A. Ayache, L. Véhel, and J. , The generalized multifractional Brownian motion, Statistical Inference for Stochastic Processes, vol.3, issue.1/2, pp.7-18, 2000.
DOI : 10.1023/A:1009901714819

URL : https://hal.archives-ouvertes.fr/inria-00559108

L. Belkacem, C. Walter, L. Véhel, and J. , CAPM, RISK AND PORTFOLIO SELECTION IN "??-STABLE MARKETS", Fractals, vol.08, issue.01, pp.99-116, 2000.
DOI : 10.1142/S0218348X00000111

URL : https://hal.archives-ouvertes.fr/inria-00599259

A. Benassi, S. Jaffard, and D. Roux, Gaussian processes and pseudodifferential elliptic operators, Rev. Mat. Iberoamericana, vol.13, pp.19-89, 1997.

V. Bentkus, A. Juozulynas, and V. Paulauskas, Lévy?LePage series representation of stable vectors : convergence in variation, J. Theo. Prob, issue.24, pp.14-949, 2001.

P. Billingsley, Convergence of Probability Measures, 1968.
DOI : 10.1002/9780470316962

R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech, vol.9, pp.493-516, 1961.

S. Cohen, From self-similarity to local self-similarity : the estimation problem, Fractal in Engineering, 1999.

S. Cohen, C. Lacaux, and M. Ledoux, A general framework for simulation of fractional fields. Stochastic Process, Appl, vol.9, issue.118, pp.1489-1517, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00142691

K. Daoudi, L. Véhel, and J. , Signal representation and segmentation based on multifractal stationarity, Signal Processing, vol.82, issue.12, pp.2015-2024, 2002.
DOI : 10.1016/S0165-1684(02)00198-6

URL : https://hal.archives-ouvertes.fr/inria-00100882

K. Daoudi, L. Véhel, J. Meyer, and Y. , Construction of Continuous Functions with Prescribed Local Regularity, Constructive Approximation, vol.14, issue.3, pp.349-385, 1998.
DOI : 10.1007/s003659900078

URL : https://hal.archives-ouvertes.fr/inria-00593268

A. Dembo and O. Zeitouni, Large deviations techniques and applications, 1998.

K. J. Falconer, Tangent fields and the local structure of random fields, Journal of Theoretical Probability, vol.15, issue.3, pp.731-750, 2002.
DOI : 10.1023/A:1016276016983

K. J. Falconer, THE LOCAL STRUCTURE OF RANDOM PROCESSES, Journal of the London Mathematical Society, vol.67, issue.03, pp.657-672, 2003.
DOI : 10.1112/S0024610703004186

K. J. Falconer, L. Guével, R. , L. Véhel, and J. , Localisable moving average stable and multistable processes, Stochastic Models, pp.648-672, 2009.

K. J. Falconer, L. Véhel, and J. , Multifractional, Multistable, and Other Processes with??Prescribed Local Form, Journal of Theoretical Probability, vol.13, issue.2, 2008.
DOI : 10.1007/s10959-008-0147-9

URL : https://hal.archives-ouvertes.fr/inria-00539033

K. J. Falconer and L. Lining, Multistable random measures and multistable processes, 2009.

T. S. Ferguson and M. J. Klass, A Representation of Independent Increment Processes without Gaussian Components, The Annals of Mathematical Statistics, vol.43, issue.5, pp.1634-1643, 1972.
DOI : 10.1214/aoms/1177692395

U. Frisch and G. Parisi, Fully developped turbulence and intermittency, Proc. International Summer School Phys., Enrico Fermi, pp.84-88, 1985.

B. Guiheneuf, L. Véhel, and J. , 2-Microlocal Analysis and Applications in Signal Processing, International Wavelets Conference, 1998.

H. Jr and C. D. , Skewed stable variables and processes, 1984.

E. Herbin, From $N$ Parameter Fractional Brownian Motions to $N$ Parameter Multifractional Brownian Motions, Rocky Mountain Journal of Mathematics, vol.36, issue.4, pp.1249-1284, 2006.
DOI : 10.1216/rmjm/1181069415

URL : https://hal.archives-ouvertes.fr/hal-00539236

E. Herbin, L. Véhel, and J. , Stochastic 2-microlocal analysis, Stochastic Processes and their Applications, vol.119, issue.7, pp.2277-2311, 2009.
DOI : 10.1016/j.spa.2008.11.005

URL : https://hal.archives-ouvertes.fr/hal-00862545

S. Jaffard, Functions with Prescribed H??lder Exponent, Applied and Computational Harmonic Analysis, vol.2, issue.4, pp.400-401, 1995.
DOI : 10.1006/acha.1995.1030

URL : http://doi.org/10.1006/acha.1995.1030

S. Jaffard, Construction of Functions with Prescribed Hölder and Chirp Exponents, Revista Matematica Iberoamericana, vol.16, 2000.

J. F. Kingman, Poisson Processes, 1993.
DOI : 10.1002/0470011815.b2a07042

A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven in Hilbertchen Raume, pp.115-118, 1940.

K. Kolwankar, L. Véhel, and J. , A Time Domain Characterization of the Fine Local Regularity of Functions, Journal of Fourier Analysis and Applications, vol.8, issue.4, pp.319-334, 2002.
DOI : 10.1007/s00041-002-0016-3

L. Guével, R. , L. Véhel, and J. , A Ferguson -Klass -LePage series representation of multistable multifractional motions and related processes, preprint, 2009.

L. Guével, R. , L. Véhel, and J. , Incremental moments and Hölder exponents of multifractional multistable processes, preprint, 2009.

L. Guével and R. , An estimation of the stability and the localisability functions of multistable processes, 2010.

L. Page and R. , Multidimensional infinitely divisible variables and processes. I. Stable case T ech, Rep, vol.292, 1980.

L. Page and R. , Multidimensional infinitely divisible variables and processes. II P robability in Banach Spaces III Lecture notes in Math, pp.279-284, 1980.

M. Ledoux and M. Talagrand, Probability in Banach spaces, 1996.
DOI : 10.1007/978-3-642-20212-4

L. Véhel and J. , Introduction to the Multifractal analysis of images. Fractal Image Encoding and Analysis, 1998.

L. Véhel, J. Seuret, and S. , The 2-microlocal Formalism, Fractal Geometry and Applications : A Jubilee of Benoit Mandelbrot, Proc. Sympos. Pure Math, pp.153-215, 2004.

B. B. Mandelbrot and J. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

Y. Meyer, Wavelets, Vibrations and Scalings, Amer. Math. Soc, vol.9, 1997.

A. Negoro, Stable-like processes : construction of the transition density and the behavior of sample paths near t = 0, Osaka J. Math, vol.1, issue.31, pp.189-214, 1994.

R. F. Peltier, L. Véhel, and J. , Multifractional Brownian motion : definition and preliminary results, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00074045

B. Pesquet-popescu, L. Véhel, and J. , Stochastic fractal models for image processing, IEEE Signal Processing Magazine, vol.19, issue.5, 2002.
DOI : 10.1109/MSP.2002.1028352

URL : https://hal.archives-ouvertes.fr/inria-00581030

V. Petrov, Limit Theorems of Probability Theory, 1995.

V. Pipiras, . Taqqu, S. Murad, and P. Abry, Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation, Bernoulli, vol.13, issue.4, pp.1091-1123, 2007.
DOI : 10.3150/07-BEJ6143

D. Pollard, Convergence of Stochastic Processes, 1984.
DOI : 10.1007/978-1-4612-5254-2

W. E. Pruitt, The Growth of Random Walks and Levy Processes, The Annals of Probability, vol.9, issue.6, pp.948-956, 1981.
DOI : 10.1214/aop/1176994266

R. H. Riedi, L. Véhel, and J. , Fractional Brownian motion and data traffic modeling : The other end of the spectrum, Fractals in Engineering, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00593316

J. Rosinski, On Series Representations of Infinitely Divisible Random Vectors, The Annals of Probability, vol.18, issue.1, pp.405-430, 1990.
DOI : 10.1214/aop/1176990956

K. Sato, Lévy Processes and Infinitely Divisible Distributions, 1999.

S. Seuret, L. Véhel, and J. , The Local Hölder function of a continuous function, Appl. Comput. Harmon. Anal, vol.3, issue.13, pp.263-276, 2002.

S. Seuret, L. Véhel, and J. , A Time Domain Characterization of 2-Microlocal Spaces, Journal of Fourier Analysis and Applications, vol.9, issue.5, pp.472-495, 2003.
DOI : 10.1007/s00041-003-0023-z

URL : https://hal.archives-ouvertes.fr/inria-00072043

S. Stoev and M. S. Taqqu, SIMULATION METHODS FOR LINEAR FRACTIONAL STABLE MOTION AND FARIMA USING THE FAST FOURIER TRANSFORM, Fractals, vol.12, issue.01, pp.95-121, 2004.
DOI : 10.1142/S0218348X04002379

S. Stoev and M. S. Taqqu, Stochastic properties of the linear multifractional stable motion, Advances in Applied Probability, vol.8, issue.04, pp.1085-1115, 2004.
DOI : 10.1109/90.392383

S. Stoev and M. S. Taqqu, PATH PROPERTIES OF THE LINEAR MULTIFRACTIONAL STABLE MOTION, Fractals, vol.13, issue.02, pp.157-178, 2005.
DOI : 10.1142/S0218348X05002775

E. Titchmarsh, Introduction to the Theory of Fourier Integrals, 1948.

V. Bahr, B. Essen, and C. G. , Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1 \leqq r \leqq 2$, The Annals of Mathematical Statistics, vol.36, issue.1, pp.299-303, 1965.
DOI : 10.1214/aoms/1177700291