C. Annexe, Types de réacteurs rencontrés en pyrolyse et en gazéification, p.143

C. Annexe and .. , Schéma des différents procédés de gazéification, p.144

E. Annexe, Représentation schématique des différentes procédures d'échantillonnage existant en sortie de réacteur d'après le "Tar Protocol", p.148

F. Annexe, Protocole de récupération des goudrons par la méthode gravimétrique, p.149

H. Annexe, Analyse qualitative des biogaz pour la sélection de composés types, p.155

I. Annexe, Système de génération d'atmosphère en mode statique, p.156

J. Ai, Solid Phase Microextraction for Quantitative Analysis in Nonequilibrium Situations, Analytical Chemistry, vol.69, issue.6, pp.1230-1236, 1997.
DOI : 10.1021/ac9609541

J. Ai, Solid-Phase Microextraction in Headspace Analysis. Dynamics in Non-Steady-State Mass Transfer, Analytical Chemistry, vol.70, issue.22, pp.4822-4826, 1998.
DOI : 10.1021/ac980642t

F. Ates, A. E. Pütün, and E. Pütün, Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts, Fuel, vol.85, issue.12-13, pp.851851-1859, 2006.
DOI : 10.1016/j.fuel.2006.01.015

F. Augusto, J. Koziel, and J. Pawliszyn, Design and Validation of Portable SPME Devices for Rapid Field Air Sampling and Diffusion-Based Calibration, Analytical Chemistry, vol.73, issue.3, pp.481-486, 2001.
DOI : 10.1021/ac000629k

R. J. Bartelt, Calibration of a Commercial Solid-Phase Microextraction Device for Measuring Headspace Concentrations of Organic Volatiles, Analytical Chemistry, vol.69, issue.3, pp.364-372, 1997.
DOI : 10.1021/ac960820n

R. J. Bartelt and B. W. Zilkowski, Nonequilbrium Quantitation of Volatiles in Air Streams by Solid-Phase Microextraction, Analytical Chemistry, vol.71, issue.1, pp.92-101, 1999.
DOI : 10.1021/ac980785f

R. J. Bartelt and B. W. Zilkowski, Airflow Rate in the Quantitation of Volatiles in Air Streams by Solid-Phase Microextraction, Analytical Chemistry, vol.72, issue.16, pp.3949-3955, 2000.
DOI : 10.1021/ac000101f

R. Doong and S. Chang, Bilan énergétique de l'année 2006 de la France Disponible sur http Determination of Distribution Coefficients of Priority Polycyclic Aromatic Hydrocarbons Using Solid-Phase Microextraction, Analytical Chemistry, pp.72-3647, 2000.

A. Dufour, P. Girods, E. Masson, S. Normand, Y. Rogaume et al., Comparison of two methods of measuring wood pyrolysis tar, Journal of Chromatography A, vol.1164, issue.1-2, pp.204-247, 1164.
DOI : 10.1016/j.chroma.2007.06.049

R. Eisert, J. Pawliszyn, G. Barinshteyn, and D. Chambers, Design of an automated analysis system for the determination of organic compounds in continuous air stream using solid-phase microextraction, Analytical Communications, vol.35, issue.6, pp.187-189, 1998.
DOI : 10.1039/a802389a

D. C. Elliott, Relation of reaction time and temperature to chemical composition of pyrolyis oil, in: Pyrolysis oils from biomass

R. J. Evans and T. A. Milne, Molecular characterization of the pyrolysis of biomass, Energy & Fuels, vol.1, issue.2, pp.123-137, 1987.
DOI : 10.1021/ef00002a001

R. J. Evans and T. A. Milne, Chemistry of Tar Formation and Maturation in the Thermochemical Conversion of Biomass, Thermochemical Biomass Conversion
DOI : 10.1007/978-94-009-1559-6_64

. London, Blackie Academic & Professional, pp.803-816, 1997.

E. Fuller, P. Schettler, and J. C. Giddings, NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS, Industrial & Engineering Chemistry, vol.58, issue.5, pp.18-27, 1966.
DOI : 10.1021/ie50677a007

G. Ouyang1, Y. Chen, L. Setkova, and J. Pawliszyn, Calibration of solid-phase microextraction for quantitative analysis by gas chromatography, Journal of Chromatography A, vol.1097, issue.1-2, pp.9-16, 1097.
DOI : 10.1016/j.chroma.2005.08.017

M. Gautrois and R. Koppmann, Diffusion technique for the production of gas standards for atmospheric measurements, Journal of Chromatography A, vol.848, issue.1-2, pp.239-249, 1999.
DOI : 10.1016/S0021-9673(99)00424-0

G. Guéhenneux, Etude des composés organiques semi-volatiles en milieux extrêmes par micro-extraction en phase solide, Thèse de doctorat "chimie de la Pollution Atmosphérique et Physique de l'Environnement, 2003.

G. Guéhenneux, H. Wortham, and P. Baussand, Determination of the detection limit of SPME coupled with GC/MS analysis for naphthalene, Fresenius Environmental Bulletin, vol.13, pp.1173-1178, 2004.

G. Guéhenneux, P. Baussand, M. Brothier, C. Poletiko, and G. Boissonnet, Energy production from biomass pyrolysis: a new coefficient of pyrolytic valorisation, Fuel, vol.84, issue.6, pp.733-739, 2005.
DOI : 10.1016/j.fuel.2004.11.005

J. Good, L. Ventress, H. Knoef, U. Zielke, P. Lyck-hansen et al., Sampling and analysis of tar and particles in biomass producer gases ? technical report, 2005.

T. Górecki, P. Martos, and J. Pawliszyn, Strategies for the Analysis of Polar Solvents in Liquid Matrixes, Analytical Chemistry, vol.70, issue.1, pp.19-27, 1998.
DOI : 10.1021/ac9703515

T. Górecki, X. Yu, and J. Pawliszyn, Theory of analyte extraction by selected porous polymer SPME fibres???, The Analyst, vol.124, issue.5, pp.643-649, 1999.
DOI : 10.1039/a808487d

C. Grote and J. Pawliszyn, Solid-Phase Microextraction for the Analysis of Human Breath, Analytical Chemistry, vol.69, issue.4, pp.587-596, 1997.
DOI : 10.1021/ac960749l

R. G. Graham and R. Bain, Biomass Gasification: Hot Gas Clean-up, Report Submitted to IEA Biomass Gasification Working Group, Ensyn Technologies/NREL, vol.44, 1993.

J. Han and H. Kim, The reduction and control technology of tar during biomass gasification/pyrolysis: An overview, Renewable and Sustainable Energy Reviews, pp.397-416, 2006.

R. Hyspler, S. Crhova, J. Gasparic, Z. Zadak, M. Cizkova et al., Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography???mass spectrometry, Journal of Chromatography B: Biomedical Sciences and Applications, vol.739, issue.1, pp.183-190, 2000.
DOI : 10.1016/S0378-4347(99)00423-5

[. Français-du-pétrole and R. Annuel, Innover les Energies Disponible sur http, 2006.

M. Jia, J. Koziel, and J. Pawliszyn, Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid phase microextraction and portable gas chromatography, Field Analytical Chemistry and Technology, pp.73-84, 2000.

A. Kaufmann, Maximum transfer condition for spitless injection, Journal of High Resolution Chromatography, vol.15, issue.4, pp.193-200, 1997.
DOI : 10.1002/jhrc.1240200403

A. Khaled and J. Pawliszyn, Time-weighted average sampling of volatile and semi-volatile airborne organic compounds by the solid-phase microextraction device, Journal of Chromatography A, vol.892, issue.1-2, pp.455-467, 2000.
DOI : 10.1016/S0021-9673(00)00295-8

H. A. Kiel, J. Neeft, D. L. Pa, K. J. Ptasinski, F. J. Janssen et al., Primary measures to reduce tar formation in fluidised-bed biomass gasifiers, Final SDE Analytical. Chemistry, vol.014, issue.75, pp.1999-2011, 2003.

D. Louch, S. Motlagh, and P. Pawliszyn, Dynamics of organic compound extraction from water using liquid-coated fused silica fibers, Analytical Chemistry, vol.64, issue.10, pp.1187-1199, 1992.
DOI : 10.1021/ac00034a020

H. L. Lord and J. Pawliszyn, Method Optimization for the Analysis of Amphetamines in Urine by Solid-Phase Microextraction, Analytical Chemistry, vol.69, issue.19, pp.3899-3906, 1997.
DOI : 10.1021/ac970375b

P. Martos, A. Saraullo, and J. Pawliszyn, Estimation of Air/Coating Distribution Coefficients for Solid Phase Microextraction Using Retention Indexes from Linear Temperature-Programmed Capillary Gas Chromatography

P. A. Martos and J. Pawliszyn, Calibration of Solid Phase Microextraction for Air Analyses Based on Physical Chemical Properties of the Coating, Analytical Chemistry, vol.69, issue.2, pp.206-215, 1997.
DOI : 10.1021/ac960415w

P. A. Martos and J. Pawliszyn, Time-Weighted Average Sampling with Solid-Phase Microextraction Device:?? Implications for Enhanced Personal Exposure Monitoring to Airborne Pollutants, Analytical Chemistry, vol.71, issue.8, pp.1513-1520, 1999.
DOI : 10.1021/ac981028k

M. Gratht and R. Sharma, An experimental investigation into the formation of polycyclic aromatic hydrocarbons from pyrolysis of biomass materials, Fuel, pp.80-1787, 2001.

Z. Mester, R. Sturgeon, and J. Pawliszyn, Solid phase microextraction as a tool for trace element speciation, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.56, issue.3, pp.233-260, 2001.
DOI : 10.1016/S0584-8547(00)00304-9

Z. Mester and R. Sturgeon, Trace element speciation using solid phase microextraction, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.60, issue.9-10, pp.1243-1269, 2005.
DOI : 10.1016/j.sab.2005.06.013

O. Moersch, H. Spliethoff, and K. R. Hein, Tar quantification with a new online analyzing method, Biomass and Bioenergy, vol.18, issue.1, pp.79-86, 2000.
DOI : 10.1016/S0961-9534(99)00068-9

O. Morf, Secondary reactions of tar during thermochemical biomass conversion, for the degree of Doctor of Technical Sciences, 2001.

P. Morf, H. Hasler, and T. Nussbaumer, Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips, Fuel, vol.81, issue.7, pp.81-843, 2002.
DOI : 10.1016/S0016-2361(01)00216-2

J. Namiesnik, D. Gorlo, L. Wolska, and B. Zygmunt, Analysis of selected gaseous organic micro-pollutants in air by means of solid phase microextraction-gas chromatography-mass spectrometry. Calibration problems, Analusis, vol.26, issue.4, pp.170-174, 1998.
DOI : 10.1051/analusis:1998129

J. Pawliszyn, Solid Phase Microectraction : Theory and Practice, 1997.

J. Pawliszyn, Application of Solid Phase Microectraction, 1999.

[. Européen, visant à promouvoir l'utilisation des biocarburants ou autres carburants renouvelables dans les transports, Journal officiel L, vol.30123, p.1705, 2003.

P. Perez, P. M. Aznar, M. A. Caballero, J. Gil, J. A. Martin et al., Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidised bed gasifier operating with steam?oxygen mixtures, Energy Fuels, issue.11, pp.1194-1203, 1997.

P. Prikryl and J. G. Sevcik, Characterization of sorption mechanisms of solidphase microextraction with volatile organic compounds in air samples using a linear solvation energy relationship approach, Journal of Chromatography A, 2007.

D. D. Roberts, P. Pollien, and C. Milo, Solid-Phase Microextraction Method Development for Headspace Analysis of Volatile Flavor Compounds, Journal of Agricultural and Food Chemistry, vol.48, issue.6, pp.2430-2437, 2000.
DOI : 10.1021/jf991116l

C. N. Roy, J. A. Koziel, and J. Pawliszyn, Disponible sur http://www.industrie.gouv.fr/energie/prospect/pdf/facteur4-contrib-roy Kinetics of solid-phase extraction and solid-phase microextraction in thin adsorbent layer with saturation sorption isotherm, Journal of Chromatography A, vol.873, pp.39-51, 2000.

P. Stahlberg, M. Lappi, E. Kurkela, P. Simell, P. Oesh et al., Sampling of contaminants from gases of biomass gasifiers, Research notes of Valtion Teknillinen Tutkimuskeskus, 1998.

R. M. Stephenson, S. Malanowski, and D. Ambrose, Handbook of the thermodynamics of organic compounds, 1987.
DOI : 10.1007/978-94-009-3173-2

K. Sukola, J. Koziel, F. Augusto, and J. Pawliszyn, Diffusion-Based Calibration for SPME Analysis of Aqueous Samples, Analytical Chemistry, vol.73, issue.1, pp.13-18, 2001.
DOI : 10.1021/ac000903a

M. J. Tijmensen, A. P. Faaij, C. N. Hamelinck, and M. R. Van-hardeveld, Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification, Biomass and Bioenergy, vol.23, issue.2, pp.129-152, 2002.
DOI : 10.1016/S0961-9534(02)00037-5

B. Tissot, Apport de la modélisation en géologie et en géochimie à l'industrie pétrolière, HorowitzJ, lions J-L, Les grands systèmes des sciences et de la technologie, pp.771-792, 1994.

L. Tuduri, Analyse de traces de composes organiques volatils dans l'air par microextraction sur phase solide, Thèse de doctorat « chimie et microbiologie de l'eau, 2002.

. Tumbiolo-s, J. F. Gal, P. C. Maria, and O. Zerbinati, SPME Sampling of BTEX before GC/MS Analysis: Examples of outdoor and indoor Air Quality Measurements in Public and Private Sites, Annali di Chimica, vol.73, issue.11-12, pp.11-12, 2005.
DOI : 10.1002/adic.200590089

S. V. Van2006-]-van-paasen, M. K. Cieplik, N. P. Phokawat, J. Ver2000-]-vercammen, P. Sandra et al., Gasification of Non-woody Biomass Economic and Technical Perspectives of Chlorine and Sulphur Removal from Product Gas, report of the Energy Reseach Center of the Netherland Disponible sur http, Considerations on Static and Dynamic Sorptive and Adsorptive Sampling to Monitor Volatiles Emitted by Living Plants, pp.547-553, 2000.

T. Vexiau and . La-biomasse, Disponible sur http://www.cnisf.org/biblioth_cnisf/presentations/biomasseenergiefutur Direct conversion of biomass to biopetroleum at low temperature, Journal of Analytical and Applied Pyrolysis, pp.78-438, 2005.

G. Yu, C. Brage, G. Chen, and K. Sjöström, Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor, Journal of Analytical and Applied Pyrolysis, vol.40, issue.41
DOI : 10.1016/S0165-2370(97)00017-X

B. Worthington and A. Rey, GENERATION OF DYNAMIC STANDARD TEST ATMOSPHERES FOR AROMATIC COMPOUNDS BY USING THE DIFFUSION VIAL METHOD, American Industrial Hygiene Association Journal, vol.52, issue.11, pp.464-468
DOI : 10.1080/15298669191365054

Z. Zhang and J. Pawliszyn, Headspace solid-phase microextraction, Analytical Chemistry, vol.65, issue.14, pp.1843-1852, 1993.
DOI : 10.1021/ac00062a008

L. Annexe, . Conditions, and X. Utilisé-est-un-chromatographe-perkin-elmer-autosystem, Il est équipé d'un injecteur split/splitless, d'un passeur automatique d'échantillon et d'un détecteur à ionisation de flamme. Cet appareil est utilisé avec une colonne capillaire SGE BP1 100% PDMS 50m×0,32mm×0,1µm. Les conditions opératoires utilisées pour les analyses sont les suivantes: -Injecteur: 280°C pour la désorption des fibres 298°C pour l'injection de solutions étalons -Injection des solutions étalons et solutions liquides par passeur automatique, µl Lavages échantillon, pp.5-6

4. Rampe-de, min -1 jusqu'à 220°C

-. Détecteur, 350°C -Alimentation du détecteur: Débit de 45 ml.min -1 en hydrogène Débit de 420 ml.min -1 d'air