C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, Halide glasses, Journal of Non-Crystalline Solids, vol.43, issue.3, pp.309-344, 1981.
DOI : 10.1016/0022-3093(81)90101-0

S. Danto, P. Houizot, C. Boussard-pledel, X. H. Zhang, F. Smektala et al., A Family of Far-Infrared-Transmitting Glasses in the Ga???Ge???Te System for Space Applications, Advanced Functional Materials, vol.125, issue.327, pp.1847-1852, 2006.
DOI : 10.1002/adfm.200500645

URL : https://hal.archives-ouvertes.fr/hal-00867501

W. Dumbaugh and H. , Heavy metal oxide glasses containing Bi 2 O 3 (Society of Glass Technology, 1986.

J. Richardson, Extruded singlemode, high-nonlinearity, tellurite glass holey fibre, Electronics Letters, vol.41, pp.835-837, 2005.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, Nonsilica glasses for holey fibers, Journal of Lightwave Technology, vol.23, issue.6, p.2046, 2005.
DOI : 10.1109/JLT.2005.849945

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff et al., High nonlinearity extruded single-mode holey optical fibers, Optical Fiber Communication Conference and Exhibit, 2002.
DOI : 10.1109/OFC.2002.1036750

T. , .. E. Chillcce, C. M. Cordeiro, L. C. Barbosa, C. H. Brito et al., Tellurite photonic crystal fiber made by a stack-and-draw techniqueChalcogenide holey fibres, Optics express Journal of Non-Crystalline Solids Electronics Letters, vol.10, issue.36, pp.1520-1525, 1998.

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao et al., Casting preforms for microstructured polymer optical fibre fabrication, Optics Express, vol.14, issue.12, pp.5541-5547, 2006.
DOI : 10.1364/OE.14.005541

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission, Nature, vol.9, issue.78, pp.650-653, 2002.
DOI : 10.1117/1.1360241

H. Zarzicky, Les verres et l'état vitreux, 1982.

J. Y. Finazzi, P. Leong, J. C. Petropoulos, G. Flanagan, . R. Brambilla-16 et al., Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical FibersLarge Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers, IEEE Journal of selected topics in quantum electronics J. Opt. Soc. Am. B, vol.13, issue.21, pp.738-749, 2004.

P. Leong, J. C. Petropoulos, G. Flanagan, X. Brambilla, D. J. Feng et al., Nonsilica microstructured optical fibers for mid-IR supercontinuum generation from 2, p.5

I. D. Dutton and . Aggarwal, Non-linear properties of chalcogenide glasses and fibers, Journal of Non-Crystalline Solids, vol.354, pp.462-467, 2008.

S. Fujino and K. Morinaga, Material dispersion and its compositional parameter of oxide glasses, Journal of Non-Crystalline Solids, vol.222, pp.316-320, 1997.
DOI : 10.1016/S0022-3093(97)90130-7

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, pp.493-494, 1960.
DOI : 10.1103/PhysRevLett.4.564

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Physical Review Letters, vol.7, issue.4, p.118, 1961.
DOI : 10.1103/PhysRevLett.7.118

G. P. Agrawalwiley-interscience-25, . R. Nguyen-26, C. Stolen, R. K. Lee, . A. Jain-27 et al., Etude de composants optiques à base de fibres optiques non linéairesDevelopment of the stimulated Raman spectrum in single-mode silica fibersThe intensity of Raman scattering in glasses containing heavy metal oxides, J. Opt. Soc. Am. B Journal of Non-Crystalline Solids, vol.1, issue.99, pp.652-657, 1984.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, chalcogenide glass fibers, Sanghera, and I. D, pp.5518-5523, 1995.
DOI : 10.1063/1.359256

R. R. Aggarwal, S. L. Alfano, and . Shapiro, Small-core As-Se fiber for Raman amplificationEmission in the Region 4000 to 7000 Å Via Four- Photon Coupling in Glass, Opt. Lett. Physical Review Letters, vol.28, issue.24, pp.1406-1408, 1970.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air???silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters, vol.25, issue.1, pp.25-27, 2000.
DOI : 10.1364/OL.25.000025

H. Ebendorff-heidepriem, T. M. Monro, M. A. Van-eijkelenborg, and M. C. Large, Extruded high-NA microstructured polymer optical fibre, Optics Communications, vol.273, issue.1, p.133, 2007.
DOI : 10.1016/j.optcom.2007.01.004

P. Knight, . F. Russell-34, N. A. Omenetto, M. R. Wolchover, M. Wehner et al., Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nmSpectrally smooth supercontinuum from 350 nm to 3 µm in sub-centimeter lengths of soft-glass photonic crystal fibers, Opt. Express Opt. Express, vol.11, issue.14, pp.3196-3201, 2003.

H. Ebendorff-heidepriem, P. Petropoulos, R. Moore, K. Frampton, D. J. Richardson et al., Fabrication and optical properties of lead silicate glass holey fibers, Journal of Non-Crystalline Solids, vol.345, issue.346, pp.345-346, 2004.
DOI : 10.1016/j.jnoncrysol.2004.08.098

T. Richardson and . Monro, Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, Opt. Express, vol.11, pp.3568-3573, 2003.

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-heidepriem, S. Asimakis et al., High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation, Journal of Lightwave Technology, vol.24, issue.1, pp.183-190, 2006.
DOI : 10.1109/JLT.2005.861114

H. Ebendorff-heidepriem and T. M. Monro, Extrusion of complex preforms for microstructured optical fibers, Optics Express, vol.15, issue.23, pp.15086-15092, 2007.
DOI : 10.1364/OE.15.015086

H. Ebendorff-heidepriem, S. C. Warren-smith, and T. M. Monro, Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores, Optics Express, vol.17, issue.4, pp.2646-2657, 2009.
DOI : 10.1364/OE.17.002646

Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, Fabrication of glass photonic crystal fibers with a die-cast process, Applied Optics, vol.45, issue.18, pp.4433-4436, 2006.
DOI : 10.1364/AO.45.004433

X. Feng, W. H. Loh, and D. J. Richardson, Comment on the reported fiber attenuations in the visible regime in ???Fabrication of glass photonic crystal fibers with a die-cast process???, Applied Optics, vol.47, issue.28, pp.5078-5080, 2008.
DOI : 10.1364/AO.47.005078

Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, Reply to comment on the reported fiber attenuations in the visible regime in "Fabrication of glass photonic crystal fibers with a die-cast process", 43. H. Ebendorff-Heidepriem, pp.5081-5081, 2008.
DOI : 10.1364/AO.47.005081

F. Frampton, D. Koizumi, T. Richardson, . V. Monro-44, A. Kumar et al., Bismuth glass holey fibers with high nonlinearityTellurite photonic crystal fiber, Opt. Express Opt. Express, vol.12, issue.11, pp.5082-5087, 2003.

J. S. Wang, E. M. Vogel, E. A. Snitzer-46, H. Mori, K. Masuda et al., Tellurite glass: a new candidate for fiber devicesUltrawideband tellurite-based Raman fibre amplifier, Optical Materials Electronics Letters, vol.3, issue.371, pp.187-203, 1994.

J. C. Cordeiro, F. G. Knight, and . Omenetto, Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Optics express, vol.16, pp.7161-7168, 2008.

K. E. Horak, N. M. Frampton, J. H. White, H. N. Price, D. J. Rutt et al., Singlemode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications, Opt. Express, vol.16, pp.13651-13656, 2008.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki et al., A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation, Optics Express, vol.17, issue.18, pp.15481-15490, 2009.
DOI : 10.1364/OE.17.015481

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki et al., Tellurite microstructure fibers with small hexagonal core for supercontinuum generation, Optics Express, vol.17, issue.14, pp.12174-12182, 2009.
DOI : 10.1364/OE.17.012174

P. Mcnamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry et al., A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission, Journal of Non-Crystalline Solids, vol.355, issue.28-30, pp.1461-1467, 2009.
DOI : 10.1016/j.jnoncrysol.2009.05.003

D. G. Hemming, . L. Lancaster-54, O. V. Butvina, E. M. Sereda, N. V. Dianov et al., Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmissionSingle-mode microstructured optical fiber for the middle infrared, Opt. Lett. Opt. Lett, vol.33, issue.32, pp.2861-2863, 2007.

E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, Silver halide photonic crystal fibers for the middle infrared, Applied Optics, vol.43, issue.11, pp.2236-2241, 2004.
DOI : 10.1364/AO.43.002236

A. Millo, L. Lobachinsky, and A. Katzir, Single-mode octagonal photonic crystal fibers for the middle infrared, Applied Physics Letters, vol.92, issue.2, pp.21112-021113, 2008.
DOI : 10.1063/1.2829885

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito et al., Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity, Optics Express, vol.17, issue.24, pp.21608-21614, 2009.
DOI : 10.1364/OE.17.021608

X. Yan, C. Chaudhari, G. Qin, T. Suzuki, and Y. Ohishi, Ultraflat supercontinuum generation in an As 2 S 3 based chalcogenide core microstructure fiberSupercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses, Photonic West, pp.3448-3455, 2009.

B. Ung and M. Skorobogatiy, Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared, Optics Express, vol.18, issue.8, pp.8647-8659, 2010.
DOI : 10.1364/OE.18.008647

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, Maximizing the bandwidth of supercontinuum generation in As_2Se_3 chalcogenide fibers, Optics Express, vol.18, issue.7, pp.6722-6739, 2010.
DOI : 10.1364/OE.18.006722.m001

I. Troles, C. F. Skripatchev, Y. Polacchini, F. Messadeq, and . Smektala, As 2 S 3 suspended core microstructured optical fibers for mid-IR supercontinuum generation: modeling and experimental results, Photonic West, 2010.

G. Renversez, F. Bordas, and B. T. Kuhlmey, Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding sizeSupercontinuum generation in photonic crystal fibers made from highly nonlinear glasses, Opt. Lett. A. Applied Physics B: Lasers and Optics, vol.30, issue.77, pp.1264-1266, 2003.

M. Szpulak and S. Fevrier, Chalcogenide As 2 S 3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing, Photonic Crystal Fibers III, pp.884-886, 2009.
DOI : 10.1117/12.820663

URL : https://hal.archives-ouvertes.fr/hal-00441729

N. Smektala, J. Traynor, and . Adam, Small-core chalcogenide microstructured fibers for the infrared, Appl. Opt, vol.47, pp.6014-6021, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00386111

N. Smektala, J. Traynor, and . Adam, Te-As-Se glass microstructured optical fiber for the middle infrared, Appl. Opt, vol.48, pp.3860-3865, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00497019

B. Shaw, P. A. Thielen, F. Kung, V. Nguyen, J. S. Sanghera et al., IR Supercontinuum Generation in As-Se Photonic Crystal Fiber, Advanced Solid-State Photonics, 2005.

L. Houizot, N. Brilland, and . Traynor, Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber, Opt. Express, vol.16, pp.9398-9404, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00400728

G. Pitois, C. Gadret, J. Finot, F. Troles, P. Désévédavy et al., Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers, Journal of Lightwave Technology, vol.27, p.1707, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429885

F. Desevedavy, Fibres optiques microstructurées à base de verres de chalcogénures pour applications dans le domaine des télécommunications et le moyen IR, 2008.

C. F. Skripatchev, Y. Polacchini, J. Messaddeq, L. Troles, M. Brilland et al., Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers, Opt. Express, vol.18, pp.4547-4556, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00469701

. Sugimoto, Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 µm, Opt. Express, vol.12, pp.5697-5702, 2004.

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, and C. Brantley, Supercontinuum generation in tapered bismuth silicate fibres, Electronics Letters, vol.41, issue.14, pp.795-797, 2005.
DOI : 10.1049/el:20051711

. Luo, Supercontinuum generation in single crystal sapphire fibers, Optics Communications, vol.281, pp.1113-1117, 2008.

J. H. Kim, M. Chen, C. Yang, J. Lee, S. Yin et al., Broadband IR supercontinuum generation using single crystal sapphire fibers, Optics Express, vol.16, issue.6, pp.4085-4093, 2006.
DOI : 10.1364/OE.16.004085

G. Poulain and . Mazé, Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping, Opt. Lett, vol.31, pp.2553-2555, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00868240

J. F. Winful, M. J. Terry, M. Freeman, G. Poulain, and . Mazé, Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power, Opt. Express, vol.15, pp.865-871, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00866953

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman et al., 10.5 W Time-Averaged Power Mid-IR Supercontinuum Generation Extending Beyond 4 µm With Direct Pulse Pattern Modulation Selected Topics in Quantum ElectronicsMid-IR Supercontinuum in a Fluorozirconate Fiber Pumped by a Femtosecond CPA System at 1.6µm, Conference on Lasers and Electro-Optics, pp.422-434, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00904878

A. Cerullo, A. K. Jha, and . Kar, Supercontinuum generation in an ultrafast laserinscribed chalcogenide glass waveguide, Opt. Express, vol.15, pp.15776-15781, 2007.

M. R. Lamont, B. Luther-davies, D. Choi, S. Madden, and B. J. Eggleton, Supercontinuum generation in dispersion engineered highly nonlinear (? = 10

.. R. Eggleton-86, M. K. Byer, J. F. Oshman, S. E. Young, . R. Harris et al., Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowiresVisible CW Parametric Oscillator, Opt. Lett. Applied Physics Letters, vol.33, issue.87, pp.660-662, 1968.

. Chicklis, Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators, J. Opt. Soc. Am. B, vol.17, pp.723-728, 2000.

J. E. Sharping, Microstructure Fiber Based Optical Parametric Oscillators, Journal of Lightwave Technology, vol.26, issue.14, pp.2184-2191, 2008.
DOI : 10.1109/JLT.2008.923274

Z. Feit, D. Kostyk, R. J. Woods, and P. Mak, high???resolution spectroscopy, Applied Physics Letters, vol.58, issue.4, pp.343-345, 1991.
DOI : 10.1063/1.104652

J. Faist, F. Capasso, D. L. Sivco, and C. Sirtori, Quantum Cascade Laser, Science, p.553, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00156810

H. J. Bucaro and . Dardy, High???temperature Brillouin scattering in fused quartz, II.8, pp.5324-5329, 1974.
DOI : 10.1063/1.1663238

P. Klocek, Handbook of infrared optical materials (M. Dekker, 1991.

W. A. King, A. G. Clare, and W. C. Lacourse, Laboratory preparation of highly pure As2Se3 glass, Journal of Non-Crystalline Solids, vol.181, issue.3, pp.231-237, 1995.
DOI : 10.1016/S0022-3093(94)00512-5

. Churbanov, Infrared fibers based on Te-As-Se glass system with low optical losses, Journal of Non-Crystalline Solids, vol.336, pp.113-119, 2004.

B. Pledel, P. Bureau, and . Lucas, Influence of ageing conditions on the mechanical properties of Te-As-Se fibres, Journal of physics. D, applied physics, vol.42, p.95405, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411548

L. Trolès, H. Calvez, S. Ma, E. Maurugeon, and . Guillevic, Planar waveguide obtained by burying a Ge 22 As 20 Se 58 fiber in As 2 S 3 glass, Appl. Opt, vol.47, pp.5750-5752, 2008.

M. Bourdon, X. H. Cathelinaud, and . Zhang, Sulfide-halide glasses with high nonlinear refractive index and low nonlinear absorption, Optical Materials, vol.32, pp.1102-1106, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00608826

Y. Niu, J. Guin, T. Rouxel, A. Abdelouas, J. Troles et al., Chalcogenide Glass: Surface Properties and Corrosion Mechanism, Journal of the American Ceramic Society, vol.193, issue.8, pp.1779-1787, 2009.
DOI : 10.1111/j.1551-2916.2009.03132.x

URL : https://hal.archives-ouvertes.fr/hal-00452743

A. A. Babitsyna, T. A. , and V. A. Fedorov, Quaternary Fluorozirconate Glasses Containing Aluminum TrifluorideThe mechanical, thermal and optical properties of fused silica, 11. S. Hocdé, "Fibres optiques en verre infrarouge. Applications en chimie et biologie, pp.424-432, 1925.
DOI : 10.1023/A:1021723118476

E. Guillevic, Verres et vitrocéramiques de chalcogénures : nouveau procédé de synthèse et dopage par les ions lanthanides, 2009.

F. Desevedavy, Fibres optiques microstructurées à base de verres de chalcogénures pour applications dans le domaine des télécommunications et le moyen IR, 2008.

J. Y. Finazzi, P. Leong, J. C. Petropoulos, G. Flanagan, and . Brambilla, Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers, IEEE Journal of selected topics in quantum electronics, vol.13, pp.738-749, 2007.

. Baumberg, Self refractive non-linearities in chalcogenide based glasses, Journal of noncrystalline solids, vol.317, pp.241-246, 2003.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy et al., Chalcogenide glasses with large non-linear refractive indices, Journal of Non-Crystalline Solids, vol.239, issue.1-3, p.139, 1998.
DOI : 10.1016/S0022-3093(98)00730-3

A. Zakery and S. R. Elliott, Optical properties and applications of chalcogenide glasses: a review, Journal of Non-Crystalline Solids, vol.330, issue.1-3, pp.1-12, 2003.
DOI : 10.1016/j.jnoncrysol.2003.08.064

P. Houizot and F. Smektala, Spectroscopie de nouveaux verres d'oxyfluorures dopés Er3+ Réalisation de fibres optiques en verres IR : Monomodes et fortement non linéaires à 1,55 micromètres Pour détection d'exo-planètes entre 4 et 20 micromètres, projet Darwin), 2004.

K. A. Cerqua-richardson, J. M. Mckinley, B. Lawrence, S. Joshi, A. R. Villeneuve-21 et al., Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form, Optical Materials, vol.10, issue.2, pp.155-159, 1998.
DOI : 10.1016/S0925-3467(97)00142-0

V. F. Kokorina, Glasses for infrared optics, Boca Raton, 1996.

M. Sheik-bahae, D. J. Hagan, and E. W. Van-stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption, Physical Review Letters, vol.65, issue.1, p.96, 1990.
DOI : 10.1103/PhysRevLett.65.96

M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van-stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE Journal of Quantum Electronics, vol.26, issue.4, pp.760-769, 1990.
DOI : 10.1109/3.53394

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, Chalcogenide glasses with high non linear optical properties for telecommunications The Journal of physics and chemistry of solidsNon-linear optical properties of chalcogenide glasses measured by Z-scan Journal of non-crystalline solids, pp.1435-1440, 2000.

D. Le?al, J. Pedlíková, J. Gurovi?, and R. Vogt, The preparation of chalcogenide glasses in chlorine reactive atmosphere, Ceramics Silikaty, vol.40, 1996.

P. Kaiser, E. A. Marcatili, and S. E. Miller, A New Optical Fiber, Bell System Technical Journal, vol.52, issue.2, pp.265-269, 1973.
DOI : 10.1002/j.1538-7305.1973.tb01963.x

J. C. Knight, T. A. Birks, P. S. Russell, D. M. Atkin-31, Y. D. Monro et al., All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, vol.21, issue.19, pp.1547-1549, 1996.
DOI : 10.1364/OL.21.001547

URL : http://eprints.soton.ac.uk/78031/1/1303.pdf

T. N. Chartier, J. Nguyen, N. Adam, and . Traynor, Interfaces impact on the transmission of chalcogenides photonic crystal fibres, Journal of the Ceramic Society of Japan, vol.116, pp.1024-1027, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428897

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao et al., Casting preforms for microstructured polymer optical fibre fabrication, Optics Express, vol.14, issue.12, pp.5541-5547, 2006.
DOI : 10.1364/OE.14.005541

Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, Fabrication of glass photonic crystal fibers with a die-cast process, Applied Optics, vol.45, issue.18, pp.4433-4436, 2006.
DOI : 10.1364/AO.45.004433

H. Ebendorff-heidepriem and T. M. Monro, Extrusion of complex preforms for microstructured optical fibers, Optics Express, vol.15, issue.23, pp.15086-15092, 2007.
DOI : 10.1364/OE.15.015086

H. Ebendorff-heidepriem, T. Foo, R. C. Moore, W. Zhang, Y. Li et al., Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission, Optics Letters, vol.33, issue.23, pp.2861-2863, 2008.
DOI : 10.1364/OL.33.002861

V. V. Kumar, A. George, W. Reeves, J. Knight, P. Russell et al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Optics Express, vol.10, issue.25, pp.1520-1525, 2002.
DOI : 10.1364/OE.10.001520

P. Domachuk, N. A. Wolchover, M. Cronin-golomb, A. Wang, A. K. George et al., Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Optics Express, vol.16, issue.10, pp.7161-7168, 2008.
DOI : 10.1364/OE.16.007161

P. Mcnamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry et al., A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission, Journal of Non-Crystalline Solids, vol.355, issue.28-30, pp.1461-1467, 2009.
DOI : 10.1016/j.jnoncrysol.2009.05.003

M. El-amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret et al., Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers, Optics Express, vol.18, issue.5, pp.4547-4556, 2010.
DOI : 10.1364/OE.18.004547

URL : https://hal.archives-ouvertes.fr/hal-00469701

G. Barton, M. A. Van-eijkelenborg, G. Henry, M. C. Large, and J. Zagari, Fabrication of microstructured polymer optical fibres, Optical Fiber Technology, vol.10, issue.4, pp.325-335, 2004.
DOI : 10.1016/j.yofte.2004.05.003

E. Thomson, The mechanical, thermal and optical properties of fused silica, Journal of the Franklin Institute, vol.200, issue.3, pp.313-326, 1925.
DOI : 10.1016/S0016-0032(25)90770-3

P. Klocek, Handbook of infrared optical materials (M. Dekker, 1991.

S. Hocdé, Fibres optiques en verre infrarouge. Applications en chimie et biologie, 2000.

B. Bureau, J. Troles, M. Lefloch, F. Smektala, G. Silly et al., Solid state 77Se NMR investigations on arsenic-selenium glasses and crystals, Solid state sciences, p.219, 2003.
DOI : 10.1016/S1293-2558(02)00102-4

G. Renversez, M. Szpulak, M. El-amraoui, J. C. Jules, G. Gadret et al., As 2 S 3 suspended core microstructured optical fibers for mid-IR supercontinuum generation: modeling and experimental results, Photonic West, 2010.

G. Renversez, F. Bordas, and B. T. Kuhlmey, Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size, Optics Letters, vol.30, issue.11, pp.1264-1266, 2005.
DOI : 10.1364/OL.30.001264

URL : https://hal.archives-ouvertes.fr/hal-00079751

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot et al., CO<SUB>2</SUB> Detection Using Microstructured Chalcogenide Fibers, Sensor Letters, vol.7, issue.5, pp.745-749, 2009.
DOI : 10.1166/sl.2009.1142

F. Charpentier, Développement de fibres optiques et guides d'ondes infrarouges dédiés à la surveillance des sites de stockages CO 2, 2009.

M. Szpulak and S. Fevrier, Chalcogenide As 2 S 3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing, Photonic Crystal Fibers III, pp.884-886, 2009.
DOI : 10.1117/12.820663

URL : https://hal.archives-ouvertes.fr/hal-00441729

V. Ruddy, M. Daly, and M. Saito, Attenuation due to diffusion of water vapor in As_2S_3 fiber, Applied Optics, vol.31, issue.9, pp.1173-1174, 1992.
DOI : 10.1364/AO.31.001173

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, 29 W High power CW supercontinuum source, Optics Express, vol.16, issue.8, pp.5954-5962, 2008.
DOI : 10.1364/OE.16.005954

URL : http://arxiv.org/abs/0803.2143

J. M. Dudley, G. Genty, and S. Coen, Supercontinuum generation in photonic crystal fiber, Reviews of Modern Physics, vol.78, issue.4, pp.1135-1150, 2006.
DOI : 10.1103/RevModPhys.78.1135

URL : https://hal.archives-ouvertes.fr/hal-00268071

I. D. Dutton and . Aggarwal, Non-linear properties of chalcogenide glasses and fibers, Journal of Non-Crystalline Solids, vol.354, pp.462-467, 2008.

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw et al., Large Raman gain and nonlinear phase shifts in high-purity As_2Se_3 chalcogenide fibers, Journal of the Optical Society of America B, vol.21, issue.6, pp.1146-1155, 2004.
DOI : 10.1364/JOSAB.21.001146

N. Smektala, J. Traynor, and . Adam, Small-core chalcogenide microstructured fibers for the infrared, Appl. Opt, vol.47, pp.6014-6021, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00386111

R. A. Fisher and J. H. Bennett, Statistical methods, inference and experimental design : a re-issue of Statistical methods for Research workers, The design of experiments, and Statistical methods and scientific inference, 1990.

R. A. Fisher, Statistical methods for research workers, 1925.

V. Seznec, Verres et vitrocéramiques de chalcohalogénures dopés terres rares Mise en forme par extrusion du verre GASIRUniform Shell Designs, 192. 9. D. H. Doehlert, 2006.

M. Sheik-bahae, D. J. Hagan, and E. W. Van-stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption, Physical Review Letters, vol.65, issue.1, p.96, 1990.
DOI : 10.1103/PhysRevLett.65.96

M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van-stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE Journal of Quantum Electronics, vol.26, issue.4, pp.760-769, 1990.
DOI : 10.1109/3.53394

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath et al., Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se, Optics Letters, vol.31, issue.10, pp.1495-1497, 2006.
DOI : 10.1364/OL.31.001495

URL : https://hal.archives-ouvertes.fr/hal-00077252

K. Tanaka, Nonlinear optics in glasses: How can we analyze?, Journal of Physics and Chemistry of Solids, vol.68, issue.5-6, pp.896-900, 2007.
DOI : 10.1016/j.jpcs.2006.11.035

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, Passive Components - Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching IEEE photonics technology letters : a publication of the IEEE Laser and Electro-optics Society, p.822, 2002.

G. Derringer and R. Suich, Simultaneous Optimization of Several Response Variables, Journal of Quality Technology, vol.12, pp.214-219, 1980.

P. V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398), 1998.
DOI : 10.1109/ECOC.1998.732666

E. Slusher, Strong self-phase modulation in planar chalcogenide glass waveguides, Opt. Lett, vol.27, pp.363-365, 2002.

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-davies et al., Long, low loss etched As_2S_3 chalcogenide waveguides for all-optical signal regeneration, Optics Express, vol.15, issue.22, pp.14414-14421, 2007.
DOI : 10.1364/OE.15.014414

L. Fu, M. Rochette, V. Ta-'eed, D. Moss, and B. Eggleton, Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber, Optics Express, vol.13, issue.19, pp.7637-7644, 2005.
DOI : 10.1364/OPEX.13.007637

M. R. Lamont, L. Fu, M. Rochette, D. J. Moss, and B. J. Eggleton, 2R optical regenerator in As_2Se_3 chalcogenide fiber characterized by a frequency-resolved optical gating analysis, Applied Optics, vol.45, issue.30, pp.7904-7907, 2006.
DOI : 10.1364/AO.45.007904

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom et al., Enhanced Kerr nonlinearity in sub-wavelength diameter As_2Se_3 chalcogenide fiber tapers, Optics Express, vol.15, issue.16, pp.10324-10329, 2007.
DOI : 10.1364/OE.15.010324

T. N. Nguyen, Etude de composants optiques à base de fibres optiques non linéaires, 2008.

B. J. Aggarwal and . Eggleton, Characterization of picosecond pulse nonlinear propagation in chalcogenide As 2 S 3 fiber, Appl. Opt, vol.48, pp.5467-5474, 2009.

L. Houizot, N. Brilland, N. Traynor, G. Ducros, S. Humbert et al., Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiberEmission multilongueurs d'onde par cascade Raman dans une fibre optique de chalcogénure, S. Sanghera, and I. D, pp.9398-9404, 2008.

.. A. Aggarwal-13, G. Tuniz, D. J. Brawley, B. J. Moss, . O. Eggleton-14 et al., Two-photon absorption effects on Raman gain in single mode As 2 Se 3 chalcogenide glass fiberThird order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficientSelf-tunable chalcogenide Raman laser, 15. S. Shakeri, and M. Hatami, pp.1406-1408, 2003.

Q. Annexe, L. Coulombier, P. Brilland, T. Houizot, T. N. Chartier et al., Casting method for producing low-loss chalcogenide microstructured optical fibers, Opt. Express, vol.18, pp.9107-9112, 2010.

Q. Coulombier, M. Sergent, K. Fedus, G. Boudebs, J. Troles et al., Sulfide???halide glasses with high nonlinear refractive index and low nonlinear absorption, Optical Materials, vol.32, issue.9, pp.1102-1106, 2010.
DOI : 10.1016/j.optmat.2010.03.005

URL : https://hal.archives-ouvertes.fr/hal-00608826

Q. Coulombier, J. Troles, L. Brilland, P. Houizot, and F. Désévédavy, Fibres microstructurées en verres de chalcogénures, Bulletin Poloq, vol.2, 2008.

Q. Coulombier, S. Zhang, X. Zhang, B. Bureau, J. Lucas et al., Planar waveguide obtained by burying a Ge_22As_20Se_58 fiber in As_2S_3 glass, Planar waveguide obtained by burying a Ge 22 As 20 Se 58 fiber in As 2 S 3 glass, pp.5750-5752, 2008.
DOI : 10.1364/AO.47.005750

URL : https://hal.archives-ouvertes.fr/hal-00368027

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier et al., Interfaces impact on the transmission of chalcogenides photonic crystal fibres, Journal of the Ceramic Society of Japan, vol.116, issue.1358, pp.1024-1027, 2008.
DOI : 10.2109/jcersj2.116.1024

URL : https://hal.archives-ouvertes.fr/hal-00428897

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot et al., CO<SUB>2</SUB> Detection Using Microstructured Chalcogenide Fibers, Sensor Letters, vol.7, issue.5, pp.745-749, 2009.
DOI : 10.1166/sl.2009.1142

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles et al., Small-core chalcogenide microstructured fibers for the infrared, Applied Optics, vol.47, issue.32, pp.6014-6021, 2008.
DOI : 10.1364/AO.47.006014

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot et al., Te-As-Se glass microstructured optical fiber for the middle infrared, Applied Optics, vol.48, issue.19, pp.3860-3865, 2009.
DOI : 10.1364/AO.48.003860

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, Nonlinear characterization of GeS2???Sb2S3???CsI glass system, Journal of Applied Physics, vol.107, issue.2, pp.23108-023105, 2010.
DOI : 10.1063/1.3289607

URL : https://hal.archives-ouvertes.fr/hal-00608832

D. Mechin, L. Brilland, J. Troles, Q. Coulombier, D. M. Nguyen et al., NEXT-GENERATION FIBERS: Chalcogenide photonic-crystal fibers expand nonlinear applications, Laser Focus World, vol.46, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00854446

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy et al., Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization, Fiber and Integrated Optics, vol.28, issue.1, pp.11-26, 2009.
DOI : 10.1080/01468030802272500

URL : https://hal.archives-ouvertes.fr/hal-00397983

A. A. Wilhelm, C. Boussard-plédel, Q. Coulombier, J. Lucas, B. Bureau et al., Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics, Advanced Materials, vol.326, issue.22, pp.3796-3800, 2007.
DOI : 10.1002/adma.200700823

URL : https://hal.archives-ouvertes.fr/hal-00368085

C. Conseil, Q. Coulombier, C. Boussard-pledel, J. Troles, L. Brilland et al., Chalcogenide step index and microstructured single mode fibers, Journal of Non-Crystalline Solids, vol.357, issue.11-13, 2010.
DOI : 10.1016/j.jnoncrysol.2010.11.090

URL : https://hal.archives-ouvertes.fr/hal-00719526

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard et al., Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm, Optics Express, vol.18, issue.25, 2010.
DOI : 10.1364/OE.18.026647

URL : https://hal.archives-ouvertes.fr/hal-00854027

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual et al., Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber, IEEE Photonics Technology Letters, vol.22, issue.24, 2010.
DOI : 10.1109/LPT.2010.2088386

URL : https://hal.archives-ouvertes.fr/hal-00586717

M. Thual, D. M. Nguyen, S. D. Le, T. Chartier, P. Rochard et al., Recent advances on low loss and highly non linear AsSe suspended core photonic crystal optical fibersFabrication of low losses chalcogenide photonic crystal fibers by molding process, Photonic West, pp.75980-75989, 2010.

L. Brilland, P. Houizot, J. Troles, F. Desevedavy, Q. Coulombier et al., Improvement of the transmission of chalcogenide photonic crystal fibres: Observation of self phase modulation spectral broadening, 2008 34th European Conference on Optical Communication, 2008.
DOI : 10.1109/ECOC.2008.4729399

URL : https://hal.archives-ouvertes.fr/hal-00496337

F. Charpentier, V. Nazabal, J. Troles, Q. Coulombier, L. Brilland et al., Infrared optical sensor for CO 2 detection, Optical Sensors 2009, 2009.
DOI : 10.1117/12.820359

URL : https://hal.archives-ouvertes.fr/hal-00389139

L. Brilland, P. Houizot, J. Troles, F. Desevedavy, Q. Coulombier et al., Recent progress on the realization of chalcogenides photonic crystal fibers, Optical Components and Materials VI, 2009.
DOI : 10.1117/12.815907

URL : https://hal.archives-ouvertes.fr/hal-00585096

M. D. Nguyen, S. D. Le, L. Brilland, Q. Coulombier, J. Troles et al., Demonstration of a low loss and ultra highly nonlinear AsSe suspended-core chalcogenide fiber, 36th European Conference and Exhibition on Optical Communication, p.in ECOC, 2010.
DOI : 10.1109/ECOC.2010.5621464

URL : https://hal.archives-ouvertes.fr/hal-00586682

T. N. Nguyen, T. Chartier, M. Thual, Q. Coulombier, P. Houizot et al., Ultra highly nonlinear AsSe chalcogenide holey fiber for nonlinear applications, European Conference on Optical Communication, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00487777

J. Troles, J. L. Adam, L. Brilland, Q. Coulombier, and T. Chartier, Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths, 2010 12th International Conference on Transparent Optical Networks, 2010.
DOI : 10.1109/ICTON.2010.5549180

URL : https://hal.archives-ouvertes.fr/hal-00496515

J. Troles, L. Brilland, Q. Coulombier, P. Toupin, F. Desevedavy et al., Elaboration by casting method of low losses chalcogenide microstructured fibers for near and mid infrared applications, p.in ISNOG, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00496520