z(t—2))

T
-2 o 2 4

f3(Z(t—3))

LLULR T 1
T y 1 T

-2 o 2 a

FIGURE 11.2 — Estimation by GAM method (by cubic splines) of the depen-
dence of Z; on Zy_1,Zs_o, Zy_3.

Now, to consider the seasonality in the central field, we divide Z(¢) in
twelve months, then model each sub-series by an AR(3). The curves of esti-
mates for 12 months are shown in Figure |[11.3
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FIGURE 11.3 — Estimation of AR(3) for reduced temperatures of 12 months.

Figure shows that the coefficients of the AR(3) change with time.
The maximum difference between the coefficients of Z(¢ — 1) and those of
Z(t—2), that we can find, is 1.2 ; for those of Z(t—3), it is 0.08. This confirms
that the seasonality still remains in the mean of reduced temperatures. With
this characteristic, Z can be modeled by a periodic autoregressive model of
order p, PAR(p). We can write the model of Z; as follows :

p d . .

i 2jmt ;. 29wt

Zt = E 907k + E (9{,]6 COS% +9‘;,k Sin 365) thk +€t (114)
k=1 7=1

where 9.]' w1 <k <p, 1<j<d, are seasonally-varying autoregressive coef-
ficients, p is the autoregressive order, d is the number of trigonometric terms
and &; is a white noise.

For the series of daily mean temperature in Bordeaux, we get d = 3 and
p = 3. Figure illustrates the seasonality of the dynamics of the auto-
regressive coefficients. The estimated curves for the seasonal autoregressive
coeflicients are similar to the ones that we obtained when we divided the
reduced series in 12 months. This signifies that this model is reasonable.

The periodic phenomenon is also seen in the variance term. If we consi-
der the variance of each monthly series as constant, estimating it from the
squared residuals of the AR(3) of the series corresponding to this month,
this constant varies with time, which can be seen in Figure [11.5

When we consider the conditional variance as a function of Z;_1, noted
Var(Z; | Z;—1), by estimating it by cubic splines, we obtain different curves
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FIGURE 11.4 — Estimation of the coefficients of seasonal AR(3) for the re-
duced temperature Z;.
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FIGURE 11.5 — Estimation of the variance (supposed constant) from the
squared residuals of AR(3) applied for each month.

065 0710 075 080
| | | |

0.60
|

for different months (see Figure . In hotter months (May, June, July,
August), a is linear with an increasing tendency, whereas in colder months
(November, December, January, February) it has a decreasing trend. Of
course, these estimators do not have much sense near the observed or es-
timated bounds due to the lack of data. One point is important for the
application : the variance of the hot extreme events is much higher than
the variance of the cold extreme events in June and July. This difference in
these two months is much more important than in the remaining months of
the year.

Consider now the tail behaviour of Z; in every months to see if the sea-
sonality has its effect on extreme events. In each month, the series are rather
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FIGURE 11.6 — Nonparametric estimation (cubic splines) of the conditional
variance Var(Z; | Z;—1) for each month from the squared residuals of AR(3).

stationary and extreme theory can be applied. For each monthly sub-series,
we model block maxima and block minima by a stationary GEV(u,o,§).
The size of blocks here is 30. Indeed, in order to apply extreme theory, the
size of block must be sufficiently high, however in our case for this size, we
usually have only 59 values (for 59 years), which is not sufficient to build
an extreme model. Therefore, for each monthly series, we take the data of
15 days before and after this month to estimate extreme parameters for this
month. This method is used throughout the chapter.

Applying a stationary GEV model for every sub-series, we obtain suc-
cessfully estimators of the three parameters p, o, £ for these sub-series.
The curves of estimators and their 95% confidence interval (built using the
asymptotic normality of the extreme parameters) in Figure m show that
the seasonality still remains in extreme events. £ has a very weak seasonality.

This seasonality effect in extremes also needs to be taken into account
in the models.

After these preliminary studies, we can see that the periodic cycle still
remains in the reduced series. So when considering the stationarity of Zi,
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FIGURE 11.7 — Estimators of GEV extreme parameters(solid lines) for redu-
ced temperatures of 12 months and their 95% confidence intervals (dashed
lines). The left panel shows those for the left tail. The right panel shows
those for the right tail.

it is necessary of take into account its periodic characteristic. Model
for Z; is in fact called “periodic autoregressive model” (PAR) (see Franses
and Paap, [55]). Periodic time series of this kind are in fact non-stationary
models as the parameters take different values at different dates.

11.3 Modeling reduced series of air temperatures

Some discrete models have been presented in the previous chapter. In
this section, we will apply these models on different kinds of temperature
series. A detailed study of the specific characteristics of these series, using
simulations, will be given. The behaviour of the parameters in discrete-time
diffusion models is different for each series. This complete study will give us
a general look on the dynamics and different intrinsic characteristics of the
temperature.
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We consider in this section temperature series in Bordeaux. Bordeaux is
a city in the South-West of France. Its climate is of oceanic-type, characte-
rized by mild winters and hot summers. The summer rainfall is often caused
by storms heat. Bordeaux has in average 15 to 20 days in summer when
temperatures exceed 30°C. In the summer of 2003, temperatures reached
41°C and there were 12 consecutive days when the maximum reached or
exceeded 35°C.

We have applied the same method to other series, with different climate
and different length including series covering two centuries of observations.
We show here in the framework of our thesis only the detailed results of
temperatures in Bordeaux. The other temperature series give corresponding
results.

We will consider different kinds of temperatures : at a fixed hour, daily
mean, daily maximum or daily minimum in Bordeaux. After removing the
trend and seasonal components, reduced series are obtained. Our purpose is
to find a suitable model for these reduced series.

After the previous preliminary study on the characteristics of the reduced
series, we can say that a reasonable model of the temperature series is :

p . .
2jmt P 29wt
Z(t) = kZZI 0o,k + ]E:l <9] 1 CO8 S+ 05 1, sin %5) Z(t — k) + alt, Z—1)ey,
Et ~ N(O, 1)

(11.5)

where a(t, Z;—1) needs to be taken as a function of both ¢ and Z;_;. If a is ta-
ken as a parametric model, this model needs to have the seasonal coefficients.

We choose as an estimator of a? a high-order algebraic polynomial (of
degree 5) with respect to the state (the temperature) to allow flexible fits.
The function a® has seasonal coefficients and then has the following form :

jt . 2ymt k
2(t, Z—1) ZZ(@jkCOS 365 +9]ks1n 365>Zt1
k=0 j=1
In order to estimate this process, we follow the following steps :
e estimate the coefficients in AR(p) by the least squares method, by

considering a as constant. The parameters p and p; chosen are those which
give the minimum AIC value for the model.

e estimate a?(t,Z;_1) by the maximum likelihood method, supposing
g ~ N(0,1). Sometimes, due to too-much-parameters fact, this estimation
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does not converge. In this case, the least squares method can be used by
regressing on the squared residuals from the previous step. This way of es-
timate still guarantees that the noise has zero mean and unit variance.

In order to take the boundedness into account, we take zero as values
for a outside (ry, r2). Concretely, the values of the function a(t, Z;—1) for
each t are that estimated by maximum of likelihood inside the interval
((r14+m1)/2, (re +ms)/2) with r1,72, m1, mg are respectively the lower, up-
per bound and observed minimum and maximum values. Outside this inter-
val, we take (in order to simplify this step) a polynomial g(z) > 0 of degree 2
for each tail with three constraints to connect with the central previous poly-
nomial a? and to satisfy the condition at the bounds. As an example, for the
right tail, these constraints are g(r) = 0, g((r2+m2)/2) = a?(t, (rs+m2)/2)
and ¢'((r2 +mz)/2) = min((a?)'(t, (r2 +mz2)/2),0). The constraints on the
first derivative gives the continuity at the connected points and guarantee
that after these points, a will continue to decrease until the boundary. The
constraints on the first derivatives of a? at the bounds, which can be com-
puted from the theory in the case of a fixed hour temperature (see [77]) are
ignored here for they are not clearly given in the case of the mean tempera-
ture.

Let us now come back to the bounds. As we have seen before, the ex-
treme parameters are seasonal. Thus r; and r9 are also seasonal when one
calculate them from stationary GEV models (for £ < 0) by, for example,
To=[—0/ é . Then the constraints on g must be seasonal. Here we let rq,
ro and mq, mg change with months. 1,79 can be estimated by applying a
stationary GEV model to 12 sub-series corresponding to 12 months. m; and
mo are taken as the maximum and minimum values of each month. Outside
the interval (r1,72), @ equals to zero. This monthly approximation is done
only as a simplification avoiding calculations for each t.

Consider now the form of this estimator of a(t, Z;—1) (with “the boun-
dary extension”) for different dates t. We take the tenth day in each month
and draw corresponding volatility a in Figure [L1.8] The estimated curves of
a are rather similar than the nonparametric estimators of monthly sub-series
in Figure[11.6] except for regions near the boundaries. As we mentioned be-
fore, the nonparametric estimators have less sense near the boundaries due
to the lack of data.
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FIGURE 11.8 — Parametric estimators of a(t, Z;—1) for different dates ¢ with
the boundary extension.

11.3.0.1 Validation of the model and comparison with simpler
other models

The validation of the model will be considered through the residuals &;
(compared with a Gaussian noise) and the quality of the simulations. Both
central and extreme fields will be checked for the simulations.

Let us now consider, at the same time, other models : constant a or a?
is a trigonometric function f(¢) which only depends on the dates, and not
on the state Z(t — 1),

kt 2kt

P
2

t) =106 0 —— + 0 98in ——

f(t) 0+kzl<k,1cos 365 + 0 2 sin 365>

The optimal p is chosen by AIC.
Our model will be compared with these two models. As we will see,

following the criteria of the validation, our model really gives a better fit
compared with the other models.
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First consider the residuals. If the model is good, the residuals must be
a Gaussian noise NV(0,1). We will consider its normal Q-Q plot, autocorre-
lation functions of the residuals and also squared residuals. It is well-known
that usually the correlation still remains in the variance of the residuals (see
[14]). Then a Kolmogorov normality test will also be considered.

constant a

Sample Quantles
0

Sample Quentles
0

at.Zza—1>»

Saple Quantes

FIGURE 11.9 — Normal QQ-plot of the residuals for different models of a
with the 99th and 1st percentiles (dashed lines) of N'(0,1).
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The normal Q-Q plots in Figure show that the residuals of the case
of a, depending on the dates and the state, a(t, Z(t — 1)), have closer quan-
tiles with a normal distribution. Their tail quantiles approach better those
of a Gaussian noise.

Now consider the autocorrelation function of the residuals and that of
their squared values in Figure [11.10
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F1GURE 11.10 — Autocorrelation functions of the residuals and their squared
values for different a.

All the residuals are white. However, in the cases where a is a constant
or a function of dates f(t), it still clearly remains the correlation in the squa-
red residuals. For this reason, when modeling the weather, in many works,
a combination of a GARCH noise is proposed, see for example Campbell &
Diebold ([14]). In fact this solution is not at all adequate as it gives heavy
tail residuals. Our model, with a(t, Z;_1), removes effectively the correlation
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in the variance of the residuals and this correlation becomes negligible. The
most significant value of autocorrelation is 0.025 where the confidence in-
terval for the autocorrelation function of a white noise is [-0.015,0.015]. The
squared residuals in this case are nearly white.

The Kolmogorov test for the normality accepts the residuals of a(t, Z;—1)
as a normal realization with p-value=0.12. It refuses the normality of the
other residuals with p-value=0.02 for the constant a and p-value=0.03 for

a? = f(t).

Now in order to validate these models, we will simulate 100 samples of
Z; with the same length. 100 simulated samples of X; can be obtained by
adding the estimators 7 (t), S(t), and multiplying by the estimators 3(t),
Sv(t), the simulated samples of Z;.

To test the quality of the model, we have to determine whether the si-
mulation model is an accurate representation of the observations. The com-
parison is based on the following items for the series Z; and sometimes X;
and their simulated samples :

e Density function and empirical moments for whole year or a month

e Quantiles for whole year or a month

e Temperature of a fixed date

e GEV parameters for the tails

o Clusters distribution : number of clusters and length for observation larger
than threshold given by the 2% or 98% quantiles.

* Density function and empirical moments
Let us first make a very important remark for the practical interpretation
of our results. We have

Xo=m(t) + S(t) + 5,8 (1)Z,

thus the distribution of X is a mixture of that of Z with other parameters.
The mixing parameters are the location m(t) and the scale s(t). The mixing
parameters can be thought as varying very slowly. This can lead to false
interpretations. First for instance, the cold extremes come from the cold
extremes of the earlier years of the sample rather than those of the last years.
Because of the warming effect, these last extremes are “hotter”. An other
example is that bimodalities can appear at the center of the distribution as a
mixture effect , they have no physical sense, only a statistical artefact. Even
if we consider temperatures of a fixed date of each year, for example each
10th of January, we cannot obtain something “stationary”. Look at Figure
for an example, temperatures of the 10th of January varies strongly
around their mean and it seems warmer in the last years.
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FIGURE 11.11 — Temperatures of each 10th of January of X;

For this reason, to validate a model, studying the reduced series Z; gives
much more sense than the observed series X;. There is a second level of
mixing in this hierarchical model on time scales due to the seasonality. Year
distribution for Z then has no more physical sense, it is a mixture of months
distributions to be concrete, or more accurately of days distributions. Cor-
responding to mixtures, there are different levels of variability : in a day, a
month or a year and we use as a practical tool, without justification, values
of Z; in a month as homogeneous data in some procedures or graphs. So-
metimes we give graphs of the characteristics of X; and its simulations in
order to validate the model with “clearer visualizations”, but we emphasize
on the difficulties and possible mistakes in interpretation.

First we consider the density of X;, thus for a whole year, and also the
density functions of a fixed month, for example January (in winter) and
July (in summer). The plots of estimated densities and their 95% confi-
dence intervals, built from the different simulation types of X;, are given in
Figure Apparently, the confidence interval of the density of a whole
year constructed from the simulations of a(t,Z;_1) follows better the bi-
modal characteristic of X; in the center, and the tail behaviour of these
observations. Equally these simulations give a much better feature for the
seasonality of the observations. The density of observed temperature in a
month are found inside their confidence intervals, which is not the case for
the simulations of the other models.

These density functions are considered to give a general look on how
these models adjust the observed temperature X;. However, as mentioned
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FIGURE 11.12 — Density functions of X; for whole year, January, July and
their different 95% confidence interval with different simulations.

before, the density of X; does not really have a sense in this situation. In
the observed series Xy, which is not stationary, the seasonalities and the
trends are mixed. The bimodality that we saw in the center of X3, in fact,
represents the mixture of the seasons : hotter seasons and colder seasons.
In this kind of density, we can recognize the hot extremes in the right tail
and cold extremes in the left tail, but in the center, all kinds of temperature
are mixed. Even for one month of X, the trends still exist, then the density
estimation can not give a real statistical sense.

A more reasonable validation criterion is to consider the same quantities
but on Z;, which is rather stationary (periodicals stationary). The estimated
densities of Z; for whole year, January and July are shown in Figure [L1.13
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FIGURE 11.13 — Density functions of Z; for a whole year, January,
their different 95% confidence interval with different simulations.

July and

Observing Figure we see that in the whole year case, the simula-
tions with a(t, Z;—1) are a little better than the other simulations, but the
difference is difficult to see. However, for a fixed month, the simulations or
our model show their clear superiority when almost all the density values of
Z; are found in the simulated confidence intervals.

For a better appraisal, the empirical skewness (due to non- linear effects)
and kurtosis (due to large values following a large number of simulations)
of these simulations, for January and July of Z;, are shown in Table
The empirical skewness of simulations with a(t, X;_1) is closer the one of
the reduced temperature than those of simulations from two other models.
However, none of these simulations can give a good approximation for the
kurtosis.
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Time Series Skewness Kurtosis
January Zy -0.567 0.009
Sim., constant a 0.005 0.030
Sim., a®> = f(t) | -0.004 -0.019
Sim.,a(t, Z;—1) -0.363 -0.093
July Zy 0.444 -0.117
Sim., constant a -0.003 -0.006
Sim., a = f(t) -0.011 0.000
Sim.,a(t, Z;—1) 0.640 0.690

TABLE 11.1 — Comparison of the empirical skewness and kurtosis for different
kinds of simulation.

* Quantiles

Firstly, for a general view, we build from the simulated samples the dis-
tribution for quantiles of X;. Consider the distributions built from three
models for the 1%, 2%, 3%, 10%, 30%, 50%, 70%, 90%, 95%, 97%, 98% and
99% quantiles. The observed quantiles with their different distributions from
different simulations are shown in Figure [11.14] For instance, if the obser-
ved quantile is found in the simulated quantile distribution, we say that the
simulations give approximately a good quantile distribution. In this sense,
we can see that our model give better quantile distributions for the observed
quantiles. Particularly, for higher quantiles (97%, 98%, 99% ones), the ob-
served quantiles are found outside of other simulated distributions, but are
always found inside the quantile distribution built from the simulations with
a(t, Z;—1). The quantiles for the center (30%, 50% ones) are not very good,
probably due to the mixture of the seasonality and trend. However, after
all, the difference is not really high. The empirical value for these quantiles
calculated from the simulations of our model has a difference of 0.12°C with
the observed quantiles.

For more statistical sense, we consider now the quantiles in a fixed month,
for example February and July for Z;, to have a stationary distribution. The
results are shown in Figure [11.15| and [11.16, The results for our model are
clearly better, for both February and July.

* Temperature of a fixed date

We now pass on another criterion of validation. From the simulations,
we will build a distribution for the observed temperature of a fixed date.
For example, we fix ¢t as 10th of January 2000. The method to build the
distribution for its temperature value is :

- take in 100 simulated samples of reduced temperatures Z; all values cor-
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FIGURE 11.14 — Observed quantiles (red vertical lines) for whole year of X;
and their distributions built from the simulations of different models : in
black, model with constant a, in green :
model with a(t, Z;—1).

responding to the date 10th of January.
- add and multiply this sequence with the deterministic components corres-

ponding to ¢ = 10th of January 2000, r(t), S(t), 3(t), Sy (t).

models with a? = f(t), in blue,
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distributions built from the simulations of different models : in black, mo-
del with constant a, in green, model with a? = f(¢), in blue, model with
a(t, Zt—l)-

- from the obtained sequence, estimate the density function for the tempe-
rature at date ¢t by kernel method.
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We consider respectively ¢ as the tenth day of each month in 2000. The
results are shown in Figure

For this criterion, we cannot see which model performs better. In gene-
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FIGURE 11.17 — Observed temperatures X; at fixed dates (in red) and their
different distributions from different simulations : with constant a (black
lines), a? = f(t)(red lines) and a(t, Z;_1)(blue lines)
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ral, this method gives a distribution with high variance for the temperature
at a fixed date, so usually a “normal” observed value is found inside the
distribution. “Normal” here means that an usual temperature in general for
this date. However, for an abnormal temperature, three models can not give
a good distribution. For example, for 10 June 2000, the temperature is about
14°C, which is cold for a summer day, or for 10 August 2000, the tempera-
ture is about 27°, which is apparently hot for this date, these models do not
perform well. This remark is interesting because it shows a weakness of our
model.

* FExtreme parameters

The performance of the simulations in the extreme fields also needs to be
considered. If the extreme behaviour in simulations of Z; is correct, the one
in simulations of the observed series X; will be correct. As the reduced series
Z, is rather stationary, but not Xy, it is simpler to apply stationary extreme
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models on Z;. We show in Table the estimated extreme parameters
(from GEV models) of Z; and their different 95% confidence intervals from
different simulated samples. This table shows the results for the right tail.
Similar results must be obtained for the left one.

i Simulated Ip o Simulated Io 13 Simulated 1€

value| constant  f(t) a(t,Z:;—1) | value| constant f(t) a(t,Z:;—1) | value | const. f(t) a(t,Z:i—1

Jan | 1.29 | (1.38,1.63)(1.27,1.55) (1.24,1.48) 0.45 | (0.59,0.84)(0.56,0.81)(0.44,0.69) -0.29 | (-0.42, (-0.40, (-0.48,
-0.02) -0.12) -0.21)
Feb | 1.26 | (1.36,1.65)(1.30,1.51) (1.22,1.45) 0.48 | (0.59,0.79)(0.55,0.72)(0.44,0.63) -0.27 | (-0.36, (-0.33, (-0.39,
-0.08) -0.12) -0.14)
Mar | 1.41 | (1.37,1.60) (1.35,1.54) (1.29,1.54) 0.56 | (0.56,0.74)(0.53,0.70)(0.51,0.67) -0.31 | (-0.36, (-0.39, (-0.31,
-0.08) -0.01) -0.10)
Apr | 1.65 | (1.40,1.65) (1.40,1.62) (1.40,1.65) 0.57 | (0.50,0.67)(0.48,0.68)(0.56,0.72) -0.30 | (-0.34, (-0.34, (-0.30,
-0.07) -0.09) -0.06)
May | 1.68 | (1.40,1.63) (1.41,1.62) (1.42,1.68) 0.67 | (0.49,0.67)(0.52,0.68)(0.61,0.80) -0.30 | (-0.34, (-0.30, (-0.26,
-0.09) -0.03) 0.00)
Jun | 1.70 | (1.39,1.61)(1.43,1.62) (1.46,1.72) 0.71 | (0.51,0.68)(0.51,0.67)(0.65,0.86) -0.19 | (-0.34, (-0.30, (-0.19,
-0.11) -0.09) 0.05)
Jul | 1.74 | (1.38,1.61)(1.42,1.65) (1.39,1.74) 0.71 | (0.42,0.70)(0.51,0.67)(0.66,0.85) -0.20 | (-0.34, (-0.34, (-0.21,
-0.10) -0.09) 0.01)
Aug | 1.63 | (1.39,1.64) (1.39,1.62) (1.38,1.70) 0.68 | (0.52,0.68)0.51,0.68 0.62,0.83 | -0.29 | -0.32, (-0.32, (-0.31,
-0.08 -0.08) -0.07)
Sep | 1.54 | (1.40,1.63)(1.40,1.61) (1.39,1.67) 0.60 | (0.53,0.69)(0.49,0.68)(0.57,0.75) -0.20 | (-0.33, (-0.31, (-0.27,
-0.08) -0.08) -0.04)
Oct | 1.46 | (1.36,1.61) (1.40,1.68) (1.39,1.63) 0.55 | (0.49,0.66)(0.50,0.67)(0.50,0.65) -0.18 | (-0.31, (-0.35, (-0.30,
-0.09) -0.10) -0.07)
Nov | 1.45 | (1.35,1.55) (1.43,1.66) (1.40,1.57) 0.50 | (0.48,0.63)(0.52,0.67)(0.44,0.60) -0.32 | (-0.33, (-0.32, (-0.36,
-0.09) -0.09) -0.14)
Dec | 1.44 | (1.35,1.57) (1.44,1.65) (1.40,1.57) 0.44 | (0.49,0.63)(0.51,0.68)(0.43,0.60) -0.24 | (-0.32, (-0.34, (-0.38,
-0.08) -0.10) -0.15)

TABLE 11.2 — Estimated extreme parameters of Z; and their 95% confidence
intervals calculated from different simulations.

The simulations from the model with a(t, Z;—1) performs much better
than the others for the tail behaviour. The estimated extreme parameters of
Z; are mostly found in the confidence intervals for this kind of simulations.
This model shows clearly a better fit, especially for the summer and the
winter, where the estimated parameters of Z; are usually found outside the
confidence intervals of the other simulations.

* Cluster properties
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Studying on the clusters gives us a general look about the distribution
and the length of consecutive days where the temperatures are larger (smal-
ler) than a given threshold. We will consider the clusters over the threshold
of 98th percentile and 2nd percentile and the results from the simulations
will be compared with the observations (Table . This study can apply
on Z; or X;. We give here the results for X;.

Observations  Sim. const. a  Sim.a? = f(¢t) Sim. a(t, Z;_1)
2% quantile
Threshold -0.066 0.239 0.367 0.131
Length Distribution  Distribution  Distribution Distribution

1 0.419 0.499 0.492 0.485
2 0.256 0.234 0.241 0.243
3 0.100 0.113 0.113 0.118
4 0.069 0.063 0.063 0.062
5 0.044 0.035 0.036 0.034
6 0.050 0.019 0.021 0.021
7 0.025 0.014 0.01 0.014
8 0.000 0.008 0.008 0.009
9 0.006 0.004 0.005 0.005

10 0.006 0.003 0.004 0.003
Rate of declust. 0.371 0.461 0.461 0.457

98% quantile
Threshold 24.332 23.850 23.872 24.132
Length Distribution  Distribution  Distribution Distribution

1 0.512 0.483 0.488 0.483
2 0.244 0.262 0.263 0.243
3 0.107 0.123 0.120 0.119
4 0.054 0.060 0.057 0.060
5 0.029 0.031 0.030 0.037
6 0.029 0.017 0.016 0.021
7 0.005 0.011 0.012 0.014
8 0.005 0.005 0.006 0.008
9 0.000 0.003 0.004 0.006
10 0.005 0.002 0.002 0.004
Rate of declust. 0.477 0.481 0.483 0.455

TABLE 11.3 — The cluster properties of X; and its different simulations

All three models give correct fits for the clusters. The difference between
these models cannot be seen.
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Now the last work is to check if the estimation procedure for the para-
meters in our model is robust. We will use the same estimation method for
each sample of simulations and then, build the 95% confidence intervals for
the estimated parameters from the observations.

The estimators of the deterministic functions m, §, S , Sy with their confi-

dence intervals are found in Figure [11.18 The simulations give good confi-
dence intervals for these estimators.

The seasonality in mean S(t) The mean function m(t)
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FIGURE 11.18 — Estimators of trends and seasonalities with their confidence
intervals built from the simulations.

With the same rule, we construct the confidence intervals for the coef-
ficients of AR(3) (functions of time) and for a(¢, Z;—1) (with extension in
the boundaries) with different fixed ¢, for example the twentieth day of the
January, Mars, August and November (Figure [L1.19|and |11.20)).

These results show that the estimation procedure for our model is robust.

Conclusion
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FIGURE 11.19 — Estimators of seasonal coefficients of AR(3) with their confi-
dence intervals built from the simulations.
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FIGURE 11.20 — Estimators of a(t, Z;_1) at fixed date t with their confidence
intervals built from the simulations

The very interesting results obtained from the model with a(t, Z;_1),
which takes into account both the dates and the state, show the adequacy
of this model for the temperature. It shows its quality in both the central
and extreme fields, dealing with the other models of the diffusion coefficient
a. The good performance of this model means that the seasonality in the
reduced temperature is really significant and absolutely needs to be taken
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into account in simulation models.

The volatility a is not constant but linear, and its sign changes with
different seasons. The considered constraints in the boundaries for a give
good results in extremes. These are necessary conditions when working with
bounded data, especially when the innovation is taken as Gaussian.

The estimation procedure for the model is robust and stable.

This study confirms the goodness-of-fit of our model. Now we will use
it to model different kinds of temperature in Bordeaux and consider the
goodness-of-fit of the model dealing with different temperatures.

From now on, we will keep these following criteria for the validation of
a model :

e The normality and the whiteness of the residuals, the whiteness of the
squared residuals.

e Density functions for a fixed month of Z; (we take here 3 months with
different levels of temperatures : January, July, September).

e Quantiles of Z; for fixed months.
e GEV extreme parameters of Z; for 12 months.

When the model gives a good fit for Z;, normally it should also give
a good fit for X; when the deterministic functions (trend, seasonality) are
correctly estimated.

11.3.0.2 Modeling on daily fixed-hour temperatures

The series, at our disposal, for which the intervals between the obser-
vations are the shortest, are temperature series measured each three hours
(at Oh, 3h,..., 21h). Their global dynamic is really complicated : they have
two evident seasonalities, daily cycle and annual cycle, which need to be
removed. Of course with more data one can hope and have to get a better
model. But it seems very difficult to treat all the problems we consider in
this thesis into the framework of this very heavy model.

Nevertheless, preliminary studies show that except for heavy computa-
tion time, our method is also convenient with these kinds of biperiodic series.
The daily temperature at one fixed hour is simpler and however could be
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considered as one discrete-time temperature series with one-day fixed lag.

Each temperature series of a ‘fixed hour’ type contains in itself all the
characteristics of general temperatures : strong seasonality, trends in mean
and in variance, as well as correlations between the observations. We show
in figure the curves of daily average temperatures of each fixed-hour
temperature series. These series are taken from average values of fixed-hour
temperatures at the same dates of every years.

Fixed—hour temperatures
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|

20

15

10

T T T T
0 100 200 300
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FI1GURE 11.21 — Fixed-hour temperatures

We will not make a study of all these eight series, but only some of
them, for example three temperature series of Oh, 12h and 18h. Normally,
at Oh it is colder, and at 12h, it is hotter. Thus these series have probably
different characteristics. It is interesting to see if our model can adjust all
these different categories or if it shows some weaknesses to some specific
characteristics.

The estimation procedure is the same as before. To validate the models,
we simulate again 100 samples for each reduced series of these fixed-hour
temperatures. The residuals and different statistical elements of the simula-
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tions will be considered.
* The residuals

All the obtained residuals are white, and the correlation in their squared
values are negligible. The quantiles of the residuals of all series comparing
with those of a normal distribution N'(0,1) are correct.

The Kolmogorov normality test accept the normality for these three re-
siduals. The normality of the residuals can be accepted following p-values
of this test, respectively 0.34, 0.05 and 0.07 for the series of Oh, 12h and 18h.

We consider now the performance of the simulations of these series.
* Density functions

We build 95% confidence intervals for the density function for a month
(January, July or September)of each series from simulated samples. The
results are illustrated in Figure [11.22

The simulations give in general good intervals for the density functions
of Z; in a fixed month. Except for July of Z; of 18h series, the data in this
case is not always found in the interval of the simulations. The simulations
have difficulties to catch of the asymmetry of the data.

* Quantiles

We build now the 95% confidence intervals for the quantiles. We take
the 1%, 2%, 30%, 50%, 60%, 80%, 98% and 99% quantiles . The quantiles of
Z,; for January, July, September and their confidence intervals for different
fixed-hour temperature series are respectively presented in Table

We marked in bold where the observed quantile is outside the confi-
dence interval. The results are good almost everywhere. For January, the
lower quantiles are really good, but the higher quantiles (98% ,99% ones)
are not good, which is less important for a cold month. The results of July
and September are better.

* Extreme parameters

We repeat the same work as in the previous section to check the quality
of the extreme field in the simulations. Table [[1.5] shows the results for the
right tail, while extreme parameters for the left tail are in Table

Discussion
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FIGURE 11.22 — Density functions for fixed months of Z; and their 95%
confidence interval from simulations (dashed lines) of fixed-hour temperature
series

The model for fixed-hour temperatures is correct for both the distribu-
tions and the quantiles. For extremes, it seems that the simulations perform
better for the left tail than the right one. Sometimes, the extreme parame-
ters are found outside the confidence intervals of simulations. However, this
comparison is relative, not exact. The standard deviations for the estimators
of 1 and & are rather high about 0.05 in average for p and &, for o it is about
0.04 in average.

11.3.1 Modeling on daily mean, maximum and minimum
temperatures

We now apply Model (11.5) on the daily mean (Tmean), maximum
(Tmax) and minimum temperatures (Tmin). The validation of the model is
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January 1% 2% 30% 50%

Oh 2.49([2.88,2.17]) | -2.15([-2.48,1.93]) | -0.50(]-0.61,-0.38]) | 0.09([-0.06,0.16])
12h 2.7([-2.89,-2.24]) | -2.25([-2.51,-1.94]) | -0.44(]-0.57,-0.32]) | 0.17([-0.01,0.21])
18h 2.72(]-3.06,-2.27)) | -2.28([-2.57.-1.96]) | -0.39([-0.63,-0.32]) | 0.13([-0.07,0.18))

January 60% 80% 98% 99%

Oh 0.36([0.17,0.43]) | 0.89([0.73,1.00]) | 1.67(]1.67,1.95]) | 1.78([1.88,2.17])
12h 0.41 ([0.23,0.42)) | 0.84([0.76,0.96]) | 1.62([1.67,1.91]) | 1.80([1.83,2.11])
18h 0.38 ([0.17,0.42])) | 0.86([0.71,0.93])) | 1.59([1.69,2.00]) | 1.80([1.90,2.23])
July 1% 2% 30% 50%

Oh 2.07([-2.28,1.97]) | -L.02([2.03,-L.78]) | -0.57([-0.63,-0.44]) | -0.04([-0.14,0.07])
12h 22,00 ([-2.1,-1.81]) | -1.78([-1.88,-1.62]) | -0.60(]-0.65,-0.5]) | -0.1([-0.18,0.00])
18h | -1.83 ([-2.02,-1.77]) | -1.64([-1.81,-1.63]) | -0.62([-0.65,-0.49)) | -0.14([-0.19,-0.01])
July 60% 80% 98% 99%

Oh 0.22([0.12,0.32]) | 0.81([0.72,0.94]) | 2.34([1.93,2.37]) | 2.58(12.17,2.69])
12h 0.15 [0.05,0.27])) | 0.89([0.64,0.93]) | 2.20([2.09,2.64]) | 2.40(] 2.44,3.06])
18h 0.15([0.05,0.25]) | 0.91([0.63,0.91)) | 2.18([2.13,2.64]) | 2.38(]2.46,3.15])

September 1% 2% 30% 50%

O 2.14([-2.46,2.13)) | -1.99([-2.16,-1.87]) | -0.59([-0.61,-0.44]) | -0.04(]-0.10,0.09])
12h 22.15(]-2.18,-1.89]) | -1.93([-1.96,-1.69]) | -0.54 (]-0.64,-0.46]) | -0.08([-0.19,0.03])
18h 1.98([-2.04,-1.78]) | -1.77(]-1.86,-1.61]) | -0.59 ([-0.66,-0.49]) | -0.05(]-0.21,0.00])

September 60% 80% 98% 99%

Oh 0.26 ([0.17,0.35]) | 0.91([0.77,0.95]) | 2.01([1.92,2.18]) | 2.27(12.14,2.50))
12h 0.19([0.05,0.28]) | 0.88([0.65,0.92]) | 2.16(]2.00,2.63])) | 2.38(]2.43,3.13))
18h 0.20([0.04,0.26]) | 0.87([0.66,0.94]) | 2.24([2.10,2.64]) | 2.46([2.46,3.21])

TABLE 11.4 — Quantiles of Z; for fixed months and their 95% confidence
intervals of fixed-hour temperatures

as follows.

*x The residuals

The residuals are white and nearly white for their squared values. Their
quantiles are close to those of a normal distribution between 1st and 99th
percentiles. This can be seen from Figure [11.23

The normality of these residuals can be accepted by a Kolmogorov test
with p-values 0.11, 0.05, 0.03 respectively for Tmean, Tmax and Tmin .

We simulate 100 samples for each series. The performance of the models
will be studied through simulations.

* Density functions

Figure shows the confidence intervals of the densities from the si-
mulation samples of the temperature series Tmean, Tmax and Tmin for

fixed months.
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Normal Q—Q plot

Sample Quantiles

Theoritical Quantiles

F1GURE 11.23 — Normal Q-Q plot of the residuals when modeling Tmean,
Tmax and Tmin. The vertical lines are the 1% and 99% quantiles of N'(0,1)
distribution.

* Quantiles

The quantiles of fixed months are estimated with their 95% confidence

intervals (Table [L1.7)).

The case where the quantiles of reduced temperatures are outside their
confidence intervals are in bold. The simulations give in general good confi-
dence intervals. The model of Tmin is not really good in the higher quantiles.

* Fxtreme parameters
Extreme parameters of GEV models will be calculated from the sub-
series of each months from the reduced series Z; respectively for Tmax,

Tmean, Tmin. Their confidence intervals for both left and right tails are
built from the simulations, shown in Table and

11.4 Conclusion

After these studies, we find out some very interesting phenomena :
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FIGURE 11.24 — Density functions of Tmean, Tmax, Tmin for January,
July, September of reduced temperatures and their confidence intervals from
simulated samples

- It is obvious that all the statistical elements of reduced temperatures
are affected by the seasonality (mean, variance of the central field and also
extreme events).

- Especially, the volatility a depends both on the dates and the state.
Particularly, in summer, when it is hot, a has an increasing trend with the
temperatures, whereas in winter, when it is cold, a has a tendency to decrease
with the temperatures. Thus to have a good modeling for the temperature,
this characteristic of a needs to be taken into account.

- The temperature is bounded. Here we proposed an estimation of a?
using seasonal constraints on the finite inaccessible boundaries of the tem-
perature.

- All these points show the complicated features of the temperature. Our
model takes all of them into account which give a rather complete model.
The closeness of the residuals to a normal distribution and the validation of
the models by simulations show the good performance of the model.

- The model give a good, although not yet complete, representation both
for the central and extreme fields. The model catches of rather well the sea-
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sonality in reduced series of different kinds of temperatures. Of course, some
weaknesses remain in our model : sometimes it cannot completely catch of
some complicated characteristics of the temperature such as the asymmetry
of the data and some exceptional temperature values. The lack of theories
about the volatility near the boundaries force us to find a way to complete
it. And this way is maybe not sufficient. More studies are needed to obtain
a better “connection” for this conditional variance.

- Our model is complete because it takes into account both the sea-
sonality of all statistical factors and the boundedness of the temperature.
However, it is also complex with many parameters. Therefore, it becomes
numerically heavy for the simulation. A future work is to find a model which
keeps the same spirit than this model but contains less parameters.
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Months Oh 12h 18h
January
w(l ) 1.40(1.40,1.62) 1.33(1.31,1.51) 1.30(1.23,1.45)
o(Io) 0.38(0.48,0.70) 0.49(0.48,0.75) 0.45(0.51,0.77)
£(I1¢) -0.27(-0.50,-0.21) -0.26(-0.36,-0.09) -0.26(-0.327-0.06)
February
(I ) 1.37(1.42,1.62) 1.33(1.30,1.52) 1.37(1.25,1.48)
o(Io) 0.45(0.45,0.63) 0.54(0.50,0.69) 0.53(0.53,0.72)
£(1¢) -0.33(-0.39,-0.18) -0.19(-0.27,0.05) -0.29(-0.27,-0.02)
March
(I ) 1.51(1.48,1.68) 1.53(1.41,1.64) 1.58(1.40,1.66)
o(lo) 0.43(0.43,0.61) 0.64(0.56,0.78) 0.60(0.60,0.78)
£(1¢) -0.24(-0.36,-0.12) | -0.22(-0.19,0.10) | -0.35()-0.28,-0.05
April
w(Iw) 1.66(1.53,1.72) 1.78(1.51,1.78) 1.81(1.53,1.83)
o(lo) 0.52(0.44,0.60) 0.56(0.59,0.78) 0.55(0.60,0.80)
£(1¢) -0.30(-0.34,-0.10) -0.23(-0.23,0.05) -0.35(-0.30,-0.04)
May
w(Iw) 1.69(1.58,1.76) 1.77(1.57,1.84) 1.78(1.57,1.84)
o(lo) 0.61(0.48,0.63) 0.63(0.61,0.78) 0.60(0.60,0.80)
£(1¢) -0.31(-0.32,-0.08) | -0.30(-0.24,-0.01) | -0.30(-0.22,0.05)
June
w(Iw) 1.74(1.58,1.78) 1.75(1.56,1.86) 1.75(1.55,1.82)
o(lo) 0.67(0.51,0.68) 0.64(0.62,0.82) 0.60(0.60,0.80)
£(1¢) -0.27(-0.30,-0.06) | -0.33(-0.22,0.03) -0.25(-0.25,0.00)
July
w(Iw) 1.76(1.53,1.78) 1.80(1.56,1.87) 1.81(1.56,1.87)
o(lo) 0.66(0.52,0.71) 0.62(0.62,0.84) 0.60(0.60,0.83)
£(1¢) -0.25(-0.32,-0.05) -0.27(-0.27,0.02) -0.25(-0.25,0.05)
August
jem 1.68(1.56,1.78) 1.73(1.54,1.87) 1.73(1.60,1.88)
o(lo) 0.61(0.52,0.66) 0.57(0.65,0.83) 0.61(0.60,0.80)
£(I¢) -0.25(-0.36,-0.05) -0.26(-0.26,0.02) -0.25(-0.24,0.03)
September
jem 1.62(1.59,1.79) 1.64(1.50,1.80) 1.65(1.52,1.81)
o(lo) 0.53(0.46,0.62) 0.60(0.60,0.80) 0.60(0.58,0.80)
£(I1¢) -0.27(-0.34,-0.07) -0.25(-0.27,0.00) -0.26(-0.27,0.00)
October
w(lw) 1.50(1.57,1.74) 1.58(1.45,1.71) 1.52(1.421.69)
a(lo) 0.48(0.45,0.58) 0.56(0.52,0.72) 0.57(0.57,0.76)
£(I1¢) -0.26(-0.38,-0.10) -0.21(-0.27,-0.04) -0.24(-0.25,-0.02)
November
w(l ) 1.52(1.48,1.69) 1.55(1.46,1.65) 1.50(1.42,1.68)
o(lo) 0.43(0.43,0.57) 0.55(0.49,0.65) 0.52(0.51,0.66)
£(I1¢) -0.32(-0.38,-0.13) -0.30(-0.30,-0.07) -0.20(-0.30,-0.06)
December
w(l ) 1.52(1.46,1.66) 1.45(1.44,1.65) 1.46(1.43,1.66)
o(lo) 0.38(0.43,0.57) 0.52(0.46,0.63) 0.46(1.48,0.65)
£(I1¢) -0.24(-0.37,-0.11) -0.26(-0.32,-0.07) -0.17(-0.28,-0.04)

TABLE 11.5 — Estimated extreme parameters of Z; in the right tail and their
95% confidence intervals for fixed-hour series.
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Months Oh 12h 18h
January
w(I) -1.46(-1.70,-1.42) -1.54(-1.63,-1.38) -1.46(-1.62,-1.32))
o(Io) 0.78(0.60,0.89) 0.76(0.63,0.84) 0.83(0.62,0.88)
£(I1¢) -0.25(-0.36,-0.06) -0.34(-0.39,-0.08) -0.26(-0.29,0.00)
February
w(Ip) -1.44(-1.71,-1.43) -1.44(-1.58,-1.34) -1.35(-1.54,-1.28)
o(Io) 0.55(0.55,0.73) 0.70(0.55,0.76) 0.74(0.57,0.74)
£(1¢) -0.01(-0.29,-0.01) -0.20(-0.32,-0.06) -0.16(-0.28,0.00)
March
(I -1.56(-1.74,-1.51) | -1.44(-1.58,-1.40) | -1.38(-1.51,-1.30)
o(lo) 0.51(0.53,0.70) 0.60(0.45,0.63) 0.61(0.4470.61)
£(1¢) -0.15(-0.30,-0.03) -0.19(-0.36,-0.10) -0.16(-0.34,-0.06)
April
w(Ip) -1.60(-1.78,-1.58) | -1.41(-1.59,-1.41) | -1.35(-1.56,-1.39)
o(lo) 0.53(0.48,0.64) 0.51(0.38,0.52) 0.47(0.38,0.50)
£(1¢) -0.27(-0.30,-0.07) -0.25(-0.33,-0.12) -0.25(-0.36,-0.12)
May
w(Iw) -1.57(-1.77,-1.56) -1.46(-1.60,-1.46) -1.40(-1.57,-1.43)
o(lo) 0.47(0.46,0.62) 0.47(0.37,0.50) 0.39(0.36,0.47)
£(1¢) -0.24(-0.34,-0.12) -0.34(-0.36,-0.12) -0.36(-0.38,-0.11)
June
w(Iw) -1.57(-1.71,-1.51) -1.48(-1.58,-1.43) -1.34(-1.55,-1.42)
o(lo) 0.44(0.44,0.58) 0.44(0.38,0.49) 0.35(0.35,0.46)
£(1¢) -0.32(-0.37,-0.16) -0.24(-0.38,-0.12) -0.17(-0.35,-0.08)
July
w(Iw) -1.57(-1.70,-1.50) -1.46(-1.57,-1.41) -1.41(-1.54,-1.41)
o(lo) 0.46(0.43,0.58) 0.42(0.35,0.48) 0.35(0.34,0.46)
£(1¢) -0.36(-0.40,-0.13) -0.21(-0.37,-0.12) -0.15(-0.36,-0.11)
August
jem -1.51(-1.69,-1.53) -1.54(-1.57,-1.41) -1.36(-1.54,-1.36)
o(lo) 0.50(0.43,0.57) 0.49(0.36,0.47) 0.37(0.33,0.47)
£(I¢) -0.35(-0.36,-0.09) -0.35(-0.34,-0.11) -0.22(-0.35,-0.10)
September
jem -1.67(-1.75,-1.54) -1.58(-1.58,-1.40) -1.47(-1.55,-1.36)
o(lo) 0.45(0.45,0.61) 0.51(0.40,0.53) 0.41(0.36,0.51)
£(I1¢) -0.28(-0.36,-0.07) -0.23(-0.33,-0.07) -0.25(-0.39,-0.12)
October
w(lw) -1.74(-1.80,-1.57) -1.54(-1.63,-1.42) -1.45(-1.56,-1.39)
a(lo) 0.50(0.50,0.66) 0.49(0.45,0.62) 0.53(0.44,0.58)
€(I€) | -0.34()-0.27,-0.06 | -0.14(-0.32,0.04) -0.20(-0.31,-0.01)
November
w(l ) -1.67(-1.75,-1.53) -1.66(-1.68,-1.47) -1.58(-1.63,-1.43)
o(lo) 0.54(0.51,0.68) 0.60(0.53,0.67) 0.58(0.49,0.68)
£(I1¢) -0.33(-0.29,-0.03) | -0.30(-0.24,0.00) -0.22(-0.24,-0.01)
December
w(l ) -1.61(-1.74,-1.49) -1.63(-1.71,-1.48) -1.52(-1.69,-1.44)
o(lo) 0.53(0.52,0.69) 0.62(0.54,0.72) 0.62(0.51,0.71)
£(I1¢) -0.23(-0.28,-0.01) -0.27(-0.25,-0.01) -0.22(-0.25,0.03)

TABLE 11.6 — Estimated extreme parameters of Z; in the right tail and their
95% confidence intervals for fixed-hour series
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January 1% 2% 30% 50%
Tmean | -2.77(1-2.83,2.22]) | -2.17(-2.49,-1.93]) | -0.45([-0.66 -0.33]) | 0.15(]-0.06 ,0.22])
Tmax | -2.73([-2.98,2.35)) | -2.16(-2.61,-2.06]) | -0.48([-0.54 -0.27]) | 0.15(] 0.00,0.20])
Tmin | -2.64([-2.99,-2.26]) | -2.14([-2.54 -2.00]) | -0.48([-0.59,-0.36]) | 0.15(]-0.07,0.17))
January 60% 80% 98% 99%
Tmean | 0.39([0.19,0.45 ) 0.89([0.77,1.00]) 1.57([1.65,1.87]) | 1.72([1.81,2.02])
Tmax 0.39([0.23,0.41]) 0.88([0.7,0.88]) 1.57([1.55,1.81)) 1.73([1.71,2.00))
Tmin 0.39(]0.18,0.42)) 0.87(]0.74,0.98]) 1.57([1.67,1.87]) | 1.73([1.82,2.06])
July 1% 2% 30% 50%
Tmean | -1.88([-2.05-1.78]) | -1.76(]-1.86,1.62]) | -0.61(]-0.66,0.48]) | -0.12(]-0.21,-0.02])
Tmax | -1.88([-2.02-1.74]) | -L77([-1.80,-1.57]) | -0.60 [-0.64,-0.50]) | -0.11 (]-0.20,-0.02])
Tmin | -1.88([-2.54,2.16]) | -1.76([-2.27,-1.96]) | -0.60 (]-0.63,-0.41]) | -0.11(]-0.08,0.13])
July 60% 80% 98% 99%
Tmean 0.12([0.02,0.23]) 0.86([0.62,0.92]) 2.26([2.07,2.82]) 2.55([2.43,3.22])
Tmax 0.13([0.02,0.24]) 0.88([0.60,0.91]) 2.95([2.17,2.66]) 2.54([2.50,3.10])
Tmin 0.14([0.19,0.38]) 0.88([0.77,0.96]) | 2.28([1.81,2.04]) | 2.55(]2.00,2.32])
September 1% 2% 30% 50%
Tmean | -2.11(]-2.34,-1.99]) | -1.91(-2.10,-1.80]) | -0.59(]-0.66,-0.42]) | -0.04(]-0.13,0.10])
Tmax | -2.10([-2.0,-1.78]) | -1.91([-1.86,-1.60]) | -0.59([-0.63,-0.46]) | -0.05([-0.18,0.01])
Tmin | -2.09([-2.59,-2.23]) | -1.86(]-2.33-1.97]) | -0.60([-0.60,-0.38]) | -0.06(]-0.06,0.16 ])
September 60% 80% 98% 99%
Tmean 0.25(]0.14,0.36]) 0.89(]0.74,0.97]) 2.15([1.89,2.44]) 2.43(]2.20,2.80])
Tmax 0.24([0.05,0.26]) 0.88([0.65,0.91]) 2.13([1.99,2.52]) 2.48([2.26,2.87])
Tmin 0.22([0.19,0.42]) 0.87([0.77,0.98]) | 2.13([1.77,2.00]) | 2.49([1.96,2.26])

TABLE 11.7 — Quantiles of the reduced temperature of Tmean, Tmax, Tmin
for fixed months and their 95% confidence intervals.
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Months Tmean Tmax Tmin
January
w(I) 1.29(1.24,1.48) 1.30(1.20,1.38) 1.44(1.33,1.54)
o(Io) 0.45(0.44,0.69) 0.51(0.42,0.71) 0.41(0.41,0.64)
£(I1¢) -0.29(-0.48,-0.21) -0.22(-0.25,-0.03) -0.36(-0.44,-0.17)
February
(I 1.26(1.22,1.45) 1.35(1.23,1.43) 1.43(1.37,1.56)
o(Io) 0.48(0.44,0.63) 0.60(0.48,0.67) 0.46(0.41,0.54)
£(1¢) -0.27(-0.39,-0.14) -0.25(-0.20,0.00) | -0.35(-0.44,-0.21
March
w(Ip) 1.41(1.29,1.54) 1.61(1.39,1.67) 1.52(1.43,1.60)
o(lo) 0.56(0.51,0.67) 0.68(0.61,0.83) 0.41(0.39,0.53)
£(1¢) -0.31(-0.31,-0.10) -0.20(-0.18,0.03) | -0.35(-0.43,-0.17)
April
w(Ip) 1.66(1.40,1.65) 1.72(1.54,1.86) 1.57(1.48,1.65)
o(lo) 0.57(0.56,0.72) 0.61(0.66,0.86) 0.46(0.39,0.51)
£(1¢) -0.30(-0.30,-0.06) | -0.33(-0.24,-0.01) | -0.34(-0.36,-0.12)
May
w(Iw) 1.68(1.42,1.68) 1.69(1.56,1.82) 1.53(1.49,1.67)
o(lo) 0.67(0.61,0.80) 0.62(0.61,0.81) 0.48(0.40,0.52)
¢(I¢) -0.30(-0.26,0.00) | -0.30(-0.26,0.02) | -0.27(-0.37,-0.13)
June
w(Iw) 1.70(1.46,1.72) 1.69(1.53,1.84) 1.59(1.49,1.67)
o(lo) 0.71(0.65,0.86) 0.65(0.65,0.83) 0.53(0.42,0.55)
£(1¢) -0.19(-0.19,0.05) -0.25(-0.25,0.18) -0.31(-0.40,-0.15)
July
w(Iw) 1.74(1.39,1.74) 1.80(1.54,1.84) 1.60(1.49,1.68)
o(lo) 0.71(0.66,0.85) 0.71(0.66,0.87) 0.62(0.43,0.56)
£(1¢) -0.20(-0.21,0.01) -0.31(-0.32,-0.05) -0.35(-0.41,-0.13)
August
jem 1.62(1.38,1.70)S 1.71(1.56,1.83) 1.50(1.50,1.69)
o(lo) 0.68(0.62,0.83) 0.60(0.60,0.80) 0.51(0.41,0.56)
£(I¢) -0.29(-0.31,-0.07) -0.24(-0.31,-0.02) -0.27(-0.36,-0.09)
September
jem 1.53(1.39,1.67) 1.62(1.50,1.80) 1.56(1.50,1.67)
o(lo) 0.60(0.57,0.75) 0.68(0.59,0.79) 0.39(0.41,0.54)
£(I1¢) -0.20(-0.27,-0.04) -0.24(-0.29,-0.03) -0.27(-0.36,-0.14)
October
w(lw) 1.46(1.36,1.58) 1.57(1.44,1.75) 1.51(1.47,1.65)
a(lo) 0.55(0.50,0.65) 0.57(0.57,0.76) 0.46(0.39,0.53)
£(I1¢) -0.18(-0.30,-0.07) -0.22(-0.30,-0.08) -0.35(-0.40,-0.16)
November
w(l ) 1.45(1.40,1.57) 1.50(1.43,1.68) 1.55(1.38,1.59)
o(lo) 0.50(0.44,0.60) 0.61(0.53,0.69) 0.47(0.42,0.54)
£(I1¢) -0.32(-0.36,-0.14) -0.31(-0.31,-0.08) -0.36(-0.38,-0.12)
December
w(l ) 1.44(1.40,1.57) 1.40(1.39,1.61) 1.52(1.37,1.56)
o(lo) 0.44(0.43,0.60) 0.56(0.49,0.64) 0.45(0.42,0.55)
£(I1¢) -0.24(-0.38,-0.15) -0.29(-0.31,-0.10) -0.34(-0.34,-0.10)

TABLE 11.8 — Estimated extreme parameters from the reduced series of
Tmean, Tmax Tmin and their 95% confidence intervals calculated from

simulations.
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Months Tmean Tmax Tmin
January
w(I) -1.41(-1.59,-1.29) -1.54(-1.60,-1.28) -1.40(-1.68,-1.42)
o(Io) 0.81(0.61,0.87) 0.84(0.65,0.94) 0.76(0.59,0.88)
£(I1¢) -0.30 (-0.38,-0.12) -0.27(-0.33,-0.05) -0.25(-0.30,-0.05)
February
(I -1.33(-1.54,-1.32) | -1.35(-1.54,-1.28) | -1.45(-1.70,-1.45)
o(Io) 0.68(0.58,0.81) 0.72(0.54,0.72) 0.60(0.57,0.79)
£(1¢) -0.13(-0.41,-0.08) -0.11(-0.24,-0.03) -0.11(-0.30,-0.05)
March
w(Ip) -1.39(-1.57,-1.34) -1.35(-1.48,-1.33) -1.57(-1.80,-1.53)
o(lo) 0.62(0.55,0.72) 0.59(0.42,0.60) 0.56(0.54,0.74)
£(1¢) -0.20(-0.39,-0.13) -0.17(-0.29,-0.04) -0.21(-0.31,-0.10)
April
w(Ip) -1.39(-1.58,-1.36) | -1.35(-1.53,-1.37) | -1.66(-1.83,-1.59)
o(lo) 0.58(0.47,0.62) 0.44(0.37,0.52) 0.55(0.52,0.70)
£(1¢) -0.30(-0.36,-0.12) -0.26(-0.36,-0.12) -0.32(-0.34,-0.09)
May
w(Iw) -1.38(-1.52,-1.34) -1.40(-1.55,-1.40) -1.70(-1.90,-1.60)
o(lo) 0.49(0.39,0.53) 0.38(0.36,0.48) 0.50(0.50,0.70)
£(1¢) -0.36(-0.38,-0.17) -0.30(-0.40,-0.14) -0.30(-0.37,-0.14)
June
w(Iw) -1.33(-1.50,-1.33) -1.37(-1.55,-1.39) -1.71(-1.81,-1.53)
o(lo) 0.42(0.39,0.42) 0.37(0.35,0.46) 0.54(0.53,0.68)
£(1¢) -0.25(-0.42,-0.19) -0.28(-0.41,-0.13) -0.35(-0.34,-0.12)
July
w(Iw) -1.31(-1.48,-1.31) -1.32(-1.53,-1.37) -1.75(-1.82,-1.56)
o(lo) 0.40(0.38,0.50) 0.34(0.34,0.46) 0.54(0.52,0.68)
£(1¢) -0.20(-0.44,-0.18) -0.16(-0.37,-0.13) -0.35(-0.38,-0.14)
August
jem -1.29(-1.50,-1.33) -1.35(-1.52,-1.35) -1.69(-1.80,-1.56)
o(lo) 0.46(0.39,0.53) 0.40(0.34,0.46) 0.52(0.52,0.69)
£(I¢) -0.27(-0.44,-0.17) -0.20(-0.38,-0.13) -0.36(-0.39,-0.12)
September
jem -1.48(-1.58,-1.36) -1.47(-1.52,-1.35) -1.75(-1.84,-1.56)
o(lo) 0.50(0.46,0.62) 0.46(0.37,0.49) 0.51(0.55,0.69)
¢(I¢€) -0.26(-0.37,-0.12) | -0.23(-0.38,-0.11) | -0.40(-0.48,-0.01)
October
w(lw) -1.51(-1.65,-1.41) -1.43(-1.57,-1.40) -1.71(-1.80,-1.56)
a(lo) 0.55(0.53,0.68) 0.53(0.45,0.60) 0.56(0.56,0.72)
£(I1¢) -0.25(-0.34,-0.12) -0.17(-0.29,-0.05) -0.32(-0.33,-0.06)
November
w(l ) -1.57(-1.72,-1.46) -1.61(-1.68,-1.44) -1.57(-1.78,-1.53)
o(lo) 0.60(0.54,0.73) 0.62(0.55,0.73) 0.55(0.59,0.77)
£(I1¢) -0.30(-0.33,-0.09) -0.24(-0.27,-0.05) -0.27(-0.29,-0.04)
December
w(l ) -1.54(-1.67,-1.44) -1.62(-1.76,-1.44) -1.56(-1.75,-1.45)
o(lo) 0.61 (0.55,0.74) 0.65(0.61,0.82) 0.56(0.60,0.77)
£(I1¢) -0.26(-0.33,-0.11) -0.24(-0.27,-0.03) -0.26(-0.27,-0.05)

TABLE 11.9 — Estimated left extreme parameters from the reduced series
of Tmean, Tmax Tmin and their 95% confidence intervals calculated from

simulations
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